WO2020132770A1 - Virus-like particles (vlp) of the infectious salmon anemia virus (isav) that comprise matrix protein and one or more antigenic proteins of the virus; production method, composition, vaccine and fish feed; recombinant baculovirus; and vaccination kit; and - Google Patents

Virus-like particles (vlp) of the infectious salmon anemia virus (isav) that comprise matrix protein and one or more antigenic proteins of the virus; production method, composition, vaccine and fish feed; recombinant baculovirus; and vaccination kit; and Download PDF

Info

Publication number
WO2020132770A1
WO2020132770A1 PCT/CL2019/050152 CL2019050152W WO2020132770A1 WO 2020132770 A1 WO2020132770 A1 WO 2020132770A1 CL 2019050152 W CL2019050152 W CL 2019050152W WO 2020132770 A1 WO2020132770 A1 WO 2020132770A1
Authority
WO
WIPO (PCT)
Prior art keywords
isav
virus
proteins
fish
matrix protein
Prior art date
Application number
PCT/CL2019/050152
Other languages
Spanish (es)
French (fr)
Inventor
Marcelo Cortez San Martin
Eugenio German SPENCER OSSA
Luis Eduardo COTTET BUSTAMANTE
Original Assignee
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile filed Critical Universidad De Santiago De Chile
Publication of WO2020132770A1 publication Critical patent/WO2020132770A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/866Baculoviral vectors

Definitions

  • Infectious salmon anemia virus (ISAV) virus-like particles (VLPs) comprising the matrix protein and one or more antigenic proteins of said virus; method of obtaining, composition, vaccine and food for recombinant baculovirus fish; and vaccination kit.
  • ISAV Infectious salmon anemia virus
  • VLPs virus-like particles
  • the present invention relates to the field of veterinary medicine, particularly with vaccines and animal health in the field of aquaculture.
  • the present invention relates to virus-like particles (VLPs), formed by molecular complexes that comprise proteins of the infectious salmon anemia virus (ISAV) whose genes are expressed in insect cells, and which are used as vaccines in conjunction with cell bodies induced as adjuvants.
  • VLPs virus-like particles
  • ISAV infectious salmon anemia virus
  • the pharmaceutical compositions, vaccines, fish feed and kit comprising the VLPs, as well as the use of the VLPs to prepare drugs.
  • ISA Infectious salmon anemia
  • Atlantic salmon Salmo salar
  • ISAV infectious salmon anemia virus
  • the ISAV virus worldwide has been associated with the appearance of highly deadly outbreaks in the main Atlantic salmon-producing countries, so that between 1988 and 2008 the virus caused production losses in both Norway, Canada, Scotland, United States, Faroe Islands, as well as Chile (Thorud and Djupvik, 1988; Kibenge et al., 2009; Rodger et al., 1998; Bouchard et al., 1999; Rowley et al., 1999; Bouchard et al., 2001 ; Christiansen et al., 2011).
  • the infectious salmon anemia virus is classified as a member of the Orthomyxoviridae family, its genome is of single-stranded RNA of negative polarity, which is divided into 8 segments, it has a membranous covering, of associated cellular origin to surface viral glycoproteins, and has a helical capsid.
  • each of the 8 RNA segments is associated with multiple nucleoprotein units (NP) and a copy of the RNA-dependent RNA polymerase, which is made up of a heterotimer of the protein subunits of PB1, PB2 and PA, thus forming the ribonucleoprotein complex (RNP).
  • NP nucleoprotein units
  • RNP ribonucleoprotein complex
  • the matrix protein (Mx) is found towards the internal face of the lipid covering, whose function is to provide structural support to the viral particles, while the hemagglutinin (HE) and fusion (F) glycoproteins are towards the external face. , which have the function of recognizing the viral receptor in the cell, at the beginning of the infection, and releasing the virus during the generation of a new particle and fusing the viral membrane with that of the endosomes, respectively.
  • the basis for the development of vaccines to protect fish from ISAV infection can be based on the following factors: (i) A relationship has been established between infections of Atlantic salmon with increases in blood IgM levels; (ii) Fish have been detected that carry ISAV but do not develop the disease; and (iii) it has been observed that salmon infected with low pathogenic ISAV, or those that survive one infection, are better able to resist a second infection (Plarre et al., 2005; Cipriano, 2009; Ritchie et al., 2009 ). In addition to the above, the presence of anti-ISAV antibodies has been established in samples of naturally infected wild salmon.
  • ISA virus subunit vaccines can be described in: AKZO NOBEL NV patent US6471964 (CL 2862-2000; granted), which describes a vaccine developed with a protein structural called SP-1, which was produced in baculovirus; US Patent 7183404 (CL 1399-2000; granted) to AKZO NOBEL NV disclosing the use of an ISAV protein with a mass of 42.8 kDa; US patent 7279167 (CL2355 - 2002) from INTERVET INT.
  • BV which describes a vaccine developed with a 48 kDa protein from ISAV which was produced in baculovirus
  • publications WO01 10469 (CL 750 - 2002) OTTAWA HEALTH RESEARCH INST. NOVARTIS AG.
  • WO0149712 (CL 19-2001) AKZO NOBEL NV, describe several proteins that are declared as antigenic and that can be used as vaccines.
  • Multivalent vaccines for salmon are marketed in Chile, which act on various pathogens, including isolates of the ISA virus isolated in Chile (FAV). Table 1 below includes vaccines registered with the Agricultural and Livestock Service (SAG).
  • SAG Agricultural and Livestock Service
  • VLPs virus-like particles
  • VLPs are generated by simultaneous expression of the structural proteins of a virus and that when self-assembling are particles that resemble the viral structure, but lack their genetic material. In a healthy individual, this allows an infection to be emulated but without the development of the disease, inducing the immune response against VLPs, which by resembling the structure of the viral agent, are able to protect against a subsequent infection by the virus (Noad & Roy, 2003).
  • the ISAV study area there are no works that demonstrate the generation of this type of structure, but in other viral fish systems there are examples in this research area.
  • IPNV infectious pancreatic necrosis virus
  • GNNV grouper nerve necrosis virus
  • VLPs when used as immunogens to vaccinate salmon and grouper, in the case of IPNV and GNNV respectively, the VLPs were able to generate a protective immune response associated with the increase in the levels of antibodies against the virus, which was subsequently related to a decrease in viral load and lower cumulative mortality when fish were challenged with the virus (Lu et al., 2003; Allnutt et al., 2007).
  • VLPs virus-like immunogenic particles
  • SAVs salmonid alphaviruses
  • VLPs are produced in Baculovirus that presents a vector that comprises a polynucleotide that encodes an alphavirus capsid protein, E3 protein, an E2 envelope protein, 6K protein, and E1 protein. This document describes specific temperature conditions of infection of insect cells by baculovirus to produce alphavirus VLPs.
  • the ISA virus is a negative polarity RNA virus, a member of the Oortomyxovirus family, which is made up of the following six genera: Influenza virus A. Influenza virus B. Influenza virus C, Isavirus. Thogotovirus and Quaraniavirus. The first three viruses cause influenza in vertebrates, including birds, humans, and other mammals.
  • the ISA virus is the only member of the Orthomyxovirus family capable of infecting fish, giving its name to the Isavirus genus.
  • Thogotoviruses are arboviruses, which infect vertebrates and invertebrates, such as ticks and mosquitoes. Quaranjaviruses predominantly infect arthropods and birds and are transmitted between vertebrates by ticks, resembling members of Thogotoviruses.
  • the ISA virus differs from influenza viruses in that the surface protein Hemagglutinin acetyl esterase (HE) also has an activity similar to neuroaminidase (NA) and has a separate fusion protein, resembling the Paramixoviridae viral family. While influenza viruses have a Hemagglutinin esterase (HA) protein, which also has fusion activity and also has a Neuraminidase (NA) protein. In the state of the art, the formation of influenza virus VLPs is described, by means of the expression of the matrix protein individually or simultaneously to hemagglutinin, neuraminidase and / or nucleoprotein, using heterologous expression systems such as baculovirus / insect cells.
  • HE Hemagglutinin acetyl esterase
  • NA Neuraminidase
  • Influenza VLPs structurally similar to the native virus, added that when used to immunize mice or rats, they allowed the generation of an immune response capable of protecting them from exposure to a lethal dose of the virus (W02002000885, W02005020889, W02007047831, W02009012489, WQ2007130327. W02008148104 or W02007130330).
  • the formation of influenza virus VLPs with the protein hemagglutinin or modified hemagglutinin, expressed in plant cells, has also been described (W02009076778, W02008148104,
  • ISAV has several structural differences with influenza virus, which do not make it predictable that the exact same ISAV VLP preparation strategy can be followed as that disclosed in the state of the art for influenza virus VLP.
  • Influenza virus has the Receptor Destructive Activity or Neuraminidase domain, in a single protein of the same name, on the other hand, it shares in a same polypeptide the receptor binding domain with that of fusion, this protein being called Hemagglutinin .
  • the ISA virus has a fusion domain in a single polypeptide called the Fusion protein, and on the other hand, the binding domain and destructive activity of receptor are found on a single polypeptide called Hemagglutinin-Esterase (Cottet et al., 2010).
  • influenza virus VLP vaccine strategy which has been effective in humans, will be functional in salmonids, and it is necessary to demonstrate this by experimenting with recombinant proteins.
  • WO2013036745 (CL 551-2014), which describes bivalent VLPs, IPNV and ISAV.
  • this invention has fundamental differences with the solution proposed in the present invention.
  • WO 2013036745 describes viral particles similar to IPNV, this is a virus with a viral capsid that ISAV HE antigenic epitopes have been inserted into VP2 proteins.
  • the solution proposed in the present invention creates viral particles similar to ISAV, a virus with a membrane that surrounds it.
  • the VLP of the invention incorporates the presentation of more than one complete ISAV antigenic protein, with its protein conformation similar to that found in the virus.
  • VLP vaccines have advantages in relation to live attenuated or dead virus vaccines since they do not work with infectious material or with possible reversion to infectious viruses.
  • VLP vaccines have the advantage over subunit vaccines in that antigens have a multimeric conformation similar to antigenic proteins within the infecting virus. This allows the vaccinated organism to identify said structure as an infectious virus, neutralize it and be able to generate an immunological memory against infections with the infectious pathogen.
  • VLPs structures that can be described as VLPs are taught by the expression of at least one matrix protein and at least one of its ISAV antigenic proteins. It is also the scope of this Invention Pharmaceutical or vaccine compositions, alternatives to existing ones, comprising VLPs expressing a matrix protein and one or more of the ISAV antigenic proteins.
  • Part of the present invention is the use of the ISAV VLPs of the present invention to immunize a population of virus-free Atlantic salmon.
  • the use of VLP in salmon of the present invention allowed to decrease the mortality accumulated over time after the viral challenge, observing a measurable increase in the levels of anti-ISAV IgM and of the expression of genes related to the response of the immune system.
  • the invention features an alternative ISAV vaccine to commercially available inactivated and subunit vaccines.
  • Figure 1 Characteristics of the Baculovirus vector pBac4 41.
  • the vector has as its skeleton the plasmid pBac4x from Merck, which was used to clone the gene that encodes M1 from ISAV 752_09, for the M2 from ISAV 752_09 low the Polh promoter command, for HE of ISAV 752_09 under the command of the P10 promoter, for Protein Fusion of ISAV 752_09 under the command of the Polh promoter.
  • Vector that has resistance to Ampicillin and an element that allows it to replicate in E. coli and recombine with the baculovirus genome with the BacVector3000 system (Merck).
  • Figure 2 Characteristics of the Baculovirus vector pBac4 42.
  • the vector has as its skeleton the plasmid pBac4x from Merck, which was used to clone the gene that encodes NP of ISAV 752_09 under the HE promoter of ISAV 901_09 under the command of the P10 promoter, for protein Fusion of ISAV 901 _09 under the command of the Polh promoter.
  • Vector that has resistance to Ampicillin and element that allows it to replicate in E. coli and recombine with the baculovirus genome with the BacVector3000 system (Merck).
  • Figure 3 Simultaneous expression of fusion proteins (F), hemagglutinin (HE) and matrix (M) of ISAV 901 _09 in Sf9 insect cells.
  • F fusion proteins
  • HE hemagglutinin
  • M matrix
  • A Polyacrylamide gel electrophoresis under denaturing conditions of the total proteins obtained from Sf9 cells, M corresponds to the molecular mass standard Pagerule Unstained Protein Ladder, 1 uninfected Sf9 cells, 2 Sf9 cells infected with control baculovirus and 3 infected Sf9 cells with recombinant baculoviruses.
  • FIG. 4 Electron microscopy of viruses and VLPs obtained by purification with a sucrose cushion and negatively stained.
  • A ISAV 901 _09 virus obtained from ASK cells.
  • B VLPs obtained by the co-expression of fusion, hemagglutinin and matrix proteins in Sf9 insect cells. In both images the bar represents 100 nm.
  • FIG. 5 Graphic representation of the Kaplan-Meier estimator for the survival of fish vaccinated with VLPs and control fish vaccinated with PBS buffer. The total number of dead fish was counted up to day 80 post-vaccination. The graph compares the mortality of fish vaccinated with VLPs versus fish vaccinated with placebo (PBS). The arrow indicates the point at which the ISAV challenge was performed.
  • Commercial vaccines for the ISA virus have been found to protect no more than 40% in the field and an acceptable vaccine is defined as one that has an RPS of over 50%. In this case, an RPS of 57.3% was obtained with the VLPs.
  • the invention relates to infectious salmon anemia virus (ISAV) virus-like particles (VLPs) comprising the matrix protein and one or more antigenic proteins of the fish infectious anemia virus.
  • the matrix protein is: matrix protein 1 (M 1) and / or matrix protein 2 (M 2).
  • the ISAV virus-like particles comprise one or more of the ISA virus antigenic proteins selected from the following proteins: hemagglutinin (HE), fusion (F) and nucleoprotein (NP).
  • the ISAV virus-like particles comprise at least the ISAV antigenic proteins HE, F and the matrix protein M1, as well as, in addition, NP and M2 proteins may be involved, in addition.
  • Viral proteins in particular, come from isolates of ISAV isolated in Chile, although they are highly similar to strains described in Scotland, Norway, the United States, Canada, the Faroe Islands, Australia, Ireland, England, Spain, and Japan. Proteins can come from ISAV strains described as virulent as well as avirulent, for example ISAV: ISAV genotypes, HPR00, HPROa, HPROb, HPR20, HPR6, HPR14, HPR36, HPR17, HPR9b, HPR3a, HPR3, HPR4, HPR4b , HPR9, HPR21, HPR10, HPR12, HPR18, HPR31, HPR1 1 a, HPR13, HPR16, HPR30, HPR2d, HPR19, HPR35, HPR2, HPR2c, HPR1, HPR5, HPR34, HPR7a, HPR7b, HPR7c, HPR7e, HPR7e, HPR7e , HPR7i, HPR15a
  • the invention also relates to a recombinant baculovirus expressing the genes for ISAV proteins, which comprises the nucleic acid encoding the matrix protein and one or more antigenic proteins of the infectious salmon anemia virus.
  • the matrix protein is: matrix protein 1 (M 1) and / or matrix protein 2 (M 2).
  • the recombinant baculoviruses express the genes for the ISAV proteins and comprise nucleic acids encoding one or more antigenic proteins of the infectious fish anemia virus selected from the following proteins: hemagglutinin (HE), fusion (F) and nucleoprotein (NP).
  • the VLP particles additionally comprise antigenic proteins from Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, pancreatic necrosis virus, hemorrhagic septicemia virus, infectious hematopoietic necrosis virus, Piscine reovirus virus, vibriosis, Aeromonas salmonicida.
  • recombinant baculoviruses comprise nucleic acids that encode the genes for ISAV antigenic proteins: HE, F, NP, M1, and M2.
  • baculoviruses express the genes of virus proteins from isolated ISAV strains in Chile, although they are similar to strains from Scotland, Norway, the United States, Canada, Faroe Islands, Australia, Ireland, England, Japan. Proteins can come from ISAV strains named: ISAV 752_09, ISAV 901_09, ST28 / 97, ST25 / 97, ST27 / 97, 97/19615, SK-05/144, MR102 / 05, SF83 / 04 , SK 779/06, (Frederick SB Kibenge et al. 2009).
  • the recombinant baculovirus expressing the genes of the ISAV proteins according to the present invention may be that generated with the vector represented in the scheme of Figure 1 or Figure 2.
  • the invention further relates to a pharmaceutical composition
  • a pharmaceutical composition comprising one or more ISAV virus-like particles (VLPs) defined above in the present disclosure.
  • a vaccine against the infectious salmon anemia virus comprising one or more ISAV virus-like particles (VLPs) according to the preceding description, a pharmaceutically acceptable carrier and one or more adjuvants. pharmaceutically acceptable in fish.
  • the adjuvant of the vaccine of the invention can be selected from one or more of the following group: baculovirus lysate, lipoproteins, modified lipoproteins, cell bodies, Montanide, Alumina, water / mineral oil emulsion (W / O), squalene, water / squalene emulsion , Freund 's complete adjuvant 's, Freund's incomplete adjuvant, saponin, Quillaja Saponaria, keyhole limpet hemocyanin, nonionic block polymers (NBP), dimethyl dioctadecyl ammonium bromide (DDA).
  • baculovirus lysate baculovirus lysate
  • lipoproteins modified lipoproteins
  • cell bodies Montanide
  • Montanide Montanide
  • Alumina water / mineral oil emulsion
  • W / O water / mineral oil emulsion
  • squalene water / squalene emulsion
  • the adjuvant is one or more of the following group: baculovirus lysate, lipoproteins, cell bodies, Montanide, water / mineral oil emulsion (W / O).
  • the vaccine adjuvant is a baculovirus and cell body lysate.
  • the vaccine against infectious salmon anemia virus (ISAV) may additionally contain one or more types of ISAV vaccines.
  • Additional vaccines may be, but are not limited to: ISAV subunit vaccines or inactivated ISAV viruses. Inactivated viruses preferably come from isolates of ISAV isolated in Chile. In other Preferred embodiment vaccines further comprise vaccines against other commercially important fish pathogens in aquaculture.
  • Additional vaccines are selected from the group of vaccines against: Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, pancreatic necrosis virus, hemorrhagic septicemia virus, infectious hematopoietic necrosis virus, Piscine reovirus virus, vibriosis, Aero monas salmonicida.
  • the vaccines of the invention are formulated for administration by oral, immersion, intraperitoneal, intramuscular or parenteral routes.
  • a fish food comprising an ISAV VLP comprising the matrix protein and one or more antigenic proteins of the infectious fish anemia virus.
  • the matrix protein is: matrix protein 1 (M 1) and / or matrix protein 2 (M 2).
  • the ISAV virus-like particles comprise one or more of the antigenic proteins of the infectious fish anemia virus selected from the following proteins: hemagglutinin (HE), fusion (F) and nucleoprotein (NP).
  • the food may also have other ISAV vaccines or other fish pathogens, such as those detailed above.
  • the invention is related to the use of ISAV virus-like particles (VLPs) according to the previous descriptions, because it serves to prepare a medicine for the protection or treatment of infectious salmon anemia in aquaculture or other aquaculture diseases.
  • the present invention is related to the protection or treatment of fish, because it comprises administering the virus-type particles (VLP) of the present invention to fish.
  • the method consists in the protection or treatment of diseases, such as infectious salmon anemia.
  • the virus-like particles (VLP) of the present invention or vaccines detailed above are administered to salmon or trout.
  • the type of salmon can be: White Corregono (Coregonus albula), Common Lavaret (Coregonus lavaretus), Corégono peled (Coregonus peled), Pink salmon (Oncorhynchus gorbuscha), Keta salmon (Oncorhynchus ketá), Silver salmon or Coho (Oncorhynchus kisutch) , Rainbow trout (Onchorinchus mykiss), Atlantic salmon (Salmo salar), Brown trout (Salmo truttá), Salvelino (Salvelinus alpinus), Brook trout (Salvelinus fontinalis), Lake trout (Salvelinus namaycush), T ⁇ malo
  • the present invention is related to a vaccination kit for fish that comprises a package that contains the ISAV VLPs described in the present invention or the vaccines defined in the present description.
  • the vaccination kit additionally comprises one or more packages with vaccines for other fish pathogens.
  • Vaccines other than ISAV virus-type particles (VLPs) may be vaccines against one or more of the following pathogens: Pisciricketsia salmonis, Renibacterium salmoninarum,
  • kits may comprise packages with subunit ISAV or inactivated virus vaccines.
  • the invention further relates to an ISAV VLP production method according to the above description because it comprises the steps of: Incorporating one or more recombinant DNA molecules which encode the ISAV matrix protein plus at least one ISAV antigenic protein in a recombinant viral vector.
  • ISAV antigenic proteins can be selected from F, HE and NP proteins and matrix proteins can be selected from M1 and M2.
  • the viral vector can be baculovirus, however, it can be other adenoviral, poxyviral, cytomegalovirus, lentiviral, etc. vectors.
  • the host cell may be an insect, yeast, plant, or mammalian cell. In a particularly preferred embodiment, the host cell is an insect cell.
  • the invention relates to an ISAV VLP vaccine production method comprising the steps of: incorporating one or more recombinant DNA molecules which encode the ISAV matrix protein plus, at least one ISAV antigenic protein in a recombinant viral vector; infecting host cells and lysing host cells.
  • the preferred viral vector is a baculovirus and the host cell is an insect cell.
  • the VLP vaccine production method comprises an additional step of incorporating an adjuvant into the cell lysate and / or a pharmaceutically acceptable vehicle.
  • the adjuvant is selected from one or more of the following group: baculovirus lysate, lipoproteins, modified lipoproteins, cell bodies, Montanide, Alumina, water / mineral oil emulsion (W / O), squalene, water / squalene emulsion, complete Freund's adjuvant ' s, incomplete Freund's adjuvant, saponins, Quillaja Saponaria, hemocyanin Keyhole limpet, non-ionic block polymers (NBP), dimethyl dioctadecyl ammonium bromide (DDA).
  • baculovirus lysate lipoproteins, modified lipoproteins, cell bodies, Montanide, Alumina, water / mineral oil emulsion (W / O), squalene, water / squalene emulsion, complete Freund's adjuvant ' s, incomplete Freund's adjuvant, saponins, Quillaja Saponaria, hemo
  • Example 1 Production and characterization of recombinant proteins of the infectious salmon anemia virus.
  • ATCC CRL-171 1 Cells and viruses Spodoptera frugiperda Sf9 cells (ATCC CRL-171 1) were maintained as adhered culture in SF-900 II medium (Invitrogen) supplemented with 0.1% fetal bovine serum. ISAV 901 _09 virus was maintained in ASK Atlantic salmon cells (ATCC CRL-2747) in L-15 medium as previously described (www.atcc.org).
  • the codogenic use of the four genes was optimized for expression in the Sf9 insect cell line, being biochemically synthesized (GenScript, Piscataway, NJ) and cloned into the pBac4x transfer vector (Merck-Millipore).
  • Recombinant baculoviruses were generated with the BacVector-2000 Triple Cut expression system (Merck-Millipore).
  • Recombinant baculoviruses were generated in which the sequences of the genes selected as antigens were optimized for expression in insect cells with this system. For this, the sequences of the genes that generate the fusion proteins and hemagglutinin of both Chilean viruses, the ISAV 901 _09 and ISAV 752_09 strains, were synthesized.
  • GenBank accession numbers of the sequences used in this study are GU830895 to GU830902 for the ISAV752_09 isolate and GU830903 to GU830910 for the ISAV901_09 isolate plus nucleoprotein and matrix, optimizing codogenic use and were subsequently cloned into the transfer vector pBac4x (Cottet L. and cois 2010). This process was carried out by the company GenScript, generating the vectors pBac4 41 ( Figure 1) and pBac4 42 ( Figure 2).
  • the selection of the proteins to be expressed was carried out for structural reasons, so fusion and hemagglutinin were selected because they are the two proteins on the viral external surface, which makes them the best candidates to be recognized.
  • the immune system of the fish while the expression of the matrix protein was carried out since it is the one that stabilizes the viral particles, added to the fact that in convalescent fish from the disease and in mice that have been immunized with ISAV, the presence of antibodies against this protein was detected (Rimstad et al., 201 1).
  • the molecular mass of the recombinant matrix protein corresponds to approximately 22 kDa, a value similar to that obtained in the same experiment for the protein of viral origin, which was determined in 24 kDa ( Figure 3).
  • the result agrees with the molecular mass described in the matrix literature, which varies between 22 and 24 kDa (Rimstad et al., 201 1).
  • ASK and Sf9 cells were infected with ISAV and recombinant baculoviruses, respectively, as explained in Example 1.
  • the purification and partial concentration of both types of particles was performed by a sucrose cushion (Chen et al., 2007), with some modifications.
  • the ASK cells were subjected to 3 cycles of freeze-thaw, Sf9 were not, the medium of both infections was centrifuged at 5,000 xg to eliminate the cellular debris, subsequently, the supernatant was centrifuged at 100,000 xg for 2 hours at 4 Q C.
  • the pellet was resuspended in 1.0 mL of 0.2 M pH 7.2 phosphate buffer, and the VLPs were partially purified by passing them through a 30% sucrose buffer in 0.2 M pH 7.2 phosphate buffer, centrifuging at 150,000 xg for 2 hours at 4 Q C and finally the obtained sediment was resuspended in 50 pL of phosphate buffer.
  • Viral particles and VLPs were absorbed for 15 minutes directly on gold grids and washed three times in PBS for 1 minute. For negative staining, the grids were incubated for 1 minute in 1% w / v phosphotungstic acid (pH 6.5). The samples were visualized in a Phillips CM100 transmission electron microscope operating at 80 kV.
  • Figure 4 presents the photomicrographs obtained by transmission electron microscopy of the samples corresponding to ISAV isolate 901 _09 from ISAV (A) and the VLPs obtained by co-expression in insect cells (B). In the photograph corresponding to ISAV, membranous structures with spherical and pleiomorphic morphologies can be observed.
  • the vaccine formulation two flasks were prepared with 50 mL of suspension from the Hi5 insect cell line at a density of 5x10 5 cells / mL, these were infected with the Bac41 recombinant baculovirus at an MOI of 0.1. The infection was maintained for 5 days and the cells were fixed with formaldehyde to a final concentration of 0.01% v / v. From this suspension, the surface proteins were quantified by Western blotting and 1 vaccine formulation was generated. The vaccine formulation was made using the cell lysate of the baculovirus infected insect cells and the adjuvant was added. A control was added in which the cell suspension was replaced by PBS. In unpublished data from these inventors, different adjuvants were tested in fish with VLP vaccines. For the case of the present invention, the adjuvant was used with the best results, however, immunogenicity is shown in all the adjuvants tested.
  • Example 4 Vaccination of salmon with the immunogenic composition comprising ISAV VLP
  • each formulation consisting of the structural fusion proteins, hemagglutinin and matrix of ISAV 901 _09 expressed using the Baculovirus-insect cell system along with apoptotic bodies used as co-adjuvant to four groups of 20 individuals.
  • 5 fish vaccinated with the placebo were added per pond.
  • an inoculum was obtained from viral infections to the SHK-1 cell line, the supernatant was collected and centrifuged at 3,000 xg for 10 min to eliminate the cell debris in suspension.
  • Cohabitation infection has previously been described in Atlantic salmon as an effective way to emulate infection under natural conditions (Jones et al., 1999; Mikalsen et al., 2005b; Lauscher et al., 201 1), while as placebo PBS was used since in previous vaccination trials in fish, this buffer has been used for this purpose (Thiéry et al., 2006; Lauscher et al., 2011; Munang'andu et al., 2012).
  • the evaluation of the immune response of the vaccine constituted by the VLPs through the analysis of the expression of genes related to the immune response through qRT-PCR, show that the fish vaccinated with the VLPs are capable of inducing the relative expression of IFN-y, TGF-b and IL-10, but not CD4. This suggests activation of the innate response, probably from wild-type killer cells by increased expression of IFN- and and a regulation of the response by cytokines TGF-b and IL-10, which could explain why it was not observed. adhesions or melanosis in vaccinated fish. While, after the challenge, the fish vaccinated with VLPs show an increase in the relative expression of IFN-g and especially of CD4, which suggests an activation of the acquired cellular immune response that is the result required to obtain a response. optimal against viral infection.
  • Cipriano R.C., 2009. Antibody against infectious salmon anaemia virus among feral Atlantic salmon (Salmo salar). Ices J. Mar. Sci. 66, 865-870.
  • Kibenge M.T., Opazo, B., Rojas, A.H., Kibenge, F.S.B., 2002. Serological evidence of infectious salmon anaemia virus (ISAV) infection in farmed fishes, using an indirect enzyme-linked immunosorbent assay (ELISA). Dis. Aquat. Organ. 51, 1-11.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention relates to the field of veterinary medicine, particularly vaccines and animal health in aquaculture. The invention concerns virus-like particles (VLP) formed by molecular complexes comprising proteins of infectious salmon anemia virus (ISAV), the genes of which are expressed in insect cells, and which are used as vaccines together with induced cellular bodies as adjuvants. The invention also concerns pharmaceutical compositions, vaccines, fish feed and a kit, which comprise the VLP, and the use of the VLP to prepare drugs.

Description

Partículas tipo-virus (VLP) del virus de la anemia infecciosa del salmón (ISAV) comprendiendo la proteína de matriz y una o más proteínas antigénicas se dicho virus; método de obtención, composición, vacuna y alimento para peces baculovirus recombinante; y kit de vacunación. Infectious salmon anemia virus (ISAV) virus-like particles (VLPs) comprising the matrix protein and one or more antigenic proteins of said virus; method of obtaining, composition, vaccine and food for recombinant baculovirus fish; and vaccination kit.
Campo de la invención Field of the Invention
El presente invento se refiere al campo de la medicina veterinaria, particularmente, con vacunas y sanidad animal en el ámbito de la acuicultura. El presente invento se relaciona con partículas tipo-virus (VLP, Virus Like Partióles), formadas por complejos moleculares que comprenden proteínas del virus de la anemia infecciosa de salmón (ISAV) cuyos genes se expresan en célula de insectos, y que son utilizadas como vacunas en conjunto con cuerpos celulares inducidos como adyuvantes. Es también del ámbito del presente invento, las composiciones farmacéuticas, vacunas, alimento para peces y kit que comprenden los VLP, como también el uso de los VLP para preparar medicamentos. The present invention relates to the field of veterinary medicine, particularly with vaccines and animal health in the field of aquaculture. The present invention relates to virus-like particles (VLPs), formed by molecular complexes that comprise proteins of the infectious salmon anemia virus (ISAV) whose genes are expressed in insect cells, and which are used as vaccines in conjunction with cell bodies induced as adjuvants. It is also within the scope of the present invention, the pharmaceutical compositions, vaccines, fish feed and kit comprising the VLPs, as well as the use of the VLPs to prepare drugs.
Descripción del estado de la técnica Description of the state of the art
La anemia infecciosa del salmón (ISA) es una enfermedad multisistémica que afecta principalmente al salmón del Atlántico ( Salmo salar) en cautiverio y que es causada por el virus de la anemia infecciosa del salmón (ISAV) (Thorud y Djupvik, 1988). Infectious salmon anemia (ISA) is a multisystemic disease that mainly affects Atlantic salmon (Salmo salar) in captivity and is caused by the infectious salmon anemia virus (ISAV) (Thorud and Djupvik, 1988).
El virus ISAV a nivel mundial ha sido asociado con la aparición de brotes altamente mortales en los principales países productores de salmón del Atlántico, es así que entre los años 1988 y 2008 el virus produjo pérdidas en la producción tanto en Noruega, Canadá, Escocia, Estados Unidos, Islas Faroe, así como Chile (Thorud y Djupvik, 1988; Kibenge y cois., 2009; Rodger y cois., 1998; Bouchard y cois., 1999; Rowley y cois., 1999; Bouchard y cois., 2001 ; Christiansen y cois., 2011 ). En los últimos brotes de altas mortalidades registrados en Chile entre los años 2007 y 2008, los centros productores de salmón del Atlántico de este país registraron una merma en su producción de 300.000 toneladas anuales, bajando de 400.000 toneladas de peces en el año 2006 hasta 100.000 toneladas en el año 2010 (Asche, F., Hansen, H., Tveteras, R., Centrum, S.T. 2010. The Salmón Disease Crisis in Chile. Marine Resource Economics, 24: 405-411 ) con graves consecuencias económicas y sociales. Es en base a estas pérdidas que es imperativo la búsqueda y hallazgo de un método efectivo para controlar la enfermedad. The ISAV virus worldwide has been associated with the appearance of highly deadly outbreaks in the main Atlantic salmon-producing countries, so that between 1988 and 2008 the virus caused production losses in both Norway, Canada, Scotland, United States, Faroe Islands, as well as Chile (Thorud and Djupvik, 1988; Kibenge et al., 2009; Rodger et al., 1998; Bouchard et al., 1999; Rowley et al., 1999; Bouchard et al., 2001 ; Christiansen et al., 2011). In the latest high mortality outbreaks registered in Chile between 2007 and 2008, the Atlantic salmon producing centers in this country registered a decrease in their production of 300,000 tons per year, dropping from 400,000 tons of fish in 2006 to 100,000 tons in 2010 (Asche , F., Hansen, H., Tveteras, R., Centrum, ST 2010. The Salmon Disease Crisis in Chile (Marine Resource Economics, 24: 405-411) with serious economic and social consequences. It is based on these losses that it is imperative to search and find an effective method to control the disease.
El virus de la anemia infecciosa de salmones (ISAV) se clasifica como miembro de la familia Orthomyxoviridae, su genoma es de RNA de hebra simple de polaridad negativa, el que se encuentra dividido en 8 segmentos, presenta una cubierta membranosa, de origen celular asociada a glicoproteínas virales de superficie, y posee cápside helicoidal. En la partícula viral, cada uno de los 8 segmentos de RNA se encuentran asociados a múltiples unidades de nucleoproteína (NP) y a una copia de la RNA polimerasa RNA dependiente, la que está conformada como un heterotrímero de las subunidades proteicas de PB1 , PB2 y PA, formando así el complejo ribonucleoproteico (RNP). Estructuralmente, hacia la cara interna de la cubierta lipídica se encuentra la proteína de la matriz (Mx) cuya función es dar soporte estructural a las partículas virales, mientras que hacia la cara externa se encuentran las glicoproteínas hemaglutinina (HE) y fusión (F), que tienen como función reconocer al receptor viral en la célula, al inicio de la infección, y liberar al virus durante la generación de una nueva partícula y fusionar la membrana viral con la de los endosomas, respectivamente. La base para el desarrollo de vacunas que permitan proteger a los peces de la infección por ISAV puede fundamentarse en los siguientes factores: (i) Se ha logrado establecer una relación entre las infecciones de salmones del Atlántico con aumentos en los niveles de IgM sanguíneos; (ii) Se han detectado peces que son portadores de ISAV pero no desarrollan la enfermedad; y (iii) se ha observado que salmones infectados con ISAV de baja patogenicidad, o aquellos que sobreviven a una infección, son capaces de resistir mejor una segunda infección (Plarre et al., 2005; Cipriano, 2009; Ritchie et al., 2009). Sumado a lo anterior, se ha establecido la presencia de anticuerpos anti-ISAV en muestras de salmones silvestres infectados naturalmente. Además en ensayos realizados en laboratorio, se determinó que a las 6 semanas post infección el pez ya genera anticuerpos anti-ISAV (Kibenge et al., 2002; Cipriano, 2009), y se determinó que el suero de peces sobrevivientes a una infección por ISAV puede ser utilizado para neutralizar la infección viral in vivo, observándose que el número de peces muertos por infección con ISAV disminuía previa inoculación con los sueros (Falk & Dannevig, 1995). The infectious salmon anemia virus (ISAV) is classified as a member of the Orthomyxoviridae family, its genome is of single-stranded RNA of negative polarity, which is divided into 8 segments, it has a membranous covering, of associated cellular origin to surface viral glycoproteins, and has a helical capsid. In the viral particle, each of the 8 RNA segments is associated with multiple nucleoprotein units (NP) and a copy of the RNA-dependent RNA polymerase, which is made up of a heterotimer of the protein subunits of PB1, PB2 and PA, thus forming the ribonucleoprotein complex (RNP). Structurally, the matrix protein (Mx) is found towards the internal face of the lipid covering, whose function is to provide structural support to the viral particles, while the hemagglutinin (HE) and fusion (F) glycoproteins are towards the external face. , which have the function of recognizing the viral receptor in the cell, at the beginning of the infection, and releasing the virus during the generation of a new particle and fusing the viral membrane with that of the endosomes, respectively. The basis for the development of vaccines to protect fish from ISAV infection can be based on the following factors: (i) A relationship has been established between infections of Atlantic salmon with increases in blood IgM levels; (ii) Fish have been detected that carry ISAV but do not develop the disease; and (iii) it has been observed that salmon infected with low pathogenic ISAV, or those that survive one infection, are better able to resist a second infection (Plarre et al., 2005; Cipriano, 2009; Ritchie et al., 2009 ). In addition to the above, the presence of anti-ISAV antibodies has been established in samples of naturally infected wild salmon. Furthermore, in laboratory tests, it was determined that at 6 weeks post infection the fish already generates anti-ISAV antibodies (Kibenge et al., 2002; Cipriano, 2009), and it was determined that the serum of fish surviving an infection by ISAV can be used to neutralize viral infection in vivo, observing that the number of fish killed by ISAV infection decreased after inoculation with sera (Falk & Dannevig, 1995).
Lo anterior ha llevado a que exista un creciente interés en el desarrollo de alternativas de vacunas contra ISAV (Gomez-Casado y cois., 2011 ). A la fecha, las vacunas utilizadas para contrarrestar las infecciones por ISAV son de dos tipos, subunitarias y virus inactivado, y aún cuando los peces son inmunizados, siguen ocurriendo brotes de ISAV en los centros productores de salmones del Atlántico. Estas vacunas buscan disminuir la mortalidad acumulada en peces inoculados y desafiados con ISAV, proceso que se ha asociado a un aumento en los niveles de anticuerpos y variaciones en el nivel de expresión de genes relacionados con la respuesta inmune de los peces, como interferón gamma, interferón alfa y del complejo mayor de histocompatibilidad I (MHCI) (Lauscher y cois., 2011 ). Algunos ejemplos de vacunas subunitarias del virus ISA pueden ser las descritas en: La patente US6471964 (CL 2862 - 2000; concedida) de AKZO NOBEL N. V., que describe una vacuna desarrollada con una proteína estructural denominada SP-1 , la que fue producida en baculovirus; la patente US 7183404 (CL 1399 - 2000; concedida) de AKZO NOBEL N. V. que divulga la utilización de una proteína de ISAV con una masa de 42,8 kDa; la patente US 7279167 (CL2355 - 2002) de INTERVET INT. B.V, que describe una vacuna desarrollada con una proteína de 48 kDa de ISAV la que fue producida en baculovirus; por último, las publicaciones WO01 10469 (CL 750 - 2002) OTTAWA HEALTH RESEARCH INST. NOVARTIS AG. y WO0149712 (CL 19 - 2001 ) AKZO NOBEL N.V., describen varias proteínas que se declaran como antigénicas y que pueden servir de vacunas. En Chile se comercializan vacunas multivalentes para salmones, las que actúan sobre varios patógenos, incluyendo cepas del virus ISA aisladas en Chile (FAV). A continuación se incluye la tabla 1 con las vacunas registradas ante el Servicio Agrícola y Ganadero (SAG). This has led to a growing interest in the development of alternative vaccines against ISAV (Gomez-Casado et al., 2011). To date, the vaccines used to counteract ISAV infections are of two types, subunit and inactivated virus, and even when fish are immunized, outbreaks of ISAV continue to occur in Atlantic salmon producing centers. These vaccines seek to decrease the accumulated mortality in fish inoculated and challenged with ISAV, a process that has been associated with an increase in the levels of antibodies and variations in the level of gene expression related to the immune response of fish, such as gamma interferon, Alpha Interferon and Major Histocompatibility Complex I (MHCI) (Lauscher et al., 2011). Some examples of ISA virus subunit vaccines can be described in: AKZO NOBEL NV patent US6471964 (CL 2862-2000; granted), which describes a vaccine developed with a protein structural called SP-1, which was produced in baculovirus; US Patent 7183404 (CL 1399-2000; granted) to AKZO NOBEL NV disclosing the use of an ISAV protein with a mass of 42.8 kDa; US patent 7279167 (CL2355 - 2002) from INTERVET INT. BV, which describes a vaccine developed with a 48 kDa protein from ISAV which was produced in baculovirus; finally, publications WO01 10469 (CL 750 - 2002) OTTAWA HEALTH RESEARCH INST. NOVARTIS AG. and WO0149712 (CL 19-2001) AKZO NOBEL NV, describe several proteins that are declared as antigenic and that can be used as vaccines. Multivalent vaccines for salmon are marketed in Chile, which act on various pathogens, including isolates of the ISA virus isolated in Chile (FAV). Table 1 below includes vaccines registered with the Agricultural and Livestock Service (SAG).
Tabla 1 Table 1
Figure imgf000005_0001
Figure imgf000006_0001
Figure imgf000007_0001
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000011_0001
Dado a que las vacunas existentes no han permitido asegurar la producción de salmones libres de ISAV, una nueva estrategia a explorar por el presente invento, es la generación de vacunas utilizando partículas tipo-virus (VLP). Las VLP son generadas por expresión simultánea de las proteínas estructurales de un virus y que al auto-ensamblarse son partículas que asemejan la estructura viral, pero carecen de su material genético. En un individuo sano esto permite emular una infección pero sin el desarrollo de la enfermedad, induciendo la respuesta inmune contra las VLPs, las que al asemejar la estructura del agente viral, son capaces de proteger contra una posterior infección por parte del virus (Noad & Roy, 2003). En el área de estudio ISAV no existen trabajos que demuestren la generación de este tipo de estructuras, pero en otros sistemas virales de peces hay ejemplos en esta área de investigación.
Figure imgf000005_0001
Figure imgf000006_0001
Figure imgf000007_0001
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000011_0001
Since the existing vaccines have not ensured the production of ISAV-free salmon, a new strategy to be explored by the present invention is the generation of vaccines using virus-like particles (VLP). VLPs are generated by simultaneous expression of the structural proteins of a virus and that when self-assembling are particles that resemble the viral structure, but lack their genetic material. In a healthy individual, this allows an infection to be emulated but without the development of the disease, inducing the immune response against VLPs, which by resembling the structure of the viral agent, are able to protect against a subsequent infection by the virus (Noad & Roy, 2003). In the ISAV study area, there are no works that demonstrate the generation of this type of structure, but in other viral fish systems there are examples in this research area.
La expresión de las proteínas estructurales del virus de la necrosis pancreática infecciosa (IPNV) y del virus de la necrosis nerviosa del mero (GNNV), utilizando los sistemas heterólogos de levaduras y bacterias respectivamente, permitieron la generación de partículas que poseen una estructura similar a la del virus nativo al ser analizados por microscopía electrónica (Lu et al., 2003; Allnutt et al., 2007). Sumado a lo anterior, al ser utilizadas como inmunógenos para vacunar salmones y mero, en el caso de IPNV y GNNV respectivamente, las VLPs fueron capaces de generar una respuesta inmune protectora asociada al aumento en los niveles de anticuerpos contra el virus, que posteriormente se relacionó con una disminución en la carga viral y una menor mortalidad acumulada cuando los peces fueron desafiados con el virus (Lu et al., 2003; Allnutt et al., 2007). The expression of the structural proteins of infectious pancreatic necrosis virus (IPNV) and grouper nerve necrosis virus (GNNV), using the heterologous systems of yeast and bacteria respectively, allowed the generation of particles that have a structure similar to that of the native virus when analyzed by electron microscopy (Lu et al., 2003; Allnutt et al., 2007). In addition to the above, when used as immunogens to vaccinate salmon and grouper, in the case of IPNV and GNNV respectively, the VLPs were able to generate a protective immune response associated with the increase in the levels of antibodies against the virus, which was subsequently related to a decrease in viral load and lower cumulative mortality when fish were challenged with the virus (Lu et al., 2003; Allnutt et al., 2007).
La publicación WO2012130723 (CL 2723 - 2013) describe partículas inmunogénicas tipo virus (VLP) contra alfavirus (SAV) de salmónidos. Los VLP son producidos en Baculovirus que presenta un vector que comprende un polinucleótido que codifica una proteína de la cápside del alfavirus, la proteína E3, una proteína de la envoltura E2, la proteína 6K y la proteína E1 . Este documento describe condiciones de temperatura específica de infección de las células de insecto por el baculovirus para producir las VLP del alfavirus. A diferencia de los sistemas virales que poseen cápside proteica, los cuales tienden a auto-ensamblar sus proteínas de cubierta en estructuras icosaédricas, ISAV posee cubierta membranosa, lo que presenta una dificultad al momento de desarrollar estructuras como las VLPs ya que es necesario escindir la membrana celular conteniendo proteínas virales para que se formen las estructuras tipo virus. El virus ISA es un virus ARN de polaridad negativa, miembro de la familia de los Oortomixovirus, la que está constituida por los siguientes seis géneros: Influenza virus A. Influenza virus B. Influenza virus C, Isavirus . Thogotovirus y Quaraniavirus. Los tres primeros virus causan influenza en vertebrados, incluyendo aves, humanos y otros mamíferos. El virus ISA es el único miembro de la familia de los Ortomixovirus capaz de infectar peces, dando nombre al género Isavirus. Los Thogotovirus son arbovirus, que infectan vertebrados e invertebrados, tales como garrapatas y mosquitos Los Quaranjavirus predominantemente infectan artrópodos y aves y se transmiten entre los vertebrados por las garrapatas, asemejándose a los miembros de Thogotovirus. Publication WO2012130723 (CL 2723-2013) describes virus-like immunogenic particles (VLPs) against salmonid alphaviruses (SAVs). VLPs are produced in Baculovirus that presents a vector that comprises a polynucleotide that encodes an alphavirus capsid protein, E3 protein, an E2 envelope protein, 6K protein, and E1 protein. This document describes specific temperature conditions of infection of insect cells by baculovirus to produce alphavirus VLPs. Unlike viral systems that have a protein capsid, which tend to self-assemble their coat proteins into icosahedral structures, ISAV has a membranous coat, which presents a difficulty when developing structures such as VLPs since it is necessary to split the cell membrane containing viral proteins so that virus-like structures are formed. The ISA virus is a negative polarity RNA virus, a member of the Oortomyxovirus family, which is made up of the following six genera: Influenza virus A. Influenza virus B. Influenza virus C, Isavirus. Thogotovirus and Quaraniavirus. The first three viruses cause influenza in vertebrates, including birds, humans, and other mammals. The ISA virus is the only member of the Orthomyxovirus family capable of infecting fish, giving its name to the Isavirus genus. Thogotoviruses are arboviruses, which infect vertebrates and invertebrates, such as ticks and mosquitoes. Quaranjaviruses predominantly infect arthropods and birds and are transmitted between vertebrates by ticks, resembling members of Thogotoviruses.
El virus ISA se diferencia de los virus influenza porque la proteína de superficie Hemaglutinina acetil esterasa (HE) posee además una actividad similar a la neuroaminidasa (NA) y tiene una proteína de fusión aparte, asemejándose a la familia viral Paramixoviridae. Mientras que los virus influenza posee una proteína Hemaglutinina esterasa (HA), que además posee actividad de fusión y tiene aparte una proteína Neuraminidasa (NA). En el estado de la técnica se describe la formación de VLPs del virus influenza, mediante la expresión de la proteína de la matriz individual o simultáneamente a hemaglutinina, neuraminidasa y/o nucleoproteína, utilizando sistemas heterólogos de expresión como baculovirus/células de insecto. Lo anterior permitió la obtención de VLPs de Influenza estructuralmente similares al virus nativo, sumado que al ser utilizadas para inmunizar ratones o ratas, permitieron la generación de una respuesta inmune capaz de protegerlos a la exposición de una dosis letal del virus (W02002000885, W02005020889, W02007047831 , W02009012489, WQ2007130327. W02008148104 o W02007130330). También se ha descrito la formación de partícula VLPs de virus influenza con la proteína hemaglutinina o hemaglutinina modificada, expresadas en células vegetales (W02009076778, W02008148104,The ISA virus differs from influenza viruses in that the surface protein Hemagglutinin acetyl esterase (HE) also has an activity similar to neuroaminidase (NA) and has a separate fusion protein, resembling the Paramixoviridae viral family. While influenza viruses have a Hemagglutinin esterase (HA) protein, which also has fusion activity and also has a Neuraminidase (NA) protein. In the state of the art, the formation of influenza virus VLPs is described, by means of the expression of the matrix protein individually or simultaneously to hemagglutinin, neuraminidase and / or nucleoprotein, using heterologous expression systems such as baculovirus / insect cells. This allowed obtaining Influenza VLPs structurally similar to the native virus, added that when used to immunize mice or rats, they allowed the generation of an immune response capable of protecting them from exposure to a lethal dose of the virus (W02002000885, W02005020889, W02007047831, W02009012489, WQ2007130327. W02008148104 or W02007130330). The formation of influenza virus VLPs with the protein hemagglutinin or modified hemagglutinin, expressed in plant cells, has also been described (W02009076778, W02008148104,
W02009009876, WO2010003225, W02010148511 ) o VLPs formadas en células de mamífero que expresan las proteínas de matriz, hemaglutinina y/o neuraminidasa (W02008094195 y WO 2011 102900). W02009009876, WO2010003225, W02010148511) or VLPs formed in mammalian cells that express matrix proteins, hemagglutinin and / or neuraminidase (W02008094195 and WO 2011 102900).
El ISAV tiene varias diferencias estructurales con el virus influenza, que no hacen predecible que se pueda seguir exactamente la misma estrategia de preparación de VLP de ISAV, que la divulgada en el estado de la técnica para VLP del virus influenza. ISAV has several structural differences with influenza virus, which do not make it predictable that the exact same ISAV VLP preparation strategy can be followed as that disclosed in the state of the art for influenza virus VLP.
La principal diferencia estructural encontrada entre los virus Influenza e ISA radica en la organización de dominios de las proteínas de superficie. Se ha descrito que virus Influenza tiene el dominio Actividad Destructora de Receptor o bien Neuraminidasa, en una sola proteína del mismo nombre, por otra parte, comparte en un mismo polipéptido el dominio de unión al receptor con el de fusión, denominándose esta proteína como Hemaglutinina. En contraste el virus ISA tiene un dominio de fusión en un polipéptido único denominándose proteína Fusión, y por otro lado, el dominio de unión y actividad destructora de receptor se encuentran en un único polipéptido denominado Hemaglutinina- Esterasa (Cottet et al., 2010). The main structural difference found between the Influenza and ISA viruses lies in the organization of surface protein domains. It has been described that Influenza virus has the Receptor Destructive Activity or Neuraminidase domain, in a single protein of the same name, on the other hand, it shares in a same polypeptide the receptor binding domain with that of fusion, this protein being called Hemagglutinin . In contrast, the ISA virus has a fusion domain in a single polypeptide called the Fusion protein, and on the other hand, the binding domain and destructive activity of receptor are found on a single polypeptide called Hemagglutinin-Esterase (Cottet et al., 2010).
De acuerdo a lo anterior no es fácil de sugerir que la estrategia de vacuna VLP de virus influenza, que sí ha resultado eficaz en humanos, vaya a ser funcional en salmónidos, siendo necesario demostrarlo mediante la experimentación con proteínas recombinantes. According to the above, it is not easy to suggest that the influenza virus VLP vaccine strategy, which has been effective in humans, will be functional in salmonids, and it is necessary to demonstrate this by experimenting with recombinant proteins.
Existe una publicación, WO2013036745 (CL 551 - 2014), que describe VLP bivalentes, IPNV e ISAV. Sin embargo, esta invención tiene diferencias fundamentales con la solución propuesta en el presente invento. El documento WO 2013036745 describe partículas virales similares a IPNV, esto es un virus con una cápside viral que en las proteínas VP2 se han insertado epítopes antigénicos de HE de ISAV. Por el contrario, la solución propuesta en el presente invento crea partículas virales similares a ISAV, un virus con una membrana que lo envuelve. Otra diferencia, es que la VLP de la invención incorpora la presentación de más de una proteína antigénica completa del ISAV, con su conformación proteica similar a la encontrada en el virus. There is a publication, WO2013036745 (CL 551-2014), which describes bivalent VLPs, IPNV and ISAV. However, this invention has fundamental differences with the solution proposed in the present invention. WO 2013036745 describes viral particles similar to IPNV, this is a virus with a viral capsid that ISAV HE antigenic epitopes have been inserted into VP2 proteins. On the contrary, the solution proposed in the present invention creates viral particles similar to ISAV, a virus with a membrane that surrounds it. Another difference is that the VLP of the invention incorporates the presentation of more than one complete ISAV antigenic protein, with its protein conformation similar to that found in the virus.
Vacunas VLP tienen ventajas en relación a las vacunas vivas atenuadas o de virus muertos ya que no se trabaja con material infeccioso o con posible reversión a virus infecciosos. Las vacunas VLP tienen la ventaja en relación a las vacunas subunitarias de que los antígenos tienen una conformación multimérica similar a las proteínas antigénicas dentro del virus infectante. Lo anterior permite que el organismo vacunado identifique a dicha estructura como un virus infeccioso, lo neutralice y sea capaz de generar una memoria inmunológica frente a infecciones con el patógeno infeccioso. VLP vaccines have advantages in relation to live attenuated or dead virus vaccines since they do not work with infectious material or with possible reversion to infectious viruses. VLP vaccines have the advantage over subunit vaccines in that antigens have a multimeric conformation similar to antigenic proteins within the infecting virus. This allows the vaccinated organism to identify said structure as an infectious virus, neutralize it and be able to generate an immunological memory against infections with the infectious pathogen.
En el presente invento, se enseñan estructuras que pueden ser descritas como VLPs por la expresión de al menos una proteína de matriz y al menos una de sus proteínas antigénicas del ISAV. También es ámbito de la presente invención composiciones farmacéuticas o vacunas, alternativas a las ya existentes, que comprenden las VLP que expresan una proteína de matriz y una o más de las proteínas antigénicas del ISAV. Es parte del presente invento, el uso de las VLP de ISAV del presente invento, para inmunizar una población de salmones del Atlántico libre de virus. El uso de los VLP en salmones del presente invento permitió disminuir la mortalidad acumulada en el tiempo luego del desafío viral, observándose un aumento cuantificable en los niveles de IgM anti-ISAV y de la expresión de genes relacionados con la respuesta del sistema inmune. De esta forma, la invención presenta una vacuna contra el ISAV alternativa a las vacunas inactivadas y subunitarias comercialmente disponibles. In the present invention, structures that can be described as VLPs are taught by the expression of at least one matrix protein and at least one of its ISAV antigenic proteins. It is also the scope of this Invention Pharmaceutical or vaccine compositions, alternatives to existing ones, comprising VLPs expressing a matrix protein and one or more of the ISAV antigenic proteins. Part of the present invention is the use of the ISAV VLPs of the present invention to immunize a population of virus-free Atlantic salmon. The use of VLP in salmon of the present invention allowed to decrease the mortality accumulated over time after the viral challenge, observing a measurable increase in the levels of anti-ISAV IgM and of the expression of genes related to the response of the immune system. Thus, the invention features an alternative ISAV vaccine to commercially available inactivated and subunit vaccines.
Descripción de las figuras Description of the figures
Figura 1 : Características del vector de Baculovirus pBac4 41. El vector tiene como esqueleto el plásmido pBac4x de Merck, el cual se utilizó para clonar el gen que codifica para M1 de ISAV 752_09 bajo el comando del promotor P10, para M2 de ISAV 752_09 bajo el comando del promotor Polh, para HE de ISAV 752_09 bajo el comando del promotor P10, para proteína Fusión de ISAV 752_09 bajo el comando del promotor Polh. Vector que posee resistencia a Ampicilina y elemento que le permite replicar en E. coli y recombinar con el genoma de baculovirus con el sistema BacVector3000 (Merck). Figure 1: Characteristics of the Baculovirus vector pBac4 41. The vector has as its skeleton the plasmid pBac4x from Merck, which was used to clone the gene that encodes M1 from ISAV 752_09, for the M2 from ISAV 752_09 low the Polh promoter command, for HE of ISAV 752_09 under the command of the P10 promoter, for Protein Fusion of ISAV 752_09 under the command of the Polh promoter. Vector that has resistance to Ampicillin and an element that allows it to replicate in E. coli and recombine with the baculovirus genome with the BacVector3000 system (Merck).
Figura 2: Características del vector de Baculovirus pBac4 42. El vector tiene como esqueleto el plásmido pBac4x de Merck, el cual se utilizó para clonar el gen que codifica para NP de ISAV 752_09 bajo el comando del promotor P10, para HE de ISAV 901_09 bajo el comando del promotor P10, para proteína Fusión de ISAV 901 _09 bajo el comando del promotor Polh. Vector que posee resistencia a Ampicilina y elemento que le permite replicar en E. coli y recombinar con el genoma de baculovirus con el sistema BacVector3000 (Merck). Figure 2: Characteristics of the Baculovirus vector pBac4 42. The vector has as its skeleton the plasmid pBac4x from Merck, which was used to clone the gene that encodes NP of ISAV 752_09 under the HE promoter of ISAV 901_09 under the command of the P10 promoter, for protein Fusion of ISAV 901 _09 under the command of the Polh promoter. Vector that has resistance to Ampicillin and element that allows it to replicate in E. coli and recombine with the baculovirus genome with the BacVector3000 system (Merck).
Figura 3: Expresión simultánea de las proteínas fusión (F), hemaglutinina (HE) y matriz (M) de ISAV 901 _09 en células de insectos Sf9. (A) Electroforesis en gel de poliacrilamida en condiciones desnaturantes de las proteínas totales obtenidas desde células Sf9, M corresponde al estándar de masa molecular Pagerule Unstained Protein Ladder, 1 células Sf9 sin infectar, 2 células Sf9 infectadas con baculovirus control y 3 células Sf9 infectadas con baculovirus recombinantes. (B) Western-blot de las proteínas recombinantes expresadas en células Sf9, 1 virus ISAV purificado, 2 células Sf9 infectadas con baculovirus control y 3 células Sf9 infectadas con baculovirus recombinante. Figure 3: Simultaneous expression of fusion proteins (F), hemagglutinin (HE) and matrix (M) of ISAV 901 _09 in Sf9 insect cells. (A) Polyacrylamide gel electrophoresis under denaturing conditions of the total proteins obtained from Sf9 cells, M corresponds to the molecular mass standard Pagerule Unstained Protein Ladder, 1 uninfected Sf9 cells, 2 Sf9 cells infected with control baculovirus and 3 infected Sf9 cells with recombinant baculoviruses. (B) Western-blot of the recombinant proteins expressed in Sf9 cells, 1 purified ISAV virus, 2 Sf9 cells infected with control baculovirus and 3 Sf9 cells infected with recombinant baculovirus.
Figura 4: Microscopía electrónica de virus y VLPs obtenidos por purificación con colchón de sacarosa y teñidos negativamente. (A) Virus ISAV 901 _09 obtenido a partir de células ASK. (B) VLPs obtenidas por la co-expresión de las proteínas de fusión, hemaglutinina y matriz en células de insectos Sf9. En ambas imágenes la barra representa 100 nm. Figure 4: Electron microscopy of viruses and VLPs obtained by purification with a sucrose cushion and negatively stained. (A) ISAV 901 _09 virus obtained from ASK cells. (B) VLPs obtained by the co-expression of fusion, hemagglutinin and matrix proteins in Sf9 insect cells. In both images the bar represents 100 nm.
Figura 5: Representación gráfica del estimador de Kaplan-Meier para la sobrevivencia de los peces vacunados con los VLPs y los peces control vacunados con buffer PBS. El total de peces muertos se contabilizó hasta el día 80 post-vacunación. En el gráfico se compara la mortalidad de los peces vacunados con VLPs versus los peces vacunados con el placebo (PBS). La flecha indica el punto en que se realizó el desafío con ISAV. Se ha observado que las vacunas comerciales para el virus ISA no protegen más de un 40%.en terreno y se define como una vacuna aceptable aquella que tiene un RPS sobre el 50%. En este caso se obtuvo un RPS del 57,3% con las VLPs. Utilizando dos formulaciones que contienen las proteínas recombinantes HE y F del virus ISA cepa 7b, bajo las mismas condiciones de estudio realizadas con las vacunas VLPs se han obtenido RPS de 22 y 37,5%, lo que indica que las VLPs tienen un mayor rendimiento con respecto a las vacunas de proteínas recombinantes. Figure 5: Graphic representation of the Kaplan-Meier estimator for the survival of fish vaccinated with VLPs and control fish vaccinated with PBS buffer. The total number of dead fish was counted up to day 80 post-vaccination. The graph compares the mortality of fish vaccinated with VLPs versus fish vaccinated with placebo (PBS). The arrow indicates the point at which the ISAV challenge was performed. Commercial vaccines for the ISA virus have been found to protect no more than 40% in the field and an acceptable vaccine is defined as one that has an RPS of over 50%. In this case, an RPS of 57.3% was obtained with the VLPs. Using two formulations containing the recombinant proteins HE and F of the ISA virus strain 7b, under the same study conditions carried out with VLPs vaccines have obtained RPS of 22 and 37.5%, indicating that VLPs have a higher performance compared to recombinant protein vaccines.
Descripción detallada de la invención Detailed description of the invention
La invención está relacionada con partículas tipo-virus (VLP) del virus de la anemia infecciosa del salmón (ISAV) que comprenden la proteína de matriz y una o más proteínas antigénicas del virus de la anemia infecciosa de peces. Preferentemente, la proteína de la matriz es: la proteína de matriz 1 (M 1 ) y/o la proteína de matriz 2 (M 2). En una realización preferida las partículas tipo-virus de ISAV comprenden una o más de las proteínas antigénicas del virus ISA seleccionado entre las siguientes proteínas: hemaglutinina (HE), fusión (F) y nucleoproteína (NP). Específicamente, las partículas tipo-virus de ISAV comprenden como mínimo las proteínas antigénicas de ISAV HE, F y la proteína de matriz M1 , como también además, pueden estar involucradas las proteínas NP y M2, adicionalmente. The invention relates to infectious salmon anemia virus (ISAV) virus-like particles (VLPs) comprising the matrix protein and one or more antigenic proteins of the fish infectious anemia virus. Preferably, the matrix protein is: matrix protein 1 (M 1) and / or matrix protein 2 (M 2). In a preferred embodiment the ISAV virus-like particles comprise one or more of the ISA virus antigenic proteins selected from the following proteins: hemagglutinin (HE), fusion (F) and nucleoprotein (NP). Specifically, the ISAV virus-like particles comprise at least the ISAV antigenic proteins HE, F and the matrix protein M1, as well as, in addition, NP and M2 proteins may be involved, in addition.
Particularmente, las proteínas virales provienen de cepas de ISAV aisladas en Chile, aunque guardan elevada similitud con cepas descritas en Escocia, Noruega, Estados Unidos, Canadá, Islas Faroe, Australia, Irlanda, Inglaterra, España, Japón. Las proteínas pueden provenir de las cepas de ISAV descritas como virulentas así como de las avirulentas, por ejemplo ISAV: ISAV genotipos, HPR00, HPROa, HPROb, HPR20, HPR6, HPR14, HPR36, HPR17, HPR9b, HPR3a, HPR3, HPR4, HPR4b, HPR9, HPR21 , HPR10, HPR12, HPR18, HPR31 , HPR1 1 a, HPR13, HPR16, HPR30, HPR2d, HPR19, HPR35, HPR2, HPR2c, HPR1 , HPR5, HPR34, HPR7a, HPR7b, HPR7c, HPR7e, HPR7g, HPR7h, HPR7i, HPR15a, HPR15b, HPR15c, HPR15d, HPR15e, HPR8, HPR7d, HPR7f, HPR32, HPR33. El invento también se relaciona con un baculovirus recombinante que expresa los genes de las proteínas de ISAV, que comprende el ácido nucleico que codifica la proteína de matriz y una o más proteínas antigénicas del virus de la anemia infecciosa del salmón. Preferentemente, la proteína de la matriz es: la proteína de matriz 1 (M 1 ) y/o la proteína de matriz 2 (M 2). En una realización preferida, los baculovirus recombinantes expresan los genes de las proteínas de ISAV y comprenden ácidos nucleicos que codifican uno o más proteínas antigénicas del virus de la anemia infecciosa de peces seleccionado entre las siguientes proteínas: hemaglutinina (HE), fusión (F) y nucleoproteína (NP). Así mismo, las partículas VLP comprende, adicionalmente proteínas antigénicas de Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, virus de la necrosis pancreática, virus de la septicemia hemorrágica, virus de la necrosis hematopoiética infecciosa, virus Piscine reovirus, vibriosis, Aeromonas salmonicida. Específicamente, los baculovirus recombinantes comprenden ácidos nucleicos que codifican los genes de las proteínas antigénicas de ISAV: HE, F, NP, M1 y M2. Viral proteins, in particular, come from isolates of ISAV isolated in Chile, although they are highly similar to strains described in Scotland, Norway, the United States, Canada, the Faroe Islands, Australia, Ireland, England, Spain, and Japan. Proteins can come from ISAV strains described as virulent as well as avirulent, for example ISAV: ISAV genotypes, HPR00, HPROa, HPROb, HPR20, HPR6, HPR14, HPR36, HPR17, HPR9b, HPR3a, HPR3, HPR4, HPR4b , HPR9, HPR21, HPR10, HPR12, HPR18, HPR31, HPR1 1 a, HPR13, HPR16, HPR30, HPR2d, HPR19, HPR35, HPR2, HPR2c, HPR1, HPR5, HPR34, HPR7a, HPR7b, HPR7c, HPR7e, HPR7e, HPR7e , HPR7i, HPR15a, HPR15b, HPR15c, HPR15d, HPR15e, HPR8, HPR7d, HPR7f, HPR32, HPR33. The invention also relates to a recombinant baculovirus expressing the genes for ISAV proteins, which comprises the nucleic acid encoding the matrix protein and one or more antigenic proteins of the infectious salmon anemia virus. Preferably, the matrix protein is: matrix protein 1 (M 1) and / or matrix protein 2 (M 2). In a preferred embodiment, the recombinant baculoviruses express the genes for the ISAV proteins and comprise nucleic acids encoding one or more antigenic proteins of the infectious fish anemia virus selected from the following proteins: hemagglutinin (HE), fusion (F) and nucleoprotein (NP). Likewise, the VLP particles additionally comprise antigenic proteins from Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, pancreatic necrosis virus, hemorrhagic septicemia virus, infectious hematopoietic necrosis virus, Piscine reovirus virus, vibriosis, Aeromonas salmonicida. Specifically, recombinant baculoviruses comprise nucleic acids that encode the genes for ISAV antigenic proteins: HE, F, NP, M1, and M2.
Particularmente, los baculovirus expresan los genes de las proteínas de virus provenientes de cepas de ISAV aisladas en Chile, aunque guardan similitud con cepas de Escocia, Noruega, Estados Unidos, Canadá, Islas Faroe, Australia, Irlanda, Inglaterra, Japón. Las proteínas pueden provenir de las cepas de ISAV denominadas como: ISAV 752_09, ISAV 901 _09, ST28/97, ST25/97, ST27/97, 97/09/615, SK-05/144, MR102/05, SF83/04, SK 779/06, (Frederick SB Kibenge et al. 2009). El baculovirus recombinante que expresa los genes de las proteínas de ISAV de acuerdo al presente invento puede ser aquel generado con el vector representado en el esquema de la figura 1 o de la figura 2. In particular, baculoviruses express the genes of virus proteins from isolated ISAV strains in Chile, although they are similar to strains from Scotland, Norway, the United States, Canada, Faroe Islands, Australia, Ireland, England, Japan. Proteins can come from ISAV strains named: ISAV 752_09, ISAV 901_09, ST28 / 97, ST25 / 97, ST27 / 97, 97/09/615, SK-05/144, MR102 / 05, SF83 / 04 , SK 779/06, (Frederick SB Kibenge et al. 2009). The recombinant baculovirus expressing the genes of the ISAV proteins according to the present invention may be that generated with the vector represented in the scheme of Figure 1 or Figure 2.
La invención se relaciona además con una composición farmacéutica que comprende una o más partículas tipo-virus (VLP) de ISAV definidas anteriormente en la presente descripción. También es ámbito de este invento una vacuna contra el virus de la anemia infecciosa del salmón (ISAV) que comprende una o más partícula tipo-virus (VLP) de ISAV de acuerdo a la descripción precedente, un portador farmacéuticamente aceptable y uno o más adyuvantes farmacéuticamente aceptable en peces. The invention further relates to a pharmaceutical composition comprising one or more ISAV virus-like particles (VLPs) defined above in the present disclosure. Also within the scope of this invention is a vaccine against the infectious salmon anemia virus (ISAV) comprising one or more ISAV virus-like particles (VLPs) according to the preceding description, a pharmaceutically acceptable carrier and one or more adjuvants. pharmaceutically acceptable in fish.
El adyuvante de la vacuna del invento puede seleccionarse de uno o más del siguiente grupo: lisado de baculovirus, lipoproteínas, lipoproteínas modificadas, cuerpos celulares, Montanide, Alúmina, emulsión agua/aceite mineral (W/O), escualeno, emulsión agua/escualeno, adyuvante completo de Freund's, adyuvante incompleto de Freund’s, saponinas, Quillaja Saponaria, hemocianina Keyhole limpet, polímeros no iónicos en bloque (NBP), bromuro de dimetil dioctadecil amonio (DDA). Preferentemente, el adyuvante es uno o más del siguiente grupo: lisado de baculovirus, lipoproteínas, cuerpos celulares, Montanide, emulsión agua/aceite mineral (W/O). Particularmente, el adyuvante de la vacuna es un lisado de baculovirus y cuerpos celulares. The adjuvant of the vaccine of the invention can be selected from one or more of the following group: baculovirus lysate, lipoproteins, modified lipoproteins, cell bodies, Montanide, Alumina, water / mineral oil emulsion (W / O), squalene, water / squalene emulsion , Freund 's complete adjuvant 's, Freund's incomplete adjuvant, saponin, Quillaja Saponaria, keyhole limpet hemocyanin, nonionic block polymers (NBP), dimethyl dioctadecyl ammonium bromide (DDA). Preferably, the adjuvant is one or more of the following group: baculovirus lysate, lipoproteins, cell bodies, Montanide, water / mineral oil emulsion (W / O). In particular, the vaccine adjuvant is a baculovirus and cell body lysate.
La vacuna contra el virus de la anemia infecciosa del salmón (ISAV) de acuerdo al invento puede contener adicionalmente uno o más tipos de vacunas de ISAV. Las vacunas adicionales pueden ser, sin estar limitadas a: vacunas subunitarias de ISAV o con virus inactivados de ISAV. Preferentemente, los virus inactivados provienen de cepas de ISAV aisladas en Chile. En otra realización preferida las vacunas comprenden adicionalmente vacunas contra otros patógenos de peces comercialmente importantes en acuicultura. The vaccine against infectious salmon anemia virus (ISAV) according to the invention may additionally contain one or more types of ISAV vaccines. Additional vaccines may be, but are not limited to: ISAV subunit vaccines or inactivated ISAV viruses. Inactivated viruses preferably come from isolates of ISAV isolated in Chile. In other Preferred embodiment vaccines further comprise vaccines against other commercially important fish pathogens in aquaculture.
Las vacunas adicionales se seleccionan del grupo de vacunas contra: Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, virus de la necrosis pancreática, virus de la septicemia hemorrágica, virus de la necrosis hematopoiética infecciosa, virus Piscine reovirus, vibriosis, Aero monas salmonicida. Additional vaccines are selected from the group of vaccines against: Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, pancreatic necrosis virus, hemorrhagic septicemia virus, infectious hematopoietic necrosis virus, Piscine reovirus virus, vibriosis, Aero monas salmonicida.
Las vacunas del invento son formuladas para administración mediante vía oral, inmersión, intraperitoneal, intramuscular o parenteral. Otra alternativa del presente invento es un alimento para peces que comprende un VLP de ISAV que comprende la proteína de matriz y una o más proteínas antigénicas del virus de la anemia infecciosa de peces. Preferentemente, la proteína de la matriz es: la proteína de matriz 1 (M 1 ) y/o la proteína de matriz 2 (M 2). En una realización preferida las partículas similares a virus del ISAV comprenden una o más de las proteínas antigénicas del virus de la anemia infecciosa de peces seleccionado entre las siguientes proteínas: hemaglutinina (HE), fusión (F) y nucleoproteína (NP). El alimento, además, puede tener otras vacunas del ISAV u otros patógenos de peces, como las detalladas anteriormente. El invento está relacionado con el uso de las partículas tipo-virus (VLP) de ISAV de acuerdo a las descripciones anteriores, porque sirve para preparar un medicamento para la protección o tratamiento de la anemia infecciosa del salmón en acuicultura u otras enfermedades de acuicultura. The vaccines of the invention are formulated for administration by oral, immersion, intraperitoneal, intramuscular or parenteral routes. Another alternative of the present invention is a fish food comprising an ISAV VLP comprising the matrix protein and one or more antigenic proteins of the infectious fish anemia virus. Preferably, the matrix protein is: matrix protein 1 (M 1) and / or matrix protein 2 (M 2). In a preferred embodiment the ISAV virus-like particles comprise one or more of the antigenic proteins of the infectious fish anemia virus selected from the following proteins: hemagglutinin (HE), fusion (F) and nucleoprotein (NP). The food may also have other ISAV vaccines or other fish pathogens, such as those detailed above. The invention is related to the use of ISAV virus-like particles (VLPs) according to the previous descriptions, because it serves to prepare a medicine for the protection or treatment of infectious salmon anemia in aquaculture or other aquaculture diseases.
Así mismo, el presente invento se relaciona con la protección o tratamiento de peces, porque comprende administrar las partículas tipo-virus (VLP) del presente invento a peces. El método consiste en la protección o tratamiento de enfermedades, tales como la anemia infecciosa del salmón. Las partículas tipo- virus (VLP) del presente invento o vacunas detalladas anteriormente son administrados a salmón o truchas. El tipo de salmón puede ser: Corégono blanco ( Coregonus albula), Lavareto común ( Coregonus lavaretus ), Corégono peled ( Coregonus peled), Salmón rosado ( Oncorhynchus gorbuscha), Salmón keta ( Oncorhynchus ketá), Salmón plateado o Coho ( Oncorhynchus kisutch ), Trucha arcoíris ( Onchorinchus mykiss ), salmón del Atlántico ( Salmo salar), Trucha marrón ( Salmo truttá), Salvelino ( Salvelinus alpinus), Trucha de arroyo ( Salvelinus fontinalis), Trucha lacustre ( Salvelinus namaycush), TímaloLikewise, the present invention is related to the protection or treatment of fish, because it comprises administering the virus-type particles (VLP) of the present invention to fish. The method consists in the protection or treatment of diseases, such as infectious salmon anemia. The virus-like particles (VLP) of the present invention or vaccines detailed above are administered to salmon or trout. The type of salmon can be: White Corregono (Coregonus albula), Common Lavaret (Coregonus lavaretus), Corégono peled (Coregonus peled), Pink salmon (Oncorhynchus gorbuscha), Keta salmon (Oncorhynchus ketá), Silver salmon or Coho (Oncorhynchus kisutch) , Rainbow trout (Onchorinchus mykiss), Atlantic salmon (Salmo salar), Brown trout (Salmo truttá), Salvelino (Salvelinus alpinus), Brook trout (Salvelinus fontinalis), Lake trout (Salvelinus namaycush), Tímalo
( Thymallus thymallus), salmón real o Chinook ( Oncorhynchus tshawytscha). (Thymallus thymallus), king salmon or Chinook (Oncorhynchus tshawytscha).
Por último, el presente invento está relacionado con un kit de vacunación para peces que comprende un envase que contiene los VLP de ISAV descritos en el presente invento o bien las vacunas definidas en la presente descripción. El kit de vacunación comprende adicionalmente uno o más envases con vacunas para otros patógenos de peces. Las vacunas diferentes a las partículas tipo- virus (VLP) de ISAV pueden ser vacunas contra uno o más de los siguientes patógenos: Pisciricketsia salmonis, Renibacterium salmoninarum ,Finally, the present invention is related to a vaccination kit for fish that comprises a package that contains the ISAV VLPs described in the present invention or the vaccines defined in the present description. The vaccination kit additionally comprises one or more packages with vaccines for other fish pathogens. Vaccines other than ISAV virus-type particles (VLPs) may be vaccines against one or more of the following pathogens: Pisciricketsia salmonis, Renibacterium salmoninarum,
Yersinia ruckeri, virus de la necrosis pancreática, virus de la septicemia hemorrágica, virus de la necrosis hematopoiética infecciosa, virus Piscine reovirus, vibriosis, Aeromonas salmonicida. También, el kit puede comprender envases con vacunas de ISAV subunitarias o de virus inactivados. Yersinia ruckeri, pancreatic necrosis virus, hemorrhagic septicemia virus, infectious hematopoietic necrosis virus, Piscine reovirus virus, vibriosis, Aeromonas salmonicida. Also, the kit may comprise packages with subunit ISAV or inactivated virus vaccines.
El invento se relaciona, además, con un método de producción de VLP del ISAV de acuerdo a la descripción anterior porque comprende las etapas de: Incorporar una o más moléculas de ADN recombinante las cuales codifican la proteína de matriz del ISAV más a lo menos una proteína antigénica del ISAV en un vector viral recombinante. Infectar las células huésped con el vector recombinante. Las proteínas antigénicas del ISAV pueden ser seleccionadas de las proteínas F, HE y NP y las proteínas de matriz pueden seleccionarse entre M1 y M2. Es una realización preferida que el vector viral puede ser baculovirus, no obstante, pueden ser otros vectores adenovirales, poxyvirales, citomegalovirales, lentivirales, etc. La célula huésped puede ser célula de insecto, levadura, vegetal o de mamífero. En una realización, particularmente preferida, la célula huésped es una célula de insecto. The invention further relates to an ISAV VLP production method according to the above description because it comprises the steps of: Incorporating one or more recombinant DNA molecules which encode the ISAV matrix protein plus at least one ISAV antigenic protein in a recombinant viral vector. Infect host cells with the vector recombinant. ISAV antigenic proteins can be selected from F, HE and NP proteins and matrix proteins can be selected from M1 and M2. It is a preferred embodiment that the viral vector can be baculovirus, however, it can be other adenoviral, poxyviral, cytomegalovirus, lentiviral, etc. vectors. The host cell may be an insect, yeast, plant, or mammalian cell. In a particularly preferred embodiment, the host cell is an insect cell.
Adicionalmente, el invento se relaciona con un método de producción de vacuna VLP del ISAV que comprende las etapas de: incorporar una o más moléculas de ADN recombinantes las cuales codifican la proteína de matriz del ISAV más, a lo menos una proteína antigénica del ISAV en un vector viral recombinante; infectar células huésped y lisar las células del huésped. El vector viral preferente es un baculovirus y la célula huésped es una célula de insecto. Adicionalmente, el método de producción de la vacuna VLP comprende una etapa adicional de incorporar un adyuvante al lisado celular y/o un vehículo farmacéuticamente aceptable. El adyuvante se selecciona de uno o más del siguiente grupo: lisado de baculovirus, lipoproteínas, lipoproteínas modificadas, cuerpos celulares, Montanide, Alúmina, emulsión agua/aceite mineral (W/O), escualeno, emulsión agua/escualeno, adyuvante completo de Freund's, adyuvante incompleto de Freund’s, saponinas, Quillaja Saponaria, hemocianina Keyhole limpet, polímeros no iónicos en bloque (NBP), bromuro de dimetil dioctadecil amonio (DDA). Additionally, the invention relates to an ISAV VLP vaccine production method comprising the steps of: incorporating one or more recombinant DNA molecules which encode the ISAV matrix protein plus, at least one ISAV antigenic protein in a recombinant viral vector; infecting host cells and lysing host cells. The preferred viral vector is a baculovirus and the host cell is an insect cell. Additionally, the VLP vaccine production method comprises an additional step of incorporating an adjuvant into the cell lysate and / or a pharmaceutically acceptable vehicle. The adjuvant is selected from one or more of the following group: baculovirus lysate, lipoproteins, modified lipoproteins, cell bodies, Montanide, Alumina, water / mineral oil emulsion (W / O), squalene, water / squalene emulsion, complete Freund's adjuvant ' s, incomplete Freund's adjuvant, saponins, Quillaja Saponaria, hemocyanin Keyhole limpet, non-ionic block polymers (NBP), dimethyl dioctadecyl ammonium bromide (DDA).
Ejemplos de realización preferida Examples of preferred embodiment
Ejemplo 1 : Producción y caracterización de proteínas recombinantes del virus de la anemia infecciosa del salmón. Example 1: Production and characterization of recombinant proteins of the infectious salmon anemia virus.
Células y virus Las células de Spodoptera frugiperda Sf9 (ATCC CRL-171 1 ) fueron mantenidas como cultivo adherido en medio SF-900 II (Invitrogen) suplementado con suero fetal bovino al 0.1 %. El virus ISAV 901 _09 fue mantenido en células de salmón del Atlántico ASK (ATCC CRL-2747) en medio L-15 como ya ha sido descrito previamente (www.atcc.org). Cells and viruses Spodoptera frugiperda Sf9 cells (ATCC CRL-171 1) were maintained as adhered culture in SF-900 II medium (Invitrogen) supplemented with 0.1% fetal bovine serum. ISAV 901 _09 virus was maintained in ASK Atlantic salmon cells (ATCC CRL-2747) in L-15 medium as previously described (www.atcc.org).
Secuencias de virus ISA y vector transporte ISA virus sequences and transport vector
Las secuencias de los genes que codifican para las proteínas hemaglutinina (HE), fusión (F) y matriz (Mx) del virus chileno ISAV 901_09, se obtuvieron previamente en el laboratorio (Cottet et al., 201 1 ). El uso codogénico de los cuatro genes se optimizó para su expresión en la línea celular de insecto Sf9, siendo sintetizados bioquímicamente (GenScript, Piscataway, NJ) y clonados en el vector de transferencia pBac4x (Merck- Millipore). Los baculovirus recombinantes fueron generados con el sistema de expresión BacVector-2000 Triple Cut (Merck-Millipore). The sequences of the genes that encode the hemagglutinin (HE), fusion (F) and matrix (Mx) proteins of the Chilean virus ISAV 901_09, were previously obtained in the laboratory (Cottet et al., 201 1). The codogenic use of the four genes was optimized for expression in the Sf9 insect cell line, being biochemically synthesized (GenScript, Piscataway, NJ) and cloned into the pBac4x transfer vector (Merck-Millipore). Recombinant baculoviruses were generated with the BacVector-2000 Triple Cut expression system (Merck-Millipore).
Preparación del vector de Baculovirus pBac4 41 y pBac4 42. Preparation of the Baculovirus vector pBac4 41 and pBac4 42.
Se generaron baculovirus recombinantes en que las secuencias de los genes seleccionados como antígenos se optimizaron para su expresión en células de insectos con este sistema. Para esto se sintetizaron las secuencias de los genes que generan las proteínas de fusión y hemaglutinina de ambos virus chilenos, las cepas ISAV 901 _09 y ISAV 752_09. Los números de acceso a GenBank de las secuencias usadas en este estudio son GU830895 a GU830902 para el aislado ISAV752_09 v GU830903 a GU830910 para el aislado ISAV901_09 más nucleoproteína y matriz, optimizando el uso codogénico y posteriormente fueron clonados en el vector de transferencia pBac4x (Cottet L. y cois 2010). Este proceso fue realizado por la empresa GenScript, generando los vectores pBac4 41 (Figura 1 ) y pBac4 42 (Figura 2). Recombinant baculoviruses were generated in which the sequences of the genes selected as antigens were optimized for expression in insect cells with this system. For this, the sequences of the genes that generate the fusion proteins and hemagglutinin of both Chilean viruses, the ISAV 901 _09 and ISAV 752_09 strains, were synthesized. The GenBank accession numbers of the sequences used in this study are GU830895 to GU830902 for the ISAV752_09 isolate and GU830903 to GU830910 for the ISAV901_09 isolate plus nucleoprotein and matrix, optimizing codogenic use and were subsequently cloned into the transfer vector pBac4x (Cottet L. and cois 2010). This process was carried out by the company GenScript, generating the vectors pBac4 41 (Figure 1) and pBac4 42 (Figure 2).
Caracterización de las proteínas recombinantes El perfil electroforético de las proteínas totales obtenidas a partir de las células de insectos infectadas con los baculovirus recombinantes, se visualizó por electroforesis en geles de poliacrilamida al 15% p/v en condiciones desnaturalizantes, siguiendo el protocolo descrito previamente por King y Posee, (1992). Mientras que el reconocimiento específico de cada proteína por Western blot se realizó con anticuerpos específicos, según el método descrito por Gallagher y cois., (2004). Recombinant protein characterization The electrophoretic profile of the total proteins obtained from the insect cells infected with the recombinant baculoviruses, was visualized by electrophoresis in 15% w / v polyacrylamide gels under denaturing conditions, following the protocol previously described by King and Posee, ( 1992). While the specific recognition of each protein by Western blot was performed with specific antibodies, according to the method described by Gallagher et al., (2004).
Se determinó la expresión y el tamaño molecular de las proteínas recombinantes, esto por electroforesis en geles de poliacrilamida en condiciones desnaturalizantes (Figura 3A). En la imagen se pueden observar las bandas correspondientes a las proteínas de fusión, hemaglutinina y matriz, las que presentan un tamaño aproximado de 54 kDa, 47 kDa y 21 kDa, respectivamente. Posteriormente, las proteínas fueron caracterizadas por Western blot (Figura 3B). Como se puede observar en la imagen, las proteínas obtenidas presentan tamaños de 50 y 57 kDa para fusión, 41 y 48 kDa para hemaglutinina y 23 kDa para matriz, siendo su patrón de migración similar al obtenido para las tres proteínas nativas obtenidas de virus ISA purificado (Figura 3B). The expression and molecular size of the recombinant proteins were determined, this by electrophoresis in polyacrylamide gels under denaturing conditions (Figure 3A). The image shows the bands corresponding to the fusion, hemagglutinin and matrix proteins, which have an approximate size of 54 kDa, 47 kDa and 21 kDa, respectively. Subsequently, the proteins were characterized by Western blotting (Figure 3B). As can be seen in the image, the proteins obtained have sizes of 50 and 57 kDa for fusion, 41 and 48 kDa for hemagglutinin and 23 kDa for matrix, their migration pattern being similar to that obtained for the three native proteins obtained from ISA virus. purified (Figure 3B).
Para la generación de las VLPs, la selección de las proteínas a expresar se realizó por razones estructurales, es así que fusión y hemaglutinina se seleccionaron por ser las dos proteínas de la superficie externa viral, lo que las convierte en las mejores candidatas para ser reconocidas por el sistema inmune de los peces, mientras que la expresión de la proteína de matriz se realizó ya que es la que estabiliza las partículas virales, sumado a que en peces convalecientes de la enfermedad y en ratones que han sido inmunizados con ISAV, se ha detectado la presencia de anticuerpos contra esta proteína (Rimstad y cois., 201 1 ). Según los datos obtenidos por SDS-PAGE y Western blot, la masa molecular de la proteína de matriz recombinante corresponde a 22 kDa aproximadamente, valor similar al que se obtuvo en el mismo experimento para la proteína de origen viral, la cual se determinó en 24 kDa (Figura 3). El resultado concuerda con la masa molecular descrita en literatura para matriz, la que varía entre 22 y 24 kDa (Rimstad y cois., 201 1 ). Resultado similar se obtuvo para las proteínas fusión y hemaglutinina recombinantes, las que presentan masas moleculares similares a lo descrito previamente en literatura (Falk y cois., 2004; Rimstad y cois., 201 1 ), pero a diferencia de la proteína de matriz, en ambas proteínas de superficie se obtuvo un patrón de doble banda al ser analizadas por Western blot. La masa molecular de la proteína de fusión recombinante se determinó en 49 kDa y 53 kDa, mientras que para hemaglutinina fue de 45 kDa y 49 kDa (Figura 3). Al ser ambas proteínas de membrana, deben seguir la ruta de secreción a través del retículo endoplásmico y el aparato de Golgi, organelos encargados de realizar modificaciones post-traduccionales, como por ejemplo incorporar oligosacáridos. Distintos grados de glicosilaciones pueden llevar a la aparición de más de una banda asociada a la proteína de interés, en este caso las proteínas de superficie viral. Este efecto ha sido descrito previamente en glicoproteínas expresadas de forma heteróloga con el sistema baculovirus/células de insectos (Ghiasi y cois., 1994; Ganguly y cois., 2010). For the generation of the VLPs, the selection of the proteins to be expressed was carried out for structural reasons, so fusion and hemagglutinin were selected because they are the two proteins on the viral external surface, which makes them the best candidates to be recognized. by the immune system of the fish, while the expression of the matrix protein was carried out since it is the one that stabilizes the viral particles, added to the fact that in convalescent fish from the disease and in mice that have been immunized with ISAV, the presence of antibodies against this protein was detected (Rimstad et al., 201 1). According to the data obtained by SDS-PAGE and Western blot, the molecular mass of the recombinant matrix protein corresponds to approximately 22 kDa, a value similar to that obtained in the same experiment for the protein of viral origin, which was determined in 24 kDa (Figure 3). The result agrees with the molecular mass described in the matrix literature, which varies between 22 and 24 kDa (Rimstad et al., 201 1). A similar result was obtained for the recombinant hemagglutinin and fusion proteins, which present molecular masses similar to those previously described in the literature (Falk et al., 2004; Rimstad et al., 201 1), but unlike the matrix protein, in both surface proteins a double band pattern was obtained when analyzed by Western blot. The molecular mass of the recombinant fusion protein was determined at 49 kDa and 53 kDa, while for hemagglutinin it was 45 kDa and 49 kDa (Figure 3). As they are both membrane proteins, they must follow the secretion route through the endoplasmic reticulum and the Golgi apparatus, organelles in charge of making post-translational modifications, such as incorporating oligosaccharides. Different degrees of glycosylation can lead to the appearance of more than one band associated with the protein of interest, in this case the viral surface proteins. This effect has been previously described in glycoproteins expressed heterologously with the baculovirus / insect cell system (Ghiasi et al., 1994; Ganguly et al., 2010).
Ejemplo 2: Preparación de VLP de ISAV Example 2: Preparation of ISAV VLPs
Preparación y purificación de virus y VLPs Preparation and purification of viruses and VLPs
Células ASK y Sf9 fueron infectadas con ISAV y baculovirus recombinantes, respectivamente, como se explicó en el ejemplo 1 . La purificación y concentración parcial de ambos tipos de partículas se realizó por colchón de sacarosa (Chen et al., 2007), con algunas modificaciones. Las células ASK fueron sometidas a 3 ciclos de congelado-descongelado, no así las Sf9, el medio de ambas infecciones fueron centrifugados a 5.000 x g para eliminar el resto celular, posteriormente, el sobrenadante se centrifugó a 100.000 x g por 2 horas a 4 QC. El sedimento se resuspendió en 1 .0 mL de buffer fosfato 0.2 M pH 7.2, y las VLPs se purificaron parcialmente pasándolas por un colchón de sacarosa al 30% en buffer fosfato 0.2 M pH 7.2, centrifugando a 150.000 x g por 2 horas a 4 QC y finalmente el sedimento obtenido se resuspendió en 50 pL de buffer fosfato. ASK and Sf9 cells were infected with ISAV and recombinant baculoviruses, respectively, as explained in Example 1. The purification and partial concentration of both types of particles was performed by a sucrose cushion (Chen et al., 2007), with some modifications. The ASK cells were subjected to 3 cycles of freeze-thaw, Sf9 were not, the medium of both infections was centrifuged at 5,000 xg to eliminate the cellular debris, subsequently, the supernatant was centrifuged at 100,000 xg for 2 hours at 4 Q C. The pellet was resuspended in 1.0 mL of 0.2 M pH 7.2 phosphate buffer, and the VLPs were partially purified by passing them through a 30% sucrose buffer in 0.2 M pH 7.2 phosphate buffer, centrifuging at 150,000 xg for 2 hours at 4 Q C and finally the obtained sediment was resuspended in 50 pL of phosphate buffer.
Microscopía electrónica Electron microscopy
Las partículas virales y VLPs fueron absorbidas por 15 minutos directamente en grillas de oro y se lavaron tres veces en PBS por 1 minuto. Para la tinción negativa, las grillas se incubaron por 1 minuto en ácido fosfotúngstico al 1 % p/v (pH 6.5). Las muestras se visualizaron en un microscopio electrónico de transmisión Phillips CM100 operando a 80 kV. La figura 4 presenta las microfotografías obtenidas por microscopía electrónica de transmisión de las muestras correspondientes al aislado ISAV 901 _09 de ISAV (A) y las VLPs obtenidas por la co-expresión en células de insectos (B). En la fotografía correspondiente a ISAV se pueden observar estructuras membranosas con morfologías esféricas y pleiomórfica. Sus diámetros aproximados son de 20 nm y 70 nm respectivamente, y en sus superficies se observan prolongaciones asociadas a las membranas, las que presentan una longitud de 8,5 nm y que corresponderían a las glicoproteínas hemaglutinina y fusión (Figura 4A). Por su parte, en la microfotografía obtenida para las VLPs (Figura 4B) también se pueden observar estructuras con morfología esférica y pleiomórficas, con diámetros aproximados de 40 nm y 150 nm respectivamente, y al igual que en caso del virus purificado se observa la presencia de prolongaciones en la superficie de membrana, las que tienen una longitud de 10 nm y que corresponderían a las proteínas recombinantes fusión y hemaglutinina. Viral particles and VLPs were absorbed for 15 minutes directly on gold grids and washed three times in PBS for 1 minute. For negative staining, the grids were incubated for 1 minute in 1% w / v phosphotungstic acid (pH 6.5). The samples were visualized in a Phillips CM100 transmission electron microscope operating at 80 kV. Figure 4 presents the photomicrographs obtained by transmission electron microscopy of the samples corresponding to ISAV isolate 901 _09 from ISAV (A) and the VLPs obtained by co-expression in insect cells (B). In the photograph corresponding to ISAV, membranous structures with spherical and pleiomorphic morphologies can be observed. Their approximate diameters are 20nm and 70nm, respectively, and membrane-associated extensions are observed on their surfaces, which are 8.5nm long and would correspond to the hemagglutinin and fusion glycoproteins (Figure 4A). For its part, in the photomicrograph obtained for the VLPs (Figure 4B), structures with spherical and pleiomorphic morphology, with approximate diameters of 40 nm and 150 nm respectively, can also be observed, and as in the case of the purified virus, the presence of of extensions on the membrane surface, those with a length of 10 nm and that would correspond to the recombinant fusion and hemagglutinin proteins.
La expresión de las proteínas estructurales fusión, hemaglutinina y matriz de ISAV 901 _09 utilizando el sistema baculovirus-células de insectos, permitió la generación de este tipo de partículas similares a virus (Figura 4B). Con morfología principalmente pleiomórfica, aun cuando se pueden obtener algunas con forma esférica, las VLPs de ISAV presentan similitud en forma a las partículas virales purificadas, mientras que los tamaños en ambos casos varían entre 20 y 150 nm con prolongaciones en sus superficie que van de 8,5 a 10 nm (Figura 4). En el caso de la caracterización previa de las partículas virales de ISAV, la observación por microscopía electrónica de cortes finos de tejidos infectados, permitió determinar que estas presentan forma esférica con un tamaño aproximado de 100 nm y prolongaciones en la superficie externa de aproximadamente 10 nm (Cottet et al 2010). Por otro lado, cuando se realiza el mismo análisis, pero utilizando partículas virales purificadas, se observan principalmente estructuras pleiomórficas con tamaños que varían entre 50 y 140 nm, con prolongaciones superficiales que varían entre 10 y 12 nm (Cottet et al 2010). Estos últimos datos coinciden con lo obtenido para las estructuras generadas por la expresión de las proteínas estructurales en células de insecto (Figura 4B), lo que confirmaría la presencia de partículas tipo virus de ISAV. The expression of the structural fusion, hemagglutinin and matrix proteins of ISAV 901 _09 using the baculovirus-insect cell system, allowed the generation of this type of virus-like particles (Figure 4B). With mainly pleiomorphic morphology, although some with a spherical shape can be obtained, the ISAV VLPs show similarity in shape to the purified viral particles, while the sizes in both cases vary between 20 and 150 nm with extensions on their surfaces ranging from 8.5 to 10 nm (Figure 4). In the case of the previous characterization of the viral particles of ISAV, the observation by electron microscopy of thin sections of infected tissues, allowed to determine that they have a spherical shape with a size of approximately 100 nm and extensions on the external surface of approximately 10 nm. (Cottet et al 2010). On the other hand, when the same analysis is performed, but using purified viral particles, mainly pleiomorphic structures with sizes ranging from 50 to 140 nm are observed, with surface extensions ranging from 10 to 12 nm (Cottet et al 2010). These latest data coincide with that obtained for the structures generated by the expression of the structural proteins in insect cells (Figure 4B), which would confirm the presence of ISAV virus-like particles.
Ejemplo 3: Preparación de vacunas con VLP Example 3: Preparation of vaccines with VLP
Establecida la generación de las VLPs, se procedió a comprobar la capacidad inmunológica de las proteínas expresadas en células de insectos. Once the generation of the VLPs had been established, the immunological capacity of the proteins expressed in insect cells was checked.
Formulación de la vacuna Vaccine formulation
Para la formulación de la vacuna se prepararon dos matraces con 50 mL de suspensión de la línea celular de insectos Hi5 a una densidad de 5x105 células/mL, éstas fueron infectadas con los baculovirus recombinantes Bac41 a una MOI de 0.1. La infección se mantuvo por 5 días y las células se fijaron con formaldehido a una concentración final de 0,01 % v/v. A partir de esta suspensión se cuantificaron las proteínas de superficie por Western blot y se generó 1 formulación de vacuna. La formulación de vacuna se realizó utilizando el lisado celular de las células de insecto infectadas con baculovirus y se le añadió el adyuvante. Se agregó un control en el que la suspensión de células se reemplazó por PBS. En datos de estos inventores, no publicados, se probaron distintos adyuvantes en peces con las vacunas VLP. Para el caso del presente invento se utilizó el adyuvante con mejores resultados, sin embargo, la inmunogenicidad se muestra en todos los adyuvantes probados. For the vaccine formulation, two flasks were prepared with 50 mL of suspension from the Hi5 insect cell line at a density of 5x10 5 cells / mL, these were infected with the Bac41 recombinant baculovirus at an MOI of 0.1. The infection was maintained for 5 days and the cells were fixed with formaldehyde to a final concentration of 0.01% v / v. From this suspension, the surface proteins were quantified by Western blotting and 1 vaccine formulation was generated. The vaccine formulation was made using the cell lysate of the baculovirus infected insect cells and the adjuvant was added. A control was added in which the cell suspension was replaced by PBS. In unpublished data from these inventors, different adjuvants were tested in fish with VLP vaccines. For the case of the present invention, the adjuvant was used with the best results, however, immunogenicity is shown in all the adjuvants tested.
Ejemplo 4: Vacunación de salmones con la composición inmunogénica que comprende VLP del ISAV Example 4: Vaccination of salmon with the immunogenic composition comprising ISAV VLP
Vacunación y desafío Vaccination and challenge
En total se utilizaron 460 salmones del Atlántico en estado de desarrollo smolt, los que fueron distribuidos entre los contenedores de tres líneas de cultivo, denominadas A, B y C, que constaban con 6, 8 y 4 estanques, respectivamente. Este sistema de cultivo permitió la recircularización del agua entre los estanques conectados por línea, posibilitando mantener las condiciones del agua entre todos los peces durante el ensayo. De esta forma, en las líneas A y C se mantuvieron los controles de peces vacunados pero no desafiados, mientras que en la línea B se mantuvieron los peces vacunados y que fueron desafiados. Para la vacunación se administraron vía intraperitoneal, 200 pL de cada formulación consistente en las proteínas estructurales de fusión, hemaglutinina y matriz de ISAV 901 _09 expresadas utilizando el sistema baculovirus-células de insectos junto con cuerpos apoptóticos utilizados como co-adyuvante a cuatro grupos de 20 individuos. Para determinar la efectividad de la vacuna y como controles, por estanque se adicionaron 5 peces vacunados con el placebo. Previo al desafío con ISAV se obtuvo un inoculo desde infecciones virales a línea celular SHK-1 , se recolectó el sobrenadante y se centrifugó a 3.000 x g por 10 min para eliminar los restos celulares en suspensión. Para el desafío se utilizó la cohabitación, para esto 7 peces no vacunados, los que se denominados troyanos, fueron infectados intraperitonealmente con el inoculo viral y depositados en cada estanque, dejando una densidad de 32 peces. Durante el ensayo se registró la mortalidad diaria por estanque, proceso que se realizó hasta los 80 dpv. La infección por cohabitación está previamente descrito en salmón del Atlántico como una forma efectiva para emular la infección en condiciones naturales (Jones y cois., 1999; Mikalsen y cois., 2005b; Lauscher y cois., 201 1 ), mientras que como placebo se utilizó PBS ya que en ensayos previos de vacunación en peces, este buffer ha sido utilizado con ese fin (Thiéry y cois., 2006; Lauscher y cois., 2011 ; Munang’andu y cois., 2012). In total, 460 smolt-developing Atlantic salmon were used, which were distributed among the containers of three culture lines, called A, B and C, which consisted of 6, 8 and 4 ponds, respectively. This culture system allowed the recircularization of the water between the ponds connected by line, making it possible to maintain the water conditions among all the fish during the test. In this way, in lines A and C the controls of vaccinated but not challenged fish were maintained, while in line B the vaccinated and challenged fish were maintained. For vaccination, 200 pL of each formulation consisting of the structural fusion proteins, hemagglutinin and matrix of ISAV 901 _09 expressed using the Baculovirus-insect cell system along with apoptotic bodies used as co-adjuvant to four groups of 20 individuals. To determine the effectiveness of the vaccine and as controls, 5 fish vaccinated with the placebo were added per pond. Prior to the challenge with ISAV, an inoculum was obtained from viral infections to the SHK-1 cell line, the supernatant was collected and centrifuged at 3,000 xg for 10 min to eliminate the cell debris in suspension. Cohabitation was used for the challenge, for this 7 unvaccinated fish, which were called Trojans, were infected intraperitoneally with the viral inoculum and deposited in each pond, leaving a density of 32 fish. During the test, daily mortality by pond was recorded, a process that was carried out up to 80 dpv. Cohabitation infection has previously been described in Atlantic salmon as an effective way to emulate infection under natural conditions (Jones et al., 1999; Mikalsen et al., 2005b; Lauscher et al., 201 1), while as placebo PBS was used since in previous vaccination trials in fish, this buffer has been used for this purpose (Thiéry et al., 2006; Lauscher et al., 2011; Munang'andu et al., 2012).
La formulación de la vacuna con VLP ensayada en este trabajo, permitió disminuir la mortalidad de los salmones inmunizados y desafiados con ISAV (Figura 5). Ahora bien, de las vacunas licenciadas para ser utilizadas en Chile, sólo una empresa entrega la información de la cantidad de antígeno utilizado por dosis (entre 5,4 y 8,1 pg de proteínas recombinantes expresada en levadura). Al comparar las cantidades de proteínas por dosis administradas con los VLP las vacunas desarrolladas para este trabajo contienen entre un 2,4% y 4,1 % del total de proteínas declarados para la vacuna comercial, y aún así es capaz de disminuir la mortalidad a niveles que su RPS es de 57,3%. El problema con esta comparación, es que la empresa no entrega datos de los ensayos de campo con la vacuna, por lo tanto, no se pueden relacionar las mortalidades con la concentración de antígeno utilizado en las vacunas. The formulation of the VLP vaccine tested in this work, allowed to decrease the mortality of the immunized and ISAV-challenged salmon (Figure 5). However, of the vaccines licensed for use in Chile, only one company provides information on the amount of antigen used per dose (between 5.4 and 8.1 pg of recombinant proteins expressed in yeast). When comparing the amounts of protein per dose administered with the VLPs, the vaccines developed for this work contain between 2.4% and 4.1% of the total protein declared for the commercial vaccine, and even so, it is able to decrease mortality to levels that its RPS is 57.3%. The problem with this comparison is that the company does not provide data on field trials with the vaccine, therefore, mortalities cannot be related to the concentration of antigen used in vaccines.
Cabe destacar, que la evaluación de la respuesta inmune de la vacuna constituida por las VLPs, mediante el análisis de la expresión de genes relacionados con la respuesta inmune a través de qRT-PCR, muestran que los peces vacunados con las VLPs son capaces de inducir la expresión relativa de IFN-y, TGF-b e IL-10, pero no de CD4. Esto sugiere activación de la respuesta innata, probablemente de células tipo natural killer por el aumento de la expresión de IFN- y y una regulación de la respuesta por parte de las citoquinas TGF-b e IL-10, lo que podría explicar porque no se observó adherencias ni melanosis en los peces vacunados. Mientras que, después del desafío, los peces vacunados con VLPs muestran un aumento de la expresión relativa de IFN-g y especialmente de CD4, lo que sugiere una activación de la respuesta inmune celular adquirida que es el resultado que se requiere para obtener una respuesta óptima contra la infección viral. It should be noted that the evaluation of the immune response of the vaccine constituted by the VLPs, through the analysis of the expression of genes related to the immune response through qRT-PCR, show that the fish vaccinated with the VLPs are capable of inducing the relative expression of IFN-y, TGF-b and IL-10, but not CD4. This suggests activation of the innate response, probably from wild-type killer cells by increased expression of IFN- and and a regulation of the response by cytokines TGF-b and IL-10, which could explain why it was not observed. adhesions or melanosis in vaccinated fish. While, after the challenge, the fish vaccinated with VLPs show an increase in the relative expression of IFN-g and especially of CD4, which suggests an activation of the acquired cellular immune response that is the result required to obtain a response. optimal against viral infection.
Referencias References
Allnutt, F.C.T., Bowers, R.M., Rowe, C.G., Vakharia, V.N., LaPatra, S.E., Dhar, A.K., 2007. Antigenicity of infectious pancreatic necrosis virus VP2 subviral partióles expressed in yeast. Vaccine 25, 4880-4888. Allnutt, F.C.T., Bowers, R.M., Rowe, C.G., Vakharia, V.N., LaPatra, S.E., Dhar, A.K., 2007. Antigenicity of infectious pancreatic necrosis virus subpartial viral VP2 expressed in yeast. Vaccine 25, 4880-4888.
Asche, R, Hansen, H., Tveteras, R., Tveteras, S., 2009. The salmón disease crisis in Chile. Mar. Resour. Econ. 24, 405-411. Asche, R, Hansen, H., Tveteras, R., Tveteras, S., 2009. The salmon disease crisis in Chile. Mar. Resour. Econ. 24, 405-411.
Bouchard, D., Brockway, K., Giray, C., Keleher, W., Merrill, P., 2001. First report of Infectious Salmón Anemia (ISA) in the United States. Bull. Eur. Assoc. Fish Pathol. 21 , 86-88. Bouchard, D., Keleher, W., Opitz, H.M., Blake, S., Edwards, K.C., Nicholson, B.L., 1999. Isolation of infectious salmón anemia virus (ISAV) from Atlantic salmón in New Brunswick, Cañada. Dis. Aquat. Organ. 35, 131-137. Bouchard, D., Brockway, K., Giray, C., Keleher, W., Merrill, P., 2001. First report of Infectious Salmon Anemia (ISA) in the United States. Bull. Eur. Assoc. Fish Pathol. 21, 86-88. Bouchard, D., Keleher, W., Opitz, HM, Blake, S., Edwards, KC, Nicholson, BL, 1999. Isolation of infectious salmon anemia virus (ISAV) from Atlantic salmon in New Brunswick, Canada. Dis. Aquat. Organ. 35, 131-137.
Chen, B.J., Leser, G.P., Morita, E., Lamb, R.A., 2007. Influenza Virus Hemagglutinin and Neuraminidase, but Not the Matrix Protein, Are Required for Assembly and Budding of Plasmid-Derived Virus-Like Partióles. J. Virol. 81 , 7111-7123. Chen, B.J., Leser, G.P., Morita, E., Lamb, R.A., 2007. Influenza Virus Hemagglutinin and Neuraminidase, but Not the Matrix Protein, Are Required for Assembly and Budding of Plasmid-Derived Virus-Like Partióles. J. Virol. 81, 7111-7123.
Christiansen, D.H., Ostergaard, P.S., Snow, M., Dale, O.B., Falk, K., 2011. A low-pathogenic variant of infectious salmón anemia virus (ISAV-HPR0) is highly prevalent and causes a non-clinical transient infection in farmed Atlantic salmón ( Salmo salar L.) in the Faroe Islands. J. Gen. Virol. 92, 909-918. Christiansen, DH, Ostergaard, PS, Snow, M., Dale, OB, Falk, K., 2011. A low-pathogenic variant of infectious salmon anemia virus (ISAV-HPR0) is highly prevalent and causes a non-clinical transient infection in farmed Atlantic salmon (Salmo salar L.) in the Faroe Islands. J. Gen. Virol. 92, 909-918.
Cipriano, R.C., 2009. Antibody against infectious salmón anaemia virus among feral Atlantic salmón ( Salmo salar). Ices J. Mar. Sci. 66, 865-870. Cipriano, R.C., 2009. Antibody against infectious salmon anaemia virus among feral Atlantic salmon (Salmo salar). Ices J. Mar. Sci. 66, 865-870.
Cottet, L, Cortez-San Martin, M., Tello, M., Olivares, E., Rivas-Aravena, A., Vallejos, E., Sandino, A.M., Spencer, E., 2010. Bioinformatic analysis of the genome of infectious salmón anemia virus associated with outbreaks with high mortality in Chile. J. Virol. 84, 11916-11928. Cottet, L, Cortez-San Martin, M., Tello, M., Olivares, E., Rivas-Aravena, A., Vallejos, E., Sandino, AM, Spencer, E., 2010. Bioinformatic analysis of the genome of infectious salmon anemia virus associated with outbreaks with high mortality in Chile. J. Virol. 84, 11916-11928.
Falk, Dannevig, B.H., 1995. Demonstration of a protective immune response in infectious salmón anaemia (ISA)-infected Atlantic salmón Salmo salar. Dis. Aquat. Organ. 21 , 1-5. Falk, Dannevig, B.H., 1995. Demonstration of a protective immune response in infectious salmon anaemia (ISA) -infected Atlantic salmon Salmo salar. Dis. Aquat. Organ. 21, 1-5.
Falk, K., Aspehaug, V., Vlasak, R., Endresen, C., 2004. Identification and characterization of viral structural proteins of infectious salmón anemia virus. J. Virol. 78, 3063-3071. Falk, K., Aspehaug, V., Vlasak, R., Endresen, C., 2004. Identification and characterization of viral structural proteins of infectious salmon anemia virus. J. Virol. 78, 3063-3071.
Gallagher, S., Winston, S.E., Fuller, S.A., Hurrell, J.G.R., 2004. Immunoblotting and Immunodetection, in: Crawley, J.N., Gerfen, C.R., Rogawski, M.A., Sibley, D.R., Skolnick, R, Wray, S. (Eds.), Current Protocole in Neuroscience. John Wiley & Sons, Inc., Hoboken, NJ, USA. Gallagher, S., Winston, SE, Fuller, SA, Hurrell, JGR, 2004. Immunoblotting and Immunodetection, in: Crawley, JN, Gerfen, CR, Rogawski, MA, Sibley, DR, Skolnick, R, Wray, S. (Eds.), Current Protocole in Neuroscience. John Wiley & Sons, Inc., Hoboken, NJ, USA.
Ganguly, A., Bansal, P., Gupta, T, Gupta, S.K., 2010.“ZP domain” of human zona pellucida glycoprotein-1 binds to human spermatozoa and induces acrosomal exocytosis. Reprod. Biol. Endochnol. RBE 8, 110. Ganguly, A., Bansal, P., Gupta, T, Gupta, S.K., 2010. “ZP domain” of human pellucid area glycoprotein-1 binds to human spermatozoa and induces acrosomal exocytosis. Played. Biol. Endochnol. RBE 8, 110.
Ghiasi, H., Slanina, S., Nesburn, A.B., Wechsler, S.L., 1994. Characterization of baculovirus-expressed herpes simplex virus type 1 glycoprotein K. J. Virol. 68, 2347-2354. Ghiasi, H., Slanina, S., Nesburn, A.B., Wechsler, S.L., 1994. Characterization of baculovirus-expressed herpes simplex virus type 1 glycoprotein K. J. Virol. 68, 2347-2354.
Gomez-Casado, E., Estepa, A., Coll, J.M., 2011. A comparative review on European-farmed finfish RNA viruses and their vaccines. Vaccine 29, 2657- 2671. Gomez-Casado, E., Estepa, A., Coll, J.M., 2011. A comparative review on European-farmed finfish RNA viruses and their vaccines. Vaccine 29, 2657-2671.
Jones, S., MacKinnon, A., Groman, D., 1999. Virulence and pathogenicity of infectious salmón anemia virus isolated from farmed salmón in Atlantic Cañada. J. Aquat. Anim. Health 11 , 400-405. Jones, S., MacKinnon, A., Groman, D., 1999. Virulence and pathogenicity of infectious salmon anemia virus isolated from farmed salmon in Atlantic Canada. J. Aquat. Anim. Health 11, 400-405.
Kibenge, M.T., Opazo, B., Rojas, A.H., Kibenge, F.S.B., 2002. Serological evidence of infectious salmón anaemia virus (ISAV) infection in farmed fishes, using an indirect enzyme-linked immunosorbent assay (ELISA). Dis. Aquat. Organ. 51 , 1-11. Kibenge, M.T., Opazo, B., Rojas, A.H., Kibenge, F.S.B., 2002. Serological evidence of infectious salmon anaemia virus (ISAV) infection in farmed fishes, using an indirect enzyme-linked immunosorbent assay (ELISA). Dis. Aquat. Organ. 51, 1-11.
Kibenge, F.S.B., Godoy, M.G., Wang, Y., Kibenge, M.J.T., Gherardelli, V., Mansilla, S., Lisperger, A., Jarpa, M., Larroquete, G., Avendaño, F., Lara, M., Gallardo, A., 2009. Infectious salmón anaemia virus (ISAV) isolated from the ISA disease outbreaks in Chile diverged from ISAV ¡solates from Norway around 1996 and was disseminated around 2005, based on surface glycoprotein gene sequences. Virol. J. 6, 88. King, L.A., Posee, R.D., 1992. Baculovirus expression system: A laboratory guide, 1 a edición ed. Springer. Kibenge, FSB, Godoy, MG, Wang, Y., Kibenge, MJT, Gherardelli, V., Mansilla, S., Lisperger, A., Jarpa, M., Larroquete, G., Avendaño, F., Lara, M ., Gallardo, A., 2009. Infectious salmon anaemia virus (ISAV) isolated from the ISA disease outbreaks in Chile diverged from ISAV solates from Norway around 1996 and was disseminated around 2005, based on surface glycoprotein gene sequences. Virol. J. 6, 88. King, LA, has, RD, 1992. Baculovirus Expression System: A Laboratory Guide, 1st edition ed. Springer.
Lauscher, A., Krossoy, B., Frost, P., Grove, S., Konig, M., Bohlin, J., Falk, K., Austbo, L, Rimstad, E., 2011. Immune responses in Atlantic salmón ( Salmo salar) following protective vaccination against Infectious Salmón Anemia (ISA) and subsequent ISA virus infection. Vaccine 29, 6392-6401. Lauscher, A., Krossoy, B., Frost, P., Grove, S., Konig, M., Bohlin, J., Falk, K., Austbo, L, Rimstad, E., 2011. Immune responses in Atlantic salmon (Salmo salar) following protective vaccination against Infectious Salmon Anemia (ISA) and subsequent ISA virus infection. Vaccine 29, 6392-6401.
Lu, M.-W., Liu, W., Lin, C.-S., 2003. Infection Competition Against Grouper Nervous Necrosis Virus by Virus-Like Partióles Produced in Escherichia Coli. J. Gen. Viral. 84, 1577-1582. Lu, M.-W., Liu, W., Lin, C.-S., 2003. Infection Competition Against Grouper Nervous Necrosis Virus by Virus-Like Partióles Produced in Escherichia Coli. J. Gen. Viral. 84, 1577-1582.
Mikalsen, A., Sindre, H., Torgersen, J., Rimstad, E., 2005. Protective effects of a DNA vaccine expressing the infectious salmón anemia virus hemagglutinin- esterase in Atlantic salmón. Vaccine 23, 4895-4905. Mikalsen, A., Sindre, H., Torgersen, J., Rimstad, E., 2005. Protective effects of a DNA vaccine expressing the infectious salmon anemia virus hemagglutinin-esterase in Atlantic salmon. Vaccine 23, 4895-4905.
Munang’andu, H.M., Fredriksen, B.N., Mutoloki, S., Brudeseth, B., Kuo, T- Y., Marjara, I.S., Dalmo, R.A., Evensen, 0., 2012. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmón ( Salmo salar L.) in a cohabitation challenge model. Vaccine 30, 4007-4016. Munang'andu, HM, Fredriksen, BN, Mutoloki, S., Brudeseth, B., Kuo, T- Y., Marjara, IS, Dalmo, RA, Evensen, 0., 2012. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model. Vaccine 30, 4007-4016.
Noad, R., Roy, P., 2003. Virus-like partióles as immunogens. Trends Microbiol. 11 , 438-444. Noad, R., Roy, P., 2003. Virus-like partios as immunogens. Trends Microbiol. 11, 438-444.
Plarre, H., Devold, M., Snow, M., Nylund, A., 2005. Prevalence of infectious salmón anaemia virus (ISAV) in wild salmonids in western Norway. Dis. Aquat. Organ. 66, 71-79. Plarre, H., Devold, M., Snow, M., Nylund, A., 2005. Prevalence of infectious salmon anaemia virus (ISAV) in wild salmonids in western Norway. Dis. Aquat. Organ. 66, 71-79.
Rimstad, E., Dale, O.B., Danneving, B.H., Falk, K., 2011. Infectious salmón anemia, in: Woo, P.T.K., Bruno, D.W. (Eds.), Fish Diseases and Disorders, Volume 3: Viral, Bacterial and Fungal Infections. CAB International, London, pp. 143-165. Rimstad, E., Dale, OB, Danneving, BH, Falk, K., 2011. Infectious salmon anemia, in: Woo, PTK, Bruno, DW (Eds.), Fish Diseases and Disorders, Volume 3: Viral, Bacterial and Fungal Infections. CAB International, London, pp. 143-165.
Ritchie, R.J., McDonald, J.T., Glebe, B., Young-Lai, W., Johnsen, E., Gagne,Ritchie, R.J., McDonald, J.T., Glebe, B., Young-Lai, W., Johnsen, E., Gagne,
N., 2009. Comparative virulence of Infectious salmón anaemia virus ¡solates in Atlantic salmón, Salmo salar L. J. Fish Dis. 32, 157-171. N., 2009. Comparative virulence of Infectious salmon anaemia virus ¡solates in Atlantic salmon, Salmo salar L. J. Fish Dis. 32, 157-171.
Rodger, H., Turnbull, T, Muir, F., Millar, S., Richards, R., 1998. Infectious Salmón Anemia (ISA) in the United Kingdom. Bull. Eur. Assoc. Fish Pathol. 18, 115-116. Rodger, H., Turnbull, T, Muir, F., Millar, S., Richards, R., 1998. Infectious Salmon Anemia (ISA) in the United Kingdom. Bull. Eur. Assoc. Fish Pathol. 18, 115-116.
Rowley, H., Campbell, S., Curran, W., Turnbull, T, Bryson, D., 1999. Isolation of infectious salmón anaemia virus (ISAV) from Scottish farmed Atlantic salmón, Salmo salar L. J. Fish Dis. 22, 483-487. Rowley, H., Campbell, S., Curran, W., Turnbull, T, Bryson, D., 1999. Isolation of infectious salmon anaemia virus (ISAV) from Scottish farmed Atlantic salmon, Salmo salar L. J. Fish Dis. 22, 483-487.
Thiéry, R., Cozien, J., Cabon, J., Lamour, F., Baud, M., Schneemann, A.,Thiéry, R., Cozien, J., Cabon, J., Lamour, F., Baud, M., Schneemann, A.,
2006. Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus- like particles. J. Virol. 80, 10201-10207. 2006. Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus- like particles. J. Virol. 80, 10201-10207.
Thorud, B.K., Djupvik, H.O., 1988. Infectious anemia in Atlantic salmón ( Salmo salar L). Bull. Eur. Assoc. Fish Pathol. 8, 109-111. Thorud, B.K., Djupvik, H.O., 1988. Infectious anemia in Atlantic salmon (Salmo salar L). Bull. Eur. Assoc. Fish Pathol. 8, 109-111.

Claims

REIVINDICACIONES
1. Partículas tipo-virus (VLP) del virus de la anemia infecciosa del salmón (ISAV) caracterizadas porque comprende la proteína de matriz y una o más proteínas antigénicas del virus de la anemia infecciosa de peces. 1. Infectious salmon anemia virus (ISAV) virus-like particles (VLPs) characterized in that it comprises the matrix protein and one or more antigenic proteins of the infectious fish anemia virus.
2. Partículas tipo-virus del ISAV de acuerdo a la reivindicación 1 caracterizadas porque la proteína de matriz es la proteína de matriz 1 (M2. ISAV virus-like particles according to claim 1 characterized in that the matrix protein is matrix protein 1 (M
1 ) · one ) ·
3. Partículas tipo-virus del ISAV de acuerdo a la reivindicación 1 caracterizadas porque la proteína de matriz es la proteína de matriz 2 (M3. ISAV virus-like particles according to claim 1 characterized in that the matrix protein is matrix protein 2 (M
2). two).
4. Partículas tipo-virus del ISAV de acuerdo a las reivindicaciones 1 a 3 caracterizadas porque la proteína de matriz es la proteína de matriz 1 (M 1 ) y la proteína de matriz 2 (M 2). 4. ISAV virus-like particles according to claims 1 to 3 characterized in that the matrix protein is matrix protein 1 (M 1) and matrix protein 2 (M 2).
5. Partículas tipo-virus del ISAV de acuerdo a las reivindicaciones 1 - 4 caracterizadas porque comprende una o más de las proteínas antigénicas del virus de la anemia infecciosa de peces que se selecciona entre las siguientes proteínas: hemaglutinina (HE), fusión (F) y nucleoproteína (NP). ISAV virus-like particles according to claims 1-4, characterized in that it comprises one or more of the antigenic proteins of the infectious fish anemia virus that is selected from the following proteins: hemagglutinin (HE), fusion (F ) and nucleoprotein (NP).
6. Partículas tipo-virus del ISAV de acuerdo a las reivindicaciones 1 - 5 caracterizadas porque comprende las proteínas antigénicas del ISAV hemaglutinina (HE), fusión (F) y nucleoproteína (NP). 6. ISAV virus-like particles according to claims 1-5, characterized in that it comprises ISAV antigenic proteins hemagglutinin (HE), fusion (F) and nucleoprotein (NP).
7. Partículas tipo-virus del ISAV de acuerdo a las reivindicaciones 1 - 6 caracterizadas porque las proteínas antigénicas y de matriz de ISAV provienen de cepas aisladas en Chile. 7. ISAV virus-like particles according to claims 1-6 characterized in that the ISAV matrix and antigenic proteins come from strains isolated in Chile.
8. Partículas tipo-virus del ISAV de acuerdo a la reivindicación 7 caracterizadas porque las proteínas antigénica de ISAV se seleccionan de la cepa ISAV 901_09 con los números de acceso a GenBank de las secuencias GU830903 a GU830910. 8. ISAV virus-like particles according to claim 7 characterized in that the ISAV antigenic proteins are selected from the ISAV 901_09 strain with the GenBank accession numbers of the sequences GU830903 to GU830910.
9. Partículas tipo-virus del ISAV de acuerdo a la reivindicación 7 caracterizadas porque las proteínas antigénicas de ISAV se seleccionan de la cepa ISAV 752_09 con los números de acceso a GenBank de las secuencias son GU830895 a GU830902. 9. ISAV virus-like particles according to claim 7 characterized in that the ISAV antigenic proteins are selected from the ISAV 752_09 strain with the GenBank accession numbers of the sequences are GU830895 to GU830902.
10. Partículas tipo-virus del ISAV de acuerdo a las reivindicaciones 1 - 9 caracterizadas porque comprende, adicionalmente proteínas antigénicas de Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, virus de la necrosis pancreática, virus de la septicemia hemorrágica, virus de la necrosis hematopoiética infecciosa, virus Piscine reovirus, vibriosis, Aeromonas salmonicida. ISAV virus-type particles according to claims 1-9 characterized in that it additionally comprises antigenic proteins of Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, pancreatic necrosis virus, hemorrhagic septicemia virus, hematopoietic necrosis virus infectious, Piscine reovirus virus, vibriosis, Aeromonas salmonicida.
1 1. Método de producción de VLP del ISAV de acuerdo a las reivindicaciones 1 a 10, caracterizado porque comprende las etapas de : a. Incorporar una o más moléculas de ADN recombinante las cuales codifica la proteína de matriz del ISAV y a lo menos una proteína antigénica del ISAV en un vector recombinante. 1 1. ISAV VLP production method according to claims 1 to 10, characterized in that it comprises the steps of: a. Incorporate one or more recombinant DNA molecules which encode the ISAV matrix protein and at least one ISAV antigenic protein into a recombinant vector.
b. Infectar células huésped. b. Infect host cells.
12. Método de acuerdo a la reivindicación 1 1 , caracterizado porque el vector es un baculovirus. 12. Method according to claim 1 1, characterized in that the vector is a baculovirus.
13. Método de acuerdo a la reivindicación 1 1 , caracterizado porque la célula huésped es una célula de insecto, levadura, célula de planta o célula de mamífero. 13. Method according to claim 1 1, characterized in that the host cell is an insect, yeast, plant cell or mammalian cell.
14. El método de acuerdo a la reivindicación 13, caracterizado porque la célula huésped es una célula de insecto. 14. The method according to claim 13, characterized in that the host cell is an insect cell.
15. El método de acuerdo a las reivindicaciones 1 1 a 14, caracterizado porque la proteína de matriz se seleccionan de una o más: la proteína de matriz 1 (M 1 ) y la proteína de matriz 2 (M 2). 15. The method according to claims 1 1 to 14, characterized in that the matrix protein is selected from one or more: matrix protein 1 (M 1) and matrix protein 2 (M 2).
16. Método de acuerdo a las reivindicaciones 11 a 15, caracterizado porque las proteínas antigénicas del virus de la anemia infecciosa de salmones se seleccionan entre las siguientes proteínas: hemaglutinina (HE), fusión (F) y nucleoproteína (NP). 16. Method according to claims 11 to 15, characterized in that the antigenic proteins of the infectious salmon anemia virus are selected from the following proteins: hemagglutinin (HE), fusion (F) and nucleoprotein (NP).
17. Método de acuerdo a las reivindicaciones 1 1 a 16, caracterizado porque las proteínas antigénicas de ISAV son: de fusión (F), hemaglutinina (HE) y la nucleoproteína (NP). 17. Method according to claims 1 to 16, characterized in that the ISAV antigenic proteins are: fusion (F), hemagglutinin (HE) and nucleoprotein (NP).
18. Baculovirus recombinante que expresa proteínas de ISAV, caracterizado porque comprende el ácido nucleico que codifica una proteína de matriz y una o más proteínas antigénicas del virus de la anemia infecciosa del salmón. 18. Recombinant baculovirus expressing ISAV proteins, characterized in that it comprises the nucleic acid encoding a matrix protein and one or more antigenic proteins of the infectious salmon anemia virus.
19. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a la reivindicación 18, caracterizado porque comprende el ácido nucleico que codifica la proteína de matriz es la proteína de matriz 1 (M 1 ). 19. Recombinant baculovirus expressing ISAV proteins according to claim 18, characterized in that it comprises the nucleic acid encoding the matrix protein is matrix protein 1 (M 1).
20. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a la reivindicación 18, caracterizado porque comprende el ácido nucleico que codifica la proteína de matriz es la proteína de matriz 2 (M 2). 20. Recombinant baculovirus expressing ISAV proteins according to claim 18, characterized in that it comprises the nucleic acid encoding the matrix protein is matrix protein 2 (M 2).
21. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a las reivindicaciones 18 a 20, caracterizado porque comprende los ácidos nucleicos que codifican la proteína de matriz 1 (M 1 ) y la proteína de matriz 2 (M 2). 21. Recombinant baculovirus that expresses ISAV proteins according to claims 18 to 20, characterized in that it comprises nucleic acids that encode matrix protein 1 (M 1) and matrix protein 2 (M 2).
22. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a las reivindicaciones 18 a 21 , caracterizado porque comprende el ácido nucleico que codifica una o más proteínas antigénicas del virus de la anemia infecciosa de peces, que se selecciona entre las siguientes proteínas: hemaglutinina (HE), fusión (F) y nucleoproteína (NP). 22. Recombinant baculovirus expressing ISAV proteins according to claims 18 to 21, characterized in that it comprises the nucleic acid encoding one or more antigenic proteins of the infectious fish anemia virus, which is selected from the following proteins: hemagglutinin ( HE), fusion (F) and nucleoprotein (NP).
23. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a las reivindicaciones 18 a 22, caracterizado porque comprende el ácido nucleico que codifica las proteínas antigénicas del ISAV hemaglutinina (HE), fusión (F) y nucleoproteína (NP). 23. Recombinant baculovirus expressing ISAV proteins according to claims 18 to 22, characterized in that it comprises the nucleic acid encoding the ISAV antigenic proteins hemagglutinin (HE), fusion (F) and nucleoprotein (NP).
24. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a las reivindicaciones 18 a 23, caracterizado porque comprende el ácido nucleico que codifica proteínas antigénicas de ISAV de matriz 1 (M1 ), de matriz 2 (M2), la proteína de fusión (F) y hemaglutinina (HE). 24. Recombinant baculovirus expressing ISAV proteins according to claims 18 to 23, characterized in that it comprises the nucleic acid encoding ISAV antigenic proteins of matrix 1 (M1), matrix 2 (M2), the fusion protein (F ) and hemagglutinin (HE).
25. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a las reivindicaciones 18 a 24, caracterizado porque comprende el ácido nucleico que codifica proteínas antigénicas de ISAV proveniente de cepas aisladas en Chile. 25. Recombinant baculovirus expressing ISAV proteins according to claims 18 to 24, characterized in that it comprises nucleic acid encoding ISAV antigenic proteins from strains isolated in Chile.
26. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a la reivindicación 25, caracterizado porque las proteínas antigénicas de ISAV se seleccionan de la cepa ISAV 901 _09 con los números de acceso a GenBank de las secuencias GU830903 a GU830910. 26. Recombinant baculovirus expressing ISAV proteins according to claim 25, characterized in that the ISAV antigenic proteins are selected from strain ISAV 901 _09 with the GenBank accession numbers of the sequences GU830903 to GU830910.
27. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a la reivindicación 25, caracterizado porque las proteínas antigénicas de ISAV se seleccionan de la cepa ISAV 752_09 con los números de acceso a GenBank de las secuencias son GU830895 a GU830902. 27. Recombinant baculovirus expressing ISAV proteins according to claim 25, characterized in that the ISAV antigenic proteins are selected from the ISAV 752_09 strain with the GenBank accession numbers of the sequences GU830895 to GU830902.
28. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a las reivindicaciones 18 a 27, caracterizado porque comprende el esquema representado en la figura 1. 28. Recombinant baculovirus expressing ISAV proteins according to claims 18 to 27, characterized in that it comprises the scheme represented in Figure 1.
29. Baculovirus recombinante que expresa proteínas de ISAV de acuerdo a las reivindicaciones 18 a 27, caracterizado porque comprende el esquema representado en la figura 2. 29. Recombinant baculovirus expressing ISAV proteins according to claims 18 to 27, characterized in that it comprises the scheme represented in Figure 2.
30. Composición farmacéutica, caracterizada porque comprende una VLP de ISAV como las definidas en las reivindicaciones 1 a 10, más uno a más portadores farmacéuticamente aceptables. 30. Pharmaceutical composition, characterized in that it comprises an ISAV VLP as defined in claims 1 to 10, plus one to more pharmaceutically acceptable carriers.
31. Vacuna contra el virus de la anemia infecciosa del salmón (ISAV), caracterizada porque comprende una VLP de ISAV de acuerdo a las reivindicaciones 1 a 10, uno o más adyuvantes farmacéuticamente aceptable en peces y un portador farmacéuticamente aceptable. 31. Vaccine against infectious salmon anemia virus (ISAV), characterized in that it comprises an ISAV VLP according to claims 1 to 10, one or more pharmaceutically acceptable adjuvants in fish and a pharmaceutically acceptable carrier.
32. Vacuna contra el virus de la anemia infecciosa del salmón (ISAV) de acuerdo a la reivindicación 31 , caracterizada porque el adyuvante se selecciona de uno o más del siguiente grupo: lisado de baculovirus, lipoproteínas, lipoproteínas modificadas, cuerpos celulares, Montanide, Alúmina, emulsión agua/aceite mineral (W/O), escualeno, emulsión agua/escualeno, adyuvante completo de Freund's, adyuvante incompleto de Freund’s, saponinas, Quillaja Saponaria, hemocianina Keyhole limpet, polímeros no iónicos en bloque (NBP), bromuro de dimetil dioctadecil amonio (DDA). 32. Vaccine against the infectious salmon anemia virus (ISAV) according to claim 31, characterized in that the adjuvant is selected from one or more of the following group: baculovirus lysate, lipoproteins, modified lipoproteins, cell bodies, Montanide, alumina, water / mineral oil (W / O), squalene, water / squalene, complete Freund 's adjuvant 's, incomplete Freund's, saponin, Quillaja Saponaria, keyhole limpet hemocyanin, nonionic block polymers (NBP), dimethyl dioctadecyl ammonium bromide (DDA).
33. Vacuna contra el virus de la anemia infecciosa del salmón (ISAV) de acuerdo a las reivindicaciones 31 - 32, caracterizada porque el adyuvante se selecciona de uno o más del siguiente grupo: lisado de baculovirus, cuerpos celulares, Montanide, emulsión agua/aceite mineral (W/O). 33. Vaccine against the infectious salmon anemia virus (ISAV) according to claims 31-32, characterized in that the adjuvant is selected from one or more of the following group: baculovirus lysate, cell bodies, Montanide, water emulsion / mineral oil (W / O).
34. Vacuna contra el virus de la anemia infecciosa del salmón (ISAV) de acuerdo a las reivindicaciones 31 - 33, caracterizada porque comprende además uno o más tipos de vacunas de ISAV. 34. Vaccine against the infectious salmon anemia virus (ISAV) according to claims 31-33, characterized in that it also comprises one or more types of ISAV vaccines.
35. Vacuna contra el virus de la anemia infecciosa del salmón (ISAV) de acuerdo a la reivindicación 34, caracterizada porque comprende, además, vacunas seleccionadas de: vacunas sub-unitarias del ISAV y vacunas de virus inactivado de ISAV. 35. Vaccine against the infectious salmon anemia virus (ISAV) according to claim 34, characterized in that it also comprises vaccines selected from: ISAV sub-unit vaccines and ISAV inactivated virus vaccines.
36. Vacuna contra el virus de la anemia infecciosa del salmón (ISAV) de acuerdo a las reivindicaciones 31 - 35, caracterizada porque comprende, además, vacunas contra otros patógenos de peces. 36. Vaccine against the infectious salmon anemia virus (ISAV) according to claims 31-35, characterized in that it also comprises vaccines against other fish pathogens.
37. Vacuna contra el virus de la anemia infecciosa del salmón (ISAV) de acuerdo a la reivindicación 36, caracterizada porque las vacunas de otros patógenos de peces corresponde a una o más seleccionadas de vacunas del grupo contra: Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, virus de la necrosis pancreática, virus de la septicemia hemorrágica, virus de la necrosis hematopoiética infecciosa, virus Piscine reovirus, vibriosis, Aeromonas salmonicida. 37. Vaccine against the infectious salmon anemia virus (ISAV) according to claim 36, characterized in that the vaccines for other fish pathogens correspond to one or more vaccines selected from the group against: Pisciricketsia salmonis, Renibacterium salmoninarum, Yersinia ruckeri, pancreatic necrosis virus, hemorrhagic septicemia virus, infectious hematopoietic necrosis virus, Piscine reovirus virus, vibriosis, Aeromonas salmonicida.
38. Vacuna contra el virus de la anemia infecciosa del salmón (ISAV) de acuerdo a las reivindicaciones 31 - 37, caracterizada porque son formuladas para la vía oral, inmersión, intraperitoneal, intramuscular o parenteral. 38. Vaccine against the infectious salmon anemia virus (ISAV) according to claims 31-37, characterized in that they are formulated for the oral, immersion, intraperitoneal, intramuscular or parenteral routes.
39. Método de producción de vacuna VLP del ISAV de acuerdo a las reivindicaciones 30 a 37, caracterizado porque comprende las etapas de a. Incorporar una o más moléculas de ADN recombinantes las cuales codifican la proteína de matriz del ISAV más, a lo menos una proteína antigénica del ISAV en un vector viral recombinante. b. Infectar células huésped 39. ISAV VLP vaccine production method according to claims 30 to 37, characterized in that it comprises the steps of a. Incorporate one or more recombinant DNA molecules which encode the ISAV matrix protein plus, at least one ISAV antigenic protein in a recombinant viral vector. b. Infect host cells
c. Lisar las células del huésped c. Lysing host cells
40. Método de acuerdo a la reivindicación 39, caracterizado porque el vector viral es un baculovirus. 40. Method according to claim 39, characterized in that the viral vector is a baculovirus.
41. Método de acuerdo a la reivindicación 39, caracterizado porque la célula huésped es una célula de insecto. 41. Method according to claim 39, characterized in that the host cell is an insect cell.
42. Método de acuerdo a la reivindicación 39, caracterizado porque comprende una etapa adicional de incorporar un adyuvante al lisado celular y/o un vehículo farmacéuticamente aceptable. 42. Method according to claim 39, characterized in that it comprises an additional step of incorporating an adjuvant to the cell lysate and / or a pharmaceutically acceptable vehicle.
43. Método de acuerdo a la reivindicación 42, caracterizado porque el adyuvante se selecciona de uno o más del siguiente grupo: lisado de baculovirus, lipoproteínas, lipoproteínas modificadas, cuerpos celulares, Montanide, Alúmina, emulsión agua/aceite mineral (W/O), escualeno, emulsión agua/escualeno, adyuvante completo de Freund's, adyuvante incompleto de Freund’s, saponinas, Quillaja Saponaria, hemocianina Keyhole limpet, polímeros no iónicos en bloque (NBP), bromuro de dimetil dioctadecil amonio (DDA). 43. Method according to claim 42, characterized in that the adjuvant is selected from one or more of the following group: baculovirus lysate, lipoproteins, modified lipoproteins, cell bodies, Montanide, Alumina, water / mineral oil emulsion (W / O) , squalene, water / squalene, complete Freund 's adjuvant 's, Freund's incomplete adjuvant, saponin, Quillaja Saponaria, keyhole limpet hemocyanin, nonionic block polymers (NBP), dimethyl dioctadecyl ammonium bromide (DDA).
44. Alimento para peces, caracterizado porque comprende un VLP de ISAV de acuerdo a las reivindicaciones 1 - 10. 44. Fish feed, characterized in that it comprises an ISAV VLP according to claims 1-10.
45. Alimento para peces, caracterizado porque comprende las vacunas de las reivindicaciones 31 - 38. 45. Fish feed, characterized in that it comprises the vaccines of claims 31-38.
46. Uso de los VLP de ISAV de acuerdo a las reivindicaciones 1 - 10, caracterizado porque sirve para preparar un medicamento para la protección o tratamiento de la anemia infecciosa del salmón en acuicultura. 46. Use of the ISAV VLPs according to claims 1-10, characterized in that it serves to prepare a medicine for the protection or treatment of infectious salmon anemia in aquaculture.
47. Uso de los VLP de ISAV de acuerdo a las reivindicaciones 1 - 10, caracterizado porque sirve para preparar un medicamento para la protección o tratamiento de la anemia infecciosa del salmón y otras enfermedades en peces. 47. Use of the ISAV VLPs according to claims 1-10, characterized in that it serves to prepare a medicine for the protection or treatment of infectious salmon anemia and other diseases in fish.
48. Uso de los VLP de ISAV de acuerdo a las reivindicaciones 46 - 47, caracterizado porque los medicamentos son para la protección y tratamiento de peces, tales como Corégono blanco ( Coregonus albula), Lavareto común {Coregonus lavaretus ), Corégono peled ( Coregonus peled), Salmón rosado ( Oncorhynchus gorbuscha), Salmón keta ( Oncorhynchus keta), Salmón plateado o Coho ( Oncorhynchus kisutch ), Trucha arcoíris ( Onchorinchus mykiss), salmón del Atlántico ( Salmo salar), Trucha marrón ( Salmo trutta), Salvelino ( Salvelinus alpinus), Trucha de arroyo ( Salvelinus fontinalis), Trucha lacustre ( Salvelinus namaycush), Tímalo ( Thymallus thymallus), salmón real o Chinook ( Oncorhynchus tshawytscha). 48. Use of the ISAV VLPs according to claims 46-47, characterized in that the medications are for the protection and treatment of fish, such as White Corregono (Coregonus albula), Common Lavaret {Coregonus lavaretus), Peleted Corregono (Coregonus peled), Pink salmon (Oncorhynchus gorbuscha), Keta salmon (Oncorhynchus keta), Silver or Coho salmon (Oncorhynchus kisutch), Rainbow trout (Onchorinchus mykiss), Atlantic salmon (Salmo salar), Brown trout (Salmo trutta), Salvelino ( Salvelinus alpinus), Brook trout (Salvelinus fontinalis), Lake trout (Salvelinus namaycush), Grayling (Thymallus thymallus), Royal salmon or Chinook (Oncorhynchus tshawytscha).
49. Kit de vacunación para peces, caracterizado porque comprende un envase que comprende los VLP de ISAV de las reivindicaciones 1 a 10 o las vacunas de las reivindicaciones 31 - 38. 49. Vaccination kit for fish, characterized in that it comprises a package comprising the ISAV VLPs of claims 1 to 10 or the vaccines of claims 31-38.
50. Kit de vacunación para peces de acuerdo a la reivindicación 49, caracterizado porque comprende adicionalmente, uno o más envases con vacunas para otros patógenos de peces. 50. Vaccination kit for fish according to claim 49, characterized in that it additionally comprises one or more packages with vaccines for other fish pathogens.
51. Kit de vacunación para peces de acuerdo a la reivindicación 49, caracterizado porque comprende adicionalmente, uno o más envases con vacunas de ISAV inactivados y vacunas subunitarias de ISAV. 51. Vaccination kit for fish according to claim 49, characterized in that it additionally comprises one or more packages with inactivated ISAV vaccines and ISAV subunit vaccines.
52. Kit de vacunación de acuerdo a las reivindicaciones 49 - 51 , caracterizado porque los peces vacunados se seleccionan de: Corégono blanco ( Coregonus albula), Lavareto común {Coregonus lavaretus), Corégono peled ( Coregonus peled), Salmón rosado ( Oncorhynchus gorbuschá), Salmón keta ( Oncorhynchus ketá), Salmón plateado o Coho ( Oncorhynchus kisutch), Trucha arcoíris ( Onchorinchus mykiss), salmón del Atlántico ( Salmo salar), Trucha marrón ( Salmo truttá), Salvelino ( Salvelinus alpinus), Trucha de arroyo ( Salvelinus fontinalis), Trucha lacustre ( Salvelinus namaycush), Tímalo ( Thymallus thymallus), salmón real o Chinook ( Oncorhynchus tshawytscha). 52. Vaccination kit according to claims 49 - 51, characterized in that the vaccinated fish are selected from: White maggot (Coregonus albula), Common lavage {Coregonus lavaretus), Magnet peled (Coregonus peled), Pink salmon (Oncorhynchus gorbuschá) , Keta salmon (Oncorhynchus ketá), Silver or Coho salmon (Oncorhynchus kisutch), Rainbow trout (Onchorinchus mykiss), Atlantic salmon (Salmo salar), Brown trout (Salmo truttá), Salvelino (Salvelinus alpinus), Brook trout (Salvelinus fontinalis), Lake trout (Salvelinus namaycush), Grayling (Thymallus thymallus), king salmon or Chinook (Oncorhynchus tshawytscha).
PCT/CL2019/050152 2018-12-28 2019-12-26 Virus-like particles (vlp) of the infectious salmon anemia virus (isav) that comprise matrix protein and one or more antigenic proteins of the virus; production method, composition, vaccine and fish feed; recombinant baculovirus; and vaccination kit; and WO2020132770A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2018003892 2018-12-28
CL3892-2018 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020132770A1 true WO2020132770A1 (en) 2020-07-02

Family

ID=71125679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050152 WO2020132770A1 (en) 2018-12-28 2019-12-26 Virus-like particles (vlp) of the infectious salmon anemia virus (isav) that comprise matrix protein and one or more antigenic proteins of the virus; production method, composition, vaccine and fish feed; recombinant baculovirus; and vaccination kit; and

Country Status (1)

Country Link
WO (1) WO2020132770A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049712A2 (en) * 2000-01-07 2001-07-12 Akzo Nobel N.V. Vaccine against isav (infectious salmon anaemia virus)
WO2012130723A1 (en) * 2011-03-25 2012-10-04 Intervet International B.V. Salmonid alphavirus vaccine
WO2013036745A2 (en) * 2011-09-09 2013-03-14 Advanced Bionutrition Corporation Ipnv-isav bivalent vaccine using a virus-like particle-based platform and methods of using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049712A2 (en) * 2000-01-07 2001-07-12 Akzo Nobel N.V. Vaccine against isav (infectious salmon anaemia virus)
WO2012130723A1 (en) * 2011-03-25 2012-10-04 Intervet International B.V. Salmonid alphavirus vaccine
WO2013036745A2 (en) * 2011-09-09 2013-03-14 Advanced Bionutrition Corporation Ipnv-isav bivalent vaccine using a virus-like particle-based platform and methods of using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CARUFFO, M. ET AL.: "Protectlve oral vaccinaíion against Infectious saimon anaemta virus in Salmo salar", FISH & SHELLFISH IMMUNOLOGY, vol. 54, 2016, pages 54 - 59, XP029571463 *
COTTET, L. ET AL.: "Blolnformatlc analysis of tbe genome of infectious salmon anemia virus associated with outbreaks with high mortality In Chile", J VIROL., vol. 84, no. 22, 2010, pages 11916 - 11928, XP055082730 *
JORDAN, K. R ET AL.: "Vaccination of mice wiíh bacufoviriis-infected insect ce lis expressing antigenic proteins", CURR PROTOC IMMUNOL, 2009 *
LIU, F. ET AL.: "TI - Use of baculovirus expression system for generation of virus-like particles: Successes and challenges", PROTEIN EXPR PURIF, vol. 90, no. 2, 2013, pages 104 - 116, XP055723443 *
ZHANG, W. ET AL.: "Crystal sírucíure of an ortbomyxovirus maírix protein reveais mechanisms for self-polymerization and membrane association", PROC NATI ACAD SEL USA, vol. 114, no. 32, 2017, pages 8550 - 8555, XP055723446 *

Similar Documents

Publication Publication Date Title
AU2016222962B2 (en) Bivalent swine influenza virus vaccine
Xu et al. Baculovirus virions displaying infectious bursal disease virus VP2 protein protect chickens against infectious bursal disease virus infection
Mikalsen et al. Protective effects of a DNA vaccine expressing the infectious salmon anemia virus hemagglutinin-esterase in Atlantic salmon
JP2024028744A (en) Modified S1 subunit of coronavirus spike protein
US20170360921A1 (en) Vaccine against infectious bronchitis virus
WO2005105834A1 (en) Method for the production of empty viral capsids in yeasts, said capsids comprising proteins derived from pvp2 of the virus that causes infectious bursal disease (ibdv)
JP2019524154A (en) Duck enteritis virus and use thereof
Guo et al. Recombinant infectious hematopoietic necrosis virus expressing infectious pancreatic necrosis virus VP2 protein induces immunity against both pathogens
ES2714689T3 (en) Mutant spine protein that extends tissue tropism of infectious bronchitis virus (IBV)
Kochinger et al. Vesicular stomatitis virus replicon expressing the VP2 outer capsid protein of bluetongue virus serotype 8 induces complete protection of sheep against challenge infection
US20220265815A1 (en) Method of Treating or Preventing Clinical Signs Caused by Infectious Bronchitis Virus with 4/91 IBV Vaccine having Heterologous Spike Protein
Sha et al. Recombinant Lactococcus Lactis expressing M1-HA2 fusion protein provides protective mucosal immunity against H9N2 avian influenza virus in chickens
EP2454374B1 (en) Oral vaccines produced and administered using edible micro-organism
Chen et al. Immunity induced by recombinant attenuated IHNV (infectious hematopoietic necrosis virus)‐GN438A expresses VP2 gene‐encoded IPNV (infectious pancreatic necrosis virus) against both pathogens in rainbow trout
WO2020132770A1 (en) Virus-like particles (vlp) of the infectious salmon anemia virus (isav) that comprise matrix protein and one or more antigenic proteins of the virus; production method, composition, vaccine and fish feed; recombinant baculovirus; and vaccination kit; and
EP3583948B1 (en) Vaccines for the prevention of rabbit haemorrhagic disease
JP2013535214A (en) Modified infectious laryngotracheitis virus (ILTV) and uses thereof
Mebatsion Introduction to Veterinary Vaccines
US11696947B2 (en) H52 IBV vaccine with heterologous spike protein
Wang et al. Protection against genotype VII Newcastle disease virus challenge by a minicircle DNA vaccine coexpressing F protein and chicken IL-18 adjuvant
WO2020229257A1 (en) Attenuated ibv with extended cell culture and tissue tropism
US9144605B2 (en) Recombinant rift valley fever virus encoding a dominant-negative inhibitor of DSRNA-dependent protein kinase in the NSS region
Meyers Diseases with limited research of plant-based vaccines
JP2010115154A (en) Recombinant measles virus useful as bivalent vaccine against measles and nipah virus infectious disease
JP2023543033A (en) Attenuated porcine epidemic diarrhea virus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901482

Country of ref document: EP

Kind code of ref document: A1