WO2020134215A1 - Method for network node to switch format of medium access control subheader, and network node apparatus - Google Patents

Method for network node to switch format of medium access control subheader, and network node apparatus Download PDF

Info

Publication number
WO2020134215A1
WO2020134215A1 PCT/CN2019/106697 CN2019106697W WO2020134215A1 WO 2020134215 A1 WO2020134215 A1 WO 2020134215A1 CN 2019106697 W CN2019106697 W CN 2019106697W WO 2020134215 A1 WO2020134215 A1 WO 2020134215A1
Authority
WO
WIPO (PCT)
Prior art keywords
format
mac subheader
switch
network node
node
Prior art date
Application number
PCT/CN2019/106697
Other languages
French (fr)
Inventor
Jinhua Liu
Min Wang
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Publication of WO2020134215A1 publication Critical patent/WO2020134215A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Definitions

  • the present disclosure relates generally to the technology of wireless communication, and in particular, to a method for a network node to switch format of medium access control subheader, and a network node apparatus.
  • a first apparatus and a second apparatus may have different configuration parameters corresponding to data transmission management in radio interface, such as Logic Channel Identifier/Logic Channel Group Identifier (LCID/LCGID) spaces.
  • QoS quality of service
  • a first apparatus and a second apparatus may have different configuration parameters corresponding to data transmission management in radio interface, such as Logic Channel Identifier/Logic Channel Group Identifier (LCID/LCGID) spaces.
  • LCID/LCGID Logic Channel Identifier/Logic Channel Group Identifier
  • MAC Medium Control Access
  • MAC Medium Control Access
  • a first aspect of the present disclosure provides a method for a network node to switch a format of Medium Access Control (MAC) subheader, including: carrying a first format of MAC subheader when initiating a random access to an upstream node of the network node; receiving, from the upstream node, a message indicating a switch to a second format of MAC subheader; and using the second format of MAC subheader, to communicate with the upstream node.
  • MAC Medium Access Control
  • using the second format of MAC subheader includes: using the second format of MAC subheader, following an Acknowledgement (ACK) message to a contention resolution message received from the upstream node.
  • ACK Acknowledgement
  • the message indicating the switch to the second format of MAC subheader is a Radio Resource Control (RRC) signaling message.
  • RRC Radio Resource Control
  • the RRC signalling includes: a System Frame Number (SFN) , to indicate in which radio frame to start using the second format of MAC subheader.
  • SFN System Frame Number
  • the message indicating the switch to the second format of MAC subheader includes a Medium Access Control Control Element (MAC CE) , so as to indicate the switch.
  • MAC CE Medium Access Control Control Element
  • using the second format of MAC subheader includes: using the second format of MAC subheader, following an ACK message to the message indicating the switch to the second format of MAC subheader.
  • the message indicating the switch to the second format of MAC subheader includes a Physic Downlink Control Channel (PDCCH) order, so as to indicate the switch.
  • PDCH Physic Downlink Control Channel
  • using the second format of MAC subheader includes: using the second format of MAC subheader following an end of a transmission window of the PDCCH order.
  • the PDCCH order includes a predefined Radio Network Temporary Identifier (RNTI) , so as to indicate the switch to the second format of MAC subheader; or a predefined format of the PDCCH order indicates the switch to the second format of MAC subheader.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH order is transmitted repeatedly within the transmission window, e.g. during a radio frame or half radio frame.
  • the message indicating a switch to the second format of MAC subheader further indicates a first time point to switch.
  • the first time point is before an initial transmission of a Transport Block (TB) in a data transmission period.
  • the network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a first predetermined time period from the first time point.
  • the first predetermined time period includes x time units, wherein x is a natural value and the time units can be but not limited by Orthogonal Frequency Division Multiplexing (OFDM) symbol, slot, radio frame, millisecond or micro second.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the message indicating a switch to the second format of MAC subheader further indicates a second time point to switch. If the second time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the second format of MAC subheader for the HARQ retransmission.
  • HARQ Hybrid Automatic Repeat Request
  • the message indicating a switch to the second format of MAC subheader further indicates a second time point to switch. If the second time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB.
  • HARQ Hybrid Automatic Repeat Request
  • the message indicating a switch to the second format of MAC subheader further indicates a third time point to switch. If the third time point is in a data transmission period, the network node resets a HARQ entity.
  • the HARQ entity returns a MAC Service Data Unit (SDU) of an unacknowledged MAC Protocol Data Unit (PDU) to a layer higher than a MAC layer, before being reset.
  • SDU MAC Service Data Unit
  • PDU unacknowledged MAC Protocol Data Unit
  • the method further includes: receiving a broadcast about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and using the second format of MAC subheader during a random access procedure to the upstream node.
  • PRACH Physical Random Access Channel
  • a difference between the first format of MAC subheader and the second format of MAC subheader includes a change in a format of a field.
  • the change relates to a field of Logical Channel Identifier (LCID) and/or Logical Channel Group Identifier (LCG ID) .
  • LCID Logical Channel Identifier
  • LCD ID Logical Channel Group Identifier
  • the network node includes: a child Integrated Access Backhaul (IAB) node; and the upstream node includes: a parent IAB node, or a base station.
  • IAB Integrated Access Backhaul
  • a second aspect of the present disclosure provides a method for a network node to switch a format of MAC subheader, including: receiving, from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access; and sending, to the downstream node, a message indicating a switch to a second format of MAC subheader.
  • sending, to the downstream node, a message indicating a switch to a second format of MAC subheader including: sending, to the downstream node, a contention resolution message carrying the second format of MAC subheader.
  • the message indicating the switch to the second format of MAC subheader is a Radio Resource Control (RRC) signalling.
  • RRC Radio Resource Control
  • the RRC signalling includes: a System Frame Number (SFN) , to indicate in which radio frame to start using the second format of MAC subheader.
  • SFN System Frame Number
  • the message indicating the switch to the second format of MAC subheader includes a Medium Access Control Control Element (MAC CE) , so as to indicate the switch.
  • MAC CE Medium Access Control Control Element
  • the method further includes: using the second format of MAC subheader, following an action of receiving, from the downstream node, an ACK message to the message indicating the switch to the second format of MAC subheader.
  • the message indicating the switch to the second format of MAC subheader includes a Physic Downlink Control Channel (PDCCH) order, so as to indicate the switch.
  • PDCH Physic Downlink Control Channel
  • the method further includes: using the second format of MAC subheader following an end of a transmission period of the PDCCH order.
  • the PDCCH order includes a predefined Radio Network Temporary Identifier (RNTI) , so as to indicate the switch to the second format of MAC subheader; or a predefined format of the PDCCH order indicates the switch to the second format of MAC subheader.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH order is transmitted repeatedly within the transmission window, e.g. during a radio frame or half radio frame.
  • the message indicating a switch to the second format of MAC subheader further indicates a fourth time point to switch.
  • the fourth time point is before an initial transmission of a Transport Block (TB) in a data transmission period.
  • the network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a second predetermined time period from the fourth time point.
  • the second predetermined time period includes y time units, wherein y is a natural value and the time units can be but not limited by Orthogonal Frequency Division Multiplexing (OFDM) symbol, slot, radio frame, millisecond or micro second.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the message indicating a switch to the second format of MAC subheader further indicates a fifth time point to switch. If the fifth time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the second format of MAC subheader for the HARQ retransmission.
  • HARQ Hybrid Automatic Repeat Request
  • the message indicating a switch to the second format of MAC subheader further indicates a fifth time point to switch. If the fifth time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB.
  • HARQ Hybrid Automatic Repeat Request
  • the message indicating a switch to the second format of MAC subheader further indicates a sixth time point to switch. If the sixth time point is in a data transmission period, the network node resets a HARQ entity.
  • the HARQ entity returns a MAC Service Data Unit (SDU) of an unacknowledged MAC Protocol Data Unit (PDU) to a layer higher than a MAC layer, before being reset.
  • SDU MAC Service Data Unit
  • PDU unacknowledged MAC Protocol Data Unit
  • the method further includes: broadcasting about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and receiving a request, carrying the second format of MAC subheader, to initiate a random access to the network node.
  • PRACH Physical Random Access Channel
  • a difference between the first format of MAC subheader and the second format of MAC subheader includes a change in a format of a field.
  • the change relates to a field of Logical Channel Identifier (LC ID) and/or Logical Channel Group Identifier (LCG ID) .
  • LC ID Logical Channel Identifier
  • LCDG ID Logical Channel Group Identifier
  • the downstream node includes: a child Integrated Access Backhaul (IAB) node.
  • the network node includes: a parent IAB node, or a base station.
  • a third aspect of the present disclosure provides a network node, including: a processor; and a memory, containing instructions executable by the processor.
  • the network node is operative to: carry a first format of MAC subheader when initiating a random access to an upstream node of the network node; receive, from the upstream node, a message indicating a switch to a second format of MAC subheader; and use the second format of MAC subheader to communicate with the upstream node.
  • the network node is further operative to implement the any above mentioned method.
  • a fourth aspect of the present disclosure provides a network node, including: a processor; and a memory, containing instructions executable by the processor.
  • the network node is operative to: receive, from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access; and send, to the downstream node, a message indicating a switch to a second format of MAC subheader.
  • the network node is further operative to implement the any above mentioned method.
  • a fifth aspect of the present disclosure provides computer readable storage medium having a computer program stored thereon, the computer program executable by an apparatus to cause the apparatus to carry out any above mentioned method.
  • Figure 1 is an exemplary block diagram showing network nodes to implement a method according to embodiments of the present disclosure
  • Figure 2 is an exemplary flow chart showing a method for a network node to switch format of medium access control subheader according to embodiments of the present disclosure
  • Figure 3 is an exemplary flow chart showing exemplary substeps of method as shown in figure 2;
  • Figure 4 is an exemplary time line showing switching of MAC subheader during data transmission
  • Figure 5 is another exemplary time line showing switching of MAC subheader during data transmission
  • Figure 6 is another exemplary flow chart showing a method for a network node to switch format of medium access control subheader according to embodiments of the present disclosure
  • FIG. 7 is a block diagram showing the network node in accordance with embodiments of the present disclosure.
  • Figure 8 is a block diagram showing a computer readable storage medium in accordance with embodiments of the present disclosure.
  • the term “network” refers to a network/system following any suitable communication standards, such as new radio (NR) , long term evolution (LTE) , LTE-Advanced, wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , and so on.
  • NR new radio
  • LTE long term evolution
  • WCDMA wideband code division multiple access
  • HSPA high-speed packet access
  • the communications between a terminal device and a network node in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , 4G, 4.5G, 5G communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • network node or “network side node” refers to a network device with accessing function in a communication network via which a terminal device accesses to the network and receives services therefrom.
  • the network node may include a base station (BS) , an access point (AP) , a multi-cell/multicast coordination entity (MCE) , a controller or any other suitable device in a wireless communication network.
  • BS base station
  • AP access point
  • MCE multi-cell/multicast coordination entity
  • the BS may be, for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNodeB or gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNodeB or gNB next generation NodeB
  • RRU remote radio unit
  • RH radio header
  • RRH remote radio head
  • relay a low power node such as a femto, a pico, and so forth.
  • the network node comprise multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, positioning nodes and/or the like. More generally, however, the network node may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to a wireless communication network or to provide some service to a terminal device that has accessed to the wireless communication network.
  • MSR multi-standard radio
  • RNCs radio network controllers
  • BSCs base station controllers
  • BTSs base transceiver stations
  • transmission points transmission nodes
  • positioning nodes positioning nodes and/or the like.
  • the network node may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to a wireless communication network or to provide
  • network node or “network side node” may also refer to a network device with core network function.
  • the network node may refer to a mobility management entity (MME) , or a mobile switching center (MSC) .
  • MME mobility management entity
  • MSC mobile switching center
  • terminal device refers to any end device that can access a communication network and receive services therefrom.
  • the terminal device may refer to a user equipment (UE) , or other suitable devices.
  • the UE may be, for example, a subscriber station, a portable subscriber station, a mobile station (MS) or an access terminal (AT) .
  • the terminal device may include, but not limited to, portable computers, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, a mobile phone, a cellular phone, a smart phone, a tablet, a wearable device, a personal digital assistant (PDA) , a vehicle, and the like.
  • PDA personal digital assistant
  • a terminal device may also be called an IoT device and represent a machine or other device that performs monitoring, sensing and/or measurements etc., and transmits the results of such monitoring, sensing and/or measurements etc. to another terminal device and/or a network equipment.
  • the terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3rd generation partnership project (3GPP) context be referred to as a machine-type communication (MTC) device.
  • M2M machine-to-machine
  • 3GPP 3rd generation partnership project
  • the terminal device may be a UE implementing the 3GPP narrow band Internet of things (NB-IoT) standard.
  • NB-IoT 3GPP narrow band Internet of things
  • machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, e.g. refrigerators, televisions, personal wearables such as watches etc.
  • a terminal device may represent a vehicle or other equipment, for example, a medical instrument that is capable of monitoring, sensing and/or reporting etc. on its operational status or other functions associated with its operation.
  • the terms “first” , “second” and so forth refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on” .
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” .
  • the term “another embodiment” is to be read as “at least one other embodiment” .
  • Other definitions, explicit and implicit, may be included below.
  • Figure 1 is an exemplary block diagram showing network nodes to implement a method according to embodiments of the present disclosure.
  • IAB Integrated Access Backhaul
  • NR new radio
  • IAB node an access point
  • the said radio connection between IAB nodes (IAB-N) is referred to as wireless backhaul or self-backhaul.
  • the network node may be IAB node.
  • An IAB node (IABN/IAB-N) 102 may be scheduled by its parent IAB-N 103 and this IAB-N 102 may also schedule the connected User Equipment (UE) 1020 or its child IAB-N 101. Scheduling based on Scheduling Request (SR) /Buffer Status Report (BSR) is supported.
  • the parent IAB-N 103 may be a donor node which has wireline/cable backhaul 104.
  • the donor IAB-N (IAB-N x) 103 has a cable backhaul 104 to the gateway, IAB-N 102 acts as a bridge node between the IAB-N 103 and IAB-N 101, where IAB-N 102 is referred to as the parent IAB-N of IAB 101 and IAB-N 101 is referred to as the child IAB-N of IAB-N 102.
  • Each IAB-N may also have terminal devices, such as UEs, connected to it.
  • the UE 1020 is connected to IAB-N 102, and the UEs 1010, 1011 are connected to IAB-N 101.
  • the first two types of links are also referred to as backhaul links.
  • the IAB node may be configured with different MAC subheader format than the existing MAC subheader in Release 15 of the 3rd generation partnership project (3GPP) technical specifications/standards (TS) , such as extended logical channel/logical channel group (LC/LCG) to transfer information from the downstream child IAB or the served UEs to the upstream parent IAB.
  • 3GPP 3rd generation partnership project
  • TS technical specifications/standards
  • LC/LCG extended logical channel/logical channel group
  • LCID/LCGID logical channel group identifier
  • a normal UE may belong to a first apparatus and intends to use a first format (i.e. MAC subheader of Release 15) of MAC subheader.
  • the IAB node may belong to a second apparatus and intends to use a second format of MAC subheader, which may be extended based on the first format of MAC subheader.
  • the IAB node shall proceed the random access procedure in the same way as that a normal UE performs.
  • the IAB node In the random access channel (RACH) procedure, the IAB node would use the same MAC functionality while with the increased LCID/LCGID spaces which would affect the format of the MAC subheader.
  • the gNB/IAB node may receive RA accesses initiated by normal UEs where the ordinary LCID/LCGID space is applied.
  • the IAB node 101 and UE 1020 may share a same Physical Random Access Channel (PRACH) preamble pool, so that its parent gNB/IAB node 102 would not be able to distinguish random accesses (RA) initiated by a UE 1020 from ones that are initiated by the IAB node 101. Therefore, the gNB may not be aware of which LCGID/LCHID space that the current RA procedure is taking, therefore, the gNB may not know which format of MAC subheader shall be applied in the RA messages. This would lead to an ambiguity that affects the performance of RA procedure.
  • PRACH Physical Random Access Channel
  • Figure 2 is an exemplary flow chart showing a method for a network node to switch format of medium access control subheader according to embodiments of the present disclosure.
  • a network node 101 is a downstream node to initiate the RA procedure
  • the network node 102 is an upstream node to accept the request of initiating the RA procedure.
  • the method implemented at the downstream node, network node 101 includes: step S101, carrying a first format of MAC subheader when initiating a random access to an upstream node of the network node; step S102, receiving, from the upstream node, a message indicating a switch to a second format of MAC subheader; and step S103, using the second format of MAC subheader, to communicate with the upstream node.
  • the method implemented at the upstream node, network node 102 includes: step S201, receiving, from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access; and step S202, sending, to the downstream node, a message indicating a switch to a second format of MAC subheader.
  • the IAB node and the UE may carry the same first format of the MAC subheader to initiate the RA procedure. Then, after the upstream node, such as a gNB, identifies the IAB node from the UE, the upstream node may send a message indicating a switch to a second format of MAC subheader to the IAB node. Thus, the switch to the second format of MAC subheader is determined and notified by the upstream node. There will be no ambiguity, and the performance of RA procedure will be improved.
  • Figure 3 is an exemplary flow chart showing exemplary substeps of method as shown in figure 2.
  • the step S202 sending, to the downstream node, a message indicating a switch to a second format of MAC subheader includes: substep S302, sending, to the downstream node, a contention resolution message carrying the second format of MAC subheader.
  • the step S103, using the second format of MAC subheader includes: substep S301, using the second format of MAC subheader, following an Acknowledgement (ACK) message to a contention resolution message received from the upstream node.
  • ACK Acknowledgement
  • the upstream node may switch to a second format of MAC subheader, by sending a contention resolution message carrying the second format of MAC subheader.
  • the downstream node sends an ACK message to the contention resolution message
  • the downstream node switches to use the second format of the MAC subheader. No extra step or message is needed during switching the format of MAC subheader in a RA procedure.
  • the upstream node and the downstream node may communicate with each other using the second format of the MAC subheader. There will be no ambiguity either during RA or communication procedure, and the performance of RA procedure and communication procedure will be improved.
  • the upstream node may identify the downstream node, based on a C-RNTI (Cell-Radio Network Temporary Identifier) , or any other unique identifier for a network node, such as Inactive Radio Network Identifier (I-RNTI) .
  • C-RNTI Cell-Radio Network Temporary Identifier
  • I-RNTI Inactive Radio Network Identifier
  • the upstream node identifies whether a downstream node is an IAB node or just a normal UE, based on an identifier obtained from the downstream node during RA procedure. Then the upstream node will send contention solution message with the second format of MAC subheader to the IAB node, or send contention solution message with the first format of MAC subheader to the normal UE.
  • the message indicating the switch of format may be not limited to the contention resolution message.
  • the message indicating the switch to the second format of MAC subheader is a Radio Resource Control (RRC) signaling message.
  • RRC signalling includes: a System Frame Number (SFN) , to indicate in which radio frame to start using the second format of MAC subheader.
  • SFN System Frame Number
  • the message may include a Medium Access Control Control Element (MAC CE) , so as to indicate the switch.
  • MAC CE Medium Access Control Control Element
  • the step S103 of the method implemented at the downstream node, namely network node 101 may include: using the second format of MAC subheader, following an ACK message to such message indicating the switch to the second format of MAC subheader.
  • the message indicating the switch to the second format of MAC subheader includes a Physic Downlink Control Channel (PDCCH) order, so as to indicate the switch.
  • PDCH Physic Downlink Control Channel
  • the step S103 of the method implemented at the downstream node, network node 101 may include: using the second format of MAC subheader following an end of a transmission window of the PDCCH order.
  • the PDCCH order includes a predefined Radio Network Temporary Identifier (RNTI) , so as to indicate the switch to the second format of MAC subheader; or a predefined format of the PDCCH order indicates the switch to the second format of MAC subheader.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH order is transmitted repeatedly within the transmission window, e.g. during a radio frame or half radio frame.
  • any kind of message, and any kind of specific indicator may be utilized to indicate the switch of the MAC subheader, and there will be no ambiguity.
  • Figure 4 is an exemplary time line showing switching of MAC subheader during data transmission.
  • an uplink transmission is taken as an example, namely, the network node 101 transmits data to the network node 102.
  • the message indicating a switch to the second format of MAC subheader further indicates a first time point T1 to switch.
  • the first time point T1 is before an initial transmission of a Transport Block (TB) in a data transmission period.
  • the network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a first predetermined time period TP1 from the first time point T1.
  • the first predetermined time period TP1 includes x time units, wherein x is a natural value and the time units can be but not limited by Orthogonal Frequency Division Multiplexing (OFDM) symbol, slot, radio frame, millisecond or micro second.
  • the time unit may be slot, or millisecond.
  • the first predetermined time period TP1 allows the network node to prepare the initial transmission of a Transport Block (TB) . Namely, if the network node can prepare the initial transmission of a Transport Block (TB) with in the first predetermined time period TP1, the second format will be utilized in this initial transmission, and following possible retransmissions.
  • TB Transport Block
  • the message indicating a switch to the second format of MAC subheader further indicates a second time point T2 to switch. If the second time point is T2 between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, as an option, the network node uses the second format of MAC subheader for the HARQ retransmission.
  • HARQ Hybrid Automatic Repeat Request
  • the MAC subheader for the HARQ retransmission will be different with previous transmissions of the TB with the first format MAC subheader, such as an initial transmission and/or a previous retransmission. Then in another node which receives the transmission, the received HARQ retransmission with the second format of MAC subheader is not combined with the previous transmission of the TB with the first format MAC subheader. A plurality of retransmissions with the second format of MAC subheader will be implemented to recover the TB, if necessary.
  • the message indicating a switch to the second format of MAC subheader further indicates a second time point to switch. If the second time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, as another option, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB. Therefore, the number of the retransmissions needs not to be increased.
  • HARQ Hybrid Automatic Repeat Request
  • the message indicating a switch to the second format of MAC subheader further indicates a third time point to switch. If the third time point is in a data transmission period, the network node resets a HARQ entity.
  • the third time point may be any time point during the data transmission, including T1, T2, as shown in the figure 4.
  • the HARQ entity upon the switch of the format of the MAC subheader, the HARQ entity is reset, and new format of the MAC subheader is applied after the HARQ entity resets. Further, in embodiments of the present disclosure, the HARQ entity returns a MAC Service Data Unit (SDU) of an unacknowledged MAC Protocol Data Unit (PDU) to a layer higher than a MAC layer, before being reset. The higher layer can deliver the SDUs for new transmissions after switching the format of MAC subheader.
  • SDU MAC Service Data Unit
  • PDU unacknowledged MAC Protocol Data Unit
  • Figure 5 is another exemplary time line showing switching of MAC subheader during data transmission.
  • the technical principle of the embodiments of the present disclosure is also applicable to the downlink transmission.
  • the message indicating a switch to the second format of MAC subheader further indicates a fourth time point T4 to switch.
  • the fourth time point T4 is before an initial transmission of a Transport Block (TB) in a data transmission period.
  • the network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a second predetermined time period from the fourth time point T4.
  • the second predetermined time period includes y time units, wherein y is a natural value and the time units can be but not limited by Orthogonal Frequency Division Multiplexing (OFDM) symbol, slot, radio frame, millisecond or micro second.
  • the time unit may be slot, or millisecond.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the second predetermined time period TP2 allows the network node to prepare the initial transmission of a Transport Block (TB) . Namely, if the network node can prepare the initial transmission of a Transport Block (TB) with in the second predetermined time period TP2, the second format will be utilized in this initial transmission, and following possible retransmissions. Since the upstream node, such as a base station, may have much powerful computing ability, the second predetermined time period TP2 may be shorter than the first predetermined time period TP1. Particularly, the parameter “y” may be equal to “0” , which means the upstream node will do not need extra preparation time period, since the preparation time for an initial transmission is short enough to be ignored.
  • the message indicating a switch to the second format of MAC subheader further indicates a fifth time point T5 to switch. If the fifth time point T5 is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, as an option, the network node uses the second format of MAC subheader for the HARQ retransmission.
  • HARQ Hybrid Automatic Repeat Request
  • the message indicating a switch to the second format of MAC subheader further indicates a fifth time point T5 to switch. If the fifth time point T5 is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, as another option, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB.
  • HARQ Hybrid Automatic Repeat Request
  • the message indicating a switch to the second format of MAC subheader further indicates a sixth time point to switch. If the sixth time point is in a data transmission period, the network node resets a HARQ entity.
  • the sixth time point may be any time point during the data transmission, including T4, T5, as shown in the figure 5.
  • Figure 6 is another exemplary flow chart showing a method for a network node to switch format of medium access control subheader according to embodiments of the present disclosure.
  • the method implemented at the network node 101 may include: step S501, receiving a broadcast about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and step S502, using the second format of MAC subheader during a random access procedure to the upstream node.
  • the network node 101 may send a request carrying the second format of MAC subheader to initiate a random access.
  • PRACH Physical Random Access Channel
  • the method implemented at the network node 102 may include: step S601, broadcasting about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and step S602, receiving a request, carrying the second format of MAC subheader, to initiate a random access to the network node.
  • PRACH Physical Random Access Channel
  • the upstream node will identify an IAB node at the initiation of the RA procedure. There will be no ambiguity, and the performance of RA procedure will be improved.
  • PRACH Physical Random Access Channel
  • an apparatus may only selectively implement the methods shown in figure 2 or 6, or implement all of these methods in both figures 2 and 6, according to network configuration policy.
  • a difference between the first format of MAC subheader and the second format of MAC subheader includes a change in a format of a field.
  • the change relates to a field of Logical Channel Identifier (LC ID) and/or Logical Channel Group Identifier (LCG ID) .
  • the methods are illustrated separately with the network nodes 101, 102, for clarity.
  • any network node may implement both of the methods for downstream node and upstream node.
  • the network node 102 will function as upstream node when communicating with the network node 101, and will function as downstream node when commutating with the network node 103.
  • the network node 102 will implement any of the steps as shown in figures 2 to 6.
  • FIG. 7 is a block diagram showing the management node in accordance with embodiments of the present disclosure.
  • a network node 101/102 including: a processor 701; and a memory 702, containing instructions executable by the processor 701.
  • the network node 101 is operative to: carry (S101) a first format of MAC subheader when initiating a random access to an upstream node of the network node; receive (S102) , from the upstream node, a message indicating a switch to a second format of MAC subheader; and use (S103) the second format of MAC subheader to communicate with the upstream node.
  • the network node 102 is operative to: receive (S201) , from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access; and send (S202) , to the downstream node, a message indicating a switch to a second format of MAC subheader.
  • the network node 101/102 is further operative to any other methods described above, such as further shown in figures 3-6.
  • the network node 101 is operative to, use (S301) the second format of MAC subheader, following an Acknowledgement (ACK) message to a contention resolution message received from the upstream node.
  • S301 the second format of MAC subheader
  • ACK Acknowledgement
  • the network node 102 is operative to send (S302) , to the downstream node, a contention resolution message carrying the second format of MAC subheader.
  • the network node 101 is operative to, receive (S501) a broadcast about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and use (S502) the second format of MAC subheader during a random access procedure to the upstream node.
  • the network node 101 may send a request carrying the second format of MAC subheader to initiate a random access.
  • PRACH Physical Random Access Channel
  • the network node 102 is operative to broadcast (S601) about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and receive (S602) a request, carrying the second format of MAC subheader, to initiate a random access to the network node.
  • PRACH Physical Random Access Channel
  • the processor 701 may be any kind of processing component, such as one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs) , special-purpose digital logic, and the like.
  • the memory 702 may be any kind of storage component, such as read-only memory (ROM) , random-access memory, cache memory, flash memory devices, optical storage devices, etc.
  • Figure 8 is a block diagram showing a computer readable storage medium in accordance with embodiments of the present disclosure.
  • the computer readable storage medium 800 has a computer program 801 stored thereon.
  • the computer program 801 is executable by an apparatus to cause the apparatus to carry out the method described above, such as shown in figures 2-6.
  • the computer readable storage medium 800 may be configured to include memory such as RAM, ROM, programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives.
  • memory such as RAM, ROM, programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives.
  • MAC subheader may be extended to cause different format of MAC subheader for access radio interface of NR network, and then the above method will be applicable.
  • the various exemplary embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto.
  • firmware or software may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto.
  • While various aspects of the exemplary embodiments of this disclosure may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the exemplary embodiments of the disclosure may be practiced in various components such as integrated circuit chips and modules. It should thus be appreciated that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, where the integrated circuit may include circuitry (as well as possibly firmware) for embodying at least one or more of a data processor, a digital signal processor, baseband circuitry and radio frequency circuitry that are configurable so as to operate in accordance with the exemplary embodiments of this disclosure.
  • exemplary embodiments of the disclosure may be embodied in computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device.
  • the computer executable instructions may be stored on a computer readable medium such as a hard disk, optical disk, removable storage media, solid state memory, RAM, etc.
  • the functionality of the program modules may be combined or distributed as desired in various embodiments.
  • the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA) , and the like.
  • FPGA field programmable gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a method for a network node to switch format of medium access control subheader, and a network node apparatus. The method may include: carrying (S101) a first format of MAC subheader when initiating a random access to an upstream node of the network node; receiving (S102), from the upstream node, a message indicating a switch to a second format of MAC subheader; and using (S103) the second format of MAC subheader, to communicate with the upstream node. There will be no ambiguity during switching the format of MAC subheader.

Description

METHOD FOR NETWORK NODE TO SWITCH FORMAT OF MEDIUM ACCESS CONTROL SUBHEADER, AND NETWORK NODE APPARATUS TECHNICAL FIELD
The present disclosure relates generally to the technology of wireless communication, and in particular, to a method for a network node to switch format of medium access control subheader, and a network node apparatus.
BACKGROUND
In a communication network, different parameters for quality of service (QoS) management may be assigned to different apparatus. For example, a first apparatus and a second apparatus may have different configuration parameters corresponding to data transmission management in radio interface, such as Logic Channel Identifier/Logic Channel Group Identifier (LCID/LCGID) spaces.
These configuration parameters may be carried in Medium Control Access (MAC) subheader in a radio message, under the MAC protocol. Thus, one format of the Medium Control Access (MAC) subheader may be not enough for different apparatus.
However, more than one formats of MAC subheader for different apparatus would lead to an ambiguity that affects the performance of network communication between peer apparatus.
SUMMARY
Certain aspects of the present disclosure and their embodiments may provide solutions to these or other challenges. There are, proposed herein, various embodiments which address one or more of the issues disclosed herein.
A first aspect of the present disclosure provides a method for a network node to switch a format of Medium Access Control (MAC) subheader, including: carrying a first format of MAC subheader when initiating a random access to an  upstream node of the network node; receiving, from the upstream node, a message indicating a switch to a second format of MAC subheader; and using the second format of MAC subheader, to communicate with the upstream node.
In embodiments of the present disclosure, using the second format of MAC subheader includes: using the second format of MAC subheader, following an Acknowledgement (ACK) message to a contention resolution message received from the upstream node.
In embodiments of the present disclosure, the message indicating the switch to the second format of MAC subheader is a Radio Resource Control (RRC) signaling message.
In embodiments of the present disclosure, the RRC signalling includes: a System Frame Number (SFN) , to indicate in which radio frame to start using the second format of MAC subheader.
In embodiments of the present disclosure, the message indicating the switch to the second format of MAC subheader includes a Medium Access Control Control Element (MAC CE) , so as to indicate the switch.
In embodiments of the present disclosure, using the second format of MAC subheader includes: using the second format of MAC subheader, following an ACK message to the message indicating the switch to the second format of MAC subheader.
In embodiments of the present disclosure, the message indicating the switch to the second format of MAC subheader includes a Physic Downlink Control Channel (PDCCH) order, so as to indicate the switch.
In embodiments of the present disclosure, using the second format of MAC subheader includes: using the second format of MAC subheader following an end of a transmission window of the PDCCH order.
In embodiments of the present disclosure, the PDCCH order includes a predefined Radio Network Temporary Identifier (RNTI) , so as to indicate the switch to the second format of MAC subheader; or a predefined format of the PDCCH order indicates the switch to the second format of MAC subheader.
In embodiments of the present disclosure, the PDCCH order is transmitted repeatedly within the transmission window, e.g. during a radio frame or half radio frame.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a first time point to switch. The first time point is before an initial transmission of a Transport Block (TB) in a data transmission period. The network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a first predetermined time period from the first time point. The first predetermined time period includes x time units, wherein x is a natural value and the time units can be but not limited by Orthogonal Frequency Division Multiplexing (OFDM) symbol, slot, radio frame, millisecond or micro second.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a second time point to switch. If the second time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the second format of MAC subheader for the HARQ retransmission.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a second time point to switch. If the second time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a third time point to switch. If the third time point is in a data transmission period, the network node resets a HARQ entity.
In embodiments of the present disclosure, the HARQ entity returns a MAC Service Data Unit (SDU) of an unacknowledged MAC Protocol Data Unit (PDU) to a layer higher than a MAC layer, before being reset.
In embodiments of the present disclosure, the method further includes: receiving a broadcast about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and using the second format of MAC subheader during a random access procedure to the upstream node.
In embodiments of the present disclosure, a difference between the first format of MAC subheader and the second format of MAC subheader includes a change in a format of a field.
In embodiments of the present disclosure, the change relates to a field of Logical Channel Identifier (LCID) and/or Logical Channel Group Identifier (LCG ID) .
In embodiments of the present disclosure, the network node includes: a child Integrated Access Backhaul (IAB) node; and the upstream node includes: a parent IAB node, or a base station.
A second aspect of the present disclosure provides a method for a network node to switch a format of MAC subheader, including: receiving, from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access; and sending, to the downstream node, a message indicating a switch to a second format of MAC subheader.
In embodiments of the present disclosure, sending, to the downstream node, a message indicating a switch to a second format of MAC subheader including: sending, to the downstream node, a contention resolution message carrying the second format of MAC subheader.
In embodiments of the present disclosure, the message indicating the switch to the second format of MAC subheader is a Radio Resource Control (RRC) signalling.
In embodiments of the present disclosure, the RRC signalling includes: a System Frame Number (SFN) , to indicate in which radio frame to start using the second format of MAC subheader.
In embodiments of the present disclosure, the message indicating the switch to the second format of MAC subheader includes a Medium Access Control Control Element (MAC CE) , so as to indicate the switch.
In embodiments of the present disclosure, the method further includes: using the second format of MAC subheader, following an action of receiving, from the downstream node, an ACK message to the message indicating the switch to the second format of MAC subheader.
In embodiments of the present disclosure, the message indicating the switch to the second format of MAC subheader includes a Physic Downlink Control Channel (PDCCH) order, so as to indicate the switch.
In embodiments of the present disclosure, the method further includes: using the second format of MAC subheader following an end of a transmission period of the PDCCH order.
In embodiments of the present disclosure, the PDCCH order includes a predefined Radio Network Temporary Identifier (RNTI) , so as to indicate the switch to the second format of MAC subheader; or a predefined format of the PDCCH order indicates the switch to the second format of MAC subheader.
In embodiments of the present disclosure, the PDCCH order is transmitted repeatedly within the transmission window, e.g. during a radio frame or half radio frame.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a fourth time point to switch. The fourth time point is before an initial transmission of a Transport Block (TB) in a data transmission period. The network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a second predetermined time period from the fourth time point. The second predetermined time period includes y time units, wherein y is a natural value and the time units can be but not limited by Orthogonal Frequency Division Multiplexing (OFDM) symbol, slot, radio frame, millisecond or micro second.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a fifth time point to switch. If the fifth time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the second format of MAC subheader for the HARQ retransmission.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a fifth time point to switch. If the fifth time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a sixth time point to switch. If the sixth time point is in a data transmission period, the network node resets a HARQ entity.
In embodiments of the present disclosure, the HARQ entity returns a MAC Service Data Unit (SDU) of an unacknowledged MAC Protocol Data Unit (PDU) to a layer higher than a MAC layer, before being reset.
In embodiments of the present disclosure, the method further includes: broadcasting about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and receiving a request, carrying the second format of MAC subheader, to initiate a random access to the network node.
In embodiments of the present disclosure, a difference between the first format of MAC subheader and the second format of MAC subheader includes a change in a format of a field.
In embodiments of the present disclosure, the change relates to a field of Logical Channel Identifier (LC ID) and/or Logical Channel Group Identifier (LCG ID) .
In embodiments of the present disclosure, the downstream node includes: a child Integrated Access Backhaul (IAB) node. The network node includes: a parent IAB node, or a base station.
A third aspect of the present disclosure provides a network node, including: a processor; and a memory, containing instructions executable by the processor. The network node is operative to: carry a first format of MAC subheader when initiating a random access to an upstream node of the network node; receive, from the upstream node, a message indicating a switch to a second format of MAC subheader;  and use the second format of MAC subheader to communicate with the upstream node.
In embodiments of the present disclosure, the network node is further operative to implement the any above mentioned method.
A fourth aspect of the present disclosure provides a network node, including: a processor; and a memory, containing instructions executable by the processor. The network node is operative to: receive, from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access; and send, to the downstream node, a message indicating a switch to a second format of MAC subheader.
In embodiments of the present disclosure, the network node is further operative to implement the any above mentioned method.
A fifth aspect of the present disclosure provides computer readable storage medium having a computer program stored thereon, the computer program executable by an apparatus to cause the apparatus to carry out any above mentioned method.
BRIEF DESCRIPTION OF DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein the same reference generally refers to the same components in the embodiments of the present disclosure.
Figure 1 is an exemplary block diagram showing network nodes to implement a method according to embodiments of the present disclosure;
Figure 2 is an exemplary flow chart showing a method for a network node to switch format of medium access control subheader according to embodiments of the present disclosure;
Figure 3 is an exemplary flow chart showing exemplary substeps of method as shown in figure 2;
Figure 4 is an exemplary time line showing switching of MAC subheader during data transmission;
Figure 5 is another exemplary time line showing switching of MAC subheader during data transmission;
Figure 6 is another exemplary flow chart showing a method for a network node to switch format of medium access control subheader according to embodiments of the present disclosure;
Figure 7 is a block diagram showing the network node in accordance with embodiments of the present disclosure;
Figure 8 is a block diagram showing a computer readable storage medium in accordance with embodiments of the present disclosure.
DETAILED DESCRIPTION
Some of the embodiments contemplated herein will now be described more fully with reference to the accompanying drawings. Other embodiments, however, are contained within the scope of the subject matter disclosed herein, the disclosed subject matter should not be construed as limited to only the embodiments set forth herein; rather, these embodiments are provided by way of example to convey the scope of the subject matter to those skilled in the art.
Generally, all terms used herein are to be interpreted according to their ordinary meaning in the relevant technical field, unless a different meaning is clearly given and/or is implied from the context in which it is used. All references to a/an/the element, apparatus, component, means, step, etc. are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any methods disclosed herein do not have to be performed in the exact order disclosed, unless a step is explicitly described as following or preceding another step and/or where it is implicit that a step must follow or precede another step. Any feature of any of the embodiments disclosed herein may be applied to any other embodiment, wherever appropriate. Likewise, any advantage of any of the embodiments may apply to any other  embodiments, and vice versa. Other objectives, features and advantages of the enclosed embodiments will be apparent from the following description.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present disclosure should be or are in any single embodiment of the disclosure. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present disclosure. Furthermore, the described features, advantages, and characteristics of the disclosure may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the disclosure may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the disclosure.
As used herein, the term “network” , or “communication network/system” refers to a network/system following any suitable communication standards, such as new radio (NR) , long term evolution (LTE) , LTE-Advanced, wideband code division multiple access (WCDMA) , high-speed packet access (HSPA) , and so on. Furthermore, the communications between a terminal device and a network node in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , 4G, 4.5G, 5G communication protocols, and/or any other protocols either currently known or to be developed in the future.
The term “network node” or “network side node” refers to a network device with accessing function in a communication network via which a terminal device accesses to the network and receives services therefrom. The network node may include a base station (BS) , an access point (AP) , a multi-cell/multicast coordination entity (MCE) , a controller or any other suitable device in a wireless communication network. The BS may be, for example, a node B (NodeB or NB) , an evolved NodeB  (eNodeB or eNB) , a next generation NodeB (gNodeB or gNB) , a remote radio unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
Yet further examples of the network node comprise multi-standard radio (MSR) radio equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs) , base transceiver stations (BTSs) , transmission points, transmission nodes, positioning nodes and/or the like. More generally, however, the network node may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a terminal device access to a wireless communication network or to provide some service to a terminal device that has accessed to the wireless communication network.
Further, term “network node” or “network side node” may also refer to a network device with core network function. The network node may refer to a mobility management entity (MME) , or a mobile switching center (MSC) .
The term “terminal device” refers to any end device that can access a communication network and receive services therefrom. By way of example and not limitation, the terminal device may refer to a user equipment (UE) , or other suitable devices. The UE may be, for example, a subscriber station, a portable subscriber station, a mobile station (MS) or an access terminal (AT) . The terminal device may include, but not limited to, portable computers, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, a mobile phone, a cellular phone, a smart phone, a tablet, a wearable device, a personal digital assistant (PDA) , a vehicle, and the like.
As yet another specific example, in an Internet of things (IoT) scenario, a terminal device may also be called an IoT device and represent a machine or other device that performs monitoring, sensing and/or measurements etc., and transmits the results of such monitoring, sensing and/or measurements etc. to another terminal device and/or a network equipment. The terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3rd generation partnership  project (3GPP) context be referred to as a machine-type communication (MTC) device.
As one particular example, the terminal device may be a UE implementing the 3GPP narrow band Internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, e.g. refrigerators, televisions, personal wearables such as watches etc. In other scenarios, a terminal device may represent a vehicle or other equipment, for example, a medical instrument that is capable of monitoring, sensing and/or reporting etc. on its operational status or other functions associated with its operation.
As used herein, the terms “first” , “second” and so forth refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on” . The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” . Other definitions, explicit and implicit, may be included below.
Figure 1 is an exemplary block diagram showing network nodes to implement a method according to embodiments of the present disclosure.
An Integrated Access Backhaul (IAB) structure is taken as an example. For a new radio (NR) system with IAB capability, an access point can setup a radio connection to another access point in order to reach a donor access point which has wireline backhaul, wherein an access point is also referred to as IAB node. The said radio connection between IAB nodes (IAB-N) is referred to as wireless backhaul or self-backhaul.
As shown in figure 1, the network node may be IAB node. An IAB node (IABN/IAB-N) 102 may be scheduled by its parent IAB-N 103 and this IAB-N 102 may also schedule the connected User Equipment (UE) 1020 or its child IAB-N 101. Scheduling based on Scheduling Request (SR) /Buffer Status Report (BSR) is supported. The parent IAB-N 103 may be a donor node which has wireline/cable backhaul 104.
The donor IAB-N (IAB-N x) 103 has a cable backhaul 104 to the gateway, IAB-N 102 acts as a bridge node between the IAB-N 103 and IAB-N 101, where IAB-N 102 is referred to as the parent IAB-N of IAB 101 and IAB-N 101 is referred to as the child IAB-N of IAB-N 102. Each IAB-N may also have terminal devices, such as UEs, connected to it. For example, the UE 1020 is connected to IAB-N 102, and the UEs 1010, 1011 are connected to IAB-N 101.
From a perspective of a network node under IAB structure, there can be three types of links: (1) upstream link to/from its parent IAB-N; (2) downstream link to/from its child IAB-N; and (3) a number of downlink/uplink access links to a couple of terminal devices served by the node. The first two types of links are also referred to as backhaul links.
The IAB node may be configured with different MAC subheader format than the existing MAC subheader in Release 15 of the 3rd generation partnership project (3GPP) technical specifications/standards (TS) , such as extended logical channel/logical channel group (LC/LCG) to transfer information from the downstream child IAB or the served UEs to the upstream parent IAB. These new MAC subheader uses an extension of configuration parameters, such as logical channel identifier/logical channel group identifier (LCID/LCGID) carried in a MAC subheader in a message. A normal UE may belong to a first apparatus and intends to use a first format (i.e. MAC subheader of Release 15) of MAC subheader. The IAB node may belong to a second apparatus and intends to use a second format of MAC subheader, which may be extended based on the first format of MAC subheader.
However, for initial access of an IAB node, the IAB node shall proceed the random access procedure in the same way as that a normal UE performs. In the random access channel (RACH) procedure, the IAB node would use the same MAC functionality while with the increased LCID/LCGID spaces which would affect the  format of the MAC subheader. While at the same time, the gNB/IAB node may receive RA accesses initiated by normal UEs where the ordinary LCID/LCGID space is applied.
For example, in case contention based random access (CBRA) is applied, the IAB node 101 and UE 1020 may share a same Physical Random Access Channel (PRACH) preamble pool, so that its parent gNB/IAB node 102 would not be able to distinguish random accesses (RA) initiated by a UE 1020 from ones that are initiated by the IAB node 101. Therefore, the gNB may not be aware of which LCGID/LCHID space that the current RA procedure is taking, therefore, the gNB may not know which format of MAC subheader shall be applied in the RA messages. This would lead to an ambiguity that affects the performance of RA procedure.
Figure 2 is an exemplary flow chart showing a method for a network node to switch format of medium access control subheader according to embodiments of the present disclosure.
As shown in figure 2, for example, a network node 101 is a downstream node to initiate the RA procedure, and the network node 102 is an upstream node to accept the request of initiating the RA procedure.
The method implemented at the downstream node, network node 101, includes: step S101, carrying a first format of MAC subheader when initiating a random access to an upstream node of the network node; step S102, receiving, from the upstream node, a message indicating a switch to a second format of MAC subheader; and step S103, using the second format of MAC subheader, to communicate with the upstream node.
Accordingly, the method implemented at the upstream node, network node 102, includes: step S201, receiving, from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access; and step S202, sending, to the downstream node, a message indicating a switch to a second format of MAC subheader.
In embodiments of the present disclosure, the IAB node and the UE may carry the same first format of the MAC subheader to initiate the RA procedure. Then, after the upstream node, such as a gNB, identifies the IAB node from the UE, the  upstream node may send a message indicating a switch to a second format of MAC subheader to the IAB node. Thus, the switch to the second format of MAC subheader is determined and notified by the upstream node. There will be no ambiguity, and the performance of RA procedure will be improved.
Figure 3 is an exemplary flow chart showing exemplary substeps of method as shown in figure 2.
As shown in figure 3, at the upstream node, namely network node 102, the step S202, sending, to the downstream node, a message indicating a switch to a second format of MAC subheader includes: substep S302, sending, to the downstream node, a contention resolution message carrying the second format of MAC subheader.
Accordingly, at the downstream node, namely network node 101, the step S103, using the second format of MAC subheader includes: substep S301, using the second format of MAC subheader, following an Acknowledgement (ACK) message to a contention resolution message received from the upstream node.
In embodiments of the present disclosure, the upstream node may switch to a second format of MAC subheader, by sending a contention resolution message carrying the second format of MAC subheader. As soon as the downstream node sends an ACK message to the contention resolution message, the downstream node switches to use the second format of the MAC subheader. No extra step or message is needed during switching the format of MAC subheader in a RA procedure. Further, as soon as the RA procedure finishes, the upstream node and the downstream node may communicate with each other using the second format of the MAC subheader. There will be no ambiguity either during RA or communication procedure, and the performance of RA procedure and communication procedure will be improved.
In embodiments of the present disclosure, the upstream node may identify the downstream node, based on a C-RNTI (Cell-Radio Network Temporary Identifier) , or any other unique identifier for a network node, such as Inactive Radio Network Identifier (I-RNTI) . Namely, the upstream node identifies whether a downstream node is an IAB node or just a normal UE, based on an identifier obtained from the downstream node during RA procedure. Then the upstream node will send contention solution message with the second format of MAC subheader to  the IAB node, or send contention solution message with the first format of MAC subheader to the normal UE.
In embodiments of the present disclosure, the message indicating the switch of format may be not limited to the contention resolution message.
For example, in embodiments of the present disclosure, the message indicating the switch to the second format of MAC subheader is a Radio Resource Control (RRC) signaling message. Further, the RRC signalling includes: a System Frame Number (SFN) , to indicate in which radio frame to start using the second format of MAC subheader.
In embodiments of the present disclosure, as a specific indicator in the message, the message may include a Medium Access Control Control Element (MAC CE) , so as to indicate the switch. For such message with the specific MAC CE, the step S103 of the method implemented at the downstream node, namely network node 101, may include: using the second format of MAC subheader, following an ACK message to such message indicating the switch to the second format of MAC subheader.
In embodiments of the present disclosure, as another specific kind of message, the message indicating the switch to the second format of MAC subheader includes a Physic Downlink Control Channel (PDCCH) order, so as to indicate the switch.
In embodiments of the present disclosure, the step S103 of the method implemented at the downstream node, network node 101, may include: using the second format of MAC subheader following an end of a transmission window of the PDCCH order.
In embodiments of the present disclosure, the PDCCH order includes a predefined Radio Network Temporary Identifier (RNTI) , so as to indicate the switch to the second format of MAC subheader; or a predefined format of the PDCCH order indicates the switch to the second format of MAC subheader.
In embodiments of the present disclosure, the PDCCH order is transmitted repeatedly within the transmission window, e.g. during a radio frame or half radio frame.
According to such embodiments, any kind of message, and any kind of specific indicator may be utilized to indicate the switch of the MAC subheader, and there will be no ambiguity.
Figure 4 is an exemplary time line showing switching of MAC subheader during data transmission.
As shown in figure 4, an uplink transmission is taken as an example, namely, the network node 101 transmits data to the network node 102. In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a first time point T1 to switch. The first time point T1 is before an initial transmission of a Transport Block (TB) in a data transmission period. The network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a first predetermined time period TP1 from the first time point T1. The first predetermined time period TP1 includes x time units, wherein x is a natural value and the time units can be but not limited by Orthogonal Frequency Division Multiplexing (OFDM) symbol, slot, radio frame, millisecond or micro second. The time unit may be slot, or millisecond. The first predetermined time period TP1 allows the network node to prepare the initial transmission of a Transport Block (TB) . Namely, if the network node can prepare the initial transmission of a Transport Block (TB) with in the first predetermined time period TP1, the second format will be utilized in this initial transmission, and following possible retransmissions.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a second time point T2 to switch. If the second time point is T2 between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, as an option, the network node uses the second format of MAC subheader for the HARQ retransmission.
Namely, the MAC subheader for the HARQ retransmission will be different with previous transmissions of the TB with the first format MAC subheader, such as an initial transmission and/or a previous retransmission. Then in another node which receives the transmission, the received HARQ retransmission with the second format of MAC subheader is not combined with the previous transmission of the TB with  the first format MAC subheader. A plurality of retransmissions with the second format of MAC subheader will be implemented to recover the TB, if necessary.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a second time point to switch. If the second time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, as another option, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB. Therefore, the number of the retransmissions needs not to be increased.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a third time point to switch. If the third time point is in a data transmission period, the network node resets a HARQ entity. The third time point may be any time point during the data transmission, including T1, T2, as shown in the figure 4.
Namely, upon the switch of the format of the MAC subheader, the HARQ entity is reset, and new format of the MAC subheader is applied after the HARQ entity resets. Further, in embodiments of the present disclosure, the HARQ entity returns a MAC Service Data Unit (SDU) of an unacknowledged MAC Protocol Data Unit (PDU) to a layer higher than a MAC layer, before being reset. The higher layer can deliver the SDUs for new transmissions after switching the format of MAC subheader.
According to such embodiments, even a switch is implemented during a data transmission, there will be no ambiguity, and the performance of the data transmission procedure is improved.
Figure 5 is another exemplary time line showing switching of MAC subheader during data transmission.
As shown in figure 5, the technical principle of the embodiments of the present disclosure is also applicable to the downlink transmission.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a fourth time point T4 to switch. The fourth time point T4 is before an initial transmission of a Transport  Block (TB) in a data transmission period. The network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a second predetermined time period from the fourth time point T4. The second predetermined time period includes y time units, wherein y is a natural value and the time units can be but not limited by Orthogonal Frequency Division Multiplexing (OFDM) symbol, slot, radio frame, millisecond or micro second. The time unit may be slot, or millisecond. The second predetermined time period TP2 allows the network node to prepare the initial transmission of a Transport Block (TB) . Namely, if the network node can prepare the initial transmission of a Transport Block (TB) with in the second predetermined time period TP2, the second format will be utilized in this initial transmission, and following possible retransmissions. Since the upstream node, such as a base station, may have much powerful computing ability, the second predetermined time period TP2 may be shorter than the first predetermined time period TP1. Particularly, the parameter “y” may be equal to “0” , which means the upstream node will do not need extra preparation time period, since the preparation time for an initial transmission is short enough to be ignored.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a fifth time point T5 to switch. If the fifth time point T5 is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, as an option, the network node uses the second format of MAC subheader for the HARQ retransmission.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a fifth time point T5 to switch. If the fifth time point T5 is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, as another option, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB.
In embodiments of the present disclosure, the message indicating a switch to the second format of MAC subheader further indicates a sixth time point to switch. If the sixth time point is in a data transmission period, the network node resets a  HARQ entity. The sixth time point may be any time point during the data transmission, including T4, T5, as shown in the figure 5.
According to such embodiments, even a switch is implemented during a data transmission, there will be no ambiguity, and the performance of the data transmission procedure is improved.
Figure 6 is another exemplary flow chart showing a method for a network node to switch format of medium access control subheader according to embodiments of the present disclosure.
As shown in figure 6, the method implemented at the network node 101 may include: step S501, receiving a broadcast about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and step S502, using the second format of MAC subheader during a random access procedure to the upstream node. Specifically, the network node 101 may send a request carrying the second format of MAC subheader to initiate a random access.
Accordingly, the method implemented at the network node 102 may include: step S601, broadcasting about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and step S602, receiving a request, carrying the second format of MAC subheader, to initiate a random access to the network node.
Namely, when the specific Physical Random Access Channel (PRACH) resource pool is already configured for the IAB node, the upstream node will identify an IAB node at the initiation of the RA procedure. There will be no ambiguity, and the performance of RA procedure will be improved.
It should be understood that an apparatus may only selectively implement the methods shown in figure 2 or 6, or implement all of these methods in both figures 2 and 6, according to network configuration policy.
In embodiments of the present disclosure, a difference between the first format of MAC subheader and the second format of MAC subheader includes a change in a format of a field. In embodiments of the present disclosure, the change relates to a field of Logical Channel Identifier (LC ID) and/or Logical Channel Group Identifier (LCG ID) .
In embodiments of the present disclosure, the methods are illustrated separately with the  network nodes  101, 102, for clarity. However, it should be understood, any network node may implement both of the methods for downstream node and upstream node. For example, the network node 102 will function as upstream node when communicating with the network node 101, and will function as downstream node when commutating with the network node 103. The network node 102 will implement any of the steps as shown in figures 2 to 6.
Figure 7 is a block diagram showing the management node in accordance with embodiments of the present disclosure.
As shown in figure 7, a network node 101/102, including: a processor 701; and a memory 702, containing instructions executable by the processor 701. The network node 101 is operative to: carry (S101) a first format of MAC subheader when initiating a random access to an upstream node of the network node; receive (S102) , from the upstream node, a message indicating a switch to a second format of MAC subheader; and use (S103) the second format of MAC subheader to communicate with the upstream node.
The network node 102 is operative to: receive (S201) , from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access; and send (S202) , to the downstream node, a message indicating a switch to a second format of MAC subheader.
According to embodiments of the present disclosure, there will be no ambiguity either during RA or communication procedure when switching the format of the MAC subheader, and the performance of RA procedure and communication procedure will be improved.
The network node 101/102 is further operative to any other methods described above, such as further shown in figures 3-6.
For example, referring to figure 3 again, in embodiments of the present disclosure, the network node 101 is operative to, use (S301) the second format of MAC subheader, following an Acknowledgement (ACK) message to a contention resolution message received from the upstream node.
The network node 102 is operative to send (S302) , to the downstream node, a contention resolution message carrying the second format of MAC subheader.
For example, referring to figure 6 again, in embodiments of the present disclosure, the network node 101 is operative to, receive (S501) a broadcast about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and use (S502) the second format of MAC subheader during a random access procedure to the upstream node. Specifically, the network node 101 may send a request carrying the second format of MAC subheader to initiate a random access.
The network node 102 is operative to broadcast (S601) about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node; and receive (S602) a request, carrying the second format of MAC subheader, to initiate a random access to the network node.
The processor 701 may be any kind of processing component, such as one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs) , special-purpose digital logic, and the like. The memory 702 may be any kind of storage component, such as read-only memory (ROM) , random-access memory, cache memory, flash memory devices, optical storage devices, etc.
Figure 8 is a block diagram showing a computer readable storage medium in accordance with embodiments of the present disclosure.
The computer readable storage medium 800 has a computer program 801 stored thereon. The computer program 801 is executable by an apparatus to cause the apparatus to carry out the method described above, such as shown in figures 2-6.
The computer readable storage medium 800 may be configured to include memory such as RAM, ROM, programmable read-only memory (PROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives.
Due to embodiments in the present disclosure, there will be no ambiguity either during RA or communication procedure, and the performance of RA procedure and communication procedure will be improved.
It should be understood although an IAB structure is illustrated as an example, the method of embodiments of the present disclosure may be applicable to any situation which needs switching format of MAC subheader. For example, MAC subheader may be extended to cause different format of MAC subheader for access radio interface of NR network, and then the above method will be applicable.
In general, the various exemplary embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto. While various aspects of the exemplary embodiments of this disclosure may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
As such, it should be appreciated that at least some aspects of the exemplary embodiments of the disclosure may be practiced in various components such as integrated circuit chips and modules. It should thus be appreciated that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, where the integrated circuit may include circuitry (as well as possibly firmware) for embodying at least one or more of a data processor, a digital signal processor, baseband circuitry and radio frequency circuitry that are configurable so as to operate in accordance with the exemplary embodiments of this disclosure.
It should be appreciated that at least some aspects of the exemplary embodiments of the disclosure may be embodied in computer-executable instructions,  such as in one or more program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device. The computer executable instructions may be stored on a computer readable medium such as a hard disk, optical disk, removable storage media, solid state memory, RAM, etc. As will be appreciated by those skilled in the art, the functionality of the program modules may be combined or distributed as desired in various embodiments. In addition, the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA) , and the like.
The present disclosure includes any novel feature or combination of features disclosed herein either explicitly or any generalization thereof. Various modifications and adaptations to the foregoing exemplary embodiments of this disclosure may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings. However, any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure.

Claims (43)

  1. A method for a network node to switch a format of Medium Access Control (MAC) subheader, comprising:
    carrying (S101) a first format of MAC subheader when initiating a random access to an upstream node of the network node;
    receiving (S102) , from the upstream node, a message indicating a switch to a second format of MAC subheader; and
    using (S103) the second format of MAC subheader, to communicate with the upstream node.
  2. The method according to claim 1, wherein using the second format of MAC subheader comprises:
    using (S301) the second format of MAC subheader, following an Acknowledgement (ACK) message to a contention resolution message received from the upstream node.
  3. The method according to claim 1, wherein the message indicating the switch to the second format of MAC subheader is a Radio Resource Control (RRC) signaling message.
  4. The method according to claim 3, wherein the RRC signalling comprises: a System Frame Number (SFN) , to indicate in which radio frame to start using the second format of MAC subheader.
  5. The method according to claim 1 or 2, wherein the message indicating the switch to the second format of MAC subheader comprises a Medium Access Control Control Element (MAC CE) , so as to indicate the switch.
  6. The method according to claim 5, wherein using the second format of MAC subheader comprises:
    using the second format of MAC subheader, following an ACK message to the  message indicating the switch to the second format of MAC subheader.
  7. The method according to claim 1 or 2, wherein the message indicating the switch to the second format of MAC subheader comprises a Physic Downlink Control Channel (PDCCH) order, so as to indicate the switch.
  8. The method according to claim 7, wherein using the second format of MAC subheader comprises:
    using the second format of MAC subheader following an end of a transmission window of the PDCCH order.
  9. The method according to claim 7 or 8,
    wherein the PDCCH order comprises a predefined Radio Network Temporary Identifier (RNTI) , so as to indicate the switch to the second format of MAC subheader; or
    wherein a predefined format of the PDCCH order indicates the switch to the second format of MAC subheader.
  10. The method according to any of claims 7 to 9, wherein the PDCCH order is transmitted repeatedly during a radio frame or half radio frame.
  11. The method according to claim 1,
    wherein the message indicating a switch to the second format of MAC subheader further indicates a first time point to switch;
    wherein the first time point is before an initial transmission of a Transport Block (TB) in a data transmission period;
    wherein the network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a first predetermined time period from the first time point; and
    wherein the first predetermined time period comprises x time units, x is a natural value.
  12. The method according to claim 1,
    wherein the message indicating a switch to the second format of MAC subheader further indicates a second time point to switch; and
    wherein if the second time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the second format of MAC subheader for the HARQ retransmission.
  13. The method according to claim 1,
    wherein the message indicating a switch to the second format of MAC subheader further indicates a second time point to switch; and
    wherein if the second time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB.
  14. The method according to claim 1,
    wherein the message indicating a switch to the second format of MAC subheader further indicates a third time point to switch; and
    wherein if the third time point is in a data transmission period, the network node resets a HARQ entity.
  15. The method according to claim 14,
    wherein the HARQ entity returns a MAC Service Data Unit (SDU) of an unacknowledged MAC Protocol Data Unit (PDU) to a layer higher than a MAC layer, before being reset.
  16. The method according to any of claims 1 to 15, further comprising:
    receiving (S501) a broadcast about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node;
    using (S502) the second format of MAC subheader during a random access  procedure to the upstream node.
  17. The method according to any of claims 1 to 16, wherein a difference between the first format of MAC subheader and the second format of MAC subheader comprises a change in a format of a field.
  18. The method according to any of claims 1 to 17, wherein the change relates to a field of Logical Channel Identifier (LC ID) and/or Logical Channel Group Identifier (LCG ID) .
  19. The method according to any of claims 1 to 18,
    wherein the network node comprises: a child Integrated Access Backhaul (IAB) node; and
    wherein the upstream node comprises: a parent IAB node, or a base station.
  20. A method for a network node to switch a format of MAC subheader, comprising:
    receiving (S201) , from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access;
    sending (S202) , to the downstream node, a message indicating a switch to a second format of MAC subheader.
  21. The method according to claim 20,
    wherein sending, to the downstream node, a message indicating a switch to a second format of MAC subheader comprising:
    sending (S302) , to the downstream node, a contention resolution message carrying the second format of MAC subheader.
  22. The method according to claim 20, wherein the message indicating the switch to the second format of MAC subheader is a Radio Resource Control (RRC) signalling.
  23. The method according to claim 22, wherein the RRC signalling comprises: a System Frame Number (SFN) , to indicate in which radio frame to start using the second format of MAC subheader.
  24. The method according to claim 20, wherein the message indicating the switch to the second format of MAC subheader comprises a Medium Access Control Control Element (MAC CE) , so as to indicate the switch.
  25. The method according to claim 24, further comprising:
    using the second format of MAC subheader, following an action of receiving, from the downstream node, an ACK message to the message indicating the switch to the second format of MAC subheader.
  26. The method according to claim 20, wherein the message indicating the switch to the second format of MAC subheader comprises a Physic Downlink Control Channel (PDCCH) order, so as to indicate the switch.
  27. The method according to claim 26, further comprising:
    using the second format of MAC subheader following an end of a transmission period of the PDCCH order.
  28. The method according to claim 26 or 27,
    wherein the PDCCH order comprises a predefined Radio Network Temporary Identifier (RNTI) , so as to indicate the switch to the second format of MAC subheader; or
    wherein a predefined format of the PDCCH order indicates the switch to the second format of MAC subheader.
  29. The method according to any of claims 26 to 28, wherein the PDCCH order is transmitted repeatedly during a radio frame or half radio frame.
  30. The method according to claim 20,
    wherein the message indicating a switch to the second format of MAC subheader further indicates a fourth time point to switch;
    wherein the fourth time point is before an initial transmission of a Transport Block (TB) in a data transmission period;
    wherein the network node uses the second format of MAC subheader for the initial transmission, if the initial transmission of the TB is implemented after a second predetermined time period from the fourth time point; and
    wherein the second predetermined time period comprises y time units, y is a natural value.
  31. The method according to claim 20,
    wherein the message indicating a switch to the second format of MAC subheader further indicates a fifth time point to switch;
    wherein if the fifth time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the second format of MAC subheader for the HARQ retransmission.
  32. The method according to claim 20,
    wherein the message indicating a switch to the second format of MAC subheader further indicates a fifth time point to switch;
    wherein if the fifth time point is between an initial transmission of a TB and a Hybrid Automatic Repeat Request (HARQ) retransmission of the TB in a data transmission period, the network node uses the first format of MAC subheader for the HARQ retransmission of the TB, and uses the second format of MAC subheader following an end of a transmission period of the TB.
  33. The method according to claim 20,
    wherein the message indicating a switch to the second format of MAC subheader further indicates a sixth time point to switch;
    wherein if the sixth time point is in a data transmission period, the network node resets a HARQ entity.
  34. The method according to claim 33,
    wherein the HARQ entity returns a MAC Service Data Unit (SDU) of an unacknowledged MAC Protocol Data Unit (PDU) to a layer higher than a MAC layer, before being reset.
  35. The method according to any of claims 20 to 34, further comprising:
    broadcasting (S601) about a specific Physical Random Access Channel (PRACH) resource pool preconfigured for the downstream node;
    receiving (S602) a request, carrying the second format of MAC subheader, to initiate a random access to the network node.
  36. The method according to any of claims 20 to 35, wherein a difference between the first format of MAC subheader and the second format of MAC subheader comprises a change in a format of a field.
  37. The method according to any of claims 20 to 36, wherein the change relates to a field of Logical Channel Identifier (LC ID) and/or Logical Channel Group Identifier (LCG ID) .
  38. The method according to any of claims 20 to 37,
    wherein the downstream node comprises: a child Integrated Access Backhaul (IAB) node; and
    wherein the network node comprises: a parent IAB node, or a base station.
  39. A network node (101) , comprising:
    a processor (701) ; and
    a memory (702) , containing instructions executable by the processor (701) ;
    wherein the network node (101) is operative to:
    carry a first format of MAC subheader when initiating a random access to an upstream node of the network node;
    receive, from the upstream node, a message indicating a switch to a second  format of MAC subheader;
    use the second format of MAC subheader to communicate with the upstream node.
  40. The network node (101) according to claim 39, further operative to implement the method according to any of claims 2 to 19.
  41. A network node (102) , comprising:
    a processor (701) ; and
    a memory (702) , containing instructions executable by the processor (701) ;
    wherein the network node (102) is operative to:
    receive, from a downstream node of the network node, a request carrying a first format of MAC subheader to initiate a random access;
    send, to the downstream node, a message indicating a switch to a second format of MAC subheader.
  42. The network node (102) according to claim 41, further operative to implement the method according to any of claims 21 to 38.
  43. A computer readable storage medium (800) having a computer program (801) stored thereon, the computer program (801) executable by an apparatus to cause the apparatus to carry out the method according to any of claims 1 to 38.
PCT/CN2019/106697 2018-12-29 2019-09-19 Method for network node to switch format of medium access control subheader, and network node apparatus WO2020134215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2018/125433 2018-12-29
CN2018125433 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134215A1 true WO2020134215A1 (en) 2020-07-02

Family

ID=71126121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106697 WO2020134215A1 (en) 2018-12-29 2019-09-19 Method for network node to switch format of medium access control subheader, and network node apparatus

Country Status (1)

Country Link
WO (1) WO2020134215A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071610A (en) * 2020-08-06 2022-02-18 维沃移动通信有限公司 Switching method, device and related equipment

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON,: "MAC Sub-Header Format,", R2-1707114, 16 June 2017 (2017-06-16), XP051306823, DOI: 20191126201502A *
ERICSSON,: "RAR Design and Contents,", R2-1711174, 28 September 2017 (2017-09-28), XP051354620, DOI: 20191126202327A *
HUAWEI ET AL. ,: "Details on RAR MAC PDU,", R2-1710112, 28 September 2017 (2017-09-28), XP051354206, DOI: 20191126202513A *
OPPO,: "The format of MAC subheader and optimization,", R2-1707735, 11 August 2017 (2017-08-11), XP051317696, DOI: 20191126202207A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114071610A (en) * 2020-08-06 2022-02-18 维沃移动通信有限公司 Switching method, device and related equipment
CN114071610B (en) * 2020-08-06 2023-04-25 维沃移动通信有限公司 Switching method, switching device and related equipment

Similar Documents

Publication Publication Date Title
JP6960443B2 (en) Methods and Devices for Improving MSG3 Transmission of Random Access Procedures in Wireless Communities
US20200127883A1 (en) Method and apparatus for beam failure recovery
US10904926B2 (en) Method for operating a fast random access procedure in a wireless communication system and a device therefor
CN111165060B (en) Random access method, device and communication system
US11044680B2 (en) Power control enhancement for random access
US20180070382A1 (en) Method for operating a fast random access procedure in a wireless communication system and a device therefor
US11337083B2 (en) Radio network node and a wireless device, and methods therein
WO2020220910A1 (en) Method and apparatus for handling sidelink reports
WO2020057294A1 (en) Method and apparatus for mobility optimization
CN116724662A (en) Resource selection method, device and system
US20220022219A1 (en) Method and apparatus for scheduling uplink transmission
WO2020134215A1 (en) Method for network node to switch format of medium access control subheader, and network node apparatus
US20220394781A1 (en) Random access method and apparatus and communication system
US20220295574A1 (en) Method and apparatus for channel state information
CN111567135B (en) Communication method and communication device
US11864246B2 (en) Method and apparatus for random access
US20230300902A1 (en) Method and Apparatus for Random Access
JP7458510B2 (en) Method and apparatus for multicast communication
WO2023035860A1 (en) Method and apparatus for paging
US20230078645A1 (en) Method and apparatus for random access
CN116097837A (en) Signal transmitting and receiving method, device and communication system
CN114402649A (en) Wireless communication method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902657

Country of ref document: EP

Kind code of ref document: A1