WO2020129806A1 - Polyol composition for molding flexible polyurethane foam - Google Patents

Polyol composition for molding flexible polyurethane foam Download PDF

Info

Publication number
WO2020129806A1
WO2020129806A1 PCT/JP2019/048707 JP2019048707W WO2020129806A1 WO 2020129806 A1 WO2020129806 A1 WO 2020129806A1 JP 2019048707 W JP2019048707 W JP 2019048707W WO 2020129806 A1 WO2020129806 A1 WO 2020129806A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane foam
flexible polyurethane
polyol
foam
molding
Prior art date
Application number
PCT/JP2019/048707
Other languages
French (fr)
Japanese (ja)
Inventor
石橋圭太
吉井直哉
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019156884A external-priority patent/JP7443696B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2020129806A1 publication Critical patent/WO2020129806A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic

Definitions

  • the present invention relates to a polyol composition for molding a flexible polyurethane foam and a flexible polyurethane foam using the composition.
  • Flexible polyurethane foams are widely used in daily necessities, automobile materials, clothing, sports/leisure products, medical materials, civil engineering materials, etc.
  • the hardness felt during initial compression when sitting and the occupant's waist and buttocks during lateral travel are also considered to be It is required to reduce the feeling of wobbling by tilting in the direction.
  • a seat cushion structure having a laminated structure in which a highly elastic polyurethane foam is arranged in an upper layer (seat surface side) and a viscoelastic foam is arranged in a lower layer (bottom surface side) is disclosed (Patent Document 1).
  • the lower layer side viscoelastic foam indirectly gives the occupant a soft fit through the upper layer side high elastic foam, and the upper layer high elasticity foam gives the occupant a cushioning feeling directly.
  • the seating comfort is improved by these synergistic effects, there are problems such as an increase in the number of parts and an increase in the number of steps for integrating the foam by adhesion or the like.
  • Patent Document 2 a technique is disclosed in which the hardness distribution is expressed by changing the density of the sheet for each part.
  • the density must be increased to increase the hardness, which leads to an increase in cost.
  • the main polymerizable group (reactive group) of the crosslinking agent component contained in the polyol composition is an ethylene oxide group, by containing glycerin, and by controlling the shape of the foam cell,
  • Patent Document 3 A technique for expressing hardness distribution even with the same density is disclosed (Patent Document 3).
  • these factors alone are insufficient to develop the hardness distribution that reduces the hardness at the time of initial compression felt at the time of sitting and suppresses the wobble feeling.
  • the present invention has been made in view of the above background art, and a flexible polyurethane foam molding polyol composition having a hardness distribution that provides a comfortable sitting comfort when used as a cushioning material, and a flexible polyurethane foam using the composition.
  • the purpose is to provide.
  • the present invention includes the embodiments described below.
  • a flexible polyurethane foam molding polyol composition comprising a polyol component (A), a catalyst (B), a foam stabilizer (C), a foaming agent (D), and a crosslinking agent (E), which comprises a crosslinking agent ( E) a saccharide (E-1) is contained, and the addition amount of the saccharide (E-1) is 0.1 to 5 mass% with respect to the polyol component (A).
  • Polyol composition for molding polyurethane foam comprising a polyol component (A), a catalyst (B), a foam stabilizer (C), a foaming agent (D), and a crosslinking agent (E), which comprises a crosslinking agent ( E) a saccharide (E-1) is contained, and the addition amount of the saccharide (E-1) is 0.1 to 5 mass% with respect to the polyol component (A).
  • Polyol composition for molding polyurethane foam comprising a polyol component (A), a catalyst (B), a foam stabilizer
  • a total degree of unsaturation of 0.001 to which is produced by using at least one selected from a complex metal cyanide complex catalyst, a phosphazene catalyst, and an imino group-containing phosphazenium salt as a catalyst in the polyol component (A). 0.04 meq. /G of polyoxyalkylene polyol (A-1) is contained, The polyol composition for flexible polyurethane foam molding according to any one of the above [1] to [3].
  • a flexible polyurethane foam molding composition comprising the flexible polyurethane foam molding polyol composition according to any one of the above [1] to [4] and a polyisocyanate component (F), wherein the polyisocyanate is
  • the component (F) contains diphenylmethane diisocyanate in the range of 50 to 85% by mass, and the total amount of 2,2′-diphenylmethane diisocyanate and 2,4′-diphenylmethane diisocyanate contained in the diphenylmethane diisocyanate is equal to the total amount of the diphenylmethane diisocyanate.
  • a flexible polyurethane foam molding composition characterized in that it is 10 to 50 mass %.
  • a two-layer foam in which a flexible polyurethane foam molded such that the upper mold side is the lower surface and the lower mold side is the upper surface is cut out from the end surface on the upper surface side toward the lower surface side at every 45% of the thickness.
  • the polyol composition for molding a flexible polyurethane foam of the present invention it is possible to obtain a flexible polyurethane foam having a hardness distribution that provides a comfortable sitting comfort when used as a cushioning material.
  • the polyol composition for molding a flexible polyurethane foam according to the present invention contains the following polyol component (A), catalyst (B), foam stabilizer (C), foaming agent (D), and crosslinking agent (E).
  • the polyol component (A) is one that is polyadded with the polyisocyanate component (F) to form polyurethane, and in the present invention, it is at least one selected from the group consisting of polyether polyol and polyester polyol. desirable. Further, those having a number average molecular weight of 1,000 to 10,000 and a nominal number of functional groups of 2 or more are more desirable. When the number average molecular weight is less than the lower limit, the flexibility of the resulting foam tends to be insufficient, and when it exceeds the upper limit, the hardness of the foam tends to be lowered. Further, when the number of nominal functional groups is less than 2, there is a possibility that a problem such as deterioration of wet heat compression strain, which is an index of durability, may occur. Incidentally.
  • the nominal number of functional groups refers to the theoretical average number of functional groups (the number of active hydrogen atoms per molecule), assuming that side reactions do not occur during the polymerization reaction of the polyol.
  • polypropylene ether polyol for example, polypropylene ether polyol, polyethylene polypropylene ether polyol (hereinafter referred to as PPG), polytetramethylene ether glycol (hereinafter referred to as PTG), or the like
  • PPG polyethylene polypropylene ether polyol
  • PTG polytetramethylene ether glycol
  • polyester polyol for example, polycondensation can be used.
  • Polyester polyols consisting of adipic acid and a diol, which are type polyester polyols, polycaprolactone polyols such as lactone polyester polyols, and the like can be used.
  • the polyol component (A) is produced by using at least one selected from a complex metal cyanide complex catalyst, a phosphazene catalyst, and an imino group-containing phosphazenium salt as a catalyst.
  • the total unsaturation degree is 0.001 to 0.04 meq. /G of polyoxyalkylene polyol (A-1) is preferably contained.
  • the increase in the total unsaturation degree of the polyol (A-1) means that the monool component having an unsaturated group at the terminal increases, and the total unsaturation degree is 0.04 meq. If it is larger than /g, the durability may be lowered as the cross-linking density of the foam is lowered. In addition, 0.001 meq. If it is less than /g, it takes a long time to produce the polyol, which is not preferable.
  • a polyether polyol having a polyoxyalkylene chain composed of a copolymer of oxyethylene and oxypropylene in the polyol component (A) for the purpose of accelerating the foam breaking of the flexible polyurethane foam. It is preferable to include.
  • the number average molecular weight of the polyether polyol is preferably 4,000 to 8,000, more preferably 6,000 to 8,000. Further, it is preferable that the number of nominal functional groups is 2 to 4.
  • the oxyethylene unit in the polyether polyol is preferably 60 to 90% by mass, more preferably 60 to 80% by mass. By setting the oxyethylene unit to 60 to 90% by mass, the hardness distribution of the foam can be easily obtained, and the durability can be further improved. From the viewpoint of storage stability at low temperatures, the copolymer composed of oxyethylene and oxypropylene is preferably a random copolymer.
  • the amount of the polyether polyol added is preferably 0.5 to 5 mass% with respect to the polyol component (A). If it is less than the lower limit, the moldability of the foam may deteriorate, and if it exceeds the upper limit, the elongation rate of the foam may decrease.
  • the polyol component (A) of the present invention is preferably used in combination with a polymer polyol obtained by polymerizing a vinyl monomer in the polyol by a usual method for the purpose of adjusting hardness.
  • a polymer polyol include those obtained by polymerizing a vinyl-based monomer in a polyalkylene polyol such as PPG in the presence of a radical initiator and stably dispersing it.
  • the vinyl-based monomer include acrylonitrile, styrene, vinylidene chloride, hydroxyalkyl methacrylate and alkyl methacrylate, and of these, acrylonitrile and styrene are preferable.
  • polymer polyols include EL-910 and EL-923 manufactured by AGC, and FA-728R manufactured by Sanyo Kasei.
  • urethanization catalysts known in the art can be used.
  • amine catalysts having active hydrogen such as N,N-dimethylethanolamine and N,N-diethyl
  • the amount of the catalyst added is preferably 0.01 to 10 mass% with respect to the polyol component (A). If it is less than the lower limit, the curing tends to be insufficient, and if it exceeds the upper limit, the moldability may be deteriorated.
  • foam stabilizer (C) an ordinary surfactant is used, and an organosilicon-based surfactant can be preferably used.
  • an organosilicon-based surfactant can be preferably used.
  • Toray Dow Corning SZ-1327, SZ-1325, SZ-1336, SZ-3601, Momentive Y-10366, L-5309, Evonik B-8724LF2, B-8715LF2 and the like. Can be mentioned.
  • the amount of these foam stabilizers added is preferably 0.1 to 3 mass% with respect to the polyol component (A).
  • Water is mainly used as the foaming agent (D). Water reacts with an isocyanate group to form a high-hardness urea group and generates carbon dioxide gas, which allows foaming.
  • an optional foaming agent may be used.
  • a small amount of a low boiling point organic compound such as cyclopentane or isopentane may be used together, or air or nitrogen gas or liquefied carbon dioxide may be mixed and dissolved in the stock solution using a gas loading device to foam.
  • the addition amount of the foaming agent is usually 0.5 to 10% by mass with respect to the polyol component (A), but 3.0 to 6 when a low density flexible polyurethane foam having an apparent density of less than 40 kg/m 3 is obtained. It is preferably 0% by mass, and more preferably 3.0 to 5.5% by mass. If it exceeds the upper limit, foaming may be difficult to stabilize, and if it is less than the lower limit, the density of the foam may not be sufficiently lowered.
  • the cross-linking agent (E) in the present invention contains a sugar (E-1).
  • the saccharide (E-1) preferably contains at least one selected from monosaccharides to decasaccharides, and more preferably contains at least one selected from monosaccharides to hexasaccharides.
  • the monosaccharide is the minimum unit of sugar, and the disaccharide to decasaccharide means each of 2 to 10 monosaccharides dehydrated and condensed to form a glycoside bond to form one molecule.
  • examples of monosaccharides include triose, tetrose, pentose, hexose, heptose, octose, nonose, and decose. These compounds may be aldose or ketose, and dialdose (a compound of a sugar derivative in which both ends of the carbon chain are aldehyde groups, for example, tetraacetylgalactohexodialdose, idhexodialdose, xylopentodose.
  • Aldoses, etc. monosaccharides having a plurality of carbonyl groups (such as aldol alkoketose such as othone and onose), monosaccharides having a methyl group (such as methyl sugars such as altromethylose), acyl groups (especially C2 such as acetyl group) -C4 acyl group and the like) (acetylose of the aldose, for example, acetyl body such as aldehyde glucose pentaacetyl compound), carboxyl group-introduced sugar (sugar acid or uronic acid), lyo sugar , Amino sugar, deoxy sugar and the like.
  • carbonyl groups such as aldol alkoketose such as othone and onose
  • monosaccharides having a methyl group such as methyl sugars such as altromethylose
  • acyl groups especially C2 such as acetyl group
  • Such monosaccharides include, for example, tetrose (erythrose, threorose, etc.), pentose (arabinose, ribose, lyxose, deoxyribose, xylose, etc.), hexose (allose, altrose, glucose, mannose, gulose, idose, galactose, Fructose, sorbose, fucose, rhamnose, talose, galacturonic acid, glucuronic acid, mannuronic acid, glucosamine, etc.) and the like.
  • tetrose erythrose, threorose, etc.
  • pentose arabinose, ribose, lyxose, deoxyribose, xylose, etc.
  • hexose allose, altrose, glucose, mannose, gulose, idose, galactose, Fructose,
  • the monosaccharide may be a cyclic isomer having a cyclic structure formed by a hemiacetal bond.
  • the monosaccharide does not have to have optical activity and may be any of D type, L type and DL type. Further, it may be a crystal or a liquid, and may be a hydrate or may contain water. These monosaccharides can be used alone or in combination of two or more.
  • isomerized liquid sugars that are liquid at room temperature, such as high-fructose liquid sugar, fructose-glucose liquid sugar, glucose-fructose liquid sugar, workability during preparation of the flexible polyurethane foam molding polyol composition, and soft polyurethane foam molding polyol composition It is more preferable in terms of storage stability.
  • disaccharides examples include trehalose (for example, ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, etc.) cozybiose, nigerose, maltose, isomaltose, sophorose, laminaribiose, cellobiose, gentiobiose, lactose. , Sucrose, palatinose, melibiose, rutinose, primeverose, turanose and the like.
  • trehalose for example, ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, etc.
  • cozybiose nigerose, maltose, isomaltose, sophorose, laminaribiose, cellobiose, gentiobiose, lactose.
  • Sucrose palatinose, melibiose, rutinose, primeverose, turanose and the like.
  • a room temperature liquid mixture of sugars that are liquid at room temperature and a room temperature liquid mixture with a hydrophilic polyol such as ethylene glycol, diethylene glycol or glycerin. It is more preferable to use as.
  • Trisaccharides to decasaccharides are also generally called oligosaccharides (hereinafter, the trisaccharides to decasaccharides may be referred to as oligosaccharides). Homo-oligosaccharides in which 3 to 10 molecules of monosaccharides are dehydrated and condensed via glycoside bonds. And, at least two or more kinds of 3 to 10 molecules of monosaccharides and/or sugar alcohols are roughly classified into hetero-oligosaccharides dehydrated and condensed via glycoside bonds.
  • the oligosaccharides that can be used in the present invention are preferably trisaccharides to decasaccharides, and more preferably trisaccharides to hexasaccharides.
  • these oligosaccharides may have a cyclic structure, and may be an anhydride or a hydrate. Further, in the oligosaccharide, a monosaccharide and a sugar alcohol may be bound to each other. These oligosaccharides can be used alone or in combination of two or more, and can also be used in combination with monosaccharides, disaccharides and polysaccharides.
  • the oligosaccharide may be an oligosaccharide composition composed of a plurality of sugar components. Even such an oligosaccharide composition may be simply referred to as an oligosaccharide.
  • those that are solid at room temperature are preferably used after being liquefied at room temperature by mixing with other sugars or hydrophilic polyols such as glycerin.
  • trisaccharides examples include homooligosaccharides such as maltotriose, isomaltotriose, panose, and cellotriose; manninotriose, solatriose, melezitose, planteose, gentianose, umbelliferose, lactosucrose, raffinose and the like.
  • tetrasaccharides include homooligosaccharides such as maltotetraose and isomalttetraose; heterooligosaccharides such as stachyose, cellotetraose, scorodose, liquinose, and telolaose having sugar or sugar alcohol attached to the reducing end of panose.
  • pentasaccharides examples include homooligosaccharides such as maltopentaose and isomaltopentaose; and heterooligosaccharides such as pentaose in which a disaccharide is bonded to the reducing end of panose.
  • hexasaccharides examples include homo-oligosaccharides such as maltohexaose and isomalthexaose.
  • cyclic oligosaccharides examples include ⁇ -cyclodextrin (hexasaccharide), ⁇ -cyclodextrin (heptasaccharide), and ⁇ -cyclodextrin (octasaccharide).
  • Oligosaccharide may be a reduced type (maltose type) or a non-reduced type (trehalose type).
  • polysaccharides examples include amylose, amylopectin, glycogen, cellulose, agar, inulin, glucomannan, glycosaminoglycan (mucopolysaccharide), alginic acid, hyaluronic acid, chondroitinic acid, heparin and chitin.
  • Monosaccharides, disaccharides, oligosaccharides and mixtures thereof have ether-modified or ester-modified a part of their hydroxyl groups for the purpose of improving the compatibility with other components of the polyol molding composition and the sugar. May be.
  • the modifiable hydroxyl groups are preferably 30 mol% or less of all the hydroxyl groups.
  • the number average molecular weight of the sugar (E-1) is preferably 180 to 2,500, more preferably 180 to 1,800. If it exceeds the upper limit, foam formability and foam elongation may deteriorate.
  • the average number of sugar chains of the carbohydrate (E-1) is preferably 1.0 or more and 9.0 or less, more preferably more than 1.0 and 9.0 or less, and most preferably 1.5 or more. It is 9.0 or less.
  • the number of sugar chains is the number of linked monosaccharides
  • the average number of sugar chains is the average number of sugar chains of each component contained in the sugar (E-1). If it is less than the lower limit, it is difficult to obtain a sufficient elongation, and if it exceeds the upper limit, the formability of the foam and the elongation of the foam may be deteriorated.
  • the average number of hydroxyl groups in the sugar (E-1) is preferably 0.5 times or more the average number of carbon atoms.
  • the average number of hydroxyl groups is the average number of hydroxyl groups of each component in the sugar (E-1), and the average number of carbon atoms is the carbon number of each component in the sugar (E-1). It is the average of the number of atoms.
  • the amount of the sugar (E-1) added is 0.1 to 5% by mass, preferably 0.1 to 4% by mass, more preferably 0.3 to 4% by mass based on the polyol component (A). It is% by mass. If it is less than the lower limit, it is difficult to obtain the effect of expressing the hardness distribution, and if it exceeds the upper limit, the formability of the foam and the elongation rate of the foam may be deteriorated.
  • an alicyclic glycol is used as a crosslinking agent component other than the sugar (E-1) in the polyol composition for molding a flexible polyurethane foam.
  • at least one cyclic glycol selected from the group consisting of aromatic glycols hereinafter also simply referred to as “cyclic glycol”.
  • the cyclic glycol is a compound having a ring structure, and examples thereof include cyclohexanediol, cyclohexanedimethanol, hydroquinone bis(2-hydroxyethyl)ether, dihydroxydiphenylmethane, bisphenol A hydride, polyoxyethylene bisphenol ether, and polyoxyethylene bisphenol ether. Examples thereof include oxypropylene bisphenol ether. Among these, 1,4-cyclohexanedimethanol and polyoxyethylene bisphenol A ether are preferable from the viewpoint that the resulting flexible polyurethane foam has a high effect of improving the wet heat compression strain.
  • the content of the cyclic glycol is preferably 1.5 to 8% by mass, and more preferably 1.5 to 6% by mass based on the polyol component (A).
  • the polyisocyanate component (F) used for producing the flexible polyurethane foam of the present invention includes 4,4′-diphenylmethane diisocyanate (hereinafter, 4,4′-MDI) and 2,4′-diphenylmethane diisocyanate (hereinafter, 2,4).
  • Diphenylmethane diisocyanate (hereinafter, MDI) such as'-MDI
  • 2,2'-diphenylmethane diisocyanate hereinafter, 2,2'-MDI
  • polyphenylene polymethylene polyisocyanate hereinafter, P-MDI
  • P-MDI polyphenylene polymethylene polyisocyanate
  • various modified products such as the above-mentioned MDI, a mixture of MDI and P-MDI, a urethane modified product, a urea modified product, an allophanate modified product, a nurate modified product, and a burette modified product may be used.
  • the MDI content of the polyisocyanate component (F) according to the present invention is preferably in the range of 50 to 85 mass %. If the MDI content exceeds 85% by mass, the storage stability of the polyisocyanate component at low temperatures and the durability of the resulting flexible polyurethane foam may decrease, while if it is less than 50% by mass, the crosslinking density increases, The elongation of the flexible polyurethane foam may decrease, and it may be difficult to obtain sufficient foam strength.
  • the sum of the content of 2,2'-MDI and the content of 2,4'-MDI (hereinafter referred to as isomer content) is preferably 10 to 50% by mass with respect to the total amount of MDI.
  • the storage stability of the polyisocyanate component at low temperatures may be impaired, and the isocyanate storage location It may be necessary to constantly heat pipes, piping, and foam molding machines.
  • the molding stability of the flexible polyurethane foam may be impaired, and foam collapse may occur during foaming.
  • it exceeds 50% by mass the reactivity is lowered, and there is a possibility that problems such as extension of the molding cycle, increase of the closed cell ratio of the foam and shrinkage after molding may occur.
  • fillers such as calcium carbonate and barium sulfate, flame retardants, plasticizers, colorants, known various additives such as antifungal agents, and auxiliaries as necessary. Can be used.
  • a flexible polyurethane foam can be obtained from the above polyol composition for molding a flexible polyurethane foam and the polyisocyanate component, and has an apparent density of 30 kg/m 3 to 70 kg/m 3 and a skin test piece of 25.
  • a soft polyurethane foam having a% compression hardness of 100 to 350 N/314 cm 2 , an elongation of 100% or more, a rebound resilience of 45 to 75%, and a wet heat compression strain of less than 20% and having a hardness distribution in the foaming direction is suitable. Can be obtained.
  • the flexible polyurethane foam of the present invention reacts with a mixed solution of a polyol component (A), a catalyst (B), a foam stabilizer (C), a foaming agent (D), a crosslinking agent (E), and a polyisocyanate component (F). It is manufactured by foaming.
  • NCO INDEX When NCO INDEX is less than 70, durability is lowered and foaming property is excessively increased, and when it is more than 120, the unreacted isocyanate remains for a long time to extend the molding cycle and delay the high molecular weight during foaming. Foam collapse may occur.
  • a mixed liquid of the polyol component (A), the catalyst (B), the foam stabilizer (C), the foaming agent (D), the crosslinking agent (E), and the polyisocyanate component (F) is used.
  • the method for producing a flexible polyurethane mold foam (hereinafter, soft mold foam), which comprises injecting the undiluted foaming solution into a mold and then foaming and curing the same can be used.
  • the mold temperature at the time of injecting the foaming stock solution into the mold is usually 30 to 80° C., preferably 45 to 65° C. If the mold temperature at the time of injecting the above foaming undiluted solution into the mold is less than 30° C., the production cycle is prolonged due to a decrease in reaction rate, while if it is higher than 80° C., the reaction between the polyol and the isocyanate is If the reaction between water and isocyanate is excessively promoted, the foam may collapse during foaming.
  • the curing time for foaming and curing the above-mentioned foaming undiluted solution is preferably 10 minutes or less, more preferably 7 minutes or less, in consideration of a general flexible mold foam production cycle.
  • the above components can be mixed using a high-pressure foaming machine, a low-pressure foaming machine, etc., as in the case of a normal soft mold foam.
  • the isocyanate component and the polyol component immediately before foaming.
  • Other components can be mixed in advance with the isocyanate component or the polyol component as long as they do not affect the storage stability of the raw material or the change with time of the reactivity.
  • the mixture may be used immediately after mixing, or may be used in an appropriate amount after storage.
  • a foaming device capable of simultaneously introducing more than two components into the mixing section, it is also possible to individually introduce a polyol, a foaming agent, an isocyanate, a catalyst, a foam stabilizer, an additive and the like into the mixing section.
  • the mixing method may be either dynamic mixing for mixing in the machine head mixing chamber of the foaming machine or static mixing for mixing in the liquid feed pipe, or both may be used together.
  • mixing of a gaseous component such as a physical foaming agent and a liquid component is performed by static mixing, and mixing of components that can be stably stored as a liquid is performed by dynamic mixing.
  • the foaming device used in the present invention is preferably a high-pressure foaming device that does not require solvent cleaning of the mixing section.
  • the mixed solution obtained by such mixing is discharged into the mold, foamed and cured, and then demolded.
  • a mold release agent to the mold in advance.
  • a releasing agent usually used in the field of molding and processing may be used.
  • the product after demolding can be used as it is, but it is preferable to break the cell membrane of the foam under compression or under reduced pressure by a conventionally known method to stabilize the appearance and dimensions of the product thereafter.
  • an apparent density of 30 kg/m 3 to 70 kg/m 3 and a 25% compression hardness of the skin-attached foam test piece are 100 to 350 N/314 cm 2 , and the impact resilience is 45 to 75%.
  • a flexible polyurethane foam having a wet heat compression strain of less than 20% can be obtained. Further, the flexible polyurethane foam has a hardness distribution in the foaming direction.
  • the flexible polyurethane foam produced as described above not only has excellent physical properties such as hardness and impact resilience, but also has a hardness distribution in which the hardness increases from the upper surface side to the lower surface side, and therefore has excellent riding comfort. It becomes possible to provide it as a cushion material.
  • the liquid temperature of the mixture (polyol composition) of all raw materials other than the polyisocyanate component was adjusted to 24°C to 26°C, and the polyisocyanate component was adjusted to the liquid temperature of 24°C to 26°C. did.
  • a predetermined amount of polyisocyanate component was added to the polyol composition, mixed for 7 seconds with a mixer (7,000 rpm), and then poured into a mold to foam a flexible polyurethane foam. Then, it was taken out from the mold and the physical properties of the obtained flexible polyurethane foam were measured.
  • the NCO Index in Tables 1 to 4 is the ratio of NCO groups to the number of active hydrogen atoms present in the formulation.
  • Mold temperature 60-70°C Mold shape: 300mm ⁇ 300mm ⁇ 100mm Mold material: Aluminum Cure time: 5 minutes
  • polyoxyethylene polyoxypropylene polyol NEF-728 manufactured by Tosoh Corporation -Polyol 3: Polymer polyol having an average number of functional groups of 3.0 and a hydroxyl value of 24 (mgKOH/g), Exenol EL-923 manufactured by AGC Co.
  • Polyol 4 polyether polyol having an average number of functional groups of 3.0, a hydroxyl value of 24 (mgKOH/g), and an oxyethylene unit of 70% by mass, NEF-729 manufactured by Tosoh Corporation.
  • Polyol 5 polyoxyethylene polyoxypropylene polyol having an average number of functional groups of 4.0, a hydroxyl value of 28 (mgKOH/g), and an oxyethylene unit of 80% by mass, NEF-024 manufactured by Tosoh Corporation.
  • Polyol 6 Polyoxyethylene polyoxypropylene polyol having an average number of functional groups of 4.0, a hydroxyl value of 28 (mgKOH/g), and an oxyethylene unit of 90% by mass, NEF-730 manufactured by Tosoh Corporation.
  • ⁇ Crosslinking agent 1 D-(+)-glucose (Fujifilm Wako Pure Chemical Industries, monosaccharide) -Crosslinking agent 2: D-(-)-fructose (manufactured by Tokyo Chemical Industry Co., Ltd., monosaccharide) -Crosslinking agent 3: D-(+)-sucrose (Tokyo Chemical Industry Co., Ltd., disaccharide) -Crosslinking agent 4: D-(+)-raffinose (Tokyo Chemical Industry Co., Ltd., trisaccharide) -Crosslinking agent 5: high-fructose corn syrup (manufactured by Japan Food Processing Co., mixture of monosaccharides to decasaccharides) -Crosslinking agent 6: ⁇ -cyclodextrin (Tokyo Chemical Industry Co., Ltd., octasaccharide) Cross-linking agent 7: Maltos
  • the hardness distribution measurement sample of the present invention is a flexible polyurethane foam molded with a thickness of 100 mm so that the upper mold side is the lower surface and the lower mold side is the upper surface, and cut from the end surface on the upper surface side toward the lower surface side every 45 mm.
  • the two-layer foam is “upper surface side: 0 mm (upper surface end) to 45.0 mm, lower surface side: 45.0 mm to 90.0 mm”.
  • the pressure plate is a disc having a diameter of 200 mm.
  • the pressure plate is compressed toward the evaluation sample at a speed of 50 mm/min to 25% of the thickness of the evaluation sample. After that, the pressure plate is returned to the initial position at a speed of 50 mm/min.
  • the stress value exerted on the evaluation sample was measured, and this value was defined as 25% compression hardness.
  • this hardness ratio means the hardness ratio of each evaluation sample to the average hardness in the foaming height direction. If the hardness ratio of the upper surface side foam is 50 to 85% when the average value of the 25% compression hardness of the evaluation samples of each of the two layers is 100, it can be said that the foam has a hardness distribution.
  • FT-IR measurement is performed on the above-mentioned two-layer evaluation sample, and the peak height derived from the urea bond observed near the wave number of 1660 cm ⁇ 1 is divided by the peak height derived from the urethane bond observed near the wave number of 1710 cm ⁇ 1.
  • the urea binding ratio was calculated by. That is, the smaller the urea bond ratio, the more suppressed the generation of urea bonds and the harder it is to develop hardness.
  • the measurement sample of the cell anisotropy in the present invention is a flexible polyurethane foam molded with a thickness of 100 mm, which is a four-layer foam "first layer" cut out every 22.5 mm from the end face on the upper surface side to the lower surface side. 0 mm (upper end) to 22.5 mm, second layer: 22.5 mm to 45 mm, third layer: 45 mm to 67.5 mm, fourth layer: 67.5 mm to 90 mm”.
  • the first to fourth layers were divided into four layers.
  • Each of the obtained layers was divided into two equal parts in the vertical direction, and an enlarged image of the central portion (field of view: 3.2 mm ⁇ 3.2 mm) of the cross section was obtained by a microscope.
  • a value obtained by dividing the cell length in the foaming direction by the cell length orthogonal to the foaming direction was obtained for each cell, and the average value of 30 cells was used as the evaluation value of the cell anisotropy.

Abstract

To provide a polyol composition for molding a flexible polyurethane foam which has such a hardness distribution as to give a comfortable feeling when used as a cushion material; and a flexible polyurethane foam using the composition. The above problem is solved by a polyol composition for molding a flexible polyurethane foam, said polyol composition comprising a polyol component (A), a catalyst (B), a foam stabilizer (C), a foaming agent (D) and a crosslinking agent (E), characterized in that a carbohydrate (E-1) is contained as the crosslinking agent (E) and the content of the carbohydrate (E-1) is 0.1-5 mass% relative to the polyol component (A).

Description

軟質ポリウレタンフォーム成型用ポリオール組成物Polyol composition for molding flexible polyurethane foam
 本発明は、軟質ポリウレタンフォーム成型用ポリオール組成物及び該組成物を用いた軟質ポリウレタンフォームに関する。 The present invention relates to a polyol composition for molding a flexible polyurethane foam and a flexible polyurethane foam using the composition.
 軟質ポリウレタンフォームは生活用品、自動車用材料、衣料、スポーツ・レジャー用品、医療用材料、土木建築材料等、広範囲に使用されている。このような用途分野の中でも特に自動車用シートや車椅子などのクッション材用途においては従来から求められる機能に加え、着座する際の初期圧縮時に感じる硬さや、カーブ走行時に乗員の腰部や臀部等が横方向に傾くことで感じるぐらつき感を低減する事が求められている。これらの課題を達成するためには、軟質ポリウレタンフォームの初期圧縮時には硬度が発現しにくく、かつ高圧縮時には硬度が発現しやすい硬度分布とする事で着座姿勢をより安定保持する事が必要である。 Flexible polyurethane foams are widely used in daily necessities, automobile materials, clothing, sports/leisure products, medical materials, civil engineering materials, etc. In addition to the functions conventionally required for cushioning applications such as automobile seats and wheelchairs among such application fields, the hardness felt during initial compression when sitting and the occupant's waist and buttocks during lateral travel are also considered to be It is required to reduce the feeling of wobbling by tilting in the direction. In order to achieve these problems, it is necessary to more stably maintain the sitting posture by providing a hardness distribution in which the hardness of the flexible polyurethane foam is difficult to be expressed at the initial compression and the hardness is easily expressed at the time of high compression. ..
 この硬度分布を発現させる手段として、従来種々の取り組みがなされている。例えば、高弾性のポリウレタンフォームを上層(座面側)に配置し、粘弾性フォームを下層(底面側)に配置した積層構造のシートクッション構造が開示されている(特許文献1)。これによれば、下層側粘弾性フォームが上層側高弾性フォームを介して軟らかいフィット感を乗員に間接的に与え、上層高弾性フォームがクッション感を乗員に直接与える。これらの相乗的作用により座り心地の改善が図られるが、部品点数の増加や、接着等により発泡体を一体化する工程が多くなるなどの問題が生じる。また、部位別にシートの密度を変える事で硬度分布を発現させる技術が開示されている(特許文献2)。しかしながら、密度変化で硬度を調整した場合、硬度を上げるためには密度を上げなければならず、コストの増加につながる。また、部位別に成型を行う必要があり、工数が増えるという問題がある。また、ポリオール組成物中に含有される架橋剤成分の有する主な重合性基(反応性基)がエチレンオキサイド基であること、グリセリンを含有させること、及び発泡セルの形状を制御する事で、同一密度でも硬度分布を発現させる技術が開示されている(特許文献3)。しかしながら、これらの要因だけでは着座時に感じる初期圧縮時の硬さを低減し、且つぐらつき感を抑制する硬度分布の発現は不十分である。 Various efforts have been made in the past as a means of expressing this hardness distribution. For example, a seat cushion structure having a laminated structure in which a highly elastic polyurethane foam is arranged in an upper layer (seat surface side) and a viscoelastic foam is arranged in a lower layer (bottom surface side) is disclosed (Patent Document 1). According to this, the lower layer side viscoelastic foam indirectly gives the occupant a soft fit through the upper layer side high elastic foam, and the upper layer high elasticity foam gives the occupant a cushioning feeling directly. Although the seating comfort is improved by these synergistic effects, there are problems such as an increase in the number of parts and an increase in the number of steps for integrating the foam by adhesion or the like. Further, a technique is disclosed in which the hardness distribution is expressed by changing the density of the sheet for each part (Patent Document 2). However, when the hardness is adjusted by changing the density, the density must be increased to increase the hardness, which leads to an increase in cost. In addition, it is necessary to perform molding for each part, which causes a problem of increasing man-hours. Further, the main polymerizable group (reactive group) of the crosslinking agent component contained in the polyol composition is an ethylene oxide group, by containing glycerin, and by controlling the shape of the foam cell, A technique for expressing hardness distribution even with the same density is disclosed (Patent Document 3). However, these factors alone are insufficient to develop the hardness distribution that reduces the hardness at the time of initial compression felt at the time of sitting and suppresses the wobble feeling.
日本国実開平6-19604号公報Japanese Utility Model No. 6-19604 日本国特開2002-300936号公報Japanese Patent Laid-Open No. 2002-300936 国際公開2017/022824号公報International Publication 2017/022824
 本発明は上記背景技術に鑑みてなされたものであり、クッション材として用いたときの座り心地が良好な硬度分布を有する軟質ポリウレタンフォーム成型用ポリオール組成物及び該組成物を用いた軟質ポリウレタンフォームを提供することを目的とする。 The present invention has been made in view of the above background art, and a flexible polyurethane foam molding polyol composition having a hardness distribution that provides a comfortable sitting comfort when used as a cushioning material, and a flexible polyurethane foam using the composition. The purpose is to provide.
 すなわち、本発明は以下に示す実施形態を含むものである。 That is, the present invention includes the embodiments described below.
 [1]ポリオール成分(A)、触媒(B)、整泡剤(C)、発泡剤(D)、及び架橋剤(E)を含む軟質ポリウレタンフォーム成型用ポリオール組成物であって、架橋剤(E)として糖質(E-1)を含有し、該糖質(E-1)の添加量がポリオール成分(A)に対して0.1~5質量%であることを特徴とする、軟質ポリウレタンフォーム成型用ポリオール組成物。 [1] A flexible polyurethane foam molding polyol composition comprising a polyol component (A), a catalyst (B), a foam stabilizer (C), a foaming agent (D), and a crosslinking agent (E), which comprises a crosslinking agent ( E) a saccharide (E-1) is contained, and the addition amount of the saccharide (E-1) is 0.1 to 5 mass% with respect to the polyol component (A). Polyol composition for molding polyurethane foam.
 [2]前記糖質(E-1)が、単糖類~十糖類から選ばれる少なくとも一種を含む、上記[1]に記載の軟質ポリウレタンフォーム成型用ポリオール組成物。 [2] The flexible polyurethane foam molding polyol composition according to the above [1], wherein the sugar (E-1) contains at least one selected from monosaccharides to decasaccharides.
 [3]前記糖質(E-1)の平均糖鎖数が1.0以上9.0以下である、上記[1]、または[2]に記載の軟質ポリウレタンフォーム成型用ポリオール組成物。 [3] The flexible polyurethane foam molding polyol composition according to the above [1] or [2], wherein the average sugar chain number of the sugar (E-1) is 1.0 or more and 9.0 or less.
 [4]前記ポリオール成分(A)中に、触媒として複合金属シアン化物錯体触媒、ホスファゼン触媒、及びイミノ基含有ホスファゼニウム塩から選ばれる少なくとも一種を用いて製造された、総不飽和度0.001~0.04meq./gのポリオキシアルキレンポリオール(A-1)を含むことを特徴とする、上記[1]乃至[3]のいずれかに記載の軟質ポリウレタンフォーム成型用ポリオール組成物。 [4] A total degree of unsaturation of 0.001 to, which is produced by using at least one selected from a complex metal cyanide complex catalyst, a phosphazene catalyst, and an imino group-containing phosphazenium salt as a catalyst in the polyol component (A). 0.04 meq. /G of polyoxyalkylene polyol (A-1) is contained, The polyol composition for flexible polyurethane foam molding according to any one of the above [1] to [3].
 [5]上記[1]乃至[4]のいずれかに記載の軟質ポリウレタンフォーム成型用ポリオール組成物と、ポリイソシアネート成分(F)とを含む軟質ポリウレタンフォーム成型用組成物であって、前記ポリイソシアネート成分(F)が、ジフェニルメタンジイソシアネートを50~85質量%の範囲で含み、該ジフェニルメタンジイソシアネートに含まれる2,2’-ジフェニルメタンジイソシアネートと、2,4’-ジフェニルメタンジイソシアネートの総量が該ジフェニルメタンジイソシアネートの総量に対し10~50質量%であることを特徴とする軟質ポリウレタンフォーム成型用組成物。 [5] A flexible polyurethane foam molding composition comprising the flexible polyurethane foam molding polyol composition according to any one of the above [1] to [4] and a polyisocyanate component (F), wherein the polyisocyanate is The component (F) contains diphenylmethane diisocyanate in the range of 50 to 85% by mass, and the total amount of 2,2′-diphenylmethane diisocyanate and 2,4′-diphenylmethane diisocyanate contained in the diphenylmethane diisocyanate is equal to the total amount of the diphenylmethane diisocyanate. A flexible polyurethane foam molding composition, characterized in that it is 10 to 50 mass %.
 [6]上記[5]に記載の軟質ポリウレタンフォーム成型用組成物を反応発泡させてなる軟質ポリウレタンフォーム。 [6] A flexible polyurethane foam obtained by reactively foaming the flexible polyurethane foam molding composition according to the above [5].
 [7]上型側が下面、下型側が上面となるようにモールド成型された軟質ポリウレタンフォームを、上面側の端面から下面側に向かって厚みの45%毎に切り出した2層のフォームにおいて、2層それぞれのフォームの25%圧縮硬度の平均値を100とした際の上面側フォームの硬度比が50~85%であることを特徴とする、上記[6]に記載の軟質ポリウレタンフォーム。 [7] A two-layer foam in which a flexible polyurethane foam molded such that the upper mold side is the lower surface and the lower mold side is the upper surface is cut out from the end surface on the upper surface side toward the lower surface side at every 45% of the thickness. The flexible polyurethane foam according to the above [6], wherein the hardness ratio of the foam on the upper surface side is 50 to 85% when the average value of the 25% compression hardness of the foam of each layer is 100.
 [8]見掛け密度が30~70kg/mであり、かつスキン付きフォーム試験片の25%圧縮硬さが100~350N/314cmであり、かつ伸び率が100%以上であることを特徴とする、上記[6]、又は[7]に記載の軟質ポリウレタンフォーム。 [8] It is characterized in that the apparent density is 30 to 70 kg/m 3 , the 25% compression hardness of the skinned foam test piece is 100 to 350 N/314 cm 2 , and the elongation is 100% or more. The flexible polyurethane foam according to the above [6] or [7].
 [9]反発弾性率が45~75%であり、かつ湿熱圧縮歪みが20%未満であることを特徴とする、上記[6]乃至[8]のいずれかに記載の軟質ポリウレタンフォーム。 [9] The flexible polyurethane foam according to any one of the above [6] to [8], which has a rebound resilience of 45 to 75% and a wet heat compression strain of less than 20%.
 本発明の軟質ポリウレタンフォーム成型用ポリオール組成物を用いることにより、クッション材として用いたときの座り心地が良好な硬度分布を有する、軟質ポリウレタンフォームを得ることが可能となる。 By using the polyol composition for molding a flexible polyurethane foam of the present invention, it is possible to obtain a flexible polyurethane foam having a hardness distribution that provides a comfortable sitting comfort when used as a cushioning material.
 本発明を更に詳細に説明する。 The present invention will be described in more detail.
 本発明における軟質ポリウレタンフォーム成型用ポリオール組成物は、以下に示すポリオール成分(A)、触媒(B)、整泡剤(C)、発泡剤(D)、及び架橋剤(E)を含む。 The polyol composition for molding a flexible polyurethane foam according to the present invention contains the following polyol component (A), catalyst (B), foam stabilizer (C), foaming agent (D), and crosslinking agent (E).
 ポリオール成分(A)は、ポリイソシアネート成分(F)と重付加してポリウレタンを形成するものであり、本発明においては、ポリエーテルポリオール、及びポリエステルポリオールからなる群より選ばれる少なくとも一種であることが望ましい。さらに、数平均分子量1,000~10,000で、公称官能基数2以上のものがより望ましい。数平均分子量が下限未満では、得られるフォームの柔軟性が不足しやすく、上限を超えると、フォームの硬度が低下しやすい。また、公称官能基数が2未満の場合、耐久性の指標である湿熱圧縮歪みが悪くなるといった問題が発生する恐れがある。なお。公称官能基数とは、ポリオールの重合反応中に副反応が生じないと仮定した場合の理論平均官能基数(分子当たりの活性水素原子の数)を示す。 The polyol component (A) is one that is polyadded with the polyisocyanate component (F) to form polyurethane, and in the present invention, it is at least one selected from the group consisting of polyether polyol and polyester polyol. desirable. Further, those having a number average molecular weight of 1,000 to 10,000 and a nominal number of functional groups of 2 or more are more desirable. When the number average molecular weight is less than the lower limit, the flexibility of the resulting foam tends to be insufficient, and when it exceeds the upper limit, the hardness of the foam tends to be lowered. Further, when the number of nominal functional groups is less than 2, there is a possibility that a problem such as deterioration of wet heat compression strain, which is an index of durability, may occur. Incidentally. The nominal number of functional groups refers to the theoretical average number of functional groups (the number of active hydrogen atoms per molecule), assuming that side reactions do not occur during the polymerization reaction of the polyol.
 ポリエーテルポリオールとしては、例えばポリプロピレンエーテルポリオール、ポリエチレンポリプロピレンエーテルポリオール(以下、PPGと言う。)やポリテトラメチレンエーテルグリコール(以下、PTGと言う。)等が使用でき、ポリエステルポリオールとしては、例えば重縮合型ポリエステル系ポリオールであるアジピン酸とジオールからなるポリエステルポリオール、ラクトン系ポリエステルポリオールのポリカプロラクトンポリオール等が使用できる。 As the polyether polyol, for example, polypropylene ether polyol, polyethylene polypropylene ether polyol (hereinafter referred to as PPG), polytetramethylene ether glycol (hereinafter referred to as PTG), or the like can be used, and as the polyester polyol, for example, polycondensation can be used. Polyester polyols consisting of adipic acid and a diol, which are type polyester polyols, polycaprolactone polyols such as lactone polyester polyols, and the like can be used.
 本発明においては、フォームの耐久性改善の観点から、ポリオール成分(A)中に、触媒として複合金属シアン化物錯体触媒、ホスファゼン触媒、及びイミノ基含有ホスファゼニウム塩から選ばれる少なくとも一種を用いて製造された、総不飽和度0.001~0.04meq./gのポリオキシアルキレンポリオール(A―1)を含むことが好ましい。ポリオール(A―1)の総不飽和度が大きくなることは、末端に不飽和基をもつモノオール成分等が多くなることを意味し、総不飽和度が0.04meq./gよりも大きい場合は、フォームの架橋密度低下に伴い耐久性が低下する恐れがある。また0.001meq./gよりも小さいものは、ポリオールの製造時間を多く要するため好ましくない。 In the present invention, from the viewpoint of improving the durability of the foam, the polyol component (A) is produced by using at least one selected from a complex metal cyanide complex catalyst, a phosphazene catalyst, and an imino group-containing phosphazenium salt as a catalyst. The total unsaturation degree is 0.001 to 0.04 meq. /G of polyoxyalkylene polyol (A-1) is preferably contained. The increase in the total unsaturation degree of the polyol (A-1) means that the monool component having an unsaturated group at the terminal increases, and the total unsaturation degree is 0.04 meq. If it is larger than /g, the durability may be lowered as the cross-linking density of the foam is lowered. In addition, 0.001 meq. If it is less than /g, it takes a long time to produce the polyol, which is not preferable.
 また、本発明においては、ポリオール成分(A)中に、軟質ポリウレタンフォームの破泡を促進する目的で、オキシエチレンとオキシプロピレンとの共重合体からなるポリオキシアルキレン鎖を有する、ポリエーテルポリオールを含むことが好ましい。該ポリエーテルポリオールの数平均分子量は、4,000~8,000が好ましく、6,000~8,000がより好ましい。また、公称官能基数が2~4であることが好ましい。さらに、該ポリエーテルポリオール中のオキシエチレン単位が60~90質量%であることが好ましく、60~80質量%がより好ましい。オキシエチレン単位を60~90質量%とすることで、フォームの硬度分布が得られやすくなり、耐久性をより向上させることができる。また低温での貯蔵安定性の観点から、オキシエチレンとオキシプロピレンからなる共重合体はランダム共重合体であることが好ましい。 Further, in the present invention, a polyether polyol having a polyoxyalkylene chain composed of a copolymer of oxyethylene and oxypropylene in the polyol component (A) for the purpose of accelerating the foam breaking of the flexible polyurethane foam. It is preferable to include. The number average molecular weight of the polyether polyol is preferably 4,000 to 8,000, more preferably 6,000 to 8,000. Further, it is preferable that the number of nominal functional groups is 2 to 4. Further, the oxyethylene unit in the polyether polyol is preferably 60 to 90% by mass, more preferably 60 to 80% by mass. By setting the oxyethylene unit to 60 to 90% by mass, the hardness distribution of the foam can be easily obtained, and the durability can be further improved. From the viewpoint of storage stability at low temperatures, the copolymer composed of oxyethylene and oxypropylene is preferably a random copolymer.
 該ポリエーテルポリオールの添加量は、ポリオール成分(A)に対して、0.5~5質量%が好ましい。下限値未満ではフォームの成型性が悪化する恐れがあり、上限値を超えるとフォームの伸び率が低下する恐れがある。 The amount of the polyether polyol added is preferably 0.5 to 5 mass% with respect to the polyol component (A). If it is less than the lower limit, the moldability of the foam may deteriorate, and if it exceeds the upper limit, the elongation rate of the foam may decrease.
 本発明のポリオール成分(A)には、硬さ調整を目的として、ポリオール中でビニル系モノマーを通常の方法で重合したポリマーポリオールを併用することが好ましい。このようなポリマーポリオールとしては、例えば前記PPG等のポリアルキレンポリオール中、ラジカル開始剤の存在下でビニル系モノマーを重合させ、安定分散させたものが挙げられる。また、ビニル系モノマーとしては、例えばアクリロニトリル、スチレン、塩化ビニリデン、ヒドロキシアルキルメタアクリレート、アルキルメタアクリレートが挙げられ、中でもアクリロニトリル、スチレンが好ましい。このようなポリマーポリオールとしては、例えばAGC社製のEL-910、EL-923、三洋化成工業社製のFA-728R等が挙げられる。 The polyol component (A) of the present invention is preferably used in combination with a polymer polyol obtained by polymerizing a vinyl monomer in the polyol by a usual method for the purpose of adjusting hardness. Examples of such a polymer polyol include those obtained by polymerizing a vinyl-based monomer in a polyalkylene polyol such as PPG in the presence of a radical initiator and stably dispersing it. Examples of the vinyl-based monomer include acrylonitrile, styrene, vinylidene chloride, hydroxyalkyl methacrylate and alkyl methacrylate, and of these, acrylonitrile and styrene are preferable. Examples of such polymer polyols include EL-910 and EL-923 manufactured by AGC, and FA-728R manufactured by Sanyo Kasei.
 触媒(B)としては、当該分野において公知である各種のウレタン化触媒を使用でき、例えば、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N-メチルモリホリン、N-エチルモリホリン、ジメチルベンジルアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N,N’,N’,N’’-ペンタメチルジエチレントリアミン、ビス-(2-ジメチルアミノエチル)エーテル、トリエチレンジアミン、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、1,2-ジメチルイミダゾール、ジメチルエタノールアミン、N,N-ジメチル-N-ヘキサノールアミン、さらにこれらの有機酸塩、スタナスオクトエート、ナフテン酸亜鉛等の有機金属化合物等も挙げられる。また、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン等の活性水素を有すアミン触媒も好ましい。 As the catalyst (B), various urethanization catalysts known in the art can be used. For example, triethylamine, tripropylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, dimethylbenzylamine, N , N,N′,N′-tetramethylhexamethylenediamine, N,N,N′,N′,N″-pentamethyldiethylenetriamine, bis-(2-dimethylaminoethyl)ether, triethylenediamine, 1,8 -Diaza-bicyclo[5.4.0]undecene-7,1,2-dimethylimidazole, dimethylethanolamine, N,N-dimethyl-N-hexanolamine, and their organic acid salts, stannas octoate, naphthene Organometallic compounds such as zinc oxide are also included. Further, amine catalysts having active hydrogen such as N,N-dimethylethanolamine and N,N-diethylethanolamine are also preferable.
 触媒の添加量は、ポリオール成分(A)に対して、0.01~10質量%が好ましい。下限値未満ではキュア不足になりやすく、上限値を超えると成形性が悪化する恐れがある。 The amount of the catalyst added is preferably 0.01 to 10 mass% with respect to the polyol component (A). If it is less than the lower limit, the curing tends to be insufficient, and if it exceeds the upper limit, the moldability may be deteriorated.
 整泡剤(C)としては、通常の界面活性剤が使用され、有機珪素系の界面活性剤が好適に使用できる。例えば、東レ・ダウコーニング社製のSZ-1327、SZ-1325、SZ-1336、SZ-3601、モメンティブ社製のY-10366、L-5309、エボニック社製のB-8724LF2、B-8715LF2等が挙げられる。これら整泡剤の添加量はポリオール成分(A)に対して0.1~3質量%が好ましい。 As the foam stabilizer (C), an ordinary surfactant is used, and an organosilicon-based surfactant can be preferably used. For example, Toray Dow Corning SZ-1327, SZ-1325, SZ-1336, SZ-3601, Momentive Y-10366, L-5309, Evonik B-8724LF2, B-8715LF2 and the like. Can be mentioned. The amount of these foam stabilizers added is preferably 0.1 to 3 mass% with respect to the polyol component (A).
 発泡剤(D)としては、主として水を用いる。水はイソシアネート基との反応で高硬度のウレア基を形成すると共に炭酸ガスを発生し、これにより発泡させることができる。また、水と付加的に任意の発泡剤を使用してもよい。例えば、少量のシクロペンタンやイソペンタン等の低沸点有機化合物を併用してもよいし、ガスローディング装置を用いて原液中に空気や窒素ガスや液化二酸化炭素を混入溶解させて発泡することもできる。発泡剤の添加量は、通常ポリオール成分(A)に対して0.5~10質量%であるが、見掛け密度40kg/m未満の低密度軟質ポリウレタンフォームを得る場合、3.0~6.0質量%であることが好ましく、3.0~5.5質量%が更に好ましい。上限を超えると発泡が安定し難くなる恐れがあり、下限未満では発泡体の密度を十分に下げることができない恐れがある。 Water is mainly used as the foaming agent (D). Water reacts with an isocyanate group to form a high-hardness urea group and generates carbon dioxide gas, which allows foaming. In addition to water, an optional foaming agent may be used. For example, a small amount of a low boiling point organic compound such as cyclopentane or isopentane may be used together, or air or nitrogen gas or liquefied carbon dioxide may be mixed and dissolved in the stock solution using a gas loading device to foam. The addition amount of the foaming agent is usually 0.5 to 10% by mass with respect to the polyol component (A), but 3.0 to 6 when a low density flexible polyurethane foam having an apparent density of less than 40 kg/m 3 is obtained. It is preferably 0% by mass, and more preferably 3.0 to 5.5% by mass. If it exceeds the upper limit, foaming may be difficult to stabilize, and if it is less than the lower limit, the density of the foam may not be sufficiently lowered.
 本発明における架橋剤(E)は、糖質(E-1)を含有する。糖質(E-1)としては、単糖類~十糖類から選ばれる少なくとも一種を含むことが好ましく、単糖類~六糖類から選ばれる少なくとも一種を含むことが更に好ましい。なお、単糖類は糖質の最小単位であり、二糖類~十糖類とは、2~10個の単糖類が脱水縮合し、グリコシド結合を形成して1分子となったものそれぞれを意味する。 The cross-linking agent (E) in the present invention contains a sugar (E-1). The saccharide (E-1) preferably contains at least one selected from monosaccharides to decasaccharides, and more preferably contains at least one selected from monosaccharides to hexasaccharides. The monosaccharide is the minimum unit of sugar, and the disaccharide to decasaccharide means each of 2 to 10 monosaccharides dehydrated and condensed to form a glycoside bond to form one molecule.
 このうち単糖類としては、例えば、トリオース、テトロース、ペントース、ヘキソース、ヘプトース、オクトース、ノノース、デコースなどが挙げられる。これらの化合物は、アルドースやケトースであってもよく、ジアルドース(糖の誘導体であって炭素鎖両末端がアルデヒド基である化合物、例えば、テトラアセチルガラクトヘキソジアルドース、イドヘキソジアルドース、キシロペントドアルドース等)、複数のカルボニル基を有する単糖類(オソン、オノース等のアルドアルコケトース等)、メチル基を有する単糖類(アルトロメチロースなどのメチル糖等)、アシル基(特にアセチル基などのC2-C4アシル基等)を有する単糖類(前記アルドースのアセチル体、例えば、アルデヒドグルコースペンタアセチル化合物などのアセチル体など)、カルボキシル基が導入された糖質(糖酸またはウロン酸等)、リオ糖、アミノ糖、デオキシ糖などであってもよい。 Among these, examples of monosaccharides include triose, tetrose, pentose, hexose, heptose, octose, nonose, and decose. These compounds may be aldose or ketose, and dialdose (a compound of a sugar derivative in which both ends of the carbon chain are aldehyde groups, for example, tetraacetylgalactohexodialdose, idhexodialdose, xylopentodose. Aldoses, etc.), monosaccharides having a plurality of carbonyl groups (such as aldol alkoketose such as othone and onose), monosaccharides having a methyl group (such as methyl sugars such as altromethylose), acyl groups (especially C2 such as acetyl group) -C4 acyl group and the like) (acetylose of the aldose, for example, acetyl body such as aldehyde glucose pentaacetyl compound), carboxyl group-introduced sugar (sugar acid or uronic acid), lyo sugar , Amino sugar, deoxy sugar and the like.
 このような単糖類としては、例えば、テトロース(エリトロース、トレオロース等)、ペントース(アラビノース、リボース、リキソース、デオキシリボース、キシロース等)、ヘキソース(アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、フルクトース、ソルボース、フコース、ラムノース、タロース、ガラクチュロン酸、グルクロン酸、マンヌロン酸、グルコサミン等)などが例示できる。 Such monosaccharides include, for example, tetrose (erythrose, threorose, etc.), pentose (arabinose, ribose, lyxose, deoxyribose, xylose, etc.), hexose (allose, altrose, glucose, mannose, gulose, idose, galactose, Fructose, sorbose, fucose, rhamnose, talose, galacturonic acid, glucuronic acid, mannuronic acid, glucosamine, etc.) and the like.
 また、単糖類は、ヘミアセタール結合により環状構造を形成した環状異性体であってもよい。単糖類は旋光性を有している必要はなく、D型、L型、DL型のいずれであってもよい。また、結晶体であっても液状であってもよく、水和物であっても水を含んでいてもよい。これらの単糖類は単独で又は二種以上組み合わせて使用できる。特に高果糖液糖、果糖ぶどう糖液糖、ぶどう糖果糖液糖等の常温液状である異性化液糖は、軟質ポリウレタンフォーム成型用ポリオール組成物調製時の作業性、軟質ポリウレタンフォーム成型用ポリオール組成物の貯蔵安定性の面でより好ましい。 Also, the monosaccharide may be a cyclic isomer having a cyclic structure formed by a hemiacetal bond. The monosaccharide does not have to have optical activity and may be any of D type, L type and DL type. Further, it may be a crystal or a liquid, and may be a hydrate or may contain water. These monosaccharides can be used alone or in combination of two or more. In particular, isomerized liquid sugars that are liquid at room temperature, such as high-fructose liquid sugar, fructose-glucose liquid sugar, glucose-fructose liquid sugar, workability during preparation of the flexible polyurethane foam molding polyol composition, and soft polyurethane foam molding polyol composition It is more preferable in terms of storage stability.
 二糖類としては、トレハロース(例えば、α,α―トレハロース、β,β―トレハロース、α,β―トレハロースなど)コージービオース、ニゲロース、マルトース、イソマルトース、ソホロース、ラミナリビオース、セロビオース、ゲンチオビオース、ラクトース、スクロース、パラチノース、メリビオース、ルチノース、プリメベロース、ツラノース等が挙げられる。これらの単糖類、二糖類は単独で又は二種以上組み合わせて使用できるが、前述の通り常温液状である糖質の常温液状混合物や、エチレングリコール、ジエチレングリコール、グリセリンなど親水性ポリオールとの常温液状混合物として使用することが、より好ましい。 Examples of disaccharides include trehalose (for example, α,α-trehalose, β,β-trehalose, α,β-trehalose, etc.) cozybiose, nigerose, maltose, isomaltose, sophorose, laminaribiose, cellobiose, gentiobiose, lactose. , Sucrose, palatinose, melibiose, rutinose, primeverose, turanose and the like. These monosaccharides and disaccharides can be used alone or in combination of two or more kinds, but as described above, a room temperature liquid mixture of sugars that are liquid at room temperature and a room temperature liquid mixture with a hydrophilic polyol such as ethylene glycol, diethylene glycol or glycerin. It is more preferable to use as.
 三糖類~十糖類は一般にオリゴ糖とも呼ばれ(以下、三糖類~十糖類をオリゴ糖と称する場合がある。)、3~10分子の単糖類が、グリコシド結合を介して脱水縮合したホモオリゴ糖と、少なくとも2種類以上の3~10分子の単糖類及び/又は糖アルコールが、グリコシド結合を介して脱水縮合したヘテロオリゴ糖に大別される。本発明に用いることができるオリゴ糖としては、三糖類~十糖類が好ましく、三糖類~六糖類がより好ましい。なお、これらのオリゴ糖は環状構造を有していてもよいし、無水物でも水和物でもよい。また、オリゴ糖において、単糖類と糖アルコールとが結合していてもよい。これらのオリゴ糖は単独で、または二種類以上組み合わせて使用でき、単糖類、二糖類、多糖類との組み合わせでも使用できる。なお、オリゴ糖は複数の糖成分で構成されたオリゴ糖組成物であってもよい。このようなオリゴ糖組成物であっても単にオリゴ糖という場合がある。オリゴ糖においても、常温固体であるものは、他の糖質やグリセリンなどの親水性ポリオールと混合することで常温液状化して使用することが好ましい。 Trisaccharides to decasaccharides are also generally called oligosaccharides (hereinafter, the trisaccharides to decasaccharides may be referred to as oligosaccharides). Homo-oligosaccharides in which 3 to 10 molecules of monosaccharides are dehydrated and condensed via glycoside bonds. And, at least two or more kinds of 3 to 10 molecules of monosaccharides and/or sugar alcohols are roughly classified into hetero-oligosaccharides dehydrated and condensed via glycoside bonds. The oligosaccharides that can be used in the present invention are preferably trisaccharides to decasaccharides, and more preferably trisaccharides to hexasaccharides. In addition, these oligosaccharides may have a cyclic structure, and may be an anhydride or a hydrate. Further, in the oligosaccharide, a monosaccharide and a sugar alcohol may be bound to each other. These oligosaccharides can be used alone or in combination of two or more, and can also be used in combination with monosaccharides, disaccharides and polysaccharides. The oligosaccharide may be an oligosaccharide composition composed of a plurality of sugar components. Even such an oligosaccharide composition may be simply referred to as an oligosaccharide. Regarding oligosaccharides, those that are solid at room temperature are preferably used after being liquefied at room temperature by mixing with other sugars or hydrophilic polyols such as glycerin.
 三糖類としては、マルトトリオース、イソマルトトリオース、パノース、セロトリオースなどのホモオリゴ糖;マンニノトリオース、ソラトリオース、メレジトース、プランテオース、ゲンチアノース、ウンベリフェロース、ラクトスクロース、ラフィノースなどのヘテロオリゴ糖が挙げられる。 Examples of the trisaccharides include homooligosaccharides such as maltotriose, isomaltotriose, panose, and cellotriose; manninotriose, solatriose, melezitose, planteose, gentianose, umbelliferose, lactosucrose, raffinose and the like. To be
 四糖類としては、マルトテトラオース、イソマルトテトラオースなどのホモオリゴ糖;スタキオース、セロテトラオース、スコロドース、リキノース、パノースの還元末端に糖又は糖アルコールが結合したテロラオースなどのヘテロオリゴ糖などが挙げられる。 Examples of tetrasaccharides include homooligosaccharides such as maltotetraose and isomalttetraose; heterooligosaccharides such as stachyose, cellotetraose, scorodose, liquinose, and telolaose having sugar or sugar alcohol attached to the reducing end of panose.
 五糖類としては、マルトペンタオース、イソマルトペンタオースなどのホモオリゴ糖;パノースの還元末端に二糖類が結合したペンタオースなどのヘテロオリゴ糖などが挙げられる。 Examples of pentasaccharides include homooligosaccharides such as maltopentaose and isomaltopentaose; and heterooligosaccharides such as pentaose in which a disaccharide is bonded to the reducing end of panose.
 六糖類としてはマルトヘキサオース、イソマルトヘキサオースなどのホモオリゴ糖などが挙げられる。 Examples of hexasaccharides include homo-oligosaccharides such as maltohexaose and isomalthexaose.
 環状オリゴ糖としてはα―シクロデキストリン(六糖類)、β―シクロデキストリン(七糖類)、γ―シクロデキストリン(八糖類)が挙げられる。 Examples of cyclic oligosaccharides include α-cyclodextrin (hexasaccharide), β-cyclodextrin (heptasaccharide), and γ-cyclodextrin (octasaccharide).
 オリゴ糖は還元型(マルトース型)であってもよく、非還元型(トレハロース型)であってもよい。 Oligosaccharide may be a reduced type (maltose type) or a non-reduced type (trehalose type).
 多糖類としてはアミロース、アミロペクチン、グリコーゲン、セルロース、寒天、イヌリン、グルコマンナン、グリコサミノグリカン(ムコ多糖)、アルギン酸、ヒアルロン酸、コンドロイチン酸、ヘパリン、キチン等が挙げられる。 Examples of polysaccharides include amylose, amylopectin, glycogen, cellulose, agar, inulin, glucomannan, glycosaminoglycan (mucopolysaccharide), alginic acid, hyaluronic acid, chondroitinic acid, heparin and chitin.
 ポリオール成形用組成物を構成する他の成分と糖質との混合性改善などの目的で、単糖類、二糖類、オリゴ糖類およびこれらの混合物は、その水酸基の一部をエーテル変性やエステル変性しても良い。ただし、変性による水酸基濃度減少によって本発明の効果は小さくなることから、変性可能な水酸基は、全水酸基の30mol%以下であることが好ましい。 Monosaccharides, disaccharides, oligosaccharides and mixtures thereof have ether-modified or ester-modified a part of their hydroxyl groups for the purpose of improving the compatibility with other components of the polyol molding composition and the sugar. May be. However, since the effect of the present invention is reduced due to the reduction of the hydroxyl group concentration due to the modification, the modifiable hydroxyl groups are preferably 30 mol% or less of all the hydroxyl groups.
 糖質(E―1)の数平均分子量は180~2,500であることが好ましく、180~1,800であることが更に好ましい。上限値を超えるとフォームの成形性やフォームの伸び率が悪化する恐れがある。 The number average molecular weight of the sugar (E-1) is preferably 180 to 2,500, more preferably 180 to 1,800. If it exceeds the upper limit, foam formability and foam elongation may deteriorate.
 糖質(E―1)の平均糖鎖数は1.0以上9.0以下であることが好ましく、更に好ましくは1.0を超えて9.0以下であり、最も好ましくは1.5以上9.0以下である。ここで、糖鎖数とは単糖類が繋がった個数であり、平均糖鎖数とは、糖質(E―1)中に含まれる各成分の糖鎖数を平均したものである。下限値未満では十分な伸び率が得られにくく、上限値を超えるとフォームの成形性やフォームの伸び率が悪化する恐れがある。 The average number of sugar chains of the carbohydrate (E-1) is preferably 1.0 or more and 9.0 or less, more preferably more than 1.0 and 9.0 or less, and most preferably 1.5 or more. It is 9.0 or less. Here, the number of sugar chains is the number of linked monosaccharides, and the average number of sugar chains is the average number of sugar chains of each component contained in the sugar (E-1). If it is less than the lower limit, it is difficult to obtain a sufficient elongation, and if it exceeds the upper limit, the formability of the foam and the elongation of the foam may be deteriorated.
 また、糖質(E―1)の平均水酸基数は、平均炭素原子数に対して0.5倍以上であることが好ましい。ここで、平均水酸基数とは、糖質(E―1)中の各成分の水酸基数を平均したものであり、平均炭素原子数とは、糖質(E―1)中の各成分の炭素原子数を平均したものである。 Also, the average number of hydroxyl groups in the sugar (E-1) is preferably 0.5 times or more the average number of carbon atoms. Here, the average number of hydroxyl groups is the average number of hydroxyl groups of each component in the sugar (E-1), and the average number of carbon atoms is the carbon number of each component in the sugar (E-1). It is the average of the number of atoms.
 糖質(E―1)の添加量は、ポリオール成分(A)に対して0.1~5質量%であり、好ましくは0.1~4質量%であり、より好ましくは0.3~4質量%である。下限値未満では硬度分布の発現効果が得られにくく、上限値を超えるとフォームの成形性やフォームの伸び率が悪化する恐れがある。 The amount of the sugar (E-1) added is 0.1 to 5% by mass, preferably 0.1 to 4% by mass, more preferably 0.3 to 4% by mass based on the polyol component (A). It is% by mass. If it is less than the lower limit, it is difficult to obtain the effect of expressing the hardness distribution, and if it exceeds the upper limit, the formability of the foam and the elongation rate of the foam may be deteriorated.
 また、本発明においては、フォームの伸び率や湿熱圧縮歪みといった物性面改善の観点から、軟質ポリウレタンフォーム成型用ポリオール組成物中に糖質(E―1)以外の架橋剤成分として脂環族グリコールおよび芳香族グリコールからなる群より選ばれる少なくとも一種の環状グリコール(以下単に「環状グリコール」とも言う。)を含むことが好ましい。環状グリコールとは、化合物中に環構造を有するものであり、例えば、シクロヘキサンジオール、シクロヘキサンジメタノール、ヒドロキノンビス(2-ヒドロキシエチル)エーテル、ジヒドロキシジフェニルメタン、ビスフェノールA水素化物、ポリオキシエチレンビスフェノールエーテル、ポリオキシプロピレンビスフェノールエーテル等を挙げることができる。これらの中でも、得られる軟質ポリウレタンフォームの湿熱圧縮歪みの改善効果が高いという観点から、1,4-シクロヘキサンジメタノール、ポリオキシエチレンビスフェノールAエーテルが好ましい。環状グリコールの含有量は、ポリオール成分(A)に対して1.5~8質量%であることが好ましく、1.5~6質量%であることが更に好ましい。 In addition, in the present invention, from the viewpoint of improving physical properties such as foam elongation and wet heat compression strain, an alicyclic glycol is used as a crosslinking agent component other than the sugar (E-1) in the polyol composition for molding a flexible polyurethane foam. And at least one cyclic glycol selected from the group consisting of aromatic glycols (hereinafter also simply referred to as “cyclic glycol”). The cyclic glycol is a compound having a ring structure, and examples thereof include cyclohexanediol, cyclohexanedimethanol, hydroquinone bis(2-hydroxyethyl)ether, dihydroxydiphenylmethane, bisphenol A hydride, polyoxyethylene bisphenol ether, and polyoxyethylene bisphenol ether. Examples thereof include oxypropylene bisphenol ether. Among these, 1,4-cyclohexanedimethanol and polyoxyethylene bisphenol A ether are preferable from the viewpoint that the resulting flexible polyurethane foam has a high effect of improving the wet heat compression strain. The content of the cyclic glycol is preferably 1.5 to 8% by mass, and more preferably 1.5 to 6% by mass based on the polyol component (A).
 以上のポリオール成分(A)、触媒(B)、整泡剤(C)、発泡剤(D)、及び架橋剤(E)を含むポリオール組成物を用いることにより、クッション材として用いたときの座り心地が良好な、垂直方向に硬度分布を有する軟質ポリウレタンフォームを得ることが可能となる。 By using the above polyol composition containing the polyol component (A), the catalyst (B), the foam stabilizer (C), the foaming agent (D), and the cross-linking agent (E), sitting when used as a cushioning material It is possible to obtain a flexible polyurethane foam having a comfortable feeling and a hardness distribution in the vertical direction.
 本発明の軟質ポリウレタンフォームの製造に用いられるポリイソシアネート成分(F)は、4,4’-ジフェニルメタンジイソシアネート(以下、4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(以下、2,4’-MDI)、2,2’-ジフェニルメタンジイソシアネート(以下、2,2’-MDI)、等のジフェニルメタンジイソシアネート(以下、MDI)、ポリフェニレンポリメチレンポリイソシアネート(以下、P-MDI)をイソシアネート源として用いることが好ましい。本発明においては、上記したMDI、MDIとP-MDIとの混合物、ウレタン変性体、ウレア変性体、アロファネート変性体、ヌレート変性体、ビュウレット変性体等の各種変性体も使用し得る。 The polyisocyanate component (F) used for producing the flexible polyurethane foam of the present invention includes 4,4′-diphenylmethane diisocyanate (hereinafter, 4,4′-MDI) and 2,4′-diphenylmethane diisocyanate (hereinafter, 2,4). Diphenylmethane diisocyanate (hereinafter, MDI) such as'-MDI), 2,2'-diphenylmethane diisocyanate (hereinafter, 2,2'-MDI), polyphenylene polymethylene polyisocyanate (hereinafter, P-MDI) is used as an isocyanate source. It is preferable. In the present invention, various modified products such as the above-mentioned MDI, a mixture of MDI and P-MDI, a urethane modified product, a urea modified product, an allophanate modified product, a nurate modified product, and a burette modified product may be used.
 本発明にかかるポリイソシアネート成分(F)のMDI含有率は、50~85質量%の範囲が好ましい。MDI含有率が85質量%を超えると、ポリイソシアネート成分の低温における貯蔵安定性や得られる軟質ポリウレタンフォームの耐久性が低下する恐れがあり、他方、50質量%未満では架橋密度の上昇に伴い、軟質ポリウレタンフォームの伸びが低下し、十分なフォーム強度を得にくくなる恐れがある。 The MDI content of the polyisocyanate component (F) according to the present invention is preferably in the range of 50 to 85 mass %. If the MDI content exceeds 85% by mass, the storage stability of the polyisocyanate component at low temperatures and the durability of the resulting flexible polyurethane foam may decrease, while if it is less than 50% by mass, the crosslinking density increases, The elongation of the flexible polyurethane foam may decrease, and it may be difficult to obtain sufficient foam strength.
 さらに、MDI総量に対する2,2’-MDIの含有率と2,4’-MDIの含有率との合計(以下、アイソマー含有率)は10~50質量%が好ましい。 Furthermore, the sum of the content of 2,2'-MDI and the content of 2,4'-MDI (hereinafter referred to as isomer content) is preferably 10 to 50% by mass with respect to the total amount of MDI.
 本発明にかかるMDI総量に対する2,2’-MDI及び2,4’-MDIの含有量が10質量%未満では、ポリイソシアネート成分の低温での貯蔵安定性が損なわれる恐れがあり、イソシアネート保管場所や配管、発泡成形機内の常時加温が必要となる場合がある。また軟質ポリウレタンフォームの成形安定性が損なわれ、発泡途中でのフォーム崩壊等が発生する恐れがある。他方、50質量%を超えると反応性が低下し、成形サイクルの延長、フォームの独泡率が高くなり成型後に収縮する等の問題が生じる恐れがある。 If the content of 2,2'-MDI and 2,4'-MDI with respect to the total amount of MDI according to the present invention is less than 10% by mass, the storage stability of the polyisocyanate component at low temperatures may be impaired, and the isocyanate storage location It may be necessary to constantly heat pipes, piping, and foam molding machines. In addition, the molding stability of the flexible polyurethane foam may be impaired, and foam collapse may occur during foaming. On the other hand, if it exceeds 50% by mass, the reactivity is lowered, and there is a possibility that problems such as extension of the molding cycle, increase of the closed cell ratio of the foam and shrinkage after molding may occur.
 そして、本発明における軟質ポリウレタンフォームの製造には、炭酸カルシウムや硫酸バリウムのような充填剤、難燃剤、可塑剤、着色剤、抗カビ剤等の公知の各種添加剤、助剤を必要に応じて使用することができる。 Then, in the production of the flexible polyurethane foam in the present invention, fillers such as calcium carbonate and barium sulfate, flame retardants, plasticizers, colorants, known various additives such as antifungal agents, and auxiliaries as necessary. Can be used.
 本発明においては、上記した軟質ポリウレタンフォーム成型用ポリオール組成物とポリイソシアネート成分とから軟質ポリウレタンフォームを得ることができ、見掛け密度30kg/m~70kg/m、かつスキン付きフォーム試験片の25%圧縮硬さが100~350N/314cm、かつ伸び率100%以上、さらに反発弾性率が45~75%、湿熱圧縮歪みが20%未満の、発泡方向に硬度分布を有する軟質ポリウレタンフォームを好適に得ることができる。 In the present invention, a flexible polyurethane foam can be obtained from the above polyol composition for molding a flexible polyurethane foam and the polyisocyanate component, and has an apparent density of 30 kg/m 3 to 70 kg/m 3 and a skin test piece of 25. A soft polyurethane foam having a% compression hardness of 100 to 350 N/314 cm 2 , an elongation of 100% or more, a rebound resilience of 45 to 75%, and a wet heat compression strain of less than 20% and having a hardness distribution in the foaming direction is suitable. Can be obtained.
 次に、本発明の軟質ポリウレタンフォームの製造方法について説明する。 Next, a method for producing the flexible polyurethane foam of the present invention will be described.
 本発明の軟質ポリウレタンフォームは、ポリオール成分(A)、触媒(B)、整泡剤(C)、発泡剤(D)、架橋剤(E)、及びポリイソシアネート成分(F)の混合液を反応発泡させて製造される。 The flexible polyurethane foam of the present invention reacts with a mixed solution of a polyol component (A), a catalyst (B), a foam stabilizer (C), a foaming agent (D), a crosslinking agent (E), and a polyisocyanate component (F). It is manufactured by foaming.
 本発明のポリイソシアネート組成物中の全イソシアネート基と、水を含む活性水素基含有化合物中の全活性水素基との混合発泡時におけるモル比(NCO/活性水素)としては、0.7~1.4(イソシアネートインデックス(NCO INDEX)=70~140)であることが好ましく、フォームの耐久性や成形サイクルの良好な範囲として0.7~1.2(NCO INDEX=70~120)がより好ましい。 The molar ratio (NCO/active hydrogen) at the time of mixed foaming of all the isocyanate groups in the polyisocyanate composition of the present invention and all the active hydrogen groups in the active hydrogen group-containing compound containing water is 0.7 to 1 .4 (isocyanate index (NCO INDEX)=70 to 140) is preferable, and 0.7 to 1.2 (NCO INDEX=70 to 120) is more preferable as the range of foam durability and molding cycle. ..
 NCO INDEXが70未満では耐久性の低下や独泡性に過度の上昇が生じ、120より高い場合は未反応イソシアネートが長く残存することによる成形サイクルの延長、高分子量化の遅延によるフォーム発泡途中でのフォーム崩壊等が生じる恐れがある。 When NCO INDEX is less than 70, durability is lowered and foaming property is excessively increased, and when it is more than 120, the unreacted isocyanate remains for a long time to extend the molding cycle and delay the high molecular weight during foaming. Foam collapse may occur.
 軟質ポリウレタンフォームの製造方法としては、前記ポリオール成分(A)、触媒(B)、整泡剤(C)、発泡剤(D)、架橋剤(E)、及びポリイソシアネート成分(F)の混合液の発泡原液を金型内に注入し、その後発泡硬化させることを特徴とする軟質ポリウレタンモールドフォーム(以下、軟質モールドフォーム)の製造方法が使用できる。 As a method for producing a flexible polyurethane foam, a mixed liquid of the polyol component (A), the catalyst (B), the foam stabilizer (C), the foaming agent (D), the crosslinking agent (E), and the polyisocyanate component (F) is used. The method for producing a flexible polyurethane mold foam (hereinafter, soft mold foam), which comprises injecting the undiluted foaming solution into a mold and then foaming and curing the same can be used.
 上記発泡原液を金型内に注入する際の金型温度としては、通常30~80℃、好ましくは45~65℃である。上記発泡原液を金型内に注入する際の金型温度が30℃未満であると、反応速度低下による生産サイクルの延長につながり、一方、80℃より高いと、ポリオールとイソシアネートの反応に対し、水とイソシアネートとの反応が過度に促進されることにより、発泡途中においてフォームが崩壊する恐れがある。 The mold temperature at the time of injecting the foaming stock solution into the mold is usually 30 to 80° C., preferably 45 to 65° C. If the mold temperature at the time of injecting the above foaming undiluted solution into the mold is less than 30° C., the production cycle is prolonged due to a decrease in reaction rate, while if it is higher than 80° C., the reaction between the polyol and the isocyanate is If the reaction between water and isocyanate is excessively promoted, the foam may collapse during foaming.
 上記発泡原液を発泡硬化させる際の硬化時間としては、一般的な軟質モールドフォームの生産サイクルを考慮すると10分以下が好ましく、7分以下がより好ましい。 The curing time for foaming and curing the above-mentioned foaming undiluted solution is preferably 10 minutes or less, more preferably 7 minutes or less, in consideration of a general flexible mold foam production cycle.
 軟質モールドフォームを製造する際には、通常の軟質モールドフォームの場合と同様、高圧発泡機や低圧発泡機等を用いて、上記各成分を混合することができる。 When manufacturing a soft mold foam, the above components can be mixed using a high-pressure foaming machine, a low-pressure foaming machine, etc., as in the case of a normal soft mold foam.
 イソシアネート成分とポリオール成分とは発泡直前で混合することが好ましい。その他の成分は、原料の貯蔵安定性や反応性の経時変化に影響を与えない範囲でイソシアネート成分またはポリオール成分と予め混合することができる。それら混合物は混合後直ちに使用しても、貯留した後、必要量を適宜使用してもよい。混合部に2成分を超える成分を同時に導入可能な発泡装置の場合、ポリオール、発泡剤、イソシアネート、触媒、整泡剤、添加剤等を個別に混合部に導入することもできる。 It is preferable to mix the isocyanate component and the polyol component immediately before foaming. Other components can be mixed in advance with the isocyanate component or the polyol component as long as they do not affect the storage stability of the raw material or the change with time of the reactivity. The mixture may be used immediately after mixing, or may be used in an appropriate amount after storage. In the case of a foaming device capable of simultaneously introducing more than two components into the mixing section, it is also possible to individually introduce a polyol, a foaming agent, an isocyanate, a catalyst, a foam stabilizer, an additive and the like into the mixing section.
 また、混合方法は、発泡機のマシンヘッド混合室内で混合を行うダイナミックミキシング、送液配管内で混合を行うスタティックミキシングの何れでも良く、また両者を併用してもよい。物理発泡剤等のガス状成分と液状成分との混合はスタティックミキシングで、液体として安定に貯留可能な成分同士の混合はダイナミックミキシングで実施される場合が多い。本発明に使用される発泡装置は、混合部の溶剤洗浄が必要のない高圧発泡装置であることが好ましい。 The mixing method may be either dynamic mixing for mixing in the machine head mixing chamber of the foaming machine or static mixing for mixing in the liquid feed pipe, or both may be used together. In many cases, mixing of a gaseous component such as a physical foaming agent and a liquid component is performed by static mixing, and mixing of components that can be stably stored as a liquid is performed by dynamic mixing. The foaming device used in the present invention is preferably a high-pressure foaming device that does not require solvent cleaning of the mixing section.
 このような混合により得られた混合液を金型(モールド)内に吐出し、発泡硬化させ、その後脱型が行われる。上記脱型を円滑に行うため、金型に予め離型剤を塗布しておくことも好適である。使用する離型剤としては、成形加工分野で通常用いられる離型剤を用いればよい。  The mixed solution obtained by such mixing is discharged into the mold, foamed and cured, and then demolded. In order to smoothly perform the above mold release, it is also preferable to apply a mold release agent to the mold in advance. As the releasing agent to be used, a releasing agent usually used in the field of molding and processing may be used.
 脱型後の製品はそのままでも使用できるが、従来公知の方法で圧縮下又は、減圧下でフォームのセル膜を破壊し、以降の製品外観、寸法を安定化させることが好ましい。 The product after demolding can be used as it is, but it is preferable to break the cell membrane of the foam under compression or under reduced pressure by a conventionally known method to stabilize the appearance and dimensions of the product thereafter.
 上記した軟質ポリウレタンフォームの製造方法により、見掛け密度30kg/m~70kg/m、かつスキン付きフォーム試験片の25%圧縮硬さが100~350N/314cm、反発弾性率が45~75%、湿熱圧縮歪みが20%未満である軟質ポリウレタンフォームを得ることができる。また、該軟質ポリウレタンフォームは、発泡方向に硬度分布を有する。 According to the above-mentioned method for producing a flexible polyurethane foam, an apparent density of 30 kg/m 3 to 70 kg/m 3 and a 25% compression hardness of the skin-attached foam test piece are 100 to 350 N/314 cm 2 , and the impact resilience is 45 to 75%. A flexible polyurethane foam having a wet heat compression strain of less than 20% can be obtained. Further, the flexible polyurethane foam has a hardness distribution in the foaming direction.
 [軟質ポリウレタンフォームが硬度分布を呈するメカニズム]
 本発明にかかる軟質ポリウレタンフォームが硬度分布を呈するメカニズムについて説明する。例えばクッション材として使用される軟質ポリウレタンフォームは、下型側が上面、上型側が下面となるようモールド内で成型される。このため軟質ポリウレタンフォームは、モールド内で上面が先に形成され、発泡による体積膨張の末、最終的に下面が形成される。上面側でフォームが形成される際には、糖質が水と会合することで、水とイソシアネートとの反応を遅延化し、高硬度のウレア結合の生成が抑制される。一方、高温反応で形成される芯層部から下面側においては、ウレア結合が集中して生成するため高硬度化し、硬度分布が発現すると考えられる。
[Mechanism of flexible polyurethane foam exhibiting hardness distribution]
The mechanism by which the flexible polyurethane foam according to the present invention exhibits a hardness distribution will be described. For example, a flexible polyurethane foam used as a cushion material is molded in a mold so that the lower mold side is the upper surface and the upper mold side is the lower surface. Therefore, in the flexible polyurethane foam, the upper surface is first formed in the mold, and after the volume expansion due to foaming, the lower surface is finally formed. When the foam is formed on the upper surface side, the saccharides associate with water to delay the reaction between water and isocyanate, and suppress the formation of high hardness urea bond. On the other hand, from the core layer portion formed by the high temperature reaction, it is considered that the urea bond is concentrated and generated on the lower surface side, so that the hardness is increased and the hardness distribution is developed.
 以上のように製造された軟質ポリウレタンフォームは、硬さや、反発弾性率等の物性に優れるのみならず、上面側から下面側にかけて硬度が上昇する硬度分布を有することから、乗り心地性に優れたクッション材として提供することが可能となる。 The flexible polyurethane foam produced as described above not only has excellent physical properties such as hardness and impact resilience, but also has a hardness distribution in which the hardness increases from the upper surface side to the lower surface side, and therefore has excellent riding comfort. It becomes possible to provide it as a cushion material.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、特に断りのない限り、文中の「部」、「%」は質量基準である。 Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. In addition, "part" and "%" in the text are based on mass unless otherwise specified.
 [ポリオール組成物の調製]
(実施例1~15、比較例1~6)
 攪拌機、冷却管、窒素導入管、温度計を備えた反応器を窒素置換した後、ポリオール1を700g、ポリオール3を300g、ポリオール4を15g、架橋剤1を15g、架橋剤11を20g、触媒1を8.0g、触媒2を2.0g、整泡剤1を10g、水を36g仕込み、23℃にて0.5時間撹拌させることにより、ポリオール組成物(P-1)を得た。その他のポリオール組成物(P-2~P-21)もP-1と同様に調製した。
[Preparation of polyol composition]
(Examples 1 to 15, Comparative Examples 1 to 6)
After replacing the reactor equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe, and a thermometer with nitrogen, 700 g of polyol 1, 300 g of polyol 3, 15 g of polyol 4, 15 g of crosslinking agent 1, 20 g of crosslinking agent 11 and a catalyst were used. 1 g, 8.0 g of catalyst 2, 2.0 g of catalyst 2, 10 g of foam stabilizer 1 and 36 g of water were charged, and the mixture was stirred at 23° C. for 0.5 hours to obtain a polyol composition (P-1). Other polyol compositions (P-2 to P-21) were prepared in the same manner as P-1.
 表1~4に示す原料のうち、ポリイソシアネート成分以外の全原料の混合物(ポリオール組成物)の液温を24℃~26℃に調整し、ポリイソシアネート成分を液温24℃~26℃に調整した。ポリオール組成物にポリイソシアネート成分を所定量加えて、ミキサー(毎分7000回転)で7秒間混合後、金型内に注入し軟質ポリウレタンフォームを発泡させた。その後、金型より取り出して、得られた軟質ポリウレタンフォームの物性を測定した。なお、表1~4におけるNCO Indexは、配合物中に存在する活性水素原子数に対するNCO基の比率である。 Of the raw materials shown in Tables 1 to 4, the liquid temperature of the mixture (polyol composition) of all raw materials other than the polyisocyanate component was adjusted to 24°C to 26°C, and the polyisocyanate component was adjusted to the liquid temperature of 24°C to 26°C. did. A predetermined amount of polyisocyanate component was added to the polyol composition, mixed for 7 seconds with a mixer (7,000 rpm), and then poured into a mold to foam a flexible polyurethane foam. Then, it was taken out from the mold and the physical properties of the obtained flexible polyurethane foam were measured. The NCO Index in Tables 1 to 4 is the ratio of NCO groups to the number of active hydrogen atoms present in the formulation.
 [発泡条件]
金型温度:60~70℃
金型形状:300mm×300mm×100mm
金型材質:アルミニウム
キュア時間:5分
[Bubbling conditions]
Mold temperature: 60-70℃
Mold shape: 300mm×300mm×100mm
Mold material: Aluminum Cure time: 5 minutes
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [使用原料]
・ポリオール1:平均官能基数=3.0、水酸基価=24(mgKOH/g)、末端一級化率=84%、オキシエチレン単位=14.6質量%、総不飽和度0.03meq./gのポリオキシエチレンポリオキシプロピレンポリオール、東ソー社製NEF-693
・ポリオール2:平均官能基数=3.0、水酸基価=24(mgKOH/g)、末端一級化率=79%、オキシエチレン単位=14.0質量%、総不飽和度0.19meq./gのポリオキシエチレンポリオキシプロピレンポリオール、東ソー社製NEF-728
・ポリオール3:平均官能基数=3.0、水酸基価=24(mgKOH/g)のポリマーポリオール、AGC社製エクセノールEL-923
・ポリオール4:平均官能基数=3.0、水酸基価=24(mgKOH/g)、オキシエチレン単位が70質量%のポリエーテルポリオール、東ソー社製NEF-729
・ポリオール5:平均官能基数=4.0、水酸基価=28(mgKOH/g)、オキシエチレン単位が80質量%のポリオキシエチレンポリオキシプロピレンポリオール、東ソー社製NEF-024
・ポリオール6:平均官能基数=4.0、水酸基価=28(mgKOH/g)、オキシエチレン単位が90質量%のポリオキシエチレンポリオキシプロピレンポリオール、東ソー社製NEF-730
・架橋剤1:D-(+)-グルコース(富士フィルム和光純薬社製、単糖類)
・架橋剤2:D-(-)-フルクトース(東京化成工業社製、単糖類)
・架橋剤3:D-(+)-スクロース(東京化成工業社製、二糖類)
・架橋剤4:D-(+)-ラフィノース(東京化成工業社製、三糖類)
・架橋剤5:ブドウ糖果糖液糖(日本食品加工社製、単糖類から十糖類の混合物)
・架橋剤6:γ―シクロデキストリン(東京化成工業社製、八糖類)
・架橋剤7:マルトースシラップ(日本食品加工社製、単糖類から十糖類の混合物)
・架橋剤8:精製グリセリン(阪本薬品工業社製)
・架橋剤9:トリメチロールプロパン(三菱ガス化学社製)
・架橋剤10:ジエタノールアミン(三井化学社製)
・架橋剤11:PEG200(三洋化成工業社製、ポリエチレングリコール、数平均分子量200)
・架橋剤12:CHDM―D(1,4-シクロヘキサンジメタノール、EASTMAN CHEMICAL社製、脂環族グリコール)
・触媒1:2-ヒドロキシメチルトリエチレンジアミン(東ソー社製、商品名:R-ZETA HD)
・触媒2:N、N、N’-トリメチル-N’-ヒドロキシエチル-ビスアミノエチルエーテル(東ソー社製、商品名:TOYOCAT RX-10)
・整泡剤1:シリコーン系整泡剤(エボニック社製、商品名:B-8715LF2)
・イソシアネート1:MDI含有率85質量%、アイソマー含有率38質量%のポリフェニレンポリメチレンポリイソシアネート(東ソー社製、商品名:CEF-550)。
[Raw materials used]
-Polyol 1: average number of functional groups = 3.0, hydroxyl value = 24 (mgKOH/g), terminal primary conversion rate = 84%, oxyethylene unit = 14.6 mass%, total unsaturation degree 0.03 meq. /G of polyoxyethylene polyoxypropylene polyol, Tosoh NEF-693
-Polyol 2: average number of functional groups = 3.0, hydroxyl value = 24 (mgKOH/g), terminal primary conversion rate = 79%, oxyethylene unit = 14.0 mass%, total unsaturation degree 0.19 meq. /G of polyoxyethylene polyoxypropylene polyol, NEF-728 manufactured by Tosoh Corporation
-Polyol 3: Polymer polyol having an average number of functional groups of 3.0 and a hydroxyl value of 24 (mgKOH/g), Exenol EL-923 manufactured by AGC Co.
Polyol 4: polyether polyol having an average number of functional groups of 3.0, a hydroxyl value of 24 (mgKOH/g), and an oxyethylene unit of 70% by mass, NEF-729 manufactured by Tosoh Corporation.
Polyol 5: polyoxyethylene polyoxypropylene polyol having an average number of functional groups of 4.0, a hydroxyl value of 28 (mgKOH/g), and an oxyethylene unit of 80% by mass, NEF-024 manufactured by Tosoh Corporation.
Polyol 6: Polyoxyethylene polyoxypropylene polyol having an average number of functional groups of 4.0, a hydroxyl value of 28 (mgKOH/g), and an oxyethylene unit of 90% by mass, NEF-730 manufactured by Tosoh Corporation.
・Crosslinking agent 1: D-(+)-glucose (Fujifilm Wako Pure Chemical Industries, monosaccharide)
-Crosslinking agent 2: D-(-)-fructose (manufactured by Tokyo Chemical Industry Co., Ltd., monosaccharide)
-Crosslinking agent 3: D-(+)-sucrose (Tokyo Chemical Industry Co., Ltd., disaccharide)
-Crosslinking agent 4: D-(+)-raffinose (Tokyo Chemical Industry Co., Ltd., trisaccharide)
-Crosslinking agent 5: high-fructose corn syrup (manufactured by Japan Food Processing Co., mixture of monosaccharides to decasaccharides)
-Crosslinking agent 6: γ-cyclodextrin (Tokyo Chemical Industry Co., Ltd., octasaccharide)
Cross-linking agent 7: Maltose syrup (manufactured by Japan Food Processing Co., mixture of monosaccharides to decasaccharides)
-Crosslinking agent 8: Purified glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.)
-Crosslinking agent 9: trimethylolpropane (manufactured by Mitsubishi Gas Chemical Company)
-Crosslinking agent 10: diethanolamine (manufactured by Mitsui Chemicals, Inc.)
-Crosslinking agent 11: PEG200 (manufactured by Sanyo Chemical Industries, polyethylene glycol, number average molecular weight 200)
-Crosslinking agent 12: CHDM-D (1,4-cyclohexanedimethanol, manufactured by EASTMAN CHEMICAL, alicyclic glycol)
-Catalyst 1: 2-hydroxymethyltriethylenediamine (manufactured by Tosoh Corporation, trade name: R-ZETA HD)
-Catalyst 2: N,N,N'-trimethyl-N'-hydroxyethyl-bisaminoethyl ether (manufactured by Tosoh Corporation, trade name: TOYOCAT RX-10)
・Foam stabilizer 1: Silicone-based foam stabilizer (manufactured by Evonik, brand name: B-8715LF2)
Isocyanate 1: Polyphenylene polymethylene polyisocyanate having an MDI content of 85% by mass and an isomer content of 38% by mass (manufactured by Tosoh Corporation, trade name: CEF-550).
 [成形性評価]
 各表中、成形性「○」の評価は、ウレタンフォームが最高の高さに達した後に大きく沈んでいく崩壊や、生成したウレタンフォームが発泡直後またはキュア後に収縮する現象が生じることなく、軟質ポリウレタンフォームが成形できたことを意味し、「×」の評価は、ウレタンフォームに崩壊、収縮等の現象が生じた事を意味する。
[Moldability evaluation]
In each table, the evaluation of moldability "○" means that the urethane foam does not have a collapse that greatly sinks after reaching the maximum height and the phenomenon that the generated urethane foam shrinks immediately after foaming or after curing does not occur. This means that the polyurethane foam could be molded, and the evaluation of “x” means that the urethane foam had phenomena such as collapse and shrinkage.
 [見掛け密度]
 JIS K6400記載の方法により求めた。
[Apparent density]
It was determined by the method described in JIS K6400.
 [スキン付き試験片フォームの25%圧縮硬さ(25%ILD)]
 JIS K6400記載のB法により求めた。
[25% compression hardness (25% ILD) of test piece foam with skin]
It was determined by the B method described in JIS K6400.
 [反発弾性率]
 JIS K6400記載の方法で測定した。
[Rebound resilience]
It was measured by the method described in JIS K6400.
 [湿熱圧縮歪み]
 JIS K6400記載の方法で測定した。
[Heat compression strain]
It was measured by the method described in JIS K6400.
 [伸び率]
 JIS K6400記載の方法で測定した。
[Growth rate]
It was measured by the method described in JIS K6400.
 [軟質ポリウレタンフォームの発泡高さ方向における硬度分布について]
 本発明における硬度分布測定用サンプルは、100mmの厚みで上型側が下面、下型側が上面となるようにモールド成型された軟質ポリウレタンフォームを、上面側の端面から下面側に向かって45mm毎に切り出した2層のフォーム「上面側:0mm(上面端)~45.0mm、下面側:45.0mm~90.0mm」とする。 
 前記した2層の評価サンプルそれぞれについて、まず、加圧板を加圧板の受ける応力が0.98Nになるまで評価サンプルを圧縮し、この位置を評価サンプルの厚みが100%である加圧板の初期位置とする。加圧板は直径200mmの円盤とする。次に、加圧板を評価サンプルに向けて50mm/minの速さで、評価サンプルの厚みの25%まで圧縮させる。その後、加圧板を50mm/minの速さで初期位置に復帰させる。以上の過程において、評価サンプルが25%圧縮変形した時に、評価サンプルに及ぼされた応力値を測定し、この値を25%圧縮硬度とした。
[About hardness distribution in the height direction of flexible polyurethane foam]
The hardness distribution measurement sample of the present invention is a flexible polyurethane foam molded with a thickness of 100 mm so that the upper mold side is the lower surface and the lower mold side is the upper surface, and cut from the end surface on the upper surface side toward the lower surface side every 45 mm. In addition, the two-layer foam is “upper surface side: 0 mm (upper surface end) to 45.0 mm, lower surface side: 45.0 mm to 90.0 mm”.
For each of the above-mentioned two-layer evaluation samples, first, the evaluation sample was compressed until the stress received by the pressure plate became 0.98 N, and this position was set to the initial position of the pressure plate where the thickness of the evaluation sample was 100%. And The pressure plate is a disc having a diameter of 200 mm. Next, the pressure plate is compressed toward the evaluation sample at a speed of 50 mm/min to 25% of the thickness of the evaluation sample. After that, the pressure plate is returned to the initial position at a speed of 50 mm/min. In the above process, when the evaluation sample was compressed and deformed by 25%, the stress value exerted on the evaluation sample was measured, and this value was defined as 25% compression hardness.
 そして、2層それぞれの評価サンプルの25%圧縮硬度の平均値を100とした際の各評価サンプルの硬度の比を算出した。つまりこの硬度比は、発泡高さ方向の平均的な硬度に対する各評価サンプルの硬度比を意味する。 
 2層それぞれの評価サンプルの25%圧縮硬度の平均値を100とした際の、上面側フォームの硬度比が、50~85%であれば、硬度分布を有すると言える。
Then, the ratio of the hardness of each evaluation sample when the average value of the 25% compression hardness of the evaluation samples of each of the two layers was set to 100 was calculated. That is, this hardness ratio means the hardness ratio of each evaluation sample to the average hardness in the foaming height direction.
If the hardness ratio of the upper surface side foam is 50 to 85% when the average value of the 25% compression hardness of the evaluation samples of each of the two layers is 100, it can be said that the foam has a hardness distribution.
 [ウレア結合比の算出方法]
 上記2層の評価サンプルについてFT-IR測定を行い、波数1660cm-1付近に観測されるウレア結合由来のピーク高さを波数1710cm-1付近に観測されるウレタン結合由来のピーク高さで割ることでウレア結合比を算出した。つまりこのウレア結合比が小さい程、ウレア結合の生成が抑制され、硬度が発現しにくいことを意味する。
[Urea binding ratio calculation method]
FT-IR measurement is performed on the above-mentioned two-layer evaluation sample, and the peak height derived from the urea bond observed near the wave number of 1660 cm −1 is divided by the peak height derived from the urethane bond observed near the wave number of 1710 cm −1. The urea binding ratio was calculated by. That is, the smaller the urea bond ratio, the more suppressed the generation of urea bonds and the harder it is to develop hardness.
 [軟質ポリウレタンフォームのセルの異方性(形状)]
 本発明におけるセル異方性の測定サンプルは、100mmの厚みでモールド成型された軟質ポリウレタンフォームにおいて、上面側の端面から下面側に向かって22.5mm毎に切り出した4層のフォーム「1層目:0mm(上面端)~22.5mm、2層目:22.5mm~45mm、3層目:45mm~67.5mm、4層目:67.5mm~90mm」とする。上記1層目~4層目まで4層に分割した。得られた各層を垂直方向に2等分し、その断面の中心部分(視野:3.2mm×3.2mm)の拡大画像をマイクロスコープ顕微鏡により取得した。取得した画像を下から上に向かって発泡方向となるように見た際に、画像の中から発泡セルをランダムに30個選択して、発泡方向のセル長と発泡方向に直行するセル長を測定した。セル毎に発泡方向のセル長を発泡方向に直行するセル長で割った値を求め、セル30個の平均値をセル異方性の評価値として用いた。異方性の数値が1に近い程セル形状が球状に近づき、数値が小さい程発泡方向に対して横長、数値が大きい程発泡方向に対して縦長であることを意味する。本実施例においては、実施例1、比較例3を代表例として測定した。
[Anisotropy (shape) of cells of flexible polyurethane foam]
The measurement sample of the cell anisotropy in the present invention is a flexible polyurethane foam molded with a thickness of 100 mm, which is a four-layer foam "first layer" cut out every 22.5 mm from the end face on the upper surface side to the lower surface side. 0 mm (upper end) to 22.5 mm, second layer: 22.5 mm to 45 mm, third layer: 45 mm to 67.5 mm, fourth layer: 67.5 mm to 90 mm”. The first to fourth layers were divided into four layers. Each of the obtained layers was divided into two equal parts in the vertical direction, and an enlarged image of the central portion (field of view: 3.2 mm×3.2 mm) of the cross section was obtained by a microscope. When looking at the acquired image from the bottom to the top in the foaming direction, randomly select 30 foam cells from the image to determine the cell length in the foaming direction and the cell length orthogonal to the foaming direction. It was measured. A value obtained by dividing the cell length in the foaming direction by the cell length orthogonal to the foaming direction was obtained for each cell, and the average value of 30 cells was used as the evaluation value of the cell anisotropy. The closer the anisotropy value is to 1, the closer the cell shape becomes to the spherical shape, the smaller the value, the longer the horizontal direction to the foaming direction, and the larger the value, the longer the vertical direction to the foaming direction. In this example, measurement was performed using Example 1 and Comparative Example 3 as representative examples.
 表4の比較例1~5に示すように、架橋剤として糖質(E-1)を使用しない場合には、硬度分布の発現は極めて小さい、もしくは発現しない。これらの場合には、実施例と比較して上面側でのウレア結合比が高く、下面側でのウレア結合比が低い。また、セル異方性と硬度分布比には相関性が無いことから、セル異方性の制御により硬度分布が発現しているとは言えない。比較例6に示すように、架橋剤として糖質(E-1)を使用した場合でも、規定量に対して使用量が多すぎる場合にはフォームの成型安定性が著しく低下し、フォームを成型することができない。以上の実施例及び比較例を対比することにより、本発明においては、例えばクッション材として用いたときの座り心地が良好な硬度分布を有し、好ましい物性を有する成型体が得られることは明確であり、本発明の構成の有意性と顕著な卓越性を理解できる。 As shown in Comparative Examples 1 to 5 in Table 4, when the sugar (E-1) is not used as the cross-linking agent, the hardness distribution is extremely small or does not appear. In these cases, the urea bond ratio on the upper surface side is higher and the urea bond ratio on the lower surface side is lower than in the examples. Further, since there is no correlation between the cell anisotropy and the hardness distribution ratio, it cannot be said that the hardness distribution is exhibited by controlling the cell anisotropy. As shown in Comparative Example 6, even when the sugar (E-1) was used as a cross-linking agent, when the amount used was too large relative to the specified amount, the molding stability of the foam was remarkably reduced, and the foam was molded. Can not do it. By comparing the above Examples and Comparative Examples, in the present invention, it is clear that a molded product having a favorable hardness distribution with good sitting comfort when used as a cushioning material and having preferable physical properties can be obtained. Yes, it is possible to understand the significance and outstanding excellence of the configuration of the present invention.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2018年12月21日に出願された日本特許出願2018-239669号、2019年2月19日に出願された日本特許出願2019-027120号、2019年8月29日に出願された日本特許出願2019-156884号の明細書、特許請求の範囲、要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, Japanese patent application 2018-239669 filed on December 21, 2018, Japanese patent application 2019-027120 filed on February 19, 2019, and Japanese patent filed on August 29, 2019 The entire contents of the specification, claims, and abstract of the application 2019-156884 are incorporated herein by reference and are incorporated as the disclosure of the specification of the present invention.

Claims (9)

  1.  ポリオール成分(A)、触媒(B)、整泡剤(C)、発泡剤(D)、及び架橋剤(E)を含む軟質ポリウレタンフォーム成型用ポリオール組成物であって、架橋剤(E)として糖質(E-1)を含有し、該糖質(E-1)の添加量がポリオール成分(A)に対して0.1~5質量%であることを特徴とする、軟質ポリウレタンフォーム成型用ポリオール組成物。 A polyol composition for molding a flexible polyurethane foam, comprising a polyol component (A), a catalyst (B), a foam stabilizer (C), a foaming agent (D), and a cross-linking agent (E), which is used as the cross-linking agent (E). Flexible polyurethane foam molding containing a sugar (E-1) and the addition amount of the sugar (E-1) is 0.1 to 5 mass% with respect to the polyol component (A). Polyol composition.
  2.  前記糖質(E-1)が、単糖類~十糖類から選ばれる少なくとも一種を含む、請求項1に記載の軟質ポリウレタンフォーム成型用ポリオール組成物。 The flexible polyurethane foam molding polyol composition according to claim 1, wherein the sugar (E-1) contains at least one selected from monosaccharides to decasaccharides.
  3.  前記糖質(E-1)の平均等鎖数が1.0以上9.0以下である、請求項1、または2に記載の軟質ポリウレタンフォーム成型用ポリオール組成物。 The polyol composition for molding a flexible polyurethane foam according to claim 1 or 2, wherein the average number of equal chains of the sugar (E-1) is 1.0 or more and 9.0 or less.
  4.  前記ポリオール成分(A)中に、触媒として複合金属シアン化物錯体触媒、ホスファゼン触媒、及びイミノ基含有ホスファゼニウム塩から選ばれる少なくとも一種を用いて製造された、総不飽和度0.001~0.04meq./gのポリオキシアルキレンポリオール(A-1)を含むことを特徴とする、請求項1乃至3のいずれかに記載の軟質ポリウレタンフォーム成型用ポリオール組成物。 A total degree of unsaturation of 0.001 to 0.04 meq produced by using at least one selected from a complex metal cyanide complex catalyst, a phosphazene catalyst, and an imino group-containing phosphazenium salt as a catalyst in the polyol component (A). . 4. The flexible polyurethane foam molding polyol composition according to claim 1, wherein the polyoxyalkylene polyol (A-1)/g is included.
  5.  請求項1乃至4のいずれかに記載の軟質ポリウレタンフォーム成型用ポリオール組成物と、ポリイソシアネート成分(F)とを含む軟質ポリウレタンフォーム成型用組成物であって、前記ポリイソシアネート成分(F)が、ジフェニルメタンジイソシアネートを50~85質量%の範囲で含み、該ジフェニルメタンジイソシアネートに含まれる2,2’-ジフェニルメタンジイソシアネートと、2,4’-ジフェニルメタンジイソシアネートの総量が該ジフェニルメタンジイソシアネートの総量に対し10~50質量%であることを特徴とする軟質ポリウレタンフォーム成型用組成物。 A flexible polyurethane foam molding composition comprising the flexible polyurethane foam molding polyol composition according to any one of claims 1 to 4 and a polyisocyanate component (F), wherein the polyisocyanate component (F) comprises: Diphenylmethane diisocyanate is contained in the range of 50 to 85% by mass, and the total amount of 2,2'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate contained in the diphenylmethane diisocyanate is 10 to 50% by mass with respect to the total amount of the diphenylmethane diisocyanate. A composition for molding a flexible polyurethane foam, characterized in that
  6.  請求項5に記載の軟質ポリウレタンフォーム成型用組成物を反応発泡させてなる軟質ポリウレタンフォーム。 A flexible polyurethane foam obtained by reacting and foaming the flexible polyurethane foam molding composition according to claim 5.
  7.  上型側が下面、下型側が上面となるようにモールド成型された軟質ポリウレタンフォームを、上面側の端面から下面側に向かって厚みの45%毎に切り出した2層のフォームにおいて、2層それぞれのフォームの25%圧縮硬度の平均値を100とした際の上面側フォームの硬度比が50~85%であることを特徴とする、請求項6に記載の軟質ポリウレタンフォーム。 A soft polyurethane foam molded so that the upper mold side is the lower surface and the lower mold side is the upper surface is cut out from the end surface of the upper surface side toward the lower surface side at a rate of 45% for each of the two layers of foam. 7. The flexible polyurethane foam according to claim 6, wherein the hardness ratio of the foam on the upper surface side is 50 to 85% when the average value of the 25% compression hardness of the foam is 100.
  8.  見掛け密度が30~70kg/mであり、かつスキン付きフォーム試験片の25%圧縮硬さが100~350N/314cmであり、かつ伸び率が100%以上であることを特徴とする、請求項6、または7に記載の軟質ポリウレタンフォーム。 Claims characterized in that the apparent density is 30 to 70 kg/m 3 , the 25% compression hardness of the skinned foam test piece is 100 to 350 N/314 cm 2 , and the elongation is 100% or more. Item 6. The flexible polyurethane foam according to Item 6 or 7.
  9.  反発弾性率が45~75%であり、かつ湿熱圧縮歪みが20%未満であることを特徴とする、請求項6乃至8のいずれかに記載の軟質ポリウレタンフォーム。 9. The flexible polyurethane foam according to any one of claims 6 to 8, which has a rebound resilience of 45 to 75% and a wet heat compression strain of less than 20%.
PCT/JP2019/048707 2018-12-21 2019-12-12 Polyol composition for molding flexible polyurethane foam WO2020129806A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-239669 2018-12-21
JP2018239669 2018-12-21
JP2019027120 2019-02-19
JP2019-027120 2019-02-19
JP2019-156884 2019-08-29
JP2019156884A JP7443696B2 (en) 2018-12-21 2019-08-29 Polyol composition for molding flexible polyurethane foam

Publications (1)

Publication Number Publication Date
WO2020129806A1 true WO2020129806A1 (en) 2020-06-25

Family

ID=71100453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048707 WO2020129806A1 (en) 2018-12-21 2019-12-12 Polyol composition for molding flexible polyurethane foam

Country Status (2)

Country Link
JP (1) JP2024032914A (en)
WO (1) WO2020129806A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215309A1 (en) * 2020-04-23 2021-10-28 東ソー株式会社 Polyol composition for soft polyurethane foam molding, composition for soft polyurethane foam molding, soft polyurethane foam, and production method for same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132630A (en) * 1995-08-10 1997-05-20 Arco Chem Technol Lp Isocyanate-terminated prepolymer with stable viscosity and polyoxyalkylene polyether poyol with improved storage stability
WO2000073368A1 (en) * 1999-06-01 2000-12-07 Solutia Inc. Composition for use in flexible polyurethane foams
JP2001106780A (en) * 1998-10-20 2001-04-17 Mitsui Chemicals Inc Method for producing polyoxyalkylene polyol and its derivative
JP2002030129A (en) * 2000-02-17 2002-01-31 Mitsui Chemicals Inc Slightly foamed polyurethane elastomer and its manufacturing method
JP2008179736A (en) * 2007-01-26 2008-08-07 Daiei Sangyo Kk Thermosetting bioplastic binder composition, cured product of thermosetting bioplastic material, and method for producing cured product of thermosetting bioplastic material
WO2013021871A1 (en) * 2011-08-05 2013-02-14 旭硝子株式会社 Manufacturing method for soft polyurethane foam
JP2018141118A (en) * 2016-08-05 2018-09-13 東ソー株式会社 Polyol composition for flexible polyurethane foam
JP2019119825A (en) * 2018-01-10 2019-07-22 株式会社イノアック技術研究所 Hard urethane resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132630A (en) * 1995-08-10 1997-05-20 Arco Chem Technol Lp Isocyanate-terminated prepolymer with stable viscosity and polyoxyalkylene polyether poyol with improved storage stability
JP2001106780A (en) * 1998-10-20 2001-04-17 Mitsui Chemicals Inc Method for producing polyoxyalkylene polyol and its derivative
WO2000073368A1 (en) * 1999-06-01 2000-12-07 Solutia Inc. Composition for use in flexible polyurethane foams
JP2002030129A (en) * 2000-02-17 2002-01-31 Mitsui Chemicals Inc Slightly foamed polyurethane elastomer and its manufacturing method
JP2008179736A (en) * 2007-01-26 2008-08-07 Daiei Sangyo Kk Thermosetting bioplastic binder composition, cured product of thermosetting bioplastic material, and method for producing cured product of thermosetting bioplastic material
WO2013021871A1 (en) * 2011-08-05 2013-02-14 旭硝子株式会社 Manufacturing method for soft polyurethane foam
JP2018141118A (en) * 2016-08-05 2018-09-13 東ソー株式会社 Polyol composition for flexible polyurethane foam
JP2019119825A (en) * 2018-01-10 2019-07-22 株式会社イノアック技術研究所 Hard urethane resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215309A1 (en) * 2020-04-23 2021-10-28 東ソー株式会社 Polyol composition for soft polyurethane foam molding, composition for soft polyurethane foam molding, soft polyurethane foam, and production method for same

Also Published As

Publication number Publication date
JP2024032914A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
JP4910703B2 (en) Flexible polyurethane foam, method for producing the same, and automobile seat
JP2024032914A (en) Polyol composition for molding flexible polyurethane foam
KR101364368B1 (en) Process for producing viscoelastic polyurethane foams
MX2011000718A (en) Cellular structures and viscoelastic polyurethane foams.
US11161931B2 (en) Polyol blends and their use in producing PUR-PIR foam-forming compositions
JP2022523800A (en) HSFO-containing isocyanate-reactive compositions, related foam-forming compositions, and PUR-PIR foams.
WO2005052020A1 (en) Flexible polyurethane foam, process for producing the same, and automotive sheet employing the same
JP2008127514A (en) Polyurethane foam and manufacturing method
JPH08269155A (en) Production of foam improved in wet residual strain characteristic
HU218085B (en) Polyol formulation for producing latex-like flexible polyurethane foam, latex-like flexible polyurethane foam and article produced therefrom
JP2017165985A (en) Method for preparing flexible polyurethane foam with hydrolyzable silane compounds
JP7204650B2 (en) Polyol blends useful for making viscoelastic foams
JP4058954B2 (en) Flexible polyurethane foam
JP7443696B2 (en) Polyol composition for molding flexible polyurethane foam
KR20150024464A (en) Functional polyurethane foam
EP3392282A1 (en) Soft polyurethane foam and seat pad
WO2013147088A1 (en) Polyurethane foam for seat pad
JPS6126617A (en) Preparation of molded foam
WO2018235515A1 (en) Composition for soft polyurethane foam, soft polyurethane foam, and vehicle seat pad
JP7148018B2 (en) Polyol composition for forming flexible polyurethane foam, composition for forming flexible polyurethane foam, flexible polyurethane foam and method for producing the same
CN115698114A (en) Viscoelastic elastomer polyurethane foam, method for the production thereof and use thereof
JP6903993B2 (en) Polyisocyanate composition for flexible polyurethane foam
JP5869936B2 (en) Polyurethane foam for seat pads
JP2023091890A (en) Flexible polyurethane foam formable composition and flexible polyurethane foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899176

Country of ref document: EP

Kind code of ref document: A1