WO2020130556A1 - Wind power generator blade - Google Patents

Wind power generator blade Download PDF

Info

Publication number
WO2020130556A1
WO2020130556A1 PCT/KR2019/017845 KR2019017845W WO2020130556A1 WO 2020130556 A1 WO2020130556 A1 WO 2020130556A1 KR 2019017845 W KR2019017845 W KR 2019017845W WO 2020130556 A1 WO2020130556 A1 WO 2020130556A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
frame
wind
bent portion
plate
Prior art date
Application number
PCT/KR2019/017845
Other languages
French (fr)
Korean (ko)
Inventor
이도상
이영민
Original Assignee
이도상
이영민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이도상, 이영민 filed Critical 이도상
Publication of WO2020130556A1 publication Critical patent/WO2020130556A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a blade for a wind power generator, and more specifically, the center portion is a frame frame combined with a resistance frame and a support frame having a right-angled bent frame in a central portion space, and the inner side of the bent portion is rotated to the main shaft of the rotating central chain.
  • a plurality of resistance frames are fixedly coupled in a radial direction, but the resistance plate is coupled to the inside of the bending part so that it can be rotated axially by wind, so that the resistance frame faces the wind direction in the inside direction of the bending part, and the resistance plate Block the wind path, the central space of the resistance frame, and rotate the main shaft with maximum resistance.
  • wind passes through the resistance frame and/or the central space of the support frame through rotation of the resistance plate by wind. It is configured so as not to generate a drag, and relates to a blade for a wind power generator that does not change the rotational direction of the main shaft, which is a rotational center, even when the wind direction changes due to the rotation operation of the resistance plate against the resistance frame and the support frame.
  • the wind power of the vertical axis receives the wind at a right angle to the blade wing surface, and can obtain a greater rotational force in comparison with the horizontal axis wind turbine at the same wind strength.
  • the direction of rotation of the blade blades is in the direction of the wind direction and the forward direction of the blade, and the other direction is in the reverse direction of the wind direction.
  • a variable blade vertical axis wind turbine having a structure in which the angle of the blade for changing the above problems is changed according to the rotational direction and the wind direction is designed, and is proposed in Japanese Patent Application Publication No. JP 2005-9473 (Publication Date 2005.01.13).
  • the blade receiving area is changed based on the angle changing axis of the blade surface, so that the blade forms a surface perpendicular to the wind blowing direction in the forward rotation section of the wind according to the wind and the rotating position of the blade.
  • it In the reverse direction of the wind, it is a structure that forms a parallel surface.
  • the method of changing the blade angle basically changes the angle of the blade surface according to the difference in the area receiving the wind based on the variable axis of the blade surface. can see.
  • the first method has a force for changing the blade surface angle in a section in which the blade rotates in the reverse direction of the wind based on the vertical axis of the wind turbine and the blade surface angle in a section rotating in the forward direction of the wind. It is a method of linking forces for changing the second, and the second method is a method in which each blade is independently variable, and is configured independently without connecting the variable axes on both sides based on the vertical axis in the Japanese Patent Application.
  • the two methods have the following problems.
  • the blade blade is always parallel to the wind direction in the section where the blade rotates in the reverse direction of the wind, and in the section where the blade is rotated in the forward direction of the wind, the blade wing is always close to the direction perpendicular to the wind direction. According to this, when the wind blows weakly after the wind blows strongly, the rotational speed of the blade in the forward section of the wind is higher than the speed of the wind, so it receives a strong air resistance on the blade surface, and the rotational force caused by the strong wind just before It results in losing. Therefore, considering the intermittent and irregular characteristics of the wind, this is a factor that greatly reduces the efficiency.
  • the blade face when the blade speed is lower than the rotational speed of the blade in the forward section of the wind, the blade face changes to a plane close to the direction of the wind, but basically changes the angle of the blade face.
  • the blade surface In order to maintain the surface at an angle close to the direction of the wind, the blade surface has to receive a certain level of wind force or more, so it acts as a significant level of resistance to the rotation of the blade, and the efficiency of the wind turbine decreases as much.
  • the economical point of view in order to withstand the force received by the blade blades in a section far from the central axis, it is uneconomical to construct the entire section of the blades with heavy steel that requires high level of technology and quality.
  • An object of the present invention is to provide a blade for a wind power generator that can select the most effective method in consideration of the above-mentioned conventional methods or the advantages and disadvantages of the prior art, but a more economical and simple concise structure and rich in technical diversity.
  • the wind turbine blades of the present invention are fixedly coupled to a plurality of resistance frames having a wind path, which is an inner space in the form of a frame frame, radially fixed to a main shaft of a rotating center, and outside the resistance frame.
  • a vertical frame combines a support frame with a spaced windbone at a certain angle in the form of a border frame to form a bent portion, and the shaft pins of the resistance plate are rotatable on the upper and lower shaft inserts formed in the bent corners of the bent portion.
  • Insertion-combining the opposite side of the wind direction, the resistance plate, which was axially rotated according to the fluid blur, is blocked from being rotated while completely blocking the wind path of the resistance frame in the inner direction of the bent portion, resulting in the maximum downward force against the wind force of the resistance plate.
  • the main shaft is rotated, and on the other side, the resistance frame is configured to cancel the drag by blocking the resistance of the resistance plate through the wind path and the wind bone as the resistance plate contacts or approaches the support frame. And the rotational direction of the main shaft does not change according to the wind direction change according to the arrangement of the resistance plate with respect to the support frame.
  • the resistance frame is characterized in that the first flywheel is connected to each other with another resistance frame is provided on the resistance frame, the second flywheel is further provided to be connected to each other with the other support frame on the support frame.
  • the main shaft of the inner direction of the bent portion further comprises a plate fixing member that detects the resistance plate is in close contact with the resistance frame and prevents the rotation operation of the resistance plate so that the resistance plate and the resistance frame are kept in close contact. In order to prevent the rotation of the main shaft by forcibly adhering all the resistance plates sequentially to the resistance frame by the plate fixing member.
  • the upper end of the bent portion and the upper end of the support frame are respectively connected to the upper end of the main shaft and the supporting wire for weight support.
  • the wind turbine blades of the present invention through the configuration as described above is coupled to a central frame of the frame and the resistance frame in the form of a rectangular frame to have a bent portion at a right angle, radially fixed a plurality of resistance frames to the main shaft of the rotating central chain.
  • the resistance plate rotates the main shaft with the maximum resistance by blocking the central space of the resistance frame in the wind direction and the reverse direction by combining the resistance plate axially with the wind power in the bending corner in the inside direction of the bend.
  • It is configured to prevent wind from passing through the resistance frame and/or the center of the support frame through the rotational operation of the resistance plate by wind, so that the wind direction changes due to the rotational operation of the resistance plate against the resistance frame and support frame. It has the advantage that the rotational direction of the main shaft, which is the center of rotation connected to the wind turbine, does not change.
  • FIG. 1 is a perspective view of a wind turbine blade according to the present invention.
  • FIG. 2 is a view schematically showing the behavior of the resistance plate according to the wind direction.
  • the blade for the wind power generator of the present invention has a frame assembly (10) which is a combination of a resistance frame (11) and a support frame (13) coupled to have a bent portion (15) on the main shaft (20), which is a rotation center connected to a wind turbine. It is fixed in a plurality of radially coupled, and includes a resistance plate 18 that is axially rotated by wind power to the bending edge 16 of the inner direction (I) of the bending portion 15 is coupled.
  • the resistance frame 11 is formed in the form of a border frame in which the central portion is formed in a space, and the space in the central portion is a wind path 12 through which wind passes.
  • the shape of the edge of the resistance frame 11 may be variously formed, and is preferably formed as a square edge frame. Therefore, the entire space inside the rectangular border frame becomes the wind path 12.
  • the support frame 13 is also formed in the same way as the resistance frame 11. That is, the central portion is formed in the form of a border frame in the form of a space, and the space in the central portion is the wind bone 14 through which the wind passes.
  • the shape of the frame of the support frame 13 may be variously formed, and is preferably formed of a square frame. Therefore, the entire space inside the rectangular frame becomes the wind bone 14.
  • one longitudinal frame of the support frame 13 is fixedly coupled to one longitudinal frame of the longitudinal frame of the resistance frame 11 in the form of a square frame, and fixed together with each other while forming the frame assembly 10
  • the vertical frame portion of one side of the combined resistance frame 11 and the support frame 13 becomes a bent portion 15.
  • the bent portion 15 is preferably formed at a right angle
  • the shaft insert piece 17 is formed up and down in the inner edge (I) bent edge 16 of the bent portion 15.
  • the shaft insert piece 17 formed in this way may be formed in various known forms, and is preferably formed protruding from the bending edge 16 in a circular or'C' shape.
  • the other longitudinal frame of the resistance frame 11 that does not form the bent portion 15 of the one frame assembly 10 fixedly coupled to form the right angled bent portion 15 is the main It is fixedly coupled to the coaxial (20).
  • a plurality of the frame coupling bodies 10 fixedly coupled to the main shaft 20 are combined while maintaining the unidirectionality so that all the inner directions I of the bent portions 15 face the same direction.
  • the resistance plate 18 is integrally formed with a shaft-shaped shaft pin 18a at one end of the body plate 18b formed as a flat plate.
  • the size of the body plate 18b of the resistance plate 18 should be formed to exceed the size of the wind path 12 of the resistance frame 11 and the wind bone 14 of the support frame 13. This is the size that the shaft pin (18a) is axially rotatably inserted into the shaft insert piece (17) and then rotated by wind to be caught by the resistance frame (11) or support frame (13) to prevent rotation. . Therefore, the size of the body plate 18b preferably exceeds the size of the wind path 12 and the wind bone 14, but is formed below the overall size of the resistance frame 11 and the support frame 13.
  • a first flywheel 11a in the form of a ring connecting one resistance frame 11 and the other resistance frame 11 may be installed at upper and lower ends of the resistance frame 11.
  • the first flywheel 11a compensates for a change in the resistance applied to the resistance plate 18 of the frame assembly 10 according to the wind strength, thereby helping a constant rotational speed of the main shaft 20 to be maintained.
  • a second flywheel 13a may be installed at the top and bottom of the support frame 13.
  • the first flywheel (11a) and the second flywheel (13a) are installed at the outermost ends of the resistance frame (11) and the support frame (13) so that the inertial force acts largely.
  • a plate fixing member 19 for bringing the resistance plate 18 into close contact with the resistance frame 11 is installed on the main shaft 20 corresponding to the inner direction I of the bent portion 15.
  • the plate fixing member 19 is operated by the control of a control unit (not shown), and is used when stopping rotation of the main shaft 20 for reasons such as inspection of a wind power generator.
  • a contact sensor (not shown) that senses that the resistance plate 18 is completely in close contact with the resistance frame 11 is installed on the main shaft 20.
  • the signal is transmitted to the plate fixing member 19, and the stop pin 19a of the plate fixing member 19 protrudes according to the transmitted signal, thereby stopping the resistance plate 18 by the stop pin 19a and the resistance frame 11 It is locked in between to stop the rotation.
  • the operation of the stop pin 19a of the plate fixing member 19 is sequentially repeated in another frame assembly 10 in which the resistance plate 18 is in close contact with the resistance frame 11 while the main shaft 20 is rotated. When the resistance plate 18 in all directions is in close contact with the resistance frame 11, the main shaft 20 stops rotating.
  • the upper end of the bent portion 15 and the upper end of the support frame 13 may be connected to the upper end of the main shaft 20 and the support wire 30 for weight support, respectively.
  • a tension adjusting means 31 is installed on the support wire 30.
  • FIG. 2 a section in which the direction of the wind and the resistance plate 18 may come into contact with each other is theoretically left and right sides. However, the resistance force of the resistance plate 18 is maximized on the left side, and the resistance force of the resistance plate 18 is not generated on the right side.
  • This is a frame coupling body 10 is formed so that the resistance frame 11 and the support frame 13, which are the features of the present invention, have a right angle bending portion 15, and the inner direction of the bending portion 15 of the frame coupling body 10 is formed.
  • a plurality of (I) is fixedly coupled to the main shaft 20 so as to have one-way directionality, the resistance plate 18 is rotatably installed in an inner direction (I) of the bent portion 15 in the bending edge 16 Is caused by. Due to this configuration, the range of rotational movement of the resistance plate 18 is limited to the inside of the right angled bent portion 15.
  • the resistance plate 18 does not generate resistance against the wind even in the resistance plate 18 that rotates with respect to the frame assembly 10 at positions other than the left and right sides of FIG. 2.
  • the frame assembly 10 moving from the front to the left in FIG. 2 is converted into a direction in which the inner direction I of the bent portion 15 faces the wind direction. Due to this, the resistance plate 18 is oriented to face the wind direction while the resistance plate 18 is axially rotated toward the resistance frame 11 by wind passing through the wind bone 14 of the support frame 13. The position is changed to generate drag.
  • the resistance plate 18 is supported by the windshield passing through the wind path 12 of the resistance frame 11 ( 13) The position is changed to maintain the same directionality with respect to the wind direction while rotating in the direction. Due to this, no drag is generated in the resistance plate 18 moving from the rear to the right.
  • the resistance frame 11 in the inner direction I of the bent portion 15 On the left side, which faces the wind direction, the resistance plate 18, which was axially rotated according to the fluid blur, winds the resistance frame 11 within the inner direction I of the bent portion 15. The rotation is stopped while completely blocking the 12, and the main shaft 20 is rotated with the maximum downward force against the wind power of the resistance plate 18, and the fluid is transferred to the wind path 12 and before and after the other side.
  • the resistance plate 18 By rotating the resistance plate 18 to face the same direction as the direction of the fluid while passing through the wind bone 14, the rotational direction of the main shaft 20 is changed despite the change in wind direction. It will not change.
  • the resistance plate 18 has a resistance frame 11 and a support frame ( 13) There is room for noise while contacting the phase.
  • a noise reduction member (not shown) may be further installed on the resistance frame 11 and the support frame 13 corresponding to the inner direction I of the frame assembly 10.
  • the noise-reducing member may be provided with a sound absorbing material such as a sponge or synthrate, a shock absorber may be installed, or a hydraulic cylinder or an air cylinder may be installed.
  • the noise reduction member as described above is installed on the resistance frame 11 and the support frame 13 corresponding to the inner direction (I) of the bent portion 15, the resistance plate 18 is a frame assembly 10 by wind power It reduces noise when it comes in contact with.
  • the sound absorbing material such as the sponge or synthrate, intervenes between them and acts as a buffer to reduce noise.
  • the shock absorber or the hydraulic cylinder to the air cylinder reduces the noise caused by the contact between the two by inducing very weak contact by rapidly reducing the movement speed at the last moment when the resistance plate 18 contacts the frame assembly 10. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a wind power generator blade and, more specifically, to a wind power generator blade having a frame-coupled body in which resistance frames and support frames, which have an edge frame shape with a space in the center, are coupled to have rectangular bent parts, wherein the plurality of resistance frames are radially fixed and coupled to a main driving shaft, which is a rotational center body, so that the inward directions of the bent parts have a single directivity, resistance plates are coupled to the inwardly bent corners of the bent parts so as to be axially rotatable by means of wind force so that the resistance plates block a wind path, which is the center space of the resistance frame, in the inward directions of the bent parts when the resistance frames are in the direction opposite to a wind direction, and thus the main driving shaft rotates with maximum resistance power, and wind passes through the center spaces of the resistance frames and/or the support frames by the rotational operation of the resistance plates, caused by the wind force, in a section in which the direction thereof is not opposite to the wind direction, so that drag is not generated, and thus the rotational direction of the main driving shaft, which is the rotational center body, does not change despite a change in the wind direction caused by the rotational operation of the resistance plates with respect to the resistance frames and the support frames.

Description

풍력발전기용 날개Wind turbine blades
본 발명은 풍력발전기용 날개에 관한 것으로, 좀 더 상세하게는 중앙부가 공간인 테두리 프레임 형태의 저항프레임 및 지지프레임을 직각의 절곡부를 갖도록 결합된 프레임 결합체를 회전 중심체인 주동축에 절곡부 안쪽 방향이 일방향성을 갖도록 저항프레임을 방사상으로 다수개 고정결합하되, 절곡부의 안쪽 방향 절곡모서리에 저항판을 풍력에 의해 축회전 가능하게 결합하여, 절곡부의 안쪽 방향에서 저항프레임이 풍향과 대면하여 저항판이 저항프레임의 중앙 공간인 바람길을 막아 최대 저항력으로 주동축을 회전시키고, 풍향과 대면하지 않는 구간에서는 풍력에 의한 저항판의 회전작동을 통해 저항프레임 및/또는 지지프레임의 중앙 공간으로 바람이 통과하여 항력을 발생시키지 않도록 구성하여, 저항프레임 및 지지프레임에 대한 저항판의 회전작동에 의해 풍향 변화에도 회전 중심체인 주동축의 회전방향이 변하지 않는 풍력발전기용 날개에 관한 것이다.The present invention relates to a blade for a wind power generator, and more specifically, the center portion is a frame frame combined with a resistance frame and a support frame having a right-angled bent frame in a central portion space, and the inner side of the bent portion is rotated to the main shaft of the rotating central chain. In order to have this one-way structure, a plurality of resistance frames are fixedly coupled in a radial direction, but the resistance plate is coupled to the inside of the bending part so that it can be rotated axially by wind, so that the resistance frame faces the wind direction in the inside direction of the bending part, and the resistance plate Block the wind path, the central space of the resistance frame, and rotate the main shaft with maximum resistance. In the section that does not face the wind direction, wind passes through the resistance frame and/or the central space of the support frame through rotation of the resistance plate by wind. It is configured so as not to generate a drag, and relates to a blade for a wind power generator that does not change the rotational direction of the main shaft, which is a rotational center, even when the wind direction changes due to the rotation operation of the resistance plate against the resistance frame and the support frame.
통상 수평축 풍력터빈은 블레이드의 회전방향과 직각으로 바람을 받아 견뎌야 하기 때문에 블레이드 날개의 견고성 확보를 위하여 고품질의 철강재와 단조기술 등 제조비용의 과다를 초래하고 있다. 이뿐만 아니라, 블레이드 날개가 견딜 수 있는 일정 수준 이상의 강한 바람이 불 때에는 블레이드 날개를 접어 풍력터빈의 가동을 중단함으로써 풍력에너지가 가장 밀집되는 시간대에 풍력을 활용하지 못하는 상황이 초래될 수도 있다.In general, horizontal axis wind turbines must withstand wind at right angles to the rotational direction of the blades, which leads to excessive manufacturing costs, such as high-quality steel and forging technology, to secure the blade blades. In addition, when strong winds over a certain level that the blade blades can withstand blow, the blade blades can be folded to stop the operation of the wind turbine, resulting in a situation in which wind energy cannot be utilized at the time when wind energy is most concentrated.
한편, 수직축 풍력발전은 바람을 블레이드 날개면과 직각으로 받아 같은 바람의 세기에서 수평축 풍력터빈과 대비하여 더 큰 회전력을 얻을 수 있다. 그러나 블레이드 날개의 회전방향이 수직축을 기준으로 한쪽은 바람 방향과 순방향이고, 다른 쪽은 바람 방향과 역방향의 되는데, 이 역방향 구간의 저항으로 인하여 효율성이 떨어진다.On the other hand, the wind power of the vertical axis receives the wind at a right angle to the blade wing surface, and can obtain a greater rotational force in comparison with the horizontal axis wind turbine at the same wind strength. However, the direction of rotation of the blade blades is in the direction of the wind direction and the forward direction of the blade, and the other direction is in the reverse direction of the wind direction.
상기한 문제점을 해소하기 위한 블레이드의 각도가 회전방향과 바람방향에 따라 변경되는 구조의 가변 블레이드 수직축 풍력터빈이 고안되었는데, 일본 공개특허 JP 2005-9473 (공개일 2005.01.13)에 제시되어 있다. 상기의 공보에 따르면, 블레이드 면의 각도 변경 축을 기준으로 블레이드의 바람 받는 면적을 달리하여, 바람과 블레이드의 회전 중인 위치에 따라 바람의 순방향 회전구간에서는 블레이드가 바람 부는 방향과 직각인 면을 이루게 하고, 바람의 역방향 구간에서는 평행면을 이루게 하는 구조이다.A variable blade vertical axis wind turbine having a structure in which the angle of the blade for changing the above problems is changed according to the rotational direction and the wind direction is designed, and is proposed in Japanese Patent Application Publication No. JP 2005-9473 (Publication Date 2005.01.13). According to the above-mentioned publication, the blade receiving area is changed based on the angle changing axis of the blade surface, so that the blade forms a surface perpendicular to the wind blowing direction in the forward rotation section of the wind according to the wind and the rotating position of the blade. , In the reverse direction of the wind, it is a structure that forms a parallel surface.
종래의 가변 블레이드 수직축 풍력터빈에서 블레이드 각도를 변경시키는 방법은 기본적으로 블레이드 면의 가변축을 기준으로 바람을 받는 면적의 차이에 따라 블레이드 면의 각도를 변경하게 하는 데 그 방법으로 다음의 두 가지로 나누어 볼 수 있다.In the conventional variable blade vertical axis wind turbine, the method of changing the blade angle basically changes the angle of the blade surface according to the difference in the area receiving the wind based on the variable axis of the blade surface. can see.
첫 번째 방법은 상기 일본 공개특허에서와 같이, 풍력터빈의 수직축을 기준으로 바람의 역방향으로 블레이드가 회전하는 구간에서의 블레이드 면 각도를 변경하는 힘과 바람의 순방향으로 회전하는 구간에서의 블레이드 면 각도를 변경하는 힘을 연계하는 방법이고, 두 번째 방법은 각각의 블레이드가 독립적으로 가변되게 하는 방법으로서 상기 일본 공개특허에서 수직축을 기준으로 양측의 가변 축들을 연결하지 않고 독립적으로 구성하는 경우이다.The first method, as in the Japanese Patent Application, has a force for changing the blade surface angle in a section in which the blade rotates in the reverse direction of the wind based on the vertical axis of the wind turbine and the blade surface angle in a section rotating in the forward direction of the wind. It is a method of linking forces for changing the second, and the second method is a method in which each blade is independently variable, and is configured independently without connecting the variable axes on both sides based on the vertical axis in the Japanese Patent Application.
상기 두 가지 방법은 다음과 같은 문제점이 있다.The two methods have the following problems.
첫 번째 방법의 경우, 블레이드가 바람의 역방향으로 회전하는 구간에서는 항상 블레이드 날개가 바람 방향과 평행에 가까운 면을 이루고, 바람의 순방향으로 회전하는 구간에서는 항상 블레이드 날개가 바람의 방향과 직각에 가까운 면을 이룸에 따라, 바람이 강하게 분 직후에 바람이 약하게 불게 될 때 바람의 순방향 구간에서 블레이드의 회전속도가 오히려 바람의 속도보다 높아서 블레이드 면에 강한 공기저항을 받게 되고, 직전의 강한 바람에 의한 회전력을 잃어버리는 결과를 가져 온다. 따라서, 바람의 단속적이고 불규칙한 특성을 고려할 때 이는 효율성을 크게 떨어뜨리는 요인이 된다.In the first method, the blade blade is always parallel to the wind direction in the section where the blade rotates in the reverse direction of the wind, and in the section where the blade is rotated in the forward direction of the wind, the blade wing is always close to the direction perpendicular to the wind direction. According to this, when the wind blows weakly after the wind blows strongly, the rotational speed of the blade in the forward section of the wind is higher than the speed of the wind, so it receives a strong air resistance on the blade surface, and the rotational force caused by the strong wind just before It results in losing. Therefore, considering the intermittent and irregular characteristics of the wind, this is a factor that greatly reduces the efficiency.
두 번째 방법의 경우, 블레이드 날개가 바람의 순방향 구간에서 바람의 속도가 블레이드의 회전속도보다 낮을 경우 블레이드 면이 바람의 방향과 평행에 가까운 면으로 변경되게 되나, 기본적으로 블레이드 면의 각도를 변경하고 그 면을 바람의 방향과 평행에 가까운 각도로 유지하기 위하여 블레이드 면이 바람의 힘을 일정수준 이상 받아야 하므로, 블레이드의 회전에 상당한 수준의 저항으로 작용하게 되어 풍력 터빈의 효율은 그만큼 떨어지게 된다. 또한, 경제성 측면에서, 중심축에서 먼 구간의 블레이드 날개가 받는 힘에 견디기 위하여 블레이드 전 구간을 높은 수준의 기술과 품질이 요구되는 무거운 강재로 구성하는 것이 필수적이어서 비경제적이다.In the second method, when the blade speed is lower than the rotational speed of the blade in the forward section of the wind, the blade face changes to a plane close to the direction of the wind, but basically changes the angle of the blade face. In order to maintain the surface at an angle close to the direction of the wind, the blade surface has to receive a certain level of wind force or more, so it acts as a significant level of resistance to the rotation of the blade, and the efficiency of the wind turbine decreases as much. In addition, from the economical point of view, in order to withstand the force received by the blade blades in a section far from the central axis, it is uneconomical to construct the entire section of the blades with heavy steel that requires high level of technology and quality.
본 발명의 목적은 상기한 종래 방식이나 선행기술의 장단점이나 문제점을 감안하여 가장 효과적인 방식을 선택하되 보다 경제적이고 단순 간결한 구조이면서도, 기술적 다양성이 풍부할 수 있는 풍력발전기용 날개를 제공함에 있다.An object of the present invention is to provide a blade for a wind power generator that can select the most effective method in consideration of the above-mentioned conventional methods or the advantages and disadvantages of the prior art, but a more economical and simple concise structure and rich in technical diversity.
또한, 풍향 변화에도 풍력터빈과 연결된 주동축의 회전방향을 일방향으로 유지시켜 회전할 수 있는 풍력발전기용 날개를 제공함에 있다.In addition, it is to provide a blade for a wind power generator that can rotate by maintaining the rotational direction of the main shaft connected to the wind turbine in one direction even when the wind direction changes.
상기한 목적을 달성하기 위한 본 발명 풍력발전기용 날개는 테두리 프레임 형태의 안쪽으로 공간인 바람길을 갖는 저항프레임을 회전 중심체인 주동축에 대해 방사상으로 다수개 고정결합하고, 상기 저항프레임의 바깥쪽 종프레임에 테두리 프레임 형태로 안쪽에 공간인 바람골을 갖는 지지프레임을 일정 각도로 결합하여 절곡부를 형성하며, 상기 절곡부의 안쪽 방향 절곡모서리에 형성된 상하의 축삽입편에는 저항판의 축핀을 회전 가능하게 삽입결합하여, 풍향의 역방향인 일측에서는 유체 흐림에 따라 축회전하던 상기 저항판이 상기 절곡부의 안쪽 방향에서 상기 저항프레임의 바람길을 완전히 막으면서 회전저지되어 저항판의 풍력에 대한 최대 저향력으로 상기 주동축을 회전시키고, 다른 측에서는 상기 저항판이 상기 지지프레임에 접촉 또는 가까워짐에 따라 유체가 상기 바람길 및 바람골을 통과하여 저항판의 저항력을 차단하는 것으로 항력을 상쇄시키도록 구성하여, 상기 저항프레임 및 상기 지지프레임에 대한 상기 저항판의 배치에 따라 풍향 변화에도 상기 주동축의 회전방향이 변하지 않는 것을 특징으로 한다.In order to achieve the above object, the wind turbine blades of the present invention are fixedly coupled to a plurality of resistance frames having a wind path, which is an inner space in the form of a frame frame, radially fixed to a main shaft of a rotating center, and outside the resistance frame. A vertical frame combines a support frame with a spaced windbone at a certain angle in the form of a border frame to form a bent portion, and the shaft pins of the resistance plate are rotatable on the upper and lower shaft inserts formed in the bent corners of the bent portion. Insertion-combining, the opposite side of the wind direction, the resistance plate, which was axially rotated according to the fluid blur, is blocked from being rotated while completely blocking the wind path of the resistance frame in the inner direction of the bent portion, resulting in the maximum downward force against the wind force of the resistance plate. The main shaft is rotated, and on the other side, the resistance frame is configured to cancel the drag by blocking the resistance of the resistance plate through the wind path and the wind bone as the resistance plate contacts or approaches the support frame. And the rotational direction of the main shaft does not change according to the wind direction change according to the arrangement of the resistance plate with respect to the support frame.
또한, 상기 저항프레임 상에는 다른 저항프레임과 서로 연결되는 제1 플라이휠이 구비되고, 상기 지지프레임 상에는 다른 지지프레임과 서로 연결되는 제2 플라이휠이 더 구비되는 것을 특징으로 한다.In addition, the resistance frame is characterized in that the first flywheel is connected to each other with another resistance frame is provided on the resistance frame, the second flywheel is further provided to be connected to each other with the other support frame on the support frame.
또한, 상기 절곡부의 안쪽 방향의 주동축에는 상기 저항판이 상기 저항프레임에 밀착됨을 감지하여 상기 저항판과 상기 저항프레임이 밀착상태를 유지하도록 상기 저항판의 회전동작을 저지하는 판고정부재를 더 구비하여, 상기 판고정부재에 의해 순차적으로 모든 저항판을 저항프레임에 강제로 밀착시켜 상기 주동축의 회전을 저지하는 것을 특징으로 한다.In addition, the main shaft of the inner direction of the bent portion further comprises a plate fixing member that detects the resistance plate is in close contact with the resistance frame and prevents the rotation operation of the resistance plate so that the resistance plate and the resistance frame are kept in close contact. In order to prevent the rotation of the main shaft by forcibly adhering all the resistance plates sequentially to the resistance frame by the plate fixing member.
또한, 상기 절곡부의 상단 및 상기 지지프레임의 상단은 각각 상기 주동축 상단과 무게지지용 지지와이어로 연결되는 것을 특징으로 한다.In addition, the upper end of the bent portion and the upper end of the support frame are respectively connected to the upper end of the main shaft and the supporting wire for weight support.
상기와 같은 구성을 통한 본 발명 풍력발전기용 날개는 중앙부가 공간인 테두리 프레임 형태의 저항프레임 및 지지프레임을 직각의 절곡부를 갖도록 결합하여 회전 중심체인 주동축에 저항프레임을 방사상으로 다수개 고정결합하되, 절곡부의 안쪽 방향 절곡모서리에 저항판을 풍력에 의해 축회전 가능하게 결합하여, 풍향과 역방향에서 저항판이 저항프레임의 중앙 공간을 막아 최대 저항력으로 주동축을 회전시키고, 풍향과 역방향이 아닌 구간에서는 풍력에 의한 저항판의 회전작동을 통해 저항프레임 및/또는 지지프레임의 중앙 공간으로 바람이 통과하여 항력을 발생시키지 않도록 구성하여, 저항프레임 및 지지프레임에 대한 저항판의 회전작동에 의해 풍향 변화에도 풍력터빈과 연결된 회전 중심체인 주동축의 회전방향이 변하지 않는다는 장점이 있다.The wind turbine blades of the present invention through the configuration as described above is coupled to a central frame of the frame and the resistance frame in the form of a rectangular frame to have a bent portion at a right angle, radially fixed a plurality of resistance frames to the main shaft of the rotating central chain. In the section that is not reverse to the wind direction, the resistance plate rotates the main shaft with the maximum resistance by blocking the central space of the resistance frame in the wind direction and the reverse direction by combining the resistance plate axially with the wind power in the bending corner in the inside direction of the bend. It is configured to prevent wind from passing through the resistance frame and/or the center of the support frame through the rotational operation of the resistance plate by wind, so that the wind direction changes due to the rotational operation of the resistance plate against the resistance frame and support frame. It has the advantage that the rotational direction of the main shaft, which is the center of rotation connected to the wind turbine, does not change.
도 1은 본 발명에 따른 풍력발전기용 날개의 사시도.1 is a perspective view of a wind turbine blade according to the present invention.
도 2는 풍향에 따른 저항판의 거동을 개략적으로 나타낸 도면.2 is a view schematically showing the behavior of the resistance plate according to the wind direction.
이하, 첨부된 도면을 이용하여 본 발명을 상세하게 설명한다. 이하에서는 풍력발전을 실시예로 설명하고 있으나, 본 발명은 풍력발전은 물론 수력발전, 또는 기타 회전날개를 이용하는 분야에 폭 넓게 사용될 수 있다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. Hereinafter, although wind power generation is described as an example, the present invention can be widely used in fields using wind power generation, hydro power generation, or other rotary blades.
본 발명 풍력발전기용 날개는 풍력터빈과 연결된 회전 중심체인 주동축(20)에 절곡부(15)를 갖도록 연결결합된 저항프레임(11) 및 지지프레임(13)의 결합체인 프레임 결합체(10)가 방사상으로 다수개 고정결합되고, 상기 절곡부(15)의 안쪽 방향(I) 절곡모서리(16)에 풍력에 의해 축회전하는 저항판(18)이 결합되는 것을 포함한다.The blade for the wind power generator of the present invention has a frame assembly (10) which is a combination of a resistance frame (11) and a support frame (13) coupled to have a bent portion (15) on the main shaft (20), which is a rotation center connected to a wind turbine. It is fixed in a plurality of radially coupled, and includes a resistance plate 18 that is axially rotated by wind power to the bending edge 16 of the inner direction (I) of the bending portion 15 is coupled.
상기 저항프레임(11)은 중앙부가 공간 형태로 형성되는 테두리 프레임 형태로 형성되며, 상기 중앙부의 공간은 바람이 통과하는 바람길(12)이다. 여기서 상기 저항프레임(11)의 테두리 형태는 다양하게 형성될 수 있으며, 바람직하게는 사각의 테두리 프레임으로 형성된다. 따라서 사각의 테두리 프레임 안쪽 전체 공간이 바람길(12)이 된다.The resistance frame 11 is formed in the form of a border frame in which the central portion is formed in a space, and the space in the central portion is a wind path 12 through which wind passes. Here, the shape of the edge of the resistance frame 11 may be variously formed, and is preferably formed as a square edge frame. Therefore, the entire space inside the rectangular border frame becomes the wind path 12.
상기 지지프레임(13) 또한 상기 저항프레임(11)과 동일하게 형성된다. 즉, 중앙부가 공간 형태로 형성되는 테두리 프레임 형태로 형성되며, 상기 중앙부의 공간은 바람이 통과하는 바람골(14)이다. 여기서 상기 지지프레임(13)의 테두리 형태는 다양하게 형성될 수 있으며, 바람직하게는 사각의 테두리 프레임으로 형성된다. 따라서 사각의 테두리 프레임 안쪽 전체 공간이 바람골(14)이 된다.The support frame 13 is also formed in the same way as the resistance frame 11. That is, the central portion is formed in the form of a border frame in the form of a space, and the space in the central portion is the wind bone 14 through which the wind passes. Here, the shape of the frame of the support frame 13 may be variously formed, and is preferably formed of a square frame. Therefore, the entire space inside the rectangular frame becomes the wind bone 14.
상기와 같이 사각프레임 형태인 상기 저항프레임(11)의 종(縱)프레임 중 일측 종프레임에는 상기 지지프레임(13)의 일측 종프레임이 고정결합하여 프레임 결합체(10)를 형성함과 함께 서로 고정결합된 저항프레임(11) 및 지지프레임(13)의 일측 종프레임 부분은 절곡부(15)가 된다. 여기서 상기 절곡부(15)는 바람직하게 직각으로 형성되며, 상기 절곡부(15)의 안쪽 방향(I) 절곡모서리(16)에는 상하로 축삽입편(17)이 형성된다. 이렇게 형성되는 축삽입편(17)은 공지된 다양한 형태로 형성될 수 있으며, 바람직하게는 원형 또는 'C'자 형태로 상기 절곡모서리(16)에서 돌출형성된다.As shown above, one longitudinal frame of the support frame 13 is fixedly coupled to one longitudinal frame of the longitudinal frame of the resistance frame 11 in the form of a square frame, and fixed together with each other while forming the frame assembly 10 The vertical frame portion of one side of the combined resistance frame 11 and the support frame 13 becomes a bent portion 15. Here, the bent portion 15 is preferably formed at a right angle, and the shaft insert piece 17 is formed up and down in the inner edge (I) bent edge 16 of the bent portion 15. The shaft insert piece 17 formed in this way may be formed in various known forms, and is preferably formed protruding from the bending edge 16 in a circular or'C' shape.
상기와 같이, 바람직하게 직각의 절곡부(15)를 형성하며 고정결합된 하나의 상기 프레임 결합체(10) 중 상기 절곡부(15)를 형성하지 않은 저항프레임(11)의 타측 종프레임을 상기 주동축(20)에 고정결합시킨다. 이렇게 주동축(20)에 고정 결합되는 다수개의 상기 프레임 결합체(10)는 상기 절곡부(15)의 안쪽 방향(I)이 모두 동일 방향을 향하도록 일방향성을 유지한체 결합된다.As described above, preferably, the other longitudinal frame of the resistance frame 11 that does not form the bent portion 15 of the one frame assembly 10 fixedly coupled to form the right angled bent portion 15 is the main It is fixedly coupled to the coaxial (20). In this way, a plurality of the frame coupling bodies 10 fixedly coupled to the main shaft 20 are combined while maintaining the unidirectionality so that all the inner directions I of the bent portions 15 face the same direction.
상기 저항판(18)은 평판으로 형성되는 몸판(18b)의 일측단에 원기둥 형태의 축핀(18a)이 일체로 결합형성된다. 여기서 상기 저항판(18)의 몸판(18b)의 크기는 상기 저항프레임(11)의 바람길(12) 및 상기 지지프레임(13)의 바람골(14)의 크기를 초과하도록 형성됨이 마땅하다. 이는 상기 축핀(18a)이 상기 축삽입편(17)에 축회전 가능하게 삽입결합된 후 풍력에 의해 회전하여 상기 저항프레임(11) 또는 지지프레임(13)에 걸려 회전이 저지될 수 있는 크기이다. 따라서 상기 몸판(18b)의 크기는 바람직하게 상기 바람길(12) 및 바람골(14)의 크기를 초과하되, 상기 저항프레임(11) 및 지지프레임(13)의 전체크기 이하로 형성된다.The resistance plate 18 is integrally formed with a shaft-shaped shaft pin 18a at one end of the body plate 18b formed as a flat plate. Here, the size of the body plate 18b of the resistance plate 18 should be formed to exceed the size of the wind path 12 of the resistance frame 11 and the wind bone 14 of the support frame 13. This is the size that the shaft pin (18a) is axially rotatably inserted into the shaft insert piece (17) and then rotated by wind to be caught by the resistance frame (11) or support frame (13) to prevent rotation. . Therefore, the size of the body plate 18b preferably exceeds the size of the wind path 12 and the wind bone 14, but is formed below the overall size of the resistance frame 11 and the support frame 13.
또한, 상기 저항프레임(11)의 상단과 하단에는 하나의 저항프레임(11)과 다른 저항프레임(11)을 연결하는 링 형태의 제1 플라이휠(11a)이 설치될 수 있다. 상기 제1 플라이휠(11a)은 바람의 세기에 따라 상기 프레임 결합체(10)의 저항판(18)에 걸리는 저항력이 달라지는 것을 보상하여 상기 주동축(20)의 일정 회전속도가 유지될 수 있도록 도움을 준다. 이러한 상기 제1 플라이휠(11a)과 동일 기능을 수행하도록 상기 지지프레임(13)의 상단과 하단에도 제2 플라이휠(13a)이 설치될 수 있다. 바람직하게 상기 제 1 플라이휠(11a) 및 제2 플라이휠(13a)은 관성력이 크게 작용하도록 상기 저항프레임(11)과 지지프레임(13)의 가장 바깥단에 설치된다.In addition, a first flywheel 11a in the form of a ring connecting one resistance frame 11 and the other resistance frame 11 may be installed at upper and lower ends of the resistance frame 11. The first flywheel 11a compensates for a change in the resistance applied to the resistance plate 18 of the frame assembly 10 according to the wind strength, thereby helping a constant rotational speed of the main shaft 20 to be maintained. give. In order to perform the same function as the first flywheel 11a, a second flywheel 13a may be installed at the top and bottom of the support frame 13. Preferably, the first flywheel (11a) and the second flywheel (13a) are installed at the outermost ends of the resistance frame (11) and the support frame (13) so that the inertial force acts largely.
또한, 상기 절곡부(15)의 안쪽 방향(I)에 해당하는 상기 주동축(20) 상에는 상기 저항판(18)을 상기 저항프레임(11)에 밀착시키기 위한 판고정부재(19)가 설치될 수 있다. 상기 판고정부재(19)는 제어부(미도시)의 제어에 의해 작동하는 것으로, 풍력발전기의 점검 등을 이유로 상기 주동축(20)의 회전을 중지시킬 때 사용된다. 먼저, 도 2의 왼쪽에 설치된 상기 프레임 결합체(10)와 같이 저항판(18)이 상기 저항프레임(11)에 완전히 밀착됨을 감지한 접촉센서(미도시)가 상기 주동축(20)에 설치된 상기 판고정부재(19)에 신호를 전달하고, 전달된 신호에 따라 판고정부재(19)의 멈춤핀(19a)이 돌출동작하여 저항판(18)을 멈춤핀(19a)과 저항프레임(11) 사이에 가두어 회전동작을 저지시키게 된다. 이러한 상기 판고정부재(19)의 멈춤핀(19a) 작동은 주동축(20)이 회전하면서 저항판(18)이 저항프레임(11)에 밀착되는 다른 프레임 결합체(10)에서도 순차적으로 반복된다. 이렇게 모든 방향의 저항판(18)이 저항프레임(11)에 밀착되면 상기 주동축(20)은 회전을 멈추게 된다. 이는 풍향과 대면하는 방향의 저항판(18) 작동이 정상 작동됨에 따라 풍력에 의해 저항판(18)이 저항프레임(11)에 밀착되어 회전력을 발생시키려 할 때, 풍향과 동일 방향의 저항판(18)도 판고정부재(19)에 의해 저항프레임(11)에 밀착되면서 풍력에 의한 회전력이 상쇄되기 때문이다. 이렇게 상기 판고정부재(19)의 작동에 따라 모든 방향의 저항판(18)이 저항프레임(11)에 밀착되면, 풍력을 회전력으로 바꿔주는 저항판(18)의 저항력이 각 저항판(18)에 의해 상쇄되면서 발생하지 않아 주동축(20)은 회전을 멈추게 되는 것이다. 이렇게 회전을 멈추면 풍력발전기의 수리가 용이하게 된다.Further, on the main shaft 20 corresponding to the inner direction I of the bent portion 15, a plate fixing member 19 for bringing the resistance plate 18 into close contact with the resistance frame 11 is installed. Can. The plate fixing member 19 is operated by the control of a control unit (not shown), and is used when stopping rotation of the main shaft 20 for reasons such as inspection of a wind power generator. First, as shown in the frame assembly 10 installed on the left side of FIG. 2, a contact sensor (not shown) that senses that the resistance plate 18 is completely in close contact with the resistance frame 11 is installed on the main shaft 20. The signal is transmitted to the plate fixing member 19, and the stop pin 19a of the plate fixing member 19 protrudes according to the transmitted signal, thereby stopping the resistance plate 18 by the stop pin 19a and the resistance frame 11 It is locked in between to stop the rotation. The operation of the stop pin 19a of the plate fixing member 19 is sequentially repeated in another frame assembly 10 in which the resistance plate 18 is in close contact with the resistance frame 11 while the main shaft 20 is rotated. When the resistance plate 18 in all directions is in close contact with the resistance frame 11, the main shaft 20 stops rotating. This is because when the resistance plate 18 in the direction facing the wind direction is normally operated, the resistance plate 18 is in close contact with the resistance frame 11 by the wind to generate rotational force, and the resistance plate in the same direction as the wind direction ( This is because the rotational force caused by the wind is canceled while the 18 is also in close contact with the resistance frame 11 by the plate fixing member 19. When the resistance plates 18 in all directions are in close contact with the resistance frame 11 according to the operation of the plate fixing member 19, the resistance force of the resistance plates 18 that convert wind power into rotational force is applied to each resistance plate 18. It does not occur while offset by the main shaft 20 is to stop the rotation. When the rotation is stopped in this way, the repair of the wind power generator becomes easy.
또한, 상기 절곡부(15)의 상단 및 상기 지지프레임(13)의 상단에는 각각 상기 주동축(20) 상단과 무게지지용 지지와이어(30)로 연결될 수 있다. 여기서 당연하게 상기 지지와이어(30) 상에는 장력조절수단(31)이 설치된다.In addition, the upper end of the bent portion 15 and the upper end of the support frame 13 may be connected to the upper end of the main shaft 20 and the support wire 30 for weight support, respectively. Here, of course, a tension adjusting means 31 is installed on the support wire 30.
상기와 같은 구성을 갖는 본 발명 풍력발전기용 날개의 작동을 설명한다.The operation of the wind turbine blades of the present invention having the above configuration will be described.
도 2는 풍향이 아래에서 위쪽으로 향하고 있을 경우이다. 이때, 바람의 방향과 수직으로 접하는 왼쪽에서 저항판(18)의 저항력이 최대가 되며, 이 최대 저항력으로 상기 주동축(20)의 회전력을 최대로 발생시킨다. 2 is when the wind direction is directed from the bottom to the top. At this time, the resistance force of the resistance plate 18 is maximized from the left side that is perpendicular to the wind direction, and the maximum rotational force of the main shaft 20 is generated with the maximum resistance force.
그런데, 도 2에서 바람의 방향과 상기 저항판(18)이 수직으로 접할 수 있는 구간은 이론상 왼쪽과 오른쪽인 양옆이다. 그런데 왼쪽에서는 저항판(18)의 저항력이 최대가 되고, 오른쪽에서는 저항판(18)의 저항력이 발생하지 않는다. However, in FIG. 2, a section in which the direction of the wind and the resistance plate 18 may come into contact with each other is theoretically left and right sides. However, the resistance force of the resistance plate 18 is maximized on the left side, and the resistance force of the resistance plate 18 is not generated on the right side.
이는 본 발명의 특징인 상기 저항프레임(11)과 지지프레임(13)이 직각 절곡부(15)를 갖도록 프레임 결합체(10)가 형성되고, 이 프레임 결합체(10)의 절곡부(15) 안쪽 방향(I)이 일방향성을 갖도록 상기 주동축(20)에 다수개 고정결합되되, 상기 절곡부(15)의 안쪽 방향(I) 절곡모서리(16)에 상기 저항판(18)이 회전 가능하게 설치됨에 기인한다. 이러한 구성으로 말미암아 상기 저항판(18)의 회전 가동범위는 직각 절곡부(15)의 안쪽으로 제한된다. 이는 직각 절곡부(15) 안쪽에서 상기 절곡모서리(16)의 축삽입편(17)이 절곡 각도 내에 설치되고, 이 축삽입편(17)에 삽입결합된 상기 축핀(18a)을 회전축으로 하여 회전 작동하는 저항판(18)의 몸판(18b) 크기가 상기 바람길(12) 및 상기 바람골(14) 보다 크기 때문에 풍력에 의해 회전하는 저항판(18)이 저항프레임(11) 쪽에서는 저항프레임(11)에 걸려 회전동작이 저지되고, 지지프레임(13) 쪽에서는 지지프레임(13)에 걸려 회전동작이 저지되는 것이다.This is a frame coupling body 10 is formed so that the resistance frame 11 and the support frame 13, which are the features of the present invention, have a right angle bending portion 15, and the inner direction of the bending portion 15 of the frame coupling body 10 is formed. A plurality of (I) is fixedly coupled to the main shaft 20 so as to have one-way directionality, the resistance plate 18 is rotatably installed in an inner direction (I) of the bent portion 15 in the bending edge 16 Is caused by. Due to this configuration, the range of rotational movement of the resistance plate 18 is limited to the inside of the right angled bent portion 15. This is a shaft insert piece 17 of the bending edge 16 is installed within the bending angle from the inside of the right angle bent portion 15, and the shaft pin 18a inserted and coupled to the shaft insert piece 17 is rotated as a rotation axis. Since the size of the body plate 18b of the working resistance plate 18 is larger than that of the wind path 12 and the wind valley 14, the resistance plate 18 that is rotated by wind has a resistance frame on the resistance frame 11 side. (11) The rotational motion is blocked, and on the support frame (13), the rotational motion is blocked by the support frame (13).
다시 말해, 도 2의 왼쪽에 배치되는 프레임 결합체(10)와 같이 프레임 결합체(10)의 직각 절곡부(15) 안쪽 방향(I)이 풍향과 대면(역방향)하도록 배치되면, 풍력에 의해 상기 축삽입편(17)에 삽입된 상기 축핀(18a)을 축으로 몸판(18b)이 회전하여 저항판(18) 전체가 상기 지지프레임(13)에서 멀어져 상기 저항프레임(11)에 밀착됨에 따라 저항판(18)의 회전동작이 저지되면서 풍력에 대한 저항력이 최대로 발생한다. 그리고 이 최대 저항력이 상기 주동축(20)에 고스란히 전달되어 주동축(20)은 시계방향으로 회전동작하고, 주동축(20)의 회전동작에 의해 풍력터빈이 동작하게 되는 것이다.In other words, when the inner direction I of the right angled bent portion 15 of the frame assembly 10 is disposed to face (reverse) the wind direction, such as the frame assembly 10 disposed on the left side of FIG. 2, the shaft is driven by wind. As the body plate 18b rotates about the shaft pin 18a inserted into the insertion piece 17 and the entire resistance plate 18 moves away from the support frame 13, the resistance plate is pressed against the resistance frame 11 As the rotational motion of (18) is blocked, the maximum resistance to wind occurs. And this maximum resistance is transmitted to the main shaft 20 smoothly, the main shaft 20 rotates clockwise, and the wind turbine operates by the rotational movement of the main shaft 20.
반대로, 도 2의 오른쪽에 배치되는 프레임 결합체(10)와 같이 프레임 결합체(10)의 직각 절곡부(15) 안쪽 방향(I)이 풍향을 등지고(순방향) 배치되면, 바람이 상기 저항프레임(11)의 바람길(12)을 통과하면서 상기 저항판(18)을 밀어내게 된다. 이에 따라 상기 축삽입편(17)에 삽입된 상기 축핀(18a)을 축으로 몸판(18b)이 회전하여 저항판(18) 전체가 상기 지지프레임(13) 쪽으로 이동하다가 지지프레임(13)에 밀착됨에 따라 저항판(18)의 회전동작이 저지된다. 이렇게 지지프레임(13)에 밀착된 상태의 저항판(18)에는 풍력에 대한 저항력이 발생하지 않게 된다. 따라서 왼쪽 프레임 결합체(10)의 저항판(18)에 걸리는 풍력에 대한 최대 저항력으로 상기 주동축(20)이 시계방향으로 회전동작하게 된다.Conversely, when the inner direction (I) of the right-angled bent portion 15 of the frame assembly 10 is disposed (backward) in the wind direction, as in the frame assembly 10 disposed on the right side of FIG. 2, the wind is applied to the resistance frame 11 ) While passing through the wind path 12, the resistance plate 18 is pushed out. Accordingly, the body plate 18b is rotated about the shaft pin 18a inserted into the shaft insert piece 17, so that the entire resistance plate 18 moves toward the support frame 13 and is in close contact with the support frame 13 As it becomes, the rotation operation of the resistance plate 18 is prevented. In this way, the resistance plate 18 is not generated in the resistance plate 18 in close contact with the support frame 13. Therefore, the main shaft 20 rotates clockwise with the maximum resistance against wind force applied to the resistance plate 18 of the left frame assembly 10.
아울러, 도 2의 왼쪽과 오른쪽이 아닌 다른 위치에서의 상기 프레임 결합체(10)에 대해 회전동작하는 상기 저항판(18)에도 풍력에 대한 저항력은 발생하지 않는다. In addition, the resistance plate 18 does not generate resistance against the wind even in the resistance plate 18 that rotates with respect to the frame assembly 10 at positions other than the left and right sides of FIG. 2.
예컨데, 시계방향으로 회전하는 주동축(20)에 종속되어 오른쪽에서 앞쪽(도 2에서는 아래쪽으로 이동)으로 이동하는 상기 프레임 결합체(10)의 저항판(18)에도 항력은 발생하지 않는다. 이는 오른쪽에서 앞쪽으로 이동하는 프레임 결합체(10)의 절곡부(15) 안쪽 방향(I)이 풍향을 등지게 되는 본 발명의 특징에 기인한 것이다. 상기 절곡부(15) 안쪽 방향(I)이 풍향을 등지고 이동함에 따라, 상기 저항판(18)도 상기 지지프레임(13)의 바람골(14)을 통과하는 풍력에 의해 상기 저항프레임(11) 방향으로 축회전 되면서 풍향에 대해 항상 동일방향성이 유지되도록 위치 변경이 이루어진다.For example, no drag is generated even in the resistance plate 18 of the frame assembly 10, which is dependent on the main shaft 20 rotating clockwise and moves from right to front (moving downward in FIG. 2). This is due to the feature of the present invention in which the inner direction (I) of the bent portion 15 of the frame assembly 10 moving from right to front reverses the wind direction. As the inner direction (I) of the bent portion 15 moves with the wind direction back and forth, the resistance plate 18 also receives the resistance frame 11 by wind passing through the wind bone 14 of the support frame 13. As the shaft rotates in the direction, the position is changed so that the same direction is always maintained with respect to the wind direction.
그리고, 도 2의 앞쪽에서 왼쪽을 향해 이동하는 상기 프레임 결합체(10)는 절곡부(15) 안쪽 방향(I)이 풍향과 대면하는 방향으로 전환된다. 이로 인해 상기 저항판(18)은 지지프레임(13)의 바람골(14)을 통과한 풍력에 의해 상기 저항판(18)이 저항프레임(11)을 향해 축회전되면서 풍향을 대면하는 방향이 되도록 위치변경되어 항력을 발생시키게 된다.In addition, the frame assembly 10 moving from the front to the left in FIG. 2 is converted into a direction in which the inner direction I of the bent portion 15 faces the wind direction. Due to this, the resistance plate 18 is oriented to face the wind direction while the resistance plate 18 is axially rotated toward the resistance frame 11 by wind passing through the wind bone 14 of the support frame 13. The position is changed to generate drag.
또한, 도 2의 왼쪽에서 뒤쪽(도 2에서는 위쪽으로 이동)으로 상기 프레임 결합체(10)가 회전 이동할 경우에는, 풍력이 왼쪽에 위치한 상기 프레임 결합체(10)의 저항판(18)에 가로막혀 그 넘어까지지 전달되지 않기 때문에 저항판(18)은 저항프레임(11)과 밀착된 상태로 도면 왼쪽에서 뒤쪽으로 빠르게 회전한다. 이로 인해 뒤쪽으로 이동하는 저항판(18)에도 항력이 발생하지 않게 된다.In addition, when the frame assembly 10 rotates from left to back (moving upward in FIG. 2) of FIG. 2, wind is blocked by the resistance plate 18 of the frame assembly 10 located on the left side thereof. The resistance plate 18 rotates quickly from left to back in the figure in close contact with the resistance frame 11 because it is not transmitted over. Due to this, no drag is generated in the resistance plate 18 moving backward.
또한, 도 2의 뒤쪽에서 오른쪽으로 상기 프레임 결합체(10)가 회전 이동할 경우에는, 상기 저항판(18)은 상기 저항프레임(11)의 바람길(12)을 통과하는 풍력에 의해 상기 지지프레임(13) 방향으로 회전하면서 풍향에 대해 동일 방향성이 유지되도록 위치 변경된다. 이로 인해 뒤쪽에서 오른쪽으로 이동하는 저항판(18)에도 항력이 발생하지 않게 된다.In addition, when the frame assembly 10 rotates from the rear to the right in FIG. 2, the resistance plate 18 is supported by the windshield passing through the wind path 12 of the resistance frame 11 ( 13) The position is changed to maintain the same directionality with respect to the wind direction while rotating in the direction. Due to this, no drag is generated in the resistance plate 18 moving from the rear to the right.
상기와 같이 절곡부(15)의 안쪽 방향(I)이 일정 방향성을 갖도록 상기 주동축(20)에 방사상으로 배치함으로 인해, 상기 절곡부(15)의 안쪽 방향(I) 중 상기 저항프레임(11)이 풍향과 대면(對面)하는 일측인 왼쪽에서는 유체 흐림에 따라 축회전하던 상기 저항판(18)이 상기 절곡부(15)의 안쪽 방향(I) 내에서 상기 저항프레임(11)의 바람길(12)을 완전히 막으면서 회전저지되어 저항판(18)의 풍력에 대한 최대 저향력으로 상기 주동축(20)을 회전시키고, 다른 측인 전·후 및 오른쪽에서는 유체가 상기 바람길(12) 및 바람골(14)을 통과하면서 상기 저항판(18)을 유체의 방향과 동일 방향을 향하도록 회전시키는 것으로 저항력이 발생하지 않도록 구성함으로써, 풍향 변화에도 불구하고 상기 주동축(20)의 회전방향이 변하지 않게 되는 것이다.As described above, due to the radial arrangement on the main shaft 20 such that the inner direction I of the bent portion 15 has a certain directionality, the resistance frame 11 in the inner direction I of the bent portion 15 ) On the left side, which faces the wind direction, the resistance plate 18, which was axially rotated according to the fluid blur, winds the resistance frame 11 within the inner direction I of the bent portion 15. The rotation is stopped while completely blocking the 12, and the main shaft 20 is rotated with the maximum downward force against the wind power of the resistance plate 18, and the fluid is transferred to the wind path 12 and before and after the other side. By rotating the resistance plate 18 to face the same direction as the direction of the fluid while passing through the wind bone 14, the rotational direction of the main shaft 20 is changed despite the change in wind direction. It will not change.
또한, 본 발명에서는 상기 절곡부(15)의 안쪽 방향(I)에 해당하는 상기 저항프레임(11) 및 상기 지지프레임(13) 상에는 상기 저항판(18)이 저항프레임(11) 및 지지프레임(13) 상에 접촉하면서 소음이 발생할 여지가 있다. 이렇게 발생하는 소음을 예방하기 위해서는 프레임 결합체(10)의 안쪽 방향(I)에 해당하는 저항프레임(11) 및 지지프레임(13)에는 소음감소부재(도시되지 않음)가 더 설치될 수 있다. 상기 소음감소부재는 스폰지, 신슐레이트 등과 같은 흡음재가 설치되거나, 쇼크 업소버(shock absorber)가 설치되거나, 또는 유압실린더나 에어실린더가 설치될 수 있다. 상기와 같은 소음감소부재는 절곡부(15)의 안쪽 방향(I)에 해당하는 저항프레임(11) 및 지지프레임(13) 상에 설치되어 저항판(18)이 풍력에 의해 프레임 결합체(10)에 접촉할 때 소음을 감소시키게 된다. 예컨데, 상기 스폰지나 신슐레이트 등과 같은 흡음재는 양자 간에 개입하여 완충역할을 하여 소음을 감소시키게 된다. 그리고 쇼크 업소버나 유압실린더 내지 에어실린더는 저항판(18)이 프레임 결합체(10)에 접촉하는 마지막 순간에 이동속도를 급격하게 감소시켜 매우 약하게 접촉을 유도함으로써 양자 간의 접촉에 의한 소음을 감소시키게 된다.In addition, in the present invention, on the resistance frame 11 and the support frame 13 corresponding to the inner direction I of the bent portion 15, the resistance plate 18 has a resistance frame 11 and a support frame ( 13) There is room for noise while contacting the phase. In order to prevent the noise generated in this way, a noise reduction member (not shown) may be further installed on the resistance frame 11 and the support frame 13 corresponding to the inner direction I of the frame assembly 10. The noise-reducing member may be provided with a sound absorbing material such as a sponge or synthrate, a shock absorber may be installed, or a hydraulic cylinder or an air cylinder may be installed. The noise reduction member as described above is installed on the resistance frame 11 and the support frame 13 corresponding to the inner direction (I) of the bent portion 15, the resistance plate 18 is a frame assembly 10 by wind power It reduces noise when it comes in contact with. For example, the sound absorbing material, such as the sponge or synthrate, intervenes between them and acts as a buffer to reduce noise. In addition, the shock absorber or the hydraulic cylinder to the air cylinder reduces the noise caused by the contact between the two by inducing very weak contact by rapidly reducing the movement speed at the last moment when the resistance plate 18 contacts the frame assembly 10. .
<부호의 설명><Description of code>
10: 프레임 결합체 11: 저항프레임10: frame assembly 11: resistance frame
12: 바람길 13: 지지프레임12: wind road 13: support frame
14: 바람골 15: 절곡부14: wind goal 15: bend
16: 절곡모서리 17: 축삽입편16: Bending edge 17: Shaft insert
18: 저항판 18a: 축핀18: resistance plate 18a: shaft pin
18b: 몸판 19: 판고정부재18b: body plate 19: plate fixing member
20: 주동축 30: 지지와이어20: main shaft 30: support wire
I: 안쪽 방향I: Inward direction

Claims (5)

  1. 사각테두리 프레임 형태의 안쪽으로 공간인 바람길(12)을 갖는 저항프레임(11)과 사각테두리 프레임 형태로 안쪽 공간인 바람골(14)을 갖는 지지프레임(13)의 일측 종(縱)프레임을 서로 결합하여 절곡부(15)를 구비한 프레임 결합체(10)를 형성하고, 상기 프레임 결합체(10)의 상기 절곡부(15)의 안쪽 방향(I)이 일방향성을 갖도록 상기 저항프레임(11)의 타측 종(縱)프레임을 회전 중심체인 주동축(20)에 대해 방사상으로 다수개 고정결합하고, 상기 절곡부(15)의 안쪽 방향(I) 절곡모서리(16)에 형성된 상하의 축삽입편(17)에는 저항판(18)의 축핀(18a)을 회전 가능하게 삽입결합하여, The frame of the side of the resistance frame (11) having a wind path (12) as an inner space in the form of a square border frame and the support frame (13) having a wind frame (14) as an inner space in the shape of a square border frame Combined with each other to form a frame assembly 10 having a bent portion 15, the resistance frame 11 so that the inner direction (I) of the bent portion 15 of the frame assembly 10 has one-way The other side of the frame (고정) is fixedly coupled in a radial direction to the main shaft 20, which is a rotating center, and the upper and lower shaft inserts formed in the inner edge (I) of the bent portion (16) 16 17) the axial pin 18a of the resistance plate 18 is rotatably inserted and coupled,
    상기 절곡부(15)의 안쪽 방향(I) 중 상기 저항프레임(11)이 풍향과 대면(對面)하는 일측에서는 유체 흐림에 따라 축회전하던 상기 저항판(18)이 상기 절곡부(15)의 안쪽 방향(I)에서 상기 저항프레임(11)의 바람길(12)을 완전히 막으면서 회전저지되어 풍력에 대한 최대 저향력으로 상기 주동축(20)을 회전시키고, 다른 측에서는 유체가 상기 바람길(12) 및 바람골(14)을 통과하면서 상기 저항판(18)을 유체흐름 방향과 동일 방향이 되도록 회전시켜 항력이 발생하지 않도록 구성하여, 풍향 변화에도 상기 주동축(20)의 회전방향이 변하지 않는 것을 특징으로 하는 풍력발전기용 날개.On the side where the resistance frame 11 faces the wind direction in the inner direction I of the bent portion 15, the resistance plate 18, which was axially rotated in accordance with the fluid blur, of the bent portion 15 In the inner direction (I), the windshield 12 of the resistance frame 11 is completely blocked and rotated to rotate the main shaft 20 with the maximum low wind force, and the fluid from the other side is the windway ( 12) and while passing through the wind bone 14, the resistance plate 18 is rotated to be in the same direction as the fluid flow direction so that no drag is generated, and the direction of rotation of the main shaft 20 does not change even in a change in wind direction. Wing for wind turbines characterized in that it does not.
  2. 제1항에 있어서, 상기 저항프레임(11) 및 상기 지지프레임(13)의 절곡부(15) 각도는 직각인 것을 특징으로 하는 풍력발전기용 날개.According to claim 1, The resistance frame 11 and the support frame 13, the bent portion (15) angle of the wind turbine blade, characterized in that the right angle.
  3. 제1항에 있어서, 상기 저항프레임(11) 상에는 다른 저항프레임(11)과 서로 연결되는 제1 플라이휠(11a)이 구비되고, 상기 지지프레임(13) 상에는 다른 지지프레임(13)과 서로 연결되는 제2 플라이휠(13a)이 더 구비되는 것을 특징으로 하는 풍력발전기용 날개.According to claim 1, The resistance frame (11) is provided with a first flywheel (11a) that is connected to each other with the other resistance frame (11a) is provided on the support frame (13) is connected to each other with the other support frame (13) The second flywheel (13a) is a wind turbine blade characterized in that it is further provided.
  4. 제1항에 있어서, 상기 절곡부(15)의 안쪽 방향(I)의 주동축(20)에는 상기 저항판(18)이 상기 저항프레임(11)에 밀착됨을 감지하여 상기 저항판(18)과 상기 저항프레임(11)이 밀착상태를 유지하도록 상기 저항판(18)의 회전동작을 저지하는 판고정부재(19)를 더 구비하여, 상기 판고정부재(19)에 의해 순차적으로 모든 저항판(18)을 저항프레임(11)에 강제로 밀착시켜 상기 주동축(20)의 회전을 저지하는 것을 특징으로 하는 풍력발전기용 날개.According to claim 1, The main shaft 20 of the inner direction (I) of the bent portion (15) detects that the resistance plate (18) is in close contact with the resistance frame (11) and the resistance plate (18). The resistance frame 11 is further provided with a plate fixing member 19 that prevents the rotational movement of the resistance plate 18 so as to maintain a close contact with each resistance plate sequentially by the plate fixing member 19 ( 18) by forcibly contacting the resistance frame (11), the wind turbine blades, characterized in that to stop the rotation of the main shaft (20).
  5. 제1항에 있어서, 상기 절곡부(15)의 상단 및 상기 지지프레임(13)의 상단은 각각 상기 주동축(20) 상단과 무게지지용 지지와이어(30)로 연결되는 것을 특징으로 하는 풍력발전기용 날개.The wind power generation according to claim 1, wherein the upper end of the bent portion (15) and the upper end of the support frame (13) are respectively connected to the upper end of the main shaft (20) and the support wire (30) for weight support. Dragon wing.
PCT/KR2019/017845 2018-12-18 2019-12-17 Wind power generator blade WO2020130556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0163689 2018-12-18
KR1020180163689A KR101948064B1 (en) 2018-12-18 2018-12-18 a blade for wind power generator

Publications (1)

Publication Number Publication Date
WO2020130556A1 true WO2020130556A1 (en) 2020-06-25

Family

ID=65366190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017845 WO2020130556A1 (en) 2018-12-18 2019-12-17 Wind power generator blade

Country Status (2)

Country Link
KR (1) KR101948064B1 (en)
WO (1) WO2020130556A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948064B1 (en) * 2018-12-18 2019-02-14 이도상 a blade for wind power generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009473A (en) * 2003-07-30 2005-01-13 Masato Nakawa Drive power unit utilizing wind, rotating member, and blade member suitable for the unit
KR20090000984A (en) * 2007-06-29 2009-01-08 강승구 Vertical axis wind mill with variable wings
KR20140006275A (en) * 2012-07-02 2014-01-16 주식회사 넷커스터마이즈 Hybrid direction finding antenna and its using receiver and method
KR20140083883A (en) * 2012-12-26 2014-07-04 민영희 Vertical-axis type wind power generator adjusted blade angle
KR20140131850A (en) * 2013-05-06 2014-11-14 이인남 Wings variable tidal and wind power generator increased generation efficiency
KR101948064B1 (en) * 2018-12-18 2019-02-14 이도상 a blade for wind power generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009473A (en) * 2003-07-30 2005-01-13 Masato Nakawa Drive power unit utilizing wind, rotating member, and blade member suitable for the unit
KR20090000984A (en) * 2007-06-29 2009-01-08 강승구 Vertical axis wind mill with variable wings
KR20140006275A (en) * 2012-07-02 2014-01-16 주식회사 넷커스터마이즈 Hybrid direction finding antenna and its using receiver and method
KR20140083883A (en) * 2012-12-26 2014-07-04 민영희 Vertical-axis type wind power generator adjusted blade angle
KR20140131850A (en) * 2013-05-06 2014-11-14 이인남 Wings variable tidal and wind power generator increased generation efficiency
KR101948064B1 (en) * 2018-12-18 2019-02-14 이도상 a blade for wind power generator

Also Published As

Publication number Publication date
KR101948064B1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
CN101529090B (en) Blades for wind wheel, wind wheel, and wind-driven electric power generator
WO2020130556A1 (en) Wind power generator blade
EP2345811B1 (en) Clamp for clamping a blade for a wind turbine and method of installing wind turbine blades
US10774807B2 (en) Omni multi axes-vertical axis wind turbine (M-VAWT)
US20140290716A1 (en) Photovoltaic module mounting assembly
CN110562798B (en) Cable winding and unwinding adjusting mechanism
KR20120033941A (en) Vertical axis turbine and bi-directional stack type vertical axis turbine having the same
MXPA04004069A (en) Solar energy system.
CN111993849B (en) Bionic propulsion device for longitudinal and transverse compound waves
WO2016190554A1 (en) Solar power generation solar cell structure comprising wind pressure reducing device
CN107435495A (en) Revolving door
US7883318B2 (en) Self-orienting, linear drive apparatus for harvesting power from the wind
WO2011030977A1 (en) Eccentric dual rotor assembly for wind power generation
US20200208606A1 (en) Wind power generation device
CN209488507U (en) A kind of the photovoltaic tracker and photovoltaic tracking array of single-direction transmission
CA2675947A1 (en) Oscillating energy capture mechanism
KR100761471B1 (en) Apparatus for wind power generation with vertical axis
CN106998177A (en) Novel solar cell panel device
CN207131825U (en) Generator clutch belt pulley
CN218288143U (en) Little and non-deformable&#39;s unmanned aerial vehicle tail beam pole of windage
CN106647824A (en) Coordinated type single shaft solar energy tracking device system and push-pull rod connection structure
EP0997245A3 (en) A panel edge machining unit
CN116545365B (en) Photovoltaic tracking support system
WO2004025117B1 (en) Wind paddlewheel power station
CN114654476B (en) Multi-section underactuated bionic eel robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898466

Country of ref document: EP

Kind code of ref document: A1