WO2020130652A2 - Novel bacteriophage for lysing bacteria - Google Patents

Novel bacteriophage for lysing bacteria Download PDF

Info

Publication number
WO2020130652A2
WO2020130652A2 PCT/KR2019/018053 KR2019018053W WO2020130652A2 WO 2020130652 A2 WO2020130652 A2 WO 2020130652A2 KR 2019018053 W KR2019018053 W KR 2019018053W WO 2020130652 A2 WO2020130652 A2 WO 2020130652A2
Authority
WO
WIPO (PCT)
Prior art keywords
bacteriophage
acinetobacter
bacteria
ymc15
aba
Prior art date
Application number
PCT/KR2019/018053
Other languages
French (fr)
Korean (ko)
Other versions
WO2020130652A9 (en
WO2020130652A3 (en
Inventor
용동은
전종수
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180164212A external-priority patent/KR102142018B1/en
Priority claimed from KR1020180164181A external-priority patent/KR102189126B1/en
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2020130652A2 publication Critical patent/WO2020130652A2/en
Publication of WO2020130652A3 publication Critical patent/WO2020130652A3/en
Publication of WO2020130652A9 publication Critical patent/WO2020130652A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof

Definitions

  • the present invention relates to a novel bacteriophage that lyses bacteria, especially bacteria that are resistant to antibiotics.
  • Bacterial infection is one of the most common and fatal causes of human disease. Since penicillin, numerous types of antibiotics have been developed and used to combat bacteria from external invasion into the living body. However, recently, strains resistant to these antibiotics have appeared, which is considered a big problem. Bacterial species such as Enterococcus faecalis , Mycobacterium tuberculosis , and Pseudomonas aeruginosa , which can be life-threatening, are resistant to all known antibiotics. (Stuart B. Levy, ScientificAmerican, (1988): 46-53).
  • Tolerance of antibiotics is a phenomenon distinct from resistance to antibiotics. It was first discovered in Pneumococcus sp. in the 1970s and provided important clues to the mechanism of action of penicillin (Tomasz et al., Nature, 227, (1970): 138-140).
  • Conventional chemical antibiotics such as penicillin and cephalosporin, exhibit antibiotic activity by inhibiting the cell wall of microorganisms or the synthesis of proteins.
  • resistant species stop growing in the presence of antibiotics at normal concentrations, but do not die as a result. Resistance occurs because the activity of bacterial autolytic enzymes, such as autolysin, does not occur when antibiotics inhibit cell wall synthase, and this is because penicillin activates endogenous hydrolytic enzymes.
  • Acinetobacter baumannii is a Gram-negative aerobic bacillus, which is an important cause of infection in hospitals in many hospitals, especially aminoglycosides, cephalosporins, fluoroquinolones, and beta lactamases.
  • MRAB multidrug-resistant acinetobacter baumani
  • the bacteria of the genus Klebsiella is a Gram-negative bacilli as a genus of intestinal bacteria. It has no flagella and is characterized by producing mucus as it passes through the stenosis. Carbon sources are obtained from citrate, and various carbohydrates generate acids and gases excluding hydrogen sulfide. It is widely present in nature and is detected in human respiratory, intestinal, and urinary tract and is known as a causative agent of acute pneumonia. Recently, various bacteria of the genus Klebsiella have been diagnosed and detected, such as Klebsiella pneumoniae, Klebsiella ozaenae, and Klebsiella rhinoscleromatis.
  • Klebsiella pneumoniae which is known to occupy most of the bacteria of the genus Klebsiella in clinical terms, is a Gram negative bacillus, aerobic or aerobic bacteria, and is present in the human intestinal tract, skin, oral cavity, respiratory system, etc. It is said that 10-20% of pneumonia is caused by the bacteria. In addition, it may be isolated from urinary tract infection, and is reported as the main causative agent such as sepsis and intraperitoneal infection, and has a high infection rate as the causative agent of bacteremia occurring in patients in the intensive care unit.
  • Betalactam-based antibiotics account for about 50% or more of currently used antibacterial agents.
  • many Gram-negative bacteria have been reported to exhibit resistance to the antibiotics by generating beta-lactamase against these beta-lactam-based antibiotics.
  • KPC K. pneumoniae carbapene maize
  • KPC-Kp K. pneumoniae carbapene maize
  • Bacteriophage refers to a bacterial specific virus that inhibits and inhibits the growth of infected bacteria by infecting certain bacteria.
  • the bacteriophage has the ability to kill bacteria by destroying the cell wall of the host bacteria when the progeny bacteriophages come out of the bacteria after proliferation inside the bacterial cells after infection.
  • the method of bacterial infection of bacteriophage is very specific, so the type of bacteriophage capable of infecting certain bacteria is limited to a part. That is, a specific bacteriophage can infect only a specific category of bacteria, thereby killing a specific bacteriophage and not affecting other bacteria. Therefore, the recent use of bacteriophage (bacteriophage) as a countermeasure against bacterial diseases has attracted much attention. In particular, after 2000, due to the increase in antibiotic-resistant bacteria, the limitations of existing antibiotics appeared, and the possibility of development of alternatives to existing antibiotics emerged, and bacteriophage has attracted attention as an anti-bacterial agent.
  • One object of the present invention is to provide a novel bacteriophage having specific infection and killing ability against bacteria of the genus Acinetobacter and Klebsiella that are resistant to antibiotics, especially antibiotics.
  • Another object of the present invention is a composition for the prevention and treatment of infectious diseases caused by novel bacteriophage having specific infection and killing ability against bacteria in the genus Acinetobacter, particularly bacteria resistant to antibiotics. It is to provide a food composition for improving the disease.
  • the present invention provides a bacteriophage having a specific killing ability to bacteria of the genus Acinetobacter or Klebsiella.
  • bacteriophage is a bacterial specific virus that inhibits and inhibits the growth of the bacteria by infecting a specific bacteria, and refers to a virus comprising a single or double chain DNA or RNA as a genetic material. .
  • the bacteria of the genus Acinetobacter are Acinetobacter baumannii , Acinetobacter calcoaceticus , Acinetobacter haemolyticus , Acinetobacter haemolyticus , Acinetobacter junii ), Acinetobacter johnsonii , Acinetobacter lwoffii , Acinetobacter radioresistens , Acinetobacter urresingens , Acinetobacter ursingii , Acinetobacter ursingii Acinetobacter schindleri), Acinetobacter Parque booth (Acinetobacter parvus), Acinetobacter Bay Li (Acinetobacter baylyi), Acinetobacter Bow Betty (Acinetobacter bouvetii), Acinetobacter tow Nourishing (Acinetobacter towneri), Acinetobacter tandoyi (Acinetobacter tandoii ), Acinetobacter grimontii , Acinetobacter t
  • the bacteriophage has a specific killing ability against bacteria in the genus Acinetobacter, but also has a specific killing ability against bacteria in the genus Acinetobacter having antibiotic resistance among the bacteria in the genus Acinetobacter.
  • the "antibiotic resistance” means resistance to a specific antibiotic and thus does not hear the effect
  • the antibiotic is colistin, erythromycin, ampicillin, ampicillin Ampicillin-s ⁇ lbactam, Vancomycin, Linezolid, Methicillin, Oxacillin, Cefataxime, Rifampicin, Amikacin (Amikacin), Gentamicin, Amikacin, Kanamycin, Tobramycin, Neomycin, Ertapenem, Dorippenem, Iripenem Imipenem, Imipenem/Cilastatin, Meropenem, Ceftazidime, Cefepime, Ceftaroline, Ceftobiprole, Aztreonam (Aztreonam), Piperacillin, Polymyxin B, Ciprofloxacin, Levofloxacin, Moxifloxacin, Gatifloxacin, Piperactillin It may be any one or more selected from the group consisting of
  • the bacteriophage is a bacteriophage separated by taking a sample from a sewage treatment plant in a hospital, named bacteriophage YMC14/01/P262_ABA_BP, and deposited with KFCC11798P as deposit number KFCC11798P on November 15, 2018. It may be deposited.
  • the bacteriophage YMC14/01/P262_ABA_BP of the present invention belongs to the Myoviridae family having a long tail on the hexagonal head, and the total sequencing analysis showed a size of 44,597 bp and the total number of ORFs was 79. Confirmed.
  • the bacteriophage YMC14/01/P262_ABA_BP may include the nucleotide sequence represented by SEQ ID NO: 1 as all or part of the entire gene.
  • the bacteriophage YMC14/01/P262_ABA_BP of the present invention may consist of the base sequence represented by SEQ ID NO: 1, and a functional equivalent of the base sequence.
  • the functional equivalent is at least 70% or more, preferably 80% or more, more preferably 90% or more, and even more preferably 95% with the base sequence represented by SEQ ID NO:1.
  • sequence homology it means a sequence exhibiting substantially the same physiological activity as the base sequence represented by SEQ ID NO: 6.
  • the bacteriophage YMC14/01/P262_ABA_BP provided by the present invention may include any one of SEQ ID NOs: 2-4.
  • each of SEQ ID NOs: 2 to 4 is an ORF (Open Reading Frame) of the bacteriophage
  • the protein represented by SEQ ID NO: 2 may be an amino acid sequence of a protein presumed to be endolysin
  • the protein represented by 3 may be an amino acid sequence of a lysozyme-like domain
  • the protein represented by SEQ ID NO: 4 may be an amino acid sequence of a putative tail-fiber/lysosomal protein.
  • SEQ ID NO: 2 is the amino acid sequence of ORF38
  • SEQ ID NO: 3 is the amino acid sequence of ORF50
  • SEQ ID NO: 4 may be the amino acid sequence of ORF51.
  • the bacteriophage YMC14/01/P262_ABA_BP provided by the present invention may include a genome represented by any one of SEQ ID NOs: 5 to 7.
  • SEQ ID NO: 5 is the base sequence of the genome encoding ORF38
  • SEQ ID NO: 6 is the base sequence of the genome encoding ORF50
  • SEQ ID NO: 7 may be the base sequence of the genome encoding ORF51.
  • the bacteriophage is a bacteriophage separated by taking a sample from a sewage treatment plant in a hospital, named bacteriophage YMC15/02/T28_ABA_BP, and deposited with KFCC11799P as deposit number KFCC11799P on November 15, 2018. It may be deposited.
  • the bacteriophage YMC15/02/T28_ABA_BP of the present invention belongs to the family Mioviridae having a long tail on the hexagonal head, and the total sequencing analysis confirmed that it had a size of 44,580 bp and the total number of ORFs was 77.
  • the bacteriophage YMC15/02/T28_ABA_BP may include the nucleotide sequence represented by SEQ ID NO: 8 as all or part of the entire gene.
  • the bacteriophage YMC15/02/T28_ABA_BP of the present invention may consist of the base sequence represented by SEQ ID NO: 8, and a functional equivalent of the base sequence.
  • the functional equivalent is at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% of the base sequence represented by SEQ ID NO: 8 as a result of modification or substitution of the base sequence.
  • sequence homology it means a sequence exhibiting substantially the same physiological activity as the base sequence represented by SEQ ID NO: 8.
  • the bacteriophage YMC15/02/T28_ABA_BP provided in the present invention may include any one of SEQ ID NOs: 9 to 11.
  • each of SEQ ID NOs: 9 to 11 is an ORF (Open Reading Frame) of the bacteriophage
  • the protein represented by SEQ ID NO: 9 may be an amino acid sequence of a lysozyme-like domain
  • the protein represented by 10 may be the amino acid sequence of the putative tail-fiber/lysosomal protein
  • the protein represented by SEQ ID NO: 11 may be the amino acid sequence of the endorisin putative protein.
  • SEQ ID NO: 9 may be the amino acid sequence of ORF7
  • SEQ ID NO: 10 may be the amino acid sequence of ORF8
  • SEQ ID NO: 11 may be the amino acid sequence of ORF73.
  • the bacteriophage YMC15/02/T28_ABA_BP provided by the present invention may include a genome represented by any one of SEQ ID NOs: 12 to 14.
  • SEQ ID NO: 12 is the base sequence of the genome encoding ORF7
  • the SEQ ID NO: 13 is the base sequence of the genome encoding ORF8
  • SEQ ID NO: 14 may be the base sequence of the genome encoding ORF73.
  • the bacteriophage is a bacteriophage separated by taking a sample from a sewage treatment plant in a hospital, named bacteriophage YMC15/15R1869_ABA_BP, and deposited with the Korea Microbial Conservation Center on November 15, 2018, KFCC11802P It may be deposited with.
  • the bacteriophage YMC15/19R1869_ABA_BP of the present invention belongs to the family Mioviridae having a long tail on the hexagonal head, and the total sequencing analysis confirmed that the size of the total ORF was 42,555 bp and the total number of ORFs was 77.
  • the bacteriophage YMC15/15R1869_ABA_BP may include the nucleotide sequence represented by SEQ ID NO: 15 as all or part of the entire gene.
  • the bacteriophage YMC15/15/15R1869_ABA_BP of the present invention may be composed of a nucleotide sequence represented by SEQ ID NO: 15, and a functional equivalent of the nucleotide sequence.
  • the functional equivalent is at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% of the base sequence represented by SEQ ID NO: 15 as a result of modification or substitution of the base sequence.
  • sequence homology it means a sequence exhibiting substantially the same physiological activity as the base sequence represented by SEQ ID NO: 15.
  • the bacteriophage YMC15/11R1869_ABA_BP provided by the present invention may include any one of SEQ ID NOs: 16 and 17.
  • each of SEQ ID NOs: 16 and 17 is an ORF (Open Reading Frame) of the bacteriophage
  • SEQ ID NO: 16 may be an amino acid sequence of a lysozyme-like domain
  • SEQ ID NO: 17 is a lysozyme family protein It may be the amino acid sequence of the protein estimated to be. More specifically, each of SEQ ID NOs: 16 and 17 may be an amino acid sequence of a lysozyme-like domain as ORF7 and ORF73.
  • the bacteriophage YMC15/15R1869_ABA_BP provided by the present invention may include a genome represented by any one of SEQ ID NOs: 18 and 19.
  • SEQ ID NO: 18 may be a base sequence of a genome encoding ORF7
  • SEQ ID NO: 19 may be a base sequence of a genome encoding ORF73.
  • the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/19R1869_ABA_BP have excellent stability to heat and pH.
  • the bacteriophage of the present invention YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/19R1869_ABA_BP maintains lytic activity within a range of 4 to 60°C, but is not limited thereto.
  • the bacteriophage of the present invention YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/19R1869_ABA_BP maintains lytic activity within a range of pH 3.0 to pH 11.0, preferably pH 5.0 to pH 10.0, but is not limited thereto.
  • the bacteria of the genus Klebsiella are Klebsiella pneumoniae, Klebsiella ozaenae, Klebsiella rhinoscleromatis, It may be any one or more selected from the group consisting of Klebsiella oxytoca, Klebsiella planticola and Klebsiella terrigena, and may be used as a pneumonia bacterium in clinical terms.
  • Klebsiella pneumoniae which accounts for most of the bacteria of the genus Klebsiella, is known as a representative bacteria of the genus Klebsiella.
  • the bacteriophage has a specific killing ability to bacteria of the genus Klebsiella, but among the bacteria of the genus Klebsiella, it also has a specific killing ability to bacteria of the genus Klebsiella with antibiotic resistance.
  • the “antibiotic resistance” means resistance to a specific antibiotic and thus does not listen to the medicinal effect.
  • the antibiotic may be an antibiotic having a structure of carbapenem. Specifically, Amikacin, Ampicillin, Ampicillin/Sulbactam, Aztreonam, Ceftazidime, Cefazolin, Cefazolin, Imipenem ), Ertapenem, Cefepime, Cefoxitin, Cefotaxime, Gentamicine, Levoflocacin, Meropenem, Piperacillin / Tazobactam (Piperacillin/Tazobactam), may be one or more selected from the group consisting of Cotrimoxa (Cortrimoxa) and tigecycline (Tigecyline), but is not limited thereto.
  • the Klebsiella pneumoniae may have antibiotic resistance, and the antibiotic resistance may be generated by decomposing the carbapenem and producing a carba
  • the bacteriophage YMC17/01/P6_KPN_BP may include the nucleotide sequence represented by SEQ ID NO: 20 as all or part of the entire gene.
  • the bacteriophage YMC17/01/P6_KPN_BP of the present invention may consist of the base sequence represented by SEQ ID NO: 20, and a functional equivalent of the base sequence.
  • the functional equivalent is at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% of the base sequence represented by SEQ ID NO: 20 as a result of modification or substitution of the base sequence.
  • sequence homology it means a sequence that exhibits substantially the same physiological activity as the base sequence represented by SEQ ID NO: 20.
  • the bacteriophage provided by the present invention may include any one of SEQ ID NOs: 21 and 22.
  • each of SEQ ID NOs: 21 and 22 is an open reading frame (ORF) of the bacteriophage, among proteins that adsorb and bind to the genus Klebsiella, particularly holin or anti-holin.
  • ORF open reading frame
  • SEQ ID NOs: 21 and 22 may be the amino acid sequences of ORF57 and ORF59, respectively.
  • the bacteriophage provided by the present invention may include a genome represented by any one of SEQ ID NOs: 23 and 24.
  • SEQ ID NO: 23 is the base sequence of the genome encoding ORF57
  • SEQ ID NO: 24 is the base sequence of the genome encoding ORF59.
  • the bacteriophage YMC17/01/P6_KPN_BP of the present invention has excellent lytic activity against bacteria of the genus Klebsiella, particularly carbapenem-based antibiotic-resistant pneumococcus. It was confirmed that the bacteriophage YMC17/01/P6_KPN_BP belongs to the Siphoviridae family, which has an angled head and tail, and the total sequencing analysis has a size of 54,880 bp and the total number of ORFs is 87. Confirmed.
  • the bacteriophage of the present invention YMC17/01/P6_KPN_BP is a bacteriophage obtained by collecting and separating samples from a sewage treatment plant in a hospital. Did.
  • the bacteriophage YMC17/01/P6_KPN_BP of the present invention maintains lytic activity within a range of 4°C to 60°C, but is not limited thereto.
  • the bacteriophage YMC17/01/P6_KPN_BP of the present invention maintains lytic activity within a range of pH 3.0 to pH 11.0, preferably pH 5.0 to pH 10.0, but is not limited thereto.
  • the bacteriophage YMC17/01/P6_KPN_BP bacteriophage specific lytic activity, acid resistance and basicity of bacteriophage
  • bacteriophage specific lytic activity is a composition for the prevention and treatment of infectious diseases caused by bacteria of the genus Klebsiella of the present invention, or ,
  • bacteriophage YMC14/01/P262_ABA_BP Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/19R1869_ABA_BP; Or provides a composition for the prevention, improvement or treatment of diseases caused by bacteria in the genus Acinetobacter or Klebsiella containing bacteriophage YMC17/01/P6_KPN_BP as an active ingredient.
  • composition of the present invention the contents of the bacteriophage and the bacteria of the genus Acinetobacter or the Klebsiella bacteria are duplicated as described in the bacteriophage, and detailed description thereof will be omitted below.
  • the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/19R1869_ABA_BP specifically kills bacteria in the genus Acinetobacter, particularly bacteria resistant to the genus Acinetobacter, and thus has an effect on the treatment of various diseases caused by the bacteria in the genus Acinetobacter.
  • the infectious disease caused by the bacteria in the genus Acinetobacter is hepatitis C, hand, foot and mouth disease, gonorrhea, chlamydia, soft sensation, genital herpes simplex, sphincter condilom, vancomycin resistant yellow staphylococcal infection, vancomycin intragrowth infection ,
  • methicillin-resistant Staphylococcus aureus infection multidrug-resistant Pseudomonas aeruginosa infection
  • multidrug-resistant acinetobacter baumanii infection growth invasion within carbapenem, intestinal infection, acute aerobic infection and enterovirus infection
  • the composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL.
  • PFU plaque forming unit
  • PFU plaque forming unit
  • the bacteriophage YMC17/01/P6_KPN_BP specifically kills bacteria of the genus Klebsiella, particularly pneumonia bacterium having carbapenem antibiotic resistance, it is effective in treating various diseases caused by the bacteria of the genus Klebsiella. Shows.
  • the infectious disease caused by bacteria of the genus Klebsiella is pneumonia, urinary tract infection, wound infection, meningitis, osteomyelitis, wound infection, endophthalmitis, intraocular infection, hepatitis, sore throat, diarrhea, sepsis, sinusitis, rhinitis, otitis media , Bacteremia, endocarditis, cholecystitis, or parotitis, which is a disease caused by pneumococcal bacteria, but is not limited thereto.
  • the composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL.
  • PFU plaque forming unit
  • PFU plaque forming unit
  • bacteriophage YMC14/01/P262_ABA_BP Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/19R1869_ABA_BP; Or provides a composition for the prevention, improvement or treatment of diseases caused by bacteria in the genus Acinetobacter or Klebsiella containing bacteriophage YMC17/01/P6_KPN_BP as an active ingredient.
  • composition of the present invention the contents of the bacteriophage and the bacteria of the genus Acinetobacter or the Klebsiella bacteria are duplicated as described in the bacteriophage, and detailed description thereof will be omitted below.
  • the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/19R1869_ABA_BP specifically kills bacteria in the genus Acinetobacter, particularly bacteria resistant to the genus Acinetobacter, and thus has an effect on the treatment of various diseases caused by the bacteria in the genus Acinetobacter.
  • the infectious disease caused by the bacteria in the genus Acinetobacter is hepatitis C, hand, foot and mouth disease, gonorrhea, chlamydia, soft sensation, genital herpes simplex, sphincter condilom, vancomycin resistant yellow staphylococcal infection, vancomycin intragrowth infection ,
  • methicillin-resistant Staphylococcus aureus infection multidrug-resistant Pseudomonas aeruginosa infection
  • multidrug-resistant acinetobacter baumanii infection growth invasion within carbapenem, intestinal infection, acute aerobic infection and enterovirus infection
  • the composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL.
  • PFU plaque forming unit
  • PFU plaque forming unit
  • the bacteriophage YMC17/01/P6_KPN_BP specifically kills bacteria of the genus Klebsiella, particularly pneumonia bacterium having carbapenem antibiotic resistance, it is effective in treating various diseases caused by the bacteria of the genus Klebsiella. Shows.
  • the infectious disease caused by bacteria of the genus Klebsiella is pneumonia, urinary tract infection, wound infection, meningitis, osteomyelitis, wound infection, endophthalmitis, intraocular infection, hepatitis, sore throat, diarrhea, sepsis, sinusitis, rhinitis, otitis media , Bacteremia, endocarditis, cholecystitis, or parotitis, which is a disease caused by pneumococcal bacteria, but is not limited thereto.
  • the composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL.
  • PFU plaque forming unit
  • PFU plaque forming unit
  • bacteriophage YMC14/01/P262_ABA_BP Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/19R1869_ABA_BP; Or provides a composition for the prevention, improvement or treatment of diseases caused by bacteria in the genus Acinetobacter or Klebsiella containing bacteriophage YMC17/01/P6_KPN_BP as an active ingredient.
  • composition of the present invention the contents of the bacteriophage and the bacteria of the genus Acinetobacter or the Klebsiella bacteria are duplicated as described in the bacteriophage, and detailed description thereof will be omitted below.
  • the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/19R1869_ABA_BP specifically kills bacteria in the genus Acinetobacter, particularly bacteria resistant to the genus Acinetobacter, and thus has an effect on the treatment of various diseases caused by the bacteria in the genus Acinetobacter.
  • the infectious disease caused by the bacteria in the genus Acinetobacter is hepatitis C, hand, foot and mouth disease, gonorrhea, chlamydia, soft sensation, genital herpes simplex, sphincter condilom, vancomycin resistant yellow staphylococcal infection, vancomycin intragrowth infection ,
  • methicillin-resistant Staphylococcus aureus infection multidrug-resistant Pseudomonas aeruginosa infection
  • multidrug-resistant acinetobacter baumanii infection growth invasion within carbapenem, intestinal infection, acute aerobic infection and enterovirus infection
  • the composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL.
  • PFU plaque forming unit
  • PFU plaque forming unit
  • the bacteriophage YMC17/01/P6_KPN_BP specifically kills bacteria of the genus Klebsiella, particularly pneumonia bacterium having carbapenem antibiotic resistance, it is effective in treating various diseases caused by the bacteria of the genus Klebsiella. Shows.
  • the infectious disease caused by bacteria of the genus Klebsiella is pneumonia, urinary tract infection, wound infection, meningitis, osteomyelitis, wound infection, endophthalmitis, intraocular infection, hepatitis, sore throat, diarrhea, sepsis, sinusitis, rhinitis, otitis media , Bacteremia, endocarditis, cholecystitis, or parotitis, which is a disease caused by pneumococcal bacteria, but is not limited thereto.
  • the composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL.
  • PFU plaque forming unit
  • PFU plaque forming unit
  • the bacteriophage YMC14/01/P262_ABA_BP Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/19R1869_ABA_BP; Or bacteriophage YMC17/01/P6_KPN_BP.
  • the bacteriophage of the present invention YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; Alternatively, the bacteriophage YMC15/19R1869_ABA_BP has specific killing ability against bacteria in the genus Acinetobacter or Klebsiella, so the skin surface or body of an individual who has been or is likely to be exposed to the bacteriophage or Klebsiella bacteria It can also be used to clean each part.
  • the present invention is a bacteriophage YMC14/01/P262_ABA_BP for use as a cleaning agent; Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/19R1869_ABA_BP; Or it may be to use the bacteriophage YMC17/01/P6_KPN_BP.
  • the bacteriophage YMC14/01/P262_ABA_BP Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/19R1869_ABA_BP; Or it provides a pharmaceutical composition for the prevention or treatment of diseases caused by bacteria of the genus Acinetobacter (Acinetobacter) or Klebsiella (Bacteria) containing the bacteriophage YMC17/01/P6_KPN_BP as an active ingredient.
  • Acinetobacter genus comprising the step of administering the bacteriophage of any one of claims 1 to 25 to the subject in need of prevention or treatment as an active ingredient, Acinetobacter genus Or it may be a method of preventing or treating diseases caused by bacteria in the genus Klebsiella.
  • the pharmaceutical composition may be characterized in that it is in the form of capsules, tablets, granules, injections, ointments, powders or beverages, and the pharmaceutical composition may be characterized as targeting humans.
  • the pharmaceutical composition of the present invention is not limited to these, but may be used in the form of oral dosage forms such as powders, granules, capsules, tablets, aqueous suspensions, external preparations, suppositories, and sterile injectable solutions, respectively, according to a conventional method.
  • the pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers may include binders, lubricants, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, pigments, fragrances, etc. when administered orally, and buffers, preservatives, and analgesics for injections. Agents, solubilizers, isotonic agents, stabilizers, etc.
  • compositions of the present invention can be used in combination.
  • bases, excipients, lubricants, preservatives, etc. can be used for topical administration.
  • the formulation of the pharmaceutical composition of the present invention can be variously prepared by mixing with a pharmaceutically acceptable carrier as described above.
  • a pharmaceutically acceptable carrier for example, when administered orally, tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc. may be prepared, and in the case of injections, unit dosage ampoules or multiple doses may be prepared. have.
  • Others can be formulated as solutions, suspensions, tablets, capsules, and sustained release preparations.
  • examples of carriers, excipients and diluents suitable for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, malditol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil and the like can be used.
  • fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers and may further include preservatives.
  • the route of administration of the pharmaceutical composition according to the present invention is not limited to these, but oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, intestinal, topical , Sublingual or rectal. Oral or parenteral administration is preferred.
  • parenteral includes subcutaneous, intradermal, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, epidural, intralesional and intracranial injection or infusion techniques.
  • the pharmaceutical composition of the present invention can also be administered in the form of suppositories for rectal administration.
  • the pharmaceutical composition of the present invention depends on a number of factors, including the activity, age, weight, general health, sex, formulation, administration time, route of administration, rate of discharge, drug combination and severity of the particular disease to be prevented or treated, of the specific compound used. It may vary, and the dosage of the pharmaceutical composition varies depending on the patient's condition, weight, disease severity, dosage form, administration route and duration, but can be appropriately selected by those skilled in the art, and 0.0001 to 50 mg/day It can be administered in kg or 0.001 to 50 mg/kg. Administration may be administered once a day, or may be divided into several times. The above dosage does not limit the scope of the present invention in any way.
  • the pharmaceutical composition according to the present invention may be formulated as pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions.
  • the cosmetic composition in the present invention includes lotion, nutrient lotion, nutrient essence, massage cream, beauty bath water additive, body lotion, body milk, bath oil, baby oil, baby powder, shower gel, shower cream, sunscreen lotion, sunscreen cream, Suntan cream, skin lotion, skin cream, sunscreen cosmetics, cleansing milk, hair loss agent ⁇ for cosmetics ⁇ , face and body lotion, face and body cream, skin whitening cream, hand lotion, hair lotion, cosmetic cream, jasmine oil, Bath soap, water soap, beauty soap, shampoo, hand cleaner (hand cleaner), medicinal soap (for non-medical), cream soap, facial wash, whole body cleaner, scalp cleaner, hair rinse, cosmetic soap, tooth whitening gel, toothpaste, etc. It can be produced in the form.
  • the composition of the present invention may further include a solvent or a suitable carrier, excipient or diluent, which is commonly used in the preparation of cosmetic compositions.
  • the type of the solvent that can be further added to the cosmetic composition of the present invention is not particularly limited, for example, water, saline, DMSO, or a combination thereof can be used, and as carrier, excipient or diluent, purified water, oil, wax , Fatty acids, fatty acid alcohols, fatty acid esters, surfactants, humectants, thickeners, antioxidants, viscosity stabilizers, chelating agents, buffers, lower alcohols, and the like.
  • whitening agents, moisturizers, vitamins, sunscreens, perfumes, dyes, antibiotics, antibacterial agents, and antifungal agents may be included as necessary.
  • Hydrogenated vegetable oil, castor oil, cottonseed oil, olive oil, palm oil, jojoba oil, avocado oil may be used as the oil, and waxes include beeswax, mellow, carnauba, candelilla, montan, ceresin, liquid paraffin, and lanolin. Can be used.
  • fatty acid stearic acid, linoleic acid, linolenic acid, and oleic acid may be used, and cetyl alcohol, octyl dodecanol, oleyl alcohol, panthenol, lanolin alcohol, stearyl alcohol, and hexadecanol may be used as the fatty acid alcohol.
  • fatty acid ester isopropyl myristate, isopropyl palmitate, and butyl stearate may be used.
  • surfactant cationic surfactants, anionic surfactants and nonionic surfactants known in the art can be used, and surfactants derived from natural products are preferred, if possible.
  • it may include a hygroscopic agent, a thickener, an antioxidant, etc., which are widely known in the cosmetic field, and their types and amounts are as known in the art.
  • the food composition of the present invention may be prepared in the form of various foods, for example, beverages, gum, tea, vitamin complexes, powders, granules, tablets, capsules, cookies, rice cakes, breads, and the like. Since the food composition of the present invention is composed of plant extracts having little toxicity and side effects, it can be safely used even for a long period of time for prevention purposes.
  • the amount may be added at a rate of 0.1 to 50% of the total weight.
  • the food composition when the food composition is prepared in the form of a beverage, there are no particular limitations other than containing the food composition in an indicated ratio, and it may contain various flavoring agents or natural carbohydrates, etc., as additional components, like a conventional beverage. That is, as natural carbohydrates, monosaccharides such as glucose, disaccharides such as fructose, sucrose, etc., and common sugars such as polysaccharides, dextrins, cyclodextrins, and sugar alcohols such as xylitol, sorbitol, and erythritol are included. can do.
  • monosaccharides such as glucose
  • disaccharides such as fructose, sucrose, etc.
  • common sugars such as polysaccharides, dextrins, cyclodextrins
  • sugar alcohols such as xylitol, sorbitol, and erythritol
  • flavoring agent examples include natural flavoring agents (taumatine, stevia extract (for example, rebaudioside A, glycyrrhizine, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.).
  • compositions of the present invention include various nutrients, vitamins, minerals (electrolytes), flavoring agents such as synthetic flavoring agents and natural flavoring agents, coloring agents, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, and protective colloidal thickeners , pH adjusting agents, stabilizers, preservatives, glycerin, alcohol, carbonic acid used in carbonated beverages, and the like.
  • flavoring agents such as synthetic flavoring agents and natural flavoring agents
  • coloring agents such as, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, and protective colloidal thickeners , pH adjusting agents, stabilizers, preservatives, glycerin, alcohol, carbonic acid used in carbonated beverages, and the like.
  • ingredients can be used independently or in combination.
  • the proportion of these additives is not so critical, but is generally selected from 0.1 to about 50 parts by weight per 100 parts by weight of the composition of the present invention.
  • the novel bacteriophage provided by the present invention has a specific killing ability against the genus of Acinetobacter or Klebsiella, and the Acinetobacter genus or Klebsiella bacteria resistant to antibiotics, compared to chemicals such as conventional antibiotics.
  • the bacteriophage of the present invention does not infect other hosts other than bacteria such as humans, animals, plants, etc., it has the advantage of solving problems of antibiotic-resistant bacteria due to misuse of antibiotics, residual problems of antibiotics in food, and problems of a wide range of hosts. have.
  • the bacteriophage of the present invention can be used in various fields in the field of Acinetobacter or prevention or treatment of infectious diseases caused by Klebsiella bacteria, composition for antibiotics, composition for adding feed, feed, disinfectant, or detergent.
  • FIG. 1 shows an electron micrograph of bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention.
  • Figure 2 is a graph showing the adsorption capacity of bacteria in acinetobacter having antibiotic resistance of bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention.
  • Figure 3 shows a single-stage proliferation curve of lytic bacteriophage YMC14/01/P262_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
  • Figure 4 is a graph showing the solubility of bacteria in the genus Acinetobacter having antibiotic resistance in vitro of bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the change in the survival rate of the larvae after treatment with the bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention to a honeybee beetle moth caterpillar infected with bacteria of the genus Acinetobacter having antibiotic resistance. .
  • FIG. 6 is a graph showing the pH stability of lytic bacteriophage YMC14/01/P262_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the temperature stability of lytic bacteriophage YMC14/01/P262_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
  • Figure 8 shows the overall genome sequence analysis results of the bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention.
  • FIG. 9 is an electron micrograph of a bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention.
  • Figure 10 is a graph showing the adsorption capacity of bacteria in the genus Acinetobacter having antibiotic resistance of bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention.
  • FIG. 11 shows a single-stage proliferation curve of lytic bacteriophage YMC15/02/T28_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
  • FIG. 12 is a graph showing the solubility of bacteria in the genus Acinetobacter having antibiotic resistance in vitro of bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention.
  • FIG. 13 is a graph showing the change in the survival rate of the larva after treatment with the bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention to a honeybee beetle moth caterpillar infected with bacteria of the genus Acinetobacter having antibiotic resistance. .
  • FIG. 14 is a graph showing the pH stability of lytic bacteriophage YMC15/02/T28_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
  • FIG. 15 is a graph showing the temperature stability of lytic bacteriophage YMC15/02/T28_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
  • Figure 16 shows the overall genome sequence analysis results of bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention.
  • Figure 17 shows an electron micrograph of the bacteriophage YMC15/19R1869_ABA_BP according to an embodiment of the present invention.
  • Figure 18 is a graph showing the adsorption capacity of bacteria in the genus Acinetobacter having antibiotic resistance of bacteriophage YMC15/19R1869_ABA_BP according to an embodiment of the present invention.
  • FIG. 19 shows a single-stage proliferation curve of lytic bacteriophage YMC15/19R1869_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
  • FIG. 20 is a graph showing the change in the survival rate of the larva after treatment with the bacteriophage YMC15/19R1869_ABA_BP according to an embodiment of the present invention to a honeybee beetle moth caterpillar infected with antibiotic-resistant Acinetobacter baumani .
  • Figure 21 is treated with bacteriophage YMC15/19R1869_ABA_BP according to an embodiment of the present invention to mice infected with antibiotic-resistant acinetobacter baumani, the number of bacteria in the lungs of the mouse. It is a graphical representation of the change.
  • FIG. 22 is a graph showing pH stability of lytic bacteriophage YMC15/19R1869_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
  • FIG. 23 is a graph showing the temperature stability of lytic bacteriophage YMC15/19R1869_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
  • Figure 24 shows the overall genome sequence analysis of the bacteriophage YMC15/19R1869_ABA_BP according to an embodiment of the present invention.
  • 25 shows an electron microscope photograph of a bacteriophage according to an embodiment of the present invention.
  • 26 is a graph showing the adsorption capacity of bacteria of the genus Klebsiella having antibiotic resistance of bacteriophage according to an embodiment of the present invention.
  • FIG. 27 shows a single-stage proliferation curve of lytic bacteriophage against Klebsiella genus bacteria having antibiotic resistance according to an embodiment of the present invention.
  • 29 is a graph showing pH stability of lytic bacteriophage against Klebsiella genus bacteria having antibiotic resistance according to an embodiment of the present invention.
  • FIG. 30 is a graph showing the temperature stability of lytic bacteriophage against Klebsiella genus bacteria having antibiotic resistance according to an embodiment of the present invention.
  • Figure 31 shows the overall genome sequence analysis results of the lytic bacteriophage against Klebsiella genus bacteria having antibiotic resistance according to an embodiment of the present invention.
  • the present invention relates to a bacteriophage having a specific killing ability to bacteria of the genus Acinetobacter or Klebsiella.
  • Acinetobacter baumannii bacteria were isolated and cultured from ICU (intensive care unit) blood and clinical specimens of a university hospital. Strain identification was performed using a kit/ATB 32 GN system (bioMerieux, Marcy l'Etoile, France). Subsequently, the antibiotic susceptibility test was performed using a CLSI disk diffusion test method incubated overnight at 37° C. using a Mueller-Hinton agar, and the test antibiotics were amicacin, ampicillin-sulfur.
  • Raw water from which suspended solids and sediments were removed was secured after the first sedimentation at a sewage treatment facility at Severance Hospital. This was limited to sewage at all stages of the chemical treatment facility. 58 g of sodium chloride per 1 L was added to the collected sample, and then centrifuged at 10,000 g for 10 minutes and filtered through a 220 nm millipore filter. To the obtained filtrate, polyethylene glycol (PEG, molecular weight 8000) was added at 10% W/V and stored refrigerated at 4° C. for 12 hours.
  • PEG polyethylene glycol
  • SM buffer phage dilution buffer
  • each resistant plated bacteriophage YMC14/01/P262_ABA_BP purified by the above process was smeared.
  • the strain was inoculated with 5 ⁇ l to confirm plaque formation, and the titer range was confirmed, and solubility was shown in Table 5 below.
  • + and-are evaluation of plaque activity for the collected strains,'+' means clear plaque, and'-' means that no lysis occurred.
  • the bacteriophage YMC14/01/P262_ABA_BP purified in 2. above was added to the Acinetobacter baumani strain as MOI 0.001 and cultured at room temperature. , 100 ⁇ l samples were collected at 1, 2, 3, 4, and 5 minutes for 1 ml, diluted in LB medium, and then the plaque analysis was conducted to evaluate the adsorption capacity of the bacteriophage, and the results are shown in FIG. 2.
  • the cells were precipitated by centrifugation at 7,000 g for 5 minutes at 4° C., and then diluted in 0.5 ml of LB medium,
  • the bacteriophage YMC14/01/P262_ABA_BP purified in 2. was put into MOI 0.001 (titer 10 8 pfu/cell) and cultured at 37°C for 5 minutes.
  • the pellet obtained by centrifuging the cultured mixed sample at 13,000 g for 1 minute was diluted in 10 ml of LB medium and incubated at 37°C.
  • samples were taken every 10 minutes to evaluate the 1-stage proliferation curve of the bacteriophage through plaque analysis, and the results are shown in FIG. 3.
  • the results of the single-stage proliferation curve showed a high burst size of approximately 79 PFU/infected cells (0 min: 8 PFU/ml, 100 min: 636 PFU/ml).
  • the bacteriophage YMC14/01/P262_ABA_BP according to the present invention can be adsorbed to the Acinetobacter baumani strain having antibiotic resistance within a relatively fast time, and exhibits a high burst size of 79 PFU/infected cells. It can be seen that exhibits the lytic effect of.
  • Bacteriophage YMC14/01/P262_ABA_BP prepared in antibiotic resistant Acinetobacter baumani strain 1 X 10 9 CFU/ml is 1 X 10 8 CFU/ml (MOI: 0.1), 1 X 10 9 PFU/ml (MOI: 1), Each was treated with an amount of 1 X 10 10 PFU/ml (MOI: 10) and OD values (wavelength 600 nm) were measured by time.
  • PBS+SM buffer was treated as a negative control, and the values are shown in FIG. 4.
  • the bacteriophage YMC14/01/P262_ABA_BP according to the present invention has solubility against the antibiotic resistant Acinetobacter baumani strain.
  • the bacteriophage YMC14/01/P262_ABA_BP according to the present invention has solubility against antibiotic resistant Acinetobacter Baumani strain in vivo, effectively preventing infectious diseases caused by the Acinetobacter Baumani strain , It can be seen that can be improved or treated.
  • the bacteriophage bacteriophage YMC14/01/P262_ABA_BP according to the present invention does not break at temperature and alkali and maintains stability.
  • each sample was incubated at 4° C., 37° C., 50° C., 60° C., and 70° C. for each of the bacteriophage YMC14/01/P262_ABA_BP solutions at 10° C. for 10 minutes, and each sample was added together with the Acinetobacter Baumani strain. Plaque analysis was performed by the method of. And the results are shown in FIG. 7.
  • the bacteriophage YMC14/01/P262_ABA_BP according to the present invention showed high stability in both acidic, neutral and alkaline, and for 30 days the bacteriophage YMC14/01/P262_ABA_BP was particularly neutral (pH 7-8) ).
  • the bacteriophage YMC14/01/P262_ABA_BP showed very high stability even at a high temperature of 70 °C.
  • the bacteriophage YMC14/01/P262_ABA_BP includes linear dsDNA (dsDNA) and consists of 79 ORFs.
  • Acinetobacter baumannii bacteria were isolated and cultured from ICU (intensive care unit) blood and clinical specimens of a university hospital. Strain identification was performed using a kit/ATB 32 GN system (bioMerieux, Marcy l'Etoile, France).
  • the antibiotic susceptibility test was performed using a CLSI disc diffusion test method incubated overnight at 37°C using a Mueller-Hinton agar, and the test antibiotics were imipenem, piperacillin-tazobactam (piperacillin-tazobactam), ampicillin-s ⁇ lbactam, aztreonam, ceftazidime, cefepime, cefotaxime, gentamicin , Amicacin, ciprofloxacin, levofloxacin, tigecyline and colistin were used. Susceptibility results were read based on Clinical and Laboratory Standards Institute (CLSI, 2016).
  • the antibiotic resistance profile of the collected Acinetobacter baumannii strains is shown in Tables 13 to 15 below. However, in Tables 13 to 15, S, I and R are the results of evaluating susceptibility to antibacterial agents,'S' is susceptible,'I' is intermediate, and'R' is resistance. Means
  • Raw water from which suspended solids and sediments were removed was secured after the first sedimentation at a sewage treatment facility at Severance Hospital. This was limited to sewage at all stages of the chemical treatment facility. 58 g of sodium chloride per 1 L was added to the collected sample, and then centrifuged at 10,000 g for 10 minutes and filtered through a 220 nm millipore filter. Polyethylene glycol (PEG, molecular weight 8000) was added to the obtained filtrate at 10% W/V and stored refrigerated at 4° C. for 12 hours. The filtrate stored for 12 hours was centrifuged at 12,000 g for 20 minutes to resuspend the precipitate in phage dilution buffer (SM buffer), and then stored frozen by adding the same amount of chloroform. This was repeated 3 times to collect 300 mL of bacteriophage suspension.
  • PEG polyethylene glycol
  • Host strain Lysis Host strain Lysis Host strain Lysis YMC15/02/T28 + YMC13/2017R2199 - YMC13/02/R669 + YMC13/2017R3526 + YMC13/02/R1380 + YMC13/06/R42 - YMC13/02/P386 + YMC13/06/R633 + YMC13/2017T180 + YMC13/12/P154 +
  • the bacteriophage YMC15/02/T28_ABA_BP purified by the method of the above in a sensitive strain culture medium (20 ml LB medium), filtered with a 220 nm millipore filter, and polyethylene glycol (MW 8,000) in the supernatant. After adding in an amount of 10% (w/v), it was refrigerated overnight. After centrifugation for 20 minutes under the condition of 12,000 g, the shape of the bacteriophage YMC15/02/T28_ABA_BP was analyzed using an Energy-Filtering Transmission Electron Microscope, and the results are shown in FIG. 9. Did.
  • the bacteriophage YMC15/02/T28_ABA_BP according to the present invention can be adsorbed to the Acinetobacter baumani strain having antibiotic resistance within a relatively fast time, and exhibits a high burst size of 424 PFU/infected cells. It can be seen that exhibits the lytic effect of.
  • Bacteriophage YMC15/02/T28_ABA_BP prepared in antibiotic resistant Acinetobacter baumani strain 1 X 10 9 CFU/ml is 1 X 10 8 CFU/ml (MOI: 0.1), 1 X 10 9 PFU/ml (MOI: 1), Each was treated with an amount of 1 X 10 10 PFU/ml (MOI: 10) and OD values (wavelength 600 nm) were measured by time. However, PBS+SM buffer was treated as a negative control, and the values are shown in FIG. 12.
  • the bacteriophage YMC15/02/T28_ABA_BP according to the present invention has solubility against the antibiotic-resistant Acinetobacter baumani strain.
  • the bacteriophage YMC15/02/T28_ABA_BP according to the present invention has solubility against antibiotic resistant Acinetobacter Baumani strain in vivo, effectively preventing infectious diseases caused by the Acinetobacter Baumani strain , It can be seen that can be improved or treated.
  • the bacteriophage YMC15/02/T28_ABA_BP according to the present invention does not break at temperature and alkali and maintains stability.
  • each sample was cultured at 4° C., 37° C., 50° C., 60° C., and 70° C. for each of the bacteriophage YMC15/02/T28_ABA_BP solutions at 10° C. for 10 minutes, and each sample was added together with the Acinetobacter Baumani strain. Plaque analysis was performed by the method of. And the results are shown in FIG. 15.
  • the bacteriophage YMC15/02/T28_ABA_BP according to the present invention showed the most stability at neutrality corresponding to pH 7.5, and for 30 days the bacteriophage YMC15/02/T28_ABA_BP was relatively stable at neutral/alkaline properties. Shown.
  • the bacteriophage YMC15/02/T28_ABA_BP showed very high stability even at a high temperature of 50 °C.
  • the whole gene sequence analysis is performed based on the whole genome sequencing method obvious to the skilled person through the Illumina sequencer (Roche), and the results are shown. 16 and Tables 17 to 22.
  • the bacteriophage YMC15/02/T28_ABA_BP includes linear dsDNA (dsDNA), and consists of 77 ORFs.
  • Acinetobacter baumannii strains were isolated and cultured from ICU (intensive care unit) blood and clinical specimens of a university hospital. Strain identification was performed using a kit/ATB 32 GN system (bioMerieux, Marcy l'Etoile, France). Subsequently, the antibiotic susceptibility test was performed using a CLSI disk diffusion test method incubated overnight at 37° C. using a Mueller-Hinton agar, and the test antibiotics were amicacin, ampicillin-sulfur.
  • Host strain origin Host strain Lysis YMC16/12/R12914 Phlegm (pneumonia) YMC16/01/R198 Trachea inhalation (pneumonia YMC16/12/B11422 Catheter blood YMC16/01/R353 Phlegm (pneumonia) YMC16/12/B11449 blood YMC16/01/R405 Phlegm (pneumonia) YMC16/12/B10832 blood YMC16/01/R397 Phlegm (pneumonia) YMC16/12/B13325 Catheter blood YMC16/01/R380 Phlegm (pneumonia) YMC17/01/P518 Swap or drainage YMC16/12/R4637 Phlegm (pneumonia) YMC17/01/B8053 Catheter blood YMC17/01/R2812 Phlegm (pneumonia) YMC17/01/B10087 Catheter blood YMC17/02/R541 Phlegm (pneumonia) YMC
  • Raw water from which suspended solids and sediments were removed was secured after the first sedimentation at a sewage treatment facility at Severance Hospital. This was limited to sewage at all stages of the chemical treatment facility. 58 g of sodium chloride per 1 L was added to the collected sample, and then centrifuged at 10,000 g for 10 minutes and filtered through a 220 nm millipore filter. Polyethylene glycol (PEG, molecular weight 8000) was added to the obtained filtrate at 10% W/V and stored refrigerated at 4° C. for 12 hours. The filtrate stored for 12 hours was centrifuged at 12,000 g for 20 minutes to resuspend the precipitate in phage dilution buffer (SM buffer), and then stored frozen by adding the same amount of chloroform. This was repeated 3 times to collect 300 mL of bacteriophage suspension.
  • PEG polyethylene glycol
  • the bacteriophage YMC15/19R1869_ABA_BP according to the present invention can be adsorbed to the Acinetobacter baumani strain having antibiotic resistance within a relatively fast time, and exhibits a high burst size of 78 PFU/infected cells, thus showing antibiotic resistance strain It can be seen that exhibits the lytic effect of.
  • the bacteriophage YMC15/19R1869_ABA_BP according to the present invention has solubility against antibiotic resistant Acinetobacter Baumani strain in vivo, effectively preventing infectious diseases caused by the Acinetobacter Baumani strain , It can be seen that can be improved or treated.
  • the bacteriophage YMC15/19R1869_ABA_BP according to the present invention has solubility against antibiotic resistant Acinetobacter Baumani strain in vivo, effectively preventing infectious diseases caused by the Acinetobacter Baumani strain , It can be seen that can be improved or treated.
  • the bacteriophage bacteriophage YMC15/19R1869_ABA_BP according to the present invention does not break at temperature and alkali and maintains stability.
  • each sample was incubated at 4° C., 37° C., 50° C., 60° C., and 70° C. for the bacteriophage YMC15/15R1869_ABA_BP solution at 4° C., 37° C., and 70° C., respectively.
  • Plaque analysis was performed by the method of. And the results are shown in FIG. 23.
  • the bacteriophage YMC15/19R1869_ABA_BP according to the present invention showed stability in both acidic, neutral and alkaline, but for 30 days the bacteriophage YMC15/19R1869_ABA_BP showed relatively stable in neutral/alkaline Did.
  • the bacteriophage YMC15/19R1869_ABA_BP showed very high stability up to a high temperature of 70 °C.
  • the whole gene sequence analysis is performed based on the whole genome sequencing method obvious to the skilled person through the Illumina sequencer (Roche), and the results are shown. 24 and Tables 30 to 35.
  • the bacteriophage YMC15/19R1869_ABA_BP includes linear dsDNA (dsDNA) and was composed of 77 ORFs.
  • Klebsiella pneumoniae bacteria were cultured and separated from patients at Severance Hospital or their feces. Strain identification was performed using a kit/ATB 32 GN system (bioMerieux, Marcy l'Etoile, France). Subsequently, the antibiotic susceptibility test was performed using a CLSI disc diffusion test method incubated overnight at 37° C. using a Mueller-Hinton agar.
  • Test antibiotics for Klebsiella pneumoniae bacteria include Amicacin, Ampicillin, Ampicillin/Sulbactam, Aztreonam, Cestazidime, Cefazolin, Imipenem, Ertapenem, Cefepime, Cefoxitin, Cefotaxime, Gentamicine, Levofloxacin, Meropenem (Meropenem), Piperacillin/Tazobactam, Cortrimoxa, and Tigecyline. Susceptibility results were read based on Clinical and Laboratory Standards Institute (CLSI, 2016). The antibiotic resistance profiles of 47 strains of Klebsiella pneumoniae collected are shown in Tables 37 to 40 below. However, in Tables 37 to 40, S, I, and R are the results of evaluating susceptibility to antibacterial agents,'S' is susceptible,'I' is intermediate, and'R' is resistance. Means
  • the collected Klebsiella pneumoniae 47 bacteria were found to be multi-resistant strains resistant to various carbapenem-based antibiotics.
  • Raw water from which suspended solids and sediments were removed was secured after the first sedimentation at a sewage treatment facility at Severance Hospital. This was limited to sewage at all stages of the chemical treatment facility. 58 g of sodium chloride per 1 L was added to the collected sample, and then centrifuged at 10,000 g for 10 minutes and filtered through a 220 nm millipore filter. Polyethylene glycol (PEG, molecular weight 8000) was added to the obtained filtrate at 10% W/V and stored refrigerated at 4° C. for 12 hours. The filtrate stored for 12 hours was centrifuged at 12,000 g for 20 minutes to resuspend the precipitate in phage dilution buffer (SM buffer), and then stored frozen by adding the same amount of chloroform. This was repeated 3 times to collect 300 mL of bacteriophage suspension.
  • PEG polyethylene glycol
  • each of the bacteriophage purified by the above process was smeared YMC17/01/P6_KPN_BP Tolerant strains were inoculated with 5 ⁇ l to confirm plaque formation, and to confirm the titer range, solubility was shown in Table 41 below. However, in Table 41 below, + and-are evaluations of plaque activity for the collected strains,'+' means clear plaque, and'-' means that no lysis occurred.
  • Host strain Lysis Host strain Lysis Host strain Lysis YMC16/12/N708 ++ YMC17/2017N331 + YMC16/12/N681 ++ YMC17/2017N355 + YMC17/01/N115 + YMC17/2017R3201 + YMC17/01/P6 + YMC17/2017N405 + YMC17/01/N167 + YMC17/2017N500 + YMC17/01/N132 + YMC17/2017N424 - YMC17/01/N270 + YMC17/2017N421 - YMC17/01/N189 + YMC17/06/U687 - YMC17/02/N103 ++ YMC17/06/N182 - YMC17/02/N97 ++ YMC17/06/N196 - YMC17/02/N84 ++ YMC17/06/N263 - YMC17/02/N151 ++ YMC17/06/N
  • the cells were precipitated by centrifugation at 7,000 g for 5 minutes at 4°C, and then diluted in 0.5 ml of LB medium,
  • the bacteriophage purified in Example 2 was added with MOI 0.001 (titer 10 8 pfu/cells) and incubated at 37°C for 5 minutes.
  • the pellet obtained by centrifuging the cultured mixed sample at 13,000 g for 1 minute was diluted in 10 ml of LB medium and incubated at 37°C.
  • samples were taken every 10 minutes to evaluate the 1-stage proliferation curve of the bacteriophage through plaque analysis, and the results are shown in FIG. 27.
  • the bacteriophage YMC17/01/P6_KPN_BP can adsorb to antibiotic-resistant Klebsiella pneumoniae within a relatively short time, and exhibits a high burst size of 43 PFU/infected cells. It can be seen that it exerts a lytic effect on the Ciella pneumoniae.
  • Bacteriophage YMC17/01/P6_KPN_BP prepared in antibiotic resistant Klebsiella pneumoniae 1 X 10 9 CFU/ml is 1 X 10 8 CFU/ml (MOI: 0.1), 1 X 10 9 PFU/ml (MOI: 1), Each was treated with an amount of 1 X 10 10 PFU/ml (MOI: 10) and OD values (wavelength 600 nm) were measured by time.
  • PBS+SM buffer was treated as a negative control, and the values are shown in FIG. 28.
  • the bacteriophage according to the present invention has solubility against antibiotic resistant Klebsiella pneumoniae.
  • the bacteriophage YMC17/01/P6_KPN_BP according to the present invention does not break at temperature and alkali and maintains stability.
  • each sample was incubated at 4° C., 37° C., 60° C., and 70° C. for 1 hour in 10-minute increments, and each sample was subjected to plaque analysis by the method of 4. above with Klebsiella pneumoniae Fig. 30 shows the result.
  • the bacteriophage YMC17/01/P6_KPN_BP according to the present invention exhibited stability at both acidic, neutral and alkaline properties corresponding to pH 7, and for 30 days, the bacteriophage was relatively stable at particularly neutral/alkaline properties. Shown.
  • the bacteriophage YMC17/01/P6_KPN_BP showed very high stability up to a high temperature of 60 °C.
  • the bacteriophage YMC17/01/P6_KPN_BP includes linear dsDNA (dsDNA) and was composed of 87 ORFs.
  • the present invention relates to a novel bacteriophage that lyses bacteria, especially bacteria that are resistant to antibiotics.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a bacteriophage exhibiting bactericidal activity specifically against Acinetobacter sp. or Klebsiella sp. bacteria.

Description

세균을 용균하는 신규한 박테리오파지A new bacteriophage that dissolves bacteria
본 발명은 세균, 특히는 항생제에 대한 내성을 보이는 세균을 용균시키는 신규한 박테리오파지에 관한 것이다.The present invention relates to a novel bacteriophage that lyses bacteria, especially bacteria that are resistant to antibiotics.
세균의 감염은 인간의 질병에서 가장 흔하고 치명적인 원인 중의 하나이다. 페니실린(penicillin) 이후 수많은 종류의 항생제가 개발되어 생체에 외부 침입의 세균 퇴치를 위하여 사용되어 왔다. 그러나 최근에 들어서 이들 항생제에 내성을 가지는 균주들이 등장하여 큰 문제로 여겨진다. 생명에 위협을 가할 수 있는 엔테로코쿠스 패칼리스(Enterococcus faecalis), 마이코박테리움 투버쿨로시스(Mycobacterium tuberculosis) 및 슈도모나스 에루지노사(Pseudomonas aeruginosa) 등의 세균 종들은 지금까지 알려진 모든 항생제에 대한 저항력을 키워왔다(Stuart B. Levy, ScientificAmerican, (1988): 46-53).Bacterial infection is one of the most common and fatal causes of human disease. Since penicillin, numerous types of antibiotics have been developed and used to combat bacteria from external invasion into the living body. However, recently, strains resistant to these antibiotics have appeared, which is considered a big problem. Bacterial species such as Enterococcus faecalis , Mycobacterium tuberculosis , and Pseudomonas aeruginosa , which can be life-threatening, are resistant to all known antibiotics. (Stuart B. Levy, ScientificAmerican, (1988): 46-53).
항생제에 대한 내성(tolerance)은 항생제에 대한 저항성(resistance)과는 구별되는 현상인데, 1970년대에 뉴모코커스(Pneumococcus sp.)에서 최초로 발견이 되었으며 페니실린의 작용 기작에 대한 중요한 단서를 제공하였다(Tomasz et al., Nature, 227, (1970): 138-140). 페니실린, 세팔로스포린(Cephalosporin) 등과 같은 종래의 화학 항생제는 미생물의 세포벽 또는 단백질의 합성 저해에 의하여 항생 작용을 나타낸다. 그러나, 내성을 보이는 종은 통상적인 농도의 항생제 존재 하에서는 성장을 멈추지만 결과적으로 죽지는 않는다. 내성은 항생제가 세포벽 합성 효소를 저해할 때 오토라이신(autolysin) 등과 같은 세균의 자가분해(autolytic) 효소의 활성이 일어나지 않기 때문에 생기는데, 이러한 사실은 페니실린이 내인성 가수분해 효소(endogenous hydrolytic enzyme)를 활성화시킴으로써 세균을 죽이며 세균은 또한 이들의 활성을 억제해서 항생제 치료 시에도 생존하는 결과를 나타내게 된다. 따라서, 이들 내성 균주를 퇴치할 수 있는 새로운 작용 메커니즘을 가지는 항생제의 개발이 시급한 실정이며 종래의 화학 항생제와 상이한 항생 기전을 나타내는 항생 펩타이드들은 새로운 개념의 차세대 항생제로서 주목을 받고 있다(Zasloff M.Curr Opin Immunol4(1992): 3-7; Boman, H. G., Cell, 65.205 (1991); Boman, H. G. J Intern Med. 254.3 (2003): 197-215; Hancock, R. E., & Scott, M. G., Proc. Natl. Acad. Sci. U.S.A. 97 (2000): 8856-8861, Zasloff, M., Nature 415 (2002): 389-395).Tolerance of antibiotics is a phenomenon distinct from resistance to antibiotics. It was first discovered in Pneumococcus sp. in the 1970s and provided important clues to the mechanism of action of penicillin (Tomasz et al., Nature, 227, (1970): 138-140). Conventional chemical antibiotics, such as penicillin and cephalosporin, exhibit antibiotic activity by inhibiting the cell wall of microorganisms or the synthesis of proteins. However, resistant species stop growing in the presence of antibiotics at normal concentrations, but do not die as a result. Resistance occurs because the activity of bacterial autolytic enzymes, such as autolysin, does not occur when antibiotics inhibit cell wall synthase, and this is because penicillin activates endogenous hydrolytic enzymes. By killing bacteria, the bacteria also inhibit their activity, resulting in survival even when treated with antibiotics. Therefore, the development of antibiotics having a new mechanism of action capable of combating these resistant strains is urgent, and antibiotic peptides that exhibit different antibiotic mechanisms than conventional chemical antibiotics are attracting attention as a new concept of next-generation antibiotics (Zasloff M.Curr Opin Immunol 4 (1992): 3-7; Boman, HG, Cell, 65.205 (1991); Boman, HG J Intern Med. 254.3 (2003): 197-215; Hancock, RE, & Scott, MG, Proc. Natl. Acad. Sci. USA 97 (2000): 8856-8861, Zasloff, M., Nature 415 (2002): 389-395).
한편, 아시네토박터 바우마니 균(Acinetobacter baumannii)은 그람 음성 호기성 구간균으로 많은 병원에서 병원 내 감염의 중요한 원인이 되고 있는데 특히 최근에는 아미노글리코사이드, 세파로스포린, 플루오로퀴놀론, 베타 락타마아제 억제제(beta-lactamase inhibitors), 그리고 카바페넴에 대해서 내성을 보이는 다제내성 아시네토박터 바우마니(MRAB)에 의한 감염이 증가하고 있는 실정이다. Meanwhile, Acinetobacter baumannii is a Gram-negative aerobic bacillus, which is an important cause of infection in hospitals in many hospitals, especially aminoglycosides, cephalosporins, fluoroquinolones, and beta lactamases. Infection with beta-lactamase inhibitors and multidrug-resistant acinetobacter baumani (MRAB), which is resistant to carbapenem, is increasing.
2010년 동경대학병원에서 아시네토박터 세균의 감염으로 46명이 감염되고 이중 10명이 숨진 사건은 최근 10년 사이 전 세계적으로 급증하고 있는 항생제 내성이 강한 MRAB에 대한 경각심을 불러일으켰고 항생제 개발에 박차를 가하고 있다. 아시네토박터 세균 자체는 물이나 토양 또는 인간의 피부에도 흔하게 존재하며 건강한 사람의 경우 감염돼도 발병하지 않는다. 하지만, 면역력이 떨어진 사람이 감염될 경우 폐렴이나 패혈증으로 사망할 수 있고, 1990년대부터 미국, 유럽 등에서 늘어나기 시작했으며 2000년부터는 거의 어떤 항생제도 듣지 않는 종류까지 나타났다. In 2010, at the University of Tokyo Hospital, 46 people were infected and 10 of them died from the infection of Acinetobacter bacteria, which has sparked awareness of MRAB, an antibiotic-resistant drug that has rapidly increased worldwide in the last decade, and accelerated the development of antibiotics. have. The Acinetobacter bacteria themselves are common in water, soil, or human skin, and in healthy people, they do not develop when infected. However, people with reduced immunity may die from pneumonia or sepsis when infected, and began to increase in the United States and Europe since the 1990s, and from 2000 to almost no antibiotics.
또한, 클렙시엘라(Klebsiella) 속 세균은 장내세균과의 한 속명으로, 그람음성간균이다. 편모는 없고, 협막을 지나다니면서 점액을 생산하는 것이 특징이다. 구연산염으로부터 탄소원을 얻고, 여러가지 탄수화물에서 황화수소를 제외한 산과 가스를 발생시킨다. 자연계에 널리 존재하며, 사람의 호흡기, 장관, 비뇨기에서 검출되며 급성 폐렴의 원인균으로 알려져 있다. 최근에는 다양한 클렙시엘라 속 세균이 진단, 검출되고 있는데, 폐렴간균(Klebsiella pneumoniae), 클렙시엘라 오자에나에(Klebsiella ozaenae), 클렙시엘라 리노스클레로마티스(Klebsiella rhinoscleromatis) 등이 존재한다.In addition, the bacteria of the genus Klebsiella is a Gram-negative bacilli as a genus of intestinal bacteria. It has no flagella and is characterized by producing mucus as it passes through the stenosis. Carbon sources are obtained from citrate, and various carbohydrates generate acids and gases excluding hydrogen sulfide. It is widely present in nature and is detected in human respiratory, intestinal, and urinary tract and is known as a causative agent of acute pneumonia. Recently, various bacteria of the genus Klebsiella have been diagnosed and detected, such as Klebsiella pneumoniae, Klebsiella ozaenae, and Klebsiella rhinoscleromatis.
임상적 측면에서 클렙시엘라 속 세균 중 대부분을 차지하는 것으로 알려진 폐렴간균(Klebsiella pneumoniae)은 그람음성(Gram negative)의 간균, 통성혐기성 또는 호기성 세균으로 사람의 장관 내, 피부, 구강, 호흡기 등에 상재하고 있으며, 폐렴의 10~20%는 이 균에 의한다고 한다. 또한 요로감염증에서 분리되는 경우도 있으며, 패혈증, 복강 내 감염 등의 주 원인균으로 보고되고 있으며, 중환자실 환자에서 발생하는 균혈증의 원인균으로 높은 감염률을 보이고 있다.Klebsiella pneumoniae, which is known to occupy most of the bacteria of the genus Klebsiella in clinical terms, is a Gram negative bacillus, aerobic or aerobic bacteria, and is present in the human intestinal tract, skin, oral cavity, respiratory system, etc. It is said that 10-20% of pneumonia is caused by the bacteria. In addition, it may be isolated from urinary tract infection, and is reported as the main causative agent such as sepsis and intraperitoneal infection, and has a high infection rate as the causative agent of bacteremia occurring in patients in the intensive care unit.
한편, 현재 미생물을 효과적으로 사멸시킬 수 있는 다양한 항균제가 사용되고 있는데, 베타락탐 계열의 항생제는 현재 사용되고 있는 항균제의 약 50% 이상을 차지하고 있다. 그러나 많은 그람음성 세균에서는 이러한 베타락탐 계열의 항생제에 대해 베타락탐분해효소를 생성함으로써 상기 항생제들에 내성을 나타내는 것으로 보고되고 있다. 현재 발견되는 클렙시엘라 속 세균인 폐렴간균 중에서도 항생제 내성을 나타내는 세균인 특히, K. pneumoniae 카바페네메이즈(KPC)-생산 K. pneumoniae (KPC-Kp)는 전 세계적 확산과 함께 감염환자의 사망률을 높이고 있다. 이에 국내에서도 K. pneumoniae 카바페네메이즈(KPC)-생산 K. pneumoniae (KPC-Kp)확산 및 증가 억제를 위한 새로운 전략이 필요한 실정이다.On the other hand, various antibacterial agents that can effectively kill microorganisms are currently used. Betalactam-based antibiotics account for about 50% or more of currently used antibacterial agents. However, many Gram-negative bacteria have been reported to exhibit resistance to the antibiotics by generating beta-lactamase against these beta-lactam-based antibiotics. Among the currently found bacteria of the genus Klebsiella pneumonia, K. pneumoniae carbapene maize (KPC)-producing K. pneumoniae (KPC-Kp), which is an antibiotic-resistant bacterium, increases the mortality rate of infected patients with global spread. Raising. Therefore, in Korea, a new strategy is needed to suppress the spread and increase of K. pneumoniae carbapene maize (KPC)-producing K. pneumoniae (KPC-Kp).
박테리오파지(bacteriophage)는 특정 세균을 감염시켜 감염된 세균의 성장을 억제하고 저해하는 세균 특이적 바이러스를 의미한다. 박테리오파지는 박테리아에 감염(infection)한 후 박테리아 세포 내부에서 증식을 하고, 증식 후 자손 박테리오파지들이 박테리아 밖으로 나올 때 숙주인 박테리아의 세포벽을 파괴하는 방식으로 박테리아를 사멸시키는 능력을 갖고 있다. 박테리오파지의 박테리아 감염 방식은 매우 특이성이 높아서 특정 박테리아에 감염할 수 있는 박테리오파지의 종류는 일부로 한정된다. 즉, 특정 박테리오파지는 특정 범주의 박테리아에만 감염할 수 있고 이로 인하여 특정 박테리오파지는 특정 박테리아만을 사멸시키며 다른 박테리아에는 영향을 주지 않는다. 따라서 최근 세균성 질환의 대처 방안으로 박테리오파지(bacteriophage)의 활용이 크게 주목을 받고 있다. 특히 2000년 이후에 항생제 내성균의 증가로 인하여 기존 항생제의 한계성이 나타나고, 기존 항생제의 대체 물질로의 개발 가능성이 부각되면서 다시 박테리오파지가 항-박테리아제로 주목을 받고 있다.Bacteriophage refers to a bacterial specific virus that inhibits and inhibits the growth of infected bacteria by infecting certain bacteria. The bacteriophage has the ability to kill bacteria by destroying the cell wall of the host bacteria when the progeny bacteriophages come out of the bacteria after proliferation inside the bacterial cells after infection. The method of bacterial infection of bacteriophage is very specific, so the type of bacteriophage capable of infecting certain bacteria is limited to a part. That is, a specific bacteriophage can infect only a specific category of bacteria, thereby killing a specific bacteriophage and not affecting other bacteria. Therefore, the recent use of bacteriophage (bacteriophage) as a countermeasure against bacterial diseases has attracted much attention. In particular, after 2000, due to the increase in antibiotic-resistant bacteria, the limitations of existing antibiotics appeared, and the possibility of development of alternatives to existing antibiotics emerged, and bacteriophage has attracted attention as an anti-bacterial agent.
현재까지 아시네토박터 속 및 클렙시엘라 속 세균에 의한 감염증을 예방 또는 치료하기 위한 신규한 박테리오파지에 대한 연구는 여전히 부족한 실정이다. 따라서 클렙시엘라 속 세균에 특이적인 용균 활성을 갖는 박테리오파지 및 이의 응용에 대한 기술 개발이 필요하다.To date, studies on novel bacteriophage for preventing or treating infections caused by bacteria of the genus Acinetobacter and Klebsiella are still insufficient. Therefore, it is necessary to develop a technology for bacteriophage and its application, which has specific lytic activity to bacteria of the genus Klebsiella.
본 발명의 일 목적은 세균, 특히는 항생제에 대한 내성을 갖는 아시네토박터 속 및 클렙시엘라 속 세균에 대하여 특이적 감염 및 사멸능을 갖는 신규한 박테리오파지를 제공하는 것이다.One object of the present invention is to provide a novel bacteriophage having specific infection and killing ability against bacteria of the genus Acinetobacter and Klebsiella that are resistant to antibiotics, especially antibiotics.
본 발명의 다른 목적은 아시네토박터 속 세균, 특히는 항생제에 대한 내성을 갖는 아시네토박터 속 세균에 대하여 특이적 감염 및 사멸능을 갖는 신규한 박테리오파지에 의해 유발되는 감염성 질환의 예방 및 치료용 조성물과 질환 개선용 식품 조성물을 제공하는 것이다.Another object of the present invention is a composition for the prevention and treatment of infectious diseases caused by novel bacteriophage having specific infection and killing ability against bacteria in the genus Acinetobacter, particularly bacteria resistant to antibiotics. It is to provide a food composition for improving the disease.
본 발명의 일 구현 예에 따르면, 아시네토박터(Acinetobacter) 속 또는 클렙시엘라(Klebsiella) 속 세균에 특이적인 사멸능을 갖는 박테리오파지를 제공한다.According to an embodiment of the present invention, it provides a bacteriophage having a specific killing ability to bacteria of the genus Acinetobacter or Klebsiella.
본 발명에서, 용어 "박테리오파지(bacteriophage)"는 특정 세균에 감염하여 당해 세균의 성장을 억제하고 저해하는 세균 특이적 바이러스로, 단일 혹은 이중 사슬의 DNA 또는 RNA를 유전 물질로 포함하는 바이러스를 의미한다.In the present invention, the term "bacteriophage (bacteriophage)" is a bacterial specific virus that inhibits and inhibits the growth of the bacteria by infecting a specific bacteria, and refers to a virus comprising a single or double chain DNA or RNA as a genetic material. .
본 발명에서 상기 아시네토박터 속 세균은 아시네토박터 바우마니 (Acinetobacter baumannii), 아시네토박터 칼코아세티쿠스 (Acinetobacter calcoaceticus), 아시네토박터 헤모리티쿠스 (Acinetobacter haemolyticus), 아시네토박터 주니 (Acinetobacter junii), 아시네토박터 존스니 (Acinetobacter johnsonii), 아시네토박터 리워피 (Acinetobacter lwoffii), 아시네토박터 라디오레시스텐스 (Acinetobacter radioresistens), 아시네토박터 우르신지 (Acinetobacter ursingii), 아시네토박터 쉰들러리 (Acinetobacter schindleri), 아시네토박터 파르부스 (Acinetobacter parvus), 아시네토박터 베이리 (Acinetobacter baylyi), 아시네토박터 보우베티 (Acinetobacter bouvetii), 아시네토박터 토우너리 (Acinetobacter towneri), 아시네토박터 탄도이 (Acinetobacter tandoii), 아시네토박터 그리몬티 (Acinetobacter grimontii), 아시네토박터 셰른버지아 (Acinetobacter tjernbergiae) 및 아시네토박터 게르너리(Acinetobacter gerneri)군에서 선택되는 어느 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the bacteria of the genus Acinetobacter are Acinetobacter baumannii , Acinetobacter calcoaceticus , Acinetobacter haemolyticus , Acinetobacter haemolyticus , Acinetobacter junii ), Acinetobacter johnsonii , Acinetobacter lwoffii , Acinetobacter radioresistens , Acinetobacter urresingens , Acinetobacter ursingii , Acinetobacter ursingii Acinetobacter schindleri), Acinetobacter Parque booth (Acinetobacter parvus), Acinetobacter Bay Li (Acinetobacter baylyi), Acinetobacter Bow Betty (Acinetobacter bouvetii), Acinetobacter tow Nourishing (Acinetobacter towneri), Acinetobacter tandoyi (Acinetobacter tandoii ), Acinetobacter grimontii , Acinetobacter tjernbergiae and Acinetobacter gerneri may be any one or more selected from the group, but are not limited thereto.
본 발명에서 상기 박테리오파지는 아시네토박터 속 세균에 특이적 사멸능을 가지지만, 상기 아시네토박터 속 세균 중에서도 항생제 내성을 가진 아시네토박터 속 세균에 대하여도 특이적 사멸능을 가진다. In the present invention, the bacteriophage has a specific killing ability against bacteria in the genus Acinetobacter, but also has a specific killing ability against bacteria in the genus Acinetobacter having antibiotic resistance among the bacteria in the genus Acinetobacter.
본 발명에서 상기 "항생제 내성"은 특정 항생제에 내성을 보여 약효가 듣지 않는 것을 의미하며, 본 발명의 목적상 상기 항생제는 콜리스틴(Colistin), 에리트로마이신(Erythromycin), 엠피실린(Ampicillin), 엠피실린-설벡탐(Ampicillin-s ㎕bactam), 반코마이신(Vancomycin), 리네졸리드(Linezolid), 메티실린(Methicillin), 옥사실린(Oxacillin), 세포탁심(Cefotaxime), 리팜피신(Rifampicin), 아미카신(Amikacin), 젠타마이신(Gentamicin), 아미카신(Amikacin), 카나마이신(Kanamycin), 토브라마이신(Tobramycin), 네오마이신(Neomycin), 에르타페넴(Ertapenem), 도리페넴(Doripenem), 이미페넴(Imipenem), 이미페넴/실라스타틴(Imipenem/Cilastatin), 메로페넴(Meropenem), 세프타지딤(Ceftazidime), 세페핌(Cefepime), 세프타로린(Ceftaroline), 세프토비프롤(Ceftobiprole), 아즈트레오남(Aztreonam), 피페라실린(Piperacillin), 폴리믹신 B(Polymyxin B), 시프로플록사신(Ciprofloxacin), 레보플록사신(Levofloxacin), 목시플록사신(Moxifloxacin), 가티플록사신(Gatifloxacin), 피페라실린-타조박탐(piperacillin-tazobactam), 미노사이클린(minocycline), 티게사이클린(Tigecycline), 코트리목사(Cotrimoxa), 이의 배합체 및 이들의 유도체로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the "antibiotic resistance" means resistance to a specific antibiotic and thus does not hear the effect, and for the purpose of the present invention, the antibiotic is colistin, erythromycin, ampicillin, ampicillin Ampicillin-s μlbactam, Vancomycin, Linezolid, Methicillin, Oxacillin, Cefataxime, Rifampicin, Amikacin (Amikacin), Gentamicin, Amikacin, Kanamycin, Tobramycin, Neomycin, Ertapenem, Dorippenem, Iripenem Imipenem, Imipenem/Cilastatin, Meropenem, Ceftazidime, Cefepime, Ceftaroline, Ceftobiprole, Aztreonam (Aztreonam), Piperacillin, Polymyxin B, Ciprofloxacin, Levofloxacin, Moxifloxacin, Gatifloxacin, Piperactillin It may be any one or more selected from the group consisting of piperacillin-tazobactam, minocycline, Tigecycline, Cotrimoxa, combinations thereof and derivatives thereof, but is not limited thereto.
본 발명의 일 구체예에서 상기 박테리오파지는 병원 내 하수처리장으로부터 시료를 채취하여 분리한 박테리오파지로서, 박테리오파지 YMC14/01/P262_ABA_BP으로 명명하고, 2018년 11월 15일에 한국미생물보존센터에 기탁번호 KFCC11798P로 기탁된 것일 수 있다. In one embodiment of the present invention, the bacteriophage is a bacteriophage separated by taking a sample from a sewage treatment plant in a hospital, named bacteriophage YMC14/01/P262_ABA_BP, and deposited with KFCC11798P as deposit number KFCC11798P on November 15, 2018. It may be deposited.
본 발명의 박테리오파지 YMC14/01/P262_ABA_BP는 육각형 머리에 긴 꼬리를 가지고 있는 미오비리대(Myoviridae) 과에 속함을 확인하였으며, 전체 염기 서열 분석 결과 44,597 bp의 크기를 갖고 전체 ORF의 수는 79개임을 확인하였다. It was confirmed that the bacteriophage YMC14/01/P262_ABA_BP of the present invention belongs to the Myoviridae family having a long tail on the hexagonal head, and the total sequencing analysis showed a size of 44,597 bp and the total number of ORFs was 79. Confirmed.
또한, 본 발명에서 박테리오파지 YMC14/01/P262_ABA_BP는 서열번호 1로 표시되는 염기 서열을 전체 유전자의 전체 또는 일부로써 포함할 수 있다. In addition, in the present invention, the bacteriophage YMC14/01/P262_ABA_BP may include the nucleotide sequence represented by SEQ ID NO: 1 as all or part of the entire gene.
또한, 본 발명의 박테리오파지 YMC14/01/P262_ABA_BP는 서열번호 1로 표시되는 염기 서열, 및 상기 염기 서열의 기능적 동등물로 이루어질 수 있다. 상기 기능적 동등물이란 염기 서열의 변형, 치환의 결과, 상기 서열번호 1로 표시되는 염기 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 6으로 표시되는 염기 서열과 실질적으로 동질의 생리활성을 나타내는 서열을 의미한다.In addition, the bacteriophage YMC14/01/P262_ABA_BP of the present invention may consist of the base sequence represented by SEQ ID NO: 1, and a functional equivalent of the base sequence. As a result of modification and substitution of the base sequence, the functional equivalent is at least 70% or more, preferably 80% or more, more preferably 90% or more, and even more preferably 95% with the base sequence represented by SEQ ID NO:1. As having the above sequence homology, it means a sequence exhibiting substantially the same physiological activity as the base sequence represented by SEQ ID NO: 6.
또한, 본 발명에서 제공하는 상기 박테리오파지 YMC14/01/P262_ABA_BP는 서열번호 2 내지 4 중 어느 하나의 단백질을 포함하는 것일 수 있다. 본 발명에서 상기 서열번호 2 내지 4 각각은 상기 박테리오파지의 ORF(Open reading frame)로, 상기 서열번호 2로 표시되는 단백질은 엔도리신(endolysin)으로 추정되는 단백질의 아미노산 서열일 수 있고, 상기 서열번호 3으로 표시되는 단백질은 리소자임 유사 도메인(lysozyme-like domain)의 아미노산 서열일 수 있으며, 상기 서열번호 4로 표시되는 단백질은 추정의 꼬리-섬유/리소좀 단백질의 아미노산 서열일 수 있다. 보다 상세하게는 상기 서열번호 2는 ORF38의 아미노산 서열이고, 서열번호 3은 ORF50의 아미노산 서열이며, 서열번호 4는 ORF51의 아미노산 서열일 수 있다. In addition, the bacteriophage YMC14/01/P262_ABA_BP provided by the present invention may include any one of SEQ ID NOs: 2-4. In the present invention, each of SEQ ID NOs: 2 to 4 is an ORF (Open Reading Frame) of the bacteriophage, and the protein represented by SEQ ID NO: 2 may be an amino acid sequence of a protein presumed to be endolysin, and the SEQ ID NO: The protein represented by 3 may be an amino acid sequence of a lysozyme-like domain, and the protein represented by SEQ ID NO: 4 may be an amino acid sequence of a putative tail-fiber/lysosomal protein. More specifically, SEQ ID NO: 2 is the amino acid sequence of ORF38, SEQ ID NO: 3 is the amino acid sequence of ORF50, and SEQ ID NO: 4 may be the amino acid sequence of ORF51.
또한, 본 발명에서 제공하는 상기 박테리오파지 YMC14/01/P262_ABA_BP는 서열번호 5 내지 7 중 어느 하나로 표시되는 유전체를 포함하는 것일 수 있다. 여기서 상기 서열번호 5는 ORF38을 코딩하는 유전체의 염기 서열이고, 서열번호 6은 ORF50을 코딩하는 유전체의 염기 서열이며, 서열번호 7은 ORF51을 코딩하는 유전체의 염기 서열일 수 있다.In addition, the bacteriophage YMC14/01/P262_ABA_BP provided by the present invention may include a genome represented by any one of SEQ ID NOs: 5 to 7. Here, SEQ ID NO: 5 is the base sequence of the genome encoding ORF38, SEQ ID NO: 6 is the base sequence of the genome encoding ORF50, and SEQ ID NO: 7 may be the base sequence of the genome encoding ORF51.
본 발명의 다른 구체예에서 상기 박테리오파지는 병원 내 하수처리장으로부터 시료를 채취하여 분리한 박테리오파지로서, 박테리오파지 YMC15/02/T28_ABA_BP으로 명명하고, 2018년 11월 15일에 한국미생물보존센터에 기탁번호 KFCC11799P로 기탁된 것일 수 있다. In another embodiment of the present invention, the bacteriophage is a bacteriophage separated by taking a sample from a sewage treatment plant in a hospital, named bacteriophage YMC15/02/T28_ABA_BP, and deposited with KFCC11799P as deposit number KFCC11799P on November 15, 2018. It may be deposited.
본 발명의 박테리오파지 YMC15/02/T28_ABA_BP는 육각형 머리에 긴 꼬리를 가지고 있는 미오비리대 과에 속함을 확인하였으며, 전체 염기 서열 분석 결과 44,580 bp의 크기를 갖고 전체 ORF의 수는 77개임을 확인하였다. It was confirmed that the bacteriophage YMC15/02/T28_ABA_BP of the present invention belongs to the family Mioviridae having a long tail on the hexagonal head, and the total sequencing analysis confirmed that it had a size of 44,580 bp and the total number of ORFs was 77.
또한, 본 발명에서 박테리오파지 YMC15/02/T28_ABA_BP는 서열번호 8로 표시되는 염기 서열을 전체 유전자의 전체 또는 일부로써 포함할 수 있다. In addition, in the present invention, the bacteriophage YMC15/02/T28_ABA_BP may include the nucleotide sequence represented by SEQ ID NO: 8 as all or part of the entire gene.
또한, 본 발명의 박테리오파지 YMC15/02/T28_ABA_BP는 서열번호 8로 표시되는 염기 서열, 및 상기 염기 서열의 기능적 동등물로 이루어질 수 있다. 상기 기능적 동등물이란 염기 서열의 변형, 치환의 결과, 상기 서열번호 8로 표시되는 염기 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 8로 표시되는 염기 서열과 실질적으로 동질의 생리활성을 나타내는 서열을 의미한다.In addition, the bacteriophage YMC15/02/T28_ABA_BP of the present invention may consist of the base sequence represented by SEQ ID NO: 8, and a functional equivalent of the base sequence. The functional equivalent is at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% of the base sequence represented by SEQ ID NO: 8 as a result of modification or substitution of the base sequence. As having the above sequence homology, it means a sequence exhibiting substantially the same physiological activity as the base sequence represented by SEQ ID NO: 8.
또한, 본 발명에서 제공하는 상기 박테리오파지 YMC15/02/T28_ABA_BP는 서열번호 9 내지 11 중 어느 하나의 단백질을 포함하는 것일 수 있다. 본 발명에서 상기 서열번호 9 내지 11 각각은 상기 박테리오파지의 ORF(Open reading frame)로, 상기 서열번호 9로 표시되는 단백질은 리소자임 유사 도메인(lysozyme-like domain)의 아미노산 서열일 수 있고, 상기 서열번호 10으로 표시되는 단백질은 추정의 꼬리-섬유/리소좀 단백질의 아미노산 서열일 수 있으며, 상기 서열번호 11로 표시되는 단백질은 엔도리신(endolysin) 추정 단백질의 아미노산 서열일 수 있다. 보다 상세하게는 상기 서열번호 9는 ORF7의 아미노산 서열일 수 있고, 상기 서열번호 10은 ORF8의 아미노산 서열일 수 있으며, 서열번호 11은 ORF73의 아미노산 서열일 수 있다. In addition, the bacteriophage YMC15/02/T28_ABA_BP provided in the present invention may include any one of SEQ ID NOs: 9 to 11. In the present invention, each of SEQ ID NOs: 9 to 11 is an ORF (Open Reading Frame) of the bacteriophage, and the protein represented by SEQ ID NO: 9 may be an amino acid sequence of a lysozyme-like domain, and the SEQ ID NO: The protein represented by 10 may be the amino acid sequence of the putative tail-fiber/lysosomal protein, and the protein represented by SEQ ID NO: 11 may be the amino acid sequence of the endorisin putative protein. More specifically, SEQ ID NO: 9 may be the amino acid sequence of ORF7, SEQ ID NO: 10 may be the amino acid sequence of ORF8, and SEQ ID NO: 11 may be the amino acid sequence of ORF73.
또한, 본 발명에서 제공하는 상기 박테리오파지 YMC15/02/T28_ABA_BP는 서열번호 12 내지 14 중 어느 하나로 표시되는 유전체를 포함하는 것일 수 있다. 여기서 상기 서열번호 12는 ORF7을 코딩하는 유전체의 염기 서열이고, 상기 서열번호 13은 ORF8을 코딩하는 유전체의 염기 서열이며, 상기 서열번호 14는 ORF73을 코딩하는 유전체의 염기 서열일 수 있다.In addition, the bacteriophage YMC15/02/T28_ABA_BP provided by the present invention may include a genome represented by any one of SEQ ID NOs: 12 to 14. Here, SEQ ID NO: 12 is the base sequence of the genome encoding ORF7, the SEQ ID NO: 13 is the base sequence of the genome encoding ORF8, and SEQ ID NO: 14 may be the base sequence of the genome encoding ORF73.
본 발명의 또 다른 구체예에서 상기 박테리오파지는 병원 내 하수처리장으로부터 시료를 채취하여 분리한 박테리오파지로서, 박테리오파지 YMC15/09/R1869_ABA_BP으로 명명하고, 2018년 11월 15일에 한국미생물보존센터에 기탁번호 KFCC11802P로 기탁된 것일 수 있다. In another embodiment of the present invention, the bacteriophage is a bacteriophage separated by taking a sample from a sewage treatment plant in a hospital, named bacteriophage YMC15/09/R1869_ABA_BP, and deposited with the Korea Microbial Conservation Center on November 15, 2018, KFCC11802P It may be deposited with.
본 발명의 박테리오파지 YMC15/09/R1869_ABA_BP는 육각형 머리에 긴 꼬리를 가지고 있는 미오비리대 과에 속함을 확인하였으며, 전체 염기 서열 분석 결과 42,555 bp의 크기를 갖고 전체 ORF의 수는 77개임을 확인하였다. It was confirmed that the bacteriophage YMC15/09/R1869_ABA_BP of the present invention belongs to the family Mioviridae having a long tail on the hexagonal head, and the total sequencing analysis confirmed that the size of the total ORF was 42,555 bp and the total number of ORFs was 77.
또한, 본 발명에서 박테리오파지 YMC15/09/R1869_ABA_BP는 서열번호 15로 표시되는 염기 서열을 전체 유전자의 전체 또는 일부로써 포함할 수 있다. In addition, in the present invention, the bacteriophage YMC15/09/R1869_ABA_BP may include the nucleotide sequence represented by SEQ ID NO: 15 as all or part of the entire gene.
또한, 본 발명의 박테리오파지 YMC15/09/R1869_ABA_BP는 서열번호 15로 표시되는 염기 서열, 및 상기 염기 서열의 기능적 동등물로 이루어질 수 있다. 상기 기능적 동등물이란 염기 서열의 변형, 치환의 결과, 상기 서열번호 15로 표시되는 염기 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 15로 표시되는 염기 서열과 실질적으로 동질의 생리활성을 나타내는 서열을 의미한다.In addition, the bacteriophage YMC15/09/R1869_ABA_BP of the present invention may be composed of a nucleotide sequence represented by SEQ ID NO: 15, and a functional equivalent of the nucleotide sequence. The functional equivalent is at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% of the base sequence represented by SEQ ID NO: 15 as a result of modification or substitution of the base sequence. As having the above sequence homology, it means a sequence exhibiting substantially the same physiological activity as the base sequence represented by SEQ ID NO: 15.
또한, 본 발명에서 제공하는 상기 박테리오파지 YMC15/09/R1869_ABA_BP는 서열번호 16 및 17 중 어느 하나의 단백질을 포함하는 것일 수 있다. 본 발명에서 상기 서열번호 16 및 17 각각은 상기 박테리오파지의 ORF(Open reading frame)로, 상기 서열번호 16은 리소자임 유사 도메인(lysozyme-like domain)의 아미노산 서열일 수 있고, 서열번호 17은 리소자임 패밀리 단백질로 추정되는 단백질의 아미노산 서열일 수 있다. 보다 상세하게는 상기 서열번호 16 및 17 각각은 ORF7 및 ORF73으로 리소자임 유사 도메인의 아미노산 서열일 수 있다. In addition, the bacteriophage YMC15/09/R1869_ABA_BP provided by the present invention may include any one of SEQ ID NOs: 16 and 17. In the present invention, each of SEQ ID NOs: 16 and 17 is an ORF (Open Reading Frame) of the bacteriophage, and SEQ ID NO: 16 may be an amino acid sequence of a lysozyme-like domain, and SEQ ID NO: 17 is a lysozyme family protein It may be the amino acid sequence of the protein estimated to be. More specifically, each of SEQ ID NOs: 16 and 17 may be an amino acid sequence of a lysozyme-like domain as ORF7 and ORF73.
또한, 본 발명에서 제공하는 상기 박테리오파지 YMC15/09/R1869_ABA_BP는 서열번호 18 및 19 중 어느 하나로 표시되는 유전체를 포함하는 것일 수 있다. 여기서 상기 서열번호 18은 ORF7을 코딩하는 유전체의 염기 서열이고, 서열번호 19는 ORF73을 코딩하는 유전체의 염기 서열일 수 있다.In addition, the bacteriophage YMC15/09/R1869_ABA_BP provided by the present invention may include a genome represented by any one of SEQ ID NOs: 18 and 19. Here, SEQ ID NO: 18 may be a base sequence of a genome encoding ORF7, and SEQ ID NO: 19 may be a base sequence of a genome encoding ORF73.
본 발명에서 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 및 박테리오파지 YMC15/09/R1869_ABA_BP는 열 및 pH에 대한 안정성이 우수한 특성을 가지고 있다.In the present invention, the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/09/R1869_ABA_BP have excellent stability to heat and pH.
본 발명의 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 및 박테리오파지 YMC15/09/R1869_ABA_BP는 4 내지 60 ℃의 범위 내에서 용균 활성이 유지되나, 이에 제한되는 것은 아니다.The bacteriophage of the present invention YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/09/R1869_ABA_BP maintains lytic activity within a range of 4 to 60°C, but is not limited thereto.
또한, 본 발명의 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 및 박테리오파지 YMC15/09/R1869_ABA_BP는 pH 3.0 내지 pH 11.0의 범위, 바람직하게는 pH 5.0 내지 pH 10.0의 범위 내에서 용균 활성이 유지되나, 이에 제한되는 것은 아니다.In addition, the bacteriophage of the present invention YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/09/R1869_ABA_BP maintains lytic activity within a range of pH 3.0 to pH 11.0, preferably pH 5.0 to pH 10.0, but is not limited thereto.
상기와 같은 아시네토박터 속 세균 특이적 용균 활성, 내산성 및 내염기성은, 본 발명의 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 및 박테리오파지 YMC15/09/R1869_ABA_BP를 아시네토박터 속 세균에 의해 유발되는 감염성 질환의 예방 및 치료용 조성물, 및 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 및 박테리오파지 YMC15/09/R1869_ABA_BP를 유효 성분으로 포함하는 다양한 제품에 적용함에 있어, 다양한 pH 범위의 적용이 가능하게 한다.Bacterial specific lytic activity, acid resistance and basic resistance in the genus Acinetobacter as described above, the bacteriophage of the present invention YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And a bacteriophage YMC15/09/R1869_ABA_BP composition for preventing and treating infectious diseases caused by bacteria in the genus Acinetobacter, and the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/09/R1869_ABA_BP in various products, including as an active ingredient, to enable application of various pH ranges.
본 발명의 또 다른 구체예에서, 상기 클렙시엘라 속 세균은 클렙시엘라 뉴모니아(Klebsiella pneumoniae), 클렙시엘라 오자에나에(Klebsiella ozaenae), 클렙시엘라 리노스클레로마티스(Klebsiella rhinoscleromatis), 클렙시엘라 옥시토카(Klebsiella oxytoca), 클렙시엘라 플란티콜라(Klebsiella planticola) 및 클렙시엘라 테리게나(Klebsiella terrigena)로 구성된 군으로부터 선택되는 어느 1종 이상일 수 있으며, 임상적 측면에서 폐렴간균으로 클렙시엘라 속 세균 중 대부분을 차지하는 클렙시엘라 뉴모니아(Klebsiella pneumoniae)는 클렙시엘라 속 세균을 대표하는 세균으로 알려져 있다. In another embodiment of the present invention, the bacteria of the genus Klebsiella are Klebsiella pneumoniae, Klebsiella ozaenae, Klebsiella rhinoscleromatis, It may be any one or more selected from the group consisting of Klebsiella oxytoca, Klebsiella planticola and Klebsiella terrigena, and may be used as a pneumonia bacterium in clinical terms. Klebsiella pneumoniae, which accounts for most of the bacteria of the genus Klebsiella, is known as a representative bacteria of the genus Klebsiella.
본 발명에서 상기 박테리오파지는 클렙시엘라 속 세균에 특이적 사멸능을 가지지만, 상기 클렙시엘라 속 세균 중에서도 항생제 내성을 가진 클렙시엘라 속 세균에 대하여도 특이적 사멸능을 가진다. In the present invention, the bacteriophage has a specific killing ability to bacteria of the genus Klebsiella, but among the bacteria of the genus Klebsiella, it also has a specific killing ability to bacteria of the genus Klebsiella with antibiotic resistance.
본 발명에서 상기 "항생제 내성"은 특정 항생제에 내성을 보여 약효가 듣지 않는 것을 의미하며, 본 발명의 목적상 상기 항생제는 카바페넴(Carbapenem)의 구조를 갖는 항생제일 수 있다. 구체적으로, 아미카신(Amicacin), 엠피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 이미페넴(Imipenem), 에르타페넴(Ertapenem), 세페핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록세신(Levoflocacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코트리목사(Cortrimoxa) 및 티게사이클린(Tigecyline)으로 구성된 군으로부터 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 목적상 상기 클렙시엘라 뉴모니아는 항생제 내성을 갖는 것일 수 있고, 상기 항생제 내성은 상기 카바페넴을 분해하여 효과의 발휘를 억제하는 카바페넴아제 효소(carbapenemase)를 생산함으로써 발생될 수 있다. In the present invention, the “antibiotic resistance” means resistance to a specific antibiotic and thus does not listen to the medicinal effect. For the purpose of the present invention, the antibiotic may be an antibiotic having a structure of carbapenem. Specifically, Amikacin, Ampicillin, Ampicillin/Sulbactam, Aztreonam, Ceftazidime, Cefazolin, Cefazolin, Imipenem ), Ertapenem, Cefepime, Cefoxitin, Cefotaxime, Gentamicine, Levoflocacin, Meropenem, Piperacillin / Tazobactam (Piperacillin/Tazobactam), may be one or more selected from the group consisting of Cotrimoxa (Cortrimoxa) and tigecycline (Tigecyline), but is not limited thereto. For the purposes of the present invention, the Klebsiella pneumoniae may have antibiotic resistance, and the antibiotic resistance may be generated by decomposing the carbapenem and producing a carbapenemase that inhibits the exertion of the effect. .
본 발명에서 박테리오파지 YMC17/01/P6_KPN_BP는 서열번호 20으로 표시되는 염기 서열을 전체 유전자의 전체 또는 일부로써 포함할 수 있다. 또한, 본 발명의 박테리오파지 YMC17/01/P6_KPN_BP는 서열번호 20으로 표시되는 염기 서열, 및 상기 염기 서열의 기능적 동등물로 이루어질 수 있다. 상기 기능적 동등물이란 염기 서열의 변형, 치환의 결과, 상기 서열번호 20으로 표시되는 염기 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 20으로 표시되는 염기 서열과 실질적으로 동질의 생리 활성을 나타내는 서열을 의미한다.In the present invention, the bacteriophage YMC17/01/P6_KPN_BP may include the nucleotide sequence represented by SEQ ID NO: 20 as all or part of the entire gene. In addition, the bacteriophage YMC17/01/P6_KPN_BP of the present invention may consist of the base sequence represented by SEQ ID NO: 20, and a functional equivalent of the base sequence. The functional equivalent is at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% of the base sequence represented by SEQ ID NO: 20 as a result of modification or substitution of the base sequence. As having the above sequence homology, it means a sequence that exhibits substantially the same physiological activity as the base sequence represented by SEQ ID NO: 20.
또한, 본 발명에서 제공하는 상기 박테리오파지는 서열번호 21 및 22 중 어느 하나의 단백질을 포함하는 것일 수 있다. 본 발명에서 상기 서열번호 21 및 22 각각은 상기 박테리오파지의 ORF(Open reading frame)로, 상기 클렙시엘라속 균에 흡착 및 용균의 기능을 수행하는 단백질 중에서도 특히 홀린(holin) 또는 안티-홀린(antiholin)으로 추정되는 단백질의 아미노산 서열일 수 있으며, 보다 상세하게는 상기 서열번호 21 및 22는 각각 ORF57 및 ORF59의 아미노산 서열일 수 있다. In addition, the bacteriophage provided by the present invention may include any one of SEQ ID NOs: 21 and 22. In the present invention, each of SEQ ID NOs: 21 and 22 is an open reading frame (ORF) of the bacteriophage, among proteins that adsorb and bind to the genus Klebsiella, particularly holin or anti-holin. ) May be the amino acid sequence of the protein, and more specifically, SEQ ID NOs: 21 and 22 may be the amino acid sequences of ORF57 and ORF59, respectively.
또한, 본 발명에서 제공하는 상기 박테리오파지는 서열번호 23 및 24 중 어느 하나로 표시되는 유전체를 포함하는 것일 수 있다. 여기서 상기 서열번호 23은 ORF57을 코딩하는 유전체의 염기 서열이고, 서열번호 24는 ORF59를 코딩하는 유전체의 염기 서열이다.Further, the bacteriophage provided by the present invention may include a genome represented by any one of SEQ ID NOs: 23 and 24. Here, SEQ ID NO: 23 is the base sequence of the genome encoding ORF57, and SEQ ID NO: 24 is the base sequence of the genome encoding ORF59.
본 발명의 박테리오파지 YMC17/01/P6_KPN_BP는 클렙시엘라 속 세균, 특히 카바페넴계 항생제 내성 페렴간균에 대해 용균활성이 탁월하다. 상기 박테리오파지 YMC17/01/P6_KPN_BP는 각이 진 머리와 꼬리를 갖는 형태인 시포비리대(Siphoviridae) 과에 속함을 확인하였으며, 전체 염기 서열 분석 결과 54,880 bp의 크기를 갖고 전체 ORF의 수는 87개임을 확인하였다. The bacteriophage YMC17/01/P6_KPN_BP of the present invention has excellent lytic activity against bacteria of the genus Klebsiella, particularly carbapenem-based antibiotic-resistant pneumococcus. It was confirmed that the bacteriophage YMC17/01/P6_KPN_BP belongs to the Siphoviridae family, which has an angled head and tail, and the total sequencing analysis has a size of 54,880 bp and the total number of ORFs is 87. Confirmed.
본 발명의 박테리오파지 YMC17/01/P6_KPN_BP는 병원 내 하수처리장으로부터 시료를 채취하여 분리한 박테리오파지로서, 박테리오파지 YMC17/01/P6_KPN_BP로 명명하고 2018년 11월 15일에 한국미생물보존센터에 기탁번호 KFCC11804P로 기탁하였다.The bacteriophage of the present invention YMC17/01/P6_KPN_BP is a bacteriophage obtained by collecting and separating samples from a sewage treatment plant in a hospital. Did.
본 발명의 박테리오파지 YMC17/01/P6_KPN_BP는 4 ℃ 내지 60 ℃의 범위 내에서 용균 활성이 유지되나, 이에 제한되는 것은 아니다.The bacteriophage YMC17/01/P6_KPN_BP of the present invention maintains lytic activity within a range of 4°C to 60°C, but is not limited thereto.
본 발명의 박테리오파지 YMC17/01/P6_KPN_BP는 pH 3.0 내지 pH 11.0의 범위, 바람직하게는 pH 5.0 내지 pH 10.0의 범위 내에서 용균 활성이 유지되나, 이에 제한되는 것은 아니다.The bacteriophage YMC17/01/P6_KPN_BP of the present invention maintains lytic activity within a range of pH 3.0 to pH 11.0, preferably pH 5.0 to pH 10.0, but is not limited thereto.
본 발명에서 상기 박테리오파지 YMC17/01/P6_KPN_BP의 클렙시엘라 속 세균 특이적 용균 활성, 내산성 및 내염기성은, 본 발명의 박테리오파지를 클렙시엘라 속 세균에 의해 유발되는 감염성 질환의 예방 및 치료용 조성물이나, 상기 박테리오파지를 유효 성분으로 포함하는 다양한 제품에 적용함에 있어, 다양한 pH 범위의 적용이 가능하게 한다.In the present invention, the bacteriophage YMC17/01/P6_KPN_BP, bacteriophage specific lytic activity, acid resistance and basicity of bacteriophage, is a composition for the prevention and treatment of infectious diseases caused by bacteria of the genus Klebsiella of the present invention, or , In applying to the various products containing the bacteriophage as an active ingredient, it is possible to apply a variety of pH range.
본 발명의 다른 구현 예에 따르면, 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 박테리오파지 YMC15/09/R1869_ABA_BP; 또는 박테리오파지 YMC17/01/P6_KPN_BP를 유효 성분으로 포함하는 아시네토박터 속 세균 또는 클렙시엘라 세균에 의해 유발되는 질환의 예방, 개선 또는 치료용 조성물을 제공한다.According to another embodiment of the present invention, bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/09/R1869_ABA_BP; Or provides a composition for the prevention, improvement or treatment of diseases caused by bacteria in the genus Acinetobacter or Klebsiella containing bacteriophage YMC17/01/P6_KPN_BP as an active ingredient.
본 발명의 조성물에서 상기 박테리오파지와 상기 아시네토박터 속 세균 또는 상기 클렙시엘라 세균에 관한 내용은 상기 박테리오파지에서 기재된 바와 중복되어 이하 자세한 기재를 생략한다. In the composition of the present invention, the contents of the bacteriophage and the bacteria of the genus Acinetobacter or the Klebsiella bacteria are duplicated as described in the bacteriophage, and detailed description thereof will be omitted below.
본 발명에서 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 및 박테리오파지 YMC15/09/R1869_ABA_BP는 아시네토박터 속 세균, 특히 항생제 내성 아시네토박터속 세균을 특이적으로 사멸시키므로, 상기 아시네토박터 속 세균에 의해 유발되는 다양한 질환의 치료에 효과를 나타낸다. In the present invention, the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/09/R1869_ABA_BP specifically kills bacteria in the genus Acinetobacter, particularly bacteria resistant to the genus Acinetobacter, and thus has an effect on the treatment of various diseases caused by the bacteria in the genus Acinetobacter.
본 발명에서 상기 아시네토박터 속 세균에 의해 유발되는 감염성 질환은 C형 간염, 수족구병, 임질, 클라미디아, 연성하감, 성기단순포진, 첨규콘딜롬, 반코마이신내성황색포도알균감염증, 반코마이신내성장알균감염증, 메티실린내성황색포알균감염증, 다제내성녹농균감염증, 다제내성아시네토박터바우마니균감염증, 카바페넴내성장내속균종감염증, 장관감염증, 급성호홉기감염증 및 엔테로바이러스감염증으로 이루어진 군에서 선택되는 질환이나, 이에 제한되는 것은 아니다.In the present invention, the infectious disease caused by the bacteria in the genus Acinetobacter is hepatitis C, hand, foot and mouth disease, gonorrhea, chlamydia, soft sensation, genital herpes simplex, sphincter condilom, vancomycin resistant yellow staphylococcal infection, vancomycin intragrowth infection , A disease selected from the group consisting of methicillin-resistant Staphylococcus aureus infection, multidrug-resistant Pseudomonas aeruginosa infection, multidrug-resistant acinetobacter baumanii infection, growth invasion within carbapenem, intestinal infection, acute aerobic infection and enterovirus infection However, it is not limited thereto.
본 발명의 조성물은 1 X 103 내지 1 X 1010 PFU/mL의 박테리오파지를 포함할 수 있고, 바람직하게는 1 X 106 내지 1 X 109 PFU/mL의 박테리오파지를 포함할 수 있. 본 발명에 사용된 용어, PFU(plaque forming unit)는 박테리오파지가 플라크를 형성하는 것을 수치화한 단위이다.The composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL. The term used in the present invention, PFU (plaque forming unit) is a unit that quantifies the formation of a bacteriophage plaque.
본 발명에서 상기 박테리오파지 YMC17/01/P6_KPN_BP는 클렙시엘라 속 세균, 특히 카바페넴 항생제 내성을 갖는 폐렴간균을 특이적으로 사멸시키므로, 상기 클렙시엘라 속 세균에 의해 유발되는 다양한 질환의 치료에 효과를 나타낸다. In the present invention, since the bacteriophage YMC17/01/P6_KPN_BP specifically kills bacteria of the genus Klebsiella, particularly pneumonia bacterium having carbapenem antibiotic resistance, it is effective in treating various diseases caused by the bacteria of the genus Klebsiella. Shows.
본 발명에서 상기 클렙시엘라 속 세균에 의해 유발되는 감염성 질환은 폐렴, 요로감염, 창상감염, 뇌수막염, 골수염, 상처감염, 내안구염, 안내염, 간농양, 인후염, 설사, 패혈증, 축농증, 비염, 중이염, 균혈증, 심내막염, 담낭염 또는 이하선염을 포함하며, 이는 특히 폐렴간균에 의하여 발생하는 질병이나, 이에 제한되는 것은 아니다.In the present invention, the infectious disease caused by bacteria of the genus Klebsiella is pneumonia, urinary tract infection, wound infection, meningitis, osteomyelitis, wound infection, endophthalmitis, intraocular infection, hepatitis, sore throat, diarrhea, sepsis, sinusitis, rhinitis, otitis media , Bacteremia, endocarditis, cholecystitis, or parotitis, which is a disease caused by pneumococcal bacteria, but is not limited thereto.
본 발명의 조성물은 1 X 103 내지 1 X 1010 PFU/mL의 박테리오파지를 포함할 수 있고, 바람직하게는 1 X 106 내지 1 X 109 PFU/mL의 박테리오파지를 포함할 수 있다. 본 발명에 사용된 용어, PFU(plaque forming unit)는 박테리오파지가 플라크를 형성하는 것을 수치화한 단위이다.The composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL. The term used in the present invention, PFU (plaque forming unit) is a unit that quantifies the formation of a bacteriophage plaque.
본 발명의 다른 구현 예에 따르면, 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 박테리오파지 YMC15/09/R1869_ABA_BP; 또는 박테리오파지 YMC17/01/P6_KPN_BP를 유효 성분으로 포함하는 아시네토박터 속 세균 또는 클렙시엘라 세균에 의해 유발되는 질환의 예방, 개선 또는 치료용 조성물을 제공한다.According to another embodiment of the present invention, bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/09/R1869_ABA_BP; Or provides a composition for the prevention, improvement or treatment of diseases caused by bacteria in the genus Acinetobacter or Klebsiella containing bacteriophage YMC17/01/P6_KPN_BP as an active ingredient.
본 발명의 조성물에서 상기 박테리오파지와 상기 아시네토박터 속 세균 또는 상기 클렙시엘라 세균에 관한 내용은 상기 박테리오파지에서 기재된 바와 중복되어 이하 자세한 기재를 생략한다. In the composition of the present invention, the contents of the bacteriophage and the bacteria of the genus Acinetobacter or the Klebsiella bacteria are duplicated as described in the bacteriophage, and detailed description thereof will be omitted below.
본 발명에서 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 및 박테리오파지 YMC15/09/R1869_ABA_BP는 아시네토박터 속 세균, 특히 항생제 내성 아시네토박터속 세균을 특이적으로 사멸시키므로, 상기 아시네토박터 속 세균에 의해 유발되는 다양한 질환의 치료에 효과를 나타낸다. In the present invention, the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/09/R1869_ABA_BP specifically kills bacteria in the genus Acinetobacter, particularly bacteria resistant to the genus Acinetobacter, and thus has an effect on the treatment of various diseases caused by the bacteria in the genus Acinetobacter.
본 발명에서 상기 아시네토박터 속 세균에 의해 유발되는 감염성 질환은 C형 간염, 수족구병, 임질, 클라미디아, 연성하감, 성기단순포진, 첨규콘딜롬, 반코마이신내성황색포도알균감염증, 반코마이신내성장알균감염증, 메티실린내성황색포알균감염증, 다제내성녹농균감염증, 다제내성아시네토박터바우마니균감염증, 카바페넴내성장내속균종감염증, 장관감염증, 급성호홉기감염증 및 엔테로바이러스감염증으로 이루어진 군에서 선택되는 질환이나, 이에 제한되는 것은 아니다.In the present invention, the infectious disease caused by the bacteria in the genus Acinetobacter is hepatitis C, hand, foot and mouth disease, gonorrhea, chlamydia, soft sensation, genital herpes simplex, sphincter condilom, vancomycin resistant yellow staphylococcal infection, vancomycin intragrowth infection , A disease selected from the group consisting of methicillin-resistant Staphylococcus aureus infection, multidrug-resistant Pseudomonas aeruginosa infection, multidrug-resistant acinetobacter baumanii infection, growth invasion within carbapenem, intestinal infection, acute aerobic infection and enterovirus infection However, it is not limited thereto.
본 발명의 조성물은 1 X 103 내지 1 X 1010 PFU/mL의 박테리오파지를 포함할 수 있고, 바람직하게는 1 X 106 내지 1 X 109 PFU/mL의 박테리오파지를 포함할 수 있. 본 발명에 사용된 용어, PFU(plaque forming unit)는 박테리오파지가 플라크를 형성하는 것을 수치화한 단위이다.The composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL. The term used in the present invention, PFU (plaque forming unit) is a unit that quantifies the formation of a bacteriophage plaque.
본 발명에서 상기 박테리오파지 YMC17/01/P6_KPN_BP는 클렙시엘라 속 세균, 특히 카바페넴 항생제 내성을 갖는 폐렴간균을 특이적으로 사멸시키므로, 상기 클렙시엘라 속 세균에 의해 유발되는 다양한 질환의 치료에 효과를 나타낸다. In the present invention, since the bacteriophage YMC17/01/P6_KPN_BP specifically kills bacteria of the genus Klebsiella, particularly pneumonia bacterium having carbapenem antibiotic resistance, it is effective in treating various diseases caused by the bacteria of the genus Klebsiella. Shows.
본 발명에서 상기 클렙시엘라 속 세균에 의해 유발되는 감염성 질환은 폐렴, 요로감염, 창상감염, 뇌수막염, 골수염, 상처감염, 내안구염, 안내염, 간농양, 인후염, 설사, 패혈증, 축농증, 비염, 중이염, 균혈증, 심내막염, 담낭염 또는 이하선염을 포함하며, 이는 특히 폐렴간균에 의하여 발생하는 질병이나, 이에 제한되는 것은 아니다.In the present invention, the infectious disease caused by bacteria of the genus Klebsiella is pneumonia, urinary tract infection, wound infection, meningitis, osteomyelitis, wound infection, endophthalmitis, intraocular infection, hepatitis, sore throat, diarrhea, sepsis, sinusitis, rhinitis, otitis media , Bacteremia, endocarditis, cholecystitis, or parotitis, which is a disease caused by pneumococcal bacteria, but is not limited thereto.
본 발명의 조성물은 1 X 103 내지 1 X 1010 PFU/mL의 박테리오파지를 포함할 수 있고, 바람직하게는 1 X 106 내지 1 X 109 PFU/mL의 박테리오파지를 포함할 수 있다. 본 발명에 사용된 용어, PFU(plaque forming unit)는 박테리오파지가 플라크를 형성하는 것을 수치화한 단위이다.The composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL. The term used in the present invention, PFU (plaque forming unit) is a unit that quantifies the formation of a bacteriophage plaque.
본 발명의 다른 구현 예에 따르면, 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 박테리오파지 YMC15/09/R1869_ABA_BP; 또는 박테리오파지 YMC17/01/P6_KPN_BP를 유효 성분으로 포함하는 아시네토박터 속 세균 또는 클렙시엘라 세균에 의해 유발되는 질환의 예방, 개선 또는 치료용 조성물을 제공한다.According to another embodiment of the present invention, bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/09/R1869_ABA_BP; Or provides a composition for the prevention, improvement or treatment of diseases caused by bacteria in the genus Acinetobacter or Klebsiella containing bacteriophage YMC17/01/P6_KPN_BP as an active ingredient.
본 발명의 조성물에서 상기 박테리오파지와 상기 아시네토박터 속 세균 또는 상기 클렙시엘라 세균에 관한 내용은 상기 박테리오파지에서 기재된 바와 중복되어 이하 자세한 기재를 생략한다. In the composition of the present invention, the contents of the bacteriophage and the bacteria of the genus Acinetobacter or the Klebsiella bacteria are duplicated as described in the bacteriophage, and detailed description thereof will be omitted below.
본 발명에서 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 및 박테리오파지 YMC15/09/R1869_ABA_BP는 아시네토박터 속 세균, 특히 항생제 내성 아시네토박터속 세균을 특이적으로 사멸시키므로, 상기 아시네토박터 속 세균에 의해 유발되는 다양한 질환의 치료에 효과를 나타낸다. In the present invention, the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; And bacteriophage YMC15/09/R1869_ABA_BP specifically kills bacteria in the genus Acinetobacter, particularly bacteria resistant to the genus Acinetobacter, and thus has an effect on the treatment of various diseases caused by the bacteria in the genus Acinetobacter.
본 발명에서 상기 아시네토박터 속 세균에 의해 유발되는 감염성 질환은 C형 간염, 수족구병, 임질, 클라미디아, 연성하감, 성기단순포진, 첨규콘딜롬, 반코마이신내성황색포도알균감염증, 반코마이신내성장알균감염증, 메티실린내성황색포알균감염증, 다제내성녹농균감염증, 다제내성아시네토박터바우마니균감염증, 카바페넴내성장내속균종감염증, 장관감염증, 급성호홉기감염증 및 엔테로바이러스감염증으로 이루어진 군에서 선택되는 질환이나, 이에 제한되는 것은 아니다.In the present invention, the infectious disease caused by the bacteria in the genus Acinetobacter is hepatitis C, hand, foot and mouth disease, gonorrhea, chlamydia, soft sensation, genital herpes simplex, sphincter condilom, vancomycin resistant yellow staphylococcal infection, vancomycin intragrowth infection , A disease selected from the group consisting of methicillin-resistant Staphylococcus aureus infection, multidrug-resistant Pseudomonas aeruginosa infection, multidrug-resistant acinetobacter baumanii infection, growth invasion within carbapenem, intestinal infection, acute aerobic infection and enterovirus infection However, it is not limited thereto.
본 발명의 조성물은 1 X 103 내지 1 X 1010 PFU/mL의 박테리오파지를 포함할 수 있고, 바람직하게는 1 X 106 내지 1 X 109 PFU/mL의 박테리오파지를 포함할 수 있. 본 발명에 사용된 용어, PFU(plaque forming unit)는 박테리오파지가 플라크를 형성하는 것을 수치화한 단위이다.The composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL. The term used in the present invention, PFU (plaque forming unit) is a unit that quantifies the formation of a bacteriophage plaque.
본 발명에서 상기 박테리오파지 YMC17/01/P6_KPN_BP는 클렙시엘라 속 세균, 특히 카바페넴 항생제 내성을 갖는 폐렴간균을 특이적으로 사멸시키므로, 상기 클렙시엘라 속 세균에 의해 유발되는 다양한 질환의 치료에 효과를 나타낸다. In the present invention, since the bacteriophage YMC17/01/P6_KPN_BP specifically kills bacteria of the genus Klebsiella, particularly pneumonia bacterium having carbapenem antibiotic resistance, it is effective in treating various diseases caused by the bacteria of the genus Klebsiella. Shows.
본 발명에서 상기 클렙시엘라 속 세균에 의해 유발되는 감염성 질환은 폐렴, 요로감염, 창상감염, 뇌수막염, 골수염, 상처감염, 내안구염, 안내염, 간농양, 인후염, 설사, 패혈증, 축농증, 비염, 중이염, 균혈증, 심내막염, 담낭염 또는 이하선염을 포함하며, 이는 특히 폐렴간균에 의하여 발생하는 질병이나, 이에 제한되는 것은 아니다.In the present invention, the infectious disease caused by bacteria of the genus Klebsiella is pneumonia, urinary tract infection, wound infection, meningitis, osteomyelitis, wound infection, endophthalmitis, intraocular infection, hepatitis, sore throat, diarrhea, sepsis, sinusitis, rhinitis, otitis media , Bacteremia, endocarditis, cholecystitis, or parotitis, which is a disease caused by pneumococcal bacteria, but is not limited thereto.
본 발명의 조성물은 1 X 103 내지 1 X 1010 PFU/mL의 박테리오파지를 포함할 수 있고, 바람직하게는 1 X 106 내지 1 X 109 PFU/mL의 박테리오파지를 포함할 수 있다. 본 발명에 사용된 용어, PFU(plaque forming unit)는 박테리오파지가 플라크를 형성하는 것을 수치화한 단위이다.The composition of the present invention may include a bacteriophage of 1 X 10 3 to 1 X 10 10 PFU/mL, preferably a bacteriophage of 1 X 10 6 to 1 X 10 9 PFU/mL. The term used in the present invention, PFU (plaque forming unit) is a unit that quantifies the formation of a bacteriophage plaque.
본 발명의 또 다른 구현 예에 따르면, 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 박테리오파지 YMC15/09/R1869_ABA_BP; 또는 박테리오파지 YMC17/01/P6_KPN_BP를 포함하는, 세척제를 제공한다.According to another embodiment of the present invention, the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/09/R1869_ABA_BP; Or bacteriophage YMC17/01/P6_KPN_BP.
본 발명의 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 또는 박테리오파지 YMC15/09/R1869_ABA_BP는 아시네토박터 속 또는 클렙시엘라 속 세균에 특이적 사멸능을 가지므로, 아시네토박터 속 또는 클렙시엘라 세균에 노출되었거나 노출될 가능성이 있는 개체의 피부 표면 또는 신체 각 부위 등을 세척하는 용도로도 사용될 수 있다.The bacteriophage of the present invention YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; Alternatively, the bacteriophage YMC15/09/R1869_ABA_BP has specific killing ability against bacteria in the genus Acinetobacter or Klebsiella, so the skin surface or body of an individual who has been or is likely to be exposed to the bacteriophage or Klebsiella bacteria It can also be used to clean each part.
또한, 본 발명은 세척제 제조를 위한 용도로 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 박테리오파지 YMC15/09/R1869_ABA_BP; 또는 박테리오파지 YMC17/01/P6_KPN_BP를 사용하는 것일 수 있다.In addition, the present invention is a bacteriophage YMC14/01/P262_ABA_BP for use as a cleaning agent; Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/09/R1869_ABA_BP; Or it may be to use the bacteriophage YMC17/01/P6_KPN_BP.
본 발명의 또 다른 구현 예에 따르면, 상기 박테리오파지 YMC14/01/P262_ABA_BP; 박테리오파지 YMC15/02/T28_ABA_BP; 박테리오파지 YMC15/09/R1869_ABA_BP; 또는 박테리오파지 YMC17/01/P6_KPN_BP를 유효성분으로 포함하는, 아시네토박터(Acinetobacter) 속 또는 클렙시엘라(Klebsiella) 속 세균에 의해 유발되는 질환의 예방 또는 치료용 약학적 조성물을 제공한다.According to another embodiment of the present invention, the bacteriophage YMC14/01/P262_ABA_BP; Bacteriophage YMC15/02/T28_ABA_BP; Bacteriophage YMC15/09/R1869_ABA_BP; Or it provides a pharmaceutical composition for the prevention or treatment of diseases caused by bacteria of the genus Acinetobacter (Acinetobacter) or Klebsiella (Bacteria) containing the bacteriophage YMC17/01/P6_KPN_BP as an active ingredient.
본 발명에서 상기 아시네토박터 속 또는 클렙시엘라 속 세균에 의해 유발되는 질환은 앞서 기재된 바와 중복되어 이하 자세한 기재를 생략한다.In the present invention, the diseases caused by bacteria of the genus Acinetobacter or Klebsiella are overlapped with those described above, and detailed description thereof will be omitted below.
본 발명의 또 다른 구현 예에 따르면, 예방 또는 치료를 필요로 하는 대상에 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지를 유효성분으로 투여하는 단계를 포함하는, 아시네토박터(Acinetobacter) 속 또는 클렙시엘라(Klebsiella) 속 세균에 의해 유발되는 질환의 예방 또는 치료 방법일 수 있다.According to another embodiment of the present invention, comprising the step of administering the bacteriophage of any one of claims 1 to 25 to the subject in need of prevention or treatment as an active ingredient, Acinetobacter genus Or it may be a method of preventing or treating diseases caused by bacteria in the genus Klebsiella.
본 발명에 있어서, 상기 약학적 조성물은 캡슐, 정제, 과립, 주사제, 연고제, 분말 또는 음료 형태임을 특징으로 할 수 있으며, 상기 약학적 조성물은 인간을 대상으로 하는 것을 특징으로 할 수 있다. In the present invention, the pharmaceutical composition may be characterized in that it is in the form of capsules, tablets, granules, injections, ointments, powders or beverages, and the pharmaceutical composition may be characterized as targeting humans.
본 발명의 약학적 조성물은 이들로 한정되는 것은 아니지만, 각각 통상의 방법에 따라 산제, 과립제, 캡슐, 정제, 수성 현탁액 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 본 발명의 약학적 조성물은 약제적으로 허용 가능한 담체를 포함할 수 있다. 약제학적으로 허용되는 담체는 경구 투여 시에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다. 본 발명의 약학적 조성물의 제형은 상술한 바와 같은 약제학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여 시에는 정제, 트로키, 캡슐, 엘릭서(elixir), 서스펜션, 시럽, 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 기타, 용액, 현탁액, 정제, 캡슐, 서방형 제제 등으로 제형할 수 있다.The pharmaceutical composition of the present invention is not limited to these, but may be used in the form of oral dosage forms such as powders, granules, capsules, tablets, aqueous suspensions, external preparations, suppositories, and sterile injectable solutions, respectively, according to a conventional method. Can. The pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers may include binders, lubricants, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, pigments, fragrances, etc. when administered orally, and buffers, preservatives, and analgesics for injections. Agents, solubilizers, isotonic agents, stabilizers, etc. can be used in combination. For topical administration, bases, excipients, lubricants, preservatives, etc. can be used. The formulation of the pharmaceutical composition of the present invention can be variously prepared by mixing with a pharmaceutically acceptable carrier as described above. For example, when administered orally, tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc. may be prepared, and in the case of injections, unit dosage ampoules or multiple doses may be prepared. have. Others can be formulated as solutions, suspensions, tablets, capsules, and sustained release preparations.
한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말디톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 포함할 수 있다.On the other hand, examples of carriers, excipients and diluents suitable for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, malditol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil and the like can be used. In addition, fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers, and may further include preservatives.
본 발명에 따른 약학적 조성물의 투여 경로는 이들로 한정되는 것은 아니지만 구강, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 비강내, 장관, 국소, 설하 또는 직장이 포함된다. 경구 또는 비경구 투하가 바람직하다. The route of administration of the pharmaceutical composition according to the present invention is not limited to these, but oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, intestinal, topical , Sublingual or rectal. Oral or parenteral administration is preferred.
본 발명에서, "비경구"는 피하, 피내, 정맥내, 근육내, 관절내, 활액낭내, 흉골내, 경막내, 병소내 및 두개골내 주사 또는 주입기술을 포함한다. 본 발명의 약학적 조성물은 또한 직장 투여를 위한 좌제의 형태로 투여될 수 있다.In the present invention, “parenteral” includes subcutaneous, intradermal, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, epidural, intralesional and intracranial injection or infusion techniques. The pharmaceutical composition of the present invention can also be administered in the form of suppositories for rectal administration.
본 발명의 약학적 조성물은 사용된 특정 화합물의 활성, 연령, 체중, 일반적인 건강, 성별, 정식, 투여시간, 투여경로, 배출율, 약물 배합 및 예방 또는 치료될 특정 질환의 중증을 포함한 여러 요인에 따라 다양하게 변할 수 있고, 상기 약학적 조성물의 투여량은 환자의 상태, 체중, 질병의 정도, 약무형태, 투여경로 및 기간에 따라 다르지만 당업자에 의해 적절하게 선택될 수 있고, 1일 0.0001 내지 50mg/kg 또는 0.001 내지 50mg/kg으로 투여할 수 있다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다. 본 발명에 따른 의약 조성물은 환제, 당의정, 캡슐, 액제, 겔, 시럽, 슬러리, 현탁제로 제형될 수 있다.The pharmaceutical composition of the present invention depends on a number of factors, including the activity, age, weight, general health, sex, formulation, administration time, route of administration, rate of discharge, drug combination and severity of the particular disease to be prevented or treated, of the specific compound used. It may vary, and the dosage of the pharmaceutical composition varies depending on the patient's condition, weight, disease severity, dosage form, administration route and duration, but can be appropriately selected by those skilled in the art, and 0.0001 to 50 mg/day It can be administered in kg or 0.001 to 50 mg/kg. Administration may be administered once a day, or may be divided into several times. The above dosage does not limit the scope of the present invention in any way. The pharmaceutical composition according to the present invention may be formulated as pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions.
본 발명에서 화장료 조성물은 화장수, 영양로션, 영양에센스, 마사지 크림, 미용 목욕물 첨가제, 바디로션, 바디밀크, 배스오일, 베이비오일, 베이비파우더, 샤워겔, 샤워크림, 선스크린로션, 선스크린크림, 선탠크림, 스킨로션, 스킨크림, 자외선차단용 화장품, 크렌징밀크, 탈모제{화장용}, 페이스 및 바디로션, 페이스 및 바디크림, 피부미백크림, 핸드로션, 헤어로션, 화장용크림, 쟈스민오일, 목욕비누, 물비누, 미용비누, 샴푸, 손세정제(핸드클리너), 약용비누(비의료용) , 크림비누, 페이셜 워시, 전신 세정제, 두피 세정제, 헤어린스, 화장비누, 치아미백용 겔, 치약 등의 형태로 제조될 수 있다. 이를 위해 본 발명의 조성물은 화장료 조성물의 제조에 통상적으로 사용하는 용매나, 적절한 담체, 부형제 또는 희석제를 더 포함할 수 있다.The cosmetic composition in the present invention includes lotion, nutrient lotion, nutrient essence, massage cream, beauty bath water additive, body lotion, body milk, bath oil, baby oil, baby powder, shower gel, shower cream, sunscreen lotion, sunscreen cream, Suntan cream, skin lotion, skin cream, sunscreen cosmetics, cleansing milk, hair loss agent {for cosmetics}, face and body lotion, face and body cream, skin whitening cream, hand lotion, hair lotion, cosmetic cream, jasmine oil, Bath soap, water soap, beauty soap, shampoo, hand cleaner (hand cleaner), medicinal soap (for non-medical), cream soap, facial wash, whole body cleaner, scalp cleaner, hair rinse, cosmetic soap, tooth whitening gel, toothpaste, etc. It can be produced in the form. To this end, the composition of the present invention may further include a solvent or a suitable carrier, excipient or diluent, which is commonly used in the preparation of cosmetic compositions.
본 발명의 화장료 조성물 내에 더 추가될 수 있는 용매의 종류는 특별히 한정하지 않으나, 예를 들어, 물, 식염수, DMSO 또는 이들의 조합을 사용할 수 있고, 담체, 부형제 또는 희석제로는 정제수, 오일, 왁스, 지방산, 지방산 알콜, 지방산 에스테르, 계면활성제, 흡습제(humectant), 증점제, 항산화제, 점도 안정화제, 킬레이팅제, 완충제, 저급 알콜 등이 포함되지만, 이에 제한되는 것은 아니다. 또한, 필요에 따라 미백제, 보습제, 비타민, 자외선 차단제, 향수, 염료, 항생제, 항박테리아제, 항진균제를 포함할 수 있다. The type of the solvent that can be further added to the cosmetic composition of the present invention is not particularly limited, for example, water, saline, DMSO, or a combination thereof can be used, and as carrier, excipient or diluent, purified water, oil, wax , Fatty acids, fatty acid alcohols, fatty acid esters, surfactants, humectants, thickeners, antioxidants, viscosity stabilizers, chelating agents, buffers, lower alcohols, and the like. In addition, whitening agents, moisturizers, vitamins, sunscreens, perfumes, dyes, antibiotics, antibacterial agents, and antifungal agents may be included as necessary.
상기 오일로서는 수소화 식물성유, 피마자유, 면실유, 올리브유, 야자인유, 호호바유, 아보카도유가 이용될 수 있으며, 왁스로는 밀랍, 경랍, 카르나우바, 칸델릴라, 몬탄, 세레신, 액체 파라핀, 라놀린이 이용될 수 있다.Hydrogenated vegetable oil, castor oil, cottonseed oil, olive oil, palm oil, jojoba oil, avocado oil may be used as the oil, and waxes include beeswax, mellow, carnauba, candelilla, montan, ceresin, liquid paraffin, and lanolin. Can be used.
상기 지방산으로는 스테아르산, 리놀레산, 리놀렌산, 올레산이 이용될 수 있고, 지방산 알콜로는 세틸 알콜, 옥틸 도데칸올, 올레일 알콜, 판텐올, 라놀린 알콜, 스테아릴 알콜, 헥사데칸올이 이용될 수 있으며 지방산 에스테르로는 이소프로필 미리스테이트, 이소프로필 팔미테이트, 부틸 스테아레이트가 이용될 수 있다. 계면 활성제로는 당업계에 알려진 양이온 계면활성제, 음이온 계면활성제 및 비이온성 계면활성제가 사용가능하며 가능한 한 천연물 유래의 계면활성제가 바람직하다.As the fatty acid, stearic acid, linoleic acid, linolenic acid, and oleic acid may be used, and cetyl alcohol, octyl dodecanol, oleyl alcohol, panthenol, lanolin alcohol, stearyl alcohol, and hexadecanol may be used as the fatty acid alcohol. And as the fatty acid ester, isopropyl myristate, isopropyl palmitate, and butyl stearate may be used. As the surfactant, cationic surfactants, anionic surfactants and nonionic surfactants known in the art can be used, and surfactants derived from natural products are preferred, if possible.
그 외에도 화장품 분야에서 널리 알려진 흡습제, 증점제, 항산화제 등을 포함할 수 있으며, 이들의 종류와 양은 당업계에 공지된 바에 따른다. In addition, it may include a hygroscopic agent, a thickener, an antioxidant, etc., which are widely known in the cosmetic field, and their types and amounts are as known in the art.
본 발명의 식품 조성물은 각종 식품류, 예를 들어, 음료, 껌, 차, 비타민 복합제, 분말, 과립, 정제, 캡슐, 과자, 떡, 빵 등의 형태로 제조될 수 있다. 본 발명의 식품 조성물은 독성 및 부작용이 거의 없는 식물추출물로 구성된 것이므로 예방 목적으로 장기간 복용 시에도 안심하고 사용할 수 있다.The food composition of the present invention may be prepared in the form of various foods, for example, beverages, gum, tea, vitamin complexes, powders, granules, tablets, capsules, cookies, rice cakes, breads, and the like. Since the food composition of the present invention is composed of plant extracts having little toxicity and side effects, it can be safely used even for a long period of time for prevention purposes.
본 발명의 박테리오파지가 식품 조성물에 포함될 때 그 양은 전체 중량의 0.1 내지 50%의 비율로 첨가할 수 있다.When the bacteriophage of the present invention is included in the food composition, the amount may be added at a rate of 0.1 to 50% of the total weight.
여기서, 상기 식품 조성물이 음료 형태로 제조되는 경우 지시된 비율로 상기 식품 조성물을 함유하는 것 외에 특별한 제한점은 없으며 통상의 음료와 같이 여러가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 즉, 천연 탄수화물로서 포도당 등의 모노사카라이드, 과당 등의 디사카라이드, 슈크로스 등의 및 폴리사카라이드, 덱스트린, 시클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜 등을 포함할 수 있다. 상기 향미제로서는 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제(사카린, 아스파르탐 등) 등을 들 수 있다.Here, when the food composition is prepared in the form of a beverage, there are no particular limitations other than containing the food composition in an indicated ratio, and it may contain various flavoring agents or natural carbohydrates, etc., as additional components, like a conventional beverage. That is, as natural carbohydrates, monosaccharides such as glucose, disaccharides such as fructose, sucrose, etc., and common sugars such as polysaccharides, dextrins, cyclodextrins, and sugar alcohols such as xylitol, sorbitol, and erythritol are included. can do. Examples of the flavoring agent include natural flavoring agents (taumatine, stevia extract (for example, rebaudioside A, glycyrrhizine, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.).
그 외 본 발명의 식품 조성물은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있다.Other food compositions of the present invention include various nutrients, vitamins, minerals (electrolytes), flavoring agents such as synthetic flavoring agents and natural flavoring agents, coloring agents, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, and protective colloidal thickeners , pH adjusting agents, stabilizers, preservatives, glycerin, alcohol, carbonic acid used in carbonated beverages, and the like.
이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0.1 내지 약 50 중량부의 범위에서 선택되는 것이 일반적이다.These ingredients can be used independently or in combination. The proportion of these additives is not so critical, but is generally selected from 0.1 to about 50 parts by weight per 100 parts by weight of the composition of the present invention.
본 발명에서 제공하는 신규한 박테리오파지는 기존의 항생제 등의 화학물질에 비해 아시네토박터 속 또는 클렙시엘라 세균, 항생제에 대하여 내성을 갖는 아시네토박터 속 또는 클렙시엘라 세균에 대하여 특이적 사멸능을 가진다. The novel bacteriophage provided by the present invention has a specific killing ability against the genus of Acinetobacter or Klebsiella, and the Acinetobacter genus or Klebsiella bacteria resistant to antibiotics, compared to chemicals such as conventional antibiotics. Have
또한, 본 발명의 박테리오파지는 사람, 동물, 식물 등 세균외의 다른 숙주는 감염시키지 않으므로, 항생제의 오남용으로 인한 항생제 내성균의 문제점, 식품 내의 항생제의 잔류 문제, 광범위한 숙주범위의 문제점을 해결할 수 있는 장점이 있다. In addition, since the bacteriophage of the present invention does not infect other hosts other than bacteria such as humans, animals, plants, etc., it has the advantage of solving problems of antibiotic-resistant bacteria due to misuse of antibiotics, residual problems of antibiotics in food, and problems of a wide range of hosts. have.
따라서, 본 발명의 박테리오파지는 아시네토박터 속 또는 클렙시엘라 세균에 의해 유발되는 감염성 질환의 예방 또는 치료, 항생용 조성물, 사료 첨가용 조성물, 사료, 소독제, 또는 세척제 분야에서 다양하게 사용될 수 있다.Accordingly, the bacteriophage of the present invention can be used in various fields in the field of Acinetobacter or prevention or treatment of infectious diseases caused by Klebsiella bacteria, composition for antibiotics, composition for adding feed, feed, disinfectant, or detergent.
도 1은 본 발명의 일 실시예에 따른 박테리오파지 YMC14/01/P262_ABA_BP의 전자 현미경 촬영 사진을 나타낸 것이다.1 shows an electron micrograph of bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 박테리오파지 YMC14/01/P262_ABA_BP의 항생제 내성을 갖는 아시네토박터 속 세균에 대한 흡착능을 그래프로 나타낸 것이다.Figure 2 is a graph showing the adsorption capacity of bacteria in acinetobacter having antibiotic resistance of bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균성 박테리오파지 YMC14/01/P262_ABA_BP의 1단 증식 곡선을 나타낸 것이다.Figure 3 shows a single-stage proliferation curve of lytic bacteriophage YMC14/01/P262_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 박테리오파지 YMC14/01/P262_ABA_BP의 생체 외에서 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균능을 그래프로 나타낸 것이다.Figure 4 is a graph showing the solubility of bacteria in the genus Acinetobacter having antibiotic resistance in vitro of bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention.
도 5는 항생제 내성을 갖는 아시네토박터 속 세균으로 감염시킨 꿀벌부채명나방 유충에 본 발명의 일 실시예에 따른 박테리오파지 YMC14/01/P262_ABA_BP를 처리한 뒤 상기 유충의 생존율의 변화를 그래프로 나타낸 것이다. 5 is a graph showing the change in the survival rate of the larvae after treatment with the bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention to a honeybee beetle moth caterpillar infected with bacteria of the genus Acinetobacter having antibiotic resistance. .
도 6은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균성 박테리오파지 YMC14/01/P262_ABA_BP의 pH 안정성을 그래프로 나타낸 것이다.6 is a graph showing the pH stability of lytic bacteriophage YMC14/01/P262_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균성 박테리오파지 YMC14/01/P262_ABA_BP의 온도 안정성을 그래프로 나타낸 것이다.7 is a graph showing the temperature stability of lytic bacteriophage YMC14/01/P262_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 박테리오파지 YMC14/01/P262_ABA_BP의 전체 유전체 서열 분석 결과를 나타낸 것이다.Figure 8 shows the overall genome sequence analysis results of the bacteriophage YMC14/01/P262_ABA_BP according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 박테리오파지 YMC15/02/T28_ABA_BP의 전자 현미경 촬영 사진을 나타낸 것이다.9 is an electron micrograph of a bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 박테리오파지 YMC15/02/T28_ABA_BP의 항생제 내성을 갖는 아시네토박터 속 세균에 대한 흡착능을 그래프로 나타낸 것이다.Figure 10 is a graph showing the adsorption capacity of bacteria in the genus Acinetobacter having antibiotic resistance of bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균성 박테리오파지 YMC15/02/T28_ABA_BP의 1단 증식 곡선을 나타낸 것이다.11 shows a single-stage proliferation curve of lytic bacteriophage YMC15/02/T28_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 박테리오파지 YMC15/02/T28_ABA_BP의 생체 외에서 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균능을 그래프로 나타낸 것이다.12 is a graph showing the solubility of bacteria in the genus Acinetobacter having antibiotic resistance in vitro of bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention.
도 13은 항생제 내성을 갖는 아시네토박터 속 세균으로 감염시킨 꿀벌부채명나방 유충에 본 발명의 일 실시예에 따른 박테리오파지 YMC15/02/T28_ABA_BP를 처리한 뒤 상기 유충의 생존율의 변화를 그래프로 나타낸 것이다. 13 is a graph showing the change in the survival rate of the larva after treatment with the bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention to a honeybee beetle moth caterpillar infected with bacteria of the genus Acinetobacter having antibiotic resistance. .
도 14는 본 발명의 일 실시예에 따른 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균성 박테리오파지 YMC15/02/T28_ABA_BP의 pH 안정성을 그래프로 나타낸 것이다.14 is a graph showing the pH stability of lytic bacteriophage YMC15/02/T28_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균성 박테리오파지 YMC15/02/T28_ABA_BP의 온도 안정성을 그래프로 나타낸 것이다.15 is a graph showing the temperature stability of lytic bacteriophage YMC15/02/T28_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
도 16은 본 발명의 일 실시예에 따른 박테리오파지 YMC15/02/T28_ABA_BP의 전체 유전체 서열 분석 결과를 나타낸 것이다.Figure 16 shows the overall genome sequence analysis results of bacteriophage YMC15/02/T28_ABA_BP according to an embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따른 박테리오파지 YMC15/09/R1869_ABA_BP의 전자 현미경 촬영 사진을 나타낸 것이다.Figure 17 shows an electron micrograph of the bacteriophage YMC15/09/R1869_ABA_BP according to an embodiment of the present invention.
도 18은 본 발명의 일 실시예에 따른 박테리오파지 YMC15/09/R1869_ABA_BP의 항생제 내성을 갖는 아시네토박터 속 세균에 대한 흡착능을 그래프로 나타낸 것이다.Figure 18 is a graph showing the adsorption capacity of bacteria in the genus Acinetobacter having antibiotic resistance of bacteriophage YMC15/09/R1869_ABA_BP according to an embodiment of the present invention.
도 19는 본 발명의 일 실시예에 따른 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균성 박테리오파지 YMC15/09/R1869_ABA_BP의 1단 증식 곡선을 나타낸 것이다.19 shows a single-stage proliferation curve of lytic bacteriophage YMC15/09/R1869_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
도 20은 항생제 내성을 갖는 아시네토박터 바우마니로 감염시킨 꿀벌부채명나방 유충에 본 발명의 일 실시예에 따른 박테리오파지 YMC15/09/R1869_ABA_BP를 처리한 뒤 상기 유충의 생존율의 변화를 그래프로 나타낸 것이다. 20 is a graph showing the change in the survival rate of the larva after treatment with the bacteriophage YMC15/09/R1869_ABA_BP according to an embodiment of the present invention to a honeybee beetle moth caterpillar infected with antibiotic-resistant Acinetobacter baumani .
도 21은 항생제 내성을 갖는 아시네토박터 바우마니로 감염시킨 마우스에 본 발명의 일 실시예에 따른 박테리오파지 YMC15/09/R1869_ABA_BP를 처리한 뒤 상기 마우스의 폐 내 상기 아시네토박터 바우마니의 균 수의 변화를 그래프로 나타낸 것이다. Figure 21 is treated with bacteriophage YMC15/09/R1869_ABA_BP according to an embodiment of the present invention to mice infected with antibiotic-resistant acinetobacter baumani, the number of bacteria in the lungs of the mouse. It is a graphical representation of the change.
도 22는 본 발명의 일 실시예에 따른 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균성 박테리오파지 YMC15/09/R1869_ABA_BP의 pH 안정성을 그래프로 나타낸 것이다.22 is a graph showing pH stability of lytic bacteriophage YMC15/09/R1869_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
도 23은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 아시네토박터 속 세균에 대한 용균성 박테리오파지 YMC15/09/R1869_ABA_BP의 온도 안정성을 그래프로 나타낸 것이다.23 is a graph showing the temperature stability of lytic bacteriophage YMC15/09/R1869_ABA_BP against bacteria in the genus Acinetobacter having antibiotic resistance according to an embodiment of the present invention.
도 24는 본 발명의 일 실시예에 따른 박테리오파지 YMC15/09/R1869_ABA_BP의 전체 유전체 서열 분석 결과를 나타낸 것이다.Figure 24 shows the overall genome sequence analysis of the bacteriophage YMC15/09/R1869_ABA_BP according to an embodiment of the present invention.
도 25는 본 발명의 일 실시예에 따른 박테리오파지의 전자 현미경 촬영 사진을 나타낸 것이다.25 shows an electron microscope photograph of a bacteriophage according to an embodiment of the present invention.
도 26은 본 발명의 일 실시예에 따른 박테리오파지의 항생제 내성을 갖는 클렙시엘라 속 세균에 대한 흡착능을 그래프로 나타낸 것이다.26 is a graph showing the adsorption capacity of bacteria of the genus Klebsiella having antibiotic resistance of bacteriophage according to an embodiment of the present invention.
도 27은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 클렙시엘라 속 세균에 대한 용균성 박테리오파지의 1단 증식 곡선을 나타낸 것이다.27 shows a single-stage proliferation curve of lytic bacteriophage against Klebsiella genus bacteria having antibiotic resistance according to an embodiment of the present invention.
도 28은 본 발명의 일 실시예에 따른 생체 외에서 박테리오파지의 항생제 내성을 갖는 클렙시엘라 속 세균에 대한 용균능을 그래프로 나타낸 것이다.28 is a graph showing the solubility of bacteria in the genus Klebsiella having antibiotic resistance of bacteriophage in vitro according to an embodiment of the present invention.
도 29는 본 발명의 일 실시예에 따른 항생제 내성을 갖는 클렙시엘라 속 세균에 대한 용균성 박테리오파지의 pH 안정성을 그래프로 나타낸 것이다.29 is a graph showing pH stability of lytic bacteriophage against Klebsiella genus bacteria having antibiotic resistance according to an embodiment of the present invention.
도 30은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 클렙시엘라 속 세균에 대한 용균성 박테리오파지의 온도 안정성을 그래프로 나타낸 것이다.30 is a graph showing the temperature stability of lytic bacteriophage against Klebsiella genus bacteria having antibiotic resistance according to an embodiment of the present invention.
도 31은 본 발명의 일 실시예에 따른 항생제 내성을 갖는 클렙시엘라 속 세균에 대한 용균성 박테리오파지의 전체 유전체 서열 분석 결과를 나타낸 것이다.Figure 31 shows the overall genome sequence analysis results of the lytic bacteriophage against Klebsiella genus bacteria having antibiotic resistance according to an embodiment of the present invention.
본 발명은 아시네토박터(Acinetobacter) 속 또는 클렙시엘라(Klebsiella) 속 세균에 특이적인 사멸능을 가지는 박테리오파지에 관한 것이다.The present invention relates to a bacteriophage having a specific killing ability to bacteria of the genus Acinetobacter or Klebsiella.
이하, 본 발명을 하기의 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail by the following examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following examples.
실시예Example
[실시예 1] 박테리오파지 YMC14/01/P262_ABA_BP[Example 1] Bacteriophage YMC14/01/P262_ABA_BP
1. 임상검체 분리 및 항생제 내성 균주 선별1. Separation of clinical samples and selection of antibiotic-resistant strains
하기 표 1과 같이 대학 병원의 ICU(intensive care unit) 혈액과 임상 검체 등으로부터 아시네토박터 바우마니(Acinetobacter baumannii) 세균을 분리하여 배양하였다. 균주 동정은 키트/ ATB 32 GN 시스템 (bioMerieux, Marcy l'Etoile, France)을 이용하여 수행하였다. 그 뒤, 항생제 감수성 시험은 뮬러-힌튼(Mueller-Hinton) 아가를 사용하여 외기 37 ℃에서 하룻밤 동안 배양하는 CLSI 디스크 확산 시험 방법을 사용하였고, 시험 항생제는 아미카신(amicacin), 엠피실린-설벡탐(ampicillin-sulbactam), 세프타지딤(ceftazidime), 시프로플록사신(ciprofloxacin), 콜리스틴(colistin), 세페핌(cefepime), 세포탁심(cefotaxime), 젠타마이신(gentamicine), 이미페넴(imipenem), 레보플록사신(levofloxacin), 메로페넴(meropenem), 미노사이클린(minocycline), 피페라실린(piperacillin), 피페라실린-타조박탐(piperacillin-tazobactam), 코트리목사(cotrimoxa) 및 티게사이클린(tigecycline)을 사용하였다. 감수성 결과는 Clinical and Laboratory Standards Institute (CLSI, 2016)를 기준으로 판독하였다. 수집된 아시네토박터 바우마니(Acinetobacter baumannii) 균주의 항생제 내성 프로파일은 하기 표 2 내지 4에 나타내었다. 단, 하기 표 2 내지 4에서 S, I 및 R은 항균제에 대한 감수성을 평가한 결과로, 'S'는 민감(Susceptible), 'I'는 중간(Intermediate), 'R'은 내성(Resistant)를 의미한다.As shown in Table 1 below, Acinetobacter baumannii bacteria were isolated and cultured from ICU (intensive care unit) blood and clinical specimens of a university hospital. Strain identification was performed using a kit/ATB 32 GN system (bioMerieux, Marcy l'Etoile, France). Subsequently, the antibiotic susceptibility test was performed using a CLSI disk diffusion test method incubated overnight at 37° C. using a Mueller-Hinton agar, and the test antibiotics were amicacin, ampicillin-sulfur. Ampicillin-sulbactam, ceftazidime, ciprofloxacin, colistin, cefepime, cefotaxime, gentamicine, imipenem, levofloxacin Levofloxacin, meropenem, minocycline, piperacillin, piperacillin-tazobactam, cotrimoxa and tigecycline were used. Susceptibility results were read based on Clinical and Laboratory Standards Institute (CLSI, 2016). The antibiotic resistance profile of the collected Acinetobacter baumannii strains is shown in Tables 2 to 4 below. However, in Tables 2 to 4, S, I and R are the results of evaluating susceptibility to antibacterial agents,'S' is susceptible,'I' is intermediate, and'R' is resistance. Means
숙주 균주Host strain 시료 유래Sample origin 숙주 균주Host strain 시료 유래Sample origin
YMC15/01/P186YMC15/01/P186 흡입 헤드(Aspirate Head)Aspirate Head YMC15/04/R1148YMC15/04/R1148 기관 튜브 팁Tracheal tube tips
YMC15/01/R2319YMC15/01/R2319 가래 (pneumonia)Phlegm (pneumonia) YMC15/04/R68YMC15/04/R68 가래 (pneumonia)Phlegm (pneumonia)
YMC15/01/P760YMC15/01/P760 스왑 또는 배액관Swap or drain pipe YMC15/04/P369YMC15/04/P369
YMC15/01/R3872YMC15/01/R3872 기관 흡입 (pneumonia)Trachea inhalation (pneumonia) YMC15/04/R663YMC15/04/R663 가래 (pneumonia)Phlegm (pneumonia)
YMC15/02/R923YMC15/02/R923 가래 (pneumonia)Phlegm (pneumonia) YMC15/04/T132YMC15/04/T132
YMC15/02/R830YMC15/02/R830 가래 (pneumonia)Phlegm (pneumonia) YMC15/04/R1427YMC15/04/R1427 가래 (pneumonia)Phlegm (pneumonia)
YMC15/02/R1418YMC15/02/R1418 가래 (pneumonia)Phlegm (pneumonia) YMC15/04/U2285YMC15/04/U2285 Random UrineRandom Urine
YMC15/02/R2403YMC15/02/R2403 가래 (pneumonia)Phlegm (pneumonia) YMC15/04/R2498YMC15/04/R2498 가래 (pneumonia)Phlegm (pneumonia)
YMC15/02/R3331YMC15/02/R3331 가래 (pneumonia)Phlegm (pneumonia) YMC15/05/R1603YMC15/05/R1603 가래 (pneumonia)Phlegm (pneumonia)
YMC15/02/P701YMC15/02/P701 스왑 또는 배액관다리Swap or drainage bridge YMC15/05/R1818YMC15/05/R1818 가래 (pneumonia)Phlegm (pneumonia)
YMC15/03/R2284YMC15/03/R2284 가래 (pneumonia)Phlegm (pneumonia) YMC15/05/R2554YMC15/05/R2554 기관 흡입 (pneumonia)Trachea inhalation (pneumonia)
YMC15/03/R2817YMC15/03/R2817 가래 (pneumonia)Phlegm (pneumonia) YMC15/05/R3556YMC15/05/R3556 가래 (pneumonia)Phlegm (pneumonia)
YMC15/03/P828YMC15/03/P828 스왑 또는 배액관골반Swap or drain pelvis YMC15/06/R675YMC15/06/R675 가래 (pneumonia)Phlegm (pneumonia)
YMC15/03/B10119YMC15/03/B10119 BloodBlood YMC15/08/R1402YMC15/08/R1402 기관 흡입 (pneumonia)Trachea inhalation (pneumonia)
YMC15/03/R3835YMC15/03/R3835 가래 (pneumonia)Phlegm (pneumonia) YMC15/08/R1398YMC15/08/R1398 가래 (pneumonia))Phlegm (pneumonia))
YMC15/03/R4022YMC15/03/R4022 가래 (pneumonia)Phlegm (pneumonia) YMC15/08/R1719YMC15/08/R1719 기관 튜브 팁Tracheal tube tips
Figure PCTKR2019018053-appb-T000001
Figure PCTKR2019018053-appb-T000001
Figure PCTKR2019018053-appb-T000002
Figure PCTKR2019018053-appb-T000002
Figure PCTKR2019018053-appb-T000003
Figure PCTKR2019018053-appb-T000003
상기 표 2 내지 4에서 보는 바와 같이, 수집된 아시네토박터 바우마니(Acinetobacter baumannii) 32개 균주는 다양한 항생제에 대하여 내성을 가지는 다재내성 균주임을 알 수 있었다.As shown in Tables 2 to 4, it was found that the collected 32 Acinetobacter baumannii strains are multi-resistant strains resistant to various antibiotics.
2. 박테리오파지 검체 수집2. Collecting bacteriophage samples
2-1. 파지 은행 구축을 위한 검체 수집2-1. Sample collection for phage banking
세브란스 병원의 하수 처리시설에서 최초 침전지 거친 후 부유물질 및 침사물이 제거된 원수를 확보하였다. 이는 화학 처리 시설 전 단계의 하수로 제한하였다. 수집한 시료에 1 L 당 염화나트륨 58 g을 첨가한 후 10,000 g에서 10 분간 원심 분리하여 220 nm 밀리포어 필터로 여과하였다. 얻어진 여과액에 폴리에틸렌글리콜(PEG, 분자량 8000)을 10 % W/V으로 첨가하고 4 ℃에서 12 시간 동안 냉장 보관하였다. 12 시간 냉장 보관된 여과액을 12,000 g에서 20 분간 원심 분리하여 침전물을 파지 희석 완충액 (SM 완충액)에 재부유한 뒤, 동일한 양의 클로로포름을 첨가하여 냉동 보관하였다. 이를 3 회 반복하여 300 mL의 박테리오파지 부유액을 채취하였다.Raw water from which suspended solids and sediments were removed was secured after the first sedimentation at a sewage treatment facility at Severance Hospital. This was limited to sewage at all stages of the chemical treatment facility. 58 g of sodium chloride per 1 L was added to the collected sample, and then centrifuged at 10,000 g for 10 minutes and filtered through a 220 nm millipore filter. To the obtained filtrate, polyethylene glycol (PEG, molecular weight 8000) was added at 10% W/V and stored refrigerated at 4° C. for 12 hours. The filtrate stored for 12 hours was centrifuged at 12,000 g for 20 minutes to resuspend the precipitate in phage dilution buffer (SM buffer), and then stored frozen by adding the same amount of chloroform. This was repeated 3 times to collect 300 mL of bacteriophage suspension.
2-2. 용균성 파지 선별 및 용균역가 측정2-2. Selection of lytic phage and measurement of lytic titer
용균성 파지의 분리 정제는 스팟 테스트(Spot Test)법 (Mazzocco A et al. In Bacteriophages, Clokie and Kropinski AM, eds. Humana Press. 2009)으로 실행하였다. 확보된 균주를 맥콘키 한천배지에서 접종 후 외기 35℃에서 하룻밤 동안 배양하였다. 배양 후, 투명한 플라크 형성을 보고 파지에 감수성인 균주를 선별하였다. 감수성인 균주를 맥콘키 한천 배지에 접종하여 35 ℃에서 12 시간 동안 배양하였다. 살린 1 ml 튜브에 McFarland 0.5 탁도로 각 균주의 현탁액 제조하고 H 탑 아가 (3 ml), 감수성 박테리아 100 ㎕ 및 파지 용액 (각각 1 ㎕, 10 ㎕ 및 50 ㎕)을 섞어 LB 아가에 도포한 후, 35 ℃에서 12시간 동안 배양하였다. 플라크 관찰한 후에 파스퇴르 파이펫으로 플라크를 채취하여 SM 완충 용액에 희석하고, 다시 감수성인 균주 현탁액을 이용하여 3회 반복 정제하였다. 이렇게 얻어진 순수한 박테리오파지 YMC14/01/P262_ABA_BP는 SM 완충 용액에 희석하고 다시 감수성인 균주 현탁액을 이용하여 3회 반복 정제하였다. 이렇게 얻어진 순수한 박테리오파지 YMC14/01/P262_ABA_BP는 SM 완충 용액에 희석하여 보관하였다.Separation and purification of lytic phage was performed by the Spot Test method (Mazzocco A et al. In Bacteriophages, Clokie and Kropinski AM, eds. Humana Press. 2009). The inoculated strain was inoculated on a McConkie agar medium and cultured overnight at 35°C outside. After cultivation, strains sensitive to phage were selected by seeing the formation of transparent plaques. The susceptible strains were inoculated in McConkie agar medium and cultured at 35°C for 12 hours. After preparing a suspension of each strain with McFarland 0.5 turbidity in a 1 ml tube, H top agar (3 ml), 100 µl of sensitive bacteria and phage solution (1 µl, 10 µl and 50 µl, respectively) were mixed and applied to LB agar. Incubated at 35° C. for 12 hours. After observing the plaque, the plaque was collected with a Pasteur pipette, diluted in SM buffer solution, and purified again 3 times using a susceptible strain suspension. The thus obtained pure bacteriophage YMC14/01/P262_ABA_BP was diluted in SM buffer solution and purified again 3 times using a susceptible strain suspension. The thus obtained pure bacteriophage YMC14/01/P262_ABA_BP was stored diluted in SM buffer solution.
상기 1.에서 확인한 항생제 내성 아시네토박터 바우마니(Acinetobacter baumannii) 32개 균주 각각을 맥콘키 한천배지에서 접종하여 배양한 후, 상기 과정에 의해 정제된 박테리오파지 YMC14/01/P262_ABA_BP를 도말된 각각의 내성 균주에 5 ㎕로 접종하여 플라그 형성을 확인하고, 역가 범위를 확인하여, 용균성을 하기 표 5에 나타내었다. 단, 하기 표 5에서 + 및 -는 수집된 균주에 대한 플라크 활성을 평가한 것으로, '+'는 투명한 플라크(clear plaque)를 의미하고, '-'는 용균이 일어나지 않은 것을 의미한다.After inoculating and incubating each of the 32 strains of antibiotic-resistant Acinetobacter baumannii identified in 1. above in McConkie agar, each resistant plated bacteriophage YMC14/01/P262_ABA_BP purified by the above process was smeared. The strain was inoculated with 5 μl to confirm plaque formation, and the titer range was confirmed, and solubility was shown in Table 5 below. However, in Table 5 below, + and-are evaluation of plaque activity for the collected strains,'+' means clear plaque, and'-' means that no lysis occurred.
숙주 균주Host strain 용균 여부Lysis 숙주 균주Host strain 용균 여부Lysis
YMC15/01/P186YMC15/01/P186 ++++ YMC15/04/R1148YMC15/04/R1148 ++++
YMC15/01/R2319YMC15/01/R2319 ++++ YMC15/04/R68YMC15/04/R68 ++++
YMC15/01/P760YMC15/01/P760 ++++ YMC15/04/P369YMC15/04/P369 ++++
YMC15/01/R3872YMC15/01/R3872 ++++ YMC15/04/R663YMC15/04/R663 ++++
YMC15/02/R923YMC15/02/R923 ++++ YMC15/04/T132YMC15/04/T132 ++++
YMC15/02/R830YMC15/02/R830 ++++ YMC15/04/R1427YMC15/04/R1427 ++++
YMC15/02/R1418YMC15/02/R1418 ++++ YMC15/04/U2285YMC15/04/U2285 ++++
YMC15/02/R2403YMC15/02/R2403 ++++ YMC15/04/R2498YMC15/04/R2498 --
YMC15/02/R3331YMC15/02/R3331 ++++ YMC15/05/R1603YMC15/05/R1603 ++++
YMC15/02/P701YMC15/02/P701 ++++ YMC15/05/R1818YMC15/05/R1818 ++++
YMC15/03/R2284YMC15/03/R2284 -- YMC15/05/R2554YMC15/05/R2554 ++++
YMC15/03/R2817YMC15/03/R2817 ++++ YMC15/05/R3556YMC15/05/R3556 ++++
YMC15/03/P828YMC15/03/P828 ++++ YMC15/06/R675YMC15/06/R675 --
YMC15/03/B10119YMC15/03/B10119 ++++ YMC15/08/R1402YMC15/08/R1402 ++++
YMC15/03/R3835YMC15/03/R3835 ++++ YMC15/08/R1398YMC15/08/R1398 ++++
YMC15/03/R4022YMC15/03/R4022 ++++ YMC15/08/R1719YMC15/08/R1719 ++++
상기 표 5에서 보는 바와 같이, 본 발명에 따른 박테리오파지 YMC14/01/P262_ABA_BP는 상당 수의 항생제 내성 아시네토박터 바우마니 균주를 용균 시키는 것을 확인할 수 있었다.As shown in Table 5 above, it was confirmed that the bacteriophage YMC14/01/P262_ABA_BP according to the present invention lysed a significant number of antibiotic-resistant Acinetobacter Baumani strains.
3.3. 항생제 내성 아시네토박터 바우마니 균주에 대한 용균성 박테리오파지의 전자 현미경 분석Electron microscopic analysis of lytic bacteriophage against antibiotic-resistant Acinetobacter baumani strains
상기 2.의 방법에 의해 정제된 박테리오파지 YMC14/01/P262_ABA_BP를 감수성 균주 배양 배지(20 ml LB 배지)에 접종 및 배양한 뒤 220 nm 밀리포어 필터로 여과하고, 상청액에 폴리에틸렌글리콜(MW 8,000)을 10%(w/v)의 양으로 첨가한 후 밤새 냉장 보관하였다. 이후 12,000 g의 조건으로 20 분 동안 원심 분리한 뒤, 에너지 여과 투과 전자현미경(Energy-Filtering Transmission Electron Microscope)을 이용하여 상기 박테리오파지 YMC14/01/P262_ABA_BP의 형태를 분석하여, 그 결과를 도 1에 나타내었다.After inoculating and culturing the bacteriophage YMC14/01/P262_ABA_BP purified by the method of 2. above in a sensitive strain culture medium (20 ml LB medium), filtered with a 220 nm millipore filter, and polyethylene glycol (MW 8,000) in the supernatant. After adding in an amount of 10% (w/v), it was refrigerated overnight. After centrifugation for 20 minutes under the condition of 12,000 g, the shape of the bacteriophage YMC14/01/P262_ABA_BP was analyzed using an Energy-Filtering Transmission Electron Microscope, and the results are shown in FIG. 1. Did.
도 1에서 보는 바와 같이, 본 발명에 따른 상기 YMC14/01/P262_ABA_BP 박테리오파지를 모양으로 분류하는 기준으로 보았을 때, 육각형 머리에 긴 꼬리를 가지고 있는 미오비리대(Myoviridae) 과에 속하는 것으로 분류하였다.As shown in FIG. 1, when viewed as a criterion for classifying the YMC14/01/P262_ABA_BP bacteriophage according to the present invention, it was classified as belonging to the Myoviridae family having a long tail on a hexagonal head.
4. 박페리오파지의 흡착능 및 1단 증식 곡선(One-step growth curve) 분석4. Analysis of bacteriophage adsorption capacity and one-step growth curve
항생제 내성을 갖는 아시네토박터 바우마니 균주를 OD 값이 0.5가 되도록 배양한 뒤, 아시네토박터 바우마니 균주에 상기 2.에서 정제된 박테리오파지 YMC14/01/P262_ABA_BP를 MOI 0.001로 넣고 상온에서 배양한 뒤, 100 ㎕ 시료를 1, 2, 3, 4, 5분에 1 ml씩 채취하여 LB 배지에 희석한 뒤 플라그 분석을 통해 상기 박테리오파지의 흡착능을 평가하여, 그 결과를 도 2에 나타내었다.After incubating the antibiotic-resistant Acinetobacter baumani strain with an OD value of 0.5, the bacteriophage YMC14/01/P262_ABA_BP purified in 2. above was added to the Acinetobacter baumani strain as MOI 0.001 and cultured at room temperature. , 100 μl samples were collected at 1, 2, 3, 4, and 5 minutes for 1 ml, diluted in LB medium, and then the plaque analysis was conducted to evaluate the adsorption capacity of the bacteriophage, and the results are shown in FIG. 2.
또한, 항생제 내성을 갖는 아시네토박터 바우마니 균주를 OD 값이 0.3이 되도록 배양한 뒤, 4 ℃에서 5 분 동안 7,000 g로 원심 분리하여 세포를 침전시킨 후, 0.5 ml의 LB 배지에 희석시키고, 상기 2.에서 정제된 박테리오파지 YMC14/01/P262_ABA_BP를 MOI 0.001(titer 108 pfu/세포)로 넣고 37 ℃에서 5 분 동안 배양하였다. 배양된 혼합 시료를 13,000 g에서 1 분 동안 원심 분리하여 얻어진 펠렛을 10 ml의 LB 배지에 희석시키고 37 ℃에서 배양하였다. 배양 도중 10 분 마다 시료를 채취하여 플라그 분석을 통해 상기 박테리오파지의 1단 증식 곡선을 평가하여, 그 결과를 도 3에 나타내었다.In addition, after incubating the antibiotic resistant Acinetobacter baumani strain with an OD value of 0.3, the cells were precipitated by centrifugation at 7,000 g for 5 minutes at 4° C., and then diluted in 0.5 ml of LB medium, The bacteriophage YMC14/01/P262_ABA_BP purified in 2. was put into MOI 0.001 (titer 10 8 pfu/cell) and cultured at 37°C for 5 minutes. The pellet obtained by centrifuging the cultured mixed sample at 13,000 g for 1 minute was diluted in 10 ml of LB medium and incubated at 37°C. During the culture, samples were taken every 10 minutes to evaluate the 1-stage proliferation curve of the bacteriophage through plaque analysis, and the results are shown in FIG. 3.
도 2에서 보는 바와 같이, 상기 박테리오파지 YMC14/01/P262_ABA_BP의 접종 후 5분 이내에 박테리오파지의 99 % 정도가 아시네토박터 바우마니 균주에 흡착하였다(4 분: 6.9%, 10 분: 1.3%, 15 분: 0%).As shown in Figure 2, within about 5 minutes after inoculation of the bacteriophage YMC14/01/P262_ABA_BP, about 99% of the bacteriophage was adsorbed to the Acinetobacter baumani strain (4 min: 6.9%, 10 min: 1.3%, 15 min). : 0%).
또한, 도 3에서 보는 바와 같이, 1단 증식 곡선 결과 대략 79 PFU/감염 세포의 높은 버스트 사이즈를 나타내었다(0 분: 8 PFU/ml, 100 분: 636 PFU/ml).In addition, as shown in Figure 3, the results of the single-stage proliferation curve showed a high burst size of approximately 79 PFU/infected cells (0 min: 8 PFU/ml, 100 min: 636 PFU/ml).
상기 결과를 통해 본 발명에 따른 상기 박테리오파지 YMC14/01/P262_ABA_BP는 항생제 내성을 갖는 아시네토박터 바우마니 균주에 비교적 빠른 시간 내에 흡착할 수 있고, 79 PFU/감염 세포의 높은 버스트 사이즈를 나타내 항생제 내성 균주의 용균 효과를 발휘하는 것을 알 수 있다.Through the above results, the bacteriophage YMC14/01/P262_ABA_BP according to the present invention can be adsorbed to the Acinetobacter baumani strain having antibiotic resistance within a relatively fast time, and exhibits a high burst size of 79 PFU/infected cells. It can be seen that exhibits the lytic effect of.
5. 생체 외 항생제 내성 아시네토박터 속 세균에 대한 박테리오파지의 용균능 검증5. In vitro antibiotic resistance bacteriophages for bacteriostasis validation in bacteria of Acinetobacter
항생제 내성 아시네토박터 바우마니 균주 1 X 109 CFU/ml에 준비된 박테리오파지 YMC14/01/P262_ABA_BP를 1 X 108 CFU/ml(MOI: 0.1), 1 X 109 PFU/ml(MOI: 1), 1 X 1010 PFU/ml(MOI: 10)의 양으로 각각 처리하고 시간 별로 OD 값(파장 600nm)을 측정하였다. 단, 음성 대조군으로는 PBS+SM 버퍼를 처리하여, 그 값을 도 4에 나타내었다.Bacteriophage YMC14/01/P262_ABA_BP prepared in antibiotic resistant Acinetobacter baumani strain 1 X 10 9 CFU/ml is 1 X 10 8 CFU/ml (MOI: 0.1), 1 X 10 9 PFU/ml (MOI: 1), Each was treated with an amount of 1 X 10 10 PFU/ml (MOI: 10) and OD values (wavelength 600 nm) were measured by time. However, PBS+SM buffer was treated as a negative control, and the values are shown in FIG. 4.
도 4에서 보는 바와 같이, 아시네토박터 바우마니 균주에 대하여 박테리오파지 YMC14/01/P262_ABA_BP를 처리한 경우 OD 값이 감소하였고, MOI 값이 증가할수록 OD 값은 더욱 감소하였으며, 특히 MOI 10일 때 가장 용균능이 높았다.As shown in FIG. 4, when the bacteriophage YMC14/01/P262_ABA_BP was treated with respect to the Acinetobacter baumani strain, the OD value was decreased, and as the MOI value was increased, the OD value was further decreased, especially when it was MOI 10. The ability was high.
상기 결과를 통해, 본 발명에 따른 박테리오파지 YMC14/01/P262_ABA_BP는 항생제 내성 아시네토박터 바우마니 균주에 대하여 용균성을 갖는 것을 알 수 있다.Through the above results, it can be seen that the bacteriophage YMC14/01/P262_ABA_BP according to the present invention has solubility against the antibiotic resistant Acinetobacter baumani strain.
6. 생체 내 항생제 내성 아시네토박터 속 세균에 대한 박테리오파지의 용균능 검증6. Verification of bacteriophage lytic capacity against bacteria in antibiotic-resistant Acinetobacter in vivo
3 ~ 4 령된 꿀벌부채명나방 유충(Galleria mellonella larvae) 200마리를 준비한 뒤, 각 그룹당 10 마리씩 분류하였다. 각 유충에 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 최소 치사 농도(MLD)로 유충의 복각(proleg)을 통해 주입한 후, 콜리스틴과 상기 2.에서 정제된 박테리오파지 YMC14/01/P262_ABA_BP를 MOI 10 또는 MOI 100으로 혼합 접종한 뒤 72시간까지 매 12 또는 24 시간마다 유충의 생존률을 확인하여 그 결과를 도 5에 나타내었다. After preparing 3 to 4-year-old honeybee beetle moth caterpillars (Galleria mellonella larvae), they were classified into 10 animals for each group. After injecting costine-resistant Acinetobacter baumani strain to each larva through the larval proleg at the minimum lethal concentration (MLD), colistin and bacteriophage purified in 2. above YMC14/01/P262_ABA_BP After inoculation with MOI 10 or MOI 100, the survival rate of larvae was checked every 12 or 24 hours until 72 hours, and the results are shown in FIG. 5.
도 5에서 보는 바와 같이, 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 주입한 유충에 본 발명에 따른 박테리오파지 YMC14/01/P262_ABA_BP를 처리한 경우 유충의 생존율이 증가하였고, MOI 값이 증가할수록 유충의 생존율이 더욱 증가하는 것을 확인할 수 있었다. 또한, 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 주입하지 않고 박테리오파지 YMC14/01/P262_ABA_BP만을 주입한 경우도 건강한 대조군과 그 생존률을 비교할 때 독성이 없는 것을 확인할 수 있었다. As shown in FIG. 5, when the bacteriophage YMC14/01/P262_ABA_BP according to the present invention was treated to larvae injected with acinetobacter baumani strain resistant to colistin, the survival rate of the larva increased and the MOI value increased. It was confirmed that the survival rate of the larva increased further. In addition, it was confirmed that when the bacteriophage YMC14/01/P262_ABA_BP was injected without injecting the Acinetobacter Baumani strain resistant to colistin, there was no toxicity when comparing the survival rate with the healthy control group.
상기 결과를 통해, 본 발명에 따른 박테리오파지 YMC14/01/P262_ABA_BP는 생체 내에서도 항생제 내성 아시네토박터 바우마니 균주에 대하여 용균성을 가지므로, 상기 아시네토박터 바우마니 균주에 의해 유발되는 감염성 질환을 효과적으로 예방, 개선 또는 치료할 수 있는 것을 알 수 있다.Through the above results, the bacteriophage YMC14/01/P262_ABA_BP according to the present invention has solubility against antibiotic resistant Acinetobacter Baumani strain in vivo, effectively preventing infectious diseases caused by the Acinetobacter Baumani strain , It can be seen that can be improved or treated.
7. 항생제 내성 아시네토박터 바우마니 균주에 대한 박테리오파지의 안정성 평가7. Evaluation of stability of bacteriophage against antibiotic-resistant Acinetobacter baumani strain
본 발명에 따른 박테리오파지 박테리오파지 YMC14/01/P262_ABA_BP가 온도 및 알칼리에서 파괴되지 않고 안정성을 유지하는지 확인하였다.It was confirmed that the bacteriophage bacteriophage YMC14/01/P262_ABA_BP according to the present invention does not break at temperature and alkali and maintains stability.
상기 2.의 방법에 의해 정제된 박테리오파지 YMC14/01/P262_ABA_BP 1 ㎕를 4, 5, 6, 7, 8, 9 및 10의 pH로 맞춘 SM 버퍼 40 ㎕에 넣은 뒤, 37 ℃에서 1시간 동안 배양한 뒤 항생제 내성 클렙시엘라 뉴모니아균과 함께 상기 4.의 방법으로 플라크 분석을 실시하여 그 결과를 도 6에 나타내었다.1 μl of the bacteriophage YMC14/01/P262_ABA_BP purified by the method of 2. was put into 40 μl of SM buffer adjusted to pH of 4, 5, 6, 7, 8, 9 and 10, and then incubated at 37° C. for 1 hour. Then, plaque analysis was performed by the method of 4. above with antibiotic-resistant Klebsiella pneumoniae, and the results are shown in FIG. 6.
또한, 상기 박테리오파지 YMC14/01/P262_ABA_BP 용액을 각각 4 ℃, 37 ℃, 50 ℃, 60 ℃ 및 70 ℃에서 배양하는 1 시간 동안 10 분 단위로 각각의 샘플을 아시네토박터 바우마니 균주와 함께 상기 4.의 방법으로 플라크 분석을 실시하여 그 결과를 도 7에 나타내었다.In addition, each sample was incubated at 4° C., 37° C., 50° C., 60° C., and 70° C. for each of the bacteriophage YMC14/01/P262_ABA_BP solutions at 10° C. for 10 minutes, and each sample was added together with the Acinetobacter Baumani strain. Plaque analysis was performed by the method of. And the results are shown in FIG. 7.
도 6에서 보는 바와 같이, 본 발명에 따른 상기 박테리오파지 YMC14/01/P262_ABA_BP는 산성, 중성 및 알카리성 모두에서 높은 안정성을 나타내었고, 30 일 동안 상기 박테리오파지 YMC14/01/P262_ABA_BP는 특히 중성(pH 7~8)에서 비교적 안정성을 나타내었다.As shown in Figure 6, the bacteriophage YMC14/01/P262_ABA_BP according to the present invention showed high stability in both acidic, neutral and alkaline, and for 30 days the bacteriophage YMC14/01/P262_ABA_BP was particularly neutral (pH 7-8) ).
또한, 도 7에서 보는 바와 같이, 상기 박테리오파지 YMC14/01/P262_ABA_BP는 70 ℃의 고온에서 까지 매우 높은 안정성을 보였다. In addition, as shown in Figure 7, the bacteriophage YMC14/01/P262_ABA_BP showed very high stability even at a high temperature of 70 ℃.
8. 항생제 내성 클렙시엘라 속 균에 대한 박테리오파지의 전체 게놈 서열 분석8. Analysis of the entire genome sequence of bacteriophage against antibiotic-resistant Klebsiella genus
본 발명에 따른 상기 박테리오파지 YMC14/01/P262_ABA_BP의 특성을 규명하기 위하여 전체 유전자 서열 분석을 Illumina sequencer(Roche)를 통하여 통상의 기술자에게 자명한 전체 게놈 서열 분석 방법을 기초로 분석하여, 그 결과를 도 8 및 표 6 내지 11에 나타내었다.In order to characterize the bacteriophage YMC14/01/P262_ABA_BP according to the present invention, the entire gene sequence analysis is analyzed based on the whole genome sequencing method obvious to a person skilled in the art through an Illumina sequencer (Roche), and the results are shown. 8 and Tables 6 to 11.
Figure PCTKR2019018053-appb-T000004
Figure PCTKR2019018053-appb-T000004
Figure PCTKR2019018053-appb-T000005
Figure PCTKR2019018053-appb-T000005
Figure PCTKR2019018053-appb-T000006
Figure PCTKR2019018053-appb-T000006
Figure PCTKR2019018053-appb-T000007
Figure PCTKR2019018053-appb-T000007
Figure PCTKR2019018053-appb-T000008
Figure PCTKR2019018053-appb-T000008
Figure PCTKR2019018053-appb-T000009
Figure PCTKR2019018053-appb-T000009
도 8 및 상기 표 6 내지 11에서 보는 바와 같이, 상기 박테리오파지 YMC14/01/P262_ABA_BP는 선형의 dsDNA(linear dsDNA)를 포함하며, 79개의 ORF로 구성되어 있었다. As shown in FIG. 8 and Tables 6 to 11, the bacteriophage YMC14/01/P262_ABA_BP includes linear dsDNA (dsDNA) and consists of 79 ORFs.
본 발명에 따른 박테리오파지 YMC14/01/P262_ABA_BP의 서열을 기존의 박테리오파지의 서열과 대조한 결과, 본 발명에 따른 박테리오파지와 유사성을 갖는 박테리오파지는 검출되지 않았다. 상기 결과를 통해 본 발명에 따른 박테리오파지 YMC14/01/P262_ABA_BP는 기존에 발견되지 않은 신규한 박테리오파지에 해당함을 알 수 있다.As a result of comparing the sequence of the bacteriophage YMC14/01/P262_ABA_BP according to the present invention with the sequence of the existing bacteriophage, a bacteriophage having similarity to the bacteriophage according to the present invention was not detected. Through the above results, it can be seen that the bacteriophage YMC14/01/P262_ABA_BP according to the present invention corresponds to a new bacteriophage not previously found.
[실시예 2] 박테리오파지 YMC15/02/T28_ABA_BP[Example 2] Bacteriophage YMC15/02/T28_ABA_BP
1. 임상검체 분리 및 항생제 내성 균주 선별1. Separation of clinical samples and selection of antibiotic-resistant strains
하기 표 12에 나타낸 바와 같이 대학 병원의 ICU(intensive care unit) 혈액과 임상 검체 등으로부터 아시네토박터 바우마니(Acinetobacter baumannii) 세균을 분리하여 배양하였다. 균주 동정은 키트/ ATB 32 GN 시스템 (bioMerieux, Marcy l'Etoile, France)을 이용하여 수행하였다. 그 뒤, 항생제 감수성 시험은 뮬러-힌튼(Mueller-Hinton) 아가를 사용하여 외기 37 ℃에서 하룻밤 동안 배양하는 CLSI 디스크 확산 시험 방법을 사용하였고, 시험 항생제는 이미페넴(imipenem), 피페라실린-타조박탐(piperacillin-tazobactam), 엠피실린-설벡탐(ampicillin-s ㎕bactam), 아즈트레오남(aztreonam), 세프타지딤(ceftazidime), 세페핌(cefepime), 세포탁심(cefotaxime), 젠타마이신(gentamicine), 아미카신(amicacin), 시프로플록사신(ciprofloxacin), 레보플록사신(levofloxacin), 티게실린(tigecyline) 및 콜리스틴(colistin)을 사용하였다. 감수성 결과는 Clinical and Laboratory Standards Institute (CLSI, 2016)를 기준으로 판독하였다. 수집된 아시네토박터 바우마니(Acinetobacter baumannii) 균주의 항생제 내성 프로파일은 하기 표 13 내지 15에 나타내었다. 단, 하기 표 13 내지 15에서 S, I 및 R은 항균제에 대한 감수성을 평가한 결과로, 'S'는 민감(Susceptible), 'I'는 중간(Intermediate), 'R'은 내성(Resistant)를 의미한다.As shown in Table 12 below, Acinetobacter baumannii bacteria were isolated and cultured from ICU (intensive care unit) blood and clinical specimens of a university hospital. Strain identification was performed using a kit/ATB 32 GN system (bioMerieux, Marcy l'Etoile, France). Subsequently, the antibiotic susceptibility test was performed using a CLSI disc diffusion test method incubated overnight at 37°C using a Mueller-Hinton agar, and the test antibiotics were imipenem, piperacillin-tazobactam (piperacillin-tazobactam), ampicillin-s μlbactam, aztreonam, ceftazidime, cefepime, cefotaxime, gentamicin , Amicacin, ciprofloxacin, levofloxacin, tigecyline and colistin were used. Susceptibility results were read based on Clinical and Laboratory Standards Institute (CLSI, 2016). The antibiotic resistance profile of the collected Acinetobacter baumannii strains is shown in Tables 13 to 15 below. However, in Tables 13 to 15, S, I and R are the results of evaluating susceptibility to antibacterial agents,'S' is susceptible,'I' is intermediate, and'R' is resistance. Means
숙주 균주Host strain 시료 유래Sample origin 숙주 균주Host strain 시료 유래Sample origin
YMC15/01/P186YMC15/01/P186 카테터 팁(Other Catheter Tip)Other Catheter Tip YMC15/04/R1148YMC15/04/R1148 가래 (pneumonia)Phlegm (pneumonia)
YMC15/01/R2319YMC15/01/R2319 스왑 또는 배액관발Swap or drainage YMC15/04/R68YMC15/04/R68 가래 (pneumonia)Phlegm (pneumonia)
YMC15/01/P760YMC15/01/P760 가래 (pneumonia)Phlegm (pneumonia) YMC15/04/P369YMC15/04/P369 가래 (pneumonia)Phlegm (pneumonia)
YMC15/01/R3872YMC15/01/R3872 둔부 욕창Buttocks bedsores YMC15/04/R663YMC15/04/R663 가래 (pneumonia)Phlegm (pneumonia)
YMC15/02/R923YMC15/02/R923 혈액blood YMC15/04/T132YMC15/04/T132 기관 튜브 팁Tracheal tube tips
YMC15/02/R830YMC15/02/R830 가래 (pneumonia)Phlegm (pneumonia) YMC15/04/R1427YMC15/04/R1427 기관 흡입 (pneumonia)Trachea inhalation (pneumonia)
YMC15/02/R1418YMC15/02/R1418 둔부 욕창Buttocks bedsores YMC15/04/U2285YMC15/04/U2285 기관 흡입 (pneumonia)Trachea inhalation (pneumonia)
YMC15/02/R2403YMC15/02/R2403 정맥용 카테터 팁Intravenous catheter tips YMC15/04/R2498YMC15/04/R2498 스왑 또는 배액관등Swap or drain pipe
YMC15/02/R3331YMC15/02/R3331 가래 (pneumonia)Phlegm (pneumonia) YMC15/05/R1603YMC15/05/R1603 욕창bedsore
YMC15/02/P701YMC15/02/P701 정맥용 카테터 팁Intravenous catheter tips YMC15/05/R1818YMC15/05/R1818 담즙, PTBDBile, PTBD
Figure PCTKR2019018053-appb-T000010
Figure PCTKR2019018053-appb-T000010
Figure PCTKR2019018053-appb-T000011
Figure PCTKR2019018053-appb-T000011
Figure PCTKR2019018053-appb-T000012
Figure PCTKR2019018053-appb-T000012
상기 표 13 내지 15에서 보는 바와 같이, 수집된 아시네토박터 바우마니(Acinetobacter baumannii) 20개 균주는 다양한 항생제에 대하여 내성을 가지는 다재내성 균주임을 알 수 있었다.As shown in Tables 13 to 15, it was found that the collected 20 strains of Acinetobacter baumannii were multi-resistant strains resistant to various antibiotics.
2. 박테리오파지 검체 수집2. Collecting bacteriophage samples
2-1. 파지 은행 구축을 위한 검체 수집2-1. Sample collection for phage banking
세브란스 병원의 하수 처리시설에서 최초 침전지 거친 후 부유물질 및 침사물이 제거된 원수를 확보하였다. 이는 화학 처리 시설 전 단계의 하수로 제한하였다. 수집한 시료에 1 L 당 염화나트륨 58 g을 첨가한 후 10,000 g에서 10 분간 원심 분리하여 220 nm 밀리포어 필터로 여과하였다. 얻어진 여과액에 폴리에틸렌글리콜(PEG, 분자량 8000)을 10% W/V으로 첨가하고 4 ℃에서 12 시간 동안 냉장 보관하였다. 12 시간 냉장 보관된 여과액을 12,000 g에서 20 분간 원심 분리하여 침전물을 파지 희석 완충액 (SM 완충액)에 재부유한 뒤, 동일한 양의 클로로포름을 첨가하여 냉동 보관하였다. 이를 3회 반복하여 300 mL의 박테리오파지 부유액을 채취하였다.Raw water from which suspended solids and sediments were removed was secured after the first sedimentation at a sewage treatment facility at Severance Hospital. This was limited to sewage at all stages of the chemical treatment facility. 58 g of sodium chloride per 1 L was added to the collected sample, and then centrifuged at 10,000 g for 10 minutes and filtered through a 220 nm millipore filter. Polyethylene glycol (PEG, molecular weight 8000) was added to the obtained filtrate at 10% W/V and stored refrigerated at 4° C. for 12 hours. The filtrate stored for 12 hours was centrifuged at 12,000 g for 20 minutes to resuspend the precipitate in phage dilution buffer (SM buffer), and then stored frozen by adding the same amount of chloroform. This was repeated 3 times to collect 300 mL of bacteriophage suspension.
2-2. 용균성 파지 선별 및 용균역가 측정2-2. Selection of lytic phage and measurement of lytic titer
용균성 파지의 분리 정제는 스팟 테스트(Spot Test)법 (Mazzocco A et al. In Bacteriophages, Clokie and Kropinski AM, eds. Humana Press. 2009)으로 실행하였다. 확보된 균주를 맥콘키 한천배지에서 접종 후 외기 35 ℃에서 하룻밤 동안 배양하였다. 배양 후, 투명한 플라크 형성을 보고 파지에 감수성인 균주를 선별하였다. 감수성인 균주를 맥콘키 한천 배지에 접종하여 35 ℃에서 12시간 동안 배양하였다. 살린 1 ml 튜브에 McFarland 0.5 탁도로 각 균주의 현탁액 제조하고 H 탑 아가 (3 ml), 감수성 박테리아 100 ㎕ 및 파지 용액 (각각 1 ㎕, 10 ㎕ 및 50 ㎕)을 섞어 LB 아가에 도포한 후, 35 ℃에서 12 시간 동안 배양하였다. 플라크 관찰한 후에 파스퇴르 파이펫으로 플라크를 채취하여 SM 완충 용액에 희석하고, 다시 감수성인 균주 현탁액을 이용하여 3 회 반복 정제하였다. 이렇게 얻어진 순수한 박테리오파지 YMC15/02/T28_ABA_BP는 SM 완충 용액에 희석하고 다시 감수성인 균주 현탁액을 이용하여 3회 반복 정제하였다. 이렇게 얻어진 순수한 박테리오파지 YMC15/02/T28_ABA_BP는 SM 완충 용액에 희석하여 보관하였다.Separation and purification of lytic phage was performed by the Spot Test method (Mazzocco A et al. In Bacteriophages, Clokie and Kropinski AM, eds. Humana Press. 2009). The inoculated strains were inoculated on a McConkie agar medium and incubated overnight at 35°C. After cultivation, strains sensitive to phage were selected by seeing the formation of transparent plaques. The susceptible strains were inoculated in McConkie agar medium and cultured at 35°C for 12 hours. Prepare a suspension of each strain with McFarland 0.5 turbidity in a 1 ml tube, and mix with H top agar (3 ml), 100 µl of susceptible bacteria and phage solution (1 µl, 10 µl and 50 µl, respectively) and apply to the LB agar. Incubated at 35° C. for 12 hours. After observing the plaque, the plaque was collected with a Pasteur pipette, diluted in SM buffer solution, and purified again 3 times using a susceptible strain suspension. The thus obtained pure bacteriophage YMC15/02/T28_ABA_BP was diluted in SM buffer solution and purified again three times using a susceptible strain suspension. The thus obtained pure bacteriophage YMC15/02/T28_ABA_BP was stored diluted in SM buffer solution.
상기 1.에서 확인한 항생제 내성 아시네토박터 바우마니(Acinetobacter baumannii) 균주를 맥콘키 한천배지에서 접종하여 배양한 후, 상기 과정에 의해 정제된 박테리오파지 YMC15/02/T28_ABA_BP를 도말된 각각의 내성 균주에 5 ㎕로 접종하여 플라그 형성을 확인하고, 역가 범위를 확인하여, 용균성을 하기 표 16에 나타내었다.After inoculating and incubating the antibiotic-resistant Acinetobacter baumannii strain identified in 1. above in the McConkie agar medium, the bacteriophage purified by the above process YMC15/02/T28_ABA_BP was stained with each resistant strain 5 Plasma formation was confirmed by inoculation with µl, and the titer range was confirmed, and solubility was shown in Table 16 below.
단, 하기 표 16에서 + 및 -는 수집된 균주에 대한 플라크 활성을 평가한 것으로, '+'는 투명한 플라크(clear plaque)를 의미하고, '-'는 용균이 일어나지 않은 것을 의미한다.However, in Table 16 below, + and-are evaluation of plaque activity for the collected strains,'+' means transparent plaque, and'-' means that no lysis occurred.
숙주 균주Host strain 용균 여부Lysis 숙주 균주Host strain 용균 여부Lysis
YMC15/02/T28YMC15/02/T28 ++ YMC13/05/R2199YMC13/05/R2199 --
YMC13/02/R669YMC13/02/R669 ++ YMC13/05/R3526YMC13/05/R3526 ++
YMC13/02/R1380YMC13/02/R1380 ++ YMC13/06/R42YMC13/06/R42 --
YMC13/02/P386YMC13/02/P386 ++ YMC13/06/R633YMC13/06/R633 ++
YMC13/05/T180YMC13/05/T180 ++ YMC13/12/P154YMC13/12/P154 ++
상기 표 16에서 보는 바와 같이, 본 발명에 따른 박테리오파지 YMC15/02/T28_ABA_BP는 상당 수의 항생제 내성 아시네토박터 바우마니 균주를 용균 시키는 것을 확인할 수 있었다.As shown in Table 16, it was confirmed that the bacteriophage YMC15/02/T28_ABA_BP according to the present invention lysed a significant number of antibiotic-resistant Acinetobacter Baumani strains.
3.3. 항생제 내성 아시네토박터 바우마니 균주에 대한 용균성 박테리오파지의 전자 현미경 분석Electron microscopic analysis of lytic bacteriophage against antibiotic-resistant Acinetobacter baumani strains
상기 2.의 방법에 의해 정제된 박테리오파지 YMC15/02/T28_ABA_BP를 감수성 균주 배양 배지(20 ml LB 배지)에 접종 및 배양한 뒤 220 nm 밀리포어 필터로 여과하고, 상청액에 폴리에틸렌글리콜(MW 8,000)을 10 %(w/v)의 양으로 첨가한 후 밤새 냉장 보관하였다. 이후 12,000 g의 조건으로 20 분 동안 원심 분리한 뒤, 에너지 여과 투과 전자현미경(Energy-Filtering Transmission Electron Microscope)을 이용하여 상기 박테리오파지 YMC15/02/T28_ABA_BP의 형태를 분석하여, 그 결과를 도 9에 나타내었다.After inoculating and culturing the bacteriophage YMC15/02/T28_ABA_BP purified by the method of the above in a sensitive strain culture medium (20 ml LB medium), filtered with a 220 nm millipore filter, and polyethylene glycol (MW 8,000) in the supernatant. After adding in an amount of 10% (w/v), it was refrigerated overnight. After centrifugation for 20 minutes under the condition of 12,000 g, the shape of the bacteriophage YMC15/02/T28_ABA_BP was analyzed using an Energy-Filtering Transmission Electron Microscope, and the results are shown in FIG. 9. Did.
도 9에서 보는 바와 같이, 본 발명에 따른 상기 YMC15/02/T28_ABA_BP 박테리오파지를 모양으로 분류하는 기준으로 보았을 때, 육각형 머리에 긴 꼬리를 가지고 있는 미오비리대 과에 속하는 것으로 분류하였다.As shown in FIG. 9, when viewed as a criterion for classifying the YMC15/02/T28_ABA_BP bacteriophage according to the present invention, it was classified as belonging to the Miovirus family having a long tail on a hexagonal head.
4. 박페리오파지의 흡착능 및 1단 증식 곡선(One-step growth curve) 분석4. Analysis of bacteriophage adsorption capacity and one-step growth curve
항생제 내성을 갖는 아시네토박터 바우마니 균주를 OD 값이 0.5가 되도록 배양한 뒤, 아시네토박터 바우마니 균주에 상기 2.에서 정제된 박테리오파지 YMC15/02/T28_ABA_BP를 MOI 0.001로 넣고 상온에서 배양한 뒤, 100 ㎕ 시료를 1, 2, 3, 4, 5분에 1 ml씩 채취하여 LB 배지에 희석한 뒤 플라그 분석을 통해 상기 박테리오파지의 흡착능을 평가하여, 그 결과를 도 10에 나타내었다.After incubating the antibiotic-resistant Acinetobacter baumani strain with an OD value of 0.5, after adding the bacteriophage YMC15/02/T28_ABA_BP purified in 2. to the acinetobacter baumani strain as MOI 0.001, and then incubating at room temperature , 100 µl samples were collected at 1, 2, 3, 4, and 5 minutes for 1 ml, diluted in LB medium, and then the adsorption capacity of the bacteriophage was evaluated through plaque analysis, and the results are shown in FIG. 10.
또한, 항생제 내성을 갖는 아시네토박터 바우마니 균주를 OD 값이 0.3이 되도록 배양한 뒤, 4 ℃에서 5 분 동안 7,000 g로 원심 분리하여 세포를 침전시킨 후, 0.5 ml의 LB 배지에 희석시키고, 상기 2.에서 정제된 박테리오파지 YMC15/02/T28_ABA_BP를 MOI 0.001(titer 108pfu/cells)로 넣고 37 ℃에서 5 분 동안 배양하였다. 배양된 혼합 시료를 13,000 g에서 1 분 동안 원심 분리하여 얻어진 펠렛을 10 ml의 LB 배지에 희석시키고 37 ℃에서 배양하였다. 배양 도중 10 분 마다 시료를 채취하여 플라그 분석을 통해 상기 박테리오파지의 1단 증식 곡선을 평가하여, 그 결과를 도 11에 나타내었다.In addition, after incubating the antibiotic resistant Acinetobacter baumani strain with an OD value of 0.3, the cells were precipitated by centrifugation at 7,000 g for 5 minutes at 4° C., and then diluted in 0.5 ml of LB medium, Bacteria phage YMC15/02/T28_ABA_BP purified in 2. was put into MOI 0.001 (titer 10 8 pfu/cells) and incubated at 37°C for 5 minutes. The pellet obtained by centrifuging the cultured mixed sample at 13,000 g for 1 minute was diluted in 10 ml of LB medium and incubated at 37°C. During the culture, samples were taken every 10 minutes to evaluate the 1-stage proliferation curve of the bacteriophage through plaque analysis, and the results are shown in FIG. 11.
도 10에서 보는 바와 같이, 상기 박테리오파지 YMC15/02/T28_ABA_BP의 접종 후 5 분 이내에 박테리오파지의 99 % 정도가 아시네토박터 바우마니 균주에 흡착하였다(10분: 0.24%).As shown in Figure 10, within about 5 minutes after inoculation of the bacteriophage YMC15/02/T28_ABA_BP, about 99% of the bacteriophage was adsorbed to the Acinetobacter baumani strain (10 min: 0.24%).
또한, 도 11에서 보는 바와 같이, 1단 증식 곡선 결과 424 PFU/감염 세포의 높은 버스트 사이즈를 나타내었다(10분: 0.24 PFU/ml).In addition, as shown in Figure 11, the results of the single-stage proliferation curve showed a high burst size of 424 PFU/infected cells (10 min: 0.24 PFU/ml).
상기 결과를 통해 본 발명에 따른 상기 박테리오파지 YMC15/02/T28_ABA_BP는 항생제 내성을 갖는 아시네토박터 바우마니 균주에 비교적 빠른 시간 내에 흡착할 수 있고, 424 PFU/감염 세포의 높은 버스트 사이즈를 나타내 항생제 내성 균주의 용균 효과를 발휘하는 것을 알 수 있다.Through the above results, the bacteriophage YMC15/02/T28_ABA_BP according to the present invention can be adsorbed to the Acinetobacter baumani strain having antibiotic resistance within a relatively fast time, and exhibits a high burst size of 424 PFU/infected cells. It can be seen that exhibits the lytic effect of.
5. 생체 외 항생제 내성 아시네토박터 속 세균에 대한 박테리오파지의 용균능 검증5. In vitro antibiotic resistance bacteriophages for bacteriostasis validation in bacteria of Acinetobacter
항생제 내성 아시네토박터 바우마니 균주 1 X 109 CFU/ml에 준비된 박테리오파지 YMC15/02/T28_ABA_BP를 1 X 108 CFU/ml(MOI: 0.1), 1 X 109 PFU/ml(MOI: 1), 1 X 1010 PFU/ml(MOI: 10)의 양으로 각각 처리하고 시간 별로 OD 값(파장 600nm)을 측정하였다. 단, 음성 대조군으로는 PBS+SM 버퍼를 처리하여, 그 값을 도 12에 나타내었다.Bacteriophage YMC15/02/T28_ABA_BP prepared in antibiotic resistant Acinetobacter baumani strain 1 X 10 9 CFU/ml is 1 X 10 8 CFU/ml (MOI: 0.1), 1 X 10 9 PFU/ml (MOI: 1), Each was treated with an amount of 1 X 10 10 PFU/ml (MOI: 10) and OD values (wavelength 600 nm) were measured by time. However, PBS+SM buffer was treated as a negative control, and the values are shown in FIG. 12.
도 12에서 보는 바와 같이, 아시네토박터 바우마니 균주에 대하여 박테리오파지 YMC15/02/T28_ABA_BP를 처리한 경우 OD 값이 감소하였고, MOI 값이 증가할수록 OD 값은 더욱 감소하였으며, 특히 MOI 10일 때 가장 용균능이 높았다.As shown in FIG. 12, when the bacteriophage YMC15/02/T28_ABA_BP was treated with respect to the Acinetobacter baumani strain, the OD value was decreased, and as the MOI value was increased, the OD value was further decreased, especially when it was MOI 10. The ability was high.
상기 결과를 통해, 본 발명에 따른 박테리오파지 YMC15/02/T28_ABA_BP는 항생제 내성 아시네토박터 바우마니 균주에 대하여 용균성을 갖는 것을 알 수 있다.Through the above results, it can be seen that the bacteriophage YMC15/02/T28_ABA_BP according to the present invention has solubility against the antibiotic-resistant Acinetobacter baumani strain.
6. 생체 내 항생제 내성 아시네토박터 속 세균에 대한 박테리오파지의 용균능 검증6. Verification of bacteriophage lytic capacity against bacteria in antibiotic-resistant Acinetobacter in vivo
3 ~ 4 령된 꿀벌부채명나방 유충(Galleria mellonella larvae) 200 마리를 준비한 뒤, 각 그룹당 10 마리씩 분류하였다. 각 유충에 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 최소 치사 농도(MLD)로 유충의 복각을 통해 주입한 후, 콜리스틴과 상기 2.에서 정제된 박테리오파지 YMC15/02/T28_ABA_BP를 MOI 10 또는 MOI 100으로 혼합 접종한 뒤 72 시간까지 매 12 또는 24 시간마다 유충의 생존률을 확인하여 그 결과를 도 13에 나타내었다. After preparing 3 to 4-year-old honeybee beetle moth caterpillars (Galleria mellonella larvae), 10 animals were classified for each group. After inoculating each larva with a coccistin-resistant acinetobacter baumani strain through dip larval reproduction at a minimum lethal concentration (MLD), colistin and the bacteriophage purified in step 2. YMC15/02/T28_ABA_BP are MOI 10 Alternatively, after inoculation with MOI 100, the survival rate of larvae was checked every 12 or 24 hours until 72 hours, and the results are shown in FIG. 13.
도 13에서 보는 바와 같이, 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 주입한 유충에 본 발명에 따른 박테리오파지 YMC15/02/T28_ABA_BP를 처리한 경우 유충의 생존율이 증가하였고, MOI 값이 증가할수록 유충의 생존율이 더욱 증가하는 것을 확인할 수 있었다. 또한, 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 주입하지 않고 박테리오파지 YMC15/02/T28_ABA_BP만을 주입한 경우도 건강한 대조군과 그 생존률을 비교할 때 독성이 없는 것을 확인할 수 있었다. As shown in FIG. 13, when the bacteriophage YMC15/02/T28_ABA_BP according to the present invention was treated to larvae injected with acinetobacter baumani strain resistant to colistin, the survival rate of the larva increased and the MOI value increased. It was confirmed that the survival rate of the larva increased further. In addition, it was confirmed that when the bacteriophage YMC15/02/T28_ABA_BP was injected without injecting the Acinetobacter Baumani strain resistant to colistin, there was no toxicity when comparing the survival rate with the healthy control group.
상기 결과를 통해, 본 발명에 따른 박테리오파지 YMC15/02/T28_ABA_BP는 생체 내에서도 항생제 내성 아시네토박터 바우마니 균주에 대하여 용균성을 가지므로, 상기 아시네토박터 바우마니 균주에 의해 유발되는 감염성 질환을 효과적으로 예방, 개선 또는 치료할 수 있는 것을 알 수 있다.Through the above results, the bacteriophage YMC15/02/T28_ABA_BP according to the present invention has solubility against antibiotic resistant Acinetobacter Baumani strain in vivo, effectively preventing infectious diseases caused by the Acinetobacter Baumani strain , It can be seen that can be improved or treated.
7. 항생제 내성 아시네토박터 바우마니 균주에 대한 박테리오파지의 안정성 평가7. Evaluation of stability of bacteriophage against antibiotic-resistant Acinetobacter baumani strain
본 발명에 따른 박테리오파지 YMC15/02/T28_ABA_BP가 온도 및 알칼리에서 파괴되지 않고 안정성을 유지하는지 확인하였다.It was confirmed that the bacteriophage YMC15/02/T28_ABA_BP according to the present invention does not break at temperature and alkali and maintains stability.
상기 2.의 방법에 의해 정제된 박테리오파지 YMC15/02/T28_ABA_BP 1 ㎕를 4, 5, 6, 7, 8, 9 및 10의 pH로 맞춘 SM 버퍼 40 ㎕에 넣은 뒤, 37 ℃에서 1시간 동안 배양한 뒤 항생제 내성 클렙시엘라 뉴모니아균과 함께 상기 4.의 방법으로 플라크 분석을 실시하여 그 결과를 도 14에 나타내었다.1 μl of the bacteriophage YMC15/02/T28_ABA_BP purified by the method of 2. was put into 40 μl of SM buffer adjusted to pH of 4, 5, 6, 7, 8, 9 and 10, and then cultured at 37° C. for 1 hour. Then, plaque analysis was performed by the method of 4. above with antibiotic-resistant Klebsiella pneumoniae, and the results are shown in FIG. 14.
또한, 상기 박테리오파지 YMC15/02/T28_ABA_BP 용액을 각각 4 ℃, 37 ℃, 50℃, 60℃ 및 70℃에서 배양하는 1시간 동안 10분 단위로 각각의 샘플을 아시네토박터 바우마니 균주와 함께 상기 4.의 방법으로 플라크 분석을 실시하여 그 결과를 도 15에 나타내었다.In addition, each sample was cultured at 4° C., 37° C., 50° C., 60° C., and 70° C. for each of the bacteriophage YMC15/02/T28_ABA_BP solutions at 10° C. for 10 minutes, and each sample was added together with the Acinetobacter Baumani strain. Plaque analysis was performed by the method of. And the results are shown in FIG. 15.
도 14에서 보는 바와 같이, 본 발명에 따른 상기 박테리오파지 YMC15/02/T28_ABA_BP는 pH 7.5에 해당하는 중성에서 가장 안정성을 나타내었고, 30일 동안 상기 박테리오파지 YMC15/02/T28_ABA_BP는 중성/알카리성에서 비교적 안정성을 나타내었다.As shown in Figure 14, the bacteriophage YMC15/02/T28_ABA_BP according to the present invention showed the most stability at neutrality corresponding to pH 7.5, and for 30 days the bacteriophage YMC15/02/T28_ABA_BP was relatively stable at neutral/alkaline properties. Shown.
또한, 도 15에서 보는 바와 같이, 상기 박테리오파지 YMC15/02/T28_ABA_BP는 50℃의 고온에서 까지 매우 높은 안정성을 보였다. In addition, as shown in Figure 15, the bacteriophage YMC15/02/T28_ABA_BP showed very high stability even at a high temperature of 50 ℃.
8. 항생제 내성 클렙시엘라 속 균에 대한 박테리오파지의 전체 게놈 서열 분석8. Analysis of the entire genome sequence of bacteriophage against antibiotic-resistant Klebsiella genus
본 발명에 따른 상기 박테리오파지 YMC15/02/T28_ABA_BP의 특성을 규명하기 위하여 전체 유전자 서열 분석을 Illumina sequencer(Roche)를 통하여 통상의 기술자에게 자명한 전체 게놈 서열 분석 방법을 기초로 분석하여, 그 결과를 도 16 및 표 17 내지 22에 나타내었다.In order to characterize the bacteriophage YMC15/02/T28_ABA_BP according to the present invention, the whole gene sequence analysis is performed based on the whole genome sequencing method obvious to the skilled person through the Illumina sequencer (Roche), and the results are shown. 16 and Tables 17 to 22.
Figure PCTKR2019018053-appb-T000013
Figure PCTKR2019018053-appb-T000013
Figure PCTKR2019018053-appb-T000014
Figure PCTKR2019018053-appb-T000014
Figure PCTKR2019018053-appb-T000015
Figure PCTKR2019018053-appb-T000015
Figure PCTKR2019018053-appb-T000016
Figure PCTKR2019018053-appb-T000016
Figure PCTKR2019018053-appb-T000017
Figure PCTKR2019018053-appb-T000017
Figure PCTKR2019018053-appb-T000018
Figure PCTKR2019018053-appb-T000018
도 16 및 상기 표 17 내지 22에서 보는 바와 같이, 상기 박테리오파지 YMC15/02/T28_ABA_BP는 선형의 dsDNA(linear dsDNA)를 포함하며, 77개의 ORF로 구성되어 있었다. As shown in FIG. 16 and Tables 17 to 22, the bacteriophage YMC15/02/T28_ABA_BP includes linear dsDNA (dsDNA), and consists of 77 ORFs.
본 발명에 따른 박테리오파지 YMC15/02/T28_ABA_BP의 서열을 기존의 박테리오파지의 서열과 대조한 결과, 본 발명에 따른 박테리오파지와 유사성을 갖는 박테리오파지는 검출되지 않았다. 상기 결과를 통해 본 발명에 따른 박테리오파지 YMC15/02/T28_ABA_BP는 기존에 발견되지 않은 신규한 박테리오파지에 해당함을 알 수 있다.As a result of comparing the sequence of the bacteriophage YMC15/02/T28_ABA_BP according to the present invention with the sequence of the existing bacteriophage, no bacteriophage having similarity to the bacteriophage according to the present invention was detected. Through the above results, it can be seen that the bacteriophage YMC15/02/T28_ABA_BP according to the present invention corresponds to a new bacteriophage not previously found.
[실시예 3] 박테리오파지 YMC15/09/R1869_ABA_BP[Example 3] Bacteriophage YMC15/09/R1869_ABA_BP
1. 임상 검체 분리 및 항생제 내성 균주 선별1. Separation of clinical specimens and selection of antibiotic resistant strains
하기 표 23에 나타낸 바와 같이 대학 병원의 ICU(intensive care unit) 혈액과 임상 검체 등으로부터 아시네토박터 바우마니(Acinetobacter baumannii) 균주를 분리하여 배양하였다. 균주 동정은 키트/ ATB 32 GN 시스템 (bioMerieux, Marcy l'Etoile, France)을 이용하여 수행하였다. 그 뒤, 항생제 감수성 시험은 뮬러-힌튼(Mueller-Hinton) 아가를 사용하여 외기 37 ℃에서 하룻밤 동안 배양하는 CLSI 디스크 확산 시험 방법을 사용하였고, 시험 항생제는 아미카신(amicacin), 엠피실린-설벡탐(ampicillin-s ㎕bactam), 세프타지딤(ceftazidime), 시프로플록사신(ciprofloxacin), 콜리스틴(colistin), 세페핌(cefepime), 세포탁심(cefotaxime), 젠타마이신(gentamicine), 이미페넴(imipenem), 레보플록사신(levofloxacin), 메로페넴(meropenem), 미노사이클린(minocycline), 피페라실린(piperacillin), 피페라실린-타조박탐(piperacillin-tazobactam), 코트리목사(cotrimoxa) 및 티게사이클린(tigecycline)을 사용하였다. 감수성 결과는 Clinical and Laboratory Standards Institute (CLSI, 2016)를 기준으로 판독하였다. 수집된 아시네토박터 속 세균의 항생제 내성 프로파일은 하기 표 24 내지 28에 나타내었다. 단, 하기 표 24 내지 28에서 S, I 및 R은 항균제에 대한 감수성을 평가한 결과로, 'S'는 민감(Susceptible), 'I'는 중간(Intermediate), 'R'은 내성(Resistant)를 의미한다.As shown in Table 23 below, Acinetobacter baumannii strains were isolated and cultured from ICU (intensive care unit) blood and clinical specimens of a university hospital. Strain identification was performed using a kit/ATB 32 GN system (bioMerieux, Marcy l'Etoile, France). Subsequently, the antibiotic susceptibility test was performed using a CLSI disk diffusion test method incubated overnight at 37° C. using a Mueller-Hinton agar, and the test antibiotics were amicacin, ampicillin-sulfur. Ampicillin-s μlbactam, ceftazidime, ciprofloxacin, colistin, cefepime, cefotaxime, gentamicine, imipenem, Levofloxacin, meropenem, minocycline, piperacillin, piperacillin-tazobactam, cotrimoxa and tigecycline were used. . Susceptibility results were read based on Clinical and Laboratory Standards Institute (CLSI, 2016). The antibiotic resistance profile of the collected bacteria in Acinetobacter is shown in Tables 24 to 28 below. However, in Tables 24 to 28, S, I and R are the results of evaluating susceptibility to antibacterial agents,'S' is susceptible,'I' is intermediate, and'R' is resistance. Means
숙주 균주Host strain 유래origin 숙주 균주Host strain 용균 여부Lysis
YMC16/12/R12914YMC16/12/R12914 가래 (pneumonia)Phlegm (pneumonia) YMC16/01/R198YMC16/01/R198 기관 흡입 (pneumoniaTrachea inhalation (pneumonia
YMC16/12/B11422YMC16/12/B11422 카테터 혈액Catheter blood YMC16/01/R353YMC16/01/R353 가래 (pneumonia)Phlegm (pneumonia)
YMC16/12/B11449YMC16/12/B11449 혈액blood YMC16/01/R405YMC16/01/R405 가래 (pneumonia)Phlegm (pneumonia)
YMC16/12/B10832YMC16/12/B10832 혈액blood YMC16/01/R397YMC16/01/R397 가래 (pneumonia)Phlegm (pneumonia)
YMC16/12/B13325YMC16/12/B13325 카테터 혈액Catheter blood YMC16/01/R380YMC16/01/R380 가래 (pneumonia)Phlegm (pneumonia)
YMC17/01/P518YMC17/01/P518 스왑 또는 배액관둔부Swap or drainage YMC16/12/R4637YMC16/12/R4637 가래 (pneumonia)Phlegm (pneumonia)
YMC17/01/B8053YMC17/01/B8053 카테터 혈액Catheter blood YMC17/01/R2812YMC17/01/R2812 가래 (pneumonia)Phlegm (pneumonia)
YMC17/01/B10087YMC17/01/B10087 카테터 혈액Catheter blood YMC17/02/R541YMC17/02/R541 가래 (pneumonia)Phlegm (pneumonia)
YMC17/01/B12075YMC17/01/B12075 카테터 혈액Catheter blood YMC17/02/R2392YMC17/02/R2392 가래 (pneumonia)Phlegm (pneumonia)
YMC17/02/B14YMC17/02/B14 혈액blood YMC17/03/R348YMC17/03/R348 가래 (pneumonia)Phlegm (pneumonia)
YMC17/01/B13454YMC17/01/B13454 혈액blood YMC17/03/R5305YMC17/03/R5305
YMC17/02/B87YMC17/02/B87 혈액blood YMC17/03/R3095YMC17/03/R3095
YMC17/02/B721YMC17/02/B721 혈액blood YMC17/03/R3428YMC17/03/R3428
YMC17/02/B4520YMC17/02/B4520 카테터 혈액Catheter blood YMC17/03/R4607YMC17/03/R4607 가래 (pneumonia)Phlegm (pneumonia)
YMC17/02/B4039YMC17/02/B4039 혈액blood YMC17/03/P971YMC17/03/P971 스왑 또는 배액관둔부Swap or drainage
YMC17/02/B4864YMC17/02/B4864 혈액blood YMC16/03/R4461YMC16/03/R4461 기관 흡입 (pneumoniaTrachea inhalation (pneumonia
YMC17/02/P523YMC17/02/P523 둔부 욕창Buttocks bedsores YMC16/05/R2210YMC16/05/R2210 가래 (pneumonia)Phlegm (pneumonia)
YMC17/02/B8414YMC17/02/B8414 복막 혈액 병Peritoneal blood disease YMC16/07/R2512YMC16/07/R2512 기관지 세척Bronchial wash
YMC17/03/R585YMC17/03/R585 가래 (pneumonia)Phlegm (pneumonia) YMC16/09/R2471YMC16/09/R2471 기관 흡입 (pneumoniaTrachea inhalation (pneumonia
YMC17/03/B4730YMC17/03/B4730 카테터 혈액Catheter blood YMC16/10/R2537YMC16/10/R2537 가래 (pneumonia)Phlegm (pneumonia)
YMC17/03/B5000YMC17/03/B5000 카테터 혈액Catheter blood YMC16/12/P503YMC16/12/P503 스왑 또는 배액관흉부Swap or drainage chest
YMC17/03/R1888YMC17/03/R1888 가래 (pneumonia)Phlegm (pneumonia) YMC15/02/T28YMC15/02/T28 Other Catheter TipOther Catheter Tip
YMC17/03/R3279YMC17/03/R3279 가래 (pneumonia)Phlegm (pneumonia) YMC15/02/R436YMC15/02/R436 기관 흡입 (pneumoniaTrachea inhalation (pneumonia
YMC17/03/R4077YMC17/03/R4077 기관 흡입 (pneumoniaTrachea inhalation (pneumonia YMC15/03/R1604YMC15/03/R1604 기관 흡입 (pneumoniaTrachea inhalation (pneumonia
YMC17/04/R488YMC17/04/R488 가래 (pneumonia)Phlegm (pneumonia) YMC15/09/R1869YMC15/09/R1869 가래 (pneumonia)Phlegm (pneumonia)
YMC17/04/R640YMC17/04/R640 가래 (pneumonia)Phlegm (pneumonia) YMC14/06/R2359YMC14/06/R2359 가래 (pneumonia)Phlegm (pneumonia)
YMC/17/05/R1095YMC/17/05/R1095 기관 흡입 (pneumoniaTrachea inhalation (pneumonia YMC14/08/T90YMC14/08/T90 카테터 팁Catheter tips
YMC16/01/P11YMC16/01/P11 스왑 또는 배액관복부Swap or drainage abdomen YMC14/08/R1169YMC14/08/R1169 가래 (pneumonia)Phlegm (pneumonia)
YMC16/01/R123YMC16/01/R123 기관 튜브 팁Tracheal tube tips
Figure PCTKR2019018053-appb-T000019
Figure PCTKR2019018053-appb-T000019
Figure PCTKR2019018053-appb-T000020
Figure PCTKR2019018053-appb-T000020
Figure PCTKR2019018053-appb-T000021
Figure PCTKR2019018053-appb-T000021
Figure PCTKR2019018053-appb-T000022
Figure PCTKR2019018053-appb-T000022
Figure PCTKR2019018053-appb-T000023
Figure PCTKR2019018053-appb-T000023
상기 표 24 내지 28에서 보는 바와 같이, 수집된 아시네토박터 바우마니(Acinetobacter baumannii) 57개 균주는 다양한 항생제에 대하여 내성을 가지는 다재내성 균주임을 알 수 있었다.As shown in Tables 24 to 28, it was found that the collected 57 strains of Acinetobacter baumannii were multi-resistant strains resistant to various antibiotics.
2. 박테리오파지 검체 수집2. Collecting bacteriophage samples
2-1. 파지 은행 구축을 위한 검체 수집2-1. Sample collection for phage banking
세브란스 병원의 하수 처리시설에서 최초 침전지 거친 후 부유물질 및 침사물이 제거된 원수를 확보하였다. 이는 화학 처리 시설 전 단계의 하수로 제한하였다. 수집한 시료에 1 L 당 염화나트륨 58 g을 첨가한 후 10,000 g에서 10 분간 원심 분리하여 220 nm 밀리포어 필터로 여과하였다. 얻어진 여과액에 폴리에틸렌글리콜(PEG, 분자량 8000)을 10% W/V으로 첨가하고 4 ℃에서 12 시간 동안 냉장 보관하였다. 12시간 냉장 보관된 여과액을 12,000 g에서 20 분간 원심 분리하여 침전물을 파지 희석 완충액 (SM 완충액)에 재부유한 뒤, 동일한 양의 클로로포름을 첨가하여 냉동 보관하였다. 이를 3회 반복하여 300 mL의 박테리오파지 부유액을 채취하였다.Raw water from which suspended solids and sediments were removed was secured after the first sedimentation at a sewage treatment facility at Severance Hospital. This was limited to sewage at all stages of the chemical treatment facility. 58 g of sodium chloride per 1 L was added to the collected sample, and then centrifuged at 10,000 g for 10 minutes and filtered through a 220 nm millipore filter. Polyethylene glycol (PEG, molecular weight 8000) was added to the obtained filtrate at 10% W/V and stored refrigerated at 4° C. for 12 hours. The filtrate stored for 12 hours was centrifuged at 12,000 g for 20 minutes to resuspend the precipitate in phage dilution buffer (SM buffer), and then stored frozen by adding the same amount of chloroform. This was repeated 3 times to collect 300 mL of bacteriophage suspension.
2-2. 용균성 파지 선별 및 용균역가 측정2-2. Selection of lytic phage and measurement of lytic titer
용균성 파지의 분리 정제는 스팟 테스트(Spot Test)법 (Mazzocco A et al. In Bacteriophages, Clokie and Kropinski AM, eds. Humana Press. 2009)으로 실행하였다. 확보된 균주를 맥콘키 한천배지에서 접종 후 외기 35 ℃에서 하룻밤 동안 배양하였다. 배양 후, 투명한 플라크 형성을 보고 파지에 감수성인 균주를 선별하였다. 감수성인 균주를 맥콘키 한천 배지에 접종하여 35 ℃에서 12 시간 동안 배양하였다. 살린 1 ml 튜브에 McFarland 0.5 탁도로 각 균주의 현탁액 제조하고 H 탑 아가 (3 ml), 감수성 박테리아 100 ㎕ 및 파지 용액 (각각 1 ㎕, 10 ㎕ 및 50 ㎕)을 섞어 LB 아가에 도포한 후, 35 ℃에서 12 시간 동안 배양하였다. 플라크 관찰한 후에 파스퇴르 파이펫으로 플라크를 채취하여 SM 완충 용액에 희석하고, 다시 감수성인 균주 현탁액을 이용하여 3 회 반복 정제하였다. 이렇게 얻어진 순수한 박테리오파지 YMC15/09/R1869_ABA_BP는 SM 완충 용액에 희석하고 다시 감수성인 균주 현탁액을 이용하여 3 회 반복 정제하였다. 이렇게 얻어진 순수한 박테리오파지 YMC15/09/R1869_ABA_BP는 SM 완충 용액에 희석하여 보관하였다.Separation and purification of lytic phage was performed by the Spot Test method (Mazzocco A et al. In Bacteriophages, Clokie and Kropinski AM, eds. Humana Press. 2009). The inoculated strains were inoculated on a McConkie agar medium and incubated overnight at 35°C. After cultivation, strains sensitive to phage were selected by seeing the formation of transparent plaques. The susceptible strains were inoculated in McConkie agar medium and cultured at 35°C for 12 hours. Prepare a suspension of each strain with McFarland 0.5 turbidity in a 1 ml tube, and mix with H top agar (3 ml), 100 µl of susceptible bacteria and phage solution (1 µl, 10 µl and 50 µl, respectively) and apply to the LB agar. Incubated at 35° C. for 12 hours. After observing the plaque, the plaque was collected with a Pasteur pipette, diluted in SM buffer solution, and purified again 3 times using a susceptible strain suspension. The thus obtained pure bacteriophage YMC15/09/R1869_ABA_BP was diluted in SM buffer solution and purified again 3 times using a susceptible strain suspension. The thus obtained pure bacteriophage YMC15/09/R1869_ABA_BP was stored diluted in SM buffer solution.
상기 1.에서 확인한 항생제 내성 아시네토박터 바우마니(Acinetobacter baumannii) 57개 균주 각각을 맥콘키 한천배지에서 접종하여 배양한 후, 상기 과정에 의해 정제된 박테리오파지 YMC15/09/R1869_ABA_BP를 도말된 각각의 내성 균주에 5 ㎕로 접종하여 플라그 형성을 확인하고, 역가 범위를 확인하여, 용균성을 하기 표 29에 나타내었다. 단, 하기 표 29에서 + 및 -는 수집된 균주에 대한 플라크 활성을 평가한 것으로, '+'는 투명한 플라크(clear plaque)를 의미하고, '-'는 용균이 일어나지 않은 것을 의미한다.After inoculating each of the 57 strains of the antibiotic-resistant Acinetobacter baumannii identified in 1. above in a McConkie agar medium and incubating them, each of the resistant strains of the bacteriophage YMC15/09/R1869_ABA_BP purified by the above procedure was smeared. The strain was inoculated with 5 μl to confirm plaque formation, and the titer range was confirmed, and solubility was shown in Table 29 below. However, in Table 29 below, + and-are evaluation of plaque activity for the collected strains,'+' means clear plaque, and'-' means that no lysis occurred.
숙주 균주Host strain 용균 여부Lysis 숙주 균주Host strain 용균 여부Lysis
YMC17/01/B10087YMC17/01/B10087 ++ YMC17/03/R348YMC17/03/R348 ++
YMC17/02/B4520YMC17/02/B4520 ++ YMC17/03/R3095YMC17/03/R3095 ++
YMC17/03/R585YMC17/03/R585 ++ YMC17/03/R3428YMC17/03/R3428 ++++
YMC17/03/R3279YMC17/03/R3279 ++ YMC17/03/P971YMC17/03/P971 ++
YMC/17/05/R1095YMC/17/05/R1095 ++ YMC16/03/R4461YMC16/03/R4461 ++++
YMC16/01/P11YMC16/01/P11 ++ YMC16/05/R2210YMC16/05/R2210 ++++
YMC16/01/R198YMC16/01/R198 ++ YMC16/07/R2512YMC16/07/R2512 ++
YMC16/01/R353YMC16/01/R353 ++ YMC16/09/R2471YMC16/09/R2471 ++++
YMC16/01/R405YMC16/01/R405 ++ YMC15/03/R1604YMC15/03/R1604 ++++
YMC16/01/R397YMC16/01/R397 ++ YMC15/09/R1869YMC15/09/R1869 ++
YMC16/12/P503YMC16/12/P503 ++ YMC14/06/R2359YMC14/06/R2359 ++
YMC15/02/T28YMC15/02/T28 ++ YMC14/08/T90YMC14/08/T90 ++
YMC14/08/R1169YMC14/08/R1169 ++
상기 표 29에서 보는 바와 같이, 본 발명에 따른 박테리오파지 YMC15/09/R1869_ABA_BP는 상당 수의 항생제 내성 아시네토박터 바우마니 균주를 용균 시키는 것을 확인할 수 있었다.As shown in Table 29, it was confirmed that the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention lysed a significant number of antibiotic-resistant Acinetobacter Baumani strains.
3.3. 항생제 내성 아시네토박터 바우마니 균주에 대한 용균성 박테리오파지의 전자 현미경 분석Electron microscopic analysis of lytic bacteriophage against antibiotic-resistant Acinetobacter baumani strains
상기 2.의 방법에 의해 정제된 박테리오파지 YMC15/09/R1869_ABA_BP를 감수성 균주 배양 배지(20 ml LB 배지)에 접종 및 배양한 뒤 220 nm 밀리포어 필터로 여과하고, 상청액에 폴리에틸렌글리콜(MW 8,000)을 10%(w/v)의 양으로 첨가한 후 밤새 냉장 보관하였다. 이후 12,000 g의 조건으로 20 분 동안 원심 분리한 뒤, 에너지 여과 투과 전자현미경(Energy-Filtering Transmission Electron Microscope)을 이용하여 상기 박테리오파지 YMC15/09/R1869_ABA_BP의 형태를 분석하여, 그 결과를 도 17에 나타내었다.After inoculating and incubating the bacteriophage YMC15/09/R1869_ABA_BP purified by the method of 2 above in a sensitive strain culture medium (20 ml LB medium), filtered with a 220 nm millipore filter, and polyethylene glycol (MW 8,000) in the supernatant. After adding in an amount of 10% (w/v), it was refrigerated overnight. After centrifugation for 20 minutes under the condition of 12,000 g, the shape of the bacteriophage YMC15/09/R1869_ABA_BP was analyzed using an Energy-Filtering Transmission Electron Microscope, and the results are shown in FIG. 17. Did.
도 17에서 보는 바와 같이, 본 발명에 따른 상기 YMC15/09/R1869_ABA_BP 박테리오파지를 모양으로 분류하는 기준으로 보았을 때, 육각형 머리에 긴 꼬리를 가지고 있는 미오비리대 과에 속하는 것으로 분류하였다.As shown in FIG. 17, when viewed as a criterion for classifying the YMC15/09/R1869_ABA_BP bacteriophage according to the present invention, it was classified as belonging to the Miovirus family having a long tail on a hexagonal head.
4. 박페리오파지의 흡착능 및 1단 증식 곡선(One-step growth curve) 분석4. Analysis of bacteriophage adsorption capacity and one-step growth curve
항생제 내성을 갖는 아시네토박터 바우마니 균주를 OD 값이 0.5가 되도록 배양한 뒤, 아시네토박터 바우마니 균주에 상기 2.에서 정제된 박테리오파지 YMC15/09/R1869_ABA_BP를 MOI 0.001로 넣고 상온에서 배양한 뒤, 100 ㎕ 시료를 1, 2, 3, 4, 5 분에 1 ml씩 채취하여 LB 배지에 희석한 뒤 플라그 분석을 통해 상기 박테리오파지의 흡착능을 평가하여, 그 결과를 도 18에 나타내었다.After incubating the antibiotic-resistant Acinetobacter baumani strain with an OD value of 0.5, after adding the bacteriophage YMC15/09/R1869_ABA_BP purified in 2. above to the acinetobacter baumani strain as MOI 0.001, and then incubating at room temperature , 100 μl samples were collected at 1, 2, 3, 4, and 5 minutes for 1 ml, diluted in LB medium, and then the plaque analysis was used to evaluate the adsorption capacity of the bacteriophage, and the results are shown in FIG. 18.
또한, 항생제 내성을 갖는 아시네토박터 바우마니 균주를 OD 값이 0.3이 되도록 배양한 뒤, 4 ℃에서 5 분 동안 7,000 g로 원심 분리하여 세포를 침전시킨 후, 0.5 ml의 LB 배지에 희석시키고, 상기 2.에서 정제된 박테리오파지 YMC15/09/R1869_ABA_BP를 MOI 0.001(titer 108 pfu/cells)로 넣고 37 ℃에서 5 분 동안 배양하였다. 배양된 혼합 시료를 13,000 g에서 1 분 동안 원심 분리하여 얻어진 펠렛을 10 ml의 LB 배지에 희석시키고 37 ℃에서 배양하였다. 배양 도중 10 분 마다 시료를 채취하여 플라그 분석을 통해 상기 박테리오파지의 1단 증식 곡선을 평가하여, 그 결과를 도 19에 나타내었다.In addition, after incubating the antibiotic resistant Acinetobacter baumani strain with an OD value of 0.3, the cells were precipitated by centrifugation at 7,000 g for 5 minutes at 4° C., and then diluted in 0.5 ml of LB medium, The bacteriophage purified in step 2. YMC15/09/R1869_ABA_BP was added with MOI 0.001 (titer 10 8 pfu/cells) and incubated at 37° C. for 5 minutes. The pellet obtained by centrifuging the cultured mixed sample at 13,000 g for 1 minute was diluted in 10 ml of LB medium and incubated at 37°C. During the culture, samples were taken every 10 minutes to evaluate the 1-stage proliferation curve of the bacteriophage through plaque analysis, and the results are shown in FIG. 19.
도 18에서 보는 바와 같이, 상기 박테리오파지 YMC15/09/R1869_ABA_BP의 접종 후 5 분 이내에 박테리오파지의 99 % 정도가 아시네토박터 바우마니 균주에 흡착하였다(5 분: 2.9%).As shown in Fig. 18, within 5 minutes after inoculation of the bacteriophage YMC15/09/R1869_ABA_BP, about 99% of the bacteriophage was adsorbed to the Acinetobacter baumani strain (5 min: 2.9%).
또한, 도 19에서 보는 바와 같이, 1단 증식 곡선 결과 78 PFU/감염 세포의 높은 버스트 사이즈를 나타내었다(0 분: 14 PFU/ml, 50 분: 1096 PFU/ml).In addition, as shown in FIG. 19, a single-stage proliferation curve resulted in a high burst size of 78 PFU/infected cells (0 min: 14 PFU/ml, 50 min: 1096 PFU/ml).
상기 결과를 통해 본 발명에 따른 상기 박테리오파지 YMC15/09/R1869_ABA_BP는 항생제 내성을 갖는 아시네토박터 바우마니 균주에 비교적 빠른 시간 내에 흡착할 수 있고, 78 PFU/감염 세포의 높은 버스트 사이즈를 나타내 항생제 내성 균주의 용균 효과를 발휘하는 것을 알 수 있다.Through the above results, the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention can be adsorbed to the Acinetobacter baumani strain having antibiotic resistance within a relatively fast time, and exhibits a high burst size of 78 PFU/infected cells, thus showing antibiotic resistance strain It can be seen that exhibits the lytic effect of.
5. 생체 내 항생제 내성 아시네토박터 속 세균에 대한 박테리오파지의 용균능 검증5. Verification of bacteriophage lytic capacity against bacteria in antibiotic-resistant Acinetobacter in vivo
3 ~ 4 령된 꿀벌부채명나방 유충(Galleria mellonella larvae) 200마리를 준비한 뒤, 각 그룹당 10 마리씩 분류하였다. 각 유충에 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 최소 치사 농도(MLD)로 유충의 복각을 통해 주입한 후, 콜리스틴과 상기 2.에서 정제된 박테리오파지 YMC15/09/R1869_ABA_BP를 MOI 10 또는 MOI 100으로 혼합 접종한 뒤 72 시간까지 매 12 또는 24 시간마다 유충의 생존률을 확인하여 그 결과를 도 20에 나타내었다. After preparing 3 to 4-year-old honeybee beetle moth caterpillars (Galleria mellonella larvae), they were classified into 10 animals for each group. After inoculating each larva with an acinetobacter Baumani strain resistant to colistin through a larval dip at a minimum lethal concentration (MLD), colistin and the bacteriophage purified in step 2. YMC15/09/R1869_ABA_BP are MOI 10 Alternatively, after inoculation with MOI 100, the survival rate of larvae was checked every 12 or 24 hours until 72 hours, and the results are shown in FIG. 20.
도 20에서 보는 바와 같이, 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 주입한 유충에 본 발명에 따른 박테리오파지 YMC15/09/R1869_ABA_BP를 처리한 경우 유충의 생존율이 증가하였고, MOI 값이 증가할수록 유충의 생존율이 더욱 증가하는 것을 확인할 수 있었다. 또한, 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 주입하지 않고 박테리오파지 YMC15/09/R1869_ABA_BP만을 주입한 경우도 건강한 대조군과 그 생존률을 비교할 때 독성이 없는 것을 확인할 수 있었다. As shown in FIG. 20, when the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention was treated to larvae injected with acinetobacter baumani strain resistant to colistin, the survival rate of the larva increased and the MOI value increased. It was confirmed that the survival rate of the larva increased further. In addition, it was confirmed that when the bacteriophage YMC15/09/R1869_ABA_BP was injected without injecting the Acinetobacter Baumani strain resistant to colistin, there was no toxicity when comparing the survival rate with the healthy control group.
상기 결과를 통해, 본 발명에 따른 박테리오파지 YMC15/09/R1869_ABA_BP는 생체 내에서도 항생제 내성 아시네토박터 바우마니 균주에 대하여 용균성을 가지므로, 상기 아시네토박터 바우마니 균주에 의해 유발되는 감염성 질환을 효과적으로 예방, 개선 또는 치료할 수 있는 것을 알 수 있다.Through the above results, the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention has solubility against antibiotic resistant Acinetobacter Baumani strain in vivo, effectively preventing infectious diseases caused by the Acinetobacter Baumani strain , It can be seen that can be improved or treated.
6. 생체 내 항생제 내성 아시네토박터 속 세균에 대한 박테리오파지의 용균능 검증6. Verification of bacteriophage lytic capacity against bacteria in antibiotic-resistant Acinetobacter in vivo
콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주(30 ㎕)를 마우스에 2시간 동안 비강 투여한 후, 상기 2.에서 정제된 박테리오파지 YMC15/09/R1869_ABA_BP (30 ㎕) 또는 콜리스틴 항생제(30 ㎕)를 동일하게 비강 투여 하였다. 1일 및 5일 경과 후 각 실험군 당 4마리씩 부검하여 폐 조직을 적출하였다. 마우스 폐의 일부를 갈아 얻은 시료로 균을 배양하여 실제적인 균수의 변화를 측정해 박테리오파지 또는 항생제와의 시너지 효과를 평가하였다.After intranasally administering to the mouse an acinetobacter Baumani strain (30 μl) resistant to colistin for 2 hours, the bacteriophage YMC15/09/R1869_ABA_BP (30 μl) purified in 2. above or colistin antibiotic (30 μl) ) Was administered in the same way. After 1 and 5 days, lung tissue was removed by autopsy of 4 animals per each experimental group. By culturing the bacteria with a sample obtained by grinding a part of the mouse lung, the change in actual number of bacteria was measured to evaluate the synergistic effect with bacteriophage or antibiotics.
도 21에서 보는 바와 같이, 콜리스틴에 내성을 갖는 아시네토박터 바우마니 균주를 주입한 마우스에 본 발명에 따른 박테리오파지 YMC15/09/R1869_ABA_BP를 투여한 경우 마우스의 폐 내에서 상기 아시네토박터 바우마니의 균수가 현저히 감소한 것을 볼 수 있었고, MOI 값이 증가할수록 상기 아시네토박터 바우마니의 균수가 더욱 감소하는 것을 확인할 수 있었다. 또한, 상기 박테리오파지 YMC15/09/R1869_ABA_BP와 콜리스틴을 함께 투여한 경우 박테리오파지 YMC15/09/R1869_ABA_BP 만을 단독으로 투여한 경우에 비하여 마우스의 폐내 아시네토박터 바우마니의 균수가 더욱 감소하는 것을 확인할 수 있었다. As shown in FIG. 21, when the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention was administered to mice injected with acinetobacter baumani strain resistant to colistin, the acinetobacter baumani of the mouse was in the lung. It could be seen that the number of bacteria was significantly reduced, and it was confirmed that the number of bacteria of the Acinetobacter baumani decreased further as the MOI value increased. In addition, when the bacteriophage YMC15/09/R1869_ABA_BP and colistin were administered together, it was confirmed that the bacteriophage YMC15/09/R1869_ABA_BP alone showed a further decrease in the number of acinetobacter baumani in the lungs of mice.
상기 결과를 통해, 본 발명에 따른 박테리오파지 YMC15/09/R1869_ABA_BP는 생체 내에서도 항생제 내성 아시네토박터 바우마니 균주에 대하여 용균성을 가지므로, 상기 아시네토박터 바우마니 균주에 의해 유발되는 감염성 질환을 효과적으로 예방, 개선 또는 치료할 수 있는 것을 알 수 있다.Through the above results, the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention has solubility against antibiotic resistant Acinetobacter Baumani strain in vivo, effectively preventing infectious diseases caused by the Acinetobacter Baumani strain , It can be seen that can be improved or treated.
7. 항생제 내성 아시네토박터 바우마니 균주에 대한 박테리오파지의 안정성 평가7. Evaluation of stability of bacteriophage against antibiotic-resistant Acinetobacter baumani strain
본 발명에 따른 박테리오파지 박테리오파지 YMC15/09/R1869_ABA_BP가 온도 및 알칼리에서 파괴되지 않고 안정성을 유지하는지 확인하였다.It was confirmed that the bacteriophage bacteriophage YMC15/09/R1869_ABA_BP according to the present invention does not break at temperature and alkali and maintains stability.
상기 2.의 방법에 의해 정제된 박테리오파지 YMC15/02/T28_ABA_BP 1 ㎕를 4, 5, 6, 7, 8, 9 및 10의 pH로 맞춘 SM 버퍼 40 ㎕에 넣은 뒤, 37 ℃에서 1시간 동안 배양한 뒤 항생제 내성 클렙시엘라 뉴모니아균과 함께 상기 4.의 방법으로 플라크 분석을 실시하여 그 결과를 도 22에 나타내었다.1 μl of the bacteriophage YMC15/02/T28_ABA_BP purified by the method of 2. was put into 40 μl of SM buffer adjusted to pH of 4, 5, 6, 7, 8, 9 and 10, and then cultured at 37° C. for 1 hour. Then, plaque analysis was performed in the method of 4. above with antibiotic-resistant Klebsiella pneumoniae, and the results are shown in FIG. 22.
또한, 상기 박테리오파지 YMC15/09/R1869_ABA_BP 용액을 각각 4 ℃, 37 ℃, 50 ℃, 60 ℃ 및 70 ℃에서 배양하는 1 시간 동안 10 분 단위로 각각의 샘플을 아시네토박터 바우마니 균주와 함께 상기 4.의 방법으로 플라크 분석을 실시하여 그 결과를 도 23에 나타내었다.In addition, each sample was incubated at 4° C., 37° C., 50° C., 60° C., and 70° C. for the bacteriophage YMC15/09/R1869_ABA_BP solution at 4° C., 37° C., and 70° C., respectively. Plaque analysis was performed by the method of. And the results are shown in FIG. 23.
도 22에서 보는 바와 같이, 본 발명에 따른 상기 박테리오파지 YMC15/09/R1869_ABA_BP는 산성, 중성 및 알칼리성 모두에서 안정성을 나타내었으나, 30일 동안 상기 박테리오파지 YMC15/09/R1869_ABA_BP는 중성/알카리성에서 비교적 안정성을 나타내었다.As shown in Figure 22, the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention showed stability in both acidic, neutral and alkaline, but for 30 days the bacteriophage YMC15/09/R1869_ABA_BP showed relatively stable in neutral/alkaline Did.
또한, 도 23에서 보는 바와 같이, 상기 박테리오파지 YMC15/09/R1869_ABA_BP는 70℃의 고온에서 까지 매우 높은 안정성을 보였다. In addition, as shown in Figure 23, the bacteriophage YMC15/09/R1869_ABA_BP showed very high stability up to a high temperature of 70 ℃.
8. 항생제 내성 클렙시엘라 속 균에 대한 박테리오파지의 전체 게놈 서열 분석8. Analysis of the entire genome sequence of bacteriophage against antibiotic-resistant Klebsiella genus
본 발명에 따른 상기 박테리오파지 YMC15/09/R1869_ABA_BP의 특성을 규명하기 위하여 전체 유전자 서열 분석을 Illumina sequencer(Roche)를 통하여 통상의 기술자에게 자명한 전체 게놈 서열 분석 방법을 기초로 분석하여, 그 결과를 도 24 및 표 30 내지 35에 나타내었다.In order to characterize the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention, the whole gene sequence analysis is performed based on the whole genome sequencing method obvious to the skilled person through the Illumina sequencer (Roche), and the results are shown. 24 and Tables 30 to 35.
Figure PCTKR2019018053-appb-T000024
Figure PCTKR2019018053-appb-T000024
Figure PCTKR2019018053-appb-T000025
Figure PCTKR2019018053-appb-T000025
Figure PCTKR2019018053-appb-T000026
Figure PCTKR2019018053-appb-T000026
Figure PCTKR2019018053-appb-T000027
Figure PCTKR2019018053-appb-T000027
Figure PCTKR2019018053-appb-T000028
Figure PCTKR2019018053-appb-T000028
Figure PCTKR2019018053-appb-T000029
Figure PCTKR2019018053-appb-T000029
도 24 및 상기 표 30 내지 35에서 보는 바와 같이, 상기 박테리오파지 YMC15/09/R1869_ABA_BP는 선형의 dsDNA(linear dsDNA)를 포함하며, 77개의 ORF로 구성되어 있었다. As shown in FIG. 24 and Tables 30 to 35, the bacteriophage YMC15/09/R1869_ABA_BP includes linear dsDNA (dsDNA) and was composed of 77 ORFs.
본 발명에 따른 박테리오파지 YMC15/09/R1869_ABA_BP의 서열을 기존의 박테리오파지의 서열과 대조한 결과, 본 발명에 따른 박테리오파지와 유사성을 갖는 박테리오파지는 검출되지 않았다. 상기 결과를 통해 본 발명에 따른 박테리오파지 YMC15/09/R1869_ABA_BP는 기존에 발견되지 않은 신규한 박테리오파지에 해당함을 알 수 있다.As a result of comparing the sequence of the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention with the sequence of the existing bacteriophage, a bacteriophage having similarity to the bacteriophage according to the present invention was not detected. Through the above results, it can be seen that the bacteriophage YMC15/09/R1869_ABA_BP according to the present invention corresponds to a new bacteriophage not previously found.
[실시예 4] 박테리오파지 YMC17/01/P6_KPN_BP[Example 4] Bacteriophage YMC17/01/P6_KPN_BP
1. 임상검체 분리 및 항생제 내성 균주 선별1. Separation of clinical samples and selection of antibiotic-resistant strains
하기 표 36과 같이 세브란스 병원 환자들 또는 그 분변 등으로부터 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 세균을 배양하여 분리하였다. 균주 동정은 키트/ ATB 32 GN 시스템 (bioMerieux, Marcy l'Etoile, France)을 이용하여 수행하였다. 그 뒤, 항생제 감수성 시험은 뮬러-힌튼(Mueller-Hinton) 아가를 사용하여 외기 37 ℃에서 하룻밤 동안 배양하는 CLSI 디스크 확산 시험 방법을 사용하였다. 클렙시엘라 뉴모니아 세균에 대한 시험 항생제는 아미카신(Amicacin), 엠피실린(Ampicillin), 엠피실린/설벡탐(Ampicillin/Sulbactam), 아즈트레오남(Aztreonam), 세즈타지딤(Ceftazidime), 세파졸린(Cefazolin), 이미페넴(Imipenem), 에르타페넴(Ertapenem), 세페핌(Cefepime), 세폭시틴(Cefoxitin), 세포탁심(Cefotaxime), 젠타마이신(Gentamicine), 레보플록사신(Levofloxacin), 메로페넴(Meropenem), 피페라실린/타조박탐(Piperacillin/Tazobactam), 코트리목사(Cortrimoxa), 및 티게사이클린(Tigecyline)을 사용하였다. 감수성 결과는 Clinical and Laboratory Standards Institute (CLSI, 2016)를 기준으로 판독하였다. 수집된 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 47 개 균주의 항생제 내성 프로파일은 하기 표 37 내지 40에 나타내었다. 단, 하기 표 37 내지 40에서 S, I 및 R은 항균제에 대한 감수성을 평가한 결과로, 'S'는 민감(Susceptible), 'I'는 중간(Intermediate), 'R'은 내성(Resistant)를 의미한다.As shown in Table 36 below, Klebsiella pneumoniae bacteria were cultured and separated from patients at Severance Hospital or their feces. Strain identification was performed using a kit/ATB 32 GN system (bioMerieux, Marcy l'Etoile, France). Subsequently, the antibiotic susceptibility test was performed using a CLSI disc diffusion test method incubated overnight at 37° C. using a Mueller-Hinton agar. Test antibiotics for Klebsiella pneumoniae bacteria include Amicacin, Ampicillin, Ampicillin/Sulbactam, Aztreonam, Cestazidime, Cefazolin, Imipenem, Ertapenem, Cefepime, Cefoxitin, Cefotaxime, Gentamicine, Levofloxacin, Meropenem (Meropenem), Piperacillin/Tazobactam, Cortrimoxa, and Tigecyline. Susceptibility results were read based on Clinical and Laboratory Standards Institute (CLSI, 2016). The antibiotic resistance profiles of 47 strains of Klebsiella pneumoniae collected are shown in Tables 37 to 40 below. However, in Tables 37 to 40, S, I, and R are the results of evaluating susceptibility to antibacterial agents,'S' is susceptible,'I' is intermediate, and'R' is resistance. Means
숙주 균주Host strain 시료 유래Sample origin 숙주 균주Host strain 시료 유래Sample origin
YMC16/12/N708YMC16/12/N708 분변Feces YMC17/05/N331YMC17/05/N331 분변Feces
YMC16/12/N681YMC16/12/N681 분변Feces YMC17/05/N355YMC17/05/N355 분변Feces
YMC17/01/N115YMC17/01/N115 분변Feces YMC17/05/R3201YMC17/05/R3201 가래 (pneumonia)Phlegm (pneumonia)
YMC17/01/P6YMC17/01/P6 스왑 또는 배액관골반Swap or drain pelvis YMC17/05/N405YMC17/05/N405 분변Feces
YMC17/01/N167YMC17/01/N167 분변Feces YMC17/05/N500YMC17/05/N500 분변Feces
YMC17/01/N132YMC17/01/N132 분변Feces YMC17/05/N424YMC17/05/N424 분변Feces
YMC17/01/N270YMC17/01/N270 분변Feces YMC17/05/N421YMC17/05/N421 분변Feces
YMC17/01/N189YMC17/01/N189 분변Feces YMC17/06/U687YMC17/06/U687 임의의 소변Random urine
YMC17/02/N103YMC17/02/N103 분변Feces YMC17/06/N182YMC17/06/N182 분변Feces
YMC17/02/N97YMC17/02/N97 분변Feces YMC17/06/N196YMC17/06/N196 분변Feces
YMC17/02/N84YMC17/02/N84 분변Feces YMC17/06/N263YMC17/06/N263 분변Feces
YMC17/02/N151YMC17/02/N151 분변Feces YMC17/06/N297YMC17/06/N297 분변Feces
YMC17/02/N183YMC17/02/N183 분변Feces YMC17/06/R4267YMC17/06/R4267 가래 (pneumonia)Phlegm (pneumonia)
YMC17/02/N180YMC17/02/N180 분변Feces YMC17/06/N445YMC17/06/N445 분변Feces
YMC17/02/N189YMC17/02/N189 분변Feces YMC17/07/N293YMC17/07/N293 분변Feces
YMC17/02/N232YMC17/02/N232 분변Feces YMC17/07/N393YMC17/07/N393 분변Feces
YMC17/02/N227YMC17/02/N227 분변Feces YMC17/07/R3882YMC17/07/R3882 가래 (pneumonia)Phlegm (pneumonia)
YMC17/02/N245YMC17/02/N245 분변Feces YMC17/08/N34YMC17/08/N34 분변Feces
YMC17/02/N254YMC17/02/N254 분변Feces YMC17/07/U6299YMC17/07/U6299 임의의 소변Random urine
YMC17/02/R2881YMC17/02/R2881 기관 흡입 (pneumonia)Trachea inhalation (pneumonia) YMC17/08/N153YMC17/08/N153 분변Feces
YMC17/02/N312YMC17/02/N312 분변Feces YMC17/08/N243YMC17/08/N243 분변Feces
YMC17/05/N213YMC17/05/N213 분변Feces YMC17/08/N456YMC17/08/N456 분변Feces
YMC17/05/R1069YMC17/05/R1069 가래 (pneumonia)Phlegm (pneumonia) YMC17/10/N291YMC17/10/N291 분변Feces
YMC17/05/N300YMC17/05/N300 분변Feces
Figure PCTKR2019018053-appb-T000030
Figure PCTKR2019018053-appb-T000030
Figure PCTKR2019018053-appb-T000031
Figure PCTKR2019018053-appb-T000031
Figure PCTKR2019018053-appb-T000032
Figure PCTKR2019018053-appb-T000032
Figure PCTKR2019018053-appb-T000033
Figure PCTKR2019018053-appb-T000033
상기 표 37 내지 40에서 보는 바와 같이, 수집된 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 47개 세균은 다양한 카바페넴계 항생제에 대하여 내성을 가지는 다재내성 균주임을 알 수 있었다.As shown in Tables 37 to 40, the collected Klebsiella pneumoniae 47 bacteria were found to be multi-resistant strains resistant to various carbapenem-based antibiotics.
2. 박테리오파지 검체 수집2. Collecting bacteriophage samples
2-1. 파지 은행 구축을 위한 검체 수집2-1. Sample collection for phage banking
세브란스 병원의 하수 처리시설에서 최초 침전지 거친 후 부유물질 및 침사물이 제거된 원수를 확보하였다. 이는 화학 처리 시설 전 단계의 하수로 제한하였다. 수집한 시료에 1 L 당 염화나트륨 58 g을 첨가한 후 10,000 g에서 10 분간 원심 분리하여 220 nm 밀리포어 필터로 여과하였다. 얻어진 여과액에 폴리에틸렌글리콜(PEG, 분자량 8000)을 10% W/V으로 첨가하고 4 ℃에서 12 시간 동안 냉장 보관하였다. 12 시간 냉장 보관된 여과액을 12,000 g에서 20 분간 원심 분리하여 침전물을 파지 희석 완충액 (SM 완충액)에 재부유한 뒤, 동일한 양의 클로로포름을 첨가하여 냉동 보관하였다. 이를 3 회 반복하여 300 mL의 박테리오파지 부유액을 채취하였다.Raw water from which suspended solids and sediments were removed was secured after the first sedimentation at a sewage treatment facility at Severance Hospital. This was limited to sewage at all stages of the chemical treatment facility. 58 g of sodium chloride per 1 L was added to the collected sample, and then centrifuged at 10,000 g for 10 minutes and filtered through a 220 nm millipore filter. Polyethylene glycol (PEG, molecular weight 8000) was added to the obtained filtrate at 10% W/V and stored refrigerated at 4° C. for 12 hours. The filtrate stored for 12 hours was centrifuged at 12,000 g for 20 minutes to resuspend the precipitate in phage dilution buffer (SM buffer), and then stored frozen by adding the same amount of chloroform. This was repeated 3 times to collect 300 mL of bacteriophage suspension.
2-2 용균성 파지 선별 및 용균역가 측정2-2 Screening of lytic phage and measurement of lytic titer
용균성 파지의 분리 정제는 스팟 테스트(Spot Test)법 (Mazzocco A et al. In Bacteriophages, Clokie and Kropinski AM, eds. Humana Press. 2009)으로 실행하였다. 확보된 균주를 맥콘키 한천배지에서 접종 후 외기 35 ℃에서 하룻밤 동안 배양하였다. 배양 후, 투명한 플라크 형성을 보고 파지에 감수성인 균주를 선별하였다. 감수성인 균주를 맥콘키 한천 배지에 접종하여 35 ℃에서 12 시간 동안 배양하였다. 살린 1ml 튜브에 McFarland 0.5 탁도로 각 균주의 현탁액 제조하고 H 탑 아가 (3 ml), 감수성 박테리아 100 ㎕ 및 파지 용액 (각각 1 ㎕, 10 ㎕ 및 50 ㎕)을 섞어 LB 아가에 도포한 후, 35 ℃에서 12 시간 동안 배양하였다. 플라크 관찰한 후에 파스퇴르 파이펫으로 플라크를 채취하여 SM 완충 용액에 희석하고, 다시 감수성인 균주 현탁액을 이용하여 3회 반복 정제하였다. 이렇게 얻어진 순수한 박테리오파지 YMC17/01/P6_KPN_BP는 SM 완충 용액에 희석하고 다시 감수성인 균주 현탁액을 이용하여 3회 반복 정제하였다. 이렇게 얻어진 순수한 박테리오파지 YMC17/01/P6_KPN_BP는 SM 완충 용액에 희석하여 보관하였다.Separation and purification of lytic phage was performed by the Spot Test method (Mazzocco A et al. In Bacteriophages, Clokie and Kropinski AM, eds. Humana Press. 2009). The inoculated strains were inoculated on a McConkie agar medium and incubated overnight at 35°C. After cultivation, strains sensitive to phage were selected by seeing the formation of transparent plaques. The susceptible strains were inoculated in McConkie agar medium and cultured at 35°C for 12 hours. Prepare a suspension of each strain with McFarland 0.5 turbidity in a 1 ml tube, and mix with H top agar (3 ml), 100 μl of susceptible bacteria and phage solution (1 μl, 10 μl and 50 μl, respectively) and apply to LB agar, 35 Incubation was carried out for 12 hours at ℃. After observing the plaque, the plaque was collected with a Pasteur pipette, diluted in SM buffer solution, and purified again 3 times using a susceptible strain suspension. The thus obtained pure bacteriophage YMC17/01/P6_KPN_BP was diluted in SM buffer solution and purified again three times using a susceptible strain suspension. The thus obtained pure bacteriophage YMC17/01/P6_KPN_BP was stored diluted in SM buffer solution.
상기 1. 에서 확인한 항생제 내성 클렙시엘라 뉴모니아(Klebsiella pneumoniae) 47개 균주 각각을 맥콘키 한천배지에서 접종하여 배양한 후, 상기 과정에 의해 정제된 박테리오파지 YMC17/01/P6_KPN_BP를 도말된 각각의 내성 균주에 5 ㎕로 접종하여 플라그 형성을 확인하고, 역가 범위를 확인하여, 용균성을 하기 표 41에 나타내었다. 단, 하기 표 41에서 + 및 -는 수집된 균주에 대한 플라크 활성을 평가한 것으로, '+'는 투명한 플라크(clear plaque)를 의미하고, '-'는 용균이 일어나지 않은 것을 의미한다.After inoculating and incubating each of the 47 strains of antibiotic-resistant Klebsiella pneumoniae identified in 1. in McConkie agar medium, each of the bacteriophage purified by the above process was smeared YMC17/01/P6_KPN_BP Tolerant strains were inoculated with 5 μl to confirm plaque formation, and to confirm the titer range, solubility was shown in Table 41 below. However, in Table 41 below, + and-are evaluations of plaque activity for the collected strains,'+' means clear plaque, and'-' means that no lysis occurred.
숙주 균주Host strain 용균 여부Lysis 숙주 균주Host strain 용균 여부Lysis
YMC16/12/N708YMC16/12/N708 ++++ YMC17/05/N331YMC17/05/N331 ++
YMC16/12/N681YMC16/12/N681 ++++ YMC17/05/N355YMC17/05/N355 ++
YMC17/01/N115YMC17/01/N115 ++ YMC17/05/R3201YMC17/05/R3201 ++
YMC17/01/P6YMC17/01/P6 ++ YMC17/05/N405YMC17/05/N405 ++
YMC17/01/N167YMC17/01/N167 ++ YMC17/05/N500YMC17/05/N500 ++
YMC17/01/N132YMC17/01/N132 ++ YMC17/05/N424YMC17/05/N424 --
YMC17/01/N270YMC17/01/N270 ++ YMC17/05/N421YMC17/05/N421 --
YMC17/01/N189YMC17/01/N189 ++ YMC17/06/U687YMC17/06/U687 --
YMC17/02/N103YMC17/02/N103 ++++ YMC17/06/N182YMC17/06/N182 --
YMC17/02/N97YMC17/02/N97 ++++ YMC17/06/N196YMC17/06/N196 --
YMC17/02/N84YMC17/02/N84 ++++ YMC17/06/N263YMC17/06/N263 --
YMC17/02/N151YMC17/02/N151 ++++ YMC17/06/N297YMC17/06/N297 --
YMC17/02/N183YMC17/02/N183 ++++ YMC17/06/R4267YMC17/06/R4267 --
YMC17/02/N180YMC17/02/N180 ++++ YMC17/06/N445YMC17/06/N445 --
YMC17/02/N189YMC17/02/N189 ++++ YMC17/07/N293YMC17/07/N293 ++
YMC17/02/N232YMC17/02/N232 ++++ YMC17/07/N393YMC17/07/N393 ++
YMC17/02/N227YMC17/02/N227 ++++ YMC17/07/R3882YMC17/07/R3882 ++
YMC17/02/N245YMC17/02/N245 ++++ YMC17/08/N34YMC17/08/N34 --
YMC17/02/N254YMC17/02/N254 ++++ YMC17/07/U6299YMC17/07/U6299 ++
YMC17/02/R2881YMC17/02/R2881 ++++ YMC17/08/N153YMC17/08/N153 --
YMC17/02/N312YMC17/02/N312 ++++ YMC17/08/N243YMC17/08/N243 --
YMC17/05/N213YMC17/05/N213 ++ YMC17/08/N456YMC17/08/N456 ++
YMC17/05/R1069YMC17/05/R1069 ++ YMC17/10/N291YMC17/10/N291 ++
YMC17/05/N300YMC17/05/N300 ++
상기 표 41에서 보는 바와 같이, 본 발명에 따른 박테리오파지 YMC17/01/P6_KPN_BP는 항생제 내성 클렙시엘라 뉴모니아 47개 균주 중 35개 균주(74%)를 용균 시키는 것을 확인할 수 있었다.As shown in Table 41, it was confirmed that the bacteriophage YMC17/01/P6_KPN_BP according to the present invention lysed 35 strains (74%) of 47 strains of antibiotic resistant Klebsiella pneumoniae.
3. 항생제 내성 클렙시엘라 뉴모니아균에 대한 용균성 박테리오파지의 전자 현미경 분석3. Electron microscopic analysis of lytic bacteriophage against antibiotic-resistant Klebsiella pneumoniae
상기 2. 의 방법에 의해 정제된 박테리오파지를 감수성 균주 배양 배지(20 ml LB 배지)에 접종 및 배양한 뒤 220 nm 밀리포어 필터로 여과하고, 상청액에 폴리에틸렌글리콜(MW 8,000)을 10 %(w/v)의 양으로 첨가한 후 밤새 냉장 보관하였다. 이후 12,000 g의 조건으로 20 분 동안 원심 분리한 뒤, 에너지 여과 투과 전자현미경(Energy-Filtering Transmission Electron Microscope)을 이용하여 박테리오파지의 형태를 분석하여, 그 결과를 도 25에 나타내었다.After inoculating and incubating the bacteriophage purified by the method of 2. above in a sensitive strain culture medium (20 ml LB medium), filtering with a 220 nm millipore filter, and 10% (w/w) of polyethylene glycol (MW 8,000) in the supernatant. v) and then kept refrigerated overnight. After centrifugation for 20 minutes under the conditions of 12,000 g, the shape of the bacteriophage was analyzed using an Energy-Filtering Transmission Electron Microscope, and the results are shown in FIG. 25.
도 25에서 보는 바와 같이, 본 발명에 따른 상기 YMC17/01/P6_KPN_BP 박테리오파지를 모양으로 분류하는 기준으로 보았을 때, 각이 진 머리와 꼬리를 갖는 시포비리대(Siphoviridae) 과에 속하는 것으로 분류하였다.As shown in FIG. 25, when viewed as a criterion for classifying the YMC17/01/P6_KPN_BP bacteriophage according to the present invention, it was classified as belonging to the Siphoviridae family having an angled head and tail.
4. 박페리오파지의 흡착능 및 1단 증식 곡선(One-step growth curve) 분석4. Analysis of bacteriophage adsorption capacity and one-step growth curve
항생제 내성을 갖는 클렙시엘라 뉴모니아균을 OD 값이 0.5가 되도록 배양한 뒤, 클렙시엘라 뉴모니아균에 상기 2. 에서 정제된 박테리오파지 YMC17/01/P6_KPN_BP를 MOI 0.001로 넣고 상온에서 배양한 뒤, 100 ㎕ 시료를 1, 2, 3, 4, 5 분에 1 ml씩 채취하여 LB 배지에 희석한 뒤 플라그 분석을 통해 상기 박테리오파지의 흡착능을 평가하여, 그 결과를 도 26에 나타내었다.After culturing the antibiotic-resistant Klebsiella pneumoniae to have an OD value of 0.5, the Klebsiella pneumoniae bacteriophage YMC17/01/P6_KPN_BP purified in 2. above was put into MOI 0.001 and cultured at room temperature. , 100 µl samples were collected at 1, 2, 3, 4, and 5 minutes for 1 ml, diluted in LB medium, and then the plaque analysis was performed to evaluate the adsorption capacity of the bacteriophage, and the results are shown in FIG. 26.
또한, 항생제 내성을 갖는 클렙시엘라 뉴모니아균을 OD 값이 0.3이 되도록 배양한 뒤, 4 ℃에서 5 분 동안 7,000 g로 원심 분리하여 세포를 침전시킨 후, 0.5 ml의 LB 배지에 희석시키고, 상기 실시예 2에서 정제된 박테리오파지를 MOI 0.001(titer 108 pfu/cells)를 넣고 37 ℃에서 5 분 동안 배양하였다. 배양된 혼합 시료를 13,000 g에서 1 분 동안 원심 분리하여 얻어진 펠렛을 10ml의 LB 배지에 희석시키고 37 ℃에서 배양하였다. 배양 도중 10 분 마다 시료를 채취하여 플라그 분석을 통해 상기 박테리오파지의 1단 증식 곡선을 평가하여, 그 결과를 도 27에 나타내었다.In addition, after culturing the antibiotic-resistant Klebsiella pneumoniae to have an OD value of 0.3, the cells were precipitated by centrifugation at 7,000 g for 5 minutes at 4°C, and then diluted in 0.5 ml of LB medium, The bacteriophage purified in Example 2 was added with MOI 0.001 (titer 10 8 pfu/cells) and incubated at 37°C for 5 minutes. The pellet obtained by centrifuging the cultured mixed sample at 13,000 g for 1 minute was diluted in 10 ml of LB medium and incubated at 37°C. During the culture, samples were taken every 10 minutes to evaluate the 1-stage proliferation curve of the bacteriophage through plaque analysis, and the results are shown in FIG. 27.
도 26에서 보는 바와 같이, 상기 박테리오파지 YMC17/01/P6_KPN_BP의 접종 후 5분 이내에 박테리오파지의 99 % 정도가 클렙시엘라 뉴모니아균에 흡착하였다(10 분: 1.05 %).As shown in FIG. 26, about 99% of the bacteriophage was adsorbed to Klebsiella pneumoniae within 5 minutes after inoculation of the bacteriophage YMC17/01/P6_KPN_BP (10 min: 1.05%).
또한, 도 27에서 보는 바와 같이, 1단 증식 곡선 결과 43 PFU/감염 세포의 높은 버스트 사이즈를 나타내었다(0 분: 20 PFU/ml, 95 분: 872 PFU/ml).In addition, as shown in Figure 27, the results of the single-stage proliferation curve showed a high burst size of 43 PFU/infected cells (0 min: 20 PFU/ml, 95 min: 872 PFU/ml).
상기 결과를 통해 본 발명에 따른 상기 박테리오파지 YMC17/01/P6_KPN_BP는 항생제 내성을 갖는 클렙시엘라 뉴모니아균에 비교적 빠른 시간 내에 흡착할 수 있고, 43 PFU/감염 세포의 높은 버스트 사이즈를 나타내 항생제 내성 클렙시엘라 뉴모니아균에 용균 효과를 발휘하는 것을 알 수 있다.Through the above results, the bacteriophage YMC17/01/P6_KPN_BP according to the present invention can adsorb to antibiotic-resistant Klebsiella pneumoniae within a relatively short time, and exhibits a high burst size of 43 PFU/infected cells. It can be seen that it exerts a lytic effect on the Ciella pneumoniae.
5. 생체 외 항생제 내성 클렙시엘라 속 세균에 대한 박테리오파지의 용균능 검증5. In vitro antibiotic-resistant Klebsiella genus bacteriophage validation
항생제 내성 클렙시엘라 뉴모니아균 1 X 109 CFU/ml에 준비된 박테리오파지 YMC17/01/P6_KPN_BP를 1 X 108 CFU/ml(MOI: 0.1), 1 X 109 PFU/ml(MOI: 1), 1 X 1010 PFU/ml(MOI: 10)의 양으로 각각 처리하고 시간 별로 OD 값(파장 600 nm)을 측정하였다. 단, 음성 대조군으로는 PBS+SM 버퍼를 처리하여, 그 값을 도 28에 나타내었다.Bacteriophage YMC17/01/P6_KPN_BP prepared in antibiotic resistant Klebsiella pneumoniae 1 X 10 9 CFU/ml is 1 X 10 8 CFU/ml (MOI: 0.1), 1 X 10 9 PFU/ml (MOI: 1), Each was treated with an amount of 1 X 10 10 PFU/ml (MOI: 10) and OD values (wavelength 600 nm) were measured by time. However, PBS+SM buffer was treated as a negative control, and the values are shown in FIG. 28.
도 28에서 보는 바와 같이, 음성 대조군과 비교할 때, 클렙시엘라 뉴모니아균에 대하여 박테리오파지를 처리한 경우 OD 값이 감소하였고, MOI 값이 증가할수록 OD 값은 더욱 감소하였으며, 특히 MOI 10일 때 가장 용균능이 높았다.As shown in FIG. 28, when compared to the negative control group, when the bacteriophage was treated with Klebsiella pneumoniae, the OD value decreased, and as the MOI value increased, the OD value further decreased, especially when it was MOI 10 The solubility was high.
상기 결과를 통해, 본 발명에 따른 박테리오파지는 항생제 내성 클렙시엘라 뉴모니아균에 대하여 용균성을 갖는 것을 알 수 있다.Through the above results, it can be seen that the bacteriophage according to the present invention has solubility against antibiotic resistant Klebsiella pneumoniae.
6. 항생제 내성 클렙시엘라 속 균에 대한 박테리오파지의 안정성 평가6. Evaluation of stability of bacteriophage against antibiotic-resistant Klebsiella genus
본 발명에 따른 박테리오파지 YMC17/01/P6_KPN_BP가 온도 및 알칼리에서 파괴되지 않고 안정성을 유지하는지 확인하였다.It was confirmed that the bacteriophage YMC17/01/P6_KPN_BP according to the present invention does not break at temperature and alkali and maintains stability.
상기 2. 의 방법에 의해 정제된 박테리오 파지 1 ㎕를 4, 5, 6, 7, 8, 9 및 10의 pH로 맞춘 SM 버퍼 40 ㎕에 넣은 뒤, 37 ℃에서 1 시간 동안 배양한 뒤 항생제 내성 클렙시엘라 뉴모니아균과 함께 상기 4. 의 방법으로 플라크 분석을 실시하여 그 결과를 도 29에 나타내었다.After adding 1 µl of the bacteriophage purified by the method of 2. to 40 µl of SM buffer adjusted to pH of 4, 5, 6, 7, 8, 9 and 10, and then incubating at 37° C. for 1 hour, antibiotic resistance Plaque analysis was performed by the method of 4. above with Klebsiella pneumoniae, and the results are shown in FIG. 29.
또한, 상기 박테리오파지 용액을 각각 4 ℃, 37 ℃, 60 ℃ 및 70 ℃에서 배양하는 1 시간 동안 10 분 단위로 각각의 샘플을 클렙시엘라 뉴모니아균과 함께 상기 4.의 방법으로 플라크 분석을 실시하여 그 결과를 도 30에 나타내었다.In addition, each sample was incubated at 4° C., 37° C., 60° C., and 70° C. for 1 hour in 10-minute increments, and each sample was subjected to plaque analysis by the method of 4. above with Klebsiella pneumoniae Fig. 30 shows the result.
도 29에서 보는 바와 같이, 본 발명에 따른 상기 박테리오파지 YMC17/01/P6_KPN_BP는 pH 7에 해당하는 산성, 중성 및 알카리성 모두에서 안정성을 나타내었고, 30일 동안 상기 박테리오파지는 특히 중성/알카리성에서 비교적 안정성을 나타내었다.As shown in FIG. 29, the bacteriophage YMC17/01/P6_KPN_BP according to the present invention exhibited stability at both acidic, neutral and alkaline properties corresponding to pH 7, and for 30 days, the bacteriophage was relatively stable at particularly neutral/alkaline properties. Shown.
또한, 도 30에서 보는 바와 같이, 상기 박테리오파지 YMC17/01/P6_KPN_BP는 60℃의 고온에서 까지 매우 높은 안정성을 보였다. In addition, as shown in Figure 30, the bacteriophage YMC17/01/P6_KPN_BP showed very high stability up to a high temperature of 60 ℃.
7. 항생제 내성 클렙시엘라 속 균에 대한 박테리오파지의 전체 게놈 서열 분석7. Total genome sequence analysis of bacteriophage against antibiotic-resistant Klebsiella genus
본 발명에 따른 상기 박테리오파지 YMC17/01/P6_KPN_BP의 특성을 규명하기 위하여 전체 유전자 서열 분석을 Illumina sequencer(Roche)를 통하여 통상의 기술자에게 자명한 전체 게놈 서열 분석 방법을 기초로 분석하여, 그 결과를 도 31 및 표 42 내지 46에 나타내었다.In order to characterize the bacteriophage YMC17/01/P6_KPN_BP according to the present invention, the entire gene sequence analysis is analyzed based on the whole genome sequencing method apparent to a person skilled in the art through an Illumina sequencer (Roche), and the results are shown. 31 and Tables 42 to 46.
Figure PCTKR2019018053-appb-T000034
Figure PCTKR2019018053-appb-T000034
Figure PCTKR2019018053-appb-T000035
Figure PCTKR2019018053-appb-T000035
Figure PCTKR2019018053-appb-T000036
Figure PCTKR2019018053-appb-T000036
Figure PCTKR2019018053-appb-T000037
Figure PCTKR2019018053-appb-T000037
Figure PCTKR2019018053-appb-T000038
Figure PCTKR2019018053-appb-T000038
도 31 및 상기 표 42 내지 46에서 보는 바와 같이, 상기 박테리오파지 YMC17/01/P6_KPN_BP는 선형의 dsDNA(linear dsDNA)를 포함하며, 87개의 ORF로 구성되어 있었다. As shown in FIG. 31 and Tables 42 to 46, the bacteriophage YMC17/01/P6_KPN_BP includes linear dsDNA (dsDNA) and was composed of 87 ORFs.
본 발명에 따른 박테리오파지 YMC17/01/P6_KPN_BP의 서열을 기존의 박테리오파지의 서열과 대조한 결과, 본 발명에 따른 박테리오파지와 유사성을 갖는 박테리오파지는 검출되지 않았다. 상기 결과를 통해 본 발명에 따른 박테리오파지 YMC17/01/P6_KPN_BP는 기존에 발견되지 않은 신규한 박테리오파지에 해당함을 알 수 있다.As a result of comparing the sequence of the bacteriophage YMC17/01/P6_KPN_BP according to the present invention with the sequence of the existing bacteriophage, no bacteriophage having similarity to the bacteriophage according to the present invention was detected. Through the above results, it can be seen that the bacteriophage YMC17/01/P6_KPN_BP according to the present invention corresponds to a new bacteriophage not previously found.
이상에서 본 발명에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.The present invention has been described in detail above, but the scope of the present invention is not limited thereto, and it is common in the art that various modifications and variations are possible without departing from the technical spirit of the present invention as set forth in the claims. It will be obvious to those who have the knowledge of
[수탁번호(1)][Accession number (1)]
박테리오파지 YMC14/01/P262_ABA_BPBacteriophage YMC14/01/P262_ABA_BP
기탁기관명 : 한국미생물보존센터(국내)Depository name: Korea Microbial Conservation Center (domestic)
수탁번호 : KFCC11798PAccession number: KFCC11798P
수탁일자 : 20181115Date of accession: 20181115
Figure PCTKR2019018053-appb-I000001
Figure PCTKR2019018053-appb-I000001
[수탁번호(2)][Accession number (2)]
박테리오파지 YMC15/02/T28_ABA_BPBacteriophage YMC15/02/T28_ABA_BP
기탁기관명 : 한국미생물보존센터(국내)Depository name: Korea Microbial Conservation Center (domestic)
수탁번호 : KFCC11799PAccession number: KFCC11799P
수탁일자 : 20181115Date of accession: 20181115
Figure PCTKR2019018053-appb-I000002
Figure PCTKR2019018053-appb-I000002
[수탁번호(3)][Accession number (3)]
박테리오파지 YMC15/09/R1869_ABA_BPBacteriophage YMC15/09/R1869_ABA_BP
기탁기관명 : 한국미생물보존센터(국내)Depository name: Korea Microbial Conservation Center (domestic)
수탁번호 : KFCC11802PAccession number: KFCC11802P
수탁일자 : 20181115Date of accession: 20181115
Figure PCTKR2019018053-appb-I000003
Figure PCTKR2019018053-appb-I000003
[수탁번호(4)][Accession number (4)]
박테리오파지 YMC17/01/P6_KPN_BPBacteriophage YMC17/01/P6_KPN_BP
기탁기관명 : 한국미생물보존센터(국내)Depository name: Korea Microbial Conservation Center (domestic)
수탁번호 : KFCC11804PAccession number: KFCC11804P
수탁일자 : 20181115Date of accession: 20181115
Figure PCTKR2019018053-appb-I000004
Figure PCTKR2019018053-appb-I000004
본 발명은 세균, 특히는 항생제에 대한 내성을 보이는 세균을 용균시키는 신규한 박테리오파지에 관한 것이다.The present invention relates to a novel bacteriophage that lyses bacteria, especially bacteria that are resistant to antibiotics.

Claims (41)

  1. 아시네토박터(Acinetobacter) 속 또는 클렙시엘라(Klebsiella) 속 세균에 특이적인 사멸능을 가지는 박테리오파지.A bacteriophage that has specific killing ability against bacteria of the genus Acinetobacter or Klebsiella.
  2. 제1항에 있어서,According to claim 1,
    상기 아시네토박터 속 세균은 아시네토박터 바우마니 (Acinetobacter baumannii), 아시네토박터 칼코아세티쿠스 (Acinetobacter calcoaceticus), 아시네토박터 헤모리티쿠스 (Acinetobacter haemolyticus), 아시네토박터 주니 (Acinetobacter junii), 아시네토박터 존스니 (Acinetobacter johnsonii), 아시네토박터 리워피 (Acinetobacter lwoffii), 아시네토박터 라디오레시스텐스 (Acinetobacter radioresistens), 아시네토박터 우르신지 (Acinetobacter ursingii), 아시네토박터 쉰들러리 (Acinetobacter schindleri), 아시네토박터 파르부스 (Acinetobacter parvus), 아시네토박터 베이리 (Acinetobacter baylyi), 아시네토박터 보우베티 (Acinetobacter bouvetii), 아시네토박터 토우너리 (Acinetobacter towneri), 아시네토박터 탄도이 (Acinetobacter tandoii), 아시네토박터 그리몬티 (Acinetobacter grimontii), 아시네토박터 셰른버지아 (Acinetobacter tjernbergiae) 및 아시네토박터 게르너리(Acinetobacter gerneri)로 이루어진 군에서 선택된 1종 이상인, 박테리오파지. The bacteria of the genus Acinetobacter are Acinetobacter baumannii , Acinetobacter calcoaceticus , Acinetobacter haemolyticus , Acinetobacter junii , Acinetobacter junii Acinetobacter johnsonii , Acinetobacter lwoffii , Acinetobacter radioresistens , Acinetobacter ursingii , Acinetobacter ursingii , Acinetobacter ursingii , Acinetobacter ursingii , Acinetobacter parvus , Acinetobacter baylyi , Acinetobacter bouvetii , Acinetobacter towneri , Acinetobacter towneri , Acinetobacter towneri , Acinetobacter tando Acinetobacter so Monty (Acinetobacter grimontii), Acinetobacter shale reunbeo Jia (Acinetobacter tjernbergiae) and Acinetobacter germanium Nourishing (Acinetobacter gerneri) 1 jong or more, a bacteriophage selected from the group consisting of.
  3. 제1항에 있어서,According to claim 1,
    상기 아시네토박터 속 세균은 아시네토박터 바우마니 (Acinetobacter baumannii)인, 박테리오파지. The bacteria in the genus Acinetobacter is Acinetobacter baumannii, bacteriophage.
  4. 제1항에 있어서,According to claim 1,
    상기 아시네토박터 속 세균은 항생제 내성 세균인, 박테리오파지.The bacteria in the Acinetobacter are antibiotic-resistant bacteria, bacteriophage.
  5. 제4항에 있어서,According to claim 4,
    상기 항생제는 콜리스틴(Colistin), 에리트로마이신(Erythromycin), 암피실린(Ampicillin), 반코마이신(Vancomycin), 리네졸리드(Linezolid), 메티실린(Methicillin), 옥사실린(Oxacillin), 세포탁심(Cefotaxime), 리팜피신(Rifampicin), 아미카신(Amikacin), 겐타마이신(Gentamicin), 아미카신(Amikacin), 카나마이신(Kanamycin), 토브라마이신(Tobramycin), 네오마이신(Neomycin), 에르타페넴(Ertapenem), 도리페넴(Doripenem), 이미페넴/실라스타틴(Imipenem/Cilastatin), 메로페넴(Meropenem), 세프타지딤(Ceftazidime), 세파핌(Cefepime), 세프타로린(Ceftaroline), 세프토비프롤(Ceftobiprole), 아즈트레오남(Aztreonam), 피페라실린(Piperacillin), 폴리믹신 B(Polymyxin B), 시프로플록사신(Ciprofloxacin), 레보플록사신(Levofloxacin), 목시플록사신(Moxifloxacin), 가티플록사신(Gatifloxacin), 티게사이클린(Tigecycline), 이의 배합체 및 이들의 유도체로 구성된 군으로부터 선택되는 어느 하나 이상인, 박테리오파지. The antibiotics include colistin, erythromycin, ampicillin, vancomycin, linezolid, methicillin, oxacillin, cetaxoxime, Rifampicin, Amikacin, Gentamicin, Amikacin, Kanamycin, Tobramycin, Neomycin, Ertapenem, Doripenem, Imipenem/Cilastatin, Meropenem, Ceftazidime, Cefepime, Ceftaroline, Ceftobiprole, Aztreonam, Piperacillin, Polymyxin B, Ciprofloxacin, Levofloxacin, Moxifloxacin, Gatifloxacin, Tigecycline Cycline ), a combination thereof and derivatives thereof, any one or more selected from the group consisting of, bacteriophage.
  6. 제1항에 있어서, According to claim 1,
    상기 클렙시엘라속 세균은 클렙시엘라 뉴모니아(Klebsiella pneumoniae), 클렙시엘라 오자에나에(Klebsiella ozaenae), 클렙시엘라 리노스클레로마티스(Klebsiella rhinoscleromatis), 클렙시엘라 옥시토카(Klebsiella oxytoca), 클렙시엘라 플란티콜라(Klebsiella planticola) 및 클렙시엘라 테리게나(Klebsiella terrigena)로 구성된 군으로부터 선택되는 1종 이상인 것인, 박테리오파지.The Klebsiella bacteria are Klebsiella pneumoniae, Klebsiella ozaenae, Klebsiella rhinoscleromatis, Klebsiella oxytoca , Klebsiella planticola (Klebsiella planticola) and Klebsiella terrigena (Klebsiella terrigena) one or more selected from the group consisting of, bacteriophage.
  7. 제1항에 있어서, According to claim 1,
    상기 클렙시엘라속 세균은 클렙시엘라 뉴모니아(Klebsiella pneumoniae)인, 박테리오파지.The Klebsiella genus bacteria are Klebsiella pneumoniae, bacteriophage.
  8. 제1항에 있어서,According to claim 1,
    상기 클렙시엘라속 세균은 항생제 내성 세균인, 박테리오파지.The Klebsiella bacteria are antibiotic-resistant bacteria, bacteriophage.
  9. 제8항에 있어서,The method of claim 8,
    상기 항생제는 카바페넴(Carbapenem)계 항생제인, 박테리오파지.The antibiotic is bacteriophage, a carbapenem antibiotic.
  10. 제1항에 있어서,According to claim 1,
    상기 박테리오파지의 명칭은 YMC14/01/P262_ABA_BP이고, 기탁번호는 KFCC11798P인, 박테리오파지. The name of the bacteriophage is YMC14/01/P262_ABA_BP, the accession number is KFCC11798P, bacteriophage.
  11. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 1로 표시되는 염기 서열로 이루어지는, 박테리오파지. The bacteriophage is composed of a nucleotide sequence represented by SEQ ID NO: 1, bacteriophage.
  12. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 2 내지 4 중 어느 하나의 단백질을 포함하는, 박테리오파지. The bacteriophage comprises any one of SEQ ID NO: 2 to 4, the bacteriophage.
  13. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 5 내지 7 중 어느 하나로 표시되는 유전체를 포함하는 것인, 박테리오파지. The bacteriophage is to include a genome represented by any one of SEQ ID NO: 5 to 7, bacteriophage.
  14. 제1항에 있어서,According to claim 1,
    상기 박테리오파지의 명칭은 YMC15/02/T28_ABA_BP이고, 기탁번호는 KFCC11799P인, 박테리오파지. The name of the bacteriophage is YMC15/02/T28_ABA_BP, the accession number is KFCC11799P, bacteriophage.
  15. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 8로 표시되는 염기 서열로 이루어지는, 박테리오파지. The bacteriophage is made of a nucleotide sequence represented by SEQ ID NO: 8, bacteriophage.
  16. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 9 내지 11 중 어느 하나의 단백질을 포함하는, 박테리오파지. The bacteriophage comprises a protein of any one of SEQ ID NO: 9 to 11, bacteriophage.
  17. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 12 내지 14 중 어느 하나로 표시되는 유전체를 포함하는 것인, 박테리오파지. The bacteriophage is to include a genome represented by any one of SEQ ID NO: 12 to 14, bacteriophage.
  18. 제1항에 있어서,According to claim 1,
    상기 박테리오파지의 명칭은 YMC15/09/R1869_ABA_BP이고, 기탁번호는 KFCC11802P인, 박테리오파지. The name of the bacteriophage is YMC15/09/R1869_ABA_BP, the accession number is KFCC11802P, bacteriophage.
  19. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 15로 표시되는 염기 서열로 이루어지는, 박테리오파지. The bacteriophage consists of a nucleotide sequence represented by SEQ ID NO: 15, bacteriophage.
  20. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 16 및 17 중 어느 하나의 단백질을 포함하는, 박테리오파지. The bacteriophage comprises a protein of any one of SEQ ID NO: 16 and 17, bacteriophage.
  21. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 18 및 19 중 어느 하나로 표시되는 유전체를 포함하는 것인, 박테리오파지. The bacteriophage is to contain a genome represented by any one of SEQ ID NO: 18 and 19, bacteriophage.
  22. 제1항에 있어서,According to claim 1,
    상기 박테리오파지의 명칭은 YMC17/01/P6_KPN_BP이고, 기탁번호는 KFCC11804P인 박테리오파지.The name of the bacteriophage is YMC17/01/P6_KPN_BP, and the accession number is KFCC11804P.
  23. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 20으로 표시되는 염기 서열로 이루어지는 것인, 박테리오파지.The bacteriophage is composed of a nucleotide sequence represented by SEQ ID NO: 20, bacteriophage.
  24. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 21 및 22중 어느 하나의 단백질을 포함하는, 박테리오파지. The bacteriophage comprises a protein of any one of SEQ ID NO: 21 and 22, bacteriophage.
  25. 제1항에 있어서,According to claim 1,
    상기 박테리오파지는 서열번호 23 및 24 중 어느 하나로 표시되는 유전체를 포함하는 것인, 박테리오파지. The bacteriophage is to include a genome represented by any one of SEQ ID NO: 23 and 24, bacteriophage.
  26. 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지를 유효성분으로 포함하는, 항생용 조성물.Claim 1 to 25, wherein any one of the selected bacteriophage as an active ingredient, antibiotic composition.
  27. 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지를 유효성분으로 포함하는, 사료 첨가용 조성물.Claim 1 to claim 25, wherein any one of the bacteriophage selected from the active ingredient, feed composition.
  28. 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지를 유효성분으로 포함하는, 음용수 첨가제.Claim 1 to 25, wherein any one of the bacteriophage selected from the active ingredient, drinking water additive.
  29. 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지를 유효성분으로 포함하는, 소독제.A disinfectant comprising the bacteriophage of any one of claims 1 to 25 as an active ingredient.
  30. 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지를 유효성분으로 포함하는, 세척제.A cleaning agent comprising the bacteriophage of any one of claims 1 to 25 as an active ingredient.
  31. 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지를 유효성분으로 포함하는, 아시네토박터(Acinetobacter) 속 또는 클렙시엘라(Klebsiella) 속 세균에 의해 유발되는 질환의 예방 또는 치료용 약학적 조성물. A pharmaceutical composition for the prevention or treatment of diseases caused by bacteria of the genus Acinetobacter or Klebsiella, comprising the bacteriophage of any one of claims 1 to 25 as an active ingredient.
  32. 제31항에 있어서, The method of claim 31,
    상기 아시네토박터 속 세균에 의해 유발되는 질환은 C형 간염, 수족구병, 임질, 클라미디아, 연성하감, 성기단순포진, 첨규콘딜롬, 반코마이신내성황색포도알균감염증, 반코마이신내성장알균감염증, 메티실린내성황색포알균감염증, 다제내성녹농균감염증, 다제내성아시네토박터바우마니균감염증, 카바페넴내성장내속균종감염증, 장관감염증, 급성호홉기감염증 및 엔테로바이러스감염증으로 이루어진 군에서 선택되는 질환인, 약학적 조성물. The diseases caused by the bacteria in the genus Acinetobacter are hepatitis C, hand, foot and mouth disease, gonorrhea, chlamydia, soft sensation, genital herpes simplex, sphincter condylom, vancomycin resistant yellow grape bacterial infection, vancomycin intragrowth infection, methicillin resistance Staphylococcus aureus infection, multidrug-resistant Pseudomonas aeruginosa infection, multidrug-resistant acinetobacter baumannii infection, carbapenem growth endocytoma infection, intestinal infection, acute respiratory infection and enterovirus infection, a disease selected from the group, pharmaceutical Composition.
  33. 제31항에 있어서, The method of claim 31,
    상기 클렙시엘라 속 세균에 의해 유발되는 질환은 폐렴, 요로감염, 창상감염, 뇌수막염, 골수염, 상처감염, 내안구염, 안내염, 간농양, 인후염, 설사, 패혈증, 축농증, 비염, 중이염, 균혈증, 심내막염, 담낭염 및 이하선염으로 이루어진 군에서 선택되는 질환인, 약학적 조성물.Diseases caused by bacteria of the genus Klebsiella include pneumonia, urinary tract infection, wound infection, meningitis, osteomyelitis, wound infection, endophthalmitis, intraocular inflammation, liver abscess, sore throat, diarrhea, sepsis, sinusitis, rhinitis, otitis media, bacteremia, endocarditis , Cholecystitis and parotitis is a disease selected from the group consisting of, pharmaceutical composition.
  34. 치료 또는 예방이 필요한 대상에, 항생용 조성물을 투여하기 위한 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지의 용도.Use of the bacteriophage of any one of claims 1 to 25 for administering an antibiotic composition to a subject in need of treatment or prevention.
  35. 사료 첨가용 조성물의 제조에 사용하기 위한 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지의 용도. Use of the bacteriophage of any one of claims 1 to 25 for use in the preparation of a composition for feed addition.
  36. 음용수 첨가제의 제조에 사용하기 위한 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지의 용도.Use of the bacteriophage of any one of claims 1 to 25 for use in the manufacture of drinking water additives.
  37. 소독제의 제조에 사용하기 위한 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지의 용도.Use of the bacteriophage of any one of claims 1 to 25 for use in the manufacture of disinfectants.
  38. 세척제의 제조에 사용하기 위한 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지의 용도.Use of the bacteriophage of any one of claims 1 to 25 for use in the manufacture of cleaning agents.
  39. 예방 또는 치료를 필요로 하는 대상에 제1항 내지 제25항 중에서 선택된 어느 한 항의 박테리오파지를 유효성분으로 투여하는 단계를 포함하는, 아시네토박터(Acinetobacter) 속 또는 클렙시엘라(Klebsiella) 속 세균에 의해 유발되는 질환의 예방 또는 치료 방법.A bacteriophage of any one of claims 1 to 25 to a subject in need of prevention or treatment, comprising the step of administering as an active ingredient, Acinetobacter genus or Klebsiella genus bacteria Prevention or treatment of diseases caused by.
  40. 제39항에 있어서, The method of claim 39,
    상기 아시네토박터 속 세균에 의해 유발되는 질환은 C형 간염, 수족구병, 임질, 클라미디아, 연성하감, 성기단순포진, 첨규콘딜롬, 반코마이신내성황색포도알균감염증, 반코마이신내성장알균감염증, 메티실린내성황색포알균감염증, 다제내성녹농균감염증, 다제내성아시네토박터바우마니균감염증, 카바페넴내성장내속균종감염증, 장관감염증, 급성호홉기감염증 및 엔테로바이러스감염증으로 이루어진 군에서 선택되는 질환인, 예방 또는 치료 방법.The diseases caused by the bacteria in the genus Acinetobacter are hepatitis C, hand, foot and mouth disease, gonorrhea, chlamydia, soft sensation, genital herpes simplex, sphincter condylom, vancomycin resistant yellow grape bacterial infection, vancomycin intragrowth infection, methicillin resistance Staphylococcus aureus infections, multidrug-resistant Pseudomonas aeruginosa infections, multidrug-resistant acinetobacter baumanni infections, carbapenem growth-ingrowing bacteriogenic infections, intestinal infections, acute respiratory infections and enterovirus infections Methods of treatment.
  41. 제39항에 있어서, The method of claim 39,
    상기 클렙시엘라 속 세균에 의해 유발되는 질환은 폐렴, 요로감염, 창상감염, 뇌수막염, 골수염, 상처감염, 내안구염, 안내염, 간농양, 인후염, 설사, 패혈증, 축농증, 비염, 중이염, 균혈증, 심내막염, 담낭염 및 이하선염으로 이루어진 군에서 선택되는 질환인, 예방 또는 치료 방법.Diseases caused by bacteria of the genus Klebsiella include pneumonia, urinary tract infection, wound infection, meningitis, osteomyelitis, wound infection, endophthalmitis, intraocular inflammation, liver abscess, sore throat, diarrhea, sepsis, sinusitis, rhinitis, otitis media, bacteremia, endocarditis , Cholecystitis and parotitis is a disease selected from the group consisting of, prevention or treatment methods.
PCT/KR2019/018053 2018-12-18 2019-12-18 Novel bacteriophage for lysing bacteria WO2020130652A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180164212A KR102142018B1 (en) 2018-12-18 Novel bacteriophage specific for Klebsiella genus bacteria resistant to antibiotics
KR1020180164181A KR102189126B1 (en) 2018-12-18 2018-12-18 Novel bacteriophage specific for Acinetobacter genus bacteria resistant to antibiotics
KR10-2018-0164212 2018-12-18
KR10-2018-0164181 2018-12-18

Publications (3)

Publication Number Publication Date
WO2020130652A2 true WO2020130652A2 (en) 2020-06-25
WO2020130652A3 WO2020130652A3 (en) 2020-09-17
WO2020130652A9 WO2020130652A9 (en) 2020-10-22

Family

ID=71102242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018053 WO2020130652A2 (en) 2018-12-18 2019-12-18 Novel bacteriophage for lysing bacteria

Country Status (1)

Country Link
WO (1) WO2020130652A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112159798A (en) * 2020-10-20 2021-01-01 成都医学院 Novel bacteriophage for high-toxicity Klebsiella pneumoniae and application thereof
CN114349174A (en) * 2022-01-17 2022-04-15 大连理工大学 Method for removing tetracycline based on algae-bacteria complex
CN116478966B (en) * 2022-08-01 2023-11-21 中南大学湘雅三医院 Novel acinetobacter baumannii phage endolysin protein, preparation and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4332217A3 (en) * 2010-09-17 2024-05-22 Technophage, Investigação e Desenvolvimento em Biotecnologia, SA Antibacterial phage, phage peptides and methods of use thereof
KR101725570B1 (en) * 2012-01-27 2017-04-11 연세대학교 산학협력단 Podoviridae Bacteriophage Having Killing Activity Specific to gram negative bacteria
KR101391332B1 (en) * 2012-05-18 2014-05-07 연세대학교 산학협력단 Lytic bacteriophage specific for acinetobacter genus resistant to carbarpenem
KR101993122B1 (en) * 2016-12-22 2019-06-26 주식회사 옵티팜 Novel Klebsiella genus bacteria specific bacteriophage KP1 and antibacterial composition comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112159798A (en) * 2020-10-20 2021-01-01 成都医学院 Novel bacteriophage for high-toxicity Klebsiella pneumoniae and application thereof
CN114349174A (en) * 2022-01-17 2022-04-15 大连理工大学 Method for removing tetracycline based on algae-bacteria complex
CN114349174B (en) * 2022-01-17 2022-10-04 大连理工大学 Method for removing tetracycline based on algae-bacteria complex
CN116478966B (en) * 2022-08-01 2023-11-21 中南大学湘雅三医院 Novel acinetobacter baumannii phage endolysin protein, preparation and application thereof

Also Published As

Publication number Publication date
WO2020130652A9 (en) 2020-10-22
WO2020130652A3 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2018143678A1 (en) Novel lactic acid bacteria and use thereof
WO2020130652A2 (en) Novel bacteriophage for lysing bacteria
WO2017222335A1 (en) Antimicrobial peptide having synergistic antibacterial effect with antibiotics on multidrug resistant bacteria, and use thereof
WO2020256392A1 (en) Romo1-derived antimicrobial peptides including lysine substitution and variants thereof
WO2021182829A1 (en) Lactobacillus rhamnosus strain having intestinal immunomodulatory function and preventive or therapeutic activity for inflammatory bowel disease
WO2011043538A2 (en) Composition comprising extracellular membrane vesicles derived from indoor air, and use thereof
WO2015174747A1 (en) Novel antibacterial compound and use thereof
WO2018004224A2 (en) Novel sporichthyaceae microorganism and use thereof
WO2019066599A2 (en) Novel lactic acid bacteria and use thereof
WO2022203302A1 (en) Strain of lactobacillus fermentum having effect of preventing or ameliorating oral disease and use thereof
WO2019221513A1 (en) Novel brominated furanone derivative, method for preparing same, and pharmaceutical composition containing same as active ingredient
WO2021235713A1 (en) Composition for treating respiratory diseases or inflammatory diseases caused by fine dust stimulation, containing lactic acid bacteria
WO2022114728A2 (en) Composition comprising shmt inhibitor or mthfr inhibitor for treating bacterial infection
WO2022039561A1 (en) Composition for treating or preventing clostridium difficile infection
WO2021201570A1 (en) Novel antibacterial peptide and use thereof
WO2023014054A1 (en) Blautia sp. strain, leuconostoc sp. strain, or ruminococcus sp. strain and endoplasmic reticulum derived therefrom, and anti-inflammatory and antibacterial uses thereof
WO2019022469A1 (en) Use of nicotinamide adenine dinucleotide phosphate (nadph) or derivative thereof as beta-lactamase inhibitor
WO2023003357A1 (en) Composition comprising superoxide dismutase and/or bacillus strain spores, and use thereof for improving oral health
WO2019093611A1 (en) Novel pediococcus pentosaceus ab 160011 strain and composition containing same
WO2022158641A1 (en) Novel rhizopus oligosporus strain, and antimicrobial composition comprising same
WO2021020700A1 (en) Composition for preventing, improving, or treating ischemic brain diseases, comprising lactobacillus gasseri swpm102
WO2024155017A1 (en) Novel antimicrobial peptide designed from duck-derived antimicrobial peptide and use thereof
WO2024091038A1 (en) Novel bacteriophages lbc1, lbc2, lec1, lec2, or lse1 and use thereof
WO2020013527A1 (en) Antimicrobial peptide derivative having enhanced antimicrobial activity, hemolytic stability and stability in blood serum
WO2023022546A1 (en) Novel polypeptides and antibiotics against gram-negative bacterium comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901009

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901009

Country of ref document: EP

Kind code of ref document: A2