WO2020133892A1 - 一种控制管道腐蚀和嗅味的方法 - Google Patents

一种控制管道腐蚀和嗅味的方法 Download PDF

Info

Publication number
WO2020133892A1
WO2020133892A1 PCT/CN2019/087383 CN2019087383W WO2020133892A1 WO 2020133892 A1 WO2020133892 A1 WO 2020133892A1 CN 2019087383 W CN2019087383 W CN 2019087383W WO 2020133892 A1 WO2020133892 A1 WO 2020133892A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrate
pipeline
odor
corrosion
added
Prior art date
Application number
PCT/CN2019/087383
Other languages
English (en)
French (fr)
Inventor
孙婧
倪丙杰
严小芳
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2020133892A1 publication Critical patent/WO2020133892A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour

Definitions

  • the invention relates to the field of pipeline protection, in particular to a method for controlling corrosion and smell of pipelines.
  • the urban pipeline network is an important municipal infrastructure covering a large area and costing a lot of money. As an indispensable part of the urban water supply and delivery system, it bears important responsibilities for water delivery and water supply. Their operation and management status not only directly affect the quality of urban water environment, but also are closely related to people's lives. Corrosion and smell of pipeline networks have always been a problem faced by countries all over the world. On the one hand, damage to pipelines caused by corrosion of pipeline networks will bring huge maintenance expenditures to the finance. The resulting pipe perforation and breakage will cause sewage leakage to the soil and Groundwater causes pollution. The survey results of the Chinese Academy of Engineering show that in 2008, China's economic losses due to corrosion were as high as 12,000 to 2 trillion yuan.
  • the annual maintenance cost of the drainage pipe network in the United States is as high as 14 billion yuan, most of which is due to corrosion of the pipe network.
  • the volatile substances diffused from the drainage pipe network also have a strong smell and biochemical toxicity, which not only poses a threat to the lives of pipeline workers, but also brings trouble to the lives of surrounding residents.
  • methane is a potential greenhouse gas. From the perspective of global warming potential, the role of methane is about 21 times that of carbon dioxide; due to the lower explosion limit (about 5%), methane There are also security risks in confined spaces.
  • the corrosion and odor problems of the drainage pipe network are mainly caused by the metabolic activities of microorganisms in the biofilm attached to the pipeline.
  • the current research on pipeline corrosion and odor removal mainly includes the addition of chemical oxidants (such as nitrate), alkali and other pH Conditioner and injection of air, oxygen, etc., but these dosing measures can only control the sulfide that has been formed, and have little effect on the activity of the microbes that produce odor. Therefore, it is necessary to continuously add a large dose, which consumes a lot of drugs and runs. Management is also more complicated. Controlling the life activities of microorganisms in biofilms is the key to solving the problem. According to reports, several fungicides have good performance in sulfide control.
  • Glutaraldehyde can completely inhibit the formation of sulfide in complex biofilms, but the biofilm activity will be restored after 60h, and 19mg/L formaldehyde can inhibit 90% Sulfide produced.
  • the combination of nitrate and other spectral fungicides can also inhibit sulfide production.
  • Molybdate can also be used as a sulfate reduction inhibitor, which has been reported in livestock and poultry manure treatment systems and anaerobic treatment systems.
  • these fungicides may pose a risk to the environment due to their own toxicity, and these substances are not easily degraded in the environment.
  • the purpose of this is to provide a fast, efficient, small investment, and no potential risk to the environment to control the corrosion and smell of the pipe network in order to overcome the above-mentioned defects in the prior art. It can not only remove the existing toxic and harmful gases (such as hydrogen sulfide) in the pipeline, but also effectively inactivate microorganisms and inhibit the growth of biofilm. According to the recovery period of hydrogen sulfide production rate after dosing, intermittent dosing is adopted to effectively reduce the dosing frequency and save the cost of medicine and operation costs.
  • toxic and harmful gases such as hydrogen sulfide
  • a method for controlling pipeline corrosion and odor includes using ferrate to deal with pipeline corrosion and odor problems.
  • the concentration range of ferrate is 10-200mg-Fe/L.
  • the actual concentration is adjusted according to the water quality.
  • the corresponding amount of ferrate is directly put into the pipeline, or the method of stepwise addition is used.
  • the dosage interval is 15-60min. This method can significantly increase the inactivation efficiency of biofilm and the removal of toxic and harmful gases by changing the addition method without increasing the actual dosage, so as to achieve better control of corrosion and odor .
  • the ferrates used include ferrates in the form of potassium ferrate, sodium ferrate, etc., including ferrates that have been prepared in pure form or commercially available.
  • the ferrate used includes a ferrate solution prepared using a wet oxidation method and an electrolytic method or a solid separated and purified.
  • ferrate to intermittently process the pipeline add ferrate to the pipeline in a short period of time, after 5-40 days, a more preferred range is 10-25 days, and then use ferrate to process again in a short time Drainage pipe.
  • Ferrate can be added to pumping stations, wells, service ports or pipelines.
  • the method also includes the use of hydrogen peroxide, the ferrate being present together with hydrogen peroxide, or the use of hydrogen peroxide after the ferrate treatment, or the addition of hydrogen peroxide before the ferrate treatment.
  • Hydrogen peroxide is added to make its concentration range from 1 to 500 ppm, more preferably from 10 to 100 ppm. Hydrogen peroxide and ferrate have a synergistic effect. Compared with a single substance, the combined action can reduce the dosage of the agent and at the same time can enhance the inactivation of microorganisms.
  • Free nitrite has been proved to be an excellent biofilm inactivator.
  • the combination of ferrate and free nitrite can not only reduce the amount of ferrate, but also reduce the action time and amount of free nitrous acid. Obtain a higher microorganism inactivation effect.
  • the drainage pipe network is treated with free nitrite.
  • nitrite and acid to the pipeline environment. Add acid to make the pipeline environment pH is 2-7, nitrite is added after, before or at the same time as the acid is added, and the concentration of free nitrite reaches at least 0.05mg-N/L.
  • alkali is a commonly used dosing method for controlling microbial activity and reducing hydrogen sulfide spillover. Combined with ferrate, it can enhance microbial control effect and reduce action time.
  • alkaline substances makes the environmental pH greater than 9, and alkaline substances that can be used include sodium hydroxide and potassium hydroxide.
  • the present invention can not only remove hydrogen sulfide in the pipeline, but also inhibit the activity of bacteria, resulting in a reduction of sulfide. It can significantly reduce the microbial activity and sulfide concentration in the biofilm in the pipeline within a very short action time, and requires a long recovery period for sulfide production. Therefore, the use of intermittent addition of ferrate is a cost-effective strategy for controlling the odor after corrosion of the drainage pipe network, and has excellent application prospects.
  • Figure 1 shows the relative rates of hydrogen sulfide and methane production during the recovery period.
  • Sewer simulation reactor construction and biofilm cultivation Construct a drainage pipeline simulation system.
  • the reactor is cylindrical, with a diameter of 10cm, a height of 20cm, and an effective volume of 1L.
  • a small water tank is connected above the reactor to ensure air tightness.
  • the reactor is equipped with a sampling port and a pH meter installation port.
  • Three plastic carriers with a diameter of about 1 cm are hung in the reactor.
  • the pipeline biofilm will be attached to the inner wall of the reactor and the plastic carrier, and the plastic carrier can be taken out for analysis of the biofilm sample.
  • Inoculate and cultivate pipeline biofilm with actual municipal sewage use peristaltic pump to feed water, use intermittent water inlet mode, water inlet time is 2 minutes, water inlet volume is 1L, water inlet interval is 6h, to simulate real water inlet in the drainage pipe flow.
  • the sewage in the reactor was stirred with a magnetic stirrer at a stirring rate of 200 rpm to simulate the shear force generated by the pipe network water flow.
  • the intermittent experiment was used to detect the rate of biofilm H2S production every two weeks until it remained relatively stable, indicating that the biofilm reached a pseudo-steady state.
  • Ferrate inactivation biofilm experiment Take 44mL 0.22 micron filter membrane sewage into a 50ml centrifuge tube, and put a plastic carrier with biofilm on it. Dissolve a specific mass of potassium ferrate in 0.005M Na2HPO4/0.001M borate buffer solution to make its concentration 1g-Fe/L. According to literature reports, the ferrate solution is the most stable in this solution and is prepared before each use Active. Take 9ml of potassium ferrate solution in three centrifuge tubes and add 3mL each time, with an interval of 20min each time, and finally make its concentration 180mg-Fe/L. Close the tube cap to keep the entire tube anaerobic and free of air bubbles.
  • a method for controlling pipeline corrosion and odor, using ferrate to deal with pipeline corrosion and odor problems The potassium ferrate used in this embodiment has an action concentration of 10mgFe/L. The actual concentration is adjusted according to the water quality. The corresponding amount of potassium ferrate is directly put into the pipeline.
  • the pipeline is treated intermittently with potassium ferrate, potassium ferrate is added to the pipeline in a short period of time, and after 5 days, the potassium ferrate is used again to treat the drainage pipeline in a short time.
  • a method for controlling pipeline corrosion and odor, using ferrate to deal with pipeline corrosion and odor problems The potassium ferrate used in this example has an action concentration of 200mgFe/L. The actual concentration is adjusted according to the water quality.
  • this method can significantly increase the inactivation efficiency of biofilm and the removal of toxic and harmful gases by changing the addition method without increasing the actual dosage.
  • hydrogen peroxide is added, potassium ferrate and hydrogen peroxide are present at the same time, or after using potassium ferrate treatment, after using hydrogen peroxide treatment, you can also use potassium ferrate treatment
  • the addition amount is 10ppm.
  • Hydrogen peroxide and ferrate have a synergistic effect. Compared with a single substance, the combined effect can reduce the dosage of the agent, and at the same time Enhance the inactivation of microorganisms.
  • the drainage pipe network is treated with free nitrite.
  • the acid is added to make the pipeline environment pH 2-7.
  • the nitrite is added after, before or at the same time as the acid is added, and the free nitrite concentration reaches at least 0.05mg -N/L.
  • a method for controlling pipeline corrosion and odor, using ferrate to deal with pipeline corrosion and odor problems The sodium ferrate used in this example has an action concentration of 100 mgFe/L. The actual concentration is adjusted according to water quality.
  • this method can significantly increase the inactivation efficiency of biofilm and the removal of toxic and harmful gases by changing the addition method without increasing the actual dosage.
  • hydrogen peroxide was also added. After treatment with sodium ferrate, treatment with hydrogen peroxide was added at an amount of 100 ppm. Hydrogen peroxide and ferrate have a synergistic effect relative to a single substance , The common effect can reduce the dosage of medicine, and at the same time can enhance the inactivation of microorganisms.
  • the drainage pipe network is treated with free nitrite.
  • the nitrite is added to the sewer with a pH value in the range of 2-7 to at least 0.05 ppm of free nitrite. .
  • Adding sodium hydroxide is a commonly used dosing method for controlling microbial activity and reducing hydrogen sulfide spillover. Combined with ferrate, it can enhance the microbial control effect and reduce the action time. Add sodium hydroxide to make the ambient pH greater than 9.
  • a method for controlling pipeline corrosion and odor, using ferrate to deal with pipeline corrosion and odor using ferrate to deal with pipeline corrosion and odor.
  • the sodium ferrate used in this example has an action concentration of 80mgFe/L.
  • the actual concentration is adjusted according to the water quality.
  • this method can significantly increase the inactivation efficiency of biofilm and the removal of toxic and harmful gases by changing the addition method without increasing the actual dosage.
  • Hydrogen peroxide was added in this example. Hydrogen peroxide was added before treatment with sodium ferrate in an amount of 500 ppm. Hydrogen peroxide and ferrate have a synergistic effect. Compared to a single substance, The combined effect can reduce the dosage of the medicament, and at the same time can enhance the inactivation of microorganisms.
  • the drainage pipe network is treated with free nitrite.
  • the nitrite is added to the sewer with a pH value in the range of 2-7 to at least 0.05 ppm of free nitrite. .
  • Adding potassium hydroxide is a commonly used dosing method for controlling microbial activity and reducing hydrogen sulfide spillover. Combined with ferrate, it can enhance the microbial control effect and reduce the action time. Add potassium hydroxide to make the ambient pH greater than 9.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

一种控制管道腐蚀和嗅味的方法,通过在含有腐蚀和嗅味问题的管道系统(如污水管道,雨水管道,中水管道等)中加入高铁酸盐,根据水流量和进水模式,确定高铁酸盐的投放量和投加频率。

Description

一种控制管道腐蚀和嗅味的方法 技术领域
本发明涉及管道防护领域,尤其是涉及一种控制管道腐蚀和嗅味的方法。
背景技术
城市管网是一项覆盖区域广阔,耗资巨大的重要市政基础设施。它作为城市供输水系统中不可或缺的一部分,承担着输水和供水的重要职责。他们的运行管理状况不仅直接影响城市水环境质量,也与人们的生活息息相关。管网的腐蚀和嗅味一直是世界各国广泛面临的问题,一方面管网腐蚀导致的管路损坏将给财政带来巨大的维修支出,其导致的管道穿孔,断裂会导致污水泄漏对于土壤和地下水造成污染,中国工程院调查结果表明,2008年我国因为腐蚀造成经济损失就高达1.2万至2万亿人民币。据统计美国每年针对排水管网的维修费用高达140亿元,其中绝大部分是因为管网腐蚀。另一方面,排水管网扩散出的挥发性物质也有强烈的嗅味和生化毒性,不但对管道工作者的生命构成威胁,也给周围居民的生活带来困扰。同时,排水管网中排放了大量的甲烷,甲烷是潜在的温室气体,从全球变暖潜力而言,甲烷的作用是二氧化碳的约21倍;由于爆炸极限较低(约为5%),甲烷在密闭空间也存在安全风险。
目前我国正处于城市化进程迅速发展的时期,随着城市规模不断扩大,管网系统也迅速扩张。据统计,没有任何防腐措施的混凝土排水管网将以每年1-3mm的速度被腐蚀。同时,随着国民经济的飞速发展和人民生活水平的日益提高,人们对生活环境质量的要求也越来越高。因此实现管网腐蚀和嗅味的有效控制,具有重要的经济意义、环境价值和社会意义。
排水管网腐蚀和嗅味问题主要是由管道上附着的生物膜内微生物的代谢活动引起的,目前针对管道腐蚀和嗅味去除的研究主要包括投加化学氧化剂(如硝酸盐),碱等pH调节剂和注射空气、氧气等,但是这些投加措施只能控制已经形成的硫化物,对于产生嗅味的微生物活性并没有多大影响,因此需要连续投加较大剂量,药耗较大,运行管理也比较复杂。控制生物膜中微生物的生命活动是解决问题的关键。根据报道有几种杀菌剂在硫化物控制方面有良好的表 现,戊二醛能完全抑制复杂生物膜中硫化物的形成,但是在60h后生物膜活性会恢复,19mg/L甲醛可以抑制90%的硫化物产生。硝酸盐和其他光谱杀菌剂(如戊二醛,溴硝醇,四羟甲基硫酸鏻,苯扎氯铵,可可二胺,甲醛)结合也能抑制硫化物产生。钼酸盐也可以作为硫酸盐还原抑制剂,在畜禽粪便处理系统和厌氧处理系统中都有被报道。然而这些杀菌剂由于本身带有毒性可能会对环境带来风险,而且这些物质在环境中不易降解。
因此开发一种能控制生物膜中微生物活性,减小投药频率,节约药耗,同时对环境无污染的投药策略具有十分重要的价值。
发明内容
的目的就是为了克服上述现有技术存在的缺陷而提供一种快速高效、投入小且对环境无潜在风险的控制管网腐蚀和嗅味的方法。既能去除管道中现有的有毒有害气体(如硫化氢),也能有效灭活微生物,抑制生物膜生长。根据投药后硫化氢产率恢复周期,采用间歇投加方式,有效降其投加频率,节省药剂成本和运行成本费用。
本发明的目的可以通过以下技术方案来实现:
一种控制管道腐蚀和嗅味的方法,包括利用高铁酸盐处理管道腐蚀和嗅味问题。
高铁酸盐的作用浓度范围为10-200mg-Fe/L,实际投加浓度根据水质调整,投加时将对应量高铁酸盐直接投放入管道中,或者采用分步投加的方式。
优选采用2-3步等量投加,投加间隔为15-60min。此方式在不增加实际用量的情况下仅通过改变投加方式,能显著Fe(VI)对提高生物膜的灭活效率和有毒有害气体的去除,从而达到更好的控制腐蚀和嗅味的效果。
采用的高铁酸盐包括高铁酸钾,高铁酸钠等形式的高铁酸盐,包括已制备纯品或商购可得的高铁酸盐。
使用的高铁酸盐包括使用湿式氧化法和电解法制备的高铁酸盐溶液或经过分离纯化的固体。
利用高铁酸盐间断性地处理管道,在短期内往管道中投加高铁酸盐,经过5-40天,更优选的范围为10天-25天,然后再次利用高铁酸盐在短时间内处理 排水管道。
可以将高铁酸盐添加至泵站、水井、检修口或管道中。
本方法还包括使用过氧化氢,所述高铁酸盐与过氧化氢同时存在,或利用在高铁酸盐处理后在利用过氧化氢处理,或在利用高铁酸盐处理前添加过氧化氢。
添加过氧化氢使其作用浓度范围为1-500ppm,更优选的范围为10-100ppm。过氧化氢和高铁酸盐有协同作用,相对于单个物质,共同作用能减少药剂用量,同时可增强对微生物的灭活作用。
还包括添加游离亚硝酸盐或在酸性条件下添加硝酸盐。游离亚硝酸盐被证实是一种性能优异的生物膜灭活剂,高铁酸盐与游离亚硝酸盐联用,不仅能减少高铁酸盐的用量,减少游离亚硝酸的作用时间和用量,还能获得更高的微生物灭活效果。
在高铁酸盐处理后用游离亚硝酸盐对排水管网处理。
将亚硝酸盐和酸添加至管道环境中。添加酸使管道环境pH为2-7,亚硝酸盐在酸添加之后、之前或同时加入,游离亚硝酸盐浓度至少达到0.05mg-N/L。
还包括添加碱性物质,在使用高铁酸盐处理排水管网以后添加碱性物质。投加碱是常用的控制微生物活性和减少硫化氢散溢的投加方式,与高铁酸盐联用能增强微生物控制效果和减少作用时间。
添加碱性物质使环境pH大于9,能够采用的碱性物质包括氢氧化钠,氢氧化钾。
与现有技术相比,本发明不仅能够去除管道内硫化氢,还能抑制细菌活性,导致硫化物减少。在极短的作用时间内能明显降低管道内生物膜中的微生物活性和硫化物浓度,并且需要硫化物产生需要较长的恢复期。因此利用高铁酸盐间歇投加方式是一种经济有效的控制排水管网腐蚀后嗅味的策略,具有极佳的应用前景。
附图说明
图1为恢复期硫化氢和甲烷产生相对速率图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
利用高铁酸钾进行生物膜灭活的实验,按以下方法进行:
下水道模拟反应器构建及生物膜培养:构建排水管道模拟系统,反应器呈圆柱形,直径为10cm,高20cm,有效体积为1L。反应器上方连通一小水箱保证气密性,反应器设有取样口,pH计安装口等。反应器内挂有3串直径约为1cm的塑料载体。管道生物膜将附着在反应器内壁及塑料载体上,塑料载体可取出,以进行生物膜样本分析。以实际市政污水接种并培养管道生物膜,用蠕动泵进水,采用间歇进水模式,进水时间为2分钟,进水量为1L,进水间隔为6h,以模拟排水管道中的真实进水流量。用磁力搅拌器对反应器内污水进行搅拌,搅拌速率为200rpm,以模拟管网水流产生的剪切力。利用间歇实验每隔两周检测生物膜产H2S的速率直至保持相对稳定,代表生物膜到达假稳态。
高铁酸盐灭活生物膜实验:取44mL 0.22微米滤膜过滤的污水装入50ml离心管,将一个附载了生物膜的塑料载体置于其中。溶解特定质量高铁酸钾于0.005M Na2HPO4/0.001M borate缓冲溶液中,使其浓度为1g-Fe/L,据文献报道,高铁酸盐溶液在该溶液中最稳定,且每次使用前现配现用。取9ml高铁酸钾溶液分三次置于离心管中每次投加3mL,每次间隔20min,最终使其浓度为180mg-Fe/L,盖上管盖,保持整个管内厌氧且没有气泡。
将离心管置于振荡箱中以100rpm转速温和振荡15min,然后将塑料载体取出,放入装有3ml过膜污水的离心管中,用涡旋振荡器剧烈混合振荡5min,将生物膜从塑料载体上剥离分散至水中。
在2ml塑料离心管加入3ul SYTO-9和PI混合溶液(SYTO-9:PI为1:1),转移含有生物膜的悬浮液200ul到其中,将试管在室温(20℃)的黑暗环境中孵育15分钟,使染色反应完成,反应完成后吸取5ul滴在载玻片上,使用荧光显微镜拍摄具有染色生物膜样品的显微镜载玻片。每个样本随机选取20个图 像,通过确定绿色和红色像素的相对面积来对活的和死的微生物进行定量。像素面积计数使用DAMIN完成。假定绿色荧光对总荧光(红色+绿色荧光)得百分比等于生物膜中活细胞占总细胞(存活+死亡)的百分比。
经过计算得,对照组活细胞比例为83%,经过Fe(VI)处理后其活细胞比例仅为17.6%。由此可以看出高铁酸钾对于生物膜具有良好的杀菌效果。与其他广泛报道的生物膜灭活剂相比,本药剂作用时间短,且对微生物灭活效果良好,因此既保证了腐蚀和嗅味控制效果,又能大大缩减了药剂所需量和简化投药步骤和管理措施。
实施例2
在模拟管道系统中直接投放高铁酸盐固体,测定其对生物膜的影响和嗅味去除效果,按以下方法进行:
模拟管道系统以及生物膜的培养同实例一所述,待生物膜达到假稳态,即可以开始进行投药实验,实验操作如下:
启动蠕动泵十分钟,将5L水泵入反应器,使其将反应器内原有的水完全排出。立即从加药孔中投入特定质量的高铁酸钾固体,使其浓度为60mg-Fe/L,20min和40min后再次加入相同质量的高铁酸钾,一共投药三次,1小时后泵入新鲜污水1L,将含有高铁酸钾的水排出,进行生物膜重新恢复生长阶段,每隔2-14天测试硫化氢产生速率。
实验结果如下:从图1可知,投入高铁酸钾后,其硫化氢产生速率和甲烷产生速率几乎降低为零,说明其相应微生物生命活动收到了影响。联合生物膜灭活实验可知,高铁酸盐使其中大部分微生物灭活,其中也包括产生硫化氢的硫酸盐还原菌。投药后硫化氢速率开始逐渐恢复,在10天后其速率恢复50%,甲烷恢复较慢。用Gompertz growth equation拟合恢复阶段,很明显符合微生物再生长模式,由此可以发现在投加了高铁酸盐后,对微生物有致死作用,中断了其产硫化氢活动,并且其恢复期较长,因此可以通过间歇投加高铁酸盐,持续控制下水道生物膜的新陈代谢活动和硫化氢含量,进而达到腐蚀和臭气控制的效果。
实施例3
一种控制管道腐蚀和嗅味的方法,利用高铁酸盐处理管道腐蚀和嗅味问题, 本实施例中采用的高铁酸钾,作用浓度为10mgFe/L,实际投加浓度根据水质调整,投加时将对应量高铁酸钾直接投放入管道中。
利用高铁酸钾间断性地处理管道,在短期内往管道中投加高铁酸钾,经过5天,再次利用高铁酸钾在短时间内处理排水管道。
实施例4
一种控制管道腐蚀和嗅味的方法,利用高铁酸盐处理管道腐蚀和嗅味问题,本实施例中采用的高铁酸钾,作用浓度为200mgFe/L,实际投加浓度根据水质调整,投加时采用3步法等量投加,此方式在不增加实际用量的情况下仅通过改变投加方式,能显著Fe(VI)对提高生物膜的灭活效率和有毒有害气体的去除,从而达到更好的控制腐蚀和嗅味的效果,将对应量的高铁酸钾添加至泵站、水井、检修口或管道中。
除此之外,本实施例中还投加有过氧化氢,高铁酸钾与过氧化氢同时存在,或利用在高铁酸钾处理后在利用过氧化氢处理,还可以在利用高铁酸钾处理前添加过氧化氢,本实施例中过氧化氢与高铁酸钾同时加入,添加量为10ppm,过氧化氢和高铁酸盐有协同作用,相对于单个物质,共同作用能减少药剂用量,同时可增强对微生物的灭活作用。
在高铁酸盐处理后用游离亚硝酸盐对排水管网处理,添加酸使管道环境pH为2-7,亚硝酸盐在酸添加之后、之前或同时加入,游离亚硝酸盐浓度至少达到0.05mg-N/L。
实施例5
一种控制管道腐蚀和嗅味的方法,利用高铁酸盐处理管道腐蚀和嗅味问题,本实施例中采用的高铁酸钠,作用浓度为100mgFe/L,实际投加浓度根据水质调整,投加时采用2步法等量投加,此方式在不增加实际用量的情况下仅通过改变投加方式,能显著Fe(VI)对提高生物膜的灭活效率和有毒有害气体的去除,从而达到更好的控制腐蚀和嗅味的效果,将对应量的高铁酸钠添加至泵站、水井、检修口或管道中。
利用高铁酸钠间断性地处理管道,在短期内往管道中投加高铁酸钠,经过10天,再次利用高铁酸钠在短时间内处理排水管道。
除此之外,本实施例中还投加有过氧化氢,利用高铁酸钠处理后在利用过 氧化氢处理,添加量为100ppm,过氧化氢和高铁酸盐有协同作用,相对于单个物质,共同作用能减少药剂用量,同时可增强对微生物的灭活作用。
在高铁酸盐处理后用游离亚硝酸盐对排水管网处理,在高铁酸盐处理后将亚硝酸盐添加至pH值为2-7范围内的下水道中,至少达到0.05ppm的游离亚硝酸盐。
还包括添加碱性物质氢氧化钠,在使用高铁酸盐处理污水管网以后添加氢氧化钠。投加氢氧化钠是常用的控制微生物活性和减少硫化氢散溢的投加方式,与高铁酸盐联用能增强微生物控制效果和减少作用时间。添加氢氧化钠使环境pH大于9。
实施例6
一种控制管道腐蚀和嗅味的方法,利用高铁酸盐处理管道腐蚀和嗅味问题,本实施例中采用的高铁酸钠,作用浓度为80mgFe/L,实际投加浓度根据水质调整,投加时采用2步法等量投加,此方式在不增加实际用量的情况下仅通过改变投加方式,能显著Fe(VI)对提高生物膜的灭活效率和有毒有害气体的去除,从而达到更好的控制腐蚀和嗅味的效果,将对应量的高铁酸钠添加至泵站、水井、检修口或管道中。
利用高铁酸钠间断性地处理管道,在短期内往管道中投加高铁酸钠,经过40天,再次利用高铁酸钠在短时间内处理排水管道。
除此之外,本实施例中还投加有过氧化氢,在利用高铁酸钠处理前添加过氧化氢,添加量为500ppm,过氧化氢和高铁酸盐有协同作用,相对于单个物质,共同作用能减少药剂用量,同时可增强对微生物的灭活作用。
在高铁酸盐处理后用游离亚硝酸盐对排水管网处理,在高铁酸盐处理后将亚硝酸盐添加至pH值为2-7范围内的下水道中,至少达到0.05ppm的游离亚硝酸盐。
还包括添加碱性物质氢氧化钾,在使用高铁酸盐处理排水管网以后添加氢氧化钾。投加氢氧化钾是常用的控制微生物活性和减少硫化氢散溢的投加方式,与高铁酸盐联用能增强微生物控制效果和减少作用时间。添加氢氧化钾使环境pH大于9。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用 发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种控制管道腐蚀和嗅味的方法,其特征在于,该方法通过向管道系统中投放浓度为10-200mg-Fe/L的高铁酸盐处理管道腐蚀和嗅味问题。
  2. 根据权利要求1所述的一种控制管道腐蚀和嗅味的方法,其特征在于,所述高铁酸盐采用一次性投放,或者分步投加的方式加入到管道系统中,优选采用2-3步等量投加,投加间隔为15-60min。
  3. 根据权利要求2所述的一种控制管道腐蚀和嗅味的方法,其特征在于,利用高铁酸盐间断性地处理管道,利用高铁酸盐在短期内往管道中投加高铁酸盐,经过5-40天,更优选的范围为10天-25天,然后再次利用高铁酸盐在短时间内处理排水管道。
  4. 根据权利要求1-3中任一项所述的一种控制管道腐蚀和嗅味的方法,其特征在于,所述高铁酸盐包括但不限于高铁酸钾或高铁酸钠。
  5. 根据权利要求1-3中任一项所述的一种控制管道腐蚀和嗅味的方法,其特征在于,将高铁酸盐添加至泵站、水井、检修口或管道中。
  6. 根据权利要求1所述的一种控制管道腐蚀和嗅味的方法,其特征在于,还包括向管道中加入过氧化氢,所述过氧化氢在添加高铁酸盐的同时加入,或者用在高铁酸盐处理后在利用过氧化氢处理,或在利用高铁酸盐处理前添加过氧化氢。
  7. 根据权利要求6所述的一种控制管道腐蚀和嗅味的方法,其特征在于,添加的过氧化氢的浓度1-500ppm,优选的范围为10-100ppm。
  8. 根据权利要求1所述的一种控制管道腐蚀和嗅味的方法,其特征在于,还包括在高铁酸盐处理后用游离亚硝酸盐对管道系统处理。
  9. 根据权利要求8所述的一种控制管道腐蚀和嗅味的方法,其特征在于,将亚硝酸盐和酸添加至管道环境中,添加酸使管道环境pH为2-7,亚硝酸盐在酸添加之后、之前或同时加入,游离亚硝酸盐浓度至少达到0.05mgN/L。
  10. 根据权利要求1所述的一种控制管道腐蚀和嗅味的方法,其特征在于,还包括在使用高铁酸盐处理管道系统以后添加碱性物质,使环境pH值大于9,优选pH值的范围为9-13,加入的碱性物质为苛性钠或氢氧化钾。
PCT/CN2019/087383 2018-12-25 2019-05-17 一种控制管道腐蚀和嗅味的方法 WO2020133892A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811592232.5 2018-12-25
CN201811592232.5A CN109626526B (zh) 2018-12-25 2018-12-25 一种控制管道腐蚀和嗅味的方法

Publications (1)

Publication Number Publication Date
WO2020133892A1 true WO2020133892A1 (zh) 2020-07-02

Family

ID=66077417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087383 WO2020133892A1 (zh) 2018-12-25 2019-05-17 一种控制管道腐蚀和嗅味的方法

Country Status (2)

Country Link
CN (1) CN109626526B (zh)
WO (1) WO2020133892A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052821A (ko) * 2018-11-07 2020-05-15 가부시키가이샤 쿄교쿠엔지니어링 하수처리 시스템
CN109626526B (zh) * 2018-12-25 2022-02-08 同济大学 一种控制管道腐蚀和嗅味的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088926A (zh) * 2006-06-12 2007-12-19 深圳职业技术学院 一种高铁酸盐与类-Fenton联用的水处理方法
CN102068895A (zh) * 2010-12-15 2011-05-25 中山大学 一种利用六价高铁盐溶液处理恶臭性气体的方法
US9199885B2 (en) * 2013-03-15 2015-12-01 The Administrators Of The Tulane Educational Fund Utilization of iron salts to stabilize and/or disinfect biosolids
CN105819589A (zh) * 2016-04-05 2016-08-03 北京化工大学 一种去除沼液臭味的方法
CN106830436A (zh) * 2017-03-13 2017-06-13 同济大学 一种用于饮用水处理的预氧化方法
CN109626526A (zh) * 2018-12-25 2019-04-16 同济大学 一种控制管道腐蚀和嗅味的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134010A1 (en) * 2010-04-28 2011-11-03 The University Of Queensland Control of bacterial activity, such as in sewers and wastewater treatment systems
CN101954105A (zh) * 2010-09-16 2011-01-26 宁波工程学院 一种氧化去除畜禽粪尿臭气的方法
CN204022487U (zh) * 2014-08-22 2014-12-17 河南众英环保工程有限责任公司 一种水处理消毒装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088926A (zh) * 2006-06-12 2007-12-19 深圳职业技术学院 一种高铁酸盐与类-Fenton联用的水处理方法
CN102068895A (zh) * 2010-12-15 2011-05-25 中山大学 一种利用六价高铁盐溶液处理恶臭性气体的方法
US9199885B2 (en) * 2013-03-15 2015-12-01 The Administrators Of The Tulane Educational Fund Utilization of iron salts to stabilize and/or disinfect biosolids
CN105819589A (zh) * 2016-04-05 2016-08-03 北京化工大学 一种去除沼液臭味的方法
CN106830436A (zh) * 2017-03-13 2017-06-13 同济大学 一种用于饮用水处理的预氧化方法
CN109626526A (zh) * 2018-12-25 2019-04-16 同济大学 一种控制管道腐蚀和嗅味的方法

Also Published As

Publication number Publication date
CN109626526B (zh) 2022-02-08
CN109626526A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US10533148B2 (en) Membrane photobioreactor for treating nitrogen and phosphorus that are out of limits in biogas slurry and treating method thereof
CN202143402U (zh) 循环水水产养殖系统
WO2020133892A1 (zh) 一种控制管道腐蚀和嗅味的方法
CN104388348A (zh) 用于污水净化与垃圾除臭的微生态制剂及其制备方法
CN106006950A (zh) 一种菌丝球促进好氧污泥颗粒化的方法
CN106986447B (zh) 一种用于控制管道腐蚀恶臭的处理系统及处理方法
CN105274002A (zh) 一种厌氧微生物的富集培养方法
CN112479520A (zh) 一种环保型化粪池
CN116789246A (zh) 一种污水系统提质增效的方法
CN109809642A (zh) 一种多级好氧处理农村家庭污水的改型净化槽
CN105948255A (zh) 一种处理高浓度硫酸多黏菌素发酵废水的处理方法及系统
CN102925357A (zh) 一种无害化处理用微生物复合菌剂及其应用
CN205933575U (zh) 一种全过程微生物除臭设备
CN107262495B (zh) 一种利用复合菌剂治理垃圾臭气的方法
CN206266303U (zh) 城市污水再生利用病原微生物控制装置
CN107162363A (zh) 一种环境友好型污泥减量系统及方法
CN212356961U (zh) 地下水修复中二次污染物的生物去除系统
CN107245446A (zh) 一种农药降解菌与多孔净污材料高效负载装置
AU2021105330A4 (en) A method for pipeline corrosion and odor controlling
CN209806738U (zh) 一种畜禽养殖场除臭装置
CN115583714B (zh) 一种抑制下水道管网中甲烷产生的方法
CN112375721A (zh) 一种农村生活污水低温处理复合菌剂的制备方法及应用
CN207203825U (zh) 一种啤酒废水臭气提标处理系统
CN207143060U (zh) 一种环境友好型污泥减量系统
CN204999898U (zh) 一种VOCs增溶菌的开放式发酵培养装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904666

Country of ref document: EP

Kind code of ref document: A1