WO2020134610A1 - 数据调度方法及装置 - Google Patents

数据调度方法及装置 Download PDF

Info

Publication number
WO2020134610A1
WO2020134610A1 PCT/CN2019/115777 CN2019115777W WO2020134610A1 WO 2020134610 A1 WO2020134610 A1 WO 2020134610A1 CN 2019115777 W CN2019115777 W CN 2019115777W WO 2020134610 A1 WO2020134610 A1 WO 2020134610A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
scheduling
physical resource
prb
info
Prior art date
Application number
PCT/CN2019/115777
Other languages
English (en)
French (fr)
Inventor
张景林
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020134610A1 publication Critical patent/WO2020134610A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a data scheduling method and device.
  • the main task of the MAC (Medium Access Control) layer is to schedule logical channel data to be sent on a physical channel.
  • the protocol defines multiple TBSize (Transport Block Size) tables.
  • TBSize Transport Block Size
  • the MAC layer obtains the logical channel BSR (Buffer Status Report), based on the query In the form of a table, the number of MCS (Modulation and Coding Scheme, modulation and coding strategy), PRB (Physical Resource Block) and layer number of the final scheduling can be obtained.
  • MCS Modulation and Coding Scheme, modulation and coding strategy
  • PRB Physical Resource Block
  • the TBSize is determined by calculation. For a given MCS, PRB number, and layer number v, first obtain an effective RE (Resource) Element in a PRB Number, multiply by the PRB number to get the total RE number. Then calculate the intermediate number of information bits Ninfo based on the total RE number and MCS, v. Finally, quantify Ninfo to obtain the final TBSize. If the TBSize satisfying the BSR size is found based on the MCS and PRB number polling methods, the calculation amount required by the MAC layer is too large, which affects the scheduling performance on the base station side.
  • RE Resource
  • Ninfo intermediate number of information bits
  • Embodiments of the present disclosure provide a data access control layer data scheduling method and device to at least solve the problem that the calculation amount required by the MAC layer in the related art is too large, which affects the scheduling performance on the base station side.
  • a data scheduling method including: acquiring an MCS table of a modulation and coding mode used for scheduling a current UE, an air interface transmission layer number v, and effective resources in each physical resource block in a current time slot The number of units N RE and the number of available physical resource blocks remaining in the current time slot N PRB _remain; calculating the critical quantization information bit C info of the data block to be scheduled; according to the critical quantization information bit C info , the MSC table, and all The number of layers v, the number of effective resource units N RE and the number of available physical resource blocks N PRB _remain calculate the scheduling MCS of the data block to be scheduled; calculate the scheduling required according to the scheduling MCS of the data block to be scheduled The number of physical resource blocks.
  • a data scheduling apparatus including: an acquisition module configured to acquire an MCS table of a modulation and coding mode used for scheduling a current UE, an air interface transmission layer number v, and each physical in a current time slot The number of effective resource units in the resource block, N RE , and the number of available physical resource blocks remaining in the current time slot, N PRB _remain; the critical quantization information bit calculation module, set to calculate the critical quantization information bit C info of the data block to be scheduled; MCS The calculation module is configured to calculate the to-be-scheduled according to the critical quantization information bit C info , the MSC table, the number of layers v, the number of effective resource units N RE and the number of available physical resource blocks N PRB _remain MCS for data block scheduling; a physical resource block calculation module configured to calculate the number of physical resource blocks required for scheduling according to the scheduling MCS.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the above method embodiments at runtime.
  • an electronic device including a memory and a processor, the memory stores a computer program, the processor is configured to run the computer program to perform any of the above The steps in the method embodiment.
  • the critical quantization information bits of the data block to be scheduled are calculated first, and then the MCS and PRB numbers of the scheduling are back-calculated based on the critical quantization information bits, therefore, the scheduling calculation amount of the MAC layer is greatly reduced.
  • FIG. 1 is a structural block diagram of a base station operating according to an embodiment of the disclosed method
  • FIG. 2 is a flowchart of a data scheduling method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a critical quantization information bit according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a 5G media access control layer data scheduling method according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of steps for calculating critical quantization information bits according to an optional embodiment of the present disclosure
  • FIG. 7 is a flowchart of a PRB calculation method according to an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a data scheduling apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a data scheduling apparatus according to another embodiment of the present disclosure.
  • FIG. 1 is a block diagram of a base station hardware structure of a data scheduling method according to an embodiment of the present disclosure.
  • the base station 10 may include one or more (only one is shown in FIG. 1) processor 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA, etc.) And a memory 104 for storing data, optionally, the above-mentioned base station further includes a transmission device 106 for a communication function and a transmission device 108 for transmitting and receiving wireless signals.
  • FIG. 1 is merely an illustration, which does not limit the structure of the mobile terminal described above.
  • the base station 10 may also include more or fewer components than those shown in FIG. 1, or have a configuration different from that shown in FIG.
  • the memory 104 may be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the data scheduling method in the embodiments of the present disclosure, and the processor 102 executes various programs by running the computer program stored in the memory 104 Various functional applications and data processing, that is, to achieve the above method.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memories remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 through a network. Examples of the aforementioned network include, but are not limited to, the Internet, intranet, local area network, mobile communication network, and combinations thereof.
  • the transmission device 106 is configured to receive or transmit data via a network.
  • the base station 10 can access the operator's core network through the transmission device 106.
  • the transmitting device 108 may be an antenna system including a radio frequency (Radio Frequency, RF for short) module, which is configured to communicate with the mobile terminal in a wireless manner.
  • a radio frequency (Radio Frequency, RF for short) module which is configured to communicate with the mobile terminal in a wireless manner.
  • FIG. 1 is a flowchart of data scheduling according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the MAC layer obtains the scheduling BSR, and determines the MCS table, the number of layers v, the number of effective REs in each PRB in the current slot (N RE ) , and the number of remaining available PRBs in the current slot N PRB_remain .
  • Step S204 the threshold calculating quantization information bits C info.
  • step S206 the scheduled I MCS is calculated based on the critical quantization information bits C info , MCS table, layer v, effective RE number N RE and the remaining available N PRB_remian in the current slot .
  • Step S208 based on the critical quantization information bits C info , MCS table, layer v, effective RE number N RE , available N PRB_remian and the scheduled MCS back calculation required PRB number N PRB . Therefore, the base station can perform data scheduling according to the PRB number N PRB required for obtaining scheduling.
  • the critical quantization information bits of the data block to be scheduled are calculated first, and then the MCS and PRB numbers of the scheduling are calculated back based on the critical quantization information bits. Therefore, the scheduling calculation amount of the MAC layer on the base station side is greatly reduced.
  • An embodiment of the present disclosure also provides a 5G media access control layer data scheduling method, as shown in FIG. 4, specifically including the following steps:
  • Step S401 Determine the MCS table used by the current UE, the number of layers v, the number of valid REs in each PRB in the current slot, N RE , and the number of remaining available PRBs in the current slot, N PRB_remain .
  • the MCS table used by the UE can be determined according to the 38.214 protocol.
  • the number of valid REs in each PRB in the current slot is calculated according to the 38.214 protocol.
  • the number of layers v can be obtained through channel quality information, because after a layer mapping of a TB block is mapped to one or more transmission layers, each layer corresponds to a valid data stream. This layer number v is the number of air interface transmission layers of the TB block.
  • the number of remaining available PRBs in the current slot is the total number of PRBs minus the number of scheduled PRBs.
  • PRB scheduling is based on partial bandwidth (Bandwidth Part, BWP), so the total PRB is currently used by the UE The total PRB number of BWP.
  • Step S402 the calculated threshold quantization information bits C info.
  • the calculation of the critical quantization information bit C info specifically includes the following steps:
  • Step S402-1 determine whether bsr is less than or equal to 3824, if yes, go to step S402-2; if no, go to step S402-3.
  • Step S402-2 The calculation process of C info when bsr is less than or equal to 3824 is as follows:
  • n is the factorial of the quantization rounding factor, and the nth power of 2 is an integer multiple of 8, so as to ensure that the quantized C info is an integer number of bytes;
  • Step S402-3 The calculation process of C info when bsr is greater than or equal to 3824 is as follows:
  • n is the factorial of the quantization rounding factor, and the nth power of 2 is an integer multiple of 8, thereby ensuring that the quantized Cinfo is an integer number of bytes;
  • Step S403 Calculate the scheduled MCS based on C info , MCS table, v, NRE, N PRB_remian .
  • an embodiment of the present disclosure provides a flowchart of steps of a method for calculating a scheduled MCS, as shown in FIG. 6, including the following steps:
  • Step S403-1 determine whether the scheduled MCS has been determined, and if not, execute step S403-2.
  • the scheduled MCS can be calculated based on the channel quality information of the UE.
  • the MCS currently scheduled can be set through other methods, such as based on conservative scheduling.
  • I MCS is the minimum MCS required by the current slot to schedule data blocks of the current UE's bsr size.
  • Step S403-4 determine whether the I MCS exceeds the allowed MCS range, if yes, then execute step S403-5, if not, then execute step S403-6.
  • the protocol has restrictions on the MCS used by certain types of data blocks, for example, system information.
  • the modulation order Q m must be less than or equal to 2. If the Q m corresponding to I MCS exceeds 2, the current slot cannot use this data block. Scheduled.
  • the MCS range can also be set independently during implementation, for example, the MCS range is 4 to 10, or the MCS range is 10 to 20, etc., which is configured based on the specific scenario requirements.
  • Step S403-5 the current slot does not schedule the data block
  • Step S403-6 Select an MCS value greater than or equal to I MCS within the allowed MCS range, and the MCS is the scheduled MCS value.
  • Step S404 based on C info , MCS table, layer number v, N RE , N PRB_remian , and scheduled MCS back calculation of PRB number N PRB required for scheduling.
  • FIG. 7 shows a flowchart of steps of a PRB calculation method provided by an embodiment of the present disclosure. As shown in FIG. 7, the method includes the following steps:
  • Step S404-1 First, check the MCS table according to the scheduled MCS to obtain the corresponding modulation order Q m and code rate R.
  • Step S404-3 determine whether N PRB is less than N PRB_remain , if yes, execute step S404-4; if no, execute step S404-5;
  • Step S404-4 the number of scheduled PRBs is N PRB ;
  • Step S404-5 judging whether the current data block can be divided into blocks, if yes, the number of scheduled PRBs is N PRB ; if not, step S404-6 is executed;
  • Step S404-5 The current slot does not schedule the current data block.
  • the critical quantization information bits of the data block to be scheduled are calculated first, and then the MCS and PRB numbers of the scheduling are calculated inversely based on the critical quantization information bits, thus greatly reducing the scheduling calculation amount of the MAC layer on the base station side .
  • the method according to the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or part that contributes to the existing technology, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk,
  • the CD-ROM includes several instructions to enable a communication device (which may be a base station, a server, or a network device, etc.) to execute the methods described in various embodiments of the present disclosure.
  • a data scheduling apparatus is also provided.
  • the apparatus is used to implement the foregoing embodiments and preferred implementation modes, and descriptions that have already been described will not be repeated.
  • the term "module” or "unit” may implement a combination of software and/or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • the apparatus includes an acquisition module 10, a critical quantization information bit calculation module 20, an MCS calculation module 30, and a physical resource block calculation module 40.
  • the acquisition module 10 is set to acquire the MCS table of the modulation and coding mode used for scheduling the current UE, the number of layers v, the number of effective resource units N RE in each physical resource block in the current time slot, and the remaining available physical resources in the current time slot Number of resource blocks N PRB _remain.
  • the critical quantization information bit calculation module 2, 0 is set to calculate the critical quantization information bit C info of the data block to be scheduled.
  • the MCS calculation module 30 is configured to calculate the critical quantization information bit C info , the MSC table, the number of layers v, the number of effective resource units N RE and the number of available physical resource blocks N PRB _remain The scheduling MCS of the data block to be scheduled.
  • the physical resource block calculation module 40 is configured to calculate the number of physical resource blocks required for scheduling according to the scheduling MCS.
  • FIG. 9 is a structural block diagram of a data scheduling apparatus according to another embodiment of the present disclosure. As shown in FIG. 9, the apparatus includes all the modules shown in FIG. 8, and the critical quantization information bit calculation module 20 further includes a first calculation unit 201 and the second calculation unit 202.
  • the first calculation unit 201 is configured to determine whether the size of the scheduled cache status report is less than or equal to a set threshold, and if so, find the maximum tbs less than the cache status report in the TBS table, and calculate the critical quantization information bit according to the following formula C info :
  • the second calculation unit 202 is configured to calculate the critical quantization information bit C info according to the following formula when the cache status report is greater than the set threshold :
  • bsr is the size of the cache status report.
  • the MCS module 30 may further include a third calculation unit 301 and a first judgment unit 302.
  • a first determining unit 302 arranged to judge whether or not I MCS MCS exceeds the allowed range, and if yes, the current time slot does not schedule the data block, and if not, select a MCS value greater than or equal I MCS as the MCS value scheduled.
  • the physical resource block calculation module 40 may further include:
  • the searching unit 401 is configured to search the alleged MCS table according to the scheduled MCS to obtain the corresponding modulation order Q m and code rate R.
  • the physical resource block calculation module 40 may further include a second judgment unit 403 and a third judgment unit 404.
  • the second determining unit 403 is set to determine whether N PRB is less than the number of available physical resource blocks remaining in the current time slot after calculating the physical resource blocks required for scheduling, and if so, the number of physical resource blocks required for scheduling is N PRB ;
  • the third judgment unit 404 is set to further determine whether the current data block can be divided into blocks when N PRB is greater than or equal to the number of available physical resource blocks remaining in the current time slot, and if so, the number of physical resource blocks required for scheduling is N PRB ; if not, the current time slot does not schedule the current data block.
  • the above modules can be implemented by software or hardware, and the latter can be implemented by the following methods, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination The forms are located in different processors.
  • An embodiment of the present disclosure also provides a storage medium in which a computer program is stored, wherein the computer program is set to execute any of the steps in the above method embodiments during runtime.
  • the above storage medium may include, but is not limited to: a USB flash drive, a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), Various media that can store computer programs, such as removable hard disks, magnetic disks, or optical disks.
  • An embodiment of the present disclosure also provides an electronic device, including a memory and a processor, where the computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any one of the foregoing method embodiments.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • modules or steps of the present disclosure can be implemented by a general-purpose computing device, they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices Above, optionally, they can be implemented with program code executable by the computing device, so that they can be stored in the storage device to be executed by the computing device, and in some cases, can be in a different order than here
  • the steps shown or described are performed, or they are made into individual integrated circuit modules respectively, or multiple modules or steps among them are made into a single integrated circuit module to achieve. In this way, the present disclosure is not limited to any specific combination of hardware and software.
  • the critical quantization information bits of the data block to be scheduled are calculated first, and then the MCS and PRB numbers of the scheduling are back-calculated based on the critical quantization information bits. Therefore, the scheduling calculation amount of the MAC layer is greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据调度方法及装置,该方法包括获取调度当前UE使用的调制与编码模式MCS表、层数、当前时隙中每个物理资源块中的有效资源单元数、以及当前时隙中剩余的可用物理资源块数;计算待调度数据块的临界量化信息比特;根据所述临界量化信息比特、所述MCS表、所述层数、所述有效资源单元数和所述可用物理资源块数计算所述待调度数据块的调度MCS;根据所述待调度数据块的调度MCS计算调度所需的物理资源块数。在本公开中,通过先计算待调度数据块的临界量化信息比特,再基于临界量化信息比特计算调度的MCS和PRB数,因此,大大降低MAC层的调度计算量。

Description

数据调度方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种数据调度方法及装置。
背景技术
在无线通信系统中,MAC(Medium Access Control,媒体接入控制)层的主要任务是将逻辑信道数据调度到物理信道上发送。在4G LTE(Long Term Evolution,长期演进)中,协议定义了多个TBSize(Transport Block Size,传输资源块大小)表,MAC层获取逻辑信道BSR(Buffer Status Report,缓存状态报告)后,基于查表的方式即可获取最终调度的MCS(Modulation and Coding Scheme,调制与编码策略)、PRB(Physical Resource Block,物理资源块)数、层数。
而在5G NR(New Radio,新空口)系统中,TBSize的确定是通过计算获取的,对给定的MCS、PRB数、层数v,首先获取一个PRB中有效RE(Resource Element,资源单元)数,乘以PRB数获取总的RE数。然后再基于总的RE数以及MCS、v计算信息比特中间数Ninfo。最后将Ninfo量化获取最终的TBSize。如果基于MCS、PRB数轮询方式查找满足BSR大小的TBSize,MAC层需要的计算量过大,影响基站侧调度性能。
发明内容
本公开实施例提供了一种媒体接入控制层数据调度方法及装置,以至少解决相关技术中MAC层需要的计算量过大,而影响基站侧调度性能的问题。
根据本公开的一个实施例,提供了一种数据调度方法,包括:获取调度当前UE使用的调制与编码模式MCS表、空口传输层数v、当前时隙中每个物理资源块中的有效资源单元数N RE、以及当前时隙中剩余的可用物理资源块数N PRB_remain;计算待调度数据块的临界量化信息比特C info;根 据所述临界量化信息比特C info、所述MSC表、所述层数v、所述有效资源单元数N RE和所述可用物理资源块数N PRB_remain计算所述待调度数据块的调度MCS;根据所述待调度数据块的调度MCS计算调度所需的物理资源块数。
根据本公开的另一个实施例,提供了一种数据调度装置,包括:获取模块,设置为获取调度当前UE使用的调制与编码模式MCS表、空口传输层数v、当前时隙中每个物理资源块中的有效资源单元数N RE、以及当前时隙中剩余的可用物理资源块数N PRB_remain;临界量化信息比特计算模块,设置为计算待调度数据块的临界量化信息比特C info;MCS计算模块,设置为根据所述临界量化信息比特C info、所述MSC表、所述层数v、所述有效资源单元数N RE和所述可用物理资源块数N PRB_remain计算所述待调度数据块的调度MCS;物理资源块计算模块,设置为根据所述调度MCS计算调度所需的物理资源块数。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
在本公开的上述实施例中,通过先计算待调度数据块的临界量化信息比特,再基于临界量化信息比特反算调度的MCS和PRB数,因此,大大降低MAC层的调度计算量。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开方法实施例运行的基站结构框图;
图2是根据本公开实施例的数据调度方法流程图;
图3是根据本公开实施例的一种临界量化信息比特的示意图;
图4是根据本公开实施例的5G媒体接入控制层数据调度方法流程图;
图5是根据本公开可选实施例的临界量化信息比特计算步骤流程图;
图6是根据本公开实施例的MCS计算方法流程图;
图7是根据本公开实施例的PRB计算方法流程图;
图8是根据本公开实施例的数据调度装置结构框图;
图9是根据本公开另一实施例的数据调度装置结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开所提供的方法实施例可以在基站或者类似的运算装置中执行。以运行在基站上为例,图1是本公开实施例的一种数据调度方法的基站硬件结构框图。如图1所示,基站10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,可选地,上述基站还包括用于通信功能的传输设备106和用于进行无线信号发射和接收的发射设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,基站10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的数据调度方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及 数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。例如,基站10可以通过该传输装置106的接入运营商的核心网。
发射设备108可以为包括射频(Radio Frequency,简称为RF)模块的天线系统,其设置为通过无线方式与移动终端进行通讯。
在本实施例中提供了一种运行于上述基站的数据调度方法,图1是根据本公开实施例的数据调度的流程图,如图2所示,该流程包括如下步骤:
步骤S202,MAC层获取调度BSR,并确定调度当前UE使用的MCS表、层数v、当前时隙(slot)中每个PRB中的有效RE数N RE、当前slot剩余的可用PRB数N PRB_remain
步骤S204,计算临界量化信息比特C info
对于tbsize1<BSR≤tbsize2,可以根据协议给的量化公式,计算得到tbsize1和tbsize2的临界量化信息比特C info,基于C info-1量化计算得到的TBSize=tbsize1,基于C info量化计算得到的TBSize=tbsize2,如图3所示,图3中示出了tbsize1<BSR≤tbsize2情况下的临界量化信息比特C info计算示意图。
这样只需要基于C info反算MCS和PRB,使得MCS和PRB计算得到的中间信息比特量Ninfo≥C info,就可以保证MCS和PRB调度的TBSize满足BSR计算需求。
步骤S206,基于临界量化信息比特C info、MCS表、层v、有效RE数N RE和当前slot剩余的可用N PRB_remian计算调度的I MCS。
步骤S208,基于临界量化信息比特C info、MCS表、层v、有效RE数 N RE、可用N PRB_remian和调度的MCS反算调度所需的PRB数N PRB。因此,基站可根据获得调度所需的PRB数N PRB进行数据的调度。
在本实施例中,通过先计算待调度数据块的临界量化信息比特,再基于临界量化信息比特反算调度的MCS和PRB数,因此,大大降低基站侧的MAC层的调度计算量。
本公开实施例还提供了一种5G媒体接入控制层数据调度方法,如图4所示,具体包括如下步骤:
步骤S401,确定调度当前UE使用的MCS表、层数v、当前slot中每个PRB中的有效RE数N RE、当前slot剩余的可用PRB数N PRB_remain
UE使用的MCS表可以根据38.214协议判断得到。当前slot中每个PRB中有效RE数根据38.214协议计算得到。层数v可通过信道质量信息获取,因为,将一个TB块进行层映射后,会映射到一个或多个传输层,每层对应一条有效数据流。这个层数v就是TB块的空口传输层数。当前slot剩余的可用PRB数为总的PRB数减去已调度分配的PRB数,在5G中,PRB的调度是基于部分带宽(Bandwidth Part,BWP),所以总的PRB是当前调度该UE使用的BWP的总的PRB数。
步骤S402,计算临界量化信息比特C info
对于一个bsr满足tbsize1<bsr≤tbsize2的待调度数据块,如图3所示,其对应临界量化信息比特C info满足基于C info量化后计算得到tbsize等于tbsize2,C info-1量化后计算得到tbsize等于tbsize1。如图5所示,临界量化信息比特C info的计算具体包括以下步骤:
步骤S402-1:判断bsr是否小于等于3824,若是,执行步骤S402-2;若否,执行步骤S402-3。
在5G 38.214协议中,对信息比特中间数Ninfo的量化有两种计算方式,分别对应Ninfo≤3824和Ninfo>3824,因此对C info的也需要基于不同的量化过程给出不同的计算公式。
步骤S402-2:bsr小于等于3824时C info的计算过程为:
1)在TBS表中找到小于bsr的最大TBS,记为tbs,tbs即为前面描述的tbsize1;
2)计算
Figure PCTCN2019115777-appb-000001
n为量化取整因子的阶乘,2的n次方为8的整数倍,从而确保量化后的C info是整数个字节;
3)再计算
Figure PCTCN2019115777-appb-000002
步骤S402-3:bsr大于等于3824时C info的计算过程为:
1)计算
Figure PCTCN2019115777-appb-000003
n为量化取整因子的阶乘,2的n次方为8的整数倍,从而确保量化后的Cinfo是整数个字节;
2)计算
Figure PCTCN2019115777-appb-000004
3)如果
Figure PCTCN2019115777-appb-000005
Figure PCTCN2019115777-appb-000006
否则Cinfo保持不变。
步骤S403,基于C info、MCS表、v、NRE、N PRB_remian计算调度的MCS。
为了更清楚的描述调度的MCS的计算过程,本公开的一个实施例提供的一种调度MCS计算方法的步骤流程图,如图6所示,包括如下步骤:
步骤S403-1:判断调度的MCS是否已经确定,若否,则执行步骤S403-2。
首先需要判断下当前该调度UE的信道质量信息是否已经获取,如果基站已经有UE的信道质量信息,可以基于UE的信道质量信息计算得到调度的MCS。此外即使基站没有终端的信道质量信息,也可以通过其他方式,比如基于保守调度设置当前调度的MCS。
步骤S403-2:计算Q mR,Q mR=C info/N RE/N PRB_remain/v。
步骤S403-3:在确定的MCS表中从I MCS=0开始查找第一个Q m×R大于等于Q mR的I MCS,Q m为I MCS对应的调制阶数,R为I MCS对应码率。I MCS为当前slot调度当前UE的bsr大小的数据块所需要的最小MCS。
步骤S403-4:判断I MCS是否超过允许使用的MCS范围,若是,则执行步骤S403-5,若否,则执行步骤S403-6。
这是因为协议对某些类型数据块使用的MCS有限制,例如,系统信息,此时调制阶数Q m必须小于等于2,如果I MCS对应的Q m超过2,当前slot该数据块是不能调度的。此外,实现时也可以自主设置MCS范围,例如MCS范围为4~10,或者MCS范围为10~20等等,基于具体场景需求配置。
步骤S403-5:当前slot不调度该数据块;
步骤S403-6:在允许的MCS范围内选择一个大于等于I MCS的MCS值,该MCS即为调度的MCS值。
步骤S404,基于C info、MCS表、层数v、N RE、N PRB_remian、调度的MCS反算调度所需的PRB数N PRB
图7给出了本公开的一个实施例提供的一种PRB计算方法的步骤流程图,如图7所示,该方法包括如下步骤:
步骤S404-1:首先根据调度的MCS查MCS表得到对应的调制阶数Q m和码率R。
步骤S404-2:计算N PRB=ceil(C info/N RE/R/Qm/v)。
步骤S404-3:判断N PRB是否小于N PRB_remain,若是,则执行步骤S404-4若否,则执行步骤S404-5;
步骤S404-4:调度的PRB数即为N PRB
步骤S404-5:判断当前数据块是否可以分块,若是,则调度的PRB数即为N PRB;若否,则执行步骤S404-6;
步骤S404-5:当前slot不调度当前数据块。
在本公开的上述实施例中,通过先计算待调度数据块的临界量化信息比特,再基于临界量化信息比特反算调度的MCS和PRB数,因此,大大降低基站侧的MAC层的调度计算量。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当 然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台通信设备(可以是基站,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种数据调度装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”或“单元”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是根据本公开实施例的数据调度装置的结构框图,如图8所示,该装置包括获取模块10、临界量化信息比特计算模块20、MCS计算模块30和物理资源块计算模块40。
获取模块10,设置为获取调度当前UE使用的调制与编码模式MCS表、层数v、当前时隙中每个物理资源块中的有效资源单元数N RE、以及当前时隙中剩余的可用物理资源块数N PRB_remain。
临界量化信息比特计算模块2,0设置为计算待调度数据块的临界量化信息比特C info
MCS计算模块30,设置为根据所述临界量化信息比特C info、所述MSC表、所述层数v、所述有效资源单元数N RE和所述可用物理资源块数N PRB_remain计算所述待调度数据块的调度MCS。
物理资源块计算模块40,设置为根据所述调度MCS计算调度所需的物理资源块数。
图9是根据本公开另一实施例的数据调度装置的结构框图,如图9所示,该装置除包括图8所示的所有模块外,临界量化信息比特计算模块20还包括第一计算单元201和第二计算单元202。
第一计算单元201,设置为判断调度的缓存状态报告的大小是否小于 等于设定阈值,如果是,在TBS表中查找小于缓存状态报告的最大tbs,并按照如下公式计算所述临界量化信息比特C info
Figure PCTCN2019115777-appb-000007
Figure PCTCN2019115777-appb-000008
第二计算单元202,设置为在所述缓存状态报告大于所述设定阈值的情况下,根据如下公式计算所述临界量化信息比特C info:
Figure PCTCN2019115777-appb-000009
Figure PCTCN2019115777-appb-000010
其中,bsr为缓存状态报告的大小。
在所述缓存状态报告大于所述设定阈值的情况下,在计算出所述临界量化信息比特后,第二计算单元201还进一步判断,如果
Figure PCTCN2019115777-appb-000011
则按C info=C info+2 n-1调整计算出的临界量化信息比特,否则保持计算出的临界量化信息比特不变。
在上述实施例中,MCS模块30还可以进一步包括第三计算单元301和第一判断单元302。
第三计算单元301设置为计算Q mR=C info/N RE/N PRB_remain/v,并在所述MCS表中从I MCS=0开始查找第一个Q m×R大于等于Q mR的I MCS,Q m为I MCS对应的调制阶数,R为I MCS对应码率,I MCS为当前时隙调度当前UE的缓存状态报告大小的数据块所需要的最小MCS。
第一判断单元302,设置为判断I MCS是否超过允许使用的MCS范围,如果是,则当前时隙不调度该数据块,如果否,选择一个大于等于I MCS的MCS值作为调度的MCS值。
在上述实施例中,物理资源块计算模块40还可以进一步包括:
查找单元401,设置为根据调度的MCS查找所诉MCS表得到对应的调制阶数Q m和码率R。
第四计算单元402,设置为根据如下公式计算调度所需的物理资源块N PRB:N PRB=ceil(C info/N RE/R/Qm/v)。
在上述实施例中,物理资源块计算模块40还可以进一步包括第二判断单元403和第三判断单元404。
第二判断单元403,设置为在计算出调度所需的物理资源块之后,判断N PRB是否小于当前时隙中剩余的可用物理资源块数,若是,则调度所需的物理资源块数为N PRB
第三判断单元404,设置为在N PRB大于等于当前时隙中剩余的可用物理资源块数的情况下,进一步判断当前数据块是否可以分块,若是,则调度所需的物理资源块数为N PRB;若否,则当前时隙不调度当前数据块。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者 分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
通过本公开的上述实施例,先计算待调度数据块的临界量化信息比特,再基于临界量化信息比特反算调度的MCS和PRB数,因此,大大降低MAC层的调度计算量。

Claims (16)

  1. 一种数据调度方法,包括:
    获取调度当前UE使用的调制与编码模式MCS表、空口传输层数v、当前时隙中每个物理资源块中的有效资源单元数N RE、以及当前时隙中剩余的可用物理资源块数N PRB_remain;
    计算待调度数据块的临界量化信息比特C info
    根据所述临界量化信息比特C info、所述MSC表、所述层数v、所述有效资源单元数N RE和所述可用物理资源块数N PRB_remain计算所述待调度数据块的调度MCS;
    根据所述待调度数据块的调度MCS计算调度所需的物理资源块数。
  2. 根据权利要求1所述的方法,其中,计算待调度数据块的临界量化信息比特C info,包括:
    判断调度的缓存状态报告的大小是否小于等于设定阈值,如果是,在TBS表中查找小于缓存状态报告的最大tbs,并按照如下公式计算所述临界量化信息比特C info
    Figure PCTCN2019115777-appb-100001
    Figure PCTCN2019115777-appb-100002
    如果所述缓存状态报告大于所述设定阈值,则根据如下公式计算所述临界量化信息比特C info
    Figure PCTCN2019115777-appb-100003
    Figure PCTCN2019115777-appb-100004
    其中,bsr为缓存状态报告的大小。
  3. 根据权利要求2所述的方法,其中,在所述缓存状态报告大于所述设定阈值的情况下,在计算出所述临界量化信息比特后,还包括:
    如果
    Figure PCTCN2019115777-appb-100005
    则按C info=C info+2 n-1调整计算出的临界量化信息比特,否则保持计算出的临界量化信息比特不变。
  4. 根据权利要求1所述的方法,其中,根据所述临界量化信息比特C info、所述MSC表、所述层数v、所述有效资源单元数N RE和所述可用物理资源块数N PRB_remain计算所述待调度数据块的调度MCS,包括:
    计算Q mR=C info/(N RE*N PRB_remain*v),并在所述MCS表中从I MCS=0开始查找第一个Q m×R大于等于Q mR的I MCS,Q m为I MCS对应的调制阶数,R为I MCS对应码率,I MCS为当前时隙调度当前UE的缓存状态报告大小的数据块所需要的最小MCS;
    判断I MCS是否超过允许使用的MCS范围,如果是,则当前时隙不调度该数据块,如果否,选择一个大于等于I MCS的MCS值作为调度的MCS值。
  5. 根据权利要求1所述的方法,其中,获取调度所需的物理资源块包括:
    根据调度的MCS查找所诉MCS表得到对应的调制阶数Q m和码率R;
    根据如下公式计算调度所需的物理资源块N PRB
    N PRB=ceil(C info/(N RE*Q m*R*v)),其中Ceil()为取值函数。
  6. 根据权利要求5所述的方法,其中,在计算出调度所需的物理资源块之后,还包括:
    判断N PRB是否小于当前时隙中剩余的可用物理资源块数,若是,则调度所需的物理资源块数为N PRB
    如果N PRB大于等于当前时隙中剩余的可用物理资源块数,则进一步判断当前数据块是否可以分块,若是,则调度所需的物理资源块数为N PRB;若否,则当前时隙不调度当前数据块。
  7. 根据权利要求2或3所述的方法,其中,所述设定阈值为3824bit。
  8. 一种数据调度装置,包括:
    获取模块,设置为获取调度当前UE使用的调制与编码模式MCS表、空口传输层数v、当前时隙中每个物理资源块中的有效资源单元数N RE、以及当前时隙中剩余的可用物理资源块数N PRB_remain;
    临界量化信息比特计算模块,设置为计算待调度数据块的临界量化信息比特C info
    MCS计算模块,设置为根据所述临界量化信息比特C info、所述MSC表、所述层数v、所述有效资源单元数N RE和所述可用物理资源块数N PRB_remain计算所述待调度数据块的调度MCS;
    物理资源块计算模块,设置为根据所述调度MCS计算调度所需的物理资源块数。
  9. 根据权利要求8所述的数据调度装置,其中,所述临界量化信息比特计算模块包括:
    第一计算单元,设置为判断调度的缓存状态报告的大小是否小于等于设定阈值,如果是,在TBS表中查找小于缓存状态报告的最大tbs,并按照如下公式计算所述临界量化信息比特C info
    Figure PCTCN2019115777-appb-100006
    Figure PCTCN2019115777-appb-100007
    第二计算单元,设置为在所述缓存状态报告大于所述设定阈值的情况下,根据如下公式计算所述临界量化信息比特C info
    Figure PCTCN2019115777-appb-100008
    Figure PCTCN2019115777-appb-100009
    其中,bsr为缓存状态报告的大小。
  10. 根据权利要求9所述的数据调度装置,其中,在所述缓存状态报告大于所述设定阈值的情况下,在计算出所述临界量化信息比特后,还包括:
    如果
    Figure PCTCN2019115777-appb-100010
    则按C info=C info+2 n-1调整计算出的临界量化信息比特,否则保持计算出的临界量化信息比特不变。
  11. 根据权利要求8所述的数据调度装置,其中,所述MCS模块包括:
    第三计算单元,设置为计算Q mR=C info/(N RE*N PRB_remain*v),并在所述MCS表中从I MCS=0开始查找第一个Q m×R大于等于Q mR的I MCS,Q m为I MCS对应的调制阶数,R为I MCS对应码率,I MCS为当前时隙调度当前UE的缓存状态报告大小的数据块所需要的最小MCS;
    第一判断单元,设置为判断I MCS是否超过允许使用的MCS范围,如果是,则当前时隙不调度该数据块,如果否,选择一个大于等于I MCS的MCS值作为调度的MCS值。
  12. 根据权利要求8所述的数据调度装置,其中,所述物理资源块计算模块包括:
    查找单元,设置为根据调度的MCS查找所诉MCS表得到对应的调制阶数Q m和码率R;
    第四计算单元,设置为根据如下公式计算调度所需的物理资源块N PRB:N PRB=ceil(C info/(N RE*Q m*R*v))。
  13. 根据权利要求12所述的数据调度装置,其中,所述物理资源块计算模块还包括:
    第二判断单元,设置为在计算出调度所需的物理资源块之后,判断N PRB是否小于当前时隙中剩余的可用物理资源块数,若是,则调度所需的物理资源块数为N PRB
    第三判断单元,设置为在N PRB大于等于当前时隙中剩余的可用物理资源块数的情况下,进一步判断当前数据块是否可以分块,若是,则调度所需的物理资源块数为N PRB;若否,则当前时隙不调度当前数据块。
  14. 根据权利要求9或10所述的数据调度装置,其中,所述设定阈值为3824比特。
  15. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至7任一项中所述的方法。
  16. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至7任一项中所述的方法。
PCT/CN2019/115777 2018-12-29 2019-11-05 数据调度方法及装置 WO2020134610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811643755.8 2018-12-29
CN201811643755.8A CN111385902B (zh) 2018-12-29 2018-12-29 数据调度方法及装置

Publications (1)

Publication Number Publication Date
WO2020134610A1 true WO2020134610A1 (zh) 2020-07-02

Family

ID=71126184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115777 WO2020134610A1 (zh) 2018-12-29 2019-11-05 数据调度方法及装置

Country Status (2)

Country Link
CN (1) CN111385902B (zh)
WO (1) WO2020134610A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923687B (zh) * 2020-07-10 2023-08-22 大唐移动通信设备有限公司 一种调制与编码策略mcs值调整方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023666A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 无线通信的方法和装置
WO2018203818A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Transmission block size determination

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186413B2 (ja) * 1994-04-01 2001-07-11 ソニー株式会社 データ圧縮符号化方法、データ圧縮符号化装置及びデータ記録媒体
EP2315369B1 (en) * 2008-07-30 2016-09-28 China Academy of Telecommunications Technology Methods and devices for adaptive modulation and coding
CN102752874B (zh) * 2011-04-22 2016-08-24 中兴通讯股份有限公司 物理下行共享信道的调度方法及装置
CN105992364B (zh) * 2015-03-02 2019-06-11 中兴通讯股份有限公司 资源处理方法及装置
CN107666364A (zh) * 2016-07-27 2018-02-06 北京三星通信技术研究有限公司 选择和确定调制编码方式的方法、相应的终端设备、基站设备
WO2018174564A1 (ko) * 2017-03-23 2018-09-27 엘지전자 주식회사 전송 블록 크기를 결정하는 방법 및 무선 기기
CN108631942A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 编码方法、译码方法、装置和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023666A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 无线通信的方法和装置
WO2018203818A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Transmission block size determination

Also Published As

Publication number Publication date
CN111385902B (zh) 2023-05-02
CN111385902A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
US11356990B2 (en) Method and device for resource allocation
JP6271019B2 (ja) リソース割当て方法、装置及びシステム
KR20120112650A (ko) 무선 자원 스케줄링 방법, 접속 네트워크의 네트워크 요소 및 터미널
EP3553980A1 (en) Method for transmitting data, terminal device and network device
KR102343593B1 (ko) 신호 전송 방법, 단말기 디바이스 및 네트워크 디바이스
WO2016138784A1 (zh) 一种调度方法及终端
TW201640933A (zh) 在無線傳輸中設置媒體存取控制協定資料單元
CN109257141B (zh) 一种码块分割方法、终端、基站及计算机可读存储介质
WO2016161606A1 (zh) 消息发送/接收方法、覆盖增强等级确定/获取方法及相关设备
EP3345096B1 (en) Method and apparatus for adaptive cache management
EP3261393A1 (en) Method and device for transmitting channel state information
WO2020134610A1 (zh) 数据调度方法及装置
CN109644492B (zh) 一种逻辑信道的资源调度方法和装置
WO2021027868A1 (zh) 信道状态信息的处理方法及装置、接收方法及装置
WO2018068640A1 (zh) 一种信道资源分配方法和装置、计算机存储介质
WO2018137667A1 (zh) 传输数据的方法和装置以及传输信息的方法和装置
US11252746B2 (en) Method for data transmission, terminal device and network device
CN110731109B (zh) 一种资源指示方法、设备和计算机存储介质
CN110351003B (zh) 确定传输块大小的方法和通信装置
WO2017193675A1 (zh) 上行资源的调度方法和装置
WO2017113993A1 (zh) 资源调度调整方法及装置
WO2019029624A1 (zh) 通信方法和设备
WO2016127670A1 (zh) 一种待调度数据的分配方法和装置
WO2018018641A1 (zh) 数据业务的数据传输方法和装置
CN107113798B (zh) 上行控制信息发送或接收方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19901882

Country of ref document: EP

Kind code of ref document: A1