WO2020129838A1 - Screening method for cells producing specific antigen-specific antibody - Google Patents

Screening method for cells producing specific antigen-specific antibody Download PDF

Info

Publication number
WO2020129838A1
WO2020129838A1 PCT/JP2019/048916 JP2019048916W WO2020129838A1 WO 2020129838 A1 WO2020129838 A1 WO 2020129838A1 JP 2019048916 W JP2019048916 W JP 2019048916W WO 2020129838 A1 WO2020129838 A1 WO 2020129838A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
antibody
culture supernatant
antigen
specific
Prior art date
Application number
PCT/JP2019/048916
Other languages
French (fr)
Japanese (ja)
Inventor
達也 馬渡
智之 中石
寛士 北
吉田 慎一
北野 光昭
大介 北村
Original Assignee
株式会社カネカ
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 学校法人東京理科大学 filed Critical 株式会社カネカ
Priority to JP2020561378A priority Critical patent/JP7426661B2/en
Publication of WO2020129838A1 publication Critical patent/WO2020129838A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to a method for screening a culture supernatant containing cells producing a specific antigen-specific antibody from the culture supernatant of cells producing a human antibody using the antibody-dependent cytotoxic activity as an index.
  • the present invention further relates to a method for producing a culture supernatant containing cells producing a specific antigen-specific antibody, which comprises screening as described above.
  • the present invention further relates to a method for producing cells producing a specific antigen-specific antibody, which comprises screening as described above.
  • the present invention further relates to a method for producing a specific antigen-specific antibody, which comprises screening as described above.
  • Monoclonal antibodies that show high selectivity for specific antigens are expected to be developed as antibody drugs, and in particular, antibody drugs targeting cancer cells are under development. In order to develop an antibody drug, it is necessary to obtain a desired antibody by screening a specific antigen-specific antibody.
  • Patent Document 1 describes a method for identifying an immunobinder (eg, scFv antibody) capable of specifically binding to a cell surface antigen.
  • the method described in Patent Document 1 describes labeled antigen expression.
  • the step of contacting the cells with the labeled immunobinder-expressing cells and the step of isolating the immunobinder-expressing cells that bind to the antigen-expressing cells using a cell sorter are included.
  • Patent Document 2 includes a step of contacting a B cell population with a capturing agent, a step of separating captured B cells from uncaptured B cells, and a step of culturing a plurality of captured B cells.
  • the B cells are not sorted into uniform B cells immediately before culturing, and a plurality of cultured cells are screened to identify cells capable of producing an antibody having a desired function.
  • a step of obtaining a desired antibody from them, and a method of obtaining an antibody having a desired function are described.
  • Patent Document 3 a step of contacting a target cell with an antibody selected from the group consisting of a human antibody, a humanized antibody, and a human chimeric antibody that recognizes the target cell; NK expressing a human Fc receptor on the cell surface A step of contacting a cell-derived cell line with the antibody; a step of detecting whether or not cytotoxicity has occurred in the target cell, wherein the antibody is fluorescently labeled, and the step (c) is performed in the target cell Alternatively, an assay method for antibody-dependent cellular cytotoxicity is described, in which at least one of effector cells is fluorescently labeled, and both cells are identified and observed/counted in observation using a fluorescence microscope.
  • a hybridoma culture supernatant As a cell culture supernatant for antibody screening, a hybridoma culture supernatant is generally used.
  • an animal In producing a hybridoma, an animal is immunized with a large amount of the produced antigen.
  • the screening of the culture supernatant of the hybridoma is performed by the ELISA method ((Enzyme-Linked ImmunoSorbent Assay: Enzyme-Linked Immunosorbent Assay).
  • ELISA Enzyme-Linked ImmunoSorbent Assay: Enzyme-Linked Immunosorbent Assay
  • an immunization method using cells expressing an antigen or a plasmid DNA for expressing an antigen of interest is known, and in such an evaluation method (screening method)
  • a method using cells expressing an antigen called cell-based ELISA (CELISA) is used (see Patent Document 1).
  • CELISA cell-based ELISA
  • cells expressing the antigen are seeded on a cell culture plate and then fixed with 1% paraformaldehyde to denature the antigen protein. By denaturing the antigen, the three-dimensional structure of the antigen may change.
  • this method is not suitable for high-throughput screening because it involves complicated steps such as cell fixation.
  • An object of the present invention is to provide a method for efficiently screening a culture supernatant of cells producing a specific antigen-specific antibody from a culture supernatant of cells producing a human antibody.
  • the present invention further provides a method for screening a culture supernatant containing cells that produce a specific antigen-specific antibody without requiring concentration of the culture supernatant and labeling with a fluorescent dye. To do.
  • Another object of the present invention is to provide a method for screening a culture supernatant containing cells producing a specific antigen-specific antibody without requiring purification of the antigen.
  • Another object of the present invention is to provide a method for producing a culture supernatant containing cells that produce a specific antigen-specific antibody, which comprises screening as described above.
  • the present invention further provides a method for producing a cell producing a specific antigen-specific antibody, which comprises screening as described above, and a method for producing a specific antigen-specific antibody, which comprises screening as described above. It is a problem to be
  • the present inventors have identified a target cell expressing a specific antigen, an attacking cell, and an antibody-dependent cytotoxic activity in the case of culturing by mixing the culture supernatant, Target cells that do not express antigen, attacking cells, and target cells that express a specific antigen and have higher antibody-dependent cellular cytotoxicity in the case of culturing by mixing the culture supernatants, attacking cells, and the culture supernatants
  • the antibody-dependent cytotoxic activity in the case of mixing and culturing is an indicator that the target cell expressing a specific antigen and the antibody-dependent cytotoxic activity in the case of culturing by mixing the culture supernatant are higher than the index.
  • a cell producing a specific antigen-specific antibody which comprises screening a culture supernatant containing a cell producing a specific antigen-specific antibody by the method according to any one of (1) to (10).
  • a method for producing a specific antigen-specific antibody comprising screening a culture supernatant containing a cell producing a specific antigen-specific antibody by the method according to any one of (1) to (10).
  • a method for producing a specific antigen-specific antibody which comprises screening a culture supernatant containing cells producing the specific antigen-specific antibody by the method according to any one of (1) to (10).
  • a culture supernatant containing cells producing a specific antigen-specific antibody can be efficiently screened from a culture supernatant of cells producing a human antibody. Since the screening method of the present invention does not require concentration of the culture supernatant and labeling with a fluorescent dye, high throughput (96 well, 384 well, etc.) detection is possible. Further, the screening method of the present invention does not require purification of the antigen, and is particularly effective in screening an antibody against a membrane antigen having a complicated structure which is difficult to purify. According to the present invention, a culture supernatant containing cells producing a specific antigen-specific antibody, cells producing a specific antigen-specific antibody, and a specific antigen-specific antibody can be produced.
  • FIG. 1 shows the outline of the screening method using ADCC activity.
  • FIG. 2 shows the results of ADCC activity measurement using the Trastuzumab type antibody.
  • FIG. 3 shows the results of ADCC activity measurement using the culture supernatant of anti-CXCR2 antibody-expressing cells.
  • FIG. 4 shows the results of examination of the antigen-binding ability of the antibody prepared from HEK293T cells.
  • FIG. 5 shows the results of ADCC activity measurement using the culture supernatant of anti-CXCR2 antibody-expressing cells.
  • FIG. 6 shows the results of ADCC activity measurement using the culture supernatant of anti-CXCR2 antibody-expressing cells.
  • FIG. 7 shows the results of examination of the antigen binding ability of the antibody prepared with HEK293T cells.
  • the present invention is a method for screening a culture supernatant containing cells that produce a specific antigen-specific antibody from the culture supernatant of cells that produce a human antibody, using the antibody-dependent cytotoxic activity as an index, which comprises:
  • the present invention relates to a method for selecting a culture supernatant satisfying the conditions as a culture supernatant containing cells producing a specific antigen-specific antibody.
  • Target cells that express a specific antigen, attacking cells, and antibody-dependent cytotoxicity in the case of culturing by mixing the culture supernatants are mixed with target cells that do not express a specific antigen, attacking cells, and the culture supernatants.
  • Antibody-dependent cytotoxic activity higher than the antibody-dependent cytotoxic activity in the case of culturing in a specific manner, and the antibody-dependent cytotoxic activity in the case of culturing by mixing the target cells expressing the specific antigen, the attacking cells, and the culture supernatant, It is higher than the antibody-dependent cytotoxic activity when the target cells expressing the antigen and the culture supernatant are mixed and cultured.
  • the present invention further relates to a method for producing a culture supernatant containing cells producing a specific antigen-specific antibody, which comprises screening by the above-mentioned method of the present invention.
  • the present invention further relates to a method for producing cells producing a specific antigen-specific antibody, which comprises screening by the above-mentioned method of the present invention.
  • the present invention further relates to a method for producing a specific antigen-specific antibody, which comprises screening by the above-mentioned method of the present invention.
  • screening is performed using antibody-dependent cellular cytotoxicity as an index, so that an antibody having high antibody-dependent cellular cytotoxicity can be obtained.
  • Antibodies having high antibody-dependent cellular cytotoxicity are useful in the prevention and treatment of various diseases including cancer, inflammatory diseases, autoimmune diseases, immune diseases such as allergies, cardiovascular diseases, and viral or bacterial infections. Is.
  • the method for producing a culture supernatant according to the present invention may include producing a culture supernatant by culturing cells producing a human antibody, and collecting the culture supernatant obtained above.
  • the method for producing cells producing a specific antigen-specific antibody comprises the step of preparing cells producing human antibodies, the antibody-dependent cytotoxic activity from the culture supernatant of the cells producing human antibodies prepared above. It may include a step of screening a culture supernatant containing cells that produce a specific antigen-specific antibody, and a step of selecting cells corresponding to the culture supernatant selected by the screening using the above as an index.
  • the method for producing a specific antigen-specific antibody is a step of preparing cells that produce human antibodies, from the culture supernatant of cells that produce human antibodies prepared above, using the antibody-dependent cytotoxic activity as an index, It may include a step of screening a culture supernatant containing cells producing a specific antigen-specific antibody, and a step of obtaining a specific antigen-specific antibody from the culture supernatant selected by the screening.
  • the method for producing a specific antigen-specific antibody comprises a step of preparing cells producing a human antibody, the culture supernatant of the cells producing a human antibody prepared above, which is used as an indicator of the antibody-dependent cytotoxic activity.
  • a step of screening a culture supernatant containing cells producing a specific antigen-specific antibody a step of selecting cells corresponding to the culture supernatant selected by the screening, culturing the cells selected above and culturing the specific antigen It may include a step of producing a specific antibody.
  • the cell culture supernatant can be used as it is, and concentration of the culture supernatant, concentration measurement, and labeling of fluorescent dye are not required.
  • high throughput 96 wells, 384 wells, etc.
  • the target antigen is directly expressed in cells, it is not necessary to purify the antigen. Since the target antigen is expressed on living cells and is stably expressed on the membrane surface, the three-dimensional structure as the antigen is maintained and is not denatured. Therefore, the method of the present invention is particularly effective in screening an antibody against a membrane antigen having a complicated structure that is difficult to purify (for example, G protein-coupled receptor (7-transmembrane receptor)). is there.
  • a culture supernatant containing cells producing a specific antigen-specific antibody is screened from the culture supernatant of cells producing a human antibody using the antibody-dependent cytotoxic activity as an index. Specifically, a culture supernatant satisfying the following conditions is selected as a culture supernatant containing cells producing a specific antigen-specific antibody.
  • Target cells that express a specific antigen, attacking cells, and antibody-dependent cytotoxicity in the case of culturing by mixing the culture supernatants are mixed with target cells that do not express a specific antigen, attacking cells, and the culture supernatants.
  • the specific antigen is not particularly limited, but is preferably a membrane antigen, more preferably a membrane antigen expressed on the cell membrane surface of the target cell.
  • the specific antigen may be a cancer-specific membrane antigen, and examples thereof include HER2 (abbreviation of human EGFR-related 2), carcinoembryonic antigen (CEA), mucin 1 (MUC-1), epithelial cell adhesion molecular (EPC), and Examples include growth factor receptor (EGFR) and cancer antigen 125 (CA125).
  • HER2 abbreviation of human EGFR-related 2
  • CEA carcinoembryonic antigen
  • MUC-1 mucin 1
  • EPC epithelial cell adhesion molecular
  • Examples include growth factor receptor (EGFR) and cancer antigen 125 (CA125).
  • the specific antigen may be a transmembrane receptor.
  • the transmembrane receptor for example, an ion channel-linked receptor or a receptor that is not linked to an ion channel can be mentioned, and further, for example, a kinase type receptor or a non-kinase type receptor can be mentioned. You can
  • the ion channel-linked receptor is a small pore-shaped receptor that penetrates the cell membrane, and upon binding of a ligand molecule that is a signal, the small pore is opened and closed to form Na + , K + inside and outside the cell, Alternatively, ion transport such as Ca 2+ is performed.
  • ion transport such as Ca 2+ is performed.
  • the ion channel-linked receptor include each receptor having acetylcholine, glutamic acid, serotonin, GABAa, or glycine as a ligand.
  • an ion channel type receptor having acetylcholine, glutamic acid or serotonin as a ligand transports Na + and an ion channel type receptor having GABAa or glycine as a ligand transports Cl ⁇ .
  • a kinase-type receptor is a receptor with a single-transmembrane structure in which a kinase is bound within the cell membrane.
  • Examples of the kinase type receptor include the growth factor type receptor family or the TGF (transforming grow factor)- ⁇ receptor family.
  • the growth factor type receptor family possesses a tyrosine kinase inside the cell membrane and is activated by phosphorylation of tyrosine in the cell membrane domain upon binding of a ligand.
  • the growth factor type receptor family includes, for example, insulin receptor, M-CSF (macrophase colony stimulating factor) receptor, EGF (epidemal growth factor) receptor, PDGF (platelet derivatized GFrobothrofactor). Examples thereof include a factor (receptor) receptor, an IGF (insulin-like growh factor) receptor, and an HGF (hepatocytogrowth factor) receptor.
  • the TGF- ⁇ receptor family has serine-threonine kinase inside the cell membrane and is activated by phosphorylation of serine or threonine.
  • Examples of the TGF- ⁇ receptor family include TGF receptor, activin receptor, BMP (bone morphogenic protein) receptor and the like.
  • non-kinase type receptors examples include cytokine receptor (type I cytokine receptor) superfamily, IFN (interferon) receptor (type II cytokine receptor) family, TNF (tumor necrosis factor) receptor (type III)
  • cytokine receptor type I cytokine receptor
  • IFN interferon
  • TNF tumor necrosis factor
  • the cytokine receptor superfamily is a single transmembrane receptor, which has a characteristic amino acid sequence called a repeat of four cysteine residues or WS box at the N-terminal side, and extracellularly has a fibronectin ( It is a receptor having a repeating sequence of FN)-like structure.
  • cytokine receptor superfamily examples include IL (interleukin)-2 receptor, IL-3 receptor, IL-4 receptor, IL-5 receptor, IL-6 receptor, IL-7 receptor, IL -9 receptor, IL-11 receptor, IL-12 receptor, IL-13 receptor, IL-15 receptor, GM-CSF (granulocyte-macrophase colony stimulating factor) receptor, CNTF (Cirical neurotrophotic factor) receptor Body, EPO (erythropoietin) receptor, LIF (Leukemia inhibitory factor) receptor, OSM (oncostatin M) receptor, or G-CSF (granulocyte-colony stimulating factor) receptor. Often made up of a few subunits, the subunits involved in signal transduction are shared among multiple receptors.
  • the IFN receptor family has no WS box, but is a receptor structurally similar to the cytokine receptor superfamily, such as a single-transmembrane structure and repeated cysteine residues.
  • Examples of the IFN receptor family include IFN ⁇ receptor, IFN ⁇ receptor, IFN ⁇ receptor, and IL-10 receptor.
  • the TNF receptor family is a receptor whose extracellular domain is composed of units rich in cysteine residues. This unit has homology between receptors of each TNF receptor family. A sequence called a death domain exists in the intracellular domains of TNF receptors I and Fas.
  • TNF receptor family include TNF receptor, NGF (nerve growth factor) receptor, Fas, CD27, CD30, CD40, HVEM (Herpes virus entry mediator), LTB (Lymphotoxin ⁇ or), NOX (K40) and OX.
  • Activator of NF- ⁇ B), CD137, etc. can be mentioned, and many are associated with cell activation and cell death.
  • the immunoglobulin superfamily is a receptor with a structure that has three extracellular immunoglobulin-like domains.
  • Examples of the immunoglobulin superfamily include IL-1 receptor and IL-18 receptor.
  • structurally similar Toll or Toll-like receptors can be mentioned. These include TLR1 to TLR12, and TLR4, which transmits information when endotoxin acts on cells, is also a receptor of this family.
  • the G protein-coupled receptor (GPCR) family is a receptor having a structure that works in conjugation with a G protein and penetrates the cell membrane seven times.
  • Examples of the GPCR family include rhodopsin receptors (Gt), catecholamine receptors [ ⁇ 1 , ⁇ 2 , ⁇ 3 (above, Gs), ⁇ 1 (Gq), ⁇ 2 (Gs, Gi, Gz, Gq)].
  • target cell In the present invention, target cells that express a specific antigen and target cells that do not express a specific antigen are used. As the target cells in the same screening, it is preferable to use the same cells for the target cells expressing the specific antigen and the target cells not expressing the specific antigen.
  • the type of target cells is not particularly limited, and animal cells expressing a specific antigen can be used.
  • feeder cells can be used.
  • the origin of the feeder cells include mammalian primates, ungulates, small mammal rodents, birds, and the like, preferably those derived from rodents and mammals, and examples thereof include mice and humans. can do.
  • cells that can be used as feeder cells include fibroblasts, epithelial cells (for example, HeLa cells), fetal kidney cells (for example, HEK293), follicular dendritic cells and the like. Among them, fibroblasts are preferable from the viewpoints of rapid growth rate, large cell surface area, and easy removal of feeder cells.
  • feeder cells preferably, CD40L, BAFF, and optionally, FasL-displayed feeder cells can be used.
  • the above feeder cells can be prepared by those skilled in the art using gene recombination technology or the like, based on the known sequences of CD40L, BAFF, and FasL.
  • CD40L is a ligand for CD40, and the amino acid sequence of CD40L is known (eg, Nature, Vol. 357, pp. 80-82 (1992) and EMBO J., Vol. 11, pp. 4313-). 4321 (1992)).
  • the CD40L sequence may be conserved to the extent that the binding ability of the active domain involved in receptor binding ability is not lost. For example, if 80% or more amino acid sequence homology of the active domain is present, the present invention Is available at.
  • Such CD40L may be isolated from cells that naturally express, or may be synthesized based on a known amino acid sequence. Further, CD40L may be in a form capable of giving a signal corresponding to the presence of CD40L to B cells in the culture system, and may be in a free form or a membrane-bound form.
  • BAFF B cell activator: B cell activation factor belonging to the tumor necrosis factor family
  • BAFF is a TNF-related molecule and is known to be involved in the proliferation and differentiation of B cells that have reacted with antigens. It is a molecule, and the amino acid sequence of BAFF is already known (for example, J Exp Med, Vol. 189, pp. 1747-1756 (1999) and Science, Vol. 285, pp. 260-263 (1999)). And J Bio Chem, Vol. 274, pp. 15978-15981 (1999)). It is sufficient that the BAFF sequence is conserved to the extent that the binding ability of the active domain involved in receptor binding ability is not lost.
  • BAFF amino acid sequence homology of the active domain
  • BAFF may be isolated from cells that naturally express, or may be synthesized based on a known amino acid sequence.
  • BAFF may be in any form as long as it can give a signal corresponding to the presence of BAFF to IgG-positive B cells in the culture system. Even if it is in a free form (ie, secretory form), it is a membrane-bound form. May be
  • Fas ligand is a death factor belonging to the TNF family, that is, a cytokine showing an apoptosis-inducing activity, and its amino acid sequence is publicly known (eg, Cell, Vol. 75, pp. 1169-1178 (1993)). )reference.
  • the sequence of FasL may be conserved to the extent that the binding ability of the active domain involved in receptor binding ability is not lost, and for example, 80% or more amino acid sequence homology of the active domain may be present. For example, it can be used in the present invention.
  • Such FasL may be isolated from cells that naturally express, or may be synthesized based on a known amino acid sequence.
  • FasL may be in a form capable of giving a signal corresponding to the presence of Fas to IgG-positive B cells in the culture system, and may be in a free form as long as it can generate an intracellular signal, It may be membrane-bound. FasL should generally be present in the culture system at a concentration that can induce apoptosis in B cells.
  • CD40L, BAFF and FasL examples include mammalian primates, ungulates, small mammal rodents, birds and the like, and preferably those derived from rodents and mammals, such as humans and mice. Can be illustrated.
  • the attacking cells used in the present invention are not particularly limited as long as they express Fc ⁇ R (Fc ⁇ receptor) that recognizes an antibody, and include T cells, natural killer (NK) cells, natural killer T( NKT) cells, macrophages, monocytes (peripheral blood mononuclear cells (PBMC) and the like), dendritic cells, neutrophils, mast cells and the like can be used.
  • NK natural killer cells
  • PBMC peripheral blood mononuclear cells
  • NK cells examples include KHYG-1, iNK-92, NK-YS, NK-YT, MOTN-1, NKL, HANK-1 and NKG cell lines, but are not particularly limited. Particularly preferably, KHYG-1 can be used.
  • Antibody-dependent cytotoxic activity in the case of culturing the mixture of the attacking cells and the culture supernatant depends on the antibody in the case of culturing by mixing the target cells not expressing a specific antigen, the attacking cells, and the culture supernatant Cells having a higher specific cytotoxic activity and expressing a specific antigen, an attacking cell, and an antibody-dependent cytotoxic activity in the case of culturing by mixing the culture supernatant, a target cell expressing a specific antigen, and Higher than antibody-dependent cytotoxic activity when the culture supernatant is mixed and cultured; This is used as an index.
  • Antibody-dependent cellular cytotoxicity means that when a specific antibody is attached to a cell surface antigen of a target cell, an attacking cell (effector cell having an Fc ⁇ receptor) is mediated by an Fc ⁇ receptor at the Fc part thereof. Binding and damaging the target cells.
  • the antibody-dependent cytotoxic activity can be measured by a known method. Specifically, it can be performed by the following method. A target cell that does not express a specific antigen, a target cell that expresses a specific antigen, an attacking cell, and a culture supernatant are prepared. Target cells that do not express the specific antigen and target cells that express the specific antigen are seeded in a 96-well plate. Then, the medium is replaced with a culture supernatant for screening, and the culture is performed. Afterwards, challenge cells are added to each well.
  • An experimental system using a target cell that expresses a specific antigen, an attacking cell, and a culture supernatant, an experimental system that uses a target cell that does not express a specific antigen, an attacking cell, and a culture supernatant, and a specific antigen An experimental system using the target cells to be expressed and the culture supernatant is performed. After culturing for an appropriate time, ADCC activity can be evaluated using the culture supernatant by measuring the enzyme released by dead cells (for example, LDH).
  • Antibody-dependent cytotoxic activity in the case of mixing and culturing the attacking cells and the culture supernatant, the target cells that do not express a specific antigen, the attacking cells, and the antibody in the case of mixing and culturing the culture supernatant Target cells that have higher specificity-dependent cytotoxicity and that express a specific antigen, attack cells, and antibody-dependent cellular cytotoxicity in the case of culturing by mixing the culture supernatant, target cells that express a specific antigen, And "higher” and “higher” than “higher than antibody-dependent cellular cytotoxicity when the culture supernatant is mixed and cultured” means an enzyme released by dead cells as described above (for example, LDH and the like).
  • the antibody-dependent cellular cytotoxicity evaluated by measuring The degree is such that the ratio of absorbance in enzyme measurement is 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times or more, 1. It may be 7 times or more, 1.8 times or more, 1.9 times or more, or 2.0 times or more.
  • the culture supernatant of cells producing human antibodies is screened.
  • the type of human antibody is not particularly limited, and may be any of human IgG, human IgA, human IgM, human IgD, and human IgE, but human IgG is preferable.
  • the culture supernatant of human antibody-producing cells is not particularly limited.
  • the culture supernatant of human B cells or the culture supernatant of established animal cell lines can be used. You can As the culture supernatant of human B cells, preferably, the culture supernatant obtained by culturing human B cells on feeder cells expressing an antigen can be used.
  • the culture supernatant of human B cells preferably, the culture supernatant obtained after culturing human B cells in the presence of Fas-mediated stimulation can be used.
  • the culture supernatant of human B cells preferably, the culture supernatant obtained by culturing human B cells in the presence of IL-2 and IL-21 can be used.
  • B cells in which the expression of Bach2 gene is increased may be used.
  • B cells in which the expression of the Bach2 gene is increased include cells obtained by introducing the Bach2 gene into B cells, or by increasing the expression amount or abundance of the Bach2 gene originally possessed by the B cells. Any of the cells obtained may be used.
  • B cells in which the expression of the Bach2 gene is elevated are described in paragraphs 0020 to 0035 of International Publication WO2016/002760, and the content described in International Publication WO2016/002760 is incorporated herein by reference. It
  • lept Examples include a method of inhibiting the nuclear export of Bach2 by adding mycin B (LMB) to localize it in the nucleus, or a method of adding an inhibitor of ubiquitination of Bach2 and its degradation by proteasome. Not limited.
  • the Bach2 gene When introducing the Bach2 gene into B cells, the Bach2 gene is as described in paragraphs 0022 to 0031 of International Publication WO2016/002760.
  • a recombinant vector having the Bach2 gene may be constructed and this recombinant vector may be introduced into B cells.
  • the level of increase in Bach2 gene expression is not particularly limited, but the expression level of Bach2 gene is preferably 1.5 times or more, and more preferably 2 times or more, as compared with the original B cells.
  • the human antibody-producing cells are preferably cells having human antibodies on the cell surface.
  • Cells having human antibodies on the cell surface can be obtained from cell populations based on the presence or absence of human antibodies.
  • the cell population containing human antibody-producing cells is not particularly limited as long as it is generally derived from peripheral blood cells, bone marrow cells or lymphoid organs such as spleen cells.
  • the IgG-positive B cell may be a naive B cell that has not reacted with the antigen or a B cell after contact with the antigen.
  • the “naive B cell” in the present specification generally refers to a mature B cell that has not reacted with an antigen, and corresponds to a cell showing a CXCR5-positive and CD40-positive surface antigen.
  • B cells of various stages in the differentiation stage and various types of cells may contain B cells of various stages in the differentiation stage and various types of cells.
  • B cells other than IgG positive B cells for example, IgE positive cells, CD138 positive (plasma) cells, and cells other than B cells, for example, T cells, monocytes, NK cells are removed.
  • IgG positive B cells for example, IgE positive cells, CD138 positive (plasma) cells
  • cells other than B cells for example, T cells, monocytes, NK cells are removed.
  • T cells for example, monocytes, NK cells
  • the B cell population may be a cell population derived from an organism having an established immune system, and may include rodents of small mammals such as mammalian primates such as humans and monkeys and ungulates such as pigs, cows and horses. Such species include, for example, mice, rats, rabbits, birds, such as chickens and quails.
  • the origin of this cell population is preferably rodents and primates, and examples thereof include mice and humans.
  • a method for preparing a cell population from a biological tissue such as spleen ordinary conditions for preparing a B cell population may be applied as they are. Further, it is not limited to a cell population derived from a living body, and may be an established B cell line.
  • Culturing of a cell population containing B cells may be carried out under usual culture conditions with a medium used for culturing B cells.
  • a medium used for culturing B cells examples include Dulbecco's modified Eagle medium (DMEM) and RPMI1640.
  • DMEM Dulbecco's modified Eagle medium
  • RPMI1640 a medium used for culturing B cells.
  • Various additives applicable to ordinary cell culture such as serum, various vitamins and various antibiotics may be added to these media.
  • the culture conditions such as the culture temperature, the culture conditions used for general B cells can be applied as they are, and examples thereof include a condition of 37° C. and 5% CO 2 .
  • the seeding density of the cell population in the medium varies depending on the origin of the cell population, the state of cells prepared from the tissue, and the number of days of culturing in the same culture system, but is generally 1 ⁇ 10 2 to 1 ⁇ 10 7 cells/cell. cm 2 and preferably 1 ⁇ 10 3 to 1 ⁇ 10 7 cells/cm 2 , and in particular, human B cells preferably have a growth rate of 1 ⁇ 10 1 because the proliferation rate is better when the culture is started at a high density. It should be 4 to 1 ⁇ 10 7 pieces/cm 2 . Within this range, it is possible to prevent a hyperproliferation state after culturing for about 4 days.
  • IL-21 receptor IL-21 receptor
  • CD40 CD40
  • BAFF receptor BAFF receptor
  • B cells having an increased expression of the Bach2 gene are cultured in the presence of a means for acting on CD40 and/or BAFF receptors, in the presence of a means for acting on IL-21 receptors. Incubate.
  • IL-21 As a means for acting on the IL-21 receptor, IL-21 or anti-IL-21 receptor antibody can be used.
  • IL-21 may be naturally-occurring or recombinantly obtained by biotechnology. Examples of the origin of IL-21 include mammalian primates, ungulates, small mammalian rodents, birds and the like, as in the above-mentioned cell population. Each of these molecules is preferably derived from rodents and mammals, and examples thereof include mice and humans. Further, it may be a molecule derived from the same species as the above-mentioned cell population to be presented, or cells derived from a different species.
  • the concentration of IL-21 and/or anti-IL-21 receptor antibody contained in the medium for culturing B cells may be any amount capable of proliferating IgG-positive B cells having an affinity for a specific antigen, Generally, it is preferably 1 ng/ml to 1 ⁇ g/ml, more preferably 5 ng/ml to 100 ng/ml.
  • B cells having an elevated expression of the Bach2 gene are cultured in the presence of a means for acting on CD40 and/or BAFF receptor, in the presence of IL-4 and/or IL-2. You may culture in.
  • the IgG-positive B cells having the IL-21 receptor (IL-21R), CD40, and BAFF receptor (BAFF-R) in the present invention show the presence of these molecules, for example, the reactivity when an antibody or the like is used.
  • the cell population containing B cells can be stimulated via CD40 and BAFF receptors while IL- It may be obtained by a method comprising culturing in the presence of 4 in the primary culturing step and culturing in the presence of IL-21 in the secondary culturing step (culturing step).
  • both the primary culture and the secondary culture can be performed while applying stimulation via the CD40 and BAFF receptors.
  • Stimulation via the CD40 and BAFF receptors may be performed using antibodies against these molecules, or CD40L and BAFF may be used, as in the selection step.
  • a carrier having these antibodies or CD40L and BAFF, such as feeder cells may be used.
  • the carrier or feeder cell used in the culturing step may be referred to as a culturing carrier or culturing feeder cell, respectively.
  • IL-4 used in the primary culture may be of natural origin or bioengineered recombinant.
  • the concentration of IL-4 is preferably 1 ng/ml to 100 ng/ml, more preferably 5 ng/ml to 100 ng/ml, and 10 ng/ml to 50 ng/ml. More preferably, it is ml.
  • cytokines may be used together with IL-4 depending on the type and origin of the B cell population to be cultured.
  • concentration of IL-2 is preferably 1 unit/ml to 1000 unit/ml, more preferably 2.5 unit/ml to 1000 unit/ml, It is more preferably from 2.5 unit/ml to 500 unit/ml, particularly preferably from 10 unit/ml to 100 unit/ml.
  • the seeding density of cells at the time of starting the primary culture is not particularly limited, but it varies depending on the origin of the cell population, the state of cells prepared from the tissue, and the number of days of culture in the same culture system. It may be 2 to 1 ⁇ 10 6 pieces/cm 2 , preferably 1 ⁇ 10 3 to 1 ⁇ 10 6 pieces/cm 2 .
  • the primary culture may vary depending on the seeding density, it may be generally 2 to 8 days after the start of the culture from the viewpoint of the growth rate of the B cell population, and 3 from the viewpoint of the density of IgG-positive B cells in the cell population. It is preferably from day to 6 days, more preferably from 3 to 5 days.
  • a predetermined amount of IL-21 may be added to the culture system after the primary culture, and the cells are recovered from the culture system after the primary culture to obtain IL-4-free IL. It may be started by transferring to a -21 containing medium. From the viewpoint of suppressing the proliferation rate of IgG-positive B cells in the secondary culture and the contamination of IgE-positive B cells in the obtained cell population, the secondary culture is performed with a medium containing IL-21 and not IL-4. Most preferably it is done.
  • the origins of IL-4 and IL-21 used in the present invention include mammalian primates, ungulates, small mammal rodents, birds, etc., as in the above-mentioned cell population.
  • Each of these molecules is preferably derived from rodents and mammals, and examples thereof include mouse and human. Further, it may be a molecule derived from the same species as the above-mentioned cell population to be presented, or cells derived from a different species.
  • cells other than IgG-positive B cells After completion of secondary culture, it is preferable to remove cells other than IgG-positive B cells in order to surely increase the target B cell concentration.
  • Examples of cells to be removed include IgE-positive B cells, CD138-positive plasma cells, feeder cells (if present), and the like. These cells can be removed by a known technique using an antibody against a specific surface antigen present on the surface.
  • cytokines may be used together with IL-21 depending on the type and origin of the B cell population to be cultured.
  • concentration of IL-2 is preferably 1 unit/ml to 1000 unit/ml, more preferably 2.5 unit/ml to 1000 unit/ml. , 2.5 unit/ml to 500 unit/ml is more preferable, and 10 unit/ml to 100 unit/ml is particularly preferable.
  • the method for producing a B cell population of the present invention may be carried out for a period of time necessary for selecting a desired antigen-specific IgG-positive cell, and the number of IgG-positive B cells at the time of starting the selection step, It can be appropriately changed depending on the type or the state of feeder cells.
  • the selection step may be carried out for 1 day to 2 days.
  • the primary culture is carried out for 3 days to 5 days, and the secondary culture is carried out for 2 days. It may be 5 days, and the selection step may be 1 to 2 days.
  • the production method of the present invention may include a proliferation step for further proliferating the selected antigen-specific IgG-positive B cells after the selection step.
  • This growth step may be performed under culture conditions that allow the antigen-specific IgG-positive B cells to grow against the specific antigen selected in the selection step, but from the viewpoint of efficient growth of the selected IgG-positive B cells. Therefore, it is preferable to culture with CD40L and BAFF in the presence of IL-21.
  • the conditions applied in the secondary culture or selection step described above can be applied as they are. Further, the above-mentioned matters can be directly applied to CD40L and BAFF which are preferably used in the proliferation step.
  • the proliferating step may be continued for a period corresponding to the number of target IgG-positive B cells in the obtained cell population, and can be generally 1 day or longer, preferably 3 days or longer, but it is included in the culture system. It may be appropriately adjusted depending on the growth rate and density of the cell population.
  • the culture of 40LB cells (using the cells described in Japanese Patent No. 5550132), which are feeder cells that present CD40L and BAFF on the cell surface when culturing B cells, is D-MEM (10%).
  • V/v FCS, penicillin/streptomycin added
  • KHYG-1 cells were RPMI-1640 (10% (v/v) FCS (fetal calf serum), penicillin/streptomycin, 2 mM L-glutamine, 55 nM 2-mercaptoethanol, 10 mM HEPES and 1 mM unless otherwise specified). Sodium pyruvate was added), and 100 U/mL IL-2 (manufactured by Peprotech) was used as a KHYG-1 cell culture medium under conditions of 5% (v/v) CO 2 and 37°C.
  • LB cells were seeded at 2 ⁇ 10 4 cells/well in a 96-well plate (Thermo Fisher), cultured for 24 hours to form a monolayer, and then irradiated with 120 Gy of X-ray. Used from.
  • the medium was removed from the 384-well plate in which 40 LB cells had been seeded in advance, and then the cells were seeded using a multipipette at 20 cells/well.
  • 40LB-Her2 cells and 40LB-CXCR2 cells were cloned by introducing human Her2 or human CXCR2 into 40LB cells by a lentiviral vector according to a conventional method and expressing them constantly.
  • a trastuzumab type antibody was prepared as an antibody having antigen specificity, and a commercially available human IgG antibody was prepared as an antigen non-specific antibody at 1 ⁇ g/mL and used.
  • the trastuzumab type antibody used at this time was a recombinant lentivirus vector CSIV-CMV-MCS-IRES2-Venus vector (Cancer Science, Vol.105, pp.402-408 (2014)), and Her2 antigen-specific B cells.
  • CSIV-CMV-mGK (trastuzumab antibody kappa light chain gene expression vector)-IRES2-mGH (trastuzumab antibody heavy chain gene expression vector) in which a heavy chain and a light chain of a receptor (trastuzumab antibody gene) are incorporated is prepared, and a trastuzumab type is prepared.
  • the culture supernatant was purified with Protein A carrier (Kaneka) and used. 12 hours before measuring ADCC activity, 40LB cells and 40LB-Her2 cells were seeded in a 96-well plate at 1 ⁇ 10 4 cells/well.
  • the medium was exchanged with 50 ⁇ L of an antibody solution prepared to 1 ⁇ g/mL with KHYG-1 cell culture medium, and cultured for 30 minutes under the conditions of 5% (v/v) CO 2 and 37° C. .. Then, 1 ⁇ 10 4 cells/50 ⁇ L of KHYG-1 cells in KHYG-1 cell culture medium was added to each well. At this time, as a control group, an equal amount of the medium alone was added to the wells to which KHYG-1 cells were not added. 12 hours after the addition, ADCC activity was evaluated by measuring LDH released by dead cells using the culture supernatant.
  • the LDH Cytotoxicity Assay Kit ((manufactured by Dojindo)) was used for the measurement of LDH.
  • the culture plate was centrifuged at 250 ⁇ g for 2 minutes, 40 ⁇ L of the culture supernatant was collected and dispensed into a 96-well Maxisorp plate (Nunc). Next, 40 ⁇ L of Working Solution was added, and shaking culture was performed for 30 minutes in a dark place at room temperature. After 30 minutes, 20 ⁇ L of Stop Solution was added to stop the reaction, and the absorbance at 490 nm was measured.
  • FIG. 1 cell death is induced and LDH is released only in the presence of antigen-specific antibodies in addition to antigen-expressing cells and attacking cells, confirming that high absorbance can be measured as shown in FIG. did it.
  • B cell subpopulation containing B cells expressing CXCR2 antigen-specific B cell receptor was obtained as follows.
  • Human B cells were prepared as follows. That is, mononuclear cells were separated from human peripheral blood of a healthy person using a Lymphoprep tube (manufactured by AXIS SHIELD), and FcR Blocking Reagent (manufactured by Miltenyi Biotec) was used, and then CD2 negative cells and CD235a negative cells were further isolated.
  • Biotin-anti-human CD2 antibody (manufactured by Biolegend), biotin-anti-human CD235a antibody (manufactured by eBioscience), Streptavidin-Particle Plus-DM (manufactured by BD Pharmingen), and BD iMag CellBene Separation (manufactured by BD Phage). And manufactured by MACS Separation Columns (manufactured by Miltenyi Biotec).
  • CD19-positive cells were collected using a PE-anti-human CD19 antibody (manufactured by Biolegend) and a cell sorter (BD FACS Aria III).
  • B cells that can be cultured for a long time were produced. Long-term cultured B cells were obtained as follows.
  • CSIV-CMV-MCS-IRES2-Venus vector (Cancer Science, Vol.105, pp.402-408 (2014)) was recombined, and ⁇ actin was used as a promoter and CSIV- ⁇ actin-Bach2 incorporating Bach2 as a transgene. It was prepared and a Bach2 expression vector was constructed. Using this expression lentivirus vector, a B cell population in which Bach2 was expressed in the recovered CD19-positive B cells was obtained by a conventional method.
  • the recovered cultured B cells were prepared by using biotin-anti-mouse H-2K d antibody (manufactured by Biolegend), biotin anti-human CD138 antibody (manufactured by Diaclone), Streptavidin-Particle Plus-DM (manufactured by BD Pharmingen), and BD. Feeder cells and antibody-producing cells were removed using iMag Cell Separation Magnet (manufactured by BD Bioscience) and MACS Separation Columns (manufactured by Miltenyi Biotec).
  • the B cells from which the feeder cells were removed were human IL-21 (10 ng/mL, manufactured by PEPROTECH) and human IL-2 (50 unit/mL, manufactured by PEPROTECH) in a 90 mm dish on which 40 LB cells were newly prepared. ) was used to inoculate at a cell density of 5 ⁇ 10 4 cells/cm 2 or less, and the cells were cultured.
  • the B cell population that has undergone pre-stimulation culture in which feeder cells and antibody-producing cells have been removed is subsequently suspended in a B cell medium containing cytokine under the same conditions, and cultured with 40LB-CXCR2 cells that have formed a monolayer. , Antigen-specific B cells were stimulated.
  • feeder cells and antibody-producing cells were removed from all cells by the same method as above.
  • 40 LB-CXCR2 cells and B cells under each condition subjected to antigen-stimulated culture in which antibody-producing cells were removed were human IL-21 (10 ng/mL, manufactured by PEPROTECH) and human IL-2 (50 unit/mL, manufactured by PEPROTECH).
  • Human IL-21 (10 ng/mL, manufactured by PEPROTECH
  • human IL-2 50 unit/mL, manufactured by PEPROTECH
  • an anti-human IgG+IgM+IgA antibody (manufactured by Kirkegaard & Perry Laboratories (KPL)) was prepared at 1 ⁇ g/mL using a carbonate-bicarbonate buffer (pH 9.0), and coated on a 384-well Maxisorp plate. After the addition of the antibody solution, the coating was performed by leaving it at room temperature for 2 hours. After 2 hours, the plate was washed with TBS (TBS-T) containing 0.5% Tween 20 (manufactured by SIGMA). A plate washer was used to wash the plate.
  • TBS TBS
  • Tween 20 manufactured by SIGMA
  • TMB substrate manufactured by KPL
  • 1N H 2 SO 4 was added to stop the enzymatic reaction, and the absorbance at 450 nm was measured.
  • the cells in the wells in which antibody production was confirmed by the ELISA method were re-seeded to a 96-well plate in which 40 LB cells were newly seeded, and expanded culture was performed.
  • the B cells were suspended in a B cell medium containing human IL-21 (10 ng/mL, manufactured by PEPROTECH) and human IL-2 (50 unit/mL, manufactured by PEPROTECH), and cultured for 7 days.
  • ADCC activity was measured using the B cell subpopulation culture supernatant that had been cultured for 7 days. First, 12 hours before the measurement, 40 LB-CXCR2 cells were seeded as antigen-expressing cells in a 96-well plate at 1 ⁇ 10 4 cells/well. After 12 hours, 40LB-CXCR2 cell culture supernatant was collected, and 40 ⁇ L of B cell subpopulation culture supernatant was added to each well. At this time, the B cell small population culture supernatant collected from the same well was added to 2 wells for ADCC induction and control culture.
  • KHYG-1 cells for inducing ADCC were prepared by removing dead cells using ClioCell Pro Kit (manufactured by ClioCell), and then RPMI-1640 (10% (v/v) FCS (fetal bovine serum), penicillin/ Streptomycin, 2 mM L-glutamine, 55 nM 2-mercaptoethanol, 10 mM HEPES and 1 mM sodium pyruvate added), and 200 U/mL IL-2 (manufactured by Peprotech), the final concentration of IL-2 at the time of culturing. was adjusted to 100 U/mL and KHYG-1 cells were adjusted to 1 ⁇ 10 4 cells/40 ⁇ L.
  • IL-2-containing RPMI-1640 without KHYG-1 cells 10% (v/v) FCS (fetal calf serum), penicillin/streptomycin, 2 mM L-glutamine, 55 nM 2- Mercaptoethanol, 10 mM HEPES and 1 mM sodium pyruvate were also added).
  • FCS fetal calf serum
  • penicillin/streptomycin 2 mM L-glutamine
  • 55 nM 2- Mercaptoethanol 10 mM HEPES and 1 mM sodium pyruvate were also added.
  • ADCC activity was evaluated by measuring LDH released by dead cells using the culture supernatant.
  • An LDH Cytotoxicity Assay Kit (manufactured by Dojindo) was used for measuring LDH.
  • the culture plate was centrifuged at 250 ⁇ g for 2 minutes, 40 ⁇ L of the culture supernatant was collected and dispensed into a 96-well Maxisorp plate (Nunc). Next, 40 ⁇ L of Working Solution was added, and shake culture was carried out at room temperature in a dark place for 30 minutes. After 30 minutes, 20 ⁇ L of Stop Solution was added to stop the reaction, and the absorbance at 490 nm was measured. The measurement results are shown in FIG.
  • the absorbance values obtained for ADCC induction and control culture were compared, and it was determined that the wells having a positive difference contained the antigen-specific antibody, and the difference was the most positive.
  • Antibody genes were obtained from B cells in the wells. The cells cultured in 96 wells were collected, and mRNA was extracted and purified using RNeasy Mini Kit (manufactured by QIAGEN). Next, cDNA was synthesized from the purified mRNA using an antibody gene-specific reverse transcription primer and SuperScript III (Invitrogen).
  • reaction composition after preparing a mixed solution according to the instructions attached to SuperScript III, reverse transcription reaction PCR (65°C/5 minutes, 55°C/60 minutes, 70°C/15 minutes) was performed. Then, RNase H (manufactured by Invitrogen) was added according to the attached instruction, and the reaction was carried out (37°C/20 minutes).
  • the synthesized cDNA was purified using an Agencourt AMPure XP nucleic acid purification kit (manufactured by BECKMAN COULTER). The purified cDNA was subjected to 3'-tailing reaction (37°C/30 minutes) using Terminal deoxy Transferase (Invitrogen) and dGTP (Invitrogen) according to the attached instructions.
  • 5'RACE method was used for amplification of antibody gene variable region.
  • 1st-PCR 94° C./2 min; 1) using KOD-FX-DNA polymerase (manufactured by TOYOBO) for each of Ig ⁇ heavy chain, Ig ⁇ light chain and Ig ⁇ light chain using 3′-tailing cDNA.
  • Cycle 98°C/10 seconds, 60°C/10 seconds, 68°C/40 seconds; 25 cycles, 68°C/2 minutes; 1 cycle).
  • Nested-PCR (94° C./2 min; 1 cycle, 94° C./15 sec, 60° C./10 sec, 68° C./) using KOD-plus-DNA polymerase (manufactured by TOYOBO) 40 seconds; 35 cycles, 68° C./2 minutes; 1 cycle).
  • the reaction solution was electrophoresed for a total amount of 100 V for 35 minutes, and the amplified fractions of each of the Ig ⁇ heavy chain, Ig ⁇ light chain and Ig ⁇ light chain were extracted using Gel Extraction Kit (manufactured by QIAGEN).
  • plasmid for transient expression of the antibody gene a plasmid incorporating a human antibody constant region was used.
  • the Ig ⁇ heavy chain and Ig ⁇ light chain plasmids were excised using the restriction enzyme PvuII, and the Ig ⁇ light chains were excised using the restriction enzyme StuI.
  • the excised plasmid DNA was dephosphorylated by reacting with the dephosphorylating enzyme BAPC75 (manufactured by Takara Bio Inc.) at 65° C. for 30 minutes.
  • the dephosphorylated Ig ⁇ heavy chain, Ig ⁇ light chain, and Ig ⁇ light chain, and the antibody gene variable region amplified using the Nested-PCR method are the enzyme ligation high ver. 2 (manufactured by TOYOBO Co., Ltd.) was used for bonding at 16° C. for 60 minutes.
  • the ligated DNA was transformed into Escherichia coli JM109 (Takara Bio Inc.). Sequence analysis of the Ig ⁇ heavy chain, Ig ⁇ light chain, and Ig ⁇ light chain plasmids obtained after transformation was carried out using a CMV primer and a BigDye Terminator v1.1 cycle sequencing kit (Applied Biosystems).
  • Ig ⁇ heavy chain Three types of Ig ⁇ heavy chain, two types of Ig ⁇ light chain, and one type of Ig ⁇ light chain were obtained.
  • the combination of heavy and light chains was expressed in HEK293T cells to produce 9 kinds of antibodies.
  • the heavy chain/light chain antibody genes were expressed using Lipofectamine 3000 (manufactured by Invitrogen).
  • the antigen binding ability was detected using a flow cytometer (BD FACS Aria III).
  • 40LB-CXCR2 cells were used as antigen-expressing cells, and 40LB cells were used as antigen-unexpressing cells.
  • the prepared antibody was added to 3 ⁇ 10 5 cells of each and reacted at room temperature for 30 minutes. Then, the cells were washed with FACS buffer (D-PBS(-) containing 0.5% BSA and 200 mM EDTA), and APC-labeled anti-human IgG-Fc antibody (manufactured by Biolegend) was used as a secondary antibody at room temperature for 20 minutes. It was made to react. After that, the cells were washed twice with FACS buffer and subjected to flow cytometry analysis. The results are shown in Fig. 4. The antibody obtained from the results was found to be an antibody that recognizes some antigen on 40LB cells that is not the CXCR2 antigen.
  • the obtained antibody is an antibody that recognizes some antigen on 40LB cells that is not the CXCR2 antigen.
  • the cause is considered to be that the evaluation method had a problem from the result of FIG.
  • a cell population having high ADCC activity (difference in LDH absorbance) with or without KHYG-1 as an attacking cell was selected to obtain an antibody gene.
  • the ADCC activity at this time was re-evaluated from the viewpoint of the presence or absence of the antigen, it was found that the cell population in which the ADCC activity was high in the presence or absence of KHYG-1 was the cell population in which the ADCC activity was low in the presence or absence of the antigen. From this result, it was considered that ADCC activity needs to be measured not only for antigen-expressing cells but also for cells not expressing antigen.
  • the absorbance obtained by the measurement first, the difference between the cells expressing the antigen and the cells not expressing the antigen was calculated. Next, the differences obtained with and without the antigen were compared, and those with a large positive difference were judged to have high antigen specificity. Regarding the cells having cell specificity as described above, a difference occurs in both the antigen-expressing cells and the antigen-non-expressing cells, and it is considered that the ratio of both approaches 1. As a result, it was considered that the results obtained by this method were likely to eliminate noise and facilitate selection of wells containing antigen-specific antibodies.
  • mRNA was extracted by the same method as the previous time, the antibody gene variable region was amplified, and an antibody gene expression plasmid was prepared.
  • the sequence was analyzed using CMV primers, 4 types of Ig ⁇ heavy chain and 3 types of Ig ⁇ light chain were obtained.
  • the combination of heavy and light chains was expressed in HEK293T cells to prepare 12 kinds of antibodies.
  • the antigen binding ability was detected using a flow cytometer (BD FACS Aria III). The results are shown in Fig. 7. As a result, the above-mentioned cell-specific antibody did not exist, and it was confirmed that an antigen-specific antibody was obtained.

Abstract

The present invention addresses the problem of providing a method for efficiently screening culture supernatant including cells that produce a specific antigen-specific antibody from a culture supernatant of cells that produce human antibodies. The present invention provides a method for screening culture supernatant including cells that produce a specific antigen-specific antibody from a culture supernatant of cells that produce human antibodies, the method involving using antibody-dependent cytotoxic activity as an indicator, wherein the method comprises selecting culture supernatant that satisfies prescribed conditions defined in the specification as the culture supernatant including cells that produce a specific antigen-specific antibody.

Description

特定抗原特異的抗体を産生する細胞のスクリーニング方法Method for screening cells producing specific antigen-specific antibody
 本発明は、ヒト抗体を産生する細胞の培養上清から、抗体依存性細胞障害活性を指標として、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする方法に関する。本発明はさらに、上記の通りスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞を含む培養上清の製造方法に関する。本発明はさらに、上記の通りスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞の製造方法に関する。本発明はさらに、上記の通りスクリーニングすることを含む、特定抗原特異的抗体の製造方法に関する。 The present invention relates to a method for screening a culture supernatant containing cells producing a specific antigen-specific antibody from the culture supernatant of cells producing a human antibody using the antibody-dependent cytotoxic activity as an index. The present invention further relates to a method for producing a culture supernatant containing cells producing a specific antigen-specific antibody, which comprises screening as described above. The present invention further relates to a method for producing cells producing a specific antigen-specific antibody, which comprises screening as described above. The present invention further relates to a method for producing a specific antigen-specific antibody, which comprises screening as described above.
 特定の抗原に対して高い選択性を示すモノクローナル抗体は、抗体医薬としての開発が期待され、特にがん細胞を標的とする抗体医薬の開発が進んでいる。抗体医薬を開発するためには、特定抗原特異的抗体をスクリーニングすることにより所望の抗体を取得することが必要である。 Monoclonal antibodies that show high selectivity for specific antigens are expected to be developed as antibody drugs, and in particular, antibody drugs targeting cancer cells are under development. In order to develop an antibody drug, it is necessary to obtain a desired antibody by screening a specific antigen-specific antibody.
 特許文献1には、細胞表面抗原に特異的に結合し得るイムノバインダー(例えば、scFv抗体)を同定するための方法が記載されている、特許文献1に記載の方法は、標識された抗原発現細胞と、標識されたイムノバインダー発現細胞とを接触させる工程および上記抗原発現細胞に結合するイムノバインダー発現細胞を、セルソーターを使用して単離する工程を包含する。 Patent Document 1 describes a method for identifying an immunobinder (eg, scFv antibody) capable of specifically binding to a cell surface antigen. The method described in Patent Document 1 describes labeled antigen expression. The step of contacting the cells with the labeled immunobinder-expressing cells and the step of isolating the immunobinder-expressing cells that bind to the antigen-expressing cells using a cell sorter are included.
 また特許文献2には、B細胞集団を捕捉剤に接触させるステップと、捕捉されたB細胞を捕捉されていないB細胞から分離するステップと、捕捉された複数のB細胞を培養するステップであって、前記B細胞は培養の直前に一様なB細胞に選別されていないステップと、複数の培養細胞をスクリーニングして、所望の機能を有する抗体を産生することができる細胞を同定するステップと、それらから所望の抗体を得るステップとを含む、所望の機能を有する抗体を得る方法が記載されている。 Further, Patent Document 2 includes a step of contacting a B cell population with a capturing agent, a step of separating captured B cells from uncaptured B cells, and a step of culturing a plurality of captured B cells. The B cells are not sorted into uniform B cells immediately before culturing, and a plurality of cultured cells are screened to identify cells capable of producing an antibody having a desired function. , A step of obtaining a desired antibody from them, and a method of obtaining an antibody having a desired function are described.
 一方、特許文献3には、標的細胞に、これを認識するヒト抗体、ヒト化抗体、及びヒトキメラ抗体からなる群より選択される抗体を接触する工程;細胞表面にヒトFc受容体を発現したNK細胞由来細胞株を、前記抗体に接触する工程;前記標的細胞に細胞傷害が生じているか否かを検出する工程を含み、前記抗体が蛍光標識されており、前記工程(c)を、標的細胞またはエフェクタ細胞の少なくとも一方を蛍光標識して、蛍光顕微鏡を用いた観察において両細胞を識別して観察・カウントすることにより行う、抗体依存性細胞傷害のアッセイ方法が記載されている。 On the other hand, in Patent Document 3, a step of contacting a target cell with an antibody selected from the group consisting of a human antibody, a humanized antibody, and a human chimeric antibody that recognizes the target cell; NK expressing a human Fc receptor on the cell surface A step of contacting a cell-derived cell line with the antibody; a step of detecting whether or not cytotoxicity has occurred in the target cell, wherein the antibody is fluorescently labeled, and the step (c) is performed in the target cell Alternatively, an assay method for antibody-dependent cellular cytotoxicity is described, in which at least one of effector cells is fluorescently labeled, and both cells are identified and observed/counted in observation using a fluorescence microscope.
特許第5764071号公報Japanese Patent No. 5764071 特許第4624357号公報Japanese Patent No. 4624357 特許第5282040号公報Japanese Patent No. 5282040
 抗体のスクリーニングを行うための細胞の培養上清としては、ハイブリドーマの培養上清が汎用されている。ハイブリドーマの作製においては、大量に作製した抗原を用いて動物を免疫する。このように、ハイブリドーマの作製においては抗原が大量に作製されていることから、ハイブリドーマの培養上清のスクリーニングは、この抗原を用いたELISA法((Enzyme-Linked ImmunoSorbent Assay:酵素結合免疫吸着アッセイ)により行うことが一般的である。ELISAによるスクリーニングにおいては、抗原の精製が必要であり、精製が困難な抗原に対する抗体をスクリーニングするための方法が望まれている。 As a cell culture supernatant for antibody screening, a hybridoma culture supernatant is generally used. In producing a hybridoma, an animal is immunized with a large amount of the produced antigen. As described above, since a large amount of antigen is produced in the production of hybridoma, the screening of the culture supernatant of the hybridoma is performed by the ELISA method ((Enzyme-Linked ImmunoSorbent Assay: Enzyme-Linked Immunosorbent Assay). In the screening by ELISA, it is necessary to purify the antigen, and a method for screening an antibody against the antigen which is difficult to purify is desired.
 また、動物への免疫には、抗原を発現させた細胞や、目的の抗原を発現させるためのプラスミドDNAを用いた免疫法も知られており、そのような場合の評価法(スクリーニング法)においては、cell-based ELISA(CELISA)と呼ばれる抗原を発現させた細胞を用いた方法を用いている場合もある(特許文献1を参照)。この方法を用いる場合は、抗原の精製を行う必要がない。しかし、この方法では抗原を発現させた細胞を細胞培養プレート上に播種した後に、1%パラホルムアルデヒドで固定しており、抗原タンパクを変性させている。抗原を変性させていることにより、抗原の立体構造に変化が生じてしまう可能性がある。また、この方法は細胞の固定処理等、複雑な工程を含むため、ハイスループットのスクリーニングには適していない。 In addition, for immunization of animals, an immunization method using cells expressing an antigen or a plasmid DNA for expressing an antigen of interest is known, and in such an evaluation method (screening method) In some cases, a method using cells expressing an antigen called cell-based ELISA (CELISA) is used (see Patent Document 1). When using this method, it is not necessary to purify the antigen. However, in this method, cells expressing the antigen are seeded on a cell culture plate and then fixed with 1% paraformaldehyde to denature the antigen protein. By denaturing the antigen, the three-dimensional structure of the antigen may change. Moreover, this method is not suitable for high-throughput screening because it involves complicated steps such as cell fixation.
 本発明は、ヒト抗体を産生する細胞の培養上清から、特定抗原特異的抗体を産生する細胞を含む培養上清を効率的にスクリーニングする方法を提供することを解決すべき課題とする。本発明はさらに、培養上清の濃縮および蛍光色素の標識を必要とすることなく、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする方法を提供することを解決すべき課題とする。本発明はさらに、抗原の精製を必要とすることなく、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする方法を提供することを解決すべき課題とした。本発明はさらに、上記の通りスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞を含む培養上清の製造方法を提供することを解決すべき課題とする。本発明はさらに、上記の通りスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞の製造方法、並びに上記の通りスクリーニングすることを含む、特定抗原特異的抗体の製造方法を提供することを解決すべき課題とする。 An object of the present invention is to provide a method for efficiently screening a culture supernatant of cells producing a specific antigen-specific antibody from a culture supernatant of cells producing a human antibody. The present invention further provides a method for screening a culture supernatant containing cells that produce a specific antigen-specific antibody without requiring concentration of the culture supernatant and labeling with a fluorescent dye. To do. Another object of the present invention is to provide a method for screening a culture supernatant containing cells producing a specific antigen-specific antibody without requiring purification of the antigen. Another object of the present invention is to provide a method for producing a culture supernatant containing cells that produce a specific antigen-specific antibody, which comprises screening as described above. The present invention further provides a method for producing a cell producing a specific antigen-specific antibody, which comprises screening as described above, and a method for producing a specific antigen-specific antibody, which comprises screening as described above. It is a problem to be solved.
 本発明者らは上記課題を解決するために鋭意検討した結果、特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現しない標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高く、かつ特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現する標的細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高いことを指標とすることによって、ヒト抗体を産生する細胞の培養上清から、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングできることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have identified a target cell expressing a specific antigen, an attacking cell, and an antibody-dependent cytotoxic activity in the case of culturing by mixing the culture supernatant, Target cells that do not express antigen, attacking cells, and target cells that express a specific antigen and have higher antibody-dependent cellular cytotoxicity in the case of culturing by mixing the culture supernatants, attacking cells, and the culture supernatants The antibody-dependent cytotoxic activity in the case of mixing and culturing is an indicator that the target cell expressing a specific antigen and the antibody-dependent cytotoxic activity in the case of culturing by mixing the culture supernatant are higher than the index. By doing so, it was found that a culture supernatant containing cells producing a specific antigen-specific antibody can be screened from a culture supernatant of cells producing a human antibody, and the present invention has been completed.
 即ち、本発明によれば以下の発明が提供される。
(1) ヒト抗体を産生する細胞の培養上清から、抗体依存性細胞障害活性を指標として、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする方法であって、下記の条件を満たす培養上清を、特定抗原特異的抗体を産生する細胞を含む培養上清として選択する方法:
特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現しない標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高く、かつ
特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現する標的細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高い。
(2) ヒト抗体を産生する細胞の培養上清が、ヒトB細胞の培養上清である、(1)に記載の方法。
(3) ヒトB細胞の培養上清が、ヒトB細胞を、抗原を発現するフィーダー細胞上において培養した後の培養上清である、(2)に記載の方法。
(4) ヒトB細胞の培養上清が、ヒトB細胞を、Fasを介した刺激の存在下において培養した後の培養上清である、(2)又は(3)に記載の方法。
(5) ヒトB細胞の培養上清が、ヒトB細胞を、IL-2及びIL-21の存在下において培養した後の培養上清である、(2)から(4)の何れか一に記載の方法。
(6)特定抗原が、標的細胞の細胞膜表面に発現する膜抗原である、(1)から(5)の何れか一に記載の方法。
(7)特定抗原が、膜貫通型受容体である、(1)から(6)の何れか一に記載の方法。
(8)特定抗原が、Gタンパク質共役受容体である、(1)から(7)の何れか一に記載の方法。
(9) ヒト抗体が、ヒトIgGである、(1)から(8)の何れか一に記載の方法。
(10) 抗体依存性細胞障害活性を、死細胞が放出する酵素の検出による測定する、(1)から(9)の何れか一に記載の方法。
(11) (1)から(10)の何れか一に記載の方法により特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞を含む培養上清の製造方法。
(12) (1)から(10)の何れか一に記載の方法により特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞の製造方法。
(13) (1)から(10)の何れか一に記載の方法により特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングすることを含む、特定抗原特異的抗体の製造方法。
That is, according to the present invention, the following inventions are provided.
(1) A method of screening a culture supernatant of cells producing a specific antigen-specific antibody from the culture supernatant of cells producing a human antibody using the antibody-dependent cytotoxic activity as an index, under the following conditions: A method of selecting a culture supernatant satisfying the following as a culture supernatant containing cells producing a specific antigen-specific antibody:
Target cells that express a specific antigen, attacking cells, and antibody-dependent cytotoxicity in the case of culturing by mixing the culture supernatants are mixed with target cells that do not express a specific antigen, attacking cells, and the culture supernatants. Antibody-dependent cytotoxic activity higher than the antibody-dependent cytotoxic activity in the case of culturing in a specific manner, and the antibody-dependent cytotoxic activity in the case of culturing by mixing the target cells expressing the specific antigen, the attacking cells, and the culture supernatant, It is higher than the antibody-dependent cytotoxic activity when the target cells expressing the antigen and the culture supernatant are mixed and cultured.
(2) The method according to (1), wherein the culture supernatant of human antibody-producing cells is a culture supernatant of human B cells.
(3) The method according to (2), wherein the culture supernatant of human B cells is the culture supernatant of human B cells cultured on feeder cells expressing an antigen.
(4) The method according to (2) or (3), wherein the culture supernatant of human B cells is the culture supernatant of human B cells cultured in the presence of Fas-mediated stimulation.
(5) The culture supernatant of human B cells is the culture supernatant obtained by culturing human B cells in the presence of IL-2 and IL-21. (2) to (4) The method described.
(6) The method according to any one of (1) to (5), wherein the specific antigen is a membrane antigen expressed on the cell membrane surface of target cells.
(7) The method according to any one of (1) to (6), wherein the specific antigen is a transmembrane receptor.
(8) The method according to any one of (1) to (7), wherein the specific antigen is a G protein-coupled receptor.
(9) The method according to any one of (1) to (8), wherein the human antibody is human IgG.
(10) The method according to any one of (1) to (9), wherein the antibody-dependent cytotoxic activity is measured by detecting an enzyme released by dead cells.
(11) A cell producing a specific antigen-specific antibody, which comprises screening a culture supernatant containing a cell producing a specific antigen-specific antibody by the method according to any one of (1) to (10). A method for producing a culture supernatant containing the same.
(12) A method for producing a specific antigen-specific antibody, comprising screening a culture supernatant containing a cell producing a specific antigen-specific antibody by the method according to any one of (1) to (10). Production method.
(13) A method for producing a specific antigen-specific antibody, which comprises screening a culture supernatant containing cells producing the specific antigen-specific antibody by the method according to any one of (1) to (10).
 本発明によれば、ヒト抗体を産生する細胞の培養上清から、特定抗原特異的抗体を産生する細胞を含む培養上清を効率的にスクリーニングすることができる。本発明のスクリーニング方法においては、培養上清の濃縮および蛍光色素の標識は必要とされないことからハイスループット(96ウェルや384ウェルなど)での検出が可能である。また本発明のスクリーニング方法においては、抗原の精製も必要とされず、精製が困難である複雑な構造の膜抗原に対する抗体のスクリーニングにおいて特に有効である。本発明によれば、特定抗原特異的抗体を産生する細胞を含む培養上清、特定抗原特異的抗体を産生する細胞、および特定抗原特異的抗体を製造することができる。 According to the present invention, a culture supernatant containing cells producing a specific antigen-specific antibody can be efficiently screened from a culture supernatant of cells producing a human antibody. Since the screening method of the present invention does not require concentration of the culture supernatant and labeling with a fluorescent dye, high throughput (96 well, 384 well, etc.) detection is possible. Further, the screening method of the present invention does not require purification of the antigen, and is particularly effective in screening an antibody against a membrane antigen having a complicated structure which is difficult to purify. According to the present invention, a culture supernatant containing cells producing a specific antigen-specific antibody, cells producing a specific antigen-specific antibody, and a specific antigen-specific antibody can be produced.
図1は、ADCC活性を用いたスクリーニング方法の概要を示す。FIG. 1 shows the outline of the screening method using ADCC activity. 図2は、Trastsuzumab型抗体を用いたADCC活性測定の結果を示す。FIG. 2 shows the results of ADCC activity measurement using the Trastuzumab type antibody. 図3は、抗CXCR2抗体発現細胞の培養上清を用いたADCC活性測定の結果を示す。FIG. 3 shows the results of ADCC activity measurement using the culture supernatant of anti-CXCR2 antibody-expressing cells. 図4は、HEK293T細胞で作製した抗体の抗原結合能の検討結果を示す。FIG. 4 shows the results of examination of the antigen-binding ability of the antibody prepared from HEK293T cells. 図5は、抗CXCR2抗体発現細胞の培養上清を用いたADCC活性測定の結果を示す。FIG. 5 shows the results of ADCC activity measurement using the culture supernatant of anti-CXCR2 antibody-expressing cells. 図6は、抗CXCR2抗体発現細胞の培養上清を用いたADCC活性測定の結果を示す。FIG. 6 shows the results of ADCC activity measurement using the culture supernatant of anti-CXCR2 antibody-expressing cells. 図7は、HEK293T細胞で作製した抗体の抗原結合能の検討結果を示す。FIG. 7 shows the results of examination of the antigen binding ability of the antibody prepared with HEK293T cells.
 以下、本発明について更に詳細に説明する。
 本発明は、ヒト抗体を産生する細胞の培養上清から、抗体依存性細胞障害活性を指標として、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする方法であって、下記の条件を満たす培養上清を、特定抗原特異的抗体を産生する細胞を含む培養上清として選択する方法に関する。
特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現しない標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高く、かつ
特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現する標的細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高い。
Hereinafter, the present invention will be described in more detail.
The present invention is a method for screening a culture supernatant containing cells that produce a specific antigen-specific antibody from the culture supernatant of cells that produce a human antibody, using the antibody-dependent cytotoxic activity as an index, which comprises: The present invention relates to a method for selecting a culture supernatant satisfying the conditions as a culture supernatant containing cells producing a specific antigen-specific antibody.
Target cells that express a specific antigen, attacking cells, and antibody-dependent cytotoxicity in the case of culturing by mixing the culture supernatants are mixed with target cells that do not express a specific antigen, attacking cells, and the culture supernatants. Antibody-dependent cytotoxic activity higher than the antibody-dependent cytotoxic activity in the case of culturing in a specific manner, and the antibody-dependent cytotoxic activity in the case of culturing by mixing the target cells expressing the specific antigen, the attacking cells, and the culture supernatant, It is higher than the antibody-dependent cytotoxic activity when the target cells expressing the antigen and the culture supernatant are mixed and cultured.
 本発明はさらに、上記した本発明の方法によりスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞を含む培養上清の製造方法に関する。本発明はさらに、上記した本発明の方法によりスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞の製造方法に関する。本発明はさらに、上記した本発明の方法によりスクリーニングすることを含む、特定抗原特異的抗体の製造方法に関する。 The present invention further relates to a method for producing a culture supernatant containing cells producing a specific antigen-specific antibody, which comprises screening by the above-mentioned method of the present invention. The present invention further relates to a method for producing cells producing a specific antigen-specific antibody, which comprises screening by the above-mentioned method of the present invention. The present invention further relates to a method for producing a specific antigen-specific antibody, which comprises screening by the above-mentioned method of the present invention.
 本発明においては、抗体依存性細胞障害活性を指標としてスクリーニングを行うことから、高い抗体依存性細胞障害活性を有する抗体を取得することができる。高い抗体依存性細胞障害活性を有する抗体は、がん、炎症性疾患、自己免疫疾患、アレルギーなどの免疫疾患、循環器疾患、またはウィルスあるいは細菌感染をはじめとする各種疾患の予防および治療において有用である。 In the present invention, screening is performed using antibody-dependent cellular cytotoxicity as an index, so that an antibody having high antibody-dependent cellular cytotoxicity can be obtained. Antibodies having high antibody-dependent cellular cytotoxicity are useful in the prevention and treatment of various diseases including cancer, inflammatory diseases, autoimmune diseases, immune diseases such as allergies, cardiovascular diseases, and viral or bacterial infections. Is.
 本発明による培養上清の製造方法は、ヒト抗体を産生する細胞を培養することにより培養上清を生成させること、及び上記で得られた培養上清を回収することを含んでいてもよい。 The method for producing a culture supernatant according to the present invention may include producing a culture supernatant by culturing cells producing a human antibody, and collecting the culture supernatant obtained above.
 本発明による特定抗原特異的抗体を産生する細胞の製造方法は、ヒト抗体を産生する細胞を準備する工程、上記で準備したヒト抗体を産生する細胞の培養上清から、抗体依存性細胞障害活性を指標として、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする工程、およびスクリーニングにより選別された培養上清に対応する細胞を選別する工程を含んでいてもよい。 The method for producing cells producing a specific antigen-specific antibody according to the present invention comprises the step of preparing cells producing human antibodies, the antibody-dependent cytotoxic activity from the culture supernatant of the cells producing human antibodies prepared above. It may include a step of screening a culture supernatant containing cells that produce a specific antigen-specific antibody, and a step of selecting cells corresponding to the culture supernatant selected by the screening using the above as an index.
 本発明による特定抗原特異的抗体の製造方法は、ヒト抗体を産生する細胞を準備する工程、上記で準備したヒト抗体を産生する細胞の培養上清から、抗体依存性細胞障害活性を指標として、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする工程、およびスクリーニングにより選別された培養上清から特定抗原特異的抗体を得る工程を含んでいてもよい。 The method for producing a specific antigen-specific antibody according to the present invention is a step of preparing cells that produce human antibodies, from the culture supernatant of cells that produce human antibodies prepared above, using the antibody-dependent cytotoxic activity as an index, It may include a step of screening a culture supernatant containing cells producing a specific antigen-specific antibody, and a step of obtaining a specific antigen-specific antibody from the culture supernatant selected by the screening.
 また、本発明による特定抗原特異的抗体の製造方法は、ヒト抗体を産生する細胞を準備する工程、上記で準備したヒト抗体を産生する細胞の培養上清から、抗体依存性細胞障害活性を指標として、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする工程、スクリーニングにより選別された培養上清に対応する細胞を選別する工程、上記で選別された細胞を培養して特定抗原特異的抗体を製造する工程を含んでいてもよい。 Further, the method for producing a specific antigen-specific antibody according to the present invention comprises a step of preparing cells producing a human antibody, the culture supernatant of the cells producing a human antibody prepared above, which is used as an indicator of the antibody-dependent cytotoxic activity. As a step of screening a culture supernatant containing cells producing a specific antigen-specific antibody, a step of selecting cells corresponding to the culture supernatant selected by the screening, culturing the cells selected above and culturing the specific antigen It may include a step of producing a specific antibody.
 本発明においては、細胞の培養上清をそのまま用いることができ、培養上清の濃縮、濃度測定、蛍光色素の標識は必要としない。本発明においては培養上清の調製が必要ないことから、ハイスループット(96ウェルや384ウェルなど)の検出が可能である。また、本発明においては、目的抗原は細胞に直接発現させているため、抗原を精製する必要がない。対象となる抗原は生細胞上に発現しており、膜表面に安定発現しているため、抗原としての立体構造は維持されており、変性していない。従って、本発明の方法は、精製が困難である複雑な構造の膜抗原(例えば、Gタンパク共役型受容体(7回膜貫通型受容体)など)に対する抗体のスクリーニングを行う際に特に有効である。 In the present invention, the cell culture supernatant can be used as it is, and concentration of the culture supernatant, concentration measurement, and labeling of fluorescent dye are not required. In the present invention, since it is not necessary to prepare the culture supernatant, high throughput (96 wells, 384 wells, etc.) can be detected. Further, in the present invention, since the target antigen is directly expressed in cells, it is not necessary to purify the antigen. Since the target antigen is expressed on living cells and is stably expressed on the membrane surface, the three-dimensional structure as the antigen is maintained and is not denatured. Therefore, the method of the present invention is particularly effective in screening an antibody against a membrane antigen having a complicated structure that is difficult to purify (for example, G protein-coupled receptor (7-transmembrane receptor)). is there.
<抗体依存性細胞障害活性を指標とすること>
 本発明においては、ヒト抗体を産生する細胞の培養上清から、抗体依存性細胞障害活性を指標として、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする。具体的には下記の条件を満たす培養上清を、特定抗原特異的抗体を産生する細胞を含む培養上清として選択する。
<Using antibody-dependent cellular cytotoxicity as an index>
In the present invention, a culture supernatant containing cells producing a specific antigen-specific antibody is screened from the culture supernatant of cells producing a human antibody using the antibody-dependent cytotoxic activity as an index. Specifically, a culture supernatant satisfying the following conditions is selected as a culture supernatant containing cells producing a specific antigen-specific antibody.
特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現しない標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高く、かつ
特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現する標的細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高い。
Target cells that express a specific antigen, attacking cells, and antibody-dependent cytotoxicity in the case of culturing by mixing the culture supernatants are mixed with target cells that do not express a specific antigen, attacking cells, and the culture supernatants. Antibody-dependent cytotoxic activity higher than the antibody-dependent cytotoxic activity in the case of culturing in a specific manner, and the antibody-dependent cytotoxic activity in the case of culturing by mixing the target cells expressing the specific antigen, the attacking cells, and the culture supernatant, It is higher than the antibody-dependent cytotoxic activity when the target cells expressing the antigen and the culture supernatant are mixed and cultured.
(特定抗原)
 本発明において、特定抗原は特に限定されないが、好ましくは、膜抗原であり、より好ましくは標的細胞の細胞膜表面に発現する膜抗原である。
(Specific antigen)
In the present invention, the specific antigen is not particularly limited, but is preferably a membrane antigen, more preferably a membrane antigen expressed on the cell membrane surface of the target cell.
 特定抗原としては、がん特異的膜抗原でもよく、例えば、HER2(human EGFR-related 2の略)、carcinoembryonic antigen (CEA)、mucin 1(MUC-1)、epithelial cell adhesion molecule (EpCAM)、epidermal growth factor receptor(EGFR)、cancer antigen 125(CA125)などが挙げられる。 The specific antigen may be a cancer-specific membrane antigen, and examples thereof include HER2 (abbreviation of human EGFR-related 2), carcinoembryonic antigen (CEA), mucin 1 (MUC-1), epithelial cell adhesion molecular (EPC), and Examples include growth factor receptor (EGFR) and cancer antigen 125 (CA125).
 特定抗原としては、膜貫通型受容体でもよい。膜貫通型受容体としては、例えば、イオンチャンネル連結型受容体、又は、イオンチャンネルと連結していない受容体を挙げることができる他、例えば、キナーゼタイプ受容体又は非キナーゼタイプ受容体を挙げることができる。 -The specific antigen may be a transmembrane receptor. As the transmembrane receptor, for example, an ion channel-linked receptor or a receptor that is not linked to an ion channel can be mentioned, and further, for example, a kinase type receptor or a non-kinase type receptor can be mentioned. You can
  イオンチャンネル連結型受容体は、細胞膜を貫通している小孔状の受容体であり、シグナルであるリガンド分子の結合により、小孔が開閉して細胞内部と細胞外部のNa+、K+、又はCa2+などのイオン輸送を行う。イオンチャンネル連結型受容体としては、例えば、アセチルコリン、グルタミン酸、セロトニン、GABAa、又はグリシンをリガンドとする各受容体を挙げることができる。例えば、アセチルコリン、グルタミン酸、又はセロトニンをリガンドとするイオンチャンネル型受容体はNa+を、GABAaやグリシンをリガンドとするイオンチャンネル型受容体はCl-の輸送を行う。 The ion channel-linked receptor is a small pore-shaped receptor that penetrates the cell membrane, and upon binding of a ligand molecule that is a signal, the small pore is opened and closed to form Na + , K + inside and outside the cell, Alternatively, ion transport such as Ca 2+ is performed. Examples of the ion channel-linked receptor include each receptor having acetylcholine, glutamic acid, serotonin, GABAa, or glycine as a ligand. For example, an ion channel type receptor having acetylcholine, glutamic acid or serotonin as a ligand transports Na + and an ion channel type receptor having GABAa or glycine as a ligand transports Cl .
 キナーゼタイプ受容体は、膜一回貫通型の構造を有し、細胞膜内にキナーゼが結合している受容体である。キナーゼタイプ受容体としては、例えば、増殖因子型受容体ファミリー又はTGF(transforming growth factor)-β受容体ファミリーを挙げることができる。 A kinase-type receptor is a receptor with a single-transmembrane structure in which a kinase is bound within the cell membrane. Examples of the kinase type receptor include the growth factor type receptor family or the TGF (transforming grow factor)-β receptor family.
 増殖因子型受容体ファミリーは、細胞膜内側にチロシンキナーゼを保有しており、リガンドが結合すると細胞膜内ドメインのチロシンがリン酸化されることで活性化する受容体である。増殖因子型受容体ファミリーとしては、例えば、インシュリン受容体、M-CSF(macrophage colony stimulating factor)受容体、EGF(epidermal growth factor)受容体、PDGF(platelet derived growth factor)受容体、FGF(fibroblast growth factor)受容体、IGF(insulin-like growth factor)受容体、又はHGF(hepatocyte growth factor)受容体などを挙げることができる。 The growth factor type receptor family possesses a tyrosine kinase inside the cell membrane and is activated by phosphorylation of tyrosine in the cell membrane domain upon binding of a ligand. The growth factor type receptor family includes, for example, insulin receptor, M-CSF (macrophase colony stimulating factor) receptor, EGF (epidemal growth factor) receptor, PDGF (platelet derivatized GFrobothrofactor). Examples thereof include a factor (receptor) receptor, an IGF (insulin-like growh factor) receptor, and an HGF (hepatocytogrowth factor) receptor.
 TGF-β受容体ファミリーは  細胞膜内部にセリンスレオニンキナーゼを保有しており、セリン又はスレオニンがリン酸化されることで活性化する受容体である。TGF-β受容体ファミリーとしては、例えば、TGF受容体、アクチビン(activin)受容体、又はBMP(bone morphogenic protein)受容体などを挙げることができる。 The TGF-β receptor family has serine-threonine kinase inside the cell membrane and is activated by phosphorylation of serine or threonine. Examples of the TGF-β receptor family include TGF receptor, activin receptor, BMP (bone morphogenic protein) receptor and the like.
 非キナーゼタイプの受容体としては、例えば、サイトカイン受容体(I型サイトカイン受容体)スーパーファミリー、IFN(interferon)受容体(II型サイトカイン受容体)ファミリー、TNF(tumor necrosis factor)受容体(III型サイトカイン受容体)ファミリー、免疫グロブリンスーパーファミリー、又はGタンパク質共役型受容体ファミリーを挙げることができる。 Examples of non-kinase type receptors include cytokine receptor (type I cytokine receptor) superfamily, IFN (interferon) receptor (type II cytokine receptor) family, TNF (tumor necrosis factor) receptor (type III) The cytokine receptor) family, the immunoglobulin superfamily, or the G protein-coupled receptor family can be mentioned.
 サイトカイン受容体スーパーファミリーは、膜一回貫通型受容体であり、N末端側に4つのシステイン残基の繰り返し又はWSボックスと呼ばれる特徴的なアミノ酸配列を有し、細胞外には、ファイブロネクチン(FN)様構造の繰り返し配列を有する受容体である。サイトカイン受容体スーパーファミリーとしては、例えば、IL(interleukin)-2受容体、IL-3受容体、IL-4受容体、IL-5受容体、IL-6受容体、IL-7受容体、IL-9受容体、IL-11受容体、IL-12受容体、IL-13受容体、IL-15受容体、GM-CSF(granulocyte-macrophage colony stimulating factor)受容体、CNTF(ciliary neurotrophic factor)受容体、EPO(erythropoietin)受容体、LIF(Leukemia inhibitory factor)受容体、OSM(oncostatin M)受容体、又はG-CSF(granulocyte-colony stimulating factor)受容体などを挙げることができる。多くの場合、2~3個のサブユニットにより構成されているが、シグナル伝達に関与するサブユニットは、複数の受容体間で共有されている。 The cytokine receptor superfamily is a single transmembrane receptor, which has a characteristic amino acid sequence called a repeat of four cysteine residues or WS box at the N-terminal side, and extracellularly has a fibronectin ( It is a receptor having a repeating sequence of FN)-like structure. Examples of the cytokine receptor superfamily include IL (interleukin)-2 receptor, IL-3 receptor, IL-4 receptor, IL-5 receptor, IL-6 receptor, IL-7 receptor, IL -9 receptor, IL-11 receptor, IL-12 receptor, IL-13 receptor, IL-15 receptor, GM-CSF (granulocyte-macrophase colony stimulating factor) receptor, CNTF (Cirical neurotrophotic factor) receptor Body, EPO (erythropoietin) receptor, LIF (Leukemia inhibitory factor) receptor, OSM (oncostatin M) receptor, or G-CSF (granulocyte-colony stimulating factor) receptor. Often made up of a few subunits, the subunits involved in signal transduction are shared among multiple receptors.
 IFN受容体ファミリーは、WSボックスはもたないが、膜一回貫通型の構造やシステイン残基の繰り返しなど、サイトカイン受容体スーパーファミリーと構造上類似した受容体である。IFN受容体ファミリーとしては、例えば、IFNα受容体、IFNβ受容体、IFNγ受容体、又はIL-10受容体などを挙げることができる。 The IFN receptor family has no WS box, but is a receptor structurally similar to the cytokine receptor superfamily, such as a single-transmembrane structure and repeated cysteine residues. Examples of the IFN receptor family include IFNα receptor, IFNβ receptor, IFNγ receptor, and IL-10 receptor.
 TNF受容体ファミリーは、その細胞外ドメインが、システイン残基の豊富なユニットにより構成された受容体である。このユニットには各TNF受容体ファミリーの受容体間で相同性がある。TNF受容体I及びFasの細胞内ドメインにはデスドメイン(death domain)と呼ばれる配列が存在している。TNF受容体ファミリーとしては、例えば、TNF受容体、NGF(nerve growth factor)受容体、Fas、CD27、CD30、CD40、HVEM(Herpes virus entry mediator)、LTB(Lymphotoxinβ)受容体、OX40、RANK(Receptor activator of NF-κB)、又はCD137などを挙げることができ、多くが細胞活性化や細胞死に関連している。 The TNF receptor family is a receptor whose extracellular domain is composed of units rich in cysteine residues. This unit has homology between receptors of each TNF receptor family. A sequence called a death domain exists in the intracellular domains of TNF receptors I and Fas. Examples of the TNF receptor family include TNF receptor, NGF (nerve growth factor) receptor, Fas, CD27, CD30, CD40, HVEM (Herpes virus entry mediator), LTB (Lymphotoxin βor), NOX (K40) and OX. Activator of NF-κB), CD137, etc. can be mentioned, and many are associated with cell activation and cell death.
  免疫グロブリンスーパーファミリーは、細胞外に免疫グロブリン様ドメインを3つ保有した構造を有する受容体である。免疫グロブリンスーパーファミリーとしては、例えば、IL-1受容体又はIL-18受容体などを挙げることができる。また、構造的に類似したToll又はToll様受容体などを挙げることができる。これらはTLR1~TLR12などがあり、エンドトキシンが細胞に作用する時にその情報を伝達するTLR4もこのファミリーの受容体である。 The immunoglobulin superfamily is a receptor with a structure that has three extracellular immunoglobulin-like domains. Examples of the immunoglobulin superfamily include IL-1 receptor and IL-18 receptor. In addition, structurally similar Toll or Toll-like receptors can be mentioned. These include TLR1 to TLR12, and TLR4, which transmits information when endotoxin acts on cells, is also a receptor of this family.
  Gタンパク質共役型受容体(GPCR)ファミリーは、Gタンパク質と共役して働き、細胞膜を7回貫通する構造を有する受容体である。GPCRファミリーとしては、例えば、ロドプシン受容体(Gt)、カテコールアミン受容体[β1、β2、β3(以上、Gs)、α1(Gq)、α2(Gs、Gi、Gz、Gq)]、ドーパミン受容体[D1、D5(以上、Gs)、D2(Gi)]、ムスカリン受容体[m1、m3(以上、Gq)、m2、m4、m5(以上、Gi、Go]、アデノシン受容体[A1、A3(以上、Gi)、A2(Gs)]、PGE受容体[EP2、EP4(以上、Gs)、EP3(Gi)、EP1]、ロイコトリエン受容体[BLT、Cys-LT1(以上、Gi、Gq)]、スフィンゴシン1-リン酸受容体[S1P1(Gi)、S1P2、S1P3(以上、Gi、Gq、G13]、リゾホスファチジン酸受容体[LPA1(Gi、G12/13)、LPA2、LPA3(以上、Gs、Gq)]、ノシセプチン受容体、hGPCR44(Gi)、hGPCR4、hGPCR10、hGPCR17、hGPCR19、hGPCR39、又はhGPCR48などを挙げることができる。なお、各受容体の後に続く括弧内の記載は、受容体サブタイプと、共役して働くGタンパク質αサブユニットの種類を示す。 The G protein-coupled receptor (GPCR) family is a receptor having a structure that works in conjugation with a G protein and penetrates the cell membrane seven times. Examples of the GPCR family include rhodopsin receptors (Gt), catecholamine receptors [β 1 , β 2 , β 3 (above, Gs), α 1 (Gq), α 2 (Gs, Gi, Gz, Gq)]. , Dopamine receptors [D1, D5 (or more, Gs), D2(Gi)], muscarinic receptors [m1, m3 (or more, Gq), m2, m4, m5 (or more, Gi, Go], adenosine receptors [ A1, A3 (or more, Gi), A2 (Gs)], PGE receptor [EP2, EP4 (or more, Gs), EP3 (Gi), EP1], leukotriene receptor [BLT, Cys-LT1 (or more, Gi, Gq)], sphingosine 1-phosphate receptor [S1P 1 (Gi), S1P 2 , S1P 3 (above, Gi, Gq, G 13 ], lysophosphatidic acid receptor [LPA 1 (Gi, G 12/13 )] , LPA 2 , LPA 3 (above, Gs, Gq)], nociceptin receptor, hGPCR44(Gi), hGPCR4, hGPCR10, hGPCR17, hGPCR19, hGPCR39, hGPCR48, etc. After each receptor, The following description in parentheses indicates the receptor subtype and the type of G protein α subunit that works in a coupled manner.
(標的細胞)
 本発明においては、特定抗原を発現する標的細胞、および特定抗原を発現しない標的細胞を使用する。同一のスクリーニングにおける標的細胞としては、特定抗原を発現する標的細胞、および特定抗原を発現しない標的細胞について、同一の細胞を使用することが好ましい。
(Target cell)
In the present invention, target cells that express a specific antigen and target cells that do not express a specific antigen are used. As the target cells in the same screening, it is preferable to use the same cells for the target cells expressing the specific antigen and the target cells not expressing the specific antigen.
 標的細胞の種類は特に限定されず、特定抗原を発現する動物細胞を用いることができる。標的細胞としては、例えば、フィーダー細胞を使用することができる。
 フィーダー細胞の由来としては、哺乳動物の霊長類、有蹄類、小型哺乳類の齧歯類、鳥類などが挙げられ、好ましくは、齧歯類及び哺乳類由来のものであり、マウス、ヒトなどを例示することができる。フィーダー細胞として使用可能な細胞としては、線維芽細胞、上皮細胞(例えばHeLa細胞)、胎児腎臓細胞(例えば、HEK293など)、濾胞樹状細胞などを挙げることができる。なかでも、増殖速度が速く、細胞表面積が大きい、フィーダー細胞の除去が簡便であるとの観点から、線維芽細胞が好ましい。
The type of target cells is not particularly limited, and animal cells expressing a specific antigen can be used. As the target cells, for example, feeder cells can be used.
Examples of the origin of the feeder cells include mammalian primates, ungulates, small mammal rodents, birds, and the like, preferably those derived from rodents and mammals, and examples thereof include mice and humans. can do. Examples of cells that can be used as feeder cells include fibroblasts, epithelial cells (for example, HeLa cells), fetal kidney cells (for example, HEK293), follicular dendritic cells and the like. Among them, fibroblasts are preferable from the viewpoints of rapid growth rate, large cell surface area, and easy removal of feeder cells.
 フィーダー細胞としては、好ましくは、CD40L、BAFF、及び所望によりFasLを細胞表面に提示されたフィーダー細胞を使用することができる。上記のフィーダー細胞は、CD40L、BAFF、及びFasLの既知の配列に基づいて、当業者であれば遺伝子組み換え技術等を用いて作製することができる。 As the feeder cells, preferably, CD40L, BAFF, and optionally, FasL-displayed feeder cells can be used. The above feeder cells can be prepared by those skilled in the art using gene recombination technology or the like, based on the known sequences of CD40L, BAFF, and FasL.
 CD40Lは、CD40に対するリガンドであり、CD40Lのアミノ酸配列は公知となっている(例えば、Nature,Vol.357,pp.80-82(1992)及び、EMBO J.,Vol.11,pp.4313-4321(1992)参照)。CD40Lの配列のうち、受容体結合能に関与する活性ドメインの結合能が失われない程度に保存されていればよく、例えば、活性ドメインの80%以上のアミノ酸配列相同性があれば、本発明において利用可能である。このようなCD40Lは、自然に発現する細胞から単離したものであってもよく、既知のアミノ酸配列に基づいて合成したものであってもよい。また、CD40Lは、培養系中のB細胞に対してCD40Lの存在に対応したシグナルを与えることができる形態であればよく、遊離型であっても、膜結合型であってもよい。 CD40L is a ligand for CD40, and the amino acid sequence of CD40L is known (eg, Nature, Vol. 357, pp. 80-82 (1992) and EMBO J., Vol. 11, pp. 4313-). 4321 (1992)). The CD40L sequence may be conserved to the extent that the binding ability of the active domain involved in receptor binding ability is not lost. For example, if 80% or more amino acid sequence homology of the active domain is present, the present invention Is available at. Such CD40L may be isolated from cells that naturally express, or may be synthesized based on a known amino acid sequence. Further, CD40L may be in a form capable of giving a signal corresponding to the presence of CD40L to B cells in the culture system, and may be in a free form or a membrane-bound form.
 BAFF(B細胞活性化因子:B cell activation factor belonging to the tumor necrosis factor family)は、TNF類縁分子であって抗原と反応したB細胞の増殖、分化等に関与していることが知られている分子であり、BAFFのアミノ酸配列は既に公知となっている(例えば、J Exp Med,Vol.189,pp.1747-1756(1999)及び、Science, Vol.285,pp.260-263(1999)及び、J Bio Chem, Vol.274, pp.15978-15981(1999))。BAFFの配列のうち、受容体結合能に関与する活性ドメインの結合能が失われない程度に保存されていればよく、例えば、活性ドメインの80%以上のアミノ酸配列相同性があれば、本発明において利用可能である。このようなBAFFは、自然に発現する細胞から単離したものであってもよく、既知のアミノ酸配列に基づいて合成したものであってもよい。また、BAFFは、培養系中のIgG陽性B細胞に対してBAFFの存在に対応したシグナルを与えることができる形態であればよく、遊離型(即ち、分泌型)であっても、膜結合型であってもよい。 BAFF (B cell activator: B cell activation factor belonging to the tumor necrosis factor family) is a TNF-related molecule and is known to be involved in the proliferation and differentiation of B cells that have reacted with antigens. It is a molecule, and the amino acid sequence of BAFF is already known (for example, J Exp Med, Vol. 189, pp. 1747-1756 (1999) and Science, Vol. 285, pp. 260-263 (1999)). And J Bio Chem, Vol. 274, pp. 15978-15981 (1999)). It is sufficient that the BAFF sequence is conserved to the extent that the binding ability of the active domain involved in receptor binding ability is not lost. For example, if 80% or more amino acid sequence homology of the active domain is present, the present invention Is available at. Such BAFF may be isolated from cells that naturally express, or may be synthesized based on a known amino acid sequence. BAFF may be in any form as long as it can give a signal corresponding to the presence of BAFF to IgG-positive B cells in the culture system. Even if it is in a free form (ie, secretory form), it is a membrane-bound form. May be
 Fasリガンド(FasL)は、TNFファミリーに属するデス因子、即ちアポトーシス誘導活性を示すサイトカインであり、そのアミノ酸配列は公知となっている(例えば、Cell,Vol.75, pp.1169-1178 (1993))参照。本発明では、FasLの配列のうち、受容体結合能に関与する活性ドメインの結合能が失われない程度に保存されていればよく、例えば、活性ドメインの80%以上のアミノ酸配列相同性があれば、本発明において利用可能である。このようなFasLは、自然に発現する細胞から単離したものであってもよく、既知のアミノ酸配列に基づいて合成したものであってもよい。また、FasLは、培養系中のIgG陽性B細胞に対してFasの存在に対応したシグナルを与えることができる形態であればよく、細胞内シグナルを生じさせることができれば遊離型であっても、膜結合型であってもよい。 FasLは、一般的にB細胞に対してアポトーシスを誘導可能な濃度で培養系に存在していればよい。 Fas ligand (FasL) is a death factor belonging to the TNF family, that is, a cytokine showing an apoptosis-inducing activity, and its amino acid sequence is publicly known (eg, Cell, Vol. 75, pp. 1169-1178 (1993)). )reference. In the present invention, the sequence of FasL may be conserved to the extent that the binding ability of the active domain involved in receptor binding ability is not lost, and for example, 80% or more amino acid sequence homology of the active domain may be present. For example, it can be used in the present invention. Such FasL may be isolated from cells that naturally express, or may be synthesized based on a known amino acid sequence. Further, FasL may be in a form capable of giving a signal corresponding to the presence of Fas to IgG-positive B cells in the culture system, and may be in a free form as long as it can generate an intracellular signal, It may be membrane-bound. FasL should generally be present in the culture system at a concentration that can induce apoptosis in B cells.
 CD40L、BAFF及びFasLの由来としては、哺乳動物の霊長類、有蹄類、小型哺乳類の齧歯類、鳥類などが挙げられ、好ましくは、齧歯類及び哺乳類由来のものであり、ヒト、マウスを例示することができる。 Examples of the origins of CD40L, BAFF and FasL include mammalian primates, ungulates, small mammal rodents, birds and the like, and preferably those derived from rodents and mammals, such as humans and mice. Can be illustrated.
(攻撃細胞)
 本発明において使用する攻撃細胞(エフェクター細胞とも言う)は、抗体を認識するFcγR(Fcγレセプター)を発現する細胞であれば特に限定されず、T細胞、ナチュラルキラー(NK)細胞、ナチュラルキラーT(NKT)細胞、マクロファージ、単球(末梢血単核細胞(PBMC)など)、樹状細胞、好中球、肥満(マスト)細胞などを使用することができる。上記の中でも、好ましくは、ナチュラルキラー(NK)細胞を使用することができる。ナチュラルキラー(NK)細胞としては、KHYG-1、iNK-92、NK-YS、NK-YT、MOTN-1、NKL、HANK-1またはNKG細胞株などが挙げられるが、特に限定されない。特に好ましくは、KHYG-1を使用できる。
(Attacking cell)
The attacking cells (also referred to as effector cells) used in the present invention are not particularly limited as long as they express FcγR (Fcγ receptor) that recognizes an antibody, and include T cells, natural killer (NK) cells, natural killer T( NKT) cells, macrophages, monocytes (peripheral blood mononuclear cells (PBMC) and the like), dendritic cells, neutrophils, mast cells and the like can be used. Among the above, preferably, natural killer (NK) cells can be used. Examples of natural killer (NK) cells include KHYG-1, iNK-92, NK-YS, NK-YT, MOTN-1, NKL, HANK-1 and NKG cell lines, but are not particularly limited. Particularly preferably, KHYG-1 can be used.
(抗体依存性細胞障害活性)
 本発明においては、
攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現しない標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高く、かつ
特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現する標的細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高い;
ことを指標とする。
(Antibody-dependent cytotoxic activity)
In the present invention,
Antibody-dependent cytotoxic activity in the case of culturing the mixture of the attacking cells and the culture supernatant depends on the antibody in the case of culturing by mixing the target cells not expressing a specific antigen, the attacking cells, and the culture supernatant Cells having a higher specific cytotoxic activity and expressing a specific antigen, an attacking cell, and an antibody-dependent cytotoxic activity in the case of culturing by mixing the culture supernatant, a target cell expressing a specific antigen, and Higher than antibody-dependent cytotoxic activity when the culture supernatant is mixed and cultured;
This is used as an index.
 抗体依存性細胞障害活性(ADCC活性)とは、標的細胞の細胞表面抗原に特異的抗体が付着した際、そのFc部分に攻撃細胞(Fcγ受容体を保有するエフェクター細胞)がFcγ受容体を介して結合し、標的細胞に傷害を与える活性を意味する。 Antibody-dependent cellular cytotoxicity (ADCC activity) means that when a specific antibody is attached to a cell surface antigen of a target cell, an attacking cell (effector cell having an Fcγ receptor) is mediated by an Fcγ receptor at the Fc part thereof. Binding and damaging the target cells.
 抗体依存性細胞障害活性は、公知の方法により測定することができる。具体的には、以下の方法により行うことが可能である。
 特定抗原を発現しない標的細胞、特定抗原を発現する標的細胞、攻撃細胞、及び培養上清を準備する。
 特定抗原を発現しない標的細胞、及び特定抗原を発現する標的細胞を、96ウェルプレートに播種する。次いで、培地をスクリーニング用の培養上清に交換し、培養を行う。その後、攻撃細胞を各ウェルに添加する。特定抗原を発現する標的細胞と、攻撃細胞と、培養上清とを使用する実験系、特定抗原を発現しない標的細胞と、攻撃細胞と、培養上清とを使用する実験系、並びに特定抗原を発現する標的細胞と、培養上清とを使用する実験系とを行う。適当な時間培養した後に、培養上清を用いてADCC活性を、死細胞が放出する酵素(例えば、LDHなど)を測定することで評価することができる。
The antibody-dependent cytotoxic activity can be measured by a known method. Specifically, it can be performed by the following method.
A target cell that does not express a specific antigen, a target cell that expresses a specific antigen, an attacking cell, and a culture supernatant are prepared.
Target cells that do not express the specific antigen and target cells that express the specific antigen are seeded in a 96-well plate. Then, the medium is replaced with a culture supernatant for screening, and the culture is performed. Afterwards, challenge cells are added to each well. An experimental system using a target cell that expresses a specific antigen, an attacking cell, and a culture supernatant, an experimental system that uses a target cell that does not express a specific antigen, an attacking cell, and a culture supernatant, and a specific antigen An experimental system using the target cells to be expressed and the culture supernatant is performed. After culturing for an appropriate time, ADCC activity can be evaluated using the culture supernatant by measuring the enzyme released by dead cells (for example, LDH).
 「攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現しない標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高く、かつ特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現する標的細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高い」における「高く」および「高い」とは、上記のようにして死細胞が放出する酵素(例えば、LDHなど)を測定することによって評価した抗体依存性細胞障害活性が高いことを意味する。その度合いは、酵素の測定における吸光度の比率が1.1倍以上、1.2倍以上、1.3倍以上、1.4倍以上、1.5倍以上、1.6倍以上、1.7倍以上、1.8倍以上、1.9倍以上、または2.0倍以上であればよい。 "Antibody-dependent cytotoxic activity in the case of mixing and culturing the attacking cells and the culture supernatant, the target cells that do not express a specific antigen, the attacking cells, and the antibody in the case of mixing and culturing the culture supernatant Target cells that have higher specificity-dependent cytotoxicity and that express a specific antigen, attack cells, and antibody-dependent cellular cytotoxicity in the case of culturing by mixing the culture supernatant, target cells that express a specific antigen, And "higher" and "higher" than "higher than antibody-dependent cellular cytotoxicity when the culture supernatant is mixed and cultured" means an enzyme released by dead cells as described above (for example, LDH and the like). It means that the antibody-dependent cellular cytotoxicity evaluated by measuring The degree is such that the ratio of absorbance in enzyme measurement is 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times or more, 1. It may be 7 times or more, 1.8 times or more, 1.9 times or more, or 2.0 times or more.
<ヒト抗体を産生する細胞の培養上清>
 本発明においては、ヒト抗体を産生する細胞の培養上清をスクリーニングする。
 ヒト抗体の種類は、特に限定されず、ヒトIgG、ヒトIgA、ヒトIgM、ヒトIgD、ヒトIgEの何れでもよいが、好ましくはヒトIgGである。
<Culture supernatant of human antibody-producing cells>
In the present invention, the culture supernatant of cells producing human antibodies is screened.
The type of human antibody is not particularly limited, and may be any of human IgG, human IgA, human IgM, human IgD, and human IgE, but human IgG is preferable.
 ヒト抗体を産生する細胞の培養上清としては、特に限定されないが、例えば、ヒトB細胞の培養上清、または樹立された動物細胞株(CHO-K1細胞など)の培養上清を使用することができる。
 ヒトB細胞の培養上清としては、好ましくは、ヒトB細胞を、抗原を発現するフィーダー細胞上において培養した後の培養上清を使用することができる。
 ヒトB細胞の培養上清としては、好ましくは、ヒトB細胞を、Fasを介した刺激の存在下において培養した後の培養上清を使用することができる。
 ヒトB細胞の培養上清としては、好ましくは、ヒトB細胞を、IL-2及びIL-21の存在下において培養した後の培養上清を使用することができる。
The culture supernatant of human antibody-producing cells is not particularly limited. For example, the culture supernatant of human B cells or the culture supernatant of established animal cell lines (CHO-K1 cells, etc.) can be used. You can
As the culture supernatant of human B cells, preferably, the culture supernatant obtained by culturing human B cells on feeder cells expressing an antigen can be used.
As the culture supernatant of human B cells, preferably, the culture supernatant obtained after culturing human B cells in the presence of Fas-mediated stimulation can be used.
As the culture supernatant of human B cells, preferably, the culture supernatant obtained by culturing human B cells in the presence of IL-2 and IL-21 can be used.
 ヒトB細胞としては、Bach2遺伝子の発現が上昇しているB細胞を使用してもよい。Bach2遺伝子の発現が上昇しているB細胞としては、B細胞にBach2遺伝子を導入することによって得られる細胞、またはB細胞が元々有しているBach2遺伝子の発現量又は存在量を増大させることにより得られる細胞の何れでもよい。Bach2遺伝子の発現が上昇しているB細胞については、国際公開WO2016/002760号公報の段落0020~0035に記載されており、国際公開WO2016/002760号公報に記載の内容は本明細書により援用される。 As human B cells, B cells in which the expression of Bach2 gene is increased may be used. B cells in which the expression of the Bach2 gene is increased include cells obtained by introducing the Bach2 gene into B cells, or by increasing the expression amount or abundance of the Bach2 gene originally possessed by the B cells. Any of the cells obtained may be used. B cells in which the expression of the Bach2 gene is elevated are described in paragraphs 0020 to 0035 of International Publication WO2016/002760, and the content described in International Publication WO2016/002760 is incorporated herein by reference. It
 B細胞が元々有しているBach2遺伝子の発現量又は存在量を増大させる手法としては、Menin遺伝子(Nature Communications, 5:3555, DOI:10:1038.ncomms4555)をB細胞に導入する方法、レプトマイシンB(LMB)の添加によりBach2の核外輸送を阻害して核に局在化させる方法、またはBach2のユビキチン化とプロテアソ-ムによる分解の阻害剤を添加する方法などが挙げられるが、特に限定されない。 As a method for increasing the expression level or abundance of the Bach2 gene originally possessed by B cells, a method for introducing the Menin gene (Nature Communications, 5:3555, DOI:10:1038.ncommms4555) into B cells, lept Examples include a method of inhibiting the nuclear export of Bach2 by adding mycin B (LMB) to localize it in the nucleus, or a method of adding an inhibitor of ubiquitination of Bach2 and its degradation by proteasome. Not limited.
 B細胞にBach2遺伝子を導入する場合におけるBach2遺伝子は、国際公開WO2016/002760号公報の段落0022~0031に記載されている通りである。
 B細胞にBach2遺伝子を導入するためには、Bach2遺伝子を有する組み換えベクターを構築し、この組み換えベクターをB細胞に導入すればよい。
When introducing the Bach2 gene into B cells, the Bach2 gene is as described in paragraphs 0022 to 0031 of International Publication WO2016/002760.
In order to introduce the Bach2 gene into B cells, a recombinant vector having the Bach2 gene may be constructed and this recombinant vector may be introduced into B cells.
 Bach2遺伝子の発現の上昇のレベルについては特に限定されないが、元々のB細胞と比べて、Bach2遺伝子の発現量が1.5倍以上であることが好ましく、2倍以上であることがさらに好ましい。 The level of increase in Bach2 gene expression is not particularly limited, but the expression level of Bach2 gene is preferably 1.5 times or more, and more preferably 2 times or more, as compared with the original B cells.
 ヒト抗体を産生する細胞(好ましくはB細胞)は、好ましくは、細胞表面にヒト抗体を有する細胞である。細胞表面にヒト抗体を有する細胞は、細胞集団からヒト抗体の有無に基づいて得ることができる。 The human antibody-producing cells (preferably B cells) are preferably cells having human antibodies on the cell surface. Cells having human antibodies on the cell surface can be obtained from cell populations based on the presence or absence of human antibodies.
 ヒト抗体を産生する細胞を含有する細胞集団は、一般には末梢血細胞、骨髄細胞又はリンパ系臓器、例えば脾臓細胞などに由来する細胞集団であればよく、特に限定されない。またIgG陽性B細胞としては、抗原未反応のナイーブB細胞であっても、抗原接触後のB細胞であってもよい。ここで本明細書における「ナイーブB細胞」とは、抗原と未反応の成熟B細胞を一般に指し、CXCR5陽性且つCD40陽性の表面抗原を示す細胞が該当する。 The cell population containing human antibody-producing cells is not particularly limited as long as it is generally derived from peripheral blood cells, bone marrow cells or lymphoid organs such as spleen cells. The IgG-positive B cell may be a naive B cell that has not reacted with the antigen or a B cell after contact with the antigen. Here, the “naive B cell” in the present specification generally refers to a mature B cell that has not reacted with an antigen, and corresponds to a cell showing a CXCR5-positive and CD40-positive surface antigen.
 分化段階における他のステージのB細胞や多種の細胞が含まれていてもよい。培養による選択の効率の観点から、IgG陽性B細胞以外のB細胞、例えば、IgE陽性細胞、CD138陽性(プラズマ)細胞や、B細胞以外の細胞、例えば、T細胞、単球、NK細胞を除去することが好ましい。 -It may contain B cells of various stages in the differentiation stage and various types of cells. From the viewpoint of efficiency of selection by culture, B cells other than IgG positive B cells, for example, IgE positive cells, CD138 positive (plasma) cells, and cells other than B cells, for example, T cells, monocytes, NK cells are removed. Preferably.
 B細胞集団は、免疫系が確立された生物由来の細胞集団であればよく、哺乳動物の霊長類、例えばヒト、サルなど、有蹄類、例えばブタ、ウシ、ウマなど、小型哺乳類の齧歯類、例えばマウス、ラット、ウサギなど、鳥類、例えはニワトリ、ウズラなどが含まれる。本細胞集団の由来としては、齧歯類及び霊長類であることが好ましく、マウス、ヒトを例示することができる。脾臓等の生体組織から細胞集団を調製する方法は、通常のB細胞集団を調製する条件をそのまま適用すればよい。また、生体由来の細胞集団に限定されず、確立されたB細胞株であってもよい。 The B cell population may be a cell population derived from an organism having an established immune system, and may include rodents of small mammals such as mammalian primates such as humans and monkeys and ungulates such as pigs, cows and horses. Such species include, for example, mice, rats, rabbits, birds, such as chickens and quails. The origin of this cell population is preferably rodents and primates, and examples thereof include mice and humans. As a method for preparing a cell population from a biological tissue such as spleen, ordinary conditions for preparing a B cell population may be applied as they are. Further, it is not limited to a cell population derived from a living body, and may be an established B cell line.
 B細胞を含む細胞集団の培養は、通常、B細胞の培養に用いられる培地による通常の培養条件であればよい。このような培地としては、例えば、ダルベッコ改変イーグル培地(DMEM)や、RPMI1640などを挙げることができる。これらの培地に対しては、通常、血清、各種ビタミン、各種抗生物質等、通常の細胞培養に適用可能な各種添加剤を添加してもよい。 培養温度などの培養条件は、一般的なB細胞に対して用いられる培養条件をそのまま適用することができ、例えば、37℃5%CO2の条件が挙げられる。 細胞集団の培地への播種密度は、細胞集団の由来や組織から調製した細胞の状態、また同一培養系内で行う培養日数によって異なるが、一般に、1×102個~1×107個/cm2、好ましくは1×103個~1×107個/cm2とすればよく、特にヒトB細胞は高密度で培養を開始した方が増殖率が良いことから、好ましくは1×104個~1×107個/cm2とすればよい。この範囲内であれば、4日間程度の培養後に、過増殖状態になることを予防できる。 Culturing of a cell population containing B cells may be carried out under usual culture conditions with a medium used for culturing B cells. Examples of such a medium include Dulbecco's modified Eagle medium (DMEM) and RPMI1640. Various additives applicable to ordinary cell culture such as serum, various vitamins and various antibiotics may be added to these media. As the culture conditions such as the culture temperature, the culture conditions used for general B cells can be applied as they are, and examples thereof include a condition of 37° C. and 5% CO 2 . The seeding density of the cell population in the medium varies depending on the origin of the cell population, the state of cells prepared from the tissue, and the number of days of culturing in the same culture system, but is generally 1×10 2 to 1×10 7 cells/cell. cm 2 and preferably 1×10 3 to 1×10 7 cells/cm 2 , and in particular, human B cells preferably have a growth rate of 1×10 1 because the proliferation rate is better when the culture is started at a high density. It should be 4 to 1×10 7 pieces/cm 2 . Within this range, it is possible to prevent a hyperproliferation state after culturing for about 4 days.
 B細胞は、IL-21の存在下で、CD40、BAFF受容体を介した刺激により細胞内シグナルを生じさせる場合には、IL-21受容体(IL-21R)、CD40、及びBAFF受容体(BAFF-R)を有することが好ましい。これらの分子に対する刺激は、これらの分子を外部から認識してCD40及びBAFF受容体を有するIgG陽性B細胞の内部に細胞内シグナルを生じさせるものであれば制限はない。 In the presence of IL-21, B cells produce an intracellular signal by stimulation through CD40, BAFF receptor, and thus IL-21 receptor (IL-21R), CD40, and BAFF receptor ( BAFF-R) is preferred. There is no limitation on the stimulation to these molecules as long as they recognize these molecules from the outside and generate intracellular signals inside IgG positive B cells having CD40 and BAFF receptors.
 本発明において好ましくは、Bach2遺伝子の発現が上昇しているB細胞を、CD40及び/又は BAFF受容体に対する作用手段の存在下において培養する際に、IL-21受容体に対する作用手段の存在下において培養を行う。 In the present invention, preferably, when B cells having an increased expression of the Bach2 gene are cultured in the presence of a means for acting on CD40 and/or BAFF receptors, in the presence of a means for acting on IL-21 receptors. Incubate.
 IL-21受容体に対する作用手段としては、IL-21または抗IL-21受容体抗体を使用することができる。
 IL-21は、天然由来のものであってもよく、生物工学的に得られた組換え体のものであってもよい。IL-21の由来としては、上述した細胞集団と同様に、哺乳動物の霊長類、有蹄類、小型哺乳類の齧歯類、鳥類などが挙げられる。これらの分子はそれぞれ、好ましくは、齧歯類及び哺乳類由来のものであり、例えばマウス、ヒトなどを挙げることができる。また、提示対象となる上記細胞集団と同一の種に由来する分子であってもよく、異なる種に由来する細胞であってもよい。
As a means for acting on the IL-21 receptor, IL-21 or anti-IL-21 receptor antibody can be used.
IL-21 may be naturally-occurring or recombinantly obtained by biotechnology. Examples of the origin of IL-21 include mammalian primates, ungulates, small mammalian rodents, birds and the like, as in the above-mentioned cell population. Each of these molecules is preferably derived from rodents and mammals, and examples thereof include mice and humans. Further, it may be a molecule derived from the same species as the above-mentioned cell population to be presented, or cells derived from a different species.
 B細胞を培養する培地中に含まれるIL-21及び/又は抗IL-21受容体抗体の濃度は、特定抗原に対して親和性を有するIgG陽性B細胞を増殖可能な量であればよく、一般に、1ng/ml~1μg/mlとすることが好ましく、5ng/ml~100ng/mlとすることが更に好ましい。 The concentration of IL-21 and/or anti-IL-21 receptor antibody contained in the medium for culturing B cells may be any amount capable of proliferating IgG-positive B cells having an affinity for a specific antigen, Generally, it is preferably 1 ng/ml to 1 μg/ml, more preferably 5 ng/ml to 100 ng/ml.
 本発明において好ましくは、Bach2遺伝子の発現が上昇しているB細胞を、CD40及び/又は BAFF受容体に対する作用手段の存在下において培養する際に、IL-4及び/又はIL-2の存在下において培養してもよい。 In the present invention, preferably, when B cells having an elevated expression of the Bach2 gene are cultured in the presence of a means for acting on CD40 and/or BAFF receptor, in the presence of IL-4 and/or IL-2. You may culture in.
 本発明におけるIL-21受容体(IL-21R)、CD40、BAFF受容体(BAFF-R)を有するIgG陽性B細胞は、これらの分子の存在を、例えば抗体等を用いたときの反応性等に基づいて得てもよいが、調製時間及び目的とするIgG陽性B細胞の細胞密度の観点から、B細胞を含む細胞集団を、CD40及びBAFF受容体を介した刺激を付与しながら、IL-4の存在下で培養する一次培養工程及びIL-21の存在下で培養する二次培養工程により培養すること(培養工程)を含む方法によって得たものでもよい。 The IgG-positive B cells having the IL-21 receptor (IL-21R), CD40, and BAFF receptor (BAFF-R) in the present invention show the presence of these molecules, for example, the reactivity when an antibody or the like is used. However, from the viewpoint of preparation time and the desired cell density of IgG-positive B cells, the cell population containing B cells can be stimulated via CD40 and BAFF receptors while IL- It may be obtained by a method comprising culturing in the presence of 4 in the primary culturing step and culturing in the presence of IL-21 in the secondary culturing step (culturing step).
 上記培養工程では、一次培養及び二次培養とも、CD40及びBAFF受容体を介した刺激を付与しながら行うことができる。CD40及びBAFF受容体を介した刺激としては、選別工程と同様に、これらの分子に対する抗体を用いて行ってもよく、CD40L及びBAFFを用いてもよい。またこれらの抗体及び分子からの刺激を確実に培養対象となる細胞集団に対して付与する観点から、これらの抗体またはCD40L及びBAFFを有する担体、例えばフィーダー細胞等を用いてもよい。CD40L及びBAFFと、担体等については、選別工程において記載した事項をそのまま適用することができる。培養工程で用いられる担体又はフィーダー細胞については、それぞれ培養用担体または培養用フィーダー細胞とよぶことがある。 In the above culturing process, both the primary culture and the secondary culture can be performed while applying stimulation via the CD40 and BAFF receptors. Stimulation via the CD40 and BAFF receptors may be performed using antibodies against these molecules, or CD40L and BAFF may be used, as in the selection step. From the viewpoint of surely stimulating the cell population to be cultured with these antibodies and molecules, a carrier having these antibodies or CD40L and BAFF, such as feeder cells, may be used. With respect to CD40L and BAFF, carriers and the like, the matters described in the selection step can be applied as they are. The carrier or feeder cell used in the culturing step may be referred to as a culturing carrier or culturing feeder cell, respectively.
 一次培養に用いられるIL-4は、天然由来のものであってもよく、生物工学的に得られた組換え体のものであってもよい。IL-4の濃度は、B細胞の効果的な増殖の観点から1ng/ml~100ng/mlとすることが好ましく、5ng/ml~100ng/mlとすることがより好ましく、10ng/ml~50ng/mlとすることがさらに好ましい。 IL-4 used in the primary culture may be of natural origin or bioengineered recombinant. From the viewpoint of effective proliferation of B cells, the concentration of IL-4 is preferably 1 ng/ml to 100 ng/ml, more preferably 5 ng/ml to 100 ng/ml, and 10 ng/ml to 50 ng/ml. More preferably, it is ml.
 また一次培養では、培養対象となるB細胞集団の種類や由来に応じて、IL-4とともに他のサイトカインも使用してもよい。例えばIL-2をIL-4と併用する場合には、IL-2の濃度は1unit/ml~1000unit/mlであることが好ましく、2.5unit/ml~1000unit/mlであることがより好ましく、2.5unit/ml~500unit/mlであることがさらに好ましく、10unit/ml~100unit/mlであることが特に好ましい。 In the primary culture, other cytokines may be used together with IL-4 depending on the type and origin of the B cell population to be cultured. For example, when IL-2 is used in combination with IL-4, the concentration of IL-2 is preferably 1 unit/ml to 1000 unit/ml, more preferably 2.5 unit/ml to 1000 unit/ml, It is more preferably from 2.5 unit/ml to 500 unit/ml, particularly preferably from 10 unit/ml to 100 unit/ml.
 一次培養を開始するときの細胞の播種密度は、特に制限はないが、細胞集団の由来や組織から調製した細胞の状態、また同一培養系内で行う培養日数によって異なるが、一般に、1×102個~1×106個/cm2、好ましくは1×103個~1×106個/cm2とすればよい。 また一次培養は、播種密度によって異なる場合もあるが、B細胞集団の増殖速度の観点から一般に培養開始後2日~8日としてもよく、細胞集団中のIgG陽性B細胞の密度の観点から3日~6日とすることが好ましく、3日~5日とすることがより好ましい。 The seeding density of cells at the time of starting the primary culture is not particularly limited, but it varies depending on the origin of the cell population, the state of cells prepared from the tissue, and the number of days of culture in the same culture system. It may be 2 to 1×10 6 pieces/cm 2 , preferably 1×10 3 to 1×10 6 pieces/cm 2 . Although the primary culture may vary depending on the seeding density, it may be generally 2 to 8 days after the start of the culture from the viewpoint of the growth rate of the B cell population, and 3 from the viewpoint of the density of IgG-positive B cells in the cell population. It is preferably from day to 6 days, more preferably from 3 to 5 days.
 二次培養を開始する際には、一次培養後の培養系に所定量のIL-21を添加してもよく、一次培養後の培養系から細胞を回収して、IL-4を含まないIL-21含有培地に移して開始してもよい。二次培養におけるIgG陽性B細胞の増殖速度及び得られた細胞集団中におけるIgE陽性B細胞の混入を抑制する観点から、IL-21を含有し且つIL-4を含まない培地により二次培養を行うことが最も好ましい。 When starting the secondary culture, a predetermined amount of IL-21 may be added to the culture system after the primary culture, and the cells are recovered from the culture system after the primary culture to obtain IL-4-free IL. It may be started by transferring to a -21 containing medium. From the viewpoint of suppressing the proliferation rate of IgG-positive B cells in the secondary culture and the contamination of IgE-positive B cells in the obtained cell population, the secondary culture is performed with a medium containing IL-21 and not IL-4. Most preferably it is done.
 なお、本発明で用いられるIL-4及びIL-21の由来としては、上述した細胞集団と同様に、哺乳動物の霊長類、有蹄類、小型哺乳類の齧歯類、鳥類などが挙げられる。これらの分子はそれぞれ、好ましくは、齧歯類及び哺乳類由来のものであり、マウス、ヒトなどを例示することができる。また、提示対象となる上記細胞集団と同一の種に由来する分子であってもよく、異なる種に由来する細胞であってもよい。 The origins of IL-4 and IL-21 used in the present invention include mammalian primates, ungulates, small mammal rodents, birds, etc., as in the above-mentioned cell population. Each of these molecules is preferably derived from rodents and mammals, and examples thereof include mouse and human. Further, it may be a molecule derived from the same species as the above-mentioned cell population to be presented, or cells derived from a different species.
 二次培養終了後には、目的とするB細胞の濃度を確実に高めるために、IgG陽性B細胞以外の細胞を除去することが好ましい。除去対象となる細胞としては、IgE陽性B細胞、CD138陽性の形質細胞、フィーダー細胞(存在する場合)などを挙げることができる。これらの細胞は、表面に存在する固有の表面抗原に対する抗体等を用いた既知の技術で除去することができる。 After completion of secondary culture, it is preferable to remove cells other than IgG-positive B cells in order to surely increase the target B cell concentration. Examples of cells to be removed include IgE-positive B cells, CD138-positive plasma cells, feeder cells (if present), and the like. These cells can be removed by a known technique using an antibody against a specific surface antigen present on the surface.
 また二次培養では、培養対象となるB細胞集団の種類や由来に応じて、IL-21とともに他のサイトカインも使用してもよい。例えば、IL-2をIL-21と併用する場合には、IL-2の濃度は1unit/ml~1000unit/mlであることが好ましく、2.5unit/ml~1000unit/mlであることがより好ましく、2.5unit/ml~500unit/mlであることがさらに好ましく、10unit/ml~100unit/mlであることが特に好ましい。 In the secondary culture, other cytokines may be used together with IL-21 depending on the type and origin of the B cell population to be cultured. For example, when IL-2 is used in combination with IL-21, the concentration of IL-2 is preferably 1 unit/ml to 1000 unit/ml, more preferably 2.5 unit/ml to 1000 unit/ml. , 2.5 unit/ml to 500 unit/ml is more preferable, and 10 unit/ml to 100 unit/ml is particularly preferable.
 本発明のB細胞集団の製造方法では、目的とする抗原特異的IgG陽性細胞を選別するために必要な期間行えばよく、選別工程を開始するときのIgG陽性B細胞の数、用いられる抗原の種類又はフィーダー細胞の状態などによって適宜変更することができる。例えば、効率よく目的とする細胞集団を得るために、選別工程を1日~2日間としてもよく、培養工程を含む場合には、一次培養を3日~5日間、二次培養を2日~5日間とし、選別工程を1日~2日間としてもよい。 In the method for producing a B cell population of the present invention, it may be carried out for a period of time necessary for selecting a desired antigen-specific IgG-positive cell, and the number of IgG-positive B cells at the time of starting the selection step, It can be appropriately changed depending on the type or the state of feeder cells. For example, in order to efficiently obtain a target cell population, the selection step may be carried out for 1 day to 2 days. When the culture step is included, the primary culture is carried out for 3 days to 5 days, and the secondary culture is carried out for 2 days. It may be 5 days, and the selection step may be 1 to 2 days.
 本発明の製造方法では、選別工程の後に、選別された抗原特異的IgG陽性B細胞を更に増殖させるための増殖工程を含んでもよい。この増殖工程は、選別工程で選別された特定抗原に対して抗原特異的IgG陽性B細胞を増殖させることができる培養条件で行えばよいが、選別されたIgG陽性B細胞の効率よい増殖の観点から、IL-21の存在下で、CD40L及びBAFFと共に培養するものであることが好ましい。増殖工程で好ましく用いられるIL-21については、前述した二次培養又は選別工程で適用した条件をそのまま適用することができる。また、増殖工程に好ましく用いられるCD40L及びBAFFについても、前述した事項をそのまま適用することができる。 The production method of the present invention may include a proliferation step for further proliferating the selected antigen-specific IgG-positive B cells after the selection step. This growth step may be performed under culture conditions that allow the antigen-specific IgG-positive B cells to grow against the specific antigen selected in the selection step, but from the viewpoint of efficient growth of the selected IgG-positive B cells. Therefore, it is preferable to culture with CD40L and BAFF in the presence of IL-21. Regarding IL-21 that is preferably used in the proliferation step, the conditions applied in the secondary culture or selection step described above can be applied as they are. Further, the above-mentioned matters can be directly applied to CD40L and BAFF which are preferably used in the proliferation step.
 増殖工程は、得られた細胞集団中の目的とするIgG陽性B細胞の数に応じた期間継続すればよく、一般に1日以上、好ましくは3日以上とすることができるが、培養系に含まれる細胞集団の増殖速度及び密度に応じて適宜調整すればよい。 The proliferating step may be continued for a period corresponding to the number of target IgG-positive B cells in the obtained cell population, and can be generally 1 day or longer, preferably 3 days or longer, but it is included in the culture system. It may be appropriately adjusted depending on the growth rate and density of the cell population.
 以下に本発明の実施例について説明するが、これに限定されるものではない。
 本明細書で用いられるもの等の従来方法に関する詳細な説明は、引用文献において見出すことができる。以下に別途示されない限り、関心対象の特異性ならびにそれらの組換え発現および抗CXCR2抗体の分子クローニングは、国際公開WO2008/081008号として公開された国際出願第PCT/EP2008/000053号、およびWO2010/069603号として公開された国際出願第PCT/EP2009/009186号の実施例および捕捉方法に記載されるように行われてきたか、または行うことができ、その開示内容は、参照によりその全体が本明細書に組み込まれる。
 また、抗原特異的B細胞選択法(FAIS法)については、特許第5550132号公報及び国際公開WO2018/131698号公報に記載の方法を参照することができ、その開示内容は、参照によりその全体が本明細書に組み込まれる。
Examples of the present invention will be described below, but the invention is not limited thereto.
A detailed description of conventional methods such as those used herein can be found in the cited references. Unless otherwise indicated below, specificities of interest and their recombinant expression and molecular cloning of anti-CXCR2 antibodies are described in International Application No. PCT/EP2008/000053, and WO2010/000053, published as WO 2008/081008. Has been, or can be, carried out as described in the examples and capture methods of International Application No. PCT/EP2009/009186, published as 069603, the disclosure content of which is hereby incorporated by reference in its entirety. Incorporated into the book.
Regarding the antigen-specific B cell selection method (FAIS method), the methods described in Japanese Patent No. 5550132 and International Publication No. WO2018/131698 can be referred to, and the disclosure content thereof is entirely incorporated by reference. Incorporated herein.
(1)細胞の培養
 B細胞の培養は、特に断らない限り、RPMI-1640(10%(v/v)FCS(ウシ胎児血清)、ペニシリン/ストレプトマイシン、2mM L-グルタミン、55nM 2-メルカプトエタノール、10mM HEPES及び1mMピルビン酸ナトリウム添加)をB細胞培養培地として用いて、5%(v/v)CO2、37℃の条件下で行った。
(1) Cell culture Unless otherwise specified, RPMI-1640 (10% (v/v) FCS (fetal bovine serum), penicillin/streptomycin, 2 mM L-glutamine, 55 nM 2-mercaptoethanol, 10 mM HEPES and 1 mM sodium pyruvate was added) as a B cell culture medium, and 5% (v/v) CO 2 was performed at 37°C.
 B細胞の培養時に用いる、CD40L及びBAFFを細胞表面に提示するフィーダー細胞である40LB細胞(特許第5550132号に記載の細胞を用いた)の培養は、特に断らない限り、D-MEM(10%(v/v)FCS、ペニシリン/ストレプトマイシン添加)を40LB細胞培養培地として用いて、5%(v/v)CO2、37℃の条件下で行った。 Unless otherwise specified, the culture of 40LB cells (using the cells described in Japanese Patent No. 5550132), which are feeder cells that present CD40L and BAFF on the cell surface when culturing B cells, is D-MEM (10%). (V/v) FCS, penicillin/streptomycin added) was used as a 40 LB cell culture medium under the conditions of 5% (v/v) CO 2 and 37°C.
 KHYG-1細胞の培養は、特に断らない限り、RPMI-1640(10%(v/v)FCS(ウシ胎児血清)、ペニシリン/ストレプトマイシン、2mM L-グルタミン、55nM 2-メルカプトエタノール、10mM HEPES及び1mMピルビン酸ナトリウム添加)、及び100U/mL IL-2(Peprotech社製)をKHYG-1細胞培養培地として用いて、5%(v/v)CO2、37℃の条件下で行った。 Cultures of KHYG-1 cells were RPMI-1640 (10% (v/v) FCS (fetal calf serum), penicillin/streptomycin, 2 mM L-glutamine, 55 nM 2-mercaptoethanol, 10 mM HEPES and 1 mM unless otherwise specified). Sodium pyruvate was added), and 100 U/mL IL-2 (manufactured by Peprotech) was used as a KHYG-1 cell culture medium under conditions of 5% (v/v) CO 2 and 37°C.
 B細胞培養実験時には、96ウェルプレート(Thermo Fisher製)に、40LB細胞を2×104個/ウェル播種し、24時間培養して単一層を形成させた後、120GyのX線を照射してから使用した。 At the time of B cell culture experiment, 40 LB cells were seeded at 2×10 4 cells/well in a 96-well plate (Thermo Fisher), cultured for 24 hours to form a monolayer, and then irradiated with 120 Gy of X-ray. Used from.
 B細胞播種時は、予め40LB細胞を播種していた384ウェルプレートから培地を除去したうえで、20個/ウェルになるようにマルチピペットを用いて播種した。 At the time of seeding B cells, the medium was removed from the 384-well plate in which 40 LB cells had been seeded in advance, and then the cells were seeded using a multipipette at 20 cells/well.
(2)フィーダー細胞の調製
 ADCC活性を利用したスクリーニング法を行うため、抗原発現細胞として40LB-Her2細胞及び40LB-CXCR2細胞を用い、抗原非発現細胞として40LB細胞を用いた。
(2) Preparation of feeder cells To perform a screening method using ADCC activity, 40LB-Her2 cells and 40LB-CXCR2 cells were used as antigen-expressing cells, and 40LB cells were used as antigen-non-expressing cells.
 40LB-Her2細胞及び40LB-CXCR2細胞は、40LB細胞にヒトHer2またはヒトCXCR2を、それぞれ常法に従ってレンチウィルスベクターにより導入し、恒常的に発現させてクローン作製した。 40LB-Her2 cells and 40LB-CXCR2 cells were cloned by introducing human Her2 or human CXCR2 into 40LB cells by a lentiviral vector according to a conventional method and expressing them constantly.
(3)モデル抗原を用いたADCC活性を利用したスクリーニング法の検討
 ADCC活性を利用したスクリーニング法の検討には40LB細胞、40LB-Her2細胞、KHYG-1細胞を用いた。また抗原特異性を持つ抗体としてトラスツズマブ型抗体を、抗原非特異的抗体として市販のヒトIgG抗体を1μg/mLに調製して用いた。この時用いたトラスツズマブ型抗体は、レンチウィルスベクターであるCSIV-CMV-MCS-IRES2-Venusベクター(Cancer Science, Vol.105, pp.402-408(2014))を組み換え、Her2抗原特異的B細胞受容体(トラスツズマブ抗体遺伝子)の重鎖及び軽鎖を組み込んだCSIV-CMV-mGK(トラスツズマブ抗体kappa軽鎖遺伝子発現ベクター)-IRES2-mGH(トラスツズマブ抗体重鎖遺伝子発現ベクター)を作製し、トラスツズマブ型抗体遺伝子発現ベクターを構築し、CHO-K1細胞に遺伝子導入することで抗体生産細胞を作製した後、その培養上清をProteinA担体(KANEKA社製)で精製したものを使用した。ADCC活性を測定する12時間前に40LB細胞及び40LB-Her2細胞を96ウェルプレートに1×104個/ウェルになるよう播種した。細胞播種12時間後に、KHYG-1細胞培養培地で1μg/mLに調製した抗体溶液50μLに培地交換を行い、5%(v/v)CO2、37℃の条件下で30分間培養を行った。その後、KHYG-1細胞培養培地で1×104個/50μLに調製したKHYG-1細胞を各ウェルに添加した。この時、コントロール群としてKHYG-1細胞を添加しないウェルには培地のみを等量添加した。添加12時間後、培養上清を用いてADCC活性を死細胞が放出するLDHを測定することで評価した。LDHの測定にはLDH Cytotoxicity Assay Kit((Dojindo社製))を用いた。培養プレートを250×gで2分間遠心し、40μLの培養上清を回収し、96ウェルMaxisorpプレート(Nunc社製)に分注した。次いでWorking Solutionを40μL添加し、常温暗所にて30分間振とう培養を行った。30分後、20μLのStop Solutionを添加し反応を停止させ、490nmの吸光度を測定した。図1で示すように、抗原を発現する細胞と攻撃細胞に加え、抗原特異的抗体が存在する場合のみ細胞死が誘導されLDHが放出され、図2で示すように高い吸光度が測定できることが確認できた。
(3) Examination of Screening Method Utilizing ADCC Activity Using Model Antigen 40LB cells, 40LB-Her2 cells, and KHYG-1 cells were used for examination of screening method utilizing ADCC activity. Further, a trastuzumab type antibody was prepared as an antibody having antigen specificity, and a commercially available human IgG antibody was prepared as an antigen non-specific antibody at 1 μg/mL and used. The trastuzumab type antibody used at this time was a recombinant lentivirus vector CSIV-CMV-MCS-IRES2-Venus vector (Cancer Science, Vol.105, pp.402-408 (2014)), and Her2 antigen-specific B cells. CSIV-CMV-mGK (trastuzumab antibody kappa light chain gene expression vector)-IRES2-mGH (trastuzumab antibody heavy chain gene expression vector) in which a heavy chain and a light chain of a receptor (trastuzumab antibody gene) are incorporated is prepared, and a trastuzumab type is prepared. After constructing an antibody gene expression vector and transfecting the gene into CHO-K1 cells to prepare antibody-producing cells, the culture supernatant was purified with Protein A carrier (Kaneka) and used. 12 hours before measuring ADCC activity, 40LB cells and 40LB-Her2 cells were seeded in a 96-well plate at 1×10 4 cells/well. 12 hours after cell seeding, the medium was exchanged with 50 μL of an antibody solution prepared to 1 μg/mL with KHYG-1 cell culture medium, and cultured for 30 minutes under the conditions of 5% (v/v) CO 2 and 37° C. .. Then, 1×10 4 cells/50 μL of KHYG-1 cells in KHYG-1 cell culture medium was added to each well. At this time, as a control group, an equal amount of the medium alone was added to the wells to which KHYG-1 cells were not added. 12 hours after the addition, ADCC activity was evaluated by measuring LDH released by dead cells using the culture supernatant. The LDH Cytotoxicity Assay Kit ((manufactured by Dojindo)) was used for the measurement of LDH. The culture plate was centrifuged at 250×g for 2 minutes, 40 μL of the culture supernatant was collected and dispensed into a 96-well Maxisorp plate (Nunc). Next, 40 μL of Working Solution was added, and shaking culture was performed for 30 minutes in a dark place at room temperature. After 30 minutes, 20 μL of Stop Solution was added to stop the reaction, and the absorbance at 490 nm was measured. As shown in FIG. 1, cell death is induced and LDH is released only in the presence of antigen-specific antibodies in addition to antigen-expressing cells and attacking cells, confirming that high absorbance can be measured as shown in FIG. did it.
(4)CXCR2抗原特異的B細胞受容体発現B細胞を含むB細胞小集団の調製
 CXCR2抗原特異的受容体発現B細胞を含むB細胞小集団は以下のようにして得た。
 ヒトB細胞の調製は以下のように行った。
 即ち、健常人のヒト末梢血からLymphoprepチューブ(AXIS SHIELD社製)を用いて単核球を分離し、FcR Blocking Reagent(Miltenyi Biotec社製)を用いた後、さらにCD2陰性細胞及びCD235a陰性細胞を、ビオチン-抗ヒトCD2抗体(Biolegend社製)、ビオチン-抗ヒトCD235a抗体(eBioscience社製)、Streptavidin-Particle Plus-DM(BD Pharmingen社製)を使用し、BD iMag Cell Separation Magnet(BD Bioscience社製)及びMACS Separation Columns(Miltenyi Biotec社製)を用いて回収した。回収した細胞の内CD19陽性細胞を、PE-抗ヒトCD19抗体(Biolegend社製)を使用し、セルソーター(BD FACS AriaIII)を用いて回収した。さらに、取得したB細胞に長期生存遺伝子を導入することで、長期に培養できるB細胞を作製した。長期培養B細胞は以下のようにして得た。
(4) Preparation of B cell subpopulation containing B cells expressing CXCR2 antigen-specific B cell receptor A B cell subpopulation containing B cells expressing CXCR2 antigen-specific receptor was obtained as follows.
Human B cells were prepared as follows.
That is, mononuclear cells were separated from human peripheral blood of a healthy person using a Lymphoprep tube (manufactured by AXIS SHIELD), and FcR Blocking Reagent (manufactured by Miltenyi Biotec) was used, and then CD2 negative cells and CD235a negative cells were further isolated. , Biotin-anti-human CD2 antibody (manufactured by Biolegend), biotin-anti-human CD235a antibody (manufactured by eBioscience), Streptavidin-Particle Plus-DM (manufactured by BD Pharmingen), and BD iMag CellBene Separation (manufactured by BD Phage). And manufactured by MACS Separation Columns (manufactured by Miltenyi Biotec). Among the collected cells, CD19-positive cells were collected using a PE-anti-human CD19 antibody (manufactured by Biolegend) and a cell sorter (BD FACS Aria III). Furthermore, by introducing a long-term survival gene into the obtained B cells, B cells that can be cultured for a long time were produced. Long-term cultured B cells were obtained as follows.
 即ち、CSIV-CMV-MCS-IRES2-Venusベクター(Cancer Science, Vol.105, pp.402-408(2014))を組み換え、プロモーターとしてβactinを、導入遺伝子としてBach2を組み込んだCSIV-βactin-Bach2を作製し、Bach2発現ベクターを構築した。この発現レンチウィルスベクターを用いて、回収したCD19陽性B細胞に、常法に従いBach2を発現させたB細胞集団を得た。 That is, a CSIV-CMV-MCS-IRES2-Venus vector (Cancer Science, Vol.105, pp.402-408 (2014)) was recombined, and βactin was used as a promoter and CSIV-βactin-Bach2 incorporating Bach2 as a transgene. It was prepared and a Bach2 expression vector was constructed. Using this expression lentivirus vector, a B cell population in which Bach2 was expressed in the recovered CD19-positive B cells was obtained by a conventional method.
(5)ヒトB細胞の調製(培養工程)
 上記で得られた抗原特異的B細胞を含む集団は、単一層を形成させた40LB細胞上で、7日間一次培養した。培養時はヒトIL-4(50ng/mL、PEPROTECH 社製)、ヒトIL-2(50unit/mL、PEPROTECH 社製)を含有するB細胞培地を用いて、1×105個/cm2の細胞密度でCO2インキュベーターにて培養した。
(5) Preparation of human B cells (culture step)
The population containing the antigen-specific B cells obtained above was primary cultured for 7 days on 40 LB cells that had formed a monolayer. At the time of culturing, 1×10 5 cells/cm 2 of cells were prepared using a B cell culture medium containing human IL-4 (50 ng/mL, manufactured by PEPROTECH) and human IL-2 (50 unit/mL, manufactured by PEPROTECH). The cells were cultured at a density in a CO 2 incubator.
 培養7日目に全細胞を、2mMのEDTAと0.5質量%のBSAを含むD-PBSを用いてフィーダー細胞ごと回収した。回収した培養B細胞は、ビオチン-抗マウスH-2Kd抗体(Biolegend社製)及びビオチン抗ヒトCD138抗体(Diaclone社製)とStreptavidin-Particle Plus-DM(BD Pharmingen社製)を使用し、BD iMag Cell Separation Magnet(BD Bioscience社製)及びMACS Separation Columns(Miltenyi Biotec社製)を用いてフィーダー細胞及び抗体産生細胞を除去した。フィーダー細胞を除去したB細胞は、新たに準備された40LB細胞が播種された90mmディッシュに、ヒトIL-21(10ng/mL、PEPROTECH 社製)、ヒトIL-2(50unit/mL、PEPROTECH 社製)を含有するB細胞培地を用いて5×104個/cm2以下の細胞密度で播種して培養を行った。 On day 7 of culture, all cells were collected together with feeder cells using D-PBS containing 2 mM EDTA and 0.5% by mass BSA. The recovered cultured B cells were prepared by using biotin-anti-mouse H-2K d antibody (manufactured by Biolegend), biotin anti-human CD138 antibody (manufactured by Diaclone), Streptavidin-Particle Plus-DM (manufactured by BD Pharmingen), and BD. Feeder cells and antibody-producing cells were removed using iMag Cell Separation Magnet (manufactured by BD Bioscience) and MACS Separation Columns (manufactured by Miltenyi Biotec). The B cells from which the feeder cells were removed were human IL-21 (10 ng/mL, manufactured by PEPROTECH) and human IL-2 (50 unit/mL, manufactured by PEPROTECH) in a 90 mm dish on which 40 LB cells were newly prepared. ) Was used to inoculate at a cell density of 5×10 4 cells/cm 2 or less, and the cells were cultured.
(6)抗原特異的B細胞の選択培養(選択工程)
 培養10日目に、CXCR2抗原特異的B細胞の選択培養を行うため、回収した培養B細胞から(5)と同様にしてフィーダー細胞及び抗体産生細胞を除去した。フィーダー細胞を除去したB細胞は、新たに準備された40LB細胞が播種された90mmディッシュに、ヒトIL-24(100ng/mL、PEPROTECH 社製)、ヒトIL-2(50unit/mL、PEPROTECH 社製)を含有するB細胞培地を用いて2×105個/cm2の細胞密度で播種し、抗原刺激前培養を行った。
(6) Selective culture of antigen-specific B cells (selection step)
On the 10th day of culture, in order to carry out selective culture of CXCR2 antigen-specific B cells, feeder cells and antibody-producing cells were removed from the recovered cultured B cells in the same manner as in (5). The B cells from which the feeder cells were removed were human IL-24 (100 ng/mL, manufactured by PEPROTECH) and human IL-2 (50 unit/mL, manufactured by PEPROTECH) in a 90 mm dish in which newly prepared 40 LB cells were seeded. )-Containing B cell medium was seeded at a cell density of 2×10 5 cells/cm 2 and pre-stimulation culture was performed.
 48時間後(即ち、培養12日目)、全細胞をビオチン-抗マウスH-2Kd抗体(Biolegend社製)及びビオチン抗ヒトCD138抗体(Diaclone社製)とStreptavidin-Particle Plus-DM(BD Pharmingen社製)を使用し、BD iMag Cell Separation Magnet(BD Bioscience社製)及びMACS Separation Columns(Miltenyi Biotec社製)を用いてフィーダー細胞及び抗体産生細胞を除去した。フィーダー細胞及び抗体産生細胞を除去した抗原刺激前培養を行ったB細胞集団は、引き続き同じ条件のサイトカインを含有するB細胞培地に懸濁し、単一層を形成させた40LB-CXCR2細胞と共に培養することで抗原特異的なB細胞に抗原刺激を与えた。 After 48 hours (ie, 12th day of culture), whole cells were treated with biotin-anti-mouse H-2K d antibody (Biolegend), biotin anti-human CD138 antibody (Diaclone) and Streptavidin-Particle Plus-DM (BD Pharmingen). The feeder cells and antibody-producing cells were removed using BD iMag Cell Separation Magnet (manufactured by BD Bioscience) and MACS Separation Columns (manufactured by Miltenyi Biotec). The B cell population that has undergone pre-stimulation culture in which feeder cells and antibody-producing cells have been removed is subsequently suspended in a B cell medium containing cytokine under the same conditions, and cultured with 40LB-CXCR2 cells that have formed a monolayer. , Antigen-specific B cells were stimulated.
 48時間後(即ち、培養14日目)、全細胞を上記と同様の方法によりフィーダー細胞及び抗体産生細胞を除去した。40LB-CXCR2細胞及び抗体産生細胞を除去した抗原刺激培養を行った各条件のB細胞は、ヒトIL-21(10ng/mL、PEPROTECH 社製)及びヒトIL-2(50unit/mL、PEPROTECH 社製)を含有するB細胞培地に懸濁し、単一層を形成させた40LB-FasL細胞と共に培養することで培養B細胞集団全てに細胞死刺激を与えた。 After 48 hours (that is, on the 14th day of culture), feeder cells and antibody-producing cells were removed from all cells by the same method as above. 40 LB-CXCR2 cells and B cells under each condition subjected to antigen-stimulated culture in which antibody-producing cells were removed were human IL-21 (10 ng/mL, manufactured by PEPROTECH) and human IL-2 (50 unit/mL, manufactured by PEPROTECH). ) Was cultured in the B cell culture medium containing 40 LB-FasL cells in which a monolayer was formed to give a death stimulus to all the cultured B cell populations.
 24時間後(即ち、培養15日目)、全細胞をビオチン化抗マウスH-2Kd抗体(Biolegend社製)及びビオチン化抗ヒトCD178(FasL)抗体(Biolegend社製)とStreptavidin-Particle Plus-DM(BD Pharmingen社製)を使用し、BD iMag Cell Separation Magnet(BD Bioscience社製)及びMACS Separation Columns(Miltenyi Biotec社製)を用いて40LB-FasL細胞を除去した。さらに40LB-FasL細胞を除去したB細胞集団は、ClioCell Pro Kit(ClioCell社製)を用いて死細胞を除去した。フィーダー細胞及び死細胞を除去したB細胞集団は、ヒトIL-21(10ng/mL、PEPROTECH 社製)及びヒトIL-2(50unit/mL、PEPROTECH 社製)を含有するB細胞培地に懸濁し、新たな40LB細胞上で回復培養を行った。 After 24 hours (that is, on the 15th day of culture), whole cells were treated with biotinylated anti-mouse H-2K d antibody (manufactured by Biolegend), biotinylated anti-human CD178 (FasL) antibody (manufactured by Biolegend), Streptavidin-Particle Plus-. 40LB-FasL cells were removed using DM (manufactured by BD Pharmingen) and BD iMag Cell Separation Magnet (manufactured by BD Bioscience) and MACS Separation Columns (manufactured by Miltenyi Biotec). Further, in the B cell population from which 40LB-FasL cells were removed, dead cells were removed using ClioCell Pro Kit (manufactured by ClioCell). The B cell population from which feeder cells and dead cells have been removed is suspended in a B cell medium containing human IL-21 (10 ng/mL, PEPROTECH) and human IL-2 (50 unit/mL, PEPROTECH), Recovery cultures were performed on fresh 40LB cells.
 細胞死刺激後に回復培養を行い、6日間培養した細胞を回収し、20個/ウェル/384ウェルプレートになるよう細胞を播種し、14日間希釈培養を行った。 After cell death stimulation, recovery culture was performed, cells cultured for 6 days were collected, cells were seeded at 20 cells/well/384-well plate, and diluted culture was performed for 14 days.
 14日後に希釈培養を行った細胞の培養上清を用いてELISA法による抗体産生の確認を行った。ELISA法は、抗ヒトIgG+IgM+IgA抗体(Kirkegaard&Perry Laboratories(KPL)社製)を炭酸-重炭酸バッファー(pH9.0)を用いて1μg/mLに調製し、384ウェルMaxisorpプレートにコーティングした。抗体溶液添加後、常温で2時間静置することでコーティングを行った。2時間後、0.5%TWeen20(SIGMA社製)含有TBS(TBS-T)を用いてプレートの洗浄を行った。プレートの洗浄にはプレートウォッシャーを用いた。プレート洗浄後、TBS溶液に懸濁した10%スキムミルク溶液(Wako社製)を各ウェルに添加し、常温で1時間静置することでブロッキングを行った。1時間後、プレートの洗浄を行った後に、上記のB細胞培養上清を各ウェルに添加し、常温で1時間静置することで抗体反応を行った。1時間後、プレートの洗浄を行った後に、2次抗体としてHRP標識抗ヒトIgG-Fc抗体(Jakson ImmunoResearch社製)をTBS溶液で10000倍希釈した抗体溶液を用いて、常温で1時間静置することで抗体反応を行った。1時間後、プレートの洗浄を行った後に、TMB substrate(KPL社製)を添加し、発色を行った。添加2分後、1N H2SO4を添加し酵素反応を停止させ、450nmの吸光度を測定した。 After 14 days, antibody production was confirmed by the ELISA method using the culture supernatant of the cells that were diluted and cultured. In the ELISA method, an anti-human IgG+IgM+IgA antibody (manufactured by Kirkegaard & Perry Laboratories (KPL)) was prepared at 1 μg/mL using a carbonate-bicarbonate buffer (pH 9.0), and coated on a 384-well Maxisorp plate. After the addition of the antibody solution, the coating was performed by leaving it at room temperature for 2 hours. After 2 hours, the plate was washed with TBS (TBS-T) containing 0.5% Tween 20 (manufactured by SIGMA). A plate washer was used to wash the plate. After the plate was washed, a 10% skim milk solution (manufactured by Wako) suspended in a TBS solution was added to each well and allowed to stand at room temperature for 1 hour for blocking. After 1 hour, the plate was washed, the above-mentioned B cell culture supernatant was added to each well, and the mixture was allowed to stand at room temperature for 1 hour to carry out an antibody reaction. After 1 hour, the plate was washed, and then an HRP-labeled anti-human IgG-Fc antibody (Jakson ImmunoResearch) was diluted 10,000 times with TBS solution as a secondary antibody and allowed to stand at room temperature for 1 hour. Then, an antibody reaction was performed. After 1 hour, the plate was washed, and then TMB substrate (manufactured by KPL) was added to develop color. Two minutes after the addition, 1N H 2 SO 4 was added to stop the enzymatic reaction, and the absorbance at 450 nm was measured.
 ELISA法により抗体の産生が認められたウェル中の細胞を、40LB細胞を新たに播種した96ウェルプレートに再播種し、拡大培養を行った。この時B細胞はヒトIL-21(10ng/mL、PEPROTECH 社製)及びヒトIL-2(50unit/mL、PEPROTECH 社製)を含有するB細胞培地に懸濁し、7日間培養を行った。 The cells in the wells in which antibody production was confirmed by the ELISA method were re-seeded to a 96-well plate in which 40 LB cells were newly seeded, and expanded culture was performed. At this time, the B cells were suspended in a B cell medium containing human IL-21 (10 ng/mL, manufactured by PEPROTECH) and human IL-2 (50 unit/mL, manufactured by PEPROTECH), and cultured for 7 days.
 7日間培養を行ったB細胞小集団培養上清を用いて、ADCC活性の測定を行った。まず測定を行う12時間前に1×104個/ウェルになるよう96ウェルプレートに抗原発現細胞として40LB-CXCR2細胞を播種した。12時間後、40LB-CXCR2細胞培養上清を回収し、40μLのB細胞小集団培養上清を各ウェルに添加した。この時同一ウェルから回収したB細胞小集団培養上清を、ADCC誘導用とコントロール培養用の2ウェルに添加した。 ADCC activity was measured using the B cell subpopulation culture supernatant that had been cultured for 7 days. First, 12 hours before the measurement, 40 LB-CXCR2 cells were seeded as antigen-expressing cells in a 96-well plate at 1×10 4 cells/well. After 12 hours, 40LB-CXCR2 cell culture supernatant was collected, and 40 μL of B cell subpopulation culture supernatant was added to each well. At this time, the B cell small population culture supernatant collected from the same well was added to 2 wells for ADCC induction and control culture.
 ADCCを誘導するためのKHYG-1細胞は、ClioCell Pro Kit(ClioCell社製)を用いて死細胞を除去した後、RPMI-1640(10%(v/v)FCS(ウシ胎児血清)、ペニシリン/ストレプトマイシン、2mM L-グルタミン、55nM 2-メルカプトエタノール、10mM HEPES及び1mMピルビン酸ナトリウム添加)、及び200U/mL IL-2(Peprotech社製)に懸濁し、培養を行う際のIL-2の最終濃度が100U/mL、KHYG-1細胞が1×104個/40μLになるように調製した。またコントロール培養用に、KHYG-1細胞非存在の200U/mL IL-2含有RPMI-1640(10%(v/v)FCS(ウシ胎児血清)、ペニシリン/ストレプトマイシン、2mM L-グルタミン、55nM 2-メルカプトエタノール、10mM HEPES及び1mMピルビン酸ナトリウム添加)も調整した。 KHYG-1 cells for inducing ADCC were prepared by removing dead cells using ClioCell Pro Kit (manufactured by ClioCell), and then RPMI-1640 (10% (v/v) FCS (fetal bovine serum), penicillin/ Streptomycin, 2 mM L-glutamine, 55 nM 2-mercaptoethanol, 10 mM HEPES and 1 mM sodium pyruvate added), and 200 U/mL IL-2 (manufactured by Peprotech), the final concentration of IL-2 at the time of culturing. Was adjusted to 100 U/mL and KHYG-1 cells were adjusted to 1×10 4 cells/40 μL. For control culture, 200 U/mL IL-2-containing RPMI-1640 without KHYG-1 cells (10% (v/v) FCS (fetal calf serum), penicillin/streptomycin, 2 mM L-glutamine, 55 nM 2- Mercaptoethanol, 10 mM HEPES and 1 mM sodium pyruvate were also added).
 B細胞小集団培養上清が添加された40LB-CXCR2細胞に、ADCC誘導用ウェルにKHYG-1細胞を1×104個/40μL、コントロール培養用に培地のみを40μL添加した。添加後、CO2インキュベーターにて12時間培養した。 To 40LB-CXCR2 cells to which the B cell subpopulation culture supernatant was added, 1×10 4 cells/40 μL of KHYG-1 cells were added to the ADCC induction well, and 40 μL of the medium alone was added for the control culture. After the addition, the cells were cultured in a CO 2 incubator for 12 hours.
 12時間後、培養上清を用いてADCC活性を死細胞が放出するLDHを測定することで評価した。LDHの測定にはLDH Cytotoxicity Assay Kit(Dojindo社製)を用いた。培養プレートを250×gで2分間遠心し、40μLの培養上清を回収し、96ウェルMaxisorpプレート(Nunc社製)に分注した。次いでWorking Solutionを40μL添加し、常温暗所にて30分間振とう培養を行った。30分後、20μLのStop Solutionを添加し反応を停止させ、490nmの吸光度を測定した。測定結果を図3に示す。 After 12 hours, ADCC activity was evaluated by measuring LDH released by dead cells using the culture supernatant. An LDH Cytotoxicity Assay Kit (manufactured by Dojindo) was used for measuring LDH. The culture plate was centrifuged at 250×g for 2 minutes, 40 μL of the culture supernatant was collected and dispensed into a 96-well Maxisorp plate (Nunc). Next, 40 μL of Working Solution was added, and shake culture was carried out at room temperature in a dark place for 30 minutes. After 30 minutes, 20 μL of Stop Solution was added to stop the reaction, and the absorbance at 490 nm was measured. The measurement results are shown in FIG.
 ADCC誘導用とコントロール培養用のそれぞれから得た吸光度値を比較し、その差が正に大きいウェル中に、抗原特異的抗体が含まれていると判断し、中でも一番正に差が大きかったウェル中のB細胞から抗体遺伝子の取得を行った。96ウェルで培養していた細胞を回収し、RNeasy Mini Kit(QIAGEN社製)を用いてmRNAの抽出及び精製を行った。次に精製したmRNAから抗体遺伝子特異的逆転写プライマー及びSuperScriptIII(インビトロジェン社製)を用いてcDNAの合成を行った。 The absorbance values obtained for ADCC induction and control culture were compared, and it was determined that the wells having a positive difference contained the antigen-specific antibody, and the difference was the most positive. Antibody genes were obtained from B cells in the wells. The cells cultured in 96 wells were collected, and mRNA was extracted and purified using RNeasy Mini Kit (manufactured by QIAGEN). Next, cDNA was synthesized from the purified mRNA using an antibody gene-specific reverse transcription primer and SuperScript III (Invitrogen).
 反応組成はSuperScriptIII添付の説明書に従い混合液を作製後、逆転写反応PCR(65℃/5分、55℃/60分、70℃/15分)を行った。その後添付の説明書に従いRNaseH(インビトロジェン社製)を添加し、反応を行った(37℃/20分)。合成したcDNAはAgencourt AMPure XP核酸精製キット(BECKMAN COULTER社製)を用いて精製を行った。精製したcDNAは、Terminal deoxy Transferase(インビトロジェン社製)とdGTP(インビトロジェン社製)を用いて、添付の説明書に従い3’-tailing反応(37℃/30分)を行った。 Regarding the reaction composition, after preparing a mixed solution according to the instructions attached to SuperScript III, reverse transcription reaction PCR (65°C/5 minutes, 55°C/60 minutes, 70°C/15 minutes) was performed. Then, RNase H (manufactured by Invitrogen) was added according to the attached instruction, and the reaction was carried out (37°C/20 minutes). The synthesized cDNA was purified using an Agencourt AMPure XP nucleic acid purification kit (manufactured by BECKMAN COULTER). The purified cDNA was subjected to 3'-tailing reaction (37°C/30 minutes) using Terminal deoxy Transferase (Invitrogen) and dGTP (Invitrogen) according to the attached instructions.
 抗体遺伝子可変領域の増幅には5’RACE法を用いた。まず3’-tailing cDNAを用いてIgγ重鎖、Igκ軽鎖及びIgλ軽鎖それぞれに対して、KOD-FX-DNAポリメラーゼ(TOYOBO社製)を用いて1st-PCR(94℃/2分;1サイクル、98℃/10秒、60℃/10秒、68℃/40秒;25サイクル、68℃/2分;1サイクル)を行った。 5'RACE method was used for amplification of antibody gene variable region. First, 1st-PCR (94° C./2 min; 1) using KOD-FX-DNA polymerase (manufactured by TOYOBO) for each of Igγ heavy chain, Igκ light chain and Igλ light chain using 3′-tailing cDNA. Cycle, 98°C/10 seconds, 60°C/10 seconds, 68°C/40 seconds; 25 cycles, 68°C/2 minutes; 1 cycle).
 その後それぞれのDNA溶液を用いてKOD-plus-DNAポリメラーゼ(TOYOBO社製)を用いたNested-PCR(94℃/2分;1サイクル、94℃/15秒、60℃/10秒、68℃/40秒;35サイクル、68℃/2分;1サイクル)を行った。 Then, using each DNA solution, Nested-PCR (94° C./2 min; 1 cycle, 94° C./15 sec, 60° C./10 sec, 68° C./) using KOD-plus-DNA polymerase (manufactured by TOYOBO) 40 seconds; 35 cycles, 68° C./2 minutes; 1 cycle).
 PCR後反応液を全量100V、35分間の電気泳動を行い、Igγ重鎖、Igκ軽鎖及びIgλ軽鎖それぞれの増幅画分をGel Extraction Kit(QIAGEN社製)を用いて抽出を行った。 After the PCR, the reaction solution was electrophoresed for a total amount of 100 V for 35 minutes, and the amplified fractions of each of the Igγ heavy chain, Igκ light chain and Igλ light chain were extracted using Gel Extraction Kit (manufactured by QIAGEN).
 抗体遺伝子一過性発現用のプラスミドは、ヒト抗体定常領域を組み込んであるプラスミドを用いた。Igγ重鎖、Igκ軽鎖用プラスミドは制限酵素PvuIIを用いて、Igλ軽鎖は制限酵素StuIを用いて切り出しを行った。切り出したプラスミドDNAは脱リン酸化酵素BAPC75(タカラバイオ社製)を用いて65℃、30分間反応することで脱リン酸化を行った。 As the plasmid for transient expression of the antibody gene, a plasmid incorporating a human antibody constant region was used. The Igγ heavy chain and Igκ light chain plasmids were excised using the restriction enzyme PvuII, and the Igλ light chains were excised using the restriction enzyme StuI. The excised plasmid DNA was dephosphorylated by reacting with the dephosphorylating enzyme BAPC75 (manufactured by Takara Bio Inc.) at 65° C. for 30 minutes.
 脱リン酸化したIgγ重鎖、Igκ軽鎖及びIgλ軽鎖と、Nested-PCR法を用いて増幅した抗体遺伝子可変領域は 酵素ligation high ver.2(TOYOBO社製)を用いて16℃、60分間反応させることで接合させた。接合したDNAは大腸菌JM109(タカラバイオ社製)へと形質転換を行った。形質転換後得られたIgγ重鎖、Igκ軽鎖及びIgλ軽鎖の各プラスミドを、CMVプライマー及びBigDye Terminator v1.1cycle sequencing kit(Applied Biosystems社製)を用いて、配列の解析を行ったところ、Igγ重鎖3種類、Igκ軽鎖2種類、Igλ軽鎖1種類を取得した。重鎖・軽鎖の組合せをHEK293T細胞に発現させ、9種類の抗体を作製した。重鎖・軽鎖の抗体遺伝子は、Lipofectamine3000(インビトロジェン社製)を用いて発現させた。 The dephosphorylated Igγ heavy chain, Igκ light chain, and Igλ light chain, and the antibody gene variable region amplified using the Nested-PCR method are the enzyme ligation high ver. 2 (manufactured by TOYOBO Co., Ltd.) was used for bonding at 16° C. for 60 minutes. The ligated DNA was transformed into Escherichia coli JM109 (Takara Bio Inc.). Sequence analysis of the Ig γ heavy chain, Ig κ light chain, and Ig λ light chain plasmids obtained after transformation was carried out using a CMV primer and a BigDye Terminator v1.1 cycle sequencing kit (Applied Biosystems). Three types of Igγ heavy chain, two types of Igκ light chain, and one type of Igλ light chain were obtained. The combination of heavy and light chains was expressed in HEK293T cells to produce 9 kinds of antibodies. The heavy chain/light chain antibody genes were expressed using Lipofectamine 3000 (manufactured by Invitrogen).
 作製した抗体を用いて、抗原結合能をフローサイトメーター(BD FACS AriaIII)を用いて検出した。抗原発現細胞として40LB-CXCR2細胞を、抗原無発現細胞として40LB細胞を用いた。それぞれの細胞3×105個に対し、作製抗体を添加し、常温で30分間反応させた。その後FACSバッファー(0.5%BSA及び200mM EDTA含有D-PBS(-))を用いて洗浄し、2次抗体としてAPC標識抗ヒトIgG-Fc抗体(Biolegend社製)を用いて常温で20分間反応させた。その後FACSバッファーを用いて2回洗浄し、フローサイトメトリー解析を行った。結果を図4に示す。結果から得られた抗体は、CXCR2抗原ではない40LB細胞上の何らかの抗原を認識する抗体であることが分かった。 Using the prepared antibody, the antigen binding ability was detected using a flow cytometer (BD FACS Aria III). 40LB-CXCR2 cells were used as antigen-expressing cells, and 40LB cells were used as antigen-unexpressing cells. The prepared antibody was added to 3×10 5 cells of each and reacted at room temperature for 30 minutes. Then, the cells were washed with FACS buffer (D-PBS(-) containing 0.5% BSA and 200 mM EDTA), and APC-labeled anti-human IgG-Fc antibody (manufactured by Biolegend) was used as a secondary antibody at room temperature for 20 minutes. It was made to react. After that, the cells were washed twice with FACS buffer and subjected to flow cytometry analysis. The results are shown in Fig. 4. The antibody obtained from the results was found to be an antibody that recognizes some antigen on 40LB cells that is not the CXCR2 antigen.
 前述の結果から、得られた抗体はCXCR2抗原ではない40LB細胞上の何らかの抗原を認識する抗体であることが分かった。この原因は図5の結果から評価方法に問題があったと考えられる。前述の評価の際、攻撃細胞としてのKHYG-1の有無でADCC活性(LDHの吸光度差)が高い細胞集団を選別し、抗体遺伝子の取得を行った。しかしながらこの時のADCC活性を抗原の有無の視点で評価し直すと、KHYG-1の有無でADCC活性が高かった細胞集団は、抗原の有無ではADCC活性は低い細胞集団であることが分かった。この結果から、抗原発現細胞に対してだけではなく抗原を発現していない細胞に対してもADCC活性測定を行う必要があると考えられた。 From the above results, it was found that the obtained antibody is an antibody that recognizes some antigen on 40LB cells that is not the CXCR2 antigen. The cause is considered to be that the evaluation method had a problem from the result of FIG. At the time of the above-mentioned evaluation, a cell population having high ADCC activity (difference in LDH absorbance) with or without KHYG-1 as an attacking cell was selected to obtain an antibody gene. However, when the ADCC activity at this time was re-evaluated from the viewpoint of the presence or absence of the antigen, it was found that the cell population in which the ADCC activity was high in the presence or absence of KHYG-1 was the cell population in which the ADCC activity was low in the presence or absence of the antigen. From this result, it was considered that ADCC activity needs to be measured not only for antigen-expressing cells but also for cells not expressing antigen.
 ADCC活性を測定する12時間前に1×104個/ウェルになるよう96ウェルプレートに抗原発現細胞として40LB-CXCR2細胞を、抗原を発現していない細胞として40LB細胞をそれぞれ播種した。12時間後、各細胞培養上清を回収し、新たに40μLのB細胞小集団培養上清を各ウェルに添加した。この時同一ウェルから回収したB細胞小集団培養上清を、40LB-CXCR2細胞と40LB細胞のそれぞれに対し、ADCC誘導用とコントロール培養用の2ウェル、合計4ウェルに添加した。その後先述の方法と同様に、B細胞小集団培養上清が添加された40LB-CXCR2細胞及び40LB細胞のそれぞれに対し、ADCC誘導用ウェルにはKHYG-1細胞を1×104個/40μL、コントロール培養用には培地のみを40μL添加した。添加後、CO2インキュベーターにて12時間培養した。12時間後、培養上清を用いてADCC活性を死細胞が放出するLDHの測定は前述と同様の方法を用い、490nmの吸光度を測定した。結果を図6に示す。 12 hours before the ADCC activity was measured, 40 LB-CXCR2 cells as antigen-expressing cells and 40 LB cells as antigen-unexpressing cells were seeded in a 96-well plate at 1×10 4 cells/well. After 12 hours, each cell culture supernatant was collected, and 40 μL of a B cell small population culture supernatant was newly added to each well. At this time, the B cell subpopulation culture supernatant collected from the same well was added to 4 wells of ADCLB induction and control culture for each of 40LB-CXCR2 cells and 40LB cells. Thereafter, in the same manner as in the above-mentioned method, for each of 40LB-CXCR2 cells and 40LB cells to which the B cell subpopulation culture supernatant was added, 1×10 4 cells/40 μL of KHYG-1 cells were added to the well for ADCC induction. For control culture, 40 μL of medium alone was added. After the addition, the cells were cultured in a CO 2 incubator for 12 hours. After 12 hours, LDH in which dead cells release ADCC activity using the culture supernatant was measured by the same method as described above, and the absorbance at 490 nm was measured. Results are shown in FIG.
 測定して得られた吸光度は、まず抗原発現細胞及び抗原非発現細胞のそれぞれで差を算出した。次に抗原の有無で得られた差を比較し、差が正に大きいものを抗原特異性が高いものと判断した。先述のような細胞特異性があるものに関しては、抗原発現細胞及び抗原非発現細胞のどちらでも差が生じることになり、両者の比を取ると1に近づくと考えられる。これにより、この手法で得られた結果はノイズが省かれ易くなり、抗原特異的な抗体を含むウェルを選別しやすくなっていると考えられた。 Regarding the absorbance obtained by the measurement, first, the difference between the cells expressing the antigen and the cells not expressing the antigen was calculated. Next, the differences obtained with and without the antigen were compared, and those with a large positive difference were judged to have high antigen specificity. Regarding the cells having cell specificity as described above, a difference occurs in both the antigen-expressing cells and the antigen-non-expressing cells, and it is considered that the ratio of both approaches 1. As a result, it was considered that the results obtained by this method were likely to eliminate noise and facilitate selection of wells containing antigen-specific antibodies.
 上述の結果から差が大きかったウェルから、前回と同様の方法でmRNAを抽出し、抗体遺伝子可変領域の増幅を行い、抗体遺伝子発現用プラスミドを作製した。CMVプライマーにより配列の解析を行ったところ、Igγ重鎖4種類、Igκ軽鎖3種類を取得した。重鎖・軽鎖の組合せをHEK293T細胞に発現させ、12種類の抗体を作製した。 From the wells that showed a large difference from the above results, mRNA was extracted by the same method as the previous time, the antibody gene variable region was amplified, and an antibody gene expression plasmid was prepared. When the sequence was analyzed using CMV primers, 4 types of Igγ heavy chain and 3 types of Igκ light chain were obtained. The combination of heavy and light chains was expressed in HEK293T cells to prepare 12 kinds of antibodies.
 作製した抗体を用いて、抗原結合能をフローサイトメーター(BD FACS AriaIII)を用いて検出した。結果を図7に示す。その結果、前述のような細胞特異的抗体は存在せず、抗原特異的抗体を取得が確認できた。 Using the prepared antibody, the antigen binding ability was detected using a flow cytometer (BD FACS Aria III). The results are shown in Fig. 7. As a result, the above-mentioned cell-specific antibody did not exist, and it was confirmed that an antigen-specific antibody was obtained.

Claims (13)

  1. ヒト抗体を産生する細胞の培養上清から、抗体依存性細胞障害活性を指標として、特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングする方法であって、下記の条件を満たす培養上清を、特定抗原特異的抗体を産生する細胞を含む培養上清として選択する方法:
    特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現しない標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高く、かつ
    特定抗原を発現する標的細胞、攻撃細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性が、特定抗原を発現する標的細胞、及び前記培養上清を混合して培養する場合における抗体依存性細胞障害活性よりも高い。
    A method for screening a culture supernatant containing cells that produce a specific antigen-specific antibody using the antibody-dependent cytotoxic activity as an index, from the culture supernatant of cells producing a human antibody, the culture satisfying the following conditions: Method of selecting supernatant as culture supernatant containing cells producing specific antigen-specific antibody:
    Target cells that express a specific antigen, attacking cells, and antibody-dependent cytotoxicity in the case of culturing by mixing the culture supernatants are mixed with target cells that do not express a specific antigen, attacking cells, and the culture supernatants. Antibody-dependent cytotoxic activity higher than the antibody-dependent cytotoxic activity in the case of culturing in a specific manner, and the antibody-dependent cytotoxic activity in the case of culturing by mixing the target cells expressing the specific antigen, the attacking cells, and the culture supernatant, It is higher than the antibody-dependent cytotoxic activity when the target cells expressing the antigen and the culture supernatant are mixed and cultured.
  2. ヒト抗体を産生する細胞の培養上清が、ヒトB細胞の培養上清である、請求項1に記載の方法。 The method according to claim 1, wherein the culture supernatant of cells producing a human antibody is a culture supernatant of human B cells.
  3. ヒトB細胞の培養上清が、ヒトB細胞を、抗原を発現するフィーダー細胞上において培養した後の培養上清である、請求項2に記載の方法。 The method according to claim 2, wherein the culture supernatant of human B cells is the culture supernatant of human B cells cultured on feeder cells expressing an antigen.
  4. ヒトB細胞の培養上清が、ヒトB細胞を、Fasを介した刺激の存在下において培養した後の培養上清である、請求項2又は3に記載の方法。 The method according to claim 2 or 3, wherein the culture supernatant of human B cells is the culture supernatant of human B cells cultured in the presence of Fas-mediated stimulation.
  5. ヒトB細胞の培養上清が、ヒトB細胞を、IL-2及びIL-21の存在下において培養した後の培養上清である、請求項2から4の何れか一項に記載の方法。 The method according to any one of claims 2 to 4, wherein the culture supernatant of human B cells is a culture supernatant obtained by culturing human B cells in the presence of IL-2 and IL-21.
  6. 特定抗原が、標的細胞の細胞膜表面に発現する膜抗原である、請求項1から5の何れか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the specific antigen is a membrane antigen expressed on the cell membrane surface of target cells.
  7. 特定抗原が、膜貫通型受容体である、請求項1から6の何れか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the specific antigen is a transmembrane receptor.
  8. 特定抗原が、Gタンパク質共役受容体である、請求項1から7の何れか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the specific antigen is a G protein-coupled receptor.
  9. ヒト抗体が、ヒトIgGである、請求項1から8の何れか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the human antibody is human IgG.
  10. 抗体依存性細胞障害活性を、死細胞が放出する酵素の検出による測定する、請求項1から9の何れか一項に記載の方法。 The method according to any one of claims 1 to 9, wherein the antibody-dependent cytotoxic activity is measured by detecting an enzyme released by dead cells.
  11. 請求項1から10の何れか一項に記載の方法により特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞を含む培養上清の製造方法。 A culture supernatant containing cells producing a specific antigen-specific antibody, comprising screening a culture supernatant containing cells producing a specific antigen-specific antibody by the method according to claim 1. Manufacturing method.
  12. 請求項1から10の何れか一項に記載の方法により特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングすることを含む、特定抗原特異的抗体を産生する細胞の製造方法。 A method for producing a cell producing a specific antigen-specific antibody, which comprises screening a culture supernatant containing cells producing the specific antigen-specific antibody by the method according to any one of claims 1 to 10.
  13. 請求項1から10の何れか一項に記載の方法により特定抗原特異的抗体を産生する細胞を含む培養上清をスクリーニングすることを含む、特定抗原特異的抗体の製造方法。 A method for producing a specific antigen-specific antibody, which comprises screening a culture supernatant containing cells that produce a specific antigen-specific antibody by the method according to claim 1.
PCT/JP2019/048916 2018-12-17 2019-12-13 Screening method for cells producing specific antigen-specific antibody WO2020129838A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561378A JP7426661B2 (en) 2018-12-17 2019-12-13 Screening method for cells that produce specific antigen-specific antibodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-235794 2018-12-17
JP2018235794 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020129838A1 true WO2020129838A1 (en) 2020-06-25

Family

ID=71100447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048916 WO2020129838A1 (en) 2018-12-17 2019-12-13 Screening method for cells producing specific antigen-specific antibody

Country Status (2)

Country Link
JP (1) JP7426661B2 (en)
WO (1) WO2020129838A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012100675A (en) * 2005-04-22 2012-05-31 Morphotek Inc Antibody with immune effector activity and that internalizes in folate receptor alpha-positive cell
JP5282040B2 (en) * 2007-09-28 2013-09-04 オリンパス株式会社 Method for assaying antibody-dependent cytotoxicity using Fc receptor gene-transferred NK cells
US20130252258A1 (en) * 2010-12-03 2013-09-26 Mindseeds Laboratories S.R.L. Rapid screening of monoclonal antibodies

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550132B2 (en) 2009-10-30 2014-07-16 学校法人東京理科大学 Method for producing antigen-specific B cell population

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012100675A (en) * 2005-04-22 2012-05-31 Morphotek Inc Antibody with immune effector activity and that internalizes in folate receptor alpha-positive cell
JP5282040B2 (en) * 2007-09-28 2013-09-04 オリンパス株式会社 Method for assaying antibody-dependent cytotoxicity using Fc receptor gene-transferred NK cells
US20130252258A1 (en) * 2010-12-03 2013-09-26 Mindseeds Laboratories S.R.L. Rapid screening of monoclonal antibodies

Also Published As

Publication number Publication date
JP7426661B2 (en) 2024-02-02
JPWO2020129838A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP6659888B2 (en) CD40L-expressing mammalian cells and uses thereof
JP6353953B2 (en) Single B cell culture method
JP2013526286A5 (en)
JP2014518618A5 (en)
JP6978516B2 (en) Methods for producing thymocyte supernatants
JP6916884B2 (en) B cell culture method
JP7026634B2 (en) B cell culture method
CN111417719B (en) B cell culture method
WO2020129838A1 (en) Screening method for cells producing specific antigen-specific antibody
RU2575569C2 (en) Single b-cell cultivation method
WO2018131698A9 (en) Method for producing b cell mass, and method for producing monoclonal antibody employing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899178

Country of ref document: EP

Kind code of ref document: A1