WO2020133265A1 - Parameter acquiring and tracking system for spatial motion of bearing movable component, parameter acquiring and tracking method for spatial motion of bearing movable component, and bearing - Google Patents

Parameter acquiring and tracking system for spatial motion of bearing movable component, parameter acquiring and tracking method for spatial motion of bearing movable component, and bearing Download PDF

Info

Publication number
WO2020133265A1
WO2020133265A1 PCT/CN2018/125037 CN2018125037W WO2020133265A1 WO 2020133265 A1 WO2020133265 A1 WO 2020133265A1 CN 2018125037 W CN2018125037 W CN 2018125037W WO 2020133265 A1 WO2020133265 A1 WO 2020133265A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
bearing
module
spatial
spatial motion
Prior art date
Application number
PCT/CN2018/125037
Other languages
French (fr)
Chinese (zh)
Inventor
黄运生
马子魁
姜绍娜
Original Assignee
舍弗勒技术股份两合公司
黄运生
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 黄运生 filed Critical 舍弗勒技术股份两合公司
Priority to CN201880097264.XA priority Critical patent/CN112654797B/en
Priority to PCT/CN2018/125037 priority patent/WO2020133265A1/en
Publication of WO2020133265A1 publication Critical patent/WO2020133265A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed

Definitions

  • the present invention relates to a field of parameter acquisition and tracking based on micro-electromechanical sensors for spatial motion of bearing movable parts, and more particularly to a parameter acquisition and tracking system for spatial movement of bearing movable parts, and for bearing movable parts
  • the parameter collection and tracking method of space motion and bearing is a field of parameter acquisition and tracking based on micro-electromechanical sensors for spatial motion of bearing movable parts, and more particularly to a parameter acquisition and tracking system for spatial movement of bearing movable parts, and for bearing movable parts.
  • An object of the present invention is to provide a parameter collection and tracking system for the spatial motion of a bearing movable component, which can collect spatial motion parameters of at least one predetermined position of a bearing movable component in real time and send the spatial motion parameters Go to the designated device for processing.
  • Another object of the present invention is to provide a parameter collection and tracking method for the spatial movement of a bearing movable member and a bearing using the above technology.
  • the present invention adopts the following technical solutions.
  • the present invention provides a parameter collection and tracking system for the spatial movement of a bearing movable component as follows, including: a parameter collection module attached to the bearing movable component and used to collect the bearing Spatial motion parameters of at least one predetermined position of the movable part; and a parameter sending module, the parameter sending module is in data communication with the parameter collecting module for transmitting the spatial motion parameters collected by the parameter collecting module and/or Or used to store the spatial motion parameters.
  • the parameter acquisition module includes at least one parameter acquisition and sensing unit based on a micro-electromechanical system.
  • each of the parameter collection and sensing units is used to collect the spatial motion parameters of its location in real time.
  • the parameter collection and tracking system further includes a control module and a power supply module
  • the control module is in data communication with the parameter collection module and the parameter transmission module, and is used to implement the parameter collection module and the The operation of the parameter transmission module is controlled; and the power supply module is electrically connected to the parameter collection module, the parameter transmission module and the control module, so that the power supply module transmits the parameter collection module and the parameter The module and the control module are powered.
  • the parameter collection and tracking system further includes a parameter receiving module and a parameter processing module located outside the movable part of the bearing, the parameter receiving module is in data communication with the parameter transmitting module to receive the parameter transmission A signal of the module containing the spatial motion parameter, the parameter processing module is in data communication with the parameter receiving module for processing the signal received by the parameter receiving module.
  • the parameter processing module includes a signal amplifying unit for performing signal amplification on the signal and a signal filtering unit for performing signal filtering on the signal.
  • the present invention also provides a bearing including: a bearing movable component; at least one sensor, the at least one sensor is attached to the bearing movable component and is used to collect at least one predetermined position of the bearing movable component Spatial motion parameters; and a signal transmitter that is in data communication with the at least one sensor for transmitting the spatial motion parameters collected by the at least one sensor and/or for storing the spatial motion parameter.
  • the at least one sensor is a motion sensor based on a micro-electromechanical system.
  • each of the sensors is used to collect the spatial motion parameters of its location in real time.
  • the motion sensor includes at least one of an accelerometer, a gyroscope, and a geomagnetic field sensor.
  • the bearing further includes a central processor and a power supply
  • the central processor is in data communication with both the at least one sensor and the signal transmitter, and is used to implement the at least one sensor and the signal transmitter Control of the operation of the power supply
  • the power supply is used to electrically connect the at least one sensor, the signal transmitter, and the central processing unit, so that the power supply controls the at least one sensor, the signal transmitter, and the The central processor supplies power.
  • the at least one sensor, the signal transmitter, the central processor, and the power supply are attached to the bearing movable member in a manner that does not affect the normal movement of the bearing movable member.
  • the movable part of the bearing includes a rolling body and a cage of the bearing.
  • the rolling element is a roller
  • the roller includes an outer peripheral surface capable of contacting the raceway of the bearing and end surfaces located at both axial end portions of the roller, and the roller Mounting recesses are formed on the end surfaces of both axial end portions, and each of the mounting recesses accommodates and mounts one sensor.
  • the senor is provided at a first predetermined position at one axial end of the roller and at a second predetermined position at the other axial end of the roller, so that the sensor can collect the first The spatial motion parameter of the predetermined position and the spatial motion parameter of the second predetermined position.
  • the first predetermined position and the second predetermined position are located on the central axis of the roller and are arranged symmetrically with respect to the geometric center of the roller.
  • the rolling body is a ball, and an installation cavity is formed inside the ball, and the sensor is provided in the installation cavity, so that the sensor can collect spatial motion parameters of the geometric center of the ball.
  • the invention also provides a parameter collection and tracking method for spatial motion of a movable bearing component, which includes: collecting spatial motion parameters of at least one predetermined position of the movable bearing component; and transmitting and processing the spatial motion parameters and /Or temporarily store the spatial motion parameters for delayed transmission and processing.
  • the processing of the spatial motion parameter includes performing signal amplification and signal filtering on the signal containing the parameter and establishing a time-dependent parameter curve using the obtained parameter.
  • collecting spatial motion parameters of at least one predetermined position of the movable part of the bearing includes: when the movable part of the bearing is a roller, respectively collecting a first predetermined position of an axial end of the roller And the spatial motion parameter at the second predetermined position of the other axial end of the roller.
  • the spatial motion parameters include spatial position parameters
  • the first predetermined position and the second predetermined position are located on the central axis of the roller and are symmetrically arranged with respect to the geometric center when the predetermined time
  • the linear values of the spatial position parameters of the first predetermined position collected on the points on the three spatial coordinate axes are x1, y1, and z1, respectively, and the spatial position parameters of the second predetermined position collected on the three spatial coordinate axes
  • the linear values of the spatial position parameters of the geometric center of the roller on the three spatial coordinate axes are (x1+x2)/2, (y1+y2)/2 , (Z1+z2)/2.
  • the spatial motion parameter includes a spatial angle parameter
  • the first predetermined position and the second predetermined position are located on the central axis of the roller and are symmetrically arranged with respect to the geometric center, when at a predetermined time
  • the rotation angle values of the spatial angle parameters of the first predetermined position collected around the three spatial coordinate axes are ⁇ 1, ⁇ 1, ⁇ 1 and the spatial angle parameters of the second predetermined position collected around the three coordinate axes
  • the rotation angle values are ⁇ 2, ⁇ 2, and ⁇ 2
  • the rotation angle values of the spatial angle parameter of the geometric center of the roller around the three coordinate axes are ( ⁇ 1+ ⁇ 2)/2, ( ⁇ 1+ ⁇ 2)/2, ( ⁇ 1+ ⁇ 2)/2.
  • collecting spatial motion parameters of at least one predetermined position of the movable component of the bearing includes: collecting spatial motion parameters of at least one predetermined position of the movable component of the bearing in real time through a sensor based on a micro-electromechanical system.
  • the present invention provides a parameter acquisition and tracking system for the spatial movement of a bearing movable component, which includes a MEMS-based parameter acquisition module and a parameter transmission module attached to the bearing movable component .
  • the spatial motion parameters at the predetermined position of the movable part of the bearing can be collected in real time through the parameter collection module; on the other hand, the spatial motion parameters can be preferably sent to the designated device in real time through the parameter transmission module, and then the designated device Based on these spatial motion parameters, the spatial motion state of the bearing movable component is obtained, so that the motion characteristics of the bearing movable component can be summarized and analyzed.
  • the present invention also provides a parameter collection and tracking method for the spatial motion of the bearing movable component, which can track the spatial motion state of the bearing movable component by collecting the spatial motion parameters of the bearing movable component.
  • the present invention also provides a bearing using the above technology.
  • FIG. 1 shows a structural block diagram of a parameter acquisition and tracking system for spatial movement of a bearing movable component according to the present invention.
  • Figure 2a shows a schematic cross-sectional view of an example of a movable bearing member (cylindrical roller) using the system in Figure 1;
  • Figure 2b shows a cross-sectional perspective view of the cylindrical roller in Figure 2a;
  • Figure 2c shows An illustrative schematic diagram of acquiring the spatial position parameter and the spatial angle parameter around the centroid of the first predetermined position and the second predetermined position based on the cylindrical roller in FIG. 2a is shown.
  • 2d and 2e show explanatory diagrams of the inclination angle and the skew angle of the geometric center (center of mass) of the cylindrical roller in FIG. 2a.
  • FIG. 3 shows a schematic structural view of a tapered roller bearing using the cylindrical rollers in FIGS. 2a to 2c.
  • FIGS. 4a to 4c show graphs showing the time-dependent changes of three linear displacements, tilt angles, and skew angles based on simulation calculations of the geometric center of a cylindrical roller.
  • the parameter acquisition and tracking system for the spatial movement of a bearing movable part is used for a bearing movable part 1 such as a rolling element and a cage and includes a power supply module 11, a parameter acquisition module 12, The control module 13, the parameter sending module 14, the parameter receiving module 21 and the parameter processing module 22 (the last two constitute the base station 2).
  • the movable member 1 of the bearing may be a rolling body accommodated in a raceway between the outer ring and the inner ring of the bearing, and the rolling body may be a ball or a cylindrical roller 1a (as shown in FIGS. 2a to 2a). (Shown in FIG. 2c), tapered rollers, needle rollers, etc.; the movable member 1 of the bearing may be a cage that holds the rolling elements.
  • the power supply module 11 is attached to the bearing movable component 1 and the power supply module 11 is electrically connected to the parameter collection module 12, the control module 13, and the parameter transmission module 14, so that the power supply module 11 has 13 and the parameter sending module 14 supply power, so as to ensure the electric energy required for the parameter collection module 12, the control module 13 and the parameter sending module 14 to work normally.
  • the power supply module 11 is preferably a micro battery and adopts a wireless charging method. Since the service life of bearings is generally long, in order to meet the long-term normal operation of the entire system, a battery with higher performance is required. The power supply module 11 can also realize the automatic sleep and wake-up functions of the entire system, and automatically sleep when the bearing is detected to be at a standstill, which can reduce the overall power consumption of the system.
  • the parameter collection module 12 is a microelectromechanical system (MEMS)-based sensor for collecting spatial motion parameters of a predetermined position of the bearing movable member 1 in real time, so the size of the parameter collection module 12 can be very small.
  • the parameter collection module 12 is attached to the bearing movable component 1, preferably disposed inside the bearing movable component 1 and a parameter collection module 12 is used to collect spatial motion parameters of a predetermined position of the bearing movable component 1 in real time.
  • the parameter acquisition module 12 preferably includes a (three-axis) accelerometer, a (three-axis) gyroscope, and a (three-axis) geomagnetic field sensor.
  • the sensor selected here has high enough performance to achieve complete parameter measurement and signal acquisition, and It can resist aliasing and noise; and the sensor used here has low power consumption, which can ensure that the function continues to be effective before the bearing fails.
  • control module 13 is attached to the bearing movable member 1 and the control module 13 is in data communication with both the parameter acquisition module 12 and the parameter transmission module 14.
  • the control module 13 can control the parameter collection module 12 to realize real-time collection of spatial motion parameters, and the control module 13 can perform preliminary processing on these parameters.
  • the control module 13 can also control the parameter sending module 14 to transmit the collected spatial motion parameters to the parameter receiving module 21 in real time or temporarily store the collected spatial motion parameters for delayed transmission.
  • the parameter transmission module 14 is attached to the bearing movable member 1 and directly communicates with the control module 13, thereby achieving indirect data communication with the parameter acquisition module 12 for the parameter reception module 21 of the base station 2
  • the parameter sending module 14 uses existing wireless transmission technologies, such as Bluetooth, wifi, and so on.
  • the parameter sending module 14 can also be used as a parameter temporary storage to temporarily store the collected spatial motion parameters.
  • the base station 2 including the parameter receiving module 21 and the parameter processing module 22 in data communication with each other is located outside the bearing where the bearing movable member 1 is located.
  • the parameter receiving module 21 corresponds to the parameter sending module 14 to receive the parameter signal from the parameter sending module 14.
  • the parameter processing module 22 includes a module for modeling and analyzing parameters, and at least an amplifier and a filter. In this way, in addition to the necessary modeling and analysis of the parameter signal, the parameter processing module 22 can also perform other processing including amplification and filtering on the parameter signal received by the parameter receiving module 21.
  • the axial and radial directions refer to the axial and radial directions of the cylindrical roller, respectively; and one end of the axial direction refers to the left end portion in FIG. 2a, and the other axial end portion refers to Right end in Figure 2a.
  • the movable bearing member 1 of the spatial motion tracking system using a bearing rolling element is a cylindrical roller 1a.
  • the cylindrical roller 1a has a cylindrical shape as a whole and includes an outer peripheral surface in contact with the raceway of the bearing and end surfaces on both ends of the roller in the axial direction A (ie, both axial ends).
  • Mounting recesses 1c are formed on the end surfaces of the ends, and the power supply 11a, the central processing unit 13a, the sensor 12a, and the signal transmitter 14a are sequentially installed in the mounting recesses 1c.
  • the dimension of the mounting recess 1c in the radial direction R is smaller than the dimension of the corresponding end surface in the radial direction R, and the central axis of the mounting recess 1c is consistent with the central axis of the cylindrical roller 1a.
  • each mounting recess 1c toward the opening of the mounting recess 1c, a power supply 11a, a central processing unit 13a, a sensor 12a, and a signal transmitter 14a are provided in this order, so that the signal transmitter 14a does not exceed the signal transmitter 14a
  • the end face corresponding to the mounting recess 1c is provided so that the power supply 11a, the CPU 13a, the sensor 12a, and the signal generator 14a are attached to the cylindrical roller 1a in such a manner as not to affect the normal movement of the cylindrical roller 1a.
  • the tapered roller bearing using the cylindrical roller 1a includes an outer ring 2a and an inner ring 4a opposed to each other, and a raceway for accommodating the cylindrical roller 1a is formed between the outer ring 2a and the inner ring 4a.
  • a plurality of prior art cylindrical rollers and at least one cylindrical roller 1a of the present invention described above are held in a raceway by a cage 3a.
  • the spatial motion parameters of the at least one cylindrical roller 1a of the present invention can be collected in real time.
  • the spatial motion parameters include the parameters of 6 degrees of freedom in space (as shown in FIGS.
  • the parameter collection and tracking method based on the spatial motion of the cylindrical roller 1a includes the following processes:
  • the sensors 12a installed in the mounting recesses 1c at both ends of the axial direction of the cylindrical roller 1a respectively measure the spatial motion parameters of the first predetermined position P1 of the axial one end of the cylindrical roller 1a and the axial direction of the roller in real time
  • the spatial motion parameters are sent to the parameter receiving module 21 of the base station 2 through the signal transmitter 14a, and the parameter processing module 22 of the base station 2 uses the parameter signal received by the parameter receiving module 21 to track The spatial motion parameter of the geometric center of the roller at any moment.
  • the first predetermined position P1 and the second predetermined position P2 are generally points on each sensor 12a, preferably the geometric center of the sensor 12a. Further, the first predetermined position P1 and the second predetermined position P2 are arranged symmetrically with respect to the geometric center on the center axis of the roller. In this way, it is possible to conveniently calculate the spatial motion parameter at any time of the geometric center of the roller via the spatial motion parameter of the first predetermined position P1 and the spatial motion parameter of the second predetermined position P2 collected in real time. As mentioned above, taking the spatial position parameter and the spatial angle parameter around the geometric center (center of mass) as an example to illustrate how to obtain the spatial motion parameter.
  • the linear value (offset) of the spatial position parameter of the first predetermined position P1 collected at the predetermined time point on the three spatial coordinate axes is x1, y1, z1, respectively, and the collected second
  • the linear values of the spatial position parameters of the predetermined position P2 on the three spatial coordinate axes are x2, y2, and z2, respectively
  • the linear values of the spatial position parameters of the geometric center of the cylindrical roller 1a on the three spatial coordinate axes are: (x1+x2)/2, (y1+y2)/2, (z1+z2)/2.
  • the spatial angle parameter of the first predetermined position P1 collected at a predetermined time point is a rotation angle value of ⁇ 1, ⁇ 1, ⁇ 1 around the three spatial coordinate axes and the spatial angle parameter of the second predetermined position P2 collected
  • the rotation angle values around the three coordinate axes are ⁇ 2, ⁇ 2, and ⁇ 2
  • the spatial angle parameter of the geometric center of the cylindrical roller 1a around the three coordinate axes is ( ⁇ 1+ ⁇ 2)/2, ( ⁇ 1 + ⁇ 2)/2, ( ⁇ 1+ ⁇ 2)/2.
  • the inclination angle ⁇ generated in the yz plane and the skew angle ⁇ generated in the xy plane have very important reference significance.
  • the curve of the spatial position parameter of the geometric center of the cylindrical roller 1a on the three spatial coordinate axes can be established with the curve calculated by simulation in FIG. 4a
  • the reference curve of the spatial position parameter of the geometric center of the cylindrical roller 1a is compared for verification and analysis to obtain the desired result.
  • the curve created by the values of the inclination angle ⁇ and the skew angle ⁇ of the geometric center of the cylindrical roller 1a and the inclination of the geometric center of the cylindrical roller 1a in FIGS. 4b and 4c obtained by simulation calculation
  • the reference curves of the angle and the skew angle are compared for verification and analysis to obtain the desired result.
  • a mounting cavity for the power supply 11a, the sensor 12a, the central processor 13a, and the signal transmitter 14a may be formed inside the ball so that the sensor 12a measures the spatial motion parameter of the geometric center of the ball .
  • the technical solution of the present invention can evaluate the running state of the bearing based on the parameter signal processed by the original signal. Under certain bearing operating conditions, the motion characteristics of the movable parts of the bearing have certain regularities, such as the geometric center trajectory of the rolling element and the rotation angle around the geometric center.
  • the tracking system of the present invention can continuously collect and establish the motion law database of the movable part of the bearing in the early stage, and based on the database, the specific motion characteristics of the movable part of the bearing corresponding to the specific failure mode can be obtained.
  • the tracking system according to the present invention can continuously realize the monitoring of the movable parts of the bearing, and can ensure the safety and predictability of the service life of the bearing. On the one hand, it can monitor the working status of bearings, and find a reliable basis for bearing design and development. Verify and correct the established bearing dynamics numerical simulation model (reference curve). On the other hand, the system according to the present invention can be directly applied to the actual working process of the bearing to realize real-time healthy maintenance of the bearing and early warning of the abnormal working bearing. In addition, the system according to the present invention is modularized to facilitate installation and use.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)

Abstract

A parameter acquiring and tracking system for spatial motion of a bearing movable component, a parameter acquiring and tracking method for spatial motion of a bearing movable component, and a bearing. The tracking system is provided with a parameter acquiring module (12) and a parameter sending module (14) based on a micro-electromechanical system on a bearing movable component (1). Thus, on the one hand, spatial motion parameters at a predetermined position of the bearing movable component can be acquired in real time by the parameter acquiring module (12), on the other hand, the spatial motion parameters can also be preferably sent to a designated device in real time by the parameter sending module (14), furthermore, the spatial motion state of the bearing movable component can be obtained on the basis of the spatial motion parameters by means of the designated device, so that the motion characteristics of the bearing movable component can be summarized and analyzed.

Description

用于轴承可动部件的空间运动的参数采集及跟踪系统、用于轴承可动部件的空间运动的参数采集及跟踪方法及轴承Parameter collection and tracking system for space movement of bearing movable parts, parameter collection and tracking method for space movement of bearing movable parts and bearings 技术领域Technical field
本发明涉及一种基于微机电传感器对轴承可动部件的空间运动的参数采集及跟踪领域,更具体地涉及用于轴承可动部件的空间运动的参数采集及跟踪系统、用于轴承可动部件的空间运动的参数采集及跟踪方法及轴承。The present invention relates to a field of parameter acquisition and tracking based on micro-electromechanical sensors for spatial motion of bearing movable parts, and more particularly to a parameter acquisition and tracking system for spatial movement of bearing movable parts, and for bearing movable parts The parameter collection and tracking method of space motion and bearing.
背景技术Background technique
在现有技术中,对轴承内部的滚动体和保持架的运动状态和受力状态进行测量和追踪并且详细了解并掌握轴承内部的滚动体和保持架的运动特性及受力特性,能够帮助轴承设计及研发人员更准确地找到轴承的设计和优化的方向。但是,由于轴承一般密封条件较好并且轴承内部充满润滑介质,因此难以直接得到轴承内部的滚动体和保持架的真实运动状态和受力状态。In the prior art, measuring and tracking the motion state and stress state of the rolling elements and cage inside the bearing and understanding and mastering the motion characteristics and stress characteristics of the rolling element and cage inside the bearing in detail can help the bearing Design and R&D personnel find the direction of bearing design and optimization more accurately. However, since the bearing generally has good sealing conditions and the inside of the bearing is filled with a lubricating medium, it is difficult to directly obtain the true motion state and stress state of the rolling elements and cage inside the bearing.
现在,一般通过建立运动学模型和力学模型,然后利用数值计算及模拟得到滚动体和保持架各自的运动状态和受力状态。但是由于这种建立模型的方法一般基于较多的假设,所以通过这种方法分析得到保持架及滚动体的运动特性和受力特性的结果通常难以得到验证,其准确性难以保证。而且,通过实验室搭建台架的方法也只能对特定工况下的轴承进行评估,不能应用到真实的轴承工况下进行实时的监控。因此,亟需对轴承可动部件的真实运动状态进行检测和跟踪的技术。Now, generally by establishing the kinematics model and the mechanical model, and then using numerical calculation and simulation to obtain the respective motion state and force state of the rolling element and the cage. However, because this method of model establishment is generally based on more assumptions, the results of the analysis of the motion and stress characteristics of the cage and rolling elements through this method are usually difficult to verify, and its accuracy is difficult to guarantee. Moreover, the method of building a bench through the laboratory can only evaluate the bearings under specific working conditions, and cannot be applied to real-time monitoring under real bearing working conditions. Therefore, there is an urgent need for techniques to detect and track the true motion state of movable parts of bearings.
发明内容Summary of the invention
基于上述现有技术的缺陷而做出了本发明。本发明的一个目的在于提供一种用于轴承可动部件的空间运动的参数采集及跟踪系统,其能够实时地采 集轴承可动部件的至少一个预定位置的空间运动参数并且将该空间运动参数发送到指定设备中进行处理。本发明的另一个目的在于提供用于轴承可动部件的空间运动的参数采集及跟踪方法及利用上述技术的轴承。The present invention has been made based on the above-mentioned drawbacks of the prior art. An object of the present invention is to provide a parameter collection and tracking system for the spatial motion of a bearing movable component, which can collect spatial motion parameters of at least one predetermined position of a bearing movable component in real time and send the spatial motion parameters Go to the designated device for processing. Another object of the present invention is to provide a parameter collection and tracking method for the spatial movement of a bearing movable member and a bearing using the above technology.
为了实现上述发明目的,本发明采用如下的技术方案。In order to achieve the above object of the invention, the present invention adopts the following technical solutions.
本发明提供了一种如下的用于轴承可动部件的空间运动的参数采集及跟踪系统,包括:参数采集模块,所述参数采集模块附着于所述轴承可动部件并且用于采集所述轴承可动部件的至少一个预定位置的空间运动参数;以及参数发送模块,所述参数发送模块与所述参数采集模块数据连通,以用于传输所述参数采集模块采集的所述空间运动参数和/或用于存储所述空间运动参数。The present invention provides a parameter collection and tracking system for the spatial movement of a bearing movable component as follows, including: a parameter collection module attached to the bearing movable component and used to collect the bearing Spatial motion parameters of at least one predetermined position of the movable part; and a parameter sending module, the parameter sending module is in data communication with the parameter collecting module for transmitting the spatial motion parameters collected by the parameter collecting module and/or Or used to store the spatial motion parameters.
优选地,所述参数采集模块包括至少一个基于微机电系统的参数采集感测单元。Preferably, the parameter acquisition module includes at least one parameter acquisition and sensing unit based on a micro-electromechanical system.
更优选地,每个所述参数采集感测单元用于实时采集其所在位置的所述空间运动参数。More preferably, each of the parameter collection and sensing units is used to collect the spatial motion parameters of its location in real time.
优选地,所述参数采集及跟踪系统还包括控制模块和供电模块,所述控制模块与所述参数采集模块和所述参数发送模块均数据连通,用于实现对所述参数采集模块和所述参数发送模块的工作进行控制;并且所述供电模块与所述参数采集模块、所述参数发送模块和所述控制模块均电连接,使得所述供电模块对所述参数采集模块、所述参数发送模块和所述控制模块供电。Preferably, the parameter collection and tracking system further includes a control module and a power supply module, the control module is in data communication with the parameter collection module and the parameter transmission module, and is used to implement the parameter collection module and the The operation of the parameter transmission module is controlled; and the power supply module is electrically connected to the parameter collection module, the parameter transmission module and the control module, so that the power supply module transmits the parameter collection module and the parameter The module and the control module are powered.
优选地,所述参数采集及跟踪系统还包括位于所述轴承可动部件的外部的参数接收模块和参数处理模块,所述参数接收模块与所述参数发送模块数据连通以接收来自所述参数发送模块的包含所述空间运动参数的信号,所述参数处理模块与所述参数接收模块数据连通,以用于对所述参数接收模块接收到的所述信号进行处理。Preferably, the parameter collection and tracking system further includes a parameter receiving module and a parameter processing module located outside the movable part of the bearing, the parameter receiving module is in data communication with the parameter transmitting module to receive the parameter transmission A signal of the module containing the spatial motion parameter, the parameter processing module is in data communication with the parameter receiving module for processing the signal received by the parameter receiving module.
更优选地,所述参数处理模块包括用于对所述信号进行信号放大的信号 放大单元和用于对所述信号进行信号滤波的信号滤波单元。More preferably, the parameter processing module includes a signal amplifying unit for performing signal amplification on the signal and a signal filtering unit for performing signal filtering on the signal.
本发明还提供了一种如下的轴承,包括:轴承可动部件;至少一个传感器,所述至少一个传感器附着于所述轴承可动部件并且用于采集所述轴承可动部件的至少一个预定位置的空间运动参数;以及信号发送器,所述信号发送器与所述至少一个传感器数据连通,以用于传输所述至少一个传感器采集的所述空间运动参数和/或用于存储所述空间运动参数。The present invention also provides a bearing including: a bearing movable component; at least one sensor, the at least one sensor is attached to the bearing movable component and is used to collect at least one predetermined position of the bearing movable component Spatial motion parameters; and a signal transmitter that is in data communication with the at least one sensor for transmitting the spatial motion parameters collected by the at least one sensor and/or for storing the spatial motion parameter.
优选地,所述至少一个传感器为基于微机电系统的运动传感器。Preferably, the at least one sensor is a motion sensor based on a micro-electromechanical system.
更优选地,每个所述传感器用于实时采集其所在位置的所述空间运动参数。More preferably, each of the sensors is used to collect the spatial motion parameters of its location in real time.
优选地,所述运动传感器包括加速度计、陀螺仪和地磁场传感器中的至少一者。Preferably, the motion sensor includes at least one of an accelerometer, a gyroscope, and a geomagnetic field sensor.
优选地,所述轴承还包括中央处理器和电源,所述中央处理器与所述至少一个传感器和所述信号发送器均数据连通,用于实现对所述至少一个传感器和所述信号发送器的动作的控制,并且所述电源用于与所述至少一个传感器、所述信号发送器和所述中央处理器均电连接,使得所述电源对所述至少一个传感器、所述信号发送器和所述中央处理器供电。Preferably, the bearing further includes a central processor and a power supply, and the central processor is in data communication with both the at least one sensor and the signal transmitter, and is used to implement the at least one sensor and the signal transmitter Control of the operation of the power supply, and the power supply is used to electrically connect the at least one sensor, the signal transmitter, and the central processing unit, so that the power supply controls the at least one sensor, the signal transmitter, and the The central processor supplies power.
更优选地,所述至少一个传感器、所述信号发送器、所述中央处理器和所述电源以不影响所述轴承可动部件正常运动的方式附着于所述轴承可动部件。More preferably, the at least one sensor, the signal transmitter, the central processor, and the power supply are attached to the bearing movable member in a manner that does not affect the normal movement of the bearing movable member.
优选地,所述轴承可动部件包括轴承的滚动体和保持架。Preferably, the movable part of the bearing includes a rolling body and a cage of the bearing.
更优选地,所述滚动体为滚子,所述滚子包括能够与所述轴承的滚道接触的外周面以及位于所述滚子的轴向两端部的端面,并且所述滚子的轴向两端部的端面均形成有安装凹部,各所述安装凹部均收纳安装一个所述传感器。More preferably, the rolling element is a roller, and the roller includes an outer peripheral surface capable of contacting the raceway of the bearing and end surfaces located at both axial end portions of the roller, and the roller Mounting recesses are formed on the end surfaces of both axial end portions, and each of the mounting recesses accommodates and mounts one sensor.
更优选地,所述传感器设置于所述滚子的轴向一端部的第一预定位置和 所述滚子的轴向另一端部的第二预定位置,使得所述传感器能够采集所述第一预定位置的空间运动参数和所述第二预定位置的空间运动参数。More preferably, the sensor is provided at a first predetermined position at one axial end of the roller and at a second predetermined position at the other axial end of the roller, so that the sensor can collect the first The spatial motion parameter of the predetermined position and the spatial motion parameter of the second predetermined position.
更优选地,所述第一预定位置和所述第二预定位置位于所述滚子的中心轴线上且相对于所述滚子的几何中心对称布置。More preferably, the first predetermined position and the second predetermined position are located on the central axis of the roller and are arranged symmetrically with respect to the geometric center of the roller.
更优选地,所述滚动体为球,所述球的内部形成有安装腔,所述安装腔内设置有所述传感器,使得所述传感器能够采集所述球的几何中心的空间运动参数。More preferably, the rolling body is a ball, and an installation cavity is formed inside the ball, and the sensor is provided in the installation cavity, so that the sensor can collect spatial motion parameters of the geometric center of the ball.
本发明还提供了一种用于轴承可动部件的空间运动的参数采集及跟踪方法,包括:采集轴承可动部件的至少一个预定位置的空间运动参数;以及传输和处理所述空间运动参数和/或暂时存储所述空间运动参数以用于延迟传输和处理。The invention also provides a parameter collection and tracking method for spatial motion of a movable bearing component, which includes: collecting spatial motion parameters of at least one predetermined position of the movable bearing component; and transmitting and processing the spatial motion parameters and /Or temporarily store the spatial motion parameters for delayed transmission and processing.
优选地,对所述空间运动参数的处理包括对包含该参数的信号进行信号放大和信号滤波以及利用所获得的参数建立与时间相关的参数曲线。Preferably, the processing of the spatial motion parameter includes performing signal amplification and signal filtering on the signal containing the parameter and establishing a time-dependent parameter curve using the obtained parameter.
更优选地,对所述空间运动参数的处理还包括利用所述参数曲线与利用仿真计算建立的基准参数曲线进行比较验证。More preferably, the processing of the spatial motion parameters further includes comparing and verifying using the parameter curve with a reference parameter curve established by simulation calculation.
优选地,采集轴承可动部件的至少一个预定位置的空间运动参数,包括:在所述轴承可动部件为滚子的情况下,分别采集所述滚子的轴向一端部的第一预定位置的空间运动参数和所述滚子的轴向另一端部的第二预定位置的空间运动参数。Preferably, collecting spatial motion parameters of at least one predetermined position of the movable part of the bearing includes: when the movable part of the bearing is a roller, respectively collecting a first predetermined position of an axial end of the roller And the spatial motion parameter at the second predetermined position of the other axial end of the roller.
更优选地,所述空间运动参数包括空间位置参数,所述第一预定位置和所述第二预定位置位于所述滚子的中心轴线上且相对于所述几何中心对称布置,当在预定时间点采集的所述第一预定位置的空间位置参数在三个空间坐标轴上的线性数值分别为x1、y1、z1且采集的所述第二预定位置的空间位置参数在三个空间坐标轴上的线性数值分别为x2、y2、z2时,所述滚子的几何中心的空间位置参数在三个空间坐标轴上的线性数值分别为(x1+x2)/2、 (y1+y2)/2、(z1+z2)/2。More preferably, the spatial motion parameters include spatial position parameters, and the first predetermined position and the second predetermined position are located on the central axis of the roller and are symmetrically arranged with respect to the geometric center when the predetermined time The linear values of the spatial position parameters of the first predetermined position collected on the points on the three spatial coordinate axes are x1, y1, and z1, respectively, and the spatial position parameters of the second predetermined position collected on the three spatial coordinate axes When the linear values of x2, y2, and z2 are respectively, the linear values of the spatial position parameters of the geometric center of the roller on the three spatial coordinate axes are (x1+x2)/2, (y1+y2)/2 , (Z1+z2)/2.
更优选地,所述空间运动参数包括空间角度参数,所述第一预定位置和所述第二预定位置位于所述滚子的中心轴线上且相对于所述几何中心对称布置,当在预定时间点采集的所述第一预定位置的空间角度参数绕着三个空间坐标轴的转动角度数值为α1、β1、γ1且采集的所述第二预定位置的空间角度参数绕着三个坐标轴的转动角度数值为α2、β2、γ2时,所述滚子的几何中心的空间角度参数绕着三个坐标轴的转动角度数值为(α1+α2)/2、(β1+β2)/2、(γ1+γ2)/2。More preferably, the spatial motion parameter includes a spatial angle parameter, the first predetermined position and the second predetermined position are located on the central axis of the roller and are symmetrically arranged with respect to the geometric center, when at a predetermined time The rotation angle values of the spatial angle parameters of the first predetermined position collected around the three spatial coordinate axes are α1, β1, γ1 and the spatial angle parameters of the second predetermined position collected around the three coordinate axes When the rotation angle values are α2, β2, and γ2, the rotation angle values of the spatial angle parameter of the geometric center of the roller around the three coordinate axes are (α1+α2)/2, (β1+β2)/2, ( γ1+γ2)/2.
优选地,采集轴承可动部件的至少一个预定位置的空间运动参数,包括:通过基于微机电系统的传感器实时采集所述轴承可动部件的至少一个预定位置的空间运动参数。Preferably, collecting spatial motion parameters of at least one predetermined position of the movable component of the bearing includes: collecting spatial motion parameters of at least one predetermined position of the movable component of the bearing in real time through a sensor based on a micro-electromechanical system.
通过采用上述技术方案,本发明提供了一种用于轴承可动部件的空间运动的参数采集及跟踪系统,该系统包括附着于轴承可动部件的基于微机电系统的参数采集模块和参数发送模块。这样,一方面能够通过参数采集模块实时采集轴承可动部件的预定位置处的空间运动参数,另一方面还能够通过参数发送模块将该空间运动参数优选实时发送到指定设备,进而借助于指定设备基于这些空间运动参数获得轴承可动部件的空间运动状态,从而能够对轴承可动部件的运动特性进行总结和分析。另外,本发明还提供了用于轴承可动部件的空间运动的参数采集及跟踪方法,该方法能够通过采集轴承可动部件的空间运动参数对轴承可动部件的空间运动状态进行追踪。此外,本发明还提供了采用上述技术的轴承。By adopting the above technical solution, the present invention provides a parameter acquisition and tracking system for the spatial movement of a bearing movable component, which includes a MEMS-based parameter acquisition module and a parameter transmission module attached to the bearing movable component . In this way, on the one hand, the spatial motion parameters at the predetermined position of the movable part of the bearing can be collected in real time through the parameter collection module; on the other hand, the spatial motion parameters can be preferably sent to the designated device in real time through the parameter transmission module, and then the designated device Based on these spatial motion parameters, the spatial motion state of the bearing movable component is obtained, so that the motion characteristics of the bearing movable component can be summarized and analyzed. In addition, the present invention also provides a parameter collection and tracking method for the spatial motion of the bearing movable component, which can track the spatial motion state of the bearing movable component by collecting the spatial motion parameters of the bearing movable component. In addition, the present invention also provides a bearing using the above technology.
附图说明BRIEF DESCRIPTION
图1示出了根据本发明的用于轴承可动部件的空间运动的参数采集及跟踪系统的结构框图。FIG. 1 shows a structural block diagram of a parameter acquisition and tracking system for spatial movement of a bearing movable component according to the present invention.
图2a示出了采用图1中的系统的轴承可动部件的一个示例(圆柱滚子)的剖视示意图;图2b示出了图2a中的圆柱滚子的剖视立体图;图2c示出了基于图2a中的圆柱滚子采集第一预定位置和第二预定位置的空间位置参数和绕质心的空间角度参数的说明性示意图。图2d和图2e示出了图2a中的圆柱滚子的几何中心(质心)的倾斜角和歪斜角的说明性示意图。Figure 2a shows a schematic cross-sectional view of an example of a movable bearing member (cylindrical roller) using the system in Figure 1; Figure 2b shows a cross-sectional perspective view of the cylindrical roller in Figure 2a; Figure 2c shows An illustrative schematic diagram of acquiring the spatial position parameter and the spatial angle parameter around the centroid of the first predetermined position and the second predetermined position based on the cylindrical roller in FIG. 2a is shown. 2d and 2e show explanatory diagrams of the inclination angle and the skew angle of the geometric center (center of mass) of the cylindrical roller in FIG. 2a.
图3示出了采用图2a至图2c中的圆柱滚子的圆锥滚子轴承的结构示意图。FIG. 3 shows a schematic structural view of a tapered roller bearing using the cylindrical rollers in FIGS. 2a to 2c.
图4a至图4c示出了基于仿真计算圆柱滚子的几何中心的三个线性位移量、倾斜角和歪斜角的数值随着时间变化的曲线图。FIGS. 4a to 4c show graphs showing the time-dependent changes of three linear displacements, tilt angles, and skew angles based on simulation calculations of the geometric center of a cylindrical roller.
附图标记说明DESCRIPTION OF REFERENCE NUMERALS
1轴承可动部件 11供电模块 12参数采集模块 13控制模块 14参数发送模块 2基站 21参数接收模块 22参数处理模块1 Bearing movable parts 11 Power supply module 12 Parameter acquisition module 13 Control module 14 Parameter transmission module 2 Base station 21 Parameter reception module 22 Parameter processing module
1a圆柱滚子 1c安装凹部 11a电源 12a传感器 13a中央处理器 14a信号发送器 2a外圈 3a保持架 4a内圈1a cylindrical roller 1c mounting recess 11a power supply 12a sensor 13a central processor 14a signal transmitter 2a outer ring 3a cage 4a inner ring
A轴向 R径向 P1第一预定位置 P2第二预定位置。A axis R radial direction P1 first predetermined position P2 second predetermined position.
具体实施方式detailed description
以下将结合说明书附图详细说明本发明的具体实施方式。将首先说明用于轴承可动部件的空间运动的参数采集及跟踪系统的基本结构。The specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings of the specification. The basic structure of the parameter acquisition and tracking system for the spatial movement of the bearing movable part will be explained first.
(用于轴承可动部件的空间运动的参数采集及跟踪系统的基本结构)(Basic structure of the parameter acquisition and tracking system used for the spatial movement of bearing movable parts)
如图1所示,根据本发明的用于轴承可动部件的空间运动的参数采集及跟踪系统用于例如滚动体和保持架的轴承可动部件1并且包括供电模块11、参数采集模块12、控制模块13、参数发送模块14以及参数接收模块21和参数处理模块22(最后两者组成基站2)。As shown in FIG. 1, the parameter acquisition and tracking system for the spatial movement of a bearing movable part according to the present invention is used for a bearing movable part 1 such as a rolling element and a cage and includes a power supply module 11, a parameter acquisition module 12, The control module 13, the parameter sending module 14, the parameter receiving module 21 and the parameter processing module 22 (the last two constitute the base station 2).
具体地,在本实施方式中,轴承可动部件1可以是收纳于轴承的外圈和 内圈之间的滚道内的滚动体,该滚动体可以是球、圆柱滚子1a(如图2a至图2c所示)、圆锥滚子和滚针等;轴承可动部件1也可以是保持上述滚动体的保持架。Specifically, in this embodiment, the movable member 1 of the bearing may be a rolling body accommodated in a raceway between the outer ring and the inner ring of the bearing, and the rolling body may be a ball or a cylindrical roller 1a (as shown in FIGS. 2a to 2a). (Shown in FIG. 2c), tapered rollers, needle rollers, etc.; the movable member 1 of the bearing may be a cage that holds the rolling elements.
在本实施方式中,供电模块11附着于轴承可动部件1并且供电模块11与参数采集模块12、控制模块13和参数发送模块14均电连接,使得供电模块11对参数采集模块12、控制模块13和参数发送模块14供电,从而保证参数采集模块12、控制模块13和参数发送模块14正常工作所需的电能。In this embodiment, the power supply module 11 is attached to the bearing movable component 1 and the power supply module 11 is electrically connected to the parameter collection module 12, the control module 13, and the parameter transmission module 14, so that the power supply module 11 has 13 and the parameter sending module 14 supply power, so as to ensure the electric energy required for the parameter collection module 12, the control module 13 and the parameter sending module 14 to work normally.
另外,该供电模块11优选是微型电池并且采用无线充电的方式。由于轴承使用寿命一般较长,为了满足整个系统的长时间正常运行,需要性能较高电池。经由供电模块11还能够实现整个系统的自动睡眠和唤醒功能,在检测到轴承处于静止状态时自动睡眠,这样可以降低系统的整体功耗。In addition, the power supply module 11 is preferably a micro battery and adopts a wireless charging method. Since the service life of bearings is generally long, in order to meet the long-term normal operation of the entire system, a battery with higher performance is required. The power supply module 11 can also realize the automatic sleep and wake-up functions of the entire system, and automatically sleep when the bearing is detected to be at a standstill, which can reduce the overall power consumption of the system.
在本实施方式中,参数采集模块12是基于微机电系统(MEMS)的用于实时采集轴承可动部件1的预定位置的空间运动参数的传感器,因此参数采集模块12的尺寸能够非常小。参数采集模块12附着于轴承可动部件1,优选地设置于轴承可动部件1的内部并且一个参数采集模块12用于实时采集轴承可动部件1的一个预定位置的空间运动参数。In this embodiment, the parameter collection module 12 is a microelectromechanical system (MEMS)-based sensor for collecting spatial motion parameters of a predetermined position of the bearing movable member 1 in real time, so the size of the parameter collection module 12 can be very small. The parameter collection module 12 is attached to the bearing movable component 1, preferably disposed inside the bearing movable component 1 and a parameter collection module 12 is used to collect spatial motion parameters of a predetermined position of the bearing movable component 1 in real time.
进一步地,参数采集模块12优选包括(三轴)加速度计、(三轴)陀螺仪和(三轴)地磁场传感器,这里选用的传感器性能足够高,能够实现完整的参数测量,信号采集,且能抗混叠,抗噪声;并且这里选用的传感器功耗较低,这样能够保证在轴承失效之前功能持续有效。Further, the parameter acquisition module 12 preferably includes a (three-axis) accelerometer, a (three-axis) gyroscope, and a (three-axis) geomagnetic field sensor. The sensor selected here has high enough performance to achieve complete parameter measurement and signal acquisition, and It can resist aliasing and noise; and the sensor used here has low power consumption, which can ensure that the function continues to be effective before the bearing fails.
在本实施方式中,控制模块13附着于轴承可动部件1并且控制模块13与参数采集模块12和参数发送模块14均数据连通。这样,控制模块13能够控制参数采集模块12实现空间运动参数的实时采集,并且控制模块13能够对这些参数进行初步处理。进一步地,控制模块13还能够控制参数发送模块14实时地向参数接收模块21传输采集到的空间运动参数或者暂时存储所采集到的 空间运动参数以延时发送。In this embodiment, the control module 13 is attached to the bearing movable member 1 and the control module 13 is in data communication with both the parameter acquisition module 12 and the parameter transmission module 14. In this way, the control module 13 can control the parameter collection module 12 to realize real-time collection of spatial motion parameters, and the control module 13 can perform preliminary processing on these parameters. Further, the control module 13 can also control the parameter sending module 14 to transmit the collected spatial motion parameters to the parameter receiving module 21 in real time or temporarily store the collected spatial motion parameters for delayed transmission.
在本实施方式中,参数发送模块14附着于轴承可动部件1并且与控制模块13直接数据连通,从而与参数采集模块12实现了间接的数据连通,以用于向基站2的参数接收模块21传输参数采集模块12实时采集的空间运动参数。该参数发送模块14采用现有的无线传输技术,例如蓝牙、wifi等。In this embodiment, the parameter transmission module 14 is attached to the bearing movable member 1 and directly communicates with the control module 13, thereby achieving indirect data communication with the parameter acquisition module 12 for the parameter reception module 21 of the base station 2 The spatial motion parameters collected by the transmission parameter collection module 12 in real time. The parameter sending module 14 uses existing wireless transmission technologies, such as Bluetooth, wifi, and so on.
另外,如果在实际应用过程中不需要进行实时传输,则该参数发送模块14也可以用作参数暂存器,以暂时存储所采集到的空间运动参数。In addition, if real-time transmission is not required in the actual application process, the parameter sending module 14 can also be used as a parameter temporary storage to temporarily store the collected spatial motion parameters.
在本实施方式中,包括彼此数据连通的参数接收模块21和参数处理模块22的基站2位于轴承可动部件1所在的轴承的外部。In the present embodiment, the base station 2 including the parameter receiving module 21 and the parameter processing module 22 in data communication with each other is located outside the bearing where the bearing movable member 1 is located.
具体地,参数接收模块21与参数发送模块14对应以接收来自参数发送模块14的参数信号。参数处理模块22具备对参数进行建模和分析的模块之外还至少具有放大器和滤波器。这样,该参数处理模块22除了能够对该参数信号进行必要的建模和分析之外,还能够对参数接收模块21接收到的参数信号进行包括放大和滤波等的其它处理。Specifically, the parameter receiving module 21 corresponds to the parameter sending module 14 to receive the parameter signal from the parameter sending module 14. The parameter processing module 22 includes a module for modeling and analyzing parameters, and at least an amplifier and a filter. In this way, in addition to the necessary modeling and analysis of the parameter signal, the parameter processing module 22 can also perform other processing including amplification and filtering on the parameter signal received by the parameter receiving module 21.
以上说明了用于轴承可动部件的空间运动的参数采集及跟踪系统的基本结构。以下将以圆柱滚子作为轴承可动部件1的示例说明采用上述用于轴承可动部件的空间运动的参数采集及跟踪系统的轴承可动部件1的示例(圆柱滚子)的结构以及包括该圆柱滚子的圆锥滚子轴承的结构。The basic structure of the parameter acquisition and tracking system used for the spatial motion of the movable part of the bearing has been described above. In the following, the structure of an example (cylindrical roller) of a bearing movable component 1 adopting the above-mentioned parameter collection and tracking system for the spatial motion of the bearing movable component (cylindrical roller) will be described using a cylindrical roller as the bearing movable component 1 as an example. The structure of tapered roller bearings for cylindrical rollers.
(采用轴承滚动体的空间运动跟踪系统的圆柱滚子及包括该圆柱滚子的圆锥滚子轴承的结构)(Structure of cylindrical roller with spatial motion tracking system of bearing rolling body and tapered roller bearing including the cylindrical roller)
需要说明的是,在以下的说明中,轴向和径向分别是指圆柱滚子的轴向和径向;并且轴向一端部是指图2a中的左端部,轴向另一端部是指图2a中的右端部。It should be noted that in the following description, the axial and radial directions refer to the axial and radial directions of the cylindrical roller, respectively; and one end of the axial direction refers to the left end portion in FIG. 2a, and the other axial end portion refers to Right end in Figure 2a.
如图2a至图2c所示,在本实施方式中,采用轴承滚动体的空间运动跟踪系统的轴承可动部件1为圆柱滚子1a。该圆柱滚子1a整体为圆柱形状并且包 括与轴承的滚道接触的外周面以及位于滚子的轴向A上的两端部(即轴向两端部)的端面,滚子的轴向两端部的端面均形成有安装凹部1c,电源11a、中央处理器13a、传感器12a和信号发送器14a顺序安装于该安装凹部1c。该安装凹部1c在径向R上的尺寸小于对应的端面的在径向R上的尺寸,并且安装凹部1c的中心轴线与圆柱滚子1a的中心轴线保持一致。As shown in FIGS. 2a to 2c, in the present embodiment, the movable bearing member 1 of the spatial motion tracking system using a bearing rolling element is a cylindrical roller 1a. The cylindrical roller 1a has a cylindrical shape as a whole and includes an outer peripheral surface in contact with the raceway of the bearing and end surfaces on both ends of the roller in the axial direction A (ie, both axial ends). Mounting recesses 1c are formed on the end surfaces of the ends, and the power supply 11a, the central processing unit 13a, the sensor 12a, and the signal transmitter 14a are sequentially installed in the mounting recesses 1c. The dimension of the mounting recess 1c in the radial direction R is smaller than the dimension of the corresponding end surface in the radial direction R, and the central axis of the mounting recess 1c is consistent with the central axis of the cylindrical roller 1a.
具体地,从各安装凹部1c的底部起朝向该安装凹部1c的开口,依次设置电源11a、中央处理器13a、传感器12a和信号发送器14a,并且使得信号发送器14a不超出该信号发送器14a所设置的安装凹部1c对应的端面,这样电源11a、中央处理器13a、传感器12a和信号发动器14a以不会影响圆柱滚子1a的正常运动的方式附着于圆柱滚子1a。Specifically, from the bottom of each mounting recess 1c toward the opening of the mounting recess 1c, a power supply 11a, a central processing unit 13a, a sensor 12a, and a signal transmitter 14a are provided in this order, so that the signal transmitter 14a does not exceed the signal transmitter 14a The end face corresponding to the mounting recess 1c is provided so that the power supply 11a, the CPU 13a, the sensor 12a, and the signal generator 14a are attached to the cylindrical roller 1a in such a manner as not to affect the normal movement of the cylindrical roller 1a.
如图3所示,采用上述圆柱滚子1a的圆锥滚子轴承包括彼此相对的外圈2a和内圈4a,在外圈2a和内圈4a之间形成收纳圆柱滚子1a的滚道。多个现有技术的圆柱滚子与上述至少一个本发明的圆柱滚子1a由保持架3a保持在滚道内。这样,能够实时采集上述至少一个本发明的圆柱滚子1a的空间运动参数。该空间运动参数包括空间上6个自由度的参数(如图2c至图2e所示),即在三维空间的三个坐标轴(x轴、y轴和z轴)上的线性偏移量和绕着这三个坐标轴的旋转角度。基于所采集到的空间运动参数,得到了反映圆柱滚子1a的真实空间运动状态及姿态的曲线,从而可以进行进一步验证和分析。具体地,可以通过直接测量以及进一步验证和分析至少得到如下的参数/数学模型:As shown in FIG. 3, the tapered roller bearing using the cylindrical roller 1a includes an outer ring 2a and an inner ring 4a opposed to each other, and a raceway for accommodating the cylindrical roller 1a is formed between the outer ring 2a and the inner ring 4a. A plurality of prior art cylindrical rollers and at least one cylindrical roller 1a of the present invention described above are held in a raceway by a cage 3a. In this way, the spatial motion parameters of the at least one cylindrical roller 1a of the present invention can be collected in real time. The spatial motion parameters include the parameters of 6 degrees of freedom in space (as shown in FIGS. 2c to 2e), that is, the linear offsets and the three coordinate axes (x-axis, y-axis, and z-axis) in three-dimensional space. The rotation angle around these three coordinate axes. Based on the collected spatial motion parameters, a curve reflecting the true spatial motion state and posture of the cylindrical roller 1a is obtained, which can be further verified and analyzed. Specifically, at least the following parameters/mathematical models can be obtained through direct measurement and further verification and analysis:
1.圆柱滚子1a在三个坐标轴上的位置和圆柱滚子1a绕几何中心(质心)的三个转动角度;1. The position of the cylindrical roller 1a on the three coordinate axes and the three rotation angles of the cylindrical roller 1a around the geometric center (center of mass);
2.圆柱滚子1a的与六个自由度对应的速度和加速度;2. The speed and acceleration corresponding to the six degrees of freedom of the cylindrical roller 1a;
3.圆柱滚子1a和保持架3a的打滑特性;3. Sliding characteristics of cylindrical roller 1a and cage 3a;
4.润滑介质的润滑性能;4. Lubricating properties of lubricating medium;
5.滚道和圆柱滚子1a的缺陷及轴承寿命;以及5. Defects of raceway and cylindrical roller 1a and bearing life; and
6.保持架3a的结构变形。6. The structure of the cage 3a is deformed.
以上说明了采用本发明的技术的轴承可动部件1的示例(圆柱滚子1a)的结构以及包括该圆柱滚子1a的圆锥滚子轴承的结构,以下将结合该示例说明参数采集及跟踪方法。The structure of an example (cylindrical roller 1a) of a bearing movable member 1 using the technology of the present invention and the structure of a tapered roller bearing including the cylindrical roller 1a have been described above, and the parameter collection and tracking method will be described below in conjunction with this example .
(用于轴承可动部件的空间运动的参数采集及跟踪方法)(Parameter collection and tracking method for space motion of bearing movable parts)
概括来说,基于圆柱滚子1a的空间运动的参数采集及跟踪方法包括如下过程:In summary, the parameter collection and tracking method based on the spatial motion of the cylindrical roller 1a includes the following processes:
通过安装于圆柱滚子1a的轴向两端部的安装凹部1c内的传感器12a分别实时测量圆柱滚子1a的轴向一端部的第一预定位置P1的空间运动参数和滚子的轴向另一端部的第二预定位置P2的空间运动参数;以及The sensors 12a installed in the mounting recesses 1c at both ends of the axial direction of the cylindrical roller 1a respectively measure the spatial motion parameters of the first predetermined position P1 of the axial one end of the cylindrical roller 1a and the axial direction of the roller in real time The spatial motion parameter of the second predetermined position P2 at one end; and
在传感器12a实时测量和采集空间运动参数之后,通过信号发送器14a将该空间运动参数发送到基站2的参数接收模块21,基站2的参数处理模块22利用参数接收模块21接收到的参数信号跟踪滚子的几何中心的任意时刻的空间运动参数。After the sensor 12a measures and collects the spatial motion parameters in real time, the spatial motion parameters are sent to the parameter receiving module 21 of the base station 2 through the signal transmitter 14a, and the parameter processing module 22 of the base station 2 uses the parameter signal received by the parameter receiving module 21 to track The spatial motion parameter of the geometric center of the roller at any moment.
更具体地,如图2c所示,该第一预定位置P1和第二预定位置P2一般为各传感器12a上的点,优选为传感器12a的几何中心。进一步地,第一预定位置P1和第二预定位置P2在滚子的中心轴线上且相对于几何中心对称布置。这样,能够方便地经由实时采集的第一预定位置P1的空间运动参数和第二预定位置P2的空间运动参数计算滚子的几何中心的任意时刻的空间运动参数。如上所述,以空间位置参数和绕几何中心(质心)的空间角度参数为例说明如何获得该空间运动参数。More specifically, as shown in FIG. 2c, the first predetermined position P1 and the second predetermined position P2 are generally points on each sensor 12a, preferably the geometric center of the sensor 12a. Further, the first predetermined position P1 and the second predetermined position P2 are arranged symmetrically with respect to the geometric center on the center axis of the roller. In this way, it is possible to conveniently calculate the spatial motion parameter at any time of the geometric center of the roller via the spatial motion parameter of the first predetermined position P1 and the spatial motion parameter of the second predetermined position P2 collected in real time. As mentioned above, taking the spatial position parameter and the spatial angle parameter around the geometric center (center of mass) as an example to illustrate how to obtain the spatial motion parameter.
关于空间位置参数,当在预定时间点所采集的第一预定位置P1的空间位置参数在三个空间坐标轴上的线性数值(偏移量)分别为x1、y1、z1且所采集的第二预定位置P2的空间位置参数在三个空间坐标轴上的线性数值分别 为x2、y2、z2时,则圆柱滚子1a的几何中心的空间位置参数在三个空间坐标轴上的线性数值分别为(x1+x2)/2、(y1+y2)/2、(z1+z2)/2。Regarding the spatial position parameter, when the linear value (offset) of the spatial position parameter of the first predetermined position P1 collected at the predetermined time point on the three spatial coordinate axes is x1, y1, z1, respectively, and the collected second When the linear values of the spatial position parameters of the predetermined position P2 on the three spatial coordinate axes are x2, y2, and z2, respectively, the linear values of the spatial position parameters of the geometric center of the cylindrical roller 1a on the three spatial coordinate axes are: (x1+x2)/2, (y1+y2)/2, (z1+z2)/2.
关于空间角度参数,当在预定时间点采集的第一预定位置P1的空间角度参数绕着三个空间坐标轴的转动角度数值为α1、β1、γ1且采集的第二预定位置P2的空间角度参数绕着三个坐标轴的转动角度数值为α2、β2、γ2时,圆柱滚子1a的几何中心的空间角度参数绕着三个坐标轴的转动角度数值为(α1+α2)/2、(β1+β2)/2、(γ1+γ2)/2。在这三个转动角度数值中,如图2d和图2e所示,在yz平面中产生的倾斜角α以及在xy平面中产生的歪斜角γ具有非常重要的参考意义。Regarding the spatial angle parameter, when the spatial angle parameter of the first predetermined position P1 collected at a predetermined time point is a rotation angle value of α1, β1, γ1 around the three spatial coordinate axes and the spatial angle parameter of the second predetermined position P2 collected When the rotation angle values around the three coordinate axes are α2, β2, and γ2, the spatial angle parameter of the geometric center of the cylindrical roller 1a around the three coordinate axes is (α1+α2)/2, (β1 +β2)/2, (γ1+γ2)/2. Among these three rotation angle values, as shown in FIGS. 2d and 2e, the inclination angle α generated in the yz plane and the skew angle γ generated in the xy plane have very important reference significance.
这样,一方面,当对以上的空间运动参数进行测量之后能够将圆柱滚子1a的几何中心的空间位置参数在三个空间坐标轴上的数值所建立的曲线与通过仿真计算得到的图4a中的圆柱滚子1a的几何中心的空间位置参数的基准曲线进行比较来进行验证和分析,从而得到期望的结果。另一方面,还能够将圆柱滚子1a的几何中心的倾斜角α和歪斜角γ的数值所建立的曲线与通过仿真计算得到的图4b和图4c中的圆柱滚子1a的几何中心的倾斜角和歪斜角的基准曲线进行比较来进行验证和分析,从而得到期望的结果。In this way, on the one hand, when the above spatial motion parameters are measured, the curve of the spatial position parameter of the geometric center of the cylindrical roller 1a on the three spatial coordinate axes can be established with the curve calculated by simulation in FIG. 4a The reference curve of the spatial position parameter of the geometric center of the cylindrical roller 1a is compared for verification and analysis to obtain the desired result. On the other hand, the curve created by the values of the inclination angle α and the skew angle γ of the geometric center of the cylindrical roller 1a and the inclination of the geometric center of the cylindrical roller 1a in FIGS. 4b and 4c obtained by simulation calculation The reference curves of the angle and the skew angle are compared for verification and analysis to obtain the desired result.
以上对本发明的具体实施方式进行了详细地阐述,但是还需要说明的是:The specific embodiments of the present invention have been described in detail above, but it should be noted that:
I.当滚动体1为球时,可以在球的内部形成有供电源11a、传感器12a、中央处理器13a和信号发送器14a安装的安装腔,使得传感器12a测量球的几何中心的空间运动参数。I. When the rolling element 1 is a ball, a mounting cavity for the power supply 11a, the sensor 12a, the central processor 13a, and the signal transmitter 14a may be formed inside the ball so that the sensor 12a measures the spatial motion parameter of the geometric center of the ball .
II.虽然在以上的具体实施方式中仅说明了将跟踪系统的电源11a、传感器12a、中央处理器13a和信号发送器14a附着于滚动体,但是也可以将这些部件集成于保持架3a的适当位置。II. Although only the power source 11a of the tracking system, the sensor 12a, the central processing unit 13a, and the signal transmitter 14a are attached to the rolling element in the above embodiment, it is also possible to integrate these components into the cage 3a. position.
III.本发明的技术方案能够基于原始信号处理后的参数信号对轴承运行 状态进行评估。在确定的轴承工况下,轴承可动部件的运动特性具有一定的规律性,例如滚动体的几何中心轨迹、绕几何中心的转动角等具有一定的规律性。通过本发明的跟踪系统可以在前期不断收集并建立起轴承可动部件的运动规律数据库,基于该数据库可以获得表示对应特定的失效模式的轴承可动部件的特定的运动特性。III. The technical solution of the present invention can evaluate the running state of the bearing based on the parameter signal processed by the original signal. Under certain bearing operating conditions, the motion characteristics of the movable parts of the bearing have certain regularities, such as the geometric center trajectory of the rolling element and the rotation angle around the geometric center. The tracking system of the present invention can continuously collect and establish the motion law database of the movable part of the bearing in the early stage, and based on the database, the specific motion characteristics of the movable part of the bearing corresponding to the specific failure mode can be obtained.
另外,利用根据本发明的跟踪系统可以持续不断实现对轴承可动部件的监控,可以确保轴承使用周期的安全可预测性。一方面,可以监控轴承的工作状态,为轴承的设计和研发找到可靠的依据。对建立的轴承动力学数值模拟模型(基准曲线)进行验证和校正。另一方面,可以将根据本发明的系统直接应用到轴承实际工作过程中,实现对轴承实时健康维护,对工作异常的轴承实现提前预警。此外,根据本发明的系统实现了模块化,便于安装和使用。In addition, the tracking system according to the present invention can continuously realize the monitoring of the movable parts of the bearing, and can ensure the safety and predictability of the service life of the bearing. On the one hand, it can monitor the working status of bearings, and find a reliable basis for bearing design and development. Verify and correct the established bearing dynamics numerical simulation model (reference curve). On the other hand, the system according to the present invention can be directly applied to the actual working process of the bearing to realize real-time healthy maintenance of the bearing and early warning of the abnormal working bearing. In addition, the system according to the present invention is modularized to facilitate installation and use.

Claims (24)

  1. 一种用于轴承可动部件的空间运动的参数采集及跟踪系统,包括:A parameter acquisition and tracking system for space motion of bearing movable parts, including:
    参数采集模块,所述参数采集模块附着于所述轴承可动部件并且用于采集所述轴承可动部件的至少一个预定位置的空间运动参数;以及A parameter collection module, the parameter collection module is attached to the bearing movable component and used to collect spatial motion parameters of at least one predetermined position of the bearing movable component; and
    参数发送模块,所述参数发送模块与所述参数采集模块数据连通,以用于传输所述参数采集模块采集的所述空间运动参数和/或用于存储所述空间运动参数。A parameter sending module, the parameter sending module is in data communication with the parameter collecting module, for transmitting the spatial motion parameters collected by the parameter collecting module and/or for storing the spatial motion parameters.
  2. 根据权利要求1所述的参数采集及跟踪系统,其特征在于,The parameter collection and tracking system according to claim 1, wherein:
    所述参数采集模块包括至少一个基于微机电系统的参数采集感测单元。The parameter acquisition module includes at least one parameter acquisition and sensing unit based on a micro-electromechanical system.
  3. 根据权利要求2所述的参数采集及跟踪系统,其特征在于,每个所述参数采集感测单元用于实时采集其所在位置的所述空间运动参数。The parameter collection and tracking system according to claim 2, characterized in that each of the parameter collection sensing units is used to collect the spatial motion parameters of its location in real time.
  4. 根据权利要求1至3中任一项所述的参数采集及跟踪系统,其特征在于,所述参数采集及跟踪系统还包括控制模块和供电模块,The parameter collection and tracking system according to any one of claims 1 to 3, wherein the parameter collection and tracking system further includes a control module and a power supply module,
    所述控制模块与所述参数采集模块和所述参数发送模块均数据连通,用于实现对所述参数采集模块和所述参数发送模块的工作进行控制;并且The control module is in data communication with the parameter collection module and the parameter transmission module, and is used to control the work of the parameter collection module and the parameter transmission module; and
    所述供电模块与所述参数采集模块、所述参数发送模块和所述控制模块均电连接,使得所述供电模块对所述参数采集模块、所述参数发送模块和所述控制模块供电。The power supply module is electrically connected to the parameter collection module, the parameter transmission module, and the control module, so that the power supply module supplies power to the parameter collection module, the parameter transmission module, and the control module.
  5. 根据权利要求1至4中任一项所述的参数采集及跟踪系统,其特征在于,所述参数采集及跟踪系统还包括位于所述轴承可动部件的外部的参数接收模块和参数处理模块,The parameter collection and tracking system according to any one of claims 1 to 4, wherein the parameter collection and tracking system further includes a parameter receiving module and a parameter processing module located outside the movable part of the bearing,
    所述参数接收模块与所述参数发送模块数据连通以接收来自所述参数发送模块的包含所述空间运动参数的信号,所述参数处理模块与所述参数接收模块数据连通,以用于对所述参数接收模块接收到的所述信号进行处理。The parameter receiving module is in data communication with the parameter sending module to receive the signal including the spatial motion parameter from the parameter sending module, and the parameter processing module is in data communication with the parameter receiving module for The signal received by the parameter receiving module is processed.
  6. 根据权利要求5所述的参数采集及跟踪系统,其特征在于,所述参数处理模块包括用于对所述信号进行信号放大的信号放大单元和用于对所述 信号进行信号滤波的信号滤波单元。The parameter acquisition and tracking system according to claim 5, wherein the parameter processing module includes a signal amplification unit for performing signal amplification on the signal and a signal filtering unit for performing signal filtering on the signal .
  7. 一种轴承,包括:A bearing, including:
    轴承可动部件;Bearing movable parts;
    至少一个传感器,所述至少一个传感器附着于所述轴承可动部件并且用于采集所述轴承可动部件的至少一个预定位置的空间运动参数;以及At least one sensor, the at least one sensor is attached to the bearing movable member and is used to collect spatial motion parameters of at least one predetermined position of the bearing movable member; and
    信号发送器,所述信号发送器与所述至少一个传感器数据连通,以用于传输所述至少一个传感器采集的所述空间运动参数和/或用于存储所述空间运动参数。A signal transmitter, which is in data communication with the at least one sensor for transmitting the spatial motion parameters collected by the at least one sensor and/or for storing the spatial motion parameters.
  8. 根据权利要求7所述的轴承,其特征在于,所述至少一个传感器为基于微机电系统的运动传感器。The bearing according to claim 7, wherein the at least one sensor is a motion sensor based on a micro-electromechanical system.
  9. 根据权利要求8所述的轴承,其特征在于,每个所述传感器用于实时采集其所在位置的所述空间运动参数。The bearing according to claim 8, wherein each of the sensors is used to collect the spatial motion parameters of its location in real time.
  10. 根据权利要求8或9所述的轴承,其特征在于,所述运动传感器包括加速度计、陀螺仪和地磁场传感器中的至少一者。The bearing according to claim 8 or 9, wherein the motion sensor includes at least one of an accelerometer, a gyroscope, and a geomagnetic field sensor.
  11. 根据权利要求7至10中任一项所述的轴承,其特征在于,The bearing according to any one of claims 7 to 10, characterized in that
    所述轴承还包括中央处理器和电源,The bearing also includes a central processor and power supply,
    所述中央处理器与所述至少一个传感器和所述信号发送器均数据连通,用于实现对所述至少一个传感器和所述信号发送器的动作的控制,并且The central processor is in data communication with both the at least one sensor and the signal transmitter, and is used to control the actions of the at least one sensor and the signal transmitter, and
    所述电源用于与所述至少一个传感器、所述信号发送器和所述中央处理器均电连接,使得所述电源对所述至少一个传感器、所述信号发送器和所述中央处理器供电。The power supply is used to electrically connect the at least one sensor, the signal transmitter, and the central processor, so that the power supply supplies power to the at least one sensor, the signal transmitter, and the central processor .
  12. 根据权利要求11所述的轴承,其特征在于,The bearing according to claim 11, characterized in that
    所述至少一个传感器、所述信号发送器、所述中央处理器和所述电源以不影响所述轴承可动部件正常运动的方式附着于所述轴承可动部件。The at least one sensor, the signal transmitter, the central processor, and the power supply are attached to the bearing movable member in a manner that does not affect the normal movement of the bearing movable member.
  13. 根据权利要求7至12中任一项所述的轴承,其特征在于,The bearing according to any one of claims 7 to 12, wherein
    所述轴承可动部件包括轴承的滚动体和保持架。The movable part of the bearing includes a rolling body and a cage of the bearing.
  14. 根据权利要求13所述的轴承,其特征在于,所述滚动体为滚子,所述滚子包括能够与所述轴承的滚道接触的外周面以及位于所述滚子的轴向两端部的端面,并且The bearing according to claim 13, wherein the rolling element is a roller, and the roller includes an outer peripheral surface capable of contacting the raceway of the bearing and axial end portions of the roller End face, and
    所述滚子的轴向两端部的端面均形成有安装凹部,各所述安装凹部均收纳安装一个所述传感器。Mounting recesses are formed on the end surfaces of both ends of the roller in the axial direction, and each of the mounting recesses accommodates and mounts one sensor.
  15. 根据权利要求14所述的轴承,其特征在于,所述传感器设置于所述滚子的轴向一端部的第一预定位置和所述滚子的轴向另一端部的第二预定位置,使得所述传感器能够采集所述第一预定位置的空间运动参数和所述第二预定位置的空间运动参数。The bearing according to claim 14, wherein the sensor is provided at a first predetermined position at one axial end of the roller and at a second predetermined position at the other axial end of the roller, so that The sensor can collect spatial motion parameters of the first predetermined position and spatial motion parameters of the second predetermined position.
  16. 根据权利要求15所述的轴承,其特征在于,所述第一预定位置和所述第二预定位置位于所述滚子的中心轴线上且相对于所述滚子的几何中心对称布置。The bearing according to claim 15, wherein the first predetermined position and the second predetermined position are located on the center axis of the roller and are symmetrically arranged with respect to the geometric center of the roller.
  17. 根据权利要求13所述的轴承,其特征在于,所述滚动体为球,所述球的内部形成有安装腔,所述安装腔内设置有所述传感器,使得所述传感器能够采集所述球的几何中心的空间运动参数。The bearing according to claim 13, wherein the rolling element is a ball, and an installation cavity is formed inside the ball, and the sensor is provided in the installation cavity so that the sensor can collect the ball Spatial motion parameters of the geometric center.
  18. 一种用于轴承可动部件的空间运动的参数采集及跟踪方法,包括:A parameter collection and tracking method for space motion of bearing movable parts, including:
    采集轴承可动部件的至少一个预定位置的空间运动参数;以及Collecting spatial motion parameters of at least one predetermined position of the movable part of the bearing; and
    传输和处理所述空间运动参数和/或暂时存储所述空间运动参数以用于延迟传输和处理。The spatial motion parameters are transmitted and processed and/or the spatial motion parameters are temporarily stored for delayed transmission and processing.
  19. 根据权利要求18所述的参数采集及跟踪方法,其特征在于,对所述空间运动参数的处理包括对包含该参数的信号进行信号放大和信号滤波以及利用所获得的参数建立与时间相关的参数曲线。The parameter acquisition and tracking method according to claim 18, characterized in that the processing of the spatial motion parameters includes signal amplification and signal filtering of the signal containing the parameter and establishment of time-related parameters using the obtained parameters curve.
  20. 根据权利要求19所述的参数采集及跟踪方法,其特征在于,对所述空间运动参数的处理还包括利用所述参数曲线与利用仿真计算建立的基准 参数曲线进行比较验证。The method for collecting and tracking parameters according to claim 19, wherein the processing of the spatial motion parameters further comprises comparing and verifying the parameter curve with a reference parameter curve established by simulation calculation.
  21. 根据权利要求18至20中任一项所述的参数采集及跟踪方法,其特征在于,采集轴承可动部件的至少一个预定位置的空间运动参数,包括:在所述轴承可动部件为滚子的情况下,分别采集所述滚子的轴向一端部的第一预定位置的空间运动参数和所述滚子的轴向另一端部的第二预定位置的空间运动参数。The method for collecting and tracking parameters according to any one of claims 18 to 20, characterized in that collecting spatial motion parameters of at least one predetermined position of the movable member of the bearing includes: wherein the movable member of the bearing is a roller In the case of, respectively, the spatial motion parameters of the first predetermined position of one end of the roller in the axial direction and the spatial motion parameters of the second predetermined position of the other end of the roller in the axial direction are collected.
  22. 根据权利要求21所述的参数采集及跟踪方法,其特征在于,所述空间运动参数包括空间位置参数,所述第一预定位置和所述第二预定位置位于所述滚子的中心轴线上且相对于所述几何中心对称布置,The parameter acquisition and tracking method according to claim 21, wherein the spatial motion parameters include spatial position parameters, and the first predetermined position and the second predetermined position are located on the central axis of the roller and Symmetrically arranged with respect to the geometric center,
    当在预定时间点采集的所述第一预定位置的空间位置参数在三个空间坐标轴上的线性数值分别为x1、y1、z1且采集的所述第二预定位置的空间位置参数在三个空间坐标轴上的线性数值分别为x2、y2、z2时,所述滚子的几何中心的空间位置参数在三个空间坐标轴上的线性数值分别为(x1+x2)/2、(y1+y2)/2、(z1+z2)/2。When the spatial position parameters of the first predetermined position collected at predetermined time points have linear values on three spatial coordinate axes of x1, y1, and z1, respectively, and the spatial position parameters of the second predetermined position collected are three When the linear values on the spatial coordinate axes are x2, y2, and z2, the linear position parameters of the geometric center of the roller on the three spatial coordinate axes are (x1+x2)/2, (y1+ y2)/2, (z1+z2)/2.
  23. 根据权利要求21或22所述的参数采集及跟踪方法,其特征在于,所述空间运动参数包括空间角度参数,所述第一预定位置和所述第二预定位置位于所述滚子的中心轴线上且相对于所述几何中心对称布置,The parameter acquisition and tracking method according to claim 21 or 22, wherein the spatial motion parameter includes a spatial angle parameter, and the first predetermined position and the second predetermined position are located on the central axis of the roller Arranged symmetrically with respect to the geometric center,
    当在预定时间点采集的所述第一预定位置的空间角度参数绕着三个空间坐标轴的转动角度数值为α1、β1、γ1且采集的所述第二预定位置的空间角度参数绕着三个坐标轴的转动角度数值为α2、β2、γ2时,所述滚子的几何中心的空间角度参数绕着三个坐标轴的转动角度数值为(α1+α2)/2、(β1+β2)/2、(γ1+γ2)/2。When the rotation angle values of the first predetermined position spatial angle parameters collected at predetermined time points around three spatial coordinate axes are α1, β1, and γ1 and the collected spatial angle parameters of the second predetermined position around three When the rotation angle values of each coordinate axis are α2, β2, and γ2, the rotation angle values of the spatial angle parameter of the geometric center of the roller around the three coordinate axes are (α1+α2)/2, (β1+β2) /2, (γ1+γ2)/2.
  24. 根据权利要求18至23中任一项所述的参数采集及跟踪方法,其特征在于,采集轴承可动部件的至少一个预定位置的空间运动参数,包括:通过基于微机电系统的传感器实时采集所述轴承可动部件的至少一个预定位置 的空间运动参数。The method for collecting and tracking parameters according to any one of claims 18 to 23, characterized in that collecting spatial motion parameters of at least one predetermined position of the movable member of the bearing includes: The spatial motion parameter of at least one predetermined position of the movable part of the bearing.
PCT/CN2018/125037 2018-12-28 2018-12-28 Parameter acquiring and tracking system for spatial motion of bearing movable component, parameter acquiring and tracking method for spatial motion of bearing movable component, and bearing WO2020133265A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880097264.XA CN112654797B (en) 2018-12-28 2018-12-28 Parameter acquisition and tracking system for spatial movement of movable part of bearing, parameter acquisition and tracking method for spatial movement of movable part of bearing, and bearing
PCT/CN2018/125037 WO2020133265A1 (en) 2018-12-28 2018-12-28 Parameter acquiring and tracking system for spatial motion of bearing movable component, parameter acquiring and tracking method for spatial motion of bearing movable component, and bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125037 WO2020133265A1 (en) 2018-12-28 2018-12-28 Parameter acquiring and tracking system for spatial motion of bearing movable component, parameter acquiring and tracking method for spatial motion of bearing movable component, and bearing

Publications (1)

Publication Number Publication Date
WO2020133265A1 true WO2020133265A1 (en) 2020-07-02

Family

ID=71125797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125037 WO2020133265A1 (en) 2018-12-28 2018-12-28 Parameter acquiring and tracking system for spatial motion of bearing movable component, parameter acquiring and tracking method for spatial motion of bearing movable component, and bearing

Country Status (2)

Country Link
CN (1) CN112654797B (en)
WO (1) WO2020133265A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031965A (en) * 2022-03-29 2022-09-09 南京航空航天大学 Test bed for simulating bearing slipping in high-speed rotating machinery and design method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509310A (en) * 1994-03-18 1996-04-23 Reliance Electric Industrial Company Bearing assemblies including proximity probes
CN101105202A (en) * 2007-08-10 2008-01-16 重庆大学 Intelligent bearing with compound sensor
CN101819091A (en) * 2010-03-25 2010-09-01 重庆大学 Combined intelligent monitoring bearing
DE102012202522A1 (en) * 2012-02-20 2013-08-22 Schaeffler Technologies AG & Co. KG Sensor bearing, has outer ring coaxially surrounding inner ring, and circular cage distributing pockets uniformly in circumferential direction, where total number of pockets and total number of rolling bodies satisfy specific equation
CN204437086U (en) * 2014-12-29 2015-07-01 朱桂林 A kind of intelligent bearing with composite sensor
CN105605109A (en) * 2016-02-25 2016-05-25 重庆大学 Sensor integrated sliding ring type bearing structure capable of obtaining angular domain vibration signals
CN105972088A (en) * 2016-07-19 2016-09-28 林德庆 Intelligent bearing with MEMS sensor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335776C2 (en) * 1992-10-24 1996-11-28 Klaus Juergen Nord Method for generating electrical energy in the area of moving technical rolling elements and device therefor
JP2003139140A (en) * 2001-11-02 2003-05-14 Matsushita Electric Ind Co Ltd Bearing device, head supporting device, and disc device
NL1024372C2 (en) * 2003-09-24 2005-03-29 Skf Ab Method and sensor arrangement for load measurement on a bearing with rolling element based on modal deformation.
DE102007011718A1 (en) * 2007-03-10 2008-09-11 Schaeffler Kg Rolling bearings, in particular ball roller bearings
FR2917476B1 (en) * 2007-06-12 2010-02-26 Skf Ab INSTRUMENT BEARING DEVICE WITH INDEXING
FR2935485B1 (en) * 2008-08-28 2010-09-10 Roulements Soc Nouvelle SYSTEM AND METHOD FOR MEASURING THE AXIAL MOTION OF A ROTATING MOBILE WORKPIECE
JP5540728B2 (en) * 2010-01-25 2014-07-02 株式会社ジェイテクト Roller bearing device
DE102011085711A1 (en) * 2011-11-03 2013-05-08 Schaeffler Technologies AG & Co. KG Roller bearing for use as e.g. grooved ball bearing, has force measuring unit provided with force sensor held in bearing cage in place of roller bodies, where force sensor wirelessly transmits sensor signals to evaluation device
DE102012200779B4 (en) * 2012-01-20 2014-12-18 Aktiebolaget Skf rolling elements
DE102012200778A1 (en) * 2012-01-20 2013-07-25 Aktiebolaget Skf Device having at least one rolling element and method for outputting a signal
CN102680123A (en) * 2012-05-30 2012-09-19 西安交通大学 System and method for on-line monitoring temperature and stress of retainer
DE102015216472B4 (en) * 2015-08-28 2018-05-17 Aktiebolaget Skf Bearing arrangement with a Sensorwälzkörper
DE102017210289A1 (en) * 2016-06-29 2018-01-04 Aktiebolaget Skf Roller with integrated load cell
DE102017208871A1 (en) * 2017-05-24 2018-11-29 Aktiebolaget Skf roller bearing
CN107605974A (en) * 2017-10-24 2018-01-19 无锡民联汽车零部件有限公司 Wireless type is held around pressure detecting profile shaft
CN108343678A (en) * 2018-04-13 2018-07-31 无锡民联汽车零部件有限公司 Automobile bearing with the detection of through-hole roller photoelectric whirl

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509310A (en) * 1994-03-18 1996-04-23 Reliance Electric Industrial Company Bearing assemblies including proximity probes
CN101105202A (en) * 2007-08-10 2008-01-16 重庆大学 Intelligent bearing with compound sensor
CN101819091A (en) * 2010-03-25 2010-09-01 重庆大学 Combined intelligent monitoring bearing
DE102012202522A1 (en) * 2012-02-20 2013-08-22 Schaeffler Technologies AG & Co. KG Sensor bearing, has outer ring coaxially surrounding inner ring, and circular cage distributing pockets uniformly in circumferential direction, where total number of pockets and total number of rolling bodies satisfy specific equation
CN204437086U (en) * 2014-12-29 2015-07-01 朱桂林 A kind of intelligent bearing with composite sensor
CN105605109A (en) * 2016-02-25 2016-05-25 重庆大学 Sensor integrated sliding ring type bearing structure capable of obtaining angular domain vibration signals
CN105972088A (en) * 2016-07-19 2016-09-28 林德庆 Intelligent bearing with MEMS sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031965A (en) * 2022-03-29 2022-09-09 南京航空航天大学 Test bed for simulating bearing slipping in high-speed rotating machinery and design method

Also Published As

Publication number Publication date
CN112654797B (en) 2022-11-01
CN112654797A (en) 2021-04-13

Similar Documents

Publication Publication Date Title
CN106821391B (en) Human body gait acquisition and analysis system and method based on inertial sensor information fusion
Liu et al. A mobile force plate and three-dimensional motion analysis system for three-dimensional gait assessment
WO2018084307A1 (en) State checking device for embedded object, operation checking device, and state checking method for embedded object
CN113227926B (en) Condition monitoring device and method for monitoring motor
CN102749099B (en) Detection ball being capable of realizing medium motion measurement of ball mill
JP7406627B2 (en) Apparatus and method for monitoring a tablet press, preferably during continuous operation, by a measuring device attached to the press punch
CN103615663A (en) Robot for detecting inner condition of pipeline
WO2020133265A1 (en) Parameter acquiring and tracking system for spatial motion of bearing movable component, parameter acquiring and tracking method for spatial motion of bearing movable component, and bearing
CN109740270A (en) The big L/D ratio peg-in-hole assembly system and method predicted and analyzed based on contact force and torque
CN208751608U (en) Testing agency for bearing block internal control
Hasibuzzaman et al. Vibration Measurement & analysis using arduino based accelerometer
CN115046578A (en) Circuit structure integrating multiple sensing assemblies and terminal comprising circuit structure
CN108803598A (en) Polar region robot group operation system and cooperation method
CN109238273A (en) A kind of roller-coaster motion state monitoring method and device
CN208751862U (en) Testing agency for the exportable bearing block of data
CN108871778B (en) Detection mechanism for bearing pedestal capable of outputting data
WO2022151816A1 (en) Robot device and control method therefor
CN110864739A (en) Equipment monitoring and analyzing system based on wireless Internet of things and monitoring and analyzing method thereof
CN107063294A (en) A kind of motion state detection system of elevating fire truck arm support
Chang et al. Wireless sensors for intelligent ball screws monitoring
Eriksson et al. Wireless vertical displacement measurment during running using an accelerometer and a mobile phone
CN206111183U (en) Segment erector space gesture measuring device and shield construct machine with inertial sensor
CN214473461U (en) Micro wireless acceleration real-time detection system for reciprocating impact mechanism
CN221921308U (en) Multi-mode health state monitoring system of water pump unit
CN110855797A (en) Sheep behavior monitoring system and method based on action recognition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944455

Country of ref document: EP

Kind code of ref document: A1