WO2020133768A1 - 一种基于射线符合测量的多相流量质量计量装置 - Google Patents

一种基于射线符合测量的多相流量质量计量装置 Download PDF

Info

Publication number
WO2020133768A1
WO2020133768A1 PCT/CN2019/080006 CN2019080006W WO2020133768A1 WO 2020133768 A1 WO2020133768 A1 WO 2020133768A1 CN 2019080006 W CN2019080006 W CN 2019080006W WO 2020133768 A1 WO2020133768 A1 WO 2020133768A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
scintillation crystal
pipeline
detector
device based
Prior art date
Application number
PCT/CN2019/080006
Other languages
English (en)
French (fr)
Inventor
陈继革
Original Assignee
无锡洋湃科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡洋湃科技有限公司 filed Critical 无锡洋湃科技有限公司
Publication of WO2020133768A1 publication Critical patent/WO2020133768A1/zh
Priority to US17/361,432 priority Critical patent/US20210325220A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/712Measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/08Air or gas separators in combination with liquid meters; Liquid separators in combination with gas-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters
    • G01F7/005Volume-flow measuring devices with two or more measuring ranges; Compound meters by measuring pressure or differential pressure, created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/44Venturi tubes

Definitions

  • the invention relates to the field of multiphase fluids, and more specifically, it relates to a multiphase flow mass measurement device based on ray coincidence measurement.
  • phase usually refers to a homogeneous material part with the same composition and the same physical and chemical properties in a system, and there is a clearly separable interface between each phase.
  • Multiphase fluid is a fluid form often encountered in industrial production. It is composed of two or more phases with obvious interfaces, including gas/liquid, liquid/solid, gas/solid, liquid/liquid Two-phase flow, and gas/liquid/liquid, gas/liquid/solid multiphase flow, etc.
  • gas-solid two-phase flow in coal power transmission process of coal-fired power generation equipment and pneumatic conveying device for grain processing gas-liquid two-phase flow in industrial boiler system and oil well production process, sediment extraction in offshore oil industry and pulp flow in paper industry
  • gas-solid two-phase flow there are also two-phase flow of water and petroleum in the oil pipeline in petroleum production, and various two-phase fluids in the transportation of two substances in metallurgy or chemical engineering.
  • the ratio of pulverized coal and air directly determines the power generation efficiency of coal; the oil field oil extraction device draws crude oil and natural gas together into the oil pipeline,
  • the measurement of volume and gas content is of great significance to guide oil production and oil and gas reservoir management; in the chemical and metallurgical industries, the transportation and proportioning of raw materials also require accurate measurement, which is very important for saving production and safe production.
  • phase separation method requires the use of large-scale separation equipment. After standing for a period of time, it mainly relies on gravity to separate the multi-phase fluid into a single-phase fluid, and then uses a single-phase flow meter for measurement.
  • the phase separation method is simple and reliable, and the measurement results are not affected by changes in flow pattern.
  • the manual test rule is that sampling is to sample local points, and the information of local points is used to replace the entire fluid flow pattern. It is very random and cannot accurately reflect the split phase flow of the fluid.
  • the main purpose of applying ray technology to industrial two-phase flow detection is to measure the phase separation rate of two-phase flow and to identify the flow pattern.
  • the basic principle is to receive the ray transmitted through the two-phase tube flow through the detector array, and obtain a series of attenuation data (projection). After these data are denoised and corrected, the image is reconstructed to obtain the two-phase tube flow ray transmission cross section. 2D tomographic image. Therefore, this solution has the advantages of high measurement accuracy, good imaging resolution, simple structure, and wide applicability.
  • a radiation device capable of generating a certain amount of radiation, such as an X-ray tube and a Cs-137 radioactive source, is required. Due to the existence of the radiation device, certain detection equipment must be protected and supervised to avoid accidents. Therefore, there are many inconveniences in the promotion and application of imaging equipment based on ray technology.
  • the Chinese patent with the publication number CN102565844B discloses a multi-phase flow positron tomography imaging device and method.
  • the device uses positive and negative electron annihilation to generate a pair of gamma rays of 511keV energy that can meet the requirements.
  • Multi-phase flow metering in the oil field pipeline provides on-line tomography.
  • the device includes multiple parallel high-precision gamma-ray detector arrays, positron emission sources and shields arranged in a specific spatial structure, and combined with the function of image processing can obtain gas and liquid only under the condition of a single emission source , Solid and other multiphase flow mixture phase fraction.
  • the design of multiple sets of high-precision detector arrays also greatly improves the accuracy of multiphase flow measurement and its applicability under different flow patterns of multiphase flow.
  • the image information of the fluid generated by it will greatly enrich the measurement information of the oil and gas industry for oil and gas and provide basic data for more effective reservoir management and production optimization.
  • the design of the positron source is relatively complicated, and requires certain protection and supervision, the equipment is large and the cost is high; and the decay period of the positron source is short, easy to aging, and requires frequent replacement, To ensure stable performance.
  • ⁇ -ray receivers generally use photomultiplier tube counters as counters to detect ⁇ -ray transmission intensity, but these counters have different degrees of temperature drift, that is, the measured ⁇ -ray transmission intensity signal will vary with the temperature of the counter itself. The drift occurs due to the change, resulting in an error in the transmission intensity signal measurement.
  • all moisture meters using gamma-ray detection technology need to be provided with a thermostatic device for keeping the gamma-ray receiver at a constant temperature.
  • the object of the present invention is to provide a multi-phase flow mass measurement device based on ray coincidence measurement.
  • the radiation detection technology of the scintillation crystal intrinsic radiation can cancel the radiation in the prior art radiation measurement device Source, reduce the cost of the system, and greatly improve the safety and reliability of the system.
  • a multi-phase flow mass measurement device based on ray coincidence measurement including a support frame, a pipeline through hole for passing a fluid pipeline in the center of the support frame, the pipeline
  • the outer wall of the through hole is provided with a number of ray detection components, which are distributed along the circumference perpendicular to the through hole of the pipeline;
  • the ray detection component includes a scintillation crystal and a detector.
  • the scintillation crystal is located between the outer wall of the through hole of the pipeline and the detector between.
  • the scintillation crystal is a material often used in radiation detection technology. It can convert high-energy gamma rays into low-energy fluorescence, which is then detected by a photoelectric conversion device to be converted into an electrical signal.
  • commonly used scintillation crystals include sodium iodide NaI, lutetium silicate LSO, etc. Therefore, this principle can be used to combine the high-precision time measurement technology and the coincidence detection technology to obtain the flight path of the ⁇ -ray, that is, the response line.
  • you can use corresponding measurement techniques and calculation methods such as filter back projection technology, ordered subset maximum expected value method, etc., to achieve the full cross-sectional measurement of the detected object.
  • Using the intrinsic ray of scintillation crystal for full-section measurement can eliminate the radiation source in the ray measurement device, reduce the cost of the system, have a small size, and greatly improve the safety and reliability of the system.
  • the scintillation crystal is a scintillation crystal containing lutetium-176 element.
  • Lutetium scintillation crystals contain Lu-176 radioisotope, which emits beta rays during decay, and beta rays rapidly decay to produce gamma rays. Since the energy spectrum of Lu-176 is known, ⁇ -rays will be generated during the decay process. This ⁇ -ray decay will generate three levels of ⁇ -rays, namely 307keV, 202keV, and 88keV. Because ⁇ -ray penetration ability is extremely weak, it can be detected at the place where it occurs, while ⁇ -ray has relatively strong penetration ability, and can be detected after penetrating the measured fluid. Therefore, you can use this principle to take the position of ⁇ -ray detection as the starting point of ⁇ -rays.
  • the detectors located at the corresponding positions of the pipeline as the reaching point of the ray, thus obtaining ⁇ Ray flight path.
  • the equipment will not suffer from performance degradation due to the aging of the radiation device, which greatly improves the stability and service life of the system.
  • the scintillation crystal is a flake-shaped scintillation crystal or a plastic scintillation crystal.
  • the flake-shaped scintillation crystal LSO has small volume, low cost and stable performance. However, the low content of Lu-176 in flake scintillation crystal LSO makes the number of emitted rays of the system low, which may affect the detection efficiency.
  • the plastic scintillation crystal LYSO has better light amplification performance, short light extraction time, faster amplification, easier to be detected, and higher detection efficiency; at the same time, the plastic scintillation crystal LYSO is not easy to deliquesce and has a longer service life.
  • the detector is a photomultiplier tube or a semiconductor silicon detector.
  • Photomultiplier tube is a traditional photoelectric conversion device with extremely high sensitivity and ultra-fast time response, which can quickly and effectively convert the ray optical signal into an electrical signal; cooperate with the module circuit to amplify and reduce noise, The signal pulse is output, the signal is observed by the oscilloscope, and finally the upper computer stores and analyzes the collected waveform data.
  • the semiconductor silicon detector (SiPM) is a new type of detector. After the photons are absorbed, a current is generated and multiplied in the SiPM, which can output a larger current signal and be received by the module circuit. The detection efficiency of gamma rays is higher and the volume is smaller.
  • the scintillation crystal and the detector are fixed by a coupling agent.
  • the scintillation crystal is a high-density crystal, and there is a layer of epoxy resin on the surface of the detector.
  • Optical coupling agents are some transparent media with large refraction coefficients, especially the optical coupling. Putting the coupling agent between the scintillation crystal and the detector can effectively eliminate the air and significantly reduce the light loss caused by total reflection.
  • the coupling agent can be made of silica gel to bond the scintillation crystal to the detector, effectively reduce the loss of light from the scintillation crystal to the detector, and improve the photoelectric conversion efficiency.
  • each group of the radiation detection components is insulated by metal parts.
  • the metal piece can prevent the radiation emitted by the radiation detection component from being detected by other radiation detection components before passing through the fluid pipeline, thereby reducing mutual interference.
  • the material of the metal part is a tungsten-based alloy.
  • the tungsten-based alloy is a high-density metal, which has better protection effect and better blocking effect on ⁇ -ray, which prevents the detectors from interfering with each other.
  • the radiation detection assembly is distributed in multiple layers along the direction of the pipe through hole.
  • Each layer of the ray detection component performs full-section measurement on the fluid in the pipeline, and the detection effect is more accurate.
  • the present invention has the following beneficial effects:
  • the measuring device of the present invention enables the measuring device of the present invention to work conveniently and reliably in the underwater environment for a long time without worrying about the trouble of replacing the power supply of the thermostatic device and maintaining the thermostatic device; the effect of temperature drift in the ⁇ -ray measurement system is fundamentally eliminated, so the measurement result is more Accurate and higher precision.
  • FIG. 1 is a three-dimensional structure diagram of Embodiment 1.
  • FIG. 1 is a three-dimensional structure diagram of Embodiment 1.
  • FIG. 2 is a schematic view of the cross-sectional structure of Example 1.
  • FIG. 3 is a schematic diagram of Embodiment 1.
  • FIG. 3 is a schematic diagram of Embodiment 1.
  • FIG. 4 is a schematic structural view of a longitudinal section of Example 4.
  • FIG. 4 is a schematic structural view of a longitudinal section of Example 4.
  • Example 5 is a schematic structural view of Example 5.
  • this embodiment includes a support frame 1, a center of the support frame 1 is provided with a pipeline through hole 2 for passing a fluid pipeline, and a plurality of radiation detection components are provided on the outer wall of the pipeline through hole 2 for radiation detection
  • the assembly 3 is distributed along a circumferential direction perpendicular to the through-hole 2 of the pipe; the ray detection assembly 3 includes a scintillation crystal 31 and a detector 32.
  • the scintillation crystal 31 is located between the outer wall of the through-hole 2 of the pipe and the detector 32.
  • One side abuts on the outer wall of the pipe through hole 2, and the other side is in close contact with the detector 32.
  • the scintillation crystal 31 is a material often used in the radiation detection technology, which can convert high-energy ⁇ rays into low-energy fluorescence, and then is detected by the photoelectric conversion device to be converted into electrical signals.
  • commonly used scintillation crystals 31 include sodium iodide NaI, lutetium silicate LSO, and the like. Therefore, this principle can be used to combine the high-precision time measurement technology and the coincidence detection technology to obtain the flight path of the ⁇ -ray, that is, the response line. Through a large number of response lines, you can use corresponding measurement techniques and calculation methods such as filtered back projection technology, ordered subset maximum expected value method, etc., to achieve the full cross-sectional measurement of the detected object.
  • Using the intrinsic rays of the scintillation crystal 31 for full-section measurement can eliminate the radiation source in the radiation measuring device, reduce the cost of the system, have a small size, and greatly improve the safety and reliability of the system.
  • this embodiment is installed on the outer surface of an industrial fluid pipeline, the pipeline passes through the pipeline through hole 2, and the radiation detection assembly 3 performs full-section measurement and detection of the fluid in the pipeline.
  • the scintillation crystal 31 is a scintillation crystal containing lutetium-176 element.
  • Lutetium scintillation crystals contain Lu-176 radioisotope, which emits beta rays during decay, and beta rays rapidly decay to produce gamma rays. Since the energy spectrum of Lu-176 is known, ⁇ -rays will be generated during the decay process. This ⁇ -ray decay will generate three levels of ⁇ -rays, namely 307keV, 202keV, and 88keV. Because ⁇ -ray penetration ability is very weak (1 micron), it can be detected at the place where it occurs, while ⁇ -ray has relatively strong penetration ability, and can be detected after penetrating the measured fluid. Therefore, the principle can be used to determine the position of beta rays as the starting point of gamma rays.
  • the detector 32 located at the corresponding position of the pipeline as the arrival point of the radiation, thereby obtaining ⁇ -ray flight path.
  • the detector 32 located at the corresponding position of the pipeline as the arrival point of the radiation, thereby obtaining ⁇ -ray flight path.
  • the scintillation crystal 31 is a flake-shaped scintillation crystal.
  • the flake-shaped scintillation crystal LSO has small volume, low cost and stable performance.
  • the detector 32 is a photomultiplier tube.
  • Photomultiplier tube is a traditional photoelectric conversion device with extremely high sensitivity and ultra-fast time response, which can quickly and effectively convert the ray optical signal into an electrical signal; cooperate with the module circuit to amplify and reduce noise, The signal pulse is output, the signal is observed by the oscilloscope, and finally the upper computer stores and analyzes the collected waveform data.
  • the module circuit includes a power circuit and a signal circuit.
  • the power circuit is to provide power for the photomultiplier tube and the signal circuit. Generally, only a reasonable range of DC power is needed. AC-DC power adapter can also be used to supply power. Directly powered by batteries.
  • the signal circuit mainly processes the pulse signal output by the photomultiplier tube. Since the amplitude of the signal output from the photomultiplier tube is very small, it is generally necessary to amplify and reduce the signal.
  • the scintillation crystal 31 is generally a high-density crystal, and the surface of the detector 32 has a layer of epoxy resin.
  • the light is emitted from the scintillation crystal 31 to the detector 32, the light is emitted from the optically dense medium to the optically sparse medium.
  • Optical coupling agents are some transparent media with large refraction coefficients, especially optical couplings. Placing the coupling agent between the scintillation crystal 31 and the detector 32 can effectively eliminate air and significantly reduce the light loss caused by total reflection.
  • the scintillation crystal 31 and the detector 32 are fixed by a coupling agent.
  • the coupling agent may use silica gel to bond the scintillation crystal 31 and the detector 32, effectively reducing the loss of light from the scintillation crystal 31 to the detector 32, and improving the photoelectric conversion efficiency.
  • each group of radiation detection components 3 is isolated by a metal piece 4.
  • the metal piece 4 can prevent the radiation emitted by the radiation detection assembly 3 from being detected by other radiation detection assemblies 3 before passing through the fluid pipeline, reducing mutual interference.
  • the material of the metal piece 4 is a tungsten-based alloy, and the tungsten-based alloy is a high-density metal, which has a better protection effect and a better blocking effect on ⁇ -rays to prevent the detectors 32 from interfering with each other.
  • the material of the metal piece 4 can also be lead, which is a traditional insulating metal and has a low price.
  • the support frame 1 is designed as a cylinder, and the cylindrical pipe through-hole 2 also fits exactly with the cylindrical pipe, so that the scintillation crystal 31 is closely attached to the pipe, and the radiation and detection effects are better.
  • a cable trough 5 is provided on the top of the support frame 1 to lead out the power cord of the detector 32.
  • this embodiment is installed on the outer surface of the fluid pipe, and the scintillation crystal 31 is aligned with the fluid pipe for detection.
  • the decay of the scintillation crystal 31 generates beta rays, which are detected by the detector 32 next to the scintillation crystal 31; at the same time, the ⁇ rays generated by the decay of the beta rays pass through the fluid pipeline and are detected by the detection device on the other side of the pipeline.
  • the scintillation crystal 31 converts the rays into photons, and the photomultiplier tube 21 converts the optical signal into an electrical signal.
  • the module circuit amplifies and reduces the electrical signal and outputs it.
  • An oscilloscope observes or converts the signal.
  • the collected waveforms are stored and analyzed, and the phase fraction of the fluid is calculated.
  • the intrinsic ray of the scintillation crystal 31 is used for full-section measurement, which not only can eliminate the radiation source in the ray measurement device in the prior art, reduce the cost of the system, and greatly improve the safety and reliability of the system; at the same time, Since the half-life of Lu-176 is 2.1 ⁇ 10 10 years, the performance of the equipment will not be reduced due to the aging of the radiation device, which greatly improves the stability and service life of the system.
  • This embodiment differs from Embodiment 1 in that the flake-shaped scintillation crystal is replaced with a plastic scintillation crystal.
  • the plastic scintillation crystal LYSO Due to the low content of Lu-176 in the flake-shaped scintillation crystal LSO, the number of emitted rays of the system is low, which affects the detection efficiency.
  • the plastic scintillation crystal LYSO has better light amplification performance, short light extraction time, faster amplification, easier detection, and higher detection efficiency; at the same time, the plastic scintillation crystal LYSO is not easy to deliquesce and has a longer service life.
  • Embodiment 1 differs from Embodiment 1 in that the photomultiplier tube is replaced with a semiconductor silicon detector 32.
  • the semiconductor silicon detector (SiPM) is a new type of detector. After the photons are absorbed, a current is generated and multiplied in the SiPM, which can output a larger current signal and be received by the module circuit. The detection efficiency of gamma rays is higher and the volume is smaller.
  • this embodiment differs from Embodiment 1 in that the radiation detection assembly 3 is distributed in four layers along the direction of the pipe through hole 2. Each layer of the ray detection assembly 3 performs full-section measurement on the fluid in the pipeline, and the detection effect is more accurate.
  • This embodiment is the measurement method of the multi-phase flow mass measurement device described in the above embodiment. As shown in FIG. 5, the measurement device is installed in conjunction with a differential pressure type flow meter 6, which has a throat section 61, The metering device is installed outside the throat section 61.
  • the basic principle of the differential pressure type flowmeter 6 is: a throttling device such as a venturi, orifice or nozzle is placed in a fluid-filled round tube, and the smallest diameter is called a throat. When the fluid flows through the throttling device At this time, there will be a static pressure difference between the upstream and the throat. There is a fixed functional relationship between the static pressure difference and the flow rate. As long as the static pressure difference is measured, the flow rate can be obtained from the flow formula.
  • the metering device is installed so that the gamma rays emitted by the scintillation crystal 31 pass through the throat section 61 in the diameter direction and are received by the detector 32 on the other side. Since the energy spectrum of Lu-176 is known, ⁇ -rays will be generated during the decay process. This ⁇ -ray decay will generate three levels of ⁇ -rays, namely 307keV, 202keV, and 88keV. Therefore, it is not necessary to use a constant temperature device in this embodiment.
  • the differential pressure type flowmeter 6 further includes a temperature and pressure sensor 7 for measuring the temperature and pressure of the fluid and a differential pressure sensor 8 for measuring the pressure difference between the inlet 62 of the differential pressure type flowmeter 6 and the throat section 61.
  • the differential pressure flowmeter 6 uses a Venturi flowmeter.
  • the temperature T of the fluid is measured by the temperature and pressure sensor 7, and the pressure difference ⁇ P between the inlet 62 of the differential pressure type flow meter 6 and the throat section 61 is measured by the differential pressure sensor 8; the transmission intensity of three gamma rays is measured by the metering device Nx 1 , Nx 2 and Nx 3 ;
  • C is the outflow coefficient of the throttle type flowmeter
  • is the fluid compression correction factor
  • is the diameter ratio of the throttle type flowmeter
  • D is the thickness measured by the gamma ray, which is the pipe diameter
  • ⁇ P is the differential pressure, which is the measurement value.
  • ⁇ mix is the average areal density of the fluid in the measurement cross section, in this embodiment,
  • ⁇ liquid is the phase fraction of the two-phase fluid
  • D is the distance between the two farthest scintillation crystals 31 (if the pipe is cylindrical, D is the diameter)
  • ⁇ i is measured for each scintillation crystal 31
  • Xi is the distance between the scintillation crystal 31 emitting gamma rays and the scintillation crystal 31 receiving gamma rays.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种基于射线符合测量的多相流量质量计量装置,射线探测装置包括支撑架(1),支撑架(1)中心设有供流体管道通过的管道通孔(2),管道通孔(2)的外壁上设有若干射线探测组件(3),射线探测组件(3)沿垂直于管道通孔(2)的周向分布;射线探测组件(3)包括闪烁晶体(31)和探测器(32),闪烁晶体(31)位于管道通孔(2)的外壁与探测器(32)之间。多相流量质量计量装置利用闪烁晶体(31)的本征射线进行全截面测量,不但能够取消现有技术射线测量装置中的放射源,降低系统的成本,减小设备的体积,极大的提高系统的安全性和可靠性。同时,由于Lu-176的半衰期为2.1×10 10年,设备不会由于放射装置老化而产生性能下降,极大的提高了系统的稳定性和使用寿命。

Description

一种基于射线符合测量的多相流量质量计量装置 技术领域
本发明涉及多相流体领域,更具体地说,它涉及一种基于射线符合测量的多相流量质量计量装置。
背景技术
相的概念通常是指某一系统中具有相同成分及相同物理、化学性质的均匀物质部分,各相之间有明显可分的界面。多相流体是工业生产中经常遇到的一种流体形态,它是由两种或两种以上具有明显界面的物相组成的,包括气/液、液/固、气/固、液/液两相流,以及气/液/液、气/液/固多相流等。在工业过程、生命科学、自然界等各个领域存在着大量的两相流及多相流测量问题。例如火力发电设备煤粉传输过程和粮食加工气力输送装置中的气固两相流,工业锅炉系统和油井生产过程中的气液两相流,海洋石油工业中泥沙抽取和造纸工业中纸浆流动过程中的液固两相流,另外还有石油生产中输油管道内的水与石油的液液两相流,以及冶金或化工工程中两种物质输送过程中的各种两相流体等。
这些两相流看似简单,其运动规律非常复杂,如何准确及时的了解两相流体的各种运动参数,对工业设备的设计、原材料的准确计量、生产安全性和高效性的控制等具有十分重要的现实意义。如火力发电厂中喷燃器将煤粉和空气同时喷入炉膛内进行燃烧,煤粉和空气的比例直接决定煤的发电效率;油田采油装置将原油与天然气一起被抽取到输油管道中,对含油量和含气量的测量对指导石油生产和油气藏管理具有重要的意义;化工和冶金工业中对原料的输送和配比也需要准确的测量,对节约生产和安全生产都非常重要。
由于两相流动或多相流动与单相流动相比不仅流动特性复杂,其相间存在着界面效应和相对速度,且多在相流体中存在许多需要检测的分布参数,因此增加了参数检测的难度。传统的多相流参数检测主要采用相分离法和人工化验法。相分离法需要用到大型分离设备,通过一段时间静置后,主要依靠重力作用将多相流体分离成单相流体,然后再用单相流流量计进行测量。相分离法简单可靠、测量结果不受流型变化等因素影响,但所需的分离设备体积庞大、系统造价较高,不能进行实时在线检测。人工化验法则由于取样是对局部点进行采样,以局部点的信息来替代整个流体流动的形态,具有很大的随机性,不能准确反映流体的分相流量。
将射线技术应用于工业两相流检测的主要目的是测量两相流的分相含率,并进行流型识别。利用射线衰减原理对多相管流相含率和流型进行检测,不需要破坏管道结构,属于 非侵入式无损测量技术。其基本原理是通过探测器阵列接收透射两相管流的射线,得到一系列的衰减数据(投影),对这些数据进行去噪、校正后进行图像重建,即可得到两相管流射线透射截面的二维断层图像。因此,该方案具有测量准确性高,成像分辨率好,结构简单,适用性广等优点。但是传统利用射线技术进行工业成像过程中,都必须需要一个能够产生一定放射量的放射装置,如X射线管、Cs-137放射源等。由于该放射装置的存在,必须对相关的检测设备进行一定的防护和监管,以避免意外事故的发生。因此,基于射线技术的成像设备在推广和应用过程中都存在很多不便之处。
如公告号为CN102565844B的中国专利,公开了一种多相流的正电子断层成像装置及方法,该装置利用正负电子湮灭产生一对可符合的511keV能量的伽马射线为断层成像手段、为油田输油管线中的多相流计量提供在线的断层成像功能。该装置包括有特定空间结构排列的多组平行的高精度的伽马射线探测器阵列、正电子放射源及屏蔽器,并且结合图像处理的功能可以只在单一放射源的条件下获取气、液、固等多相流混合物的相分率。多组高精度的探测器阵列设计也大大提高了多相流计量的精度及其在多相流不同流型流态下的适用性。它所产生的流体的影像信息将极大丰富石油天然气工业对于石油天然气的计量信息并为更有效的油藏管理和生产优化提供基础数据。
上述专利中,对正电子放射源的设计比较复杂,而且需要进行一定的防护和监管,设备体积较大,成本较高;而且正电子放射源的衰减期较短,容易老化,需要频繁更换,以保证性能稳定。
另外,γ射线接收器一般采用光电倍增管计数器作为检测γ射线透射强度的计数器,但这些计数器都存在不同程度的温度漂移现象,即测量到的γ射线透射强度信号,会随着计数器本身的温度变化而发生漂移,致使透射强度信号测量出现误差。目前在技术上,为了消除此温度漂移现象,采用γ射线探测技术的湿气量计都需要设置用于γ射线接收器保持恒温的恒温装置。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种基于射线符合测量的多相流量质量计量装置,通过闪烁晶体本征辐射的射线探测技术,能够取消现有技术射线测量装置中的放射源,降低系统的成本,极大的提高系统的安全性和可靠性。
为实现上述目的,本发明提供了如下技术方案:一种基于射线符合测量的多相流量质量计量装置,包括支撑架,所述支撑架中心设有供流体管道通过的管道通孔,所述管道通孔的外壁上设有若干射线探测组件,射线探测组件沿垂直于管道通孔的周向分布;所述射线 探测组件包括闪烁晶体和探测器,闪烁晶体位于管道通孔的外壁与探测器之间。
闪烁晶体作为射线探测技术中经常使用的一种材料,其能够将高能的γ射线转换为低能的荧光,然后在被光电转换器件探测从而转换为电信号。目前,常用的闪烁晶体包含了碘化钠NaI、硅酸镥LSO等。因此,可以利用该原理,结合高精度的时间测量技术和符合探测技术,得到γ射线的飞行路径,即响应线。通过大量的响应线,就可以利用相应的测量技术和计算方法如滤波反投影技术、有序子集最大期望值方法等,实现对被检测物体的全截面测量。利用闪烁晶体的本征射线进行全截面测量,能够取消射线测量装置中的放射源,降低系统的成本,体积小,极大的提高系统的安全性和可靠性。
优选的,所述的闪烁晶体为含有镥-176元素的闪烁晶体。
镥元素闪烁晶体中含有Lu-176放射性同位素,其衰变过程中会放射出β射线,β射线迅速衰变产生γ射线。由于Lu-176的能谱已知,衰变过程中会产生β射线,该β射线衰变则会产生三个能级的γ射线,分别为307keV、202keV、88keV。由于β射线穿透能力极弱,能够在其发生地就被探测到,而γ射线具有比较强的穿透能力,能够穿透被测流体后被探测。因此,可以利用该原理,将β射线探测的位置作为γ射线的出发点,对应γ射线穿过被测流体管道后,被位于管道对应位置的探测器探测到,作为射线的达到点,从而得到γ射线的飞行路径。同时,由于Lu-176的半衰期为2.1×10 10年,设备不会由于放射装置老化而产生性能下降,极大的提高了系统的稳定性和使用寿命。
优选的,所述的闪烁晶体为薄片状闪烁晶体或塑料闪烁晶体。
薄片状闪烁晶体LSO,体积小,成本低,性能稳定。但是薄片状闪烁晶体LSO中Lu-176含量较少,使得系统的发射射线数量偏低,可能会影响探测效率。
塑料闪烁晶体LYSO的光放大性能更好,出光时间短,放大更快,更容易被检测到,探测效率更高;同时塑料闪烁晶体LYSO不易潮解,使用寿命更长。
优选的,所述的探测器为光电倍增管或半导体硅探测器。
光电倍增管(PMT)是作为传统的光电转换装置,具有极高灵敏度和超快时间响应,能快速有效的将射线的光信号转换为电信号;配合模块电路,对信号进行放大、降噪,并将信号脉冲输出,由示波器对信号进行观察,最后由上位机对采集的波形数据进行储存和分析。
半导体硅探测器(SiPM)是新型的探测器,光子被吸收后在SiPM中产生电流并进行倍增,可以输出较大的电流信号,被模块电路接收。对γ射线的探测效率更高,且体积更小。
优选的,所述的闪烁晶体与探测器之间通过耦合剂固定。
闪烁晶体是高密度晶体,探测器的表面有一层环氧树脂,当光从闪烁晶体射向探测器时,是由光由光密介质射向光疏介质,若两者之间有空气,容易发生全反射,造成光损失。光学耦合剂是一些折射系数较大的透明介质,特别是光耦,把耦合剂置于闪烁晶体与探测器之间,就能有效的排除空气,显著减少由全反射造成的光损失。耦合剂可以采用硅胶,将闪烁晶体与探测器粘合,有效减少光从闪烁晶体到探测器的损耗,提高光电转换效率。
优选的,所述的每组射线探测组件之间通过金属件隔绝。
通过上述技术方案,金属件可以防止射线探测组件放射的射线在穿过流体管道之前被其他射线探测组件探测到,减小互相干扰。
优选的,所述金属件的材料为钨基合金。
钨基合金为高密度金属,防护效果更好,同时对γ射线的阻挡效果更佳,防止探测器互相干扰。
优选的,所述的射线探测组件沿管道通孔方向分布有多层。
每层射线探测组件对管道中的流体进行全截面测量,检测效果更加准确。
综上所述,本发明具有以下有益效果:
1.利用闪烁晶体的本征射线进行全截面测量,不但能够取消现有技术射线测量装置中的放射源,降低系统的成本,减小设备的体积,极大的提高系统的安全性和可靠性。同时,由于Lu-176的半衰期为2.1×10 10年,设备不会由于放射装置老化而产生性能下降,极大的提高了系统的稳定性和使用寿命。
2.采用能天然发出三种能量γ射线的镥元素闪烁晶体,由于其天然发出的三种能量的γ射线之间的强度比值是固有且恒定的,非人力所能改变,且不受任何外在温度、压力变化的影响,这给本发明流量公式的求解带来极大的便利和简化;而且可以去除用于使γ射线接收器保持恒定温度的恒温装置,大大简化了测量装置的结构,也使得本发明的测量装置能够方便可靠地长期在水下环境工作,无需担心更换恒温装置电源和维护恒温装置的困扰;从根本上消除了γ射线测量系统中温度漂移的影响,因此测量结果更加准确且精度更高。
附图说明
图1为实施例1的立体结构示意图。
图2为实施例1横截面的结构示意图。
图3为实施例1的原理图。
图4为实施例4纵截面的结构示意图。
图5为实施例5的结构示意图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例1:
参见图1-2,本实施例包括支撑架1,所述支撑架1中心设有供流体管道通过的管道通孔2,所述管道通孔2的外壁上设有若干射线探测组件,射线探测组件3沿垂直于管道通孔2的周向分布;所述射线探测组件3包括闪烁晶体31和探测器32,闪烁晶体31位于管道通孔2的外壁与探测器32之间,闪烁晶体31的一侧抵接于管道通孔2的外壁,另一侧紧贴与探测器32。
闪烁晶体31作为射线探测技术中经常使用的一种材料,其能够将高能的γ射线转换为低能的荧光,然后在被光电转换器件探测从而转换为电信号。目前,常用的闪烁晶体31包含了碘化钠NaI、硅酸镥LSO等。因此,可以利用该原理,结合高精度的时间测量技术和符合探测技术,得到γ射线的飞行路径,即响应线。通过大量的响应线,就可以利用相应的测量技术和计算方法如滤波反投影技术、有序子集最大期望值方法等,实现对被检测物体的全截面测量。利用闪烁晶体31的本征射线进行全截面测量,能够取消射线测量装置中的放射源,降低系统的成本,体积小,极大的提高系统的安全性和可靠性。
使用时,将本实施例安装在工业流体管道的外表面,管道穿过管道通孔2,射线探测组件3对管道中的流体进行全截面测量和检测。
本实施例中,闪烁晶体31为含有镥-176元素的闪烁晶体。
镥元素闪烁晶体中含有Lu-176放射性同位素,其衰变过程中会放射出β射线,β射线迅速衰变产生γ射线。由于Lu-176的能谱已知,衰变过程中会产生β射线,该β射线衰变则会产生三个能级的γ射线,分别为307keV、202keV、88keV。由于β射线穿透能力极弱(1微米),能够在其发生地就被探测到,而γ射线具有比较强的穿透能力,能够穿透被测流体后探测到。因此,可以利用该原理,将β射线探测的位置作为γ射线的出发点,对应γ射线穿过被测流体管道后,被位于管道对应位置的探测器32探测到,作为射线的达到点,从而得到γ射线的飞行路径。同时,由于Lu-176的半衰期为2.1×10 10年,设备不会由于放射装置老化而产生性能下降,极大的提高了系统的稳定性和使用寿命。
本实施例中,闪烁晶体31为薄片状闪烁晶体。薄片状闪烁晶体LSO,体积小,成本低,性能稳定。
本实施例中,所述的探测器32为光电倍增管。
光电倍增管(PMT)是作为传统的光电转换装置,具有极高灵敏度和超快时间响应, 能快速有效的将射线的光信号转换为电信号;配合模块电路,对信号进行放大、降噪,并将信号脉冲输出,由示波器对信号进行观察,最后由上位机对采集的波形数据进行储存和分析。
如图3所示,模块电路包括电源电路、信号电路,电源电路是为光电倍增管以及信号电路提供电源,一般只需合理范围的直流电即可,可以采用AC-DC的电源适配器供电,也可直接采用电池供电。信号电路主要是处理由光电倍增管输出的脉冲信号,由于从光电倍增管输出的信号幅度非常小,所以一般需要对信号进行放大、降噪等处理。
由于电源电路、信号电路都是一些常规的设计电路,本领域技术人员可以根据实际需求采用,本实施例不再公开具体电路图。
闪烁晶体31一般是高密度晶体,探测器32的表面有一层环氧树脂,当光从闪烁晶体31射向探测器32时,是由光由光密介质射向光疏介质,若两者之间有空气,容易发生全反射,造成光损失。光学耦合剂是一些折射系数较大的透明介质,特别是光耦,把耦合剂置于闪烁晶体31与探测器32之间,就能有效的排除空气,显著减少由全反射造成的光损失。
因此,本实施例中,闪烁晶体31与探测器32之间通过耦合剂固定。耦合剂可以采用硅胶,将闪烁晶体31与探测器32粘合,有效减少光从闪烁晶体31到探测器32的损耗,提高光电转换效率。
本实施例中,每组射线探测组件3之间通过金属件4隔绝。
金属件4可以防止射线探测组件3放射的射线在穿过流体管道之前被其他射线探测组件3探测到,减小互相干扰。金属件4的材料为钨基合金,钨基合金为高密度金属,防护效果更好,同时对γ射线的阻挡效果更佳,防止探测器32互相干扰。
金属件4的材料也可以用铅,作为传统的隔绝金属,价格便宜。
本实施例中,配合管道的形状,支撑架1设计成圆柱体,圆柱形的管道通孔2也恰好配合圆柱形的管道,使闪烁晶体31紧贴管道,放射及探测效果更好。支撑架1的顶部设有走线槽5,可以引出探测器32的电源线。
本实施例的工作原理:将本实施例安装在流体管道外表面,闪烁晶体31对准流体管道进行探测。闪烁晶体31衰变产生β射线,被紧邻闪烁晶体31的探测器32探测到;同时,β射线衰变产生的γ射线穿过流体管道并被管道另一侧的探测装置探测到。
闪烁晶体31将射线转化为光子,光电倍增管21将光信号转换为电信号,模块电路对电信号进行放大、降噪等处理后输出,有示波器对信号进行观察或转换,最后由上位机对采集的波形进行储存和分析,对流体的相分率进行计算。
本实施例利用闪烁晶体31的本征射线进行全截面测量,不但能够取消现有技术中射 线测量装置中的放射源,降低系统的成本,极大的提高系统的安全性和可靠性;同时,由于Lu-176的半衰期为2.1×10 10年,设备不会由于放射装置老化而产生性能下降,极大的提高了系统的稳定性和使用寿命。
实施例2:
本实施例与实施例1的不同之处在于,将薄片状闪烁晶体替换为塑料闪烁晶体。
由于薄片状闪烁晶体LSO中Lu-176含量较少,使得系统的发射射线数量偏低,影响探测效率。而塑料闪烁晶体LYSO的光放大性能更好,出光时间短,放大更快,更容易被检测到,探测效率更高;同时塑料闪烁晶体LYSO不易潮解,使用寿命更长。
实施例3:
本实施例与实施例1的不同之处在于,将光电倍增管替换为半导体硅探测器32。
半导体硅探测器(SiPM)是新型的探测器,光子被吸收后在SiPM中产生电流并进行倍增,可以输出较大的电流信号,被模块电路接收。对γ射线的探测效率更高,且体积更小。
实施例4:
如图4所示,本实施例与实施例1的不同之处在于,射线探测组件3沿管道通孔2方向分布有四层。每层射线探测组件3对管道中的流体进行全截面测量,检测效果更加准确。
实施例5:
本实施例为上述实施例所述多相流量质量计量装置的测量方法,如图5所示,所述计量装置配合差压型流量计6安装,差压型流量计6具有喉部段61,计量装置安装于喉部段61外侧。
差压型流量计6的基本原理是:在充满流体的圆管中设置文丘里、孔板或喷嘴之类的节流器件,将其直径最小处称为喉部,当流体流经节流器件时,在其上游与喉部之间就会产生静压力差,该静压力差与流过的流量之间有一个固定的函数关系,只要测得静压力差就可以由流量公式求得流量。
计量装置的安装使得闪烁晶体31放射的γ射线沿直径方向穿过所述喉部段61并被另一侧的探测器32接收。由于Lu-176的能谱已知,衰变过程中会产生β射线,该β射线衰变则会产生三个能级的γ射线,分别为307keV、202keV、88keV。因此本实施例不必使用恒温装置。
差压型流量计6上还包括用于测量流体温度和压力的温压传感器7和用于测量差压型流量计6入口处62与喉部段61之间的压差的差压传感器8。
本实施例中,差压型流量计6采用文丘里流量计。
本实施例对工业流体流量的测量步骤如下:
1)通过温压传感器7测量流体温度T,通过差压传感器8测量差压型流量计6入口处62与喉部段61之间的压差ΔP;通过计量装置测量三个γ射线的透射强度Nx 1、Nx 2和Nx 3
2)通过以下公式来计算流体总质量流量和气、液两相各自的质量流量:
总质量流量:
Figure PCTCN2019080006-appb-000001
其中,C为节流型流量计流出系数;ε为流体压缩修正因子;β为节流型流量计直径比;D为伽马射线测量的厚度,即为管道直径;ΔP为差压,为测量值。
ρmix为流体在测量横截面上的平均面密度,本实施例中,
ρ mix=ρ η (1-η )
液质量流量:Q =Q mη
气质量流量:Q =Q m(1-η )
η =∑(Xi/D*ηi)/∑(Xi/D)
η 为该两相流体的相分率,D为相隔最远的两个闪烁晶体31之间的距离(如果管道为圆柱形,则D为直径),ηi为每个闪烁晶体31测得的两相流体中液体的百分比含量,Xi为发射γ射线的闪烁晶体31到接收γ射线的闪烁晶体31之间的距离。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (8)

  1. 一种基于射线符合测量的多相流量质量计量装置,其特征在于:包括支撑架(1),所述支撑架(1)中心设有供流体管道通过的管道通孔(2),所述管道通孔(2)的外壁上设有若干射线探测组件(3),所述射线探测组件(3)安装在支撑架(1)上并沿垂直于管道通孔(2)的周向分布;所述射线探测组件(3)包括闪烁晶体(31)和探测器(32),闪烁晶体(31)位于管道通孔(2)的外壁与探测器(32)之间。
  2. 根据权利要求1所述的一种基于射线符合测量的多相流量质量计量装置,其特征在于:所述的闪烁晶体(31)为含有镥-176元素的闪烁晶体。
  3. 根据权利要求1或2所述的一种基于射线符合测量的多相流量质量计量装置,其特征在于:所述的闪烁晶体(31)为薄片状闪烁晶体或塑料闪烁晶体。
  4. 根据权利要求1或2所述的一种基于射线符合测量的多相流量质量计量装置,其特征在于:所述的探测器(32)为光电倍增管或半导体硅探测器。
  5. 根据权利要求1所述的一种基于射线符合测量的多相流量质量计量装置,其特征在于:所述的闪烁晶体(31)与探测器(32)之间通过耦合剂固定。
  6. 根据权利要求1所述的一种基于射线符合测量的多相流量质量计量装置,其特征在于:所述的每组射线探测组件(3)之间通过金属件(4)隔绝。
  7. 根据权利要求6所述的一种基于射线符合测量的多相流量质量计量装置,其特征在于:所述金属件(4)的材料为钨基合金。
  8. 根据权利要求1、2、5-7所述的一种基于射线符合测量的多相流量质量计量装置,其特征在于:所述的射线探测组件(3)沿管道通孔(2)方向分布有多层。
PCT/CN2019/080006 2018-12-29 2019-03-28 一种基于射线符合测量的多相流量质量计量装置 WO2020133768A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/361,432 US20210325220A1 (en) 2018-12-29 2021-06-29 Device for measuring mass flow rate of multiphase flow based on ray coincidence measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811639597.9 2018-12-29
CN201811639597.9A CN109489752A (zh) 2018-12-29 2018-12-29 一种基于射线符合测量的多相流量质量计量装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/361,432 Continuation-In-Part US20210325220A1 (en) 2018-12-29 2021-06-29 Device for measuring mass flow rate of multiphase flow based on ray coincidence measurement

Publications (1)

Publication Number Publication Date
WO2020133768A1 true WO2020133768A1 (zh) 2020-07-02

Family

ID=65713577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080006 WO2020133768A1 (zh) 2018-12-29 2019-03-28 一种基于射线符合测量的多相流量质量计量装置

Country Status (3)

Country Link
US (1) US20210325220A1 (zh)
CN (1) CN109489752A (zh)
WO (1) WO2020133768A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489752A (zh) * 2018-12-29 2019-03-19 无锡洋湃科技有限公司 一种基于射线符合测量的多相流量质量计量装置
JP2022041156A (ja) * 2020-08-31 2022-03-11 セイコーエプソン株式会社 繊維体堆積装置および推定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292174A (zh) * 2005-10-17 2008-10-22 皇家飞利浦电子股份有限公司 使用镥本底辐射的pmt增益和能量校准
CN102087298A (zh) * 2011-01-25 2011-06-08 兰州海默科技股份有限公司 伽马射线截面成像装置、多相流流量测量装置及测量方法
JP2012058154A (ja) * 2010-09-10 2012-03-22 Tokuyama Corp 放射線画像検出器
CN105769230A (zh) * 2016-02-03 2016-07-20 上海联影医疗科技有限公司 探测器模块及医学成像装置
CN106950587A (zh) * 2017-05-17 2017-07-14 孙红岩 一种带有有效光导的闪烁晶体探测器
CN109489752A (zh) * 2018-12-29 2019-03-19 无锡洋湃科技有限公司 一种基于射线符合测量的多相流量质量计量装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472649A (zh) * 2009-07-07 2012-05-23 西门子公司 用于测量多相流体流的设备和方法
CN102565844B (zh) * 2010-12-29 2016-02-10 兰州海默科技股份有限公司 多相流的正电子断层成像装置及方法
CN202093040U (zh) * 2011-01-25 2011-12-28 兰州海默科技股份有限公司 伽马射线截面成像装置、多相流流量测量装置
EP2927650A1 (en) * 2014-04-04 2015-10-07 Services Pétroliers Schlumberger Fluid analysis using electron-positron annihilation
CN209247091U (zh) * 2018-12-29 2019-08-13 无锡洋湃科技有限公司 基于射线符合测量的多相流量质量计量装置
CN109507715B (zh) * 2018-12-29 2023-11-24 无锡洋湃科技有限公司 基于射线符合测量的多相流全截面相分率测量装置及方法
CN209166558U (zh) * 2018-12-29 2019-07-26 无锡洋湃科技有限公司 全截面测量多相流中气、液、固质量流量计量装置
CN109443466A (zh) * 2018-12-29 2019-03-08 无锡洋湃科技有限公司 全截面测量多相流中气、液、固质量流量计量装置及方法
EP3896494A1 (en) * 2020-04-17 2021-10-20 Terapet SA Gamma ray detection system and calibration method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292174A (zh) * 2005-10-17 2008-10-22 皇家飞利浦电子股份有限公司 使用镥本底辐射的pmt增益和能量校准
JP2012058154A (ja) * 2010-09-10 2012-03-22 Tokuyama Corp 放射線画像検出器
CN102087298A (zh) * 2011-01-25 2011-06-08 兰州海默科技股份有限公司 伽马射线截面成像装置、多相流流量测量装置及测量方法
CN105769230A (zh) * 2016-02-03 2016-07-20 上海联影医疗科技有限公司 探测器模块及医学成像装置
CN106950587A (zh) * 2017-05-17 2017-07-14 孙红岩 一种带有有效光导的闪烁晶体探测器
CN109489752A (zh) * 2018-12-29 2019-03-19 无锡洋湃科技有限公司 一种基于射线符合测量的多相流量质量计量装置

Also Published As

Publication number Publication date
CN109489752A (zh) 2019-03-19
US20210325220A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020133769A1 (zh) 全截面测量多相流中气、液、固质量流量计量装置及方法
RU2533758C2 (ru) Устройство и способ для измерения многофазного потока флюида
CN103687928B (zh) 包含稀土卤化物的闪烁晶体以及包括该闪烁晶体的辐射检测系统
CN104067112A (zh) 扫描方法和扫描设备
US20210325220A1 (en) Device for measuring mass flow rate of multiphase flow based on ray coincidence measurement
CN205067759U (zh) 一种应用于放射源定位的多晶体耦合γ射线方向探测器
CN108267186A (zh) 一种采用正电子湮灭技术测量管道流量的方法
US11808719B2 (en) Device and method for measuring total cross-sectional phase fraction of multiphase flow based on ray coincidence measurement
CN103245680A (zh) 基于飞行时间法的快中子成像方法及系统
CN102565844B (zh) 多相流的正电子断层成像装置及方法
CN209166558U (zh) 全截面测量多相流中气、液、固质量流量计量装置
CN110595551A (zh) 光量子探测系统及其计算方法以及采用该系统的光量子多相双向流量计
CN104849742B (zh) α与β的粒子活度探测装置
CN209247091U (zh) 基于射线符合测量的多相流量质量计量装置
Shohani et al. A new method of gamma level gauge using a position-sensitive sensor with rod plastic scintillator
WO2017206199A1 (zh) 一种测量湿气中气油水三相质量流量的测量装置及测量方法
Kawano et al. Tritium water monitoring system based on CaF2 flow-cell detector
CN210400476U (zh) 光量子探测系统以及光量子多相双向流量计
CN202092697U (zh) 多相流的正电子断层成像装置
CN209765061U (zh) 基于射线符合测量的多相流全截面相分率测量装置
CN202256201U (zh) 一种气力输送管道中煤粉浓度及相分布实时测量装置
CN108918372B (zh) 基于正电子湮没技术的液体杂质浓度检测装置和方法
CN109782016B (zh) 一种基于正电子技术及涡街现象的液体流速检测装置及检测方法
Chaiphaksa et al. Non-proportionality and Photon Interaction Study of CLYC Scintillation Material by Compton Scattering Technique
CN201622092U (zh) 三相流量测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901893

Country of ref document: EP

Kind code of ref document: A1