WO2020129747A1 - Linear vibration motor and electronic device using same - Google Patents

Linear vibration motor and electronic device using same Download PDF

Info

Publication number
WO2020129747A1
WO2020129747A1 PCT/JP2019/048241 JP2019048241W WO2020129747A1 WO 2020129747 A1 WO2020129747 A1 WO 2020129747A1 JP 2019048241 W JP2019048241 W JP 2019048241W WO 2020129747 A1 WO2020129747 A1 WO 2020129747A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
vibration motor
linear vibration
magnets
coil
Prior art date
Application number
PCT/JP2019/048241
Other languages
French (fr)
Japanese (ja)
Inventor
和英 高田
将充 柴田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020561331A priority Critical patent/JP7207428B2/en
Publication of WO2020129747A1 publication Critical patent/WO2020129747A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • H02K33/04Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the frequency of operation is determined by the frequency of uninterrupted AC energisation

Definitions

  • This disclosure relates to a linear vibration motor and electronic equipment using the linear vibration motor.
  • FIG. 24 is a cross-sectional view of the linear vibration motor described in Patent Document 1.
  • the linear vibration motor 300 includes a coil 303, a vibrator 302 including a first magnet M301, a second magnet M302, and a fourth magnet M304, a housing to which a third magnet M303 and a fifth magnet M305 are fixed. And 301.
  • the vibrator 302 includes a coil 303 and a first magnet M301 that functions as a driving magnet that gives a driving force along the first direction D when a current flows through the coil 303, and the vibrator 302 is arranged along the first direction D. Vibrate.
  • the second magnet M302 and the third magnet M303, and the fourth magnet M304 and the fifth magnet M305 are arranged along the first direction D so as to repel each other. That is, the second magnet M302 and the third magnet M303, and the fourth magnet M304 and the fifth magnet M305 form a magnetic spring mechanism for the vibration of the vibrator 302 along the first direction D. There is.
  • the vibration of the vibrator 302 is transmitted to the housing 301 via the third magnet M303 and the fifth magnet M305, and is sensed as the vibration of the linear vibration motor 300.
  • the linear vibration motor 300 all the magnets are arranged on one axis parallel to the first direction D. That is, the distance between the second magnet M302 and the coil 303 is short. Therefore, when the vibrator 302 vibrates along the first direction D, the magnetic field of the second magnet M302 reduces the Lorentz force generated by the magnetic field of the first magnet M301 and the current flowing through the coil 303.
  • the magnetic field of the second magnet M302 reduces the Lorentz force generated by the magnetic field of the first magnet M301 and the current flowing through the coil 303.
  • vibration for cutaneous sense feedback called haptics technology or for confirming key operation and incoming call may decrease.
  • an object of this disclosure is to provide a linear vibration motor capable of suppressing the influence of the magnetic spring mechanism on the vibration, and an electronic device using the linear vibration motor.
  • a linear vibration motor includes a first housing, a vibrator housed in the first housing, each of which includes at least one first and second magnet, and a vibrator fixed to the first housing. Is fixed to the first casing in a repulsive arrangement with a coil that applies a driving force to the first magnet so that the coil can vibrate along the first direction, and a second magnet along the first direction.
  • the oscillator is arranged such that the third magnet is sandwiched between at least one third magnet and the second magnet along the first direction, and the third magnet is repulsive to each other.
  • fixed to the first housing in such a manner that the second magnet is sandwiched between the third magnet and the third magnet along the first direction and in a repulsive arrangement with the second magnet.
  • a fourth magnet is fixed to the first housing in such a manner that the second magnet is sandwiched between the third magnet and the third magnet along the first direction and in a repulsive arrangement with the second magnet.
  • the second to fourth magnets when viewed from the first direction, partially overlap each other. Further, the distance between the coil and the first axis passing through the center of gravity of the surface of the first magnet when viewed from the first direction and parallel to the first direction is the first distance when viewed from the first direction. It is shorter than the distance between the coil and the second axis parallel to the first direction and passing through the center of gravity of the region where the second to fourth magnets overlap each other.
  • an electronic device includes a linear vibration motor according to this disclosure and a second housing.
  • the linear vibration motor is housed in the second housing.
  • the linear vibration motor according to this disclosure can suppress the influence on the vibration of the magnetic spring mechanism. Further, the electronic device according to the present disclosure uses the linear vibration motor according to the present disclosure, and thus it is possible to suppress a reduction in vibration due to the influence of the magnetic spring mechanism of the linear vibration motor.
  • FIG. 1A is a plan view of linear vibration motor 100 showing a schematic form of a linear vibration motor according to the present disclosure, excluding first portion 1 a of housing 1.
  • FIG. 1B is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line AA shown in FIG.
  • FIG. 1C is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line BB shown in FIG.
  • FIG. 3 is an exploded perspective view of the linear vibration motor 100.
  • 3A to 3D are cross-sectional views each illustrating a series of operations of the linear vibration motor 100 and corresponding to FIG. 1B.
  • 4A to 4C are a plan view and a cross-sectional view of a linear vibration motor 100A, which is a first modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C.
  • .. 5A to 5C are a plan view and a sectional view taken in the direction of an arrow of a linear vibration motor 100B, which is a second modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. It is an exploded perspective view of linear vibration motor 100B.
  • 7A to 7C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100C, which is a third modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C.
  • .. 8A to 8C are a plan view and a cross-sectional view of a linear vibration motor 100D, which is a fourth modified example of the linear vibration motor 100, corresponding to FIGS. 1A to 1C.
  • .. 9A to 9C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100E, which is a fifth modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C.
  • .. 10A to 10C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100F, which is a sixth modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. ..
  • 11A to 11C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100G, which is a 76th modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 12A to 12C are a plan view and a sectional view taken in the direction of an arrow of a linear vibration motor 100H that is an eighth modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 13A to 13C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100I, which is a ninth modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. ..
  • FIGS. 14A to 14C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100J, which is a tenth modified example of the linear vibration motor 100, corresponding to FIGS. 1A to 1C.
  • .. 15A to 15C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100K that is an eleventh modified example of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. ..
  • FIG. 16A is a plan view of linear vibration motor 200 showing an embodiment of a linear vibration motor according to the present disclosure, excluding first portion 1 a of housing 1.
  • FIG. 16B is a cross-sectional view of the linear vibration motor 200 taken along the plane including the line AA shown in FIG.
  • FIG. 16C is a cross-sectional view of the linear vibration motor 200 taken along a plane including the line BB shown in FIG. 3 is an exploded perspective view of the linear vibration motor 200.
  • FIG. 18A to 18C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 200A, which is a first modification of the linear vibration motor 200, corresponding to FIGS. 16A to 16C. .. It is an exploded perspective view of linear vibration motor 200A.
  • FIGS. 16A to 16C are a plan view and a cross-sectional view taken along the arrow of a linear vibration motor 200B that is a second modification of the linear vibration motor 200 and correspond to FIGS. 16A to 16C. .. It is a disassembled perspective view of the linear vibration motor 200B.
  • FIG. 25 is a transparent perspective view of a portable information terminal 1000 that is a schematic form of an electronic device according to the present disclosure.
  • 3 is a cross-sectional view of a main part of portable information terminal 1000.
  • FIG. It is a sectional view of linear vibration motor 300 of background art.
  • linear vibration motor 100 showing a schematic form of a linear vibration motor according to this disclosure will be described with reference to FIGS. 1 and 2.
  • FIG. 1A is a plan view of the linear vibration motor 100 excluding a first portion 1 a (described later) of the housing 1.
  • FIG. 1B is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line AA shown in FIG.
  • FIG. 1C is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line BB shown in FIG.
  • FIG. 2 is an exploded perspective view of the linear vibration motor 100.
  • the linear vibration motor 100 includes a housing 1 (first housing), a vibrator 2, a coil 3, and a third magnet M3.
  • the housing 1 includes a first portion 1a and a second portion 1b, and has inner walls W1 to W4.
  • the first portion 1a is a flat plate-shaped lid portion and the second portion 1b is a container portion. That is, the housing 1 has a closed structure, but the shape is not limited to this.
  • the housing 1 may have a tubular shape and may partially have an opening.
  • the second portion 1b includes a container body 1b1 and a fixed portion 1b2 as described later, but the fixed portion 1b2 is not shown (the same applies hereinafter).
  • the inner wall W1 corresponds to the bottom surface of the housing 1 shown in FIG. 1B, and the inner wall W2 corresponds to the top surface of the housing 1 facing the inner wall W1.
  • the inner walls W3 and W4 correspond to the side wall surfaces of the housing 1 shown in FIG. 1(B).
  • the oscillator 2 is housed in the second portion 1b of the housing 1.
  • the vibrator 2 includes two first magnets M1, a second magnet M2, a fourth magnet M4, and a substrate 2a.
  • the two first magnets M1 are fixed to the central portion of the substrate 2a at intervals along the first direction D so as to face the winding portions of the coil 3 described later.
  • the two first magnets M1 are arranged so that the arrangement directions of the magnetic poles are parallel to the winding axis of the coil 3 and opposite to each other.
  • the S pole of one of the first magnets M1 faces the winding portion of the coil 3, and the N pole of the other first magnet M1 is the coil. It faces the winding part of No. 3.
  • the winding axis of the coil 3 is a virtual axis.
  • the coil 3 is formed by winding a conductor wire around its winding axis.
  • the two first magnets M1 have the same shape. That is, the two first magnets M1 appear to overlap each other when viewed from the first direction D.
  • the shape of the first magnet M1 is not limited to this.
  • the first magnet M1 may be only one.
  • the coil 3 When the coil 3 is energized, it gives a driving force to the first magnet M1 so that the vibrator 2 can vibrate along the first direction D.
  • the winding of the coil 3 and the energization path (wiring path) to the coil 3 are not shown.
  • the coil 3 In the linear vibration motor 100, the coil 3 has a casing in which the winding axis is parallel to the normal direction of the first portion 1a of the casing 1, that is, the winding axis is orthogonal to the first direction D. 1 is fixed to the inner wall W2.
  • the shape of the coil 3 when viewed from the winding axis direction is a rectangular shape with rounded corners.
  • the coil 3 When an electric current flows through the coil 3, a Lorentz force is applied to the coil 3 by the magnetic field of the first magnet M1 in a direction orthogonal to the direction of the magnetic field and the direction in which the current flows.
  • the coil 3 since the coil 3 is fixed to the housing 1, a reaction force of the Lorentz force is applied to the first magnet M1. Therefore, the coil 3 applies a driving force along the first direction D to the first magnet M1 and thus to the vibrator 2 by energization. That is, the first magnet M1 functions as a drive magnet in the linear vibration motor 100.
  • the direction of the Lorentz force described above is more aligned with the first direction D than when the coil 3 is annular. Cheap. Therefore, the driving force applied to the vibrator 2 along the first direction D becomes large, which is preferable.
  • the second magnet M2 is arranged such that the arrangement direction of the magnetic poles is parallel to the first direction D and repels a third magnet M3 described later, and is fixed to one end of the substrate 2a.
  • the second magnet M2 in order to avoid the collision between the vibrator 2 and the housing 1, the second magnet M2 has a distance between the second magnet M2 and the third magnet M3 before vibration from the end surface of the substrate 2a and the housing 1 so as to avoid collision. It is fixed to the substrate 2a so as to be equal to or less than the interval. In this case, the magnetic spring mechanism works effectively. From the viewpoint of miniaturization, it is preferable that the distance between the second magnet M2 and the third magnet M3 before vibration is the same as the distance between the end surface of the substrate 2a and the housing 1.
  • the third magnet M3 is arranged such that the arrangement direction of the magnetic poles is parallel to the first direction D and repels the second magnet M2 along the first direction D, and the third magnet M3 has an inner wall of the housing 1. It is fixed to W1.
  • the fourth magnet M4 is fixed to the substrate 2a of the vibrator 2 in such an arrangement that the arrangement direction of the magnetic poles is parallel to the first direction D and repulsive to the third magnet M3 along the first direction D. ing.
  • the distance between the fourth magnet M4 and the third magnet M3 before vibration of the fourth magnet M4 is equal to or less than the distance between the end surface of the substrate 2a and the housing 1. , Preferably fixed to the substrate 2a at the same intervals.
  • the second magnet M2 and the fourth magnet M4 are arranged on the same axis so as to sandwich the third magnet M3 in a plan view. Further, as shown in FIG. 1B, the N pole of the third magnet M3 and the N pole of the second magnet M2 are opposed to each other, and the S pole of the third magnet M3 and the fourth pole of the third magnet M3 are opposed to each other. The south pole of the magnet M4 faces each other. As a result, the second magnet M2, the third magnet M3, and the fourth magnet M4 form a magnetic spring mechanism for vibration of the vibrator 2 in the first direction D.
  • the second magnet M2, the third magnet M3, and the fourth magnet M4 When viewed from the first direction D, the second magnet M2, the third magnet M3, and the fourth magnet M4 partially overlap each other.
  • an axis line that passes through the center of gravity of the overlapping region of the two first magnets M1 when viewed from the first direction D and is parallel to the first direction D is referred to as a first axis line A1.
  • the center of gravity of the overlapping region of the two first magnets M1 is equal to the center of gravity of the surface of the first magnet M1.
  • the second magnet M2, the third magnet M3, and the fourth magnet M4 pass through the center of gravity of a region where they overlap with each other, and an axis line parallel to the first direction D Let it be the second axis A2.
  • the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
  • the center of gravity of the surface of the first magnet M1 refers to the center of gravity of the figure represented by the outer circumference of the first magnet M1 when viewed from the first direction.
  • the center of gravity of the region where the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other is represented by the outer circumference of the region where the respective magnets overlap each other when viewed from the first direction.
  • the distance between each axis and the coil means the distance between each axis and the tip of the coil 3 on the side far from the housing 1.
  • the first magnet M1 that is the driving magnet of the vibrator 2 and the second magnet M2, the third magnet M3, and the fourth magnet M4 that form the magnetic spring mechanism form one axis. Not placed on the line. That is, the first axis A1 passing through the drive magnet and the second axis A2 passing through the magnetic spring mechanism are separated from each other, and the second axis A2 is located farther from the coil 3 than the first axis A1. is there.
  • FIG. 3A to 3D are cross-sectional views each illustrating a series of operations of the linear vibration motor 100 and corresponding to FIG. 1B.
  • FIG. 3(A) shows a state where the vibrator 2 is not vibrating and the coil 3 is energized.
  • the symbol attached to the cross section on the left side of the coil 3 indicates that the current flows from the back side to the front side in the drawing.
  • the symbol attached to the cross section on the right side of the coil 3 indicates that the current flows from the front side to the back side in the drawing.
  • the upward arrow coming out from the N pole of the first magnet M1 and the downward arrow coming into the S pole represent the direction of the magnetic field generated by the first magnet M1.
  • the magnetic field of the first magnet M1 causes a Lorentz force (a thinly-painted area in the figure) in a direction orthogonal to the direction of the magnetic field and the direction in which the current flows.
  • the right-pointing arrow is added.
  • a reaction force of the Lorentz force (a dark arrow pointing to the left in the figure) is applied to the first magnet M1. Therefore, a driving force that moves the vibrator 2 to the left side in the drawing along the first direction D is applied to the vibrator 2.
  • the second axis A2 passing through each magnet constituting the magnetic spring mechanism is located farther from the coil 3 than the first axis A1 passing through the first magnet M1 which is a driving magnet of the vibrator 2. It is in. That is, the influence of the magnetic fields of the second magnet M2 and the fourth magnet M4 on the Lorentz force applied to the coil 3 is suppressed.
  • FIG. 3B shows a state in which the direction of the current flowing through the coil 3 is reversed after the vibrator 2 moves to the left side in the figure.
  • the fourth magnet M4 of the vibrator 2 and the third magnet M3 fixed to the second portion 1b of the housing 1 approach each other, and the repulsive force between them increases. ..
  • a force for moving the fourth magnet M4 to the right side in the figure (white arrow pointing to the right in the figure) is applied to the fourth magnet M4.
  • a force for moving the third magnet M3 to the left side in the drawing (white arrow pointing to the left in the drawing) is applied to the third magnet M3.
  • the force applied to the third magnet M3 deforms the second portion 1b of the housing 1 to which the third magnet M3 is fixed.
  • the modification shown in FIG. 3B is schematically represented (the same applies hereinafter).
  • the driving force that moves the vibrator 2 to the right side in the drawing along the first direction D is applied to the vibrator 2 by the above-mentioned force applied to the fourth magnet M4 and the reaction force of the Lorentz force. ..
  • the second axis A2 passing through each magnet constituting the magnetic spring mechanism is farther from the coil 3 than the first axis A1 passing through the first magnet M1 which is a driving magnet of the vibrator 2. In position. That is, the influence of the magnetic field of the fourth magnet M4 on the Lorentz force applied to the coil 3 is suppressed.
  • FIG. 3C shows a state in which the direction of the current flowing through the coil 3 is reversed after the vibrator 2 moves to the right side in the figure.
  • the second magnet M2 of the oscillator 2 and the third magnet M3 fixed to the second portion 1b of the housing 1 approach each other, and the repulsive force between them increases. ..
  • a force that moves the second magnet M2 to the left side in the figure (white arrow pointing to the left in the figure) is applied to the second magnet M2.
  • a force (white arrow pointing to the right in the figure) that moves the third magnet M3 to the right side in the figure is applied to the third magnet M3.
  • the force applied to the third magnet M3 deforms the second portion 1b of the housing 1 to which the third magnet M3 is fixed, in the direction opposite to that in the case of FIG. 3B.
  • the driving force that moves the vibrator 2 to the left side in the drawing along the first direction D is given to the vibrator 2 by the above-mentioned force applied to the second magnet M2 and the reaction force of the Lorentz force. ..
  • the second axis A2 passing through each magnet constituting the magnetic spring mechanism is farther from the coil 3 than the first axis A1 passing through the first magnet M1 which is a driving magnet of the vibrator 2. In position. That is, the influence of the magnetic field of the second magnet M2 on the Lorentz force applied to the coil 3 is suppressed.
  • FIG. 3(D) shows that the oscillator 2 is brought into the same state as FIG. 3(B) by the operation described in FIG. 3(C). That is, the influence of the magnetic field of the fourth magnet M4 on the Lorentz force applied to the coil 3 is suppressed. Further, the second portion 1b of the housing 1 to which the third magnet M3 is fixed is deformed in the same direction as in the case of FIG. 3(B). The vibration of the vibrator 2 along the first direction D described above becomes the vibration of the third magnet M3 forming the magnetic spring mechanism, is transmitted to the housing 1, and becomes the vibration of the linear vibration motor 100.
  • the linear vibration motor 100 when the vibrator 2 vibrates in the first direction D, it is possible to suppress the influence of the magnetic field of the magnets forming the magnetic spring mechanism on the Lorentz force applied to the coil 3. it can. As a result, it is possible to suppress a decrease in the force applied to the vibrator 2 as a reaction force of the Lorentz force, and it is possible to suppress a decrease in vibration of the linear vibration motor 100.
  • the structure in which the vibrator 2 is supported in the second portion 1b of the housing 1 is not particularly limited.
  • the vibrator 2 includes the sliding mechanism 4 including the first sliding mechanism 4a and the second sliding mechanism 4b. It is supported.
  • the vibrator 2 is connected to the inner wall W3 of the housing 1 by the first sliding mechanism 4a, and is connected to the inner wall W4 of the housing 1 by the second sliding mechanism 4b.
  • the structure of the sliding mechanism 4 is not particularly limited.
  • a sliding body that includes a guide rail and a moving body using a ball bearing or the like, and has reduced friction during movement of the moving body on the guide rail. Mechanisms can be used.
  • the guide rail is fixed to the housing 1 side, and the moving body is fixed to the vibrator 2 side.
  • FIGS. 1A to 1C are a plan view and a cross-sectional view of the linear vibration motor 100A corresponding to FIGS. 1A to 1C, respectively.
  • the linear vibration motor 100A is different from the linear vibration motor 100 in the number and arrangement of the second magnet M2, the third magnet M3, and the fourth magnet M4.
  • the other configurations are similar to those of the linear vibration motor 100, and thus the duplicate description will be omitted.
  • the second magnet M2, the third magnet M3, and the fourth magnet M4 each include two magnets having the same shape.
  • one part of one of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlaps.
  • the other part of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap.
  • the magnetic field of the magnet that constitutes the magnetic spring mechanism becomes the Lorentz force applied to the coil 3. The influence exerted can be suppressed.
  • the two magnetic spring mechanisms are arranged in parallel. Therefore, it is possible to suppress the influence of an error in the mounting position of each magnet of the magnetic spring mechanism.
  • FIGS. 5A to 5C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 100B corresponding to FIGS. 1A to 1C.
  • FIG. 6 is an exploded perspective view of the linear vibration motor 100B.
  • the linear vibration motor 100B is different from the linear vibration motor 100 in the positional relationship among the second magnet M2, the third magnet M3, and the fourth magnet M4.
  • the other configurations are similar to those of the linear vibration motor 100, and thus the duplicate description will be omitted.
  • the second magnet M2 is fixed to the central portion of the substrate 2a so that the arrangement direction of the magnetic poles is parallel to the first direction D. Has been done.
  • the third magnet M3 and the fourth magnet M4 are arranged such that the second magnet M2 is sandwiched between the third magnet M3 and the fourth magnet M2 and the magnetic poles repel each other with the second magnet M2. It is fixed to the portion 1b.
  • the third magnet M3 has a distance between the second magnet M2 and the third magnet M3 before vibration in order to avoid collision between the vibrator 2 and the housing 1. It is fixed to the substrate 2a such that the distance between the end surface of the substrate 2a and the housing 1 is equal to or less than the distance between the substrate 1 and the casing 1. In this case, the magnetic spring mechanism works effectively. From the viewpoint of miniaturization, it is preferable that the distance between the second magnet M2 and the third magnet M3 before vibration is the same as the distance between the end surface of the substrate 2a and the housing 1.
  • the distance between the fourth magnet M4 and the third magnet M3 before vibration is less than or equal to the distance between the end surface of the substrate 2a and the housing 1 as well as the third magnet M3.
  • it is preferably fixed to the substrate 2a at the same intervals.
  • the N pole of the second magnet M2 and the N pole of the third magnet M3 face each other, and the S pole of the second magnet M2 and the fourth pole of the third magnet M3 face each other.
  • the south pole of the magnet M4 faces each other.
  • the second magnet M2, the third magnet M3, and the fourth magnet M4 form a magnetic spring mechanism for vibration of the vibrator 2 in the first direction D.
  • the second magnet M2, the third magnet M3, and the fourth magnet M4 partially overlap each other, as in the linear vibration motor 100.
  • the magnetic field of the magnets forming the magnetic spring mechanism becomes the Lorentz force applied to the coil 3 as in the linear vibration motor 100. The influence exerted can be suppressed.
  • the linear vibration motor 100B like the linear vibration motor 100A, includes two magnets in which the second magnet M2, the third magnet M3, and the fourth magnet M4 have the same shape. Good.
  • FIGS. 7(A) to (C) are a plan view and a cross-sectional view taken in the direction of the arrow of the linear vibration motor 100C corresponding to FIGS. 1(A) to (C).
  • the linear vibration motor 100C differs from the linear vibration motor 100 in that it further includes a fifth magnet M5.
  • the other configurations are similar to those of the linear vibration motor 100, and thus the duplicate description will be omitted.
  • the linear vibration motor 100C further includes a fifth magnet M5 as a drive magnet in addition to the first magnet M1.
  • the fifth magnet M5 has a magnetic pole array direction parallel to the first direction D and is sandwiched between the two first magnets M1. Thus, it is fixed to the central portion of the substrate 2a.
  • the two first magnets M1 are arranged such that the arrangement directions of the magnetic poles are parallel to the winding axis of the coil 3, that is, orthogonal to the first direction D and opposite to each other.
  • the fifth magnet M5 is a driving magnet in which the magnetic field of the array of magnets formed by the two first magnets M1 and the fifth magnet M5 is a driving magnet including the first magnet M1 and the fifth magnet M5. It is arranged so as to concentrate between the coil 3 and the coil 3.
  • the magnetic pole of one of the two first magnets M1 (first left-side first magnet M1 in FIG. 7) has an S pole on the side facing the coil 3 and an N pole on the side facing the substrate 2a. is there.
  • the other magnetic pole of the two first magnets M1 (the first magnet M1 on the right side in FIG. 7) has the N pole on the side facing the coil 3 and the S pole on the side facing the substrate 2a.
  • the magnetic pole of the fifth magnet M5 has an S pole on the side facing one of the two first magnets M1 and an N pole on the side facing the other.
  • the array of each magnet of the drive magnet which can concentrate the magnetic field by the drive magnet between the drive magnet and the coil that drives the vibrator, is broadly called the Halbach array.
  • the number of magnets forming the Halbach array may be an odd number of 3 or more.
  • the magnetic field generated by the drive magnet is concentrated between the drive magnet and the coil 3, and the drive magnet is only the first magnet M1.
  • the magnetic field acting on the coil 3 can be strengthened more than in the case. Therefore, the Lorentz force applied to the coil 3 can be increased.
  • the force applied to the vibrator 2 as a reaction force of the Lorentz force can be increased, and the vibration of the linear vibration motor 100 by the vibrator 2 can be increased.
  • the linear vibration motor 100C is configured such that the second magnet M2, the third magnet M3, and the fourth magnet M4 each include two magnets having the same shape. Good. Further, the linear vibration motor 100C may have a magnetic spring structure like the linear vibration motor 100B.
  • FIGS. 8(A) to 8(C) are a plan view and a cross-sectional view of the linear vibration motor 100D corresponding to FIGS. 1(A) to (C), respectively.
  • the linear vibration motor 100D is different from the linear vibration motor 100 in the number of the second magnets M2, the third magnets M3, and the fourth magnets M4, and the positional relationship.
  • the other configurations are similar to those of the linear vibration motor 100, and thus the duplicate description will be omitted.
  • the second magnet M2, the third magnet M3, and the fourth magnet M4 each include two magnets having the same shape. Recesses are formed on one side surface (side surface facing the inner wall W3) and the other side surface (side surface facing the inner wall W4) of the substrate 2a.
  • One of the two second magnets M2 is arranged in a concave portion formed on one side surface of the substrate 2a, and the other is arranged in a concave portion formed on the other side surface of the substrate 2a.
  • One of the two fourth magnets M4 is also arranged in a recess formed on one side surface of the substrate 2a, and the other is arranged in a recess formed on the other side surface of the substrate 2a.
  • a part of one of the third magnets M3 is inserted into the concave portion on the one side surface side of the substrate 2a. Then, when viewed from the first direction D, one of the third magnets M3 is arranged so as to face one of the second magnet M2 and one of the fourth magnets M4, respectively, and the second portion of the housing 1 is arranged. It is fixed to 1b. In addition, a part of the other of the two third magnets M3 is inserted into the concave portion on the other side surface side of the substrate 2a. When viewed from the first direction D, the second magnet M2 and the fourth magnet M4 are fixed to the second portion 1b of the housing 1 so as to face each other.
  • one part of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other. Moreover, the other part of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other.
  • the linear vibration motor 100D as well as in the linear vibration motor 100, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3. The influence exerted can be suppressed. Further, since the two magnetic spring mechanisms are arranged in parallel, it is possible to suppress the influence of an error in the mounting position of each magnet of the magnetic spring mechanism. Furthermore, since each magnet forming the magnetic spring mechanism is provided on the side surface of the substrate 2a, the height of the linear vibration motor 100D can be reduced.
  • the linear vibration motor 100D further includes a fifth magnet, and is provided between the coil 3 and the drive magnet configured by the two first magnets M1 and the fifth magnet M5.
  • the magnetic field generated by the driving magnet may be concentrated.
  • the linear vibration motor 100D may have a magnetic spring structure like the linear vibration motor 100B.
  • FIGS. 9A to 9C are a plan view and a cross-sectional view of the linear vibration motor 100E corresponding to FIGS. 1A to 1C, respectively.
  • the linear vibration motor 100E is different from the linear vibration motor 100B of the second modification in the form of the first magnet M1 and the second magnet M2.
  • the other configurations are the same as those of the linear vibration motor 100B, and thus redundant description will be omitted.
  • the two first magnets M1 penetrate the substrate 2a, and the first portion on the inner wall W2 side of the housing 1 and the second portion on the inner wall W1 side of the housing 1 described above. And a part.
  • the two first magnets M1 are arranged such that the arrangement directions of the magnetic poles are parallel to the winding axis of the coil 3 and opposite to each other. That is, the first portion of the first magnet M1 functions as a drive magnet as in the linear vibration motor 100.
  • one second portion of the two first magnets M1 and a portion of the third magnet M3 overlap each other, and the other second portion No. 4 magnet M4 partially overlaps.
  • the second portion on one side and the third magnet M3 are arranged so as to repel each other, and the second portion on the other side and the fourth magnet M4 are arranged so as to repel each other.
  • the respective second portions of the two first magnets M1, the third magnet M3, and the fourth magnet M4 constitute a magnetic spring mechanism for the vibration of the vibrator 2 along the first direction D. doing. That is, in the linear vibration motor 100E, a part of the first magnet M1 is the second magnet M2.
  • the first axis A1 passes through the center of gravity of the overlapping region of the two first magnets M1 when viewed from the first direction D, and goes in the first direction D.
  • the second axis A2 is a region where the second portions of the two first magnets M1, the third magnet M3, and the fourth magnet M4 overlap each other when viewed in the first direction D. Is an axis line passing through the center of gravity of and parallel to the first direction D.
  • the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
  • the linear vibration motor 100E as described above, a part of the first magnet M1 is the second magnet M2 in the linear vibration motor 100B. Therefore, the number of magnets forming the linear vibration motor 100E can be reduced.
  • one and the other of the two first magnets M1 are plural respectively, and the third magnet M3 and the fourth magnet M4 have the same shape corresponding to them respectively. It may include a plurality of magnets.
  • FIGS. 10(A) to (C) are a plan view and a sectional view taken along the arrow of the linear vibration motor 100F corresponding to FIGS. 1(A) to (C).
  • the linear vibration motor 100F is different from the linear vibration motor 100E which is the fifth modification in the form of the first magnet M1 and the second magnet M2.
  • the other configurations are the same as those of the linear vibration motor 100E, and thus redundant description will be omitted.
  • the two first magnets M1 penetrate the substrate 2a, and the first portion on the inner wall W2 side of the housing 1 and the housing 1 described above. And a second portion on the inner wall W1 side.
  • the first magnet M1 in the linear vibration motor 100F is bent so that the first portion and the second portion form an L shape.
  • the first magnet M1 is sharpened and smoothly bent.
  • the magnetic poles of the first parts of the two first magnets M1 are arranged in parallel with the winding axis of the coil 3 and in opposite directions.
  • the S pole faces the winding portion of the coil 3
  • the N pole is the winding portion of the coil 3. Facing each other. That is, the first portion of the first magnet M1 functions as a drive magnet as in the linear vibration motor 100.
  • the second portion of one of the two first magnets M1 and a portion of the third magnet M3 overlap each other, and the second portion of the other one and the fourth portion of the third magnet M3 overlap.
  • Part of the magnet M4 of the above is overlapped.
  • the second portion and the third magnet M3 of one of the two first magnets M1 are arranged to repel each other, and the other second portion and the fourth magnet M4 repel each other. It is arranged.
  • the N pole faces the N pole of the third magnet M3, and on the other side, the S pole faces the S pole of the fourth magnet M4.
  • the respective second portions of the two first magnets M1, the third magnet M3, and the fourth magnet M4 form a magnetic spring mechanism for the vibration of the vibrator 2 along the first direction D. doing. That is, also in the linear vibration motor 100F, as in the linear vibration motor 100E, a part of the first magnet M1 is the second magnet M2.
  • first axis A1 and the second axis A2 are defined similarly to the linear vibration motor 100E.
  • the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
  • the linear vibration motor 100F when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnets forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3 as in the linear vibration motor 100. The influence exerted can be suppressed. Further, in the linear vibration motor 100F, the number of magnets forming the linear vibration motor 100F can be reduced as in the linear vibration motor 100E.
  • one and the other of the two first magnets M1 are plural respectively, and the third magnet M3 and the fourth magnet M4 have the same shape corresponding to them respectively. It may include a plurality of magnets.
  • FIGS. 11(A) to (C) are a plan view and a cross-sectional view taken in the direction of the arrow of the linear vibration motor 100G corresponding to FIGS. 1(A) to (C).
  • the linear vibration motor 100G is different from the linear vibration motor 100E in the fifth modification in the form of the first magnet M1 and the second magnet M2.
  • the other configurations are the same as those of the linear vibration motor 100E, and thus redundant description will be omitted.
  • the two first magnets M1 penetrate the substrate 2a, and the first portion on the inner wall W2 side of the housing 1 and the housing 1 described above. And a second portion on the inner wall W1 side.
  • the linear vibration motor 100G further includes two soft magnetic bodies SF in addition to the configuration of the linear vibration motor 100E.
  • the soft magnetic material SF for example, Fe, silicon steel, permalloy, amorphous magnetic alloy or the like is used.
  • the soft magnetic body SF is connected to the end of the second portion of the first magnet M1, and the first magnet M1 and the soft magnetic body SF are L-shaped. Is done. In that case, the soft magnetic body SF is magnetized by the first magnet M1. Therefore, the first magnet M1 and the soft magnetic material SF behave like one pseudo L-shaped magnet. That is, the arrangement direction of the magnetic poles of the first magnet M1 can be changed by the soft magnetic material SF.
  • the first magnet M1 and the soft magnetic material SF in the linear vibration motor 100G have the same function as the first magnet M1 in the linear vibration motor 100F.
  • the soft magnetic material SF when the soft magnetic material SF is connected to the end portion of the second portion of the first magnet M1, the first magnet M1 and the soft magnetic material SF are smooth. It is preferable that the shape is a curved L-shape.
  • the magnetic poles of the first portions of the two first magnets M1 are arranged in parallel with the winding axis of the coil 3 and opposite to each other.
  • the S pole faces the winding portion of the coil 3
  • the N pole is the winding portion of the coil 3. Facing each other. That is, the first portion of the first magnet M1 functions as a drive magnet as in the linear vibration motor 100.
  • one of the two soft magnetic bodies SF overlaps with a part of the third magnet M3, and the other overlaps with a part of the fourth magnet M4. .. Further, one of the soft magnetic bodies SF and the third magnet M3 are arranged to repel each other, and the other and the fourth magnet M4 are arranged to repel each other.
  • the N pole faces the N pole of the third magnet M3, and on the other side, the S pole is the fourth pole. It faces the south pole of the magnet M4.
  • the two soft magnetic bodies SF, the third magnet M3, and the fourth magnet M4 constitute a magnetic spring mechanism for vibration of the vibrator 2 along the first direction D. That is, in the linear vibration motor 100G, the soft magnetic body SF serves as the second magnet M2.
  • first axis A1 and the second axis A2 are defined similarly to the linear vibration motor 100E.
  • the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
  • the linear vibration motor 100G as well as in the linear vibration motor 100, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3. The influence exerted can be suppressed. Further, in the linear vibration motor 100G, the manufacturing cost can be reduced by replacing the magnets forming the linear vibration motor 100G with an inexpensive soft magnetic material.
  • one and the other of the two first magnets M1 are respectively plural, the soft magnetic bodies SF are respectively connected thereto, and the third magnet M3 and the fourth magnet M4 are It may include a plurality of magnets each having the same shape corresponding to them.
  • FIGS. 12A to 12C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 100H corresponding to FIGS. 1A to 1C.
  • the linear vibration motor 100H is different from the linear vibration motor 100E of the fifth modification in that the linear vibration motor 100H further includes a sixth magnet M6.
  • the other configurations are the same as those of the linear vibration motor 100E, and thus redundant description will be omitted.
  • the linear vibration motor 100H further includes one sixth magnet M6 as a magnet forming a magnetic spring mechanism in addition to the structure of the linear vibration motor 100E.
  • the fourth magnet M4 sandwiches a part of the two first magnets M1 with the third magnet M3 along the above-described first direction D. Then, the fourth magnet M4 is fixed to the housing 1 in an arrangement in which a part of the two first magnets M1 adjacent to each other repels each other.
  • the sixth magnet M6 When viewed from the first direction D, the sixth magnet M6 partially overlaps with the third magnet M3 and the fourth magnet M4 and repels the third magnet M3 and the fourth magnet M4. Is connected across the two first magnets M1.
  • the magnets forming the magnetic spring mechanism in addition to the second portion of the first magnet M1, the third magnet M3 and the fourth magnet M4 are mutually coupled. It further comprises a repulsive sixth magnet M6. Therefore, the performance of the magnetic spring mechanism can be improved.
  • linear vibration motor 100H may include a plurality of magnets in which the sixth magnet M6 is connected across the two first magnets M1.
  • FIGS. 13A to 13C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 100I corresponding to FIGS. 1A to 1C.
  • the linear vibration motor 100I is different from the linear vibration motor 100H which is the eighth modification in that it has two sixth magnets M6 and does not straddle the two first magnets M1.
  • the other configurations are the same as those of the linear vibration motor 100H, and thus redundant description will be omitted.
  • the linear vibration motor 100I further includes two sixth magnets M6 as magnets forming a magnetic spring mechanism. As shown in FIG. 13B, the two sixth magnets M6 are arranged such that the third magnet M3 and the fourth magnet M4 have magnetic poles that repel each other, and the two first magnets M1 respectively. Of the first magnet M1 and is not connected to the two first magnets M1.
  • the two sixth magnets M6 have different shapes, and the one closer to the third magnet M3 has a larger volume than the one closer to the fourth magnet M4. The closer one has a smaller volume than the closer one to the third magnet M3.
  • the capacity of the magnetic spring mechanism can be improved as in the linear vibration motor 100H.
  • the magnetic spring mechanism does not change the interval between the magnets constituting the magnetic spring mechanism.
  • FIGS. 14(A) to (C) are a plan view and a cross-sectional view taken in the direction of the arrow of the linear vibration motor 100J, which correspond to FIGS. 1(A) to (C).
  • the linear vibration motor 100J is different from the linear vibration motor 100C in which the second magnet M2 and the fifth magnet M5 are the third modification.
  • the other configurations are the same as those of the linear vibration motor 100C, and thus redundant description will be omitted.
  • the second magnet M2 has a rectangular parallelepiped shape and penetrates the substrate 2a, and has a first portion on the inner wall W2 side of the housing 1 and a second portion on the inner wall W1 side of the housing 1 described above. And the part of. Then, the first portion is such that the magnetic field of the drive magnet is concentrated between the coil 3 and the drive magnet constituted by the first portions of the two first magnets M1 and the second magnet M2. It is arranged between the two first magnets M1.
  • the first portion of the second magnet M2 functions as a drive magnet similarly to the fifth magnet M5 of the linear vibration motor 100C. That is, in the linear vibration motor 100J, a part of the second magnet M2 is the fifth magnet M5. Then, the two first magnets M1 and the first portion of the second magnet M2 have a Halbach array in a broad sense, as described above.
  • the first axis A1 passes through the center of gravity of the overlapping region of the two first magnets M1 when viewed from the first direction D, and goes in the first direction D.
  • the second axis A2 passes through the center of gravity of a region where the second portion of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other when viewed in the first direction D.
  • an axis parallel to the first direction D When defined as described above, the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
  • the drive is performed between the drive magnet and the coil 3.
  • the magnetic field due to the magnet is concentrated, and the magnetic field acting on the coil 3 can be strengthened as compared with the case where the driving magnet is only the first magnet M1. Therefore, the Lorentz force applied to the coil 3 can be increased.
  • the force applied to the vibrator 2 as a reaction force of the Lorentz force can be increased, and the vibration of the linear vibration motor 100J by the vibrator 2 can be increased.
  • the linear vibration motor 100J a part of the second magnet M2 is the fifth magnet M5 in the linear vibration motor 100C. Therefore, the number of magnets forming the linear vibration motor 100J can be reduced.
  • FIGS. 15A to 15C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 100K corresponding to FIGS. 1A to 1C.
  • the linear vibration motor 100K is different from the linear vibration motor 100J in the tenth modification in the shape of the second magnet M2.
  • the other configurations are the same as those of the linear vibration motor 100J, and thus redundant description will be omitted.
  • the second magnet M2 has a convex cross section as shown in FIG. 15(B). Also in the linear vibration motor 100K, the second magnet M2 penetrates the substrate 2a similarly to the linear vibration motor 100J, and is the first portion on the inner wall W2 side of the housing 1 and the inner wall W1 side of the housing 1. And a second portion.
  • the first portion of the second magnet M2 is arranged between the two first magnets M1 as in the linear vibration motor 100J, and constitutes a Halbach array in a broad sense. That is, it functions as a drive magnet like the linear vibration motor 100J.
  • the second portion together with the third magnet M3 and the fourth magnet M4, constitutes a magnetic spring mechanism for vibration of the vibrator 2 along the first direction D.
  • the volume of the second portion is larger than the volume of the first portion.
  • the shape of the second magnet M2 is a convex shape as described above, and the volume of the second portion is larger than the volume of the first portion. Therefore, the magnetic field of the drive magnet can be further strengthened as compared with the linear vibration motor 100J in which the second magnet M2 has a rectangular parallelepiped shape. Therefore, the Lorentz force applied to the coil 3 can be further increased. As a result, the force applied to the vibrator 2 as a reaction force of the Lorentz force can be further increased, and the vibration of the linear vibration motor 100K by the vibrator 2 can be further increased.
  • linear vibration motor 200 showing an embodiment of a linear vibration motor according to the present disclosure will be described with reference to FIGS. 16 and 17.
  • FIG. 16(A) is a plan view of the linear vibration motor 200 when the first portion 1a of the housing 1 is removed.
  • 16B is a cross-sectional view of the linear vibration motor 200 taken along the plane including the line AA shown in FIG.
  • FIG. 16C is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line BB shown in FIG. 17 is an exploded perspective view of the linear vibration motor 200.
  • the linear vibration motor 200 includes a housing 1 (first housing), a vibrator 2, a coil 3, and a third magnet M3.
  • the basic structure of the linear vibration motor 200 is the same as that of the linear vibration motor 100. Therefore, overlapping description will be omitted.
  • the housing 1 includes a first portion 1a and a second portion 1b.
  • the first portion 1a is a flat plate-shaped lid portion and the second portion 1b is a container portion.
  • stainless steel such as SUS304 is used for the housing 1, for example.
  • the first portion 1a and the second portion 1b may be made of different materials.
  • the oscillator 2 is housed in the second portion 1b of the housing 1.
  • the vibrator 2 includes two first magnets M1, a second magnet M2, a fourth magnet M4, a substrate 2a, and a weight portion 2b.
  • the substrate 2a also functions as a weight portion.
  • the weight portion 2b also functions as a substrate.
  • the two first magnets M1 are drive magnets, and the second magnet M2, the third magnet M3, and the fourth magnet M4 are magnets that form a magnetic spring mechanism.
  • a rare earth magnet such as Nd-Fe-B system or Sm-Co system is used.
  • Nd—Fe—B based rare earth magnet that has a strong magnetic force and can increase the driving force of the vibrator 2 as the first magnet M1.
  • Sm—Co-based rare earth magnet which has a small change rate of magnetic force with temperature and can stably exhibit a magnetic spring effect, for each magnet constituting the magnetic spring mechanism.
  • the arrangement of the magnetic poles of each magnet is the same as that of the linear vibration motor 100, and duplicated description will be omitted.
  • the substrate 2a and the weight portion 2b for example, W (tungsten) or an alloy containing W such as heavy alloy or ferro-tungsten, stainless steel such as SUS304 and Al (aluminum), or an alloy containing Al (aluminum) such as A2024 or A5052 is used. Is used.
  • the material of the substrate 2a and the weight portion 2b should include a material having a large specific gravity such as W (tungsten). preferable.
  • the substrate 2a is provided with a slot SL2 to which the second magnet M2 is fixed and a slot SL3 to which the fourth magnet M4 is fixed.
  • the slots SL2 and SL3 are angular C-shaped members, and the second magnet M2 and the third magnet M3 can face each other, and the third magnet M3 and the fourth magnet M4 can face each other. Thus, they are arranged along the first direction D.
  • Each magnet is fixed in this with an epoxy adhesive, for example.
  • the slot SL2 has a distance between the second magnet M2 and the third magnet M3 to be inserted that is equal to a distance between the end surfaces of the substrate 2a and the weight portion 2b and the housing 1. It is provided at one end of the substrate 2a as described below. Similarly, in the slot SL3, the distance between the inserted fourth magnet M4 and the third magnet M3 is equal to or less than the distance between the end faces of the substrate 2a and the weight portion 2b and the housing 1. It is provided at the other end.
  • a slot SL1 to which the first magnet M1 is fixed is provided at the center of the weight 2b.
  • the slot SL1 is a through hole formed in the weight portion 2b.
  • the second magnet M2 is fixed to the slot SL2 of the substrate 2a
  • the fourth magnet M4 is fixed to the slot SL3
  • the first magnet M1 is fixed to the slot SL1 of the weight portion 2b.
  • the weight portion 2b are bonded together to be formed.
  • the vibrator 2 may be formed by fixing each magnet to an integrated body of the substrate 2a and the weight portion 2b.
  • the coil 3 for example, a coated Cu wire having a diameter of 0.06 mm wound about 50 turns is used.
  • the coil 3 is connected to a stabilized power source via a power amplifier by a lead wiring member such as a flexible substrate (the lead wiring member and each device are not shown).
  • the coil 3 applies a driving force to the first magnet M1 so that the vibrator 2 can vibrate along the first direction D.
  • the arrangement and shape of the coil 3 are the same as those of the linear vibration motor 100, and redundant description will be omitted.
  • the vibrator 2 is supported by the sliding mechanism 4 including the first sliding mechanism 4a and the second sliding mechanism 4b.
  • the vibrator 2 is connected to the inner wall W3 of the housing 1 by the first sliding mechanism 4a, and is connected to the inner wall W4 of the housing 1 by the second sliding mechanism 4b (see FIG. 1).
  • the sliding mechanism 4 includes a guide rail and a moving body using a ball bearing or the like, and friction during movement of the moving body on the guide rail is reduced.
  • the guide rail is fixed to the housing 1 side, and the moving body is fixed to the vibrator 2 side.
  • the linear vibration motor 200 when viewed from the first direction D, the second magnet M2, the third magnet M3, and the fourth magnet M4 partially overlap each other. Then, similar to the linear vibration motor 100, the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
  • the vibrator 2 when the vibrator 2 vibrates in the first direction D, it is possible to suppress the influence of the magnetic field of the magnets forming the magnetic spring mechanism on the Lorentz force applied to the coil 3. it can. As a result, it is possible to suppress a decrease in the force applied to the vibrator 2 as a reaction force of the Lorentz force, and to suppress a decrease in vibration of the linear vibration motor 200 due to the vibrator 2. Further, since the vibrator 2 includes the weight portion 2b, the mass of the vibrator 2 is increased, and large vibration is transmitted to the housing 1.
  • a linear vibration motor 200A that is a first modification of the linear vibration motor 200 showing the embodiment of the linear vibration motor according to the present disclosure will be described with reference to FIGS. 18 and 19.
  • FIGS. 16A to 16C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 200A corresponding to FIGS. 16A to 16C.
  • FIG. 19 is an exploded perspective view of the linear vibration motor 200A.
  • the linear vibration motor 200A differs from the linear vibration motor 200 in that it further includes a fifth magnet M5.
  • the fifth magnet M5 is a driving magnet whose magnetic field of the magnet array formed by the two first magnets M1 and the fifth magnet M5 is a driving magnet including the first magnet M1 and the fifth magnet M5. It is arranged so as to concentrate between the coil 3 and the coil 3.
  • the array of magnets formed by the two first magnets M1 and the fifth magnet M5 is fixed to the slot SL1 of the weight portion 2b.
  • the other configurations are the same as those of the linear vibration motor 200, and thus redundant description will be omitted.
  • the linear vibration motor 200A as well, similar to the linear vibration motor 200, when the vibrator 2 vibrates in the first direction D, the magnetic field of the magnet forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3. The influence exerted can be suppressed.
  • the linear vibration motor 200A by adding the fifth magnet M5 to the drive magnet, the magnetic field generated by the drive magnet is concentrated between the drive magnet and the coil 3, and the drive magnet is only the first magnet M1.
  • the magnetic field of the drive magnet acting on the coil 3 can be strengthened more than in the case. Therefore, the Lorentz force applied to the coil 3 can be increased.
  • the force applied to the vibrator 2 as a reaction force of the Lorentz force can be increased, and the vibration of the linear vibration motor 200A by the vibrator 2 can be increased.
  • FIGS. 16A to 16C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 200B corresponding to FIGS. 16A to 16C.
  • FIG. 21 is an exploded perspective view of the linear vibration motor 200B.
  • the linear vibration motor 200B is different from the linear vibration motor 200 in the positional relationship between the second magnet M2, the third magnet M3, and the fourth magnet M4 and the structure of the weight portion 2b.
  • the other configurations are the same as those of the linear vibration motor 200, and thus redundant description will be omitted.
  • the second magnet M2 is provided in the central portion of the substrate 2a so that the arrangement direction of the magnetic poles is parallel to the first direction D. It is fixed to the slot SL2.
  • the slot SL2 is two angular C-shaped members. The two members are arranged along a direction orthogonal to the first direction D so that the second magnet M2 and the third magnet M3 can face each other and the second magnet M2 and the fourth magnet M4 can face each other. Are arranged.
  • the second magnet M2 is fixed therein by, for example, an epoxy adhesive.
  • the embodiment of the linear vibration motor is not limited to the above.
  • any of the above-described schematic forms of the linear vibration motor can be applied as an embodiment of the linear vibration motor.
  • a portable information terminal 1000 showing a schematic form of an electronic device using a linear vibration motor according to this disclosure will be described with reference to FIGS. 22 and 23.
  • FIG. 22 is a transparent perspective view of the portable information terminal 1000.
  • FIG. 23 is a cross-sectional view of a main part of the portable information terminal 1000.
  • the portable information terminal 1000 includes a housing 1001 (second housing), the linear vibration motor 100 according to the present disclosure, and an electronic circuit (not shown) related to transmission/reception and information processing.
  • the housing 1001 includes a first portion 1001a and a second portion 1001b.
  • the first portion 1001a is a display and the second portion 1001b is a frame.
  • the linear vibration motor 100 is housed in a housing 1001.
  • the linear vibration motor 100 is used in the portable information terminal 1000 as a vibration generation device for feedback of skin sensation or for confirming a key operation or an incoming call by vibration.
  • the linear vibration motor used in the portable information terminal 1000 is not limited to the linear vibration motor 100, and any linear vibration motor according to the present disclosure may be used. In that case, it is possible to suppress a decrease in vibration of the portable information terminal due to the influence of the magnetic spring mechanism of the linear vibration motor.
  • the second portion 1b of the housing 1 of the linear vibration motor 100 includes a container body 1b1 and a fixed portion 1b2.
  • the fixed portion 1b2 is a portion protruding from the bottom of the container body 1b1.
  • the fixing portion 1b2 is fixed to the second portion 1001b with the screw B so that the bottom of the container body 1b1 of the linear vibration motor 100 and the second portion 1001b are in contact with each other.
  • the third magnet M3 is fixed to the inner wall W1 of the housing 1 inside the bottom of the container body 1b1 (see FIG. 1). That is, in the portable information terminal 1000, the part of the housing 1 to which the third magnet M3 is fixed is in contact with the housing 1001.
  • the vibration of the vibrator 2 of the linear vibration motor 100 is transmitted to the housing 1 as the vibration of the third magnet M3 forming the magnetic spring mechanism as described above. Therefore, when the portion of the housing 1 to which the third magnet M3 is fixed contacts the housing 1001 as described above, the vibration of the linear vibration motor 100 is effectively transmitted to the housing 1001 of the portable information terminal 1000.
  • portion of the linear vibration motor 100 to which the third magnet M3 is fixed may be in contact with the first portion 1001a of the housing 1001 of the portable information terminal 1000, that is, the display.
  • a portable information terminal equipped with a display has been shown as an example of a schematic form of an electronic device in which the linear vibration motor according to this disclosure is used, but the invention is not limited to this.
  • the electronic device according to this disclosure may not include a display.
  • mobile phones such as feature phones
  • smartphones portable video game machines
  • controllers for video game machines controllers for VR (Virtual Reality) devices
  • smart watches tablet computers
  • notebook computers TVs.
  • a remote controller used for operations such as, a touch panel type display such as an automatic teller machine, and electronic devices such as various toys.
  • the invention according to this disclosure is applied to, for example, a linear vibration motor used as a vibration generator for feedback of skin sensations in electronic devices or for confirming key operation or incoming call with vibration.
  • a linear vibration motor used as a vibration generator for feedback of skin sensations in electronic devices or for confirming key operation or incoming call with vibration.
  • the skin sensation feedback for example, a tactile image corresponding to an operation in a video game (for example, opening and closing a door or operating a steering wheel of a car) is represented by vibration of a controller.
  • other skin sensory feedback may be used.

Abstract

Provided are a linear vibration motor capable of reducing the influence of a magnetic spring mechanism on the vibration of a vibrator, and an electronic device using the same. A linear vibration motor 100 is provided with: a housing 1; a vibrator 2 comprising a first magnet M1 and a second magnet M2; a coil 3 fixed to the housing 1 and configured to apply a drive force to the first magnet M1 so that the vibrator 2 can vibrate along a first direction D; a third magnet M3 fixed to the housing 1 at a position where the third magnet M3 and the second magnet M2 repel each other; and a fourth magnet M4 included in the vibrator 2 at a position where the fourth magnet M4 and the third magnet M3 repel each other. An interval L1 between the coil 3 and a first axial line A1 passing through the center of gravity of a surface of the first magnet M1 and parallel with the first direction D is shorter than an interval L2 between the coil 3 and a second axial line A2 passing through the center of gravity of a region in which the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other and parallel with the first direction D.

Description

リニア振動モータ、およびそれを用いた電子機器Linear vibration motor and electronic device using the same
 この開示は、リニア振動モータ、およびそれを用いた電子機器に関する。 This disclosure relates to a linear vibration motor and electronic equipment using the linear vibration motor.
 リニア振動モータの一例として、米国特許出願公開第2016/0226361号明細書(特許文献1)に記載されたリニア振動モータが挙げられる。図24は、特許文献1に記載されたリニア振動モータの断面図である。リニア振動モータ300は、コイル303と、第1の磁石M301、第2の磁石M302および第4の磁石M304を含む振動子302と、第3の磁石M303および第5の磁石M305が固定された筺体301とを備えている。 An example of the linear vibration motor is the linear vibration motor described in US Patent Application Publication No. 2016/0226361 (Patent Document 1). FIG. 24 is a cross-sectional view of the linear vibration motor described in Patent Document 1. The linear vibration motor 300 includes a coil 303, a vibrator 302 including a first magnet M301, a second magnet M302, and a fourth magnet M304, a housing to which a third magnet M303 and a fifth magnet M305 are fixed. And 301.
 振動子302は、コイル303と、コイル303に電流が流れることにより第1の方向Dに沿った駆動力を与える駆動磁石として機能する第1の磁石M301とにより、第1の方向Dに沿って振動する。第2の磁石M302と第3の磁石M303、および第4の磁石M304と第5の磁石M305とは、それぞれ互いに反発するように、それぞれ第1の方向Dに沿って配置されている。すなわち、第2の磁石M302と第3の磁石M303、および第4の磁石M304と第5の磁石M305とは、振動子302の第1の方向Dに沿った振動に対する磁気ばね機構を構成している。 The vibrator 302 includes a coil 303 and a first magnet M301 that functions as a driving magnet that gives a driving force along the first direction D when a current flows through the coil 303, and the vibrator 302 is arranged along the first direction D. Vibrate. The second magnet M302 and the third magnet M303, and the fourth magnet M304 and the fifth magnet M305 are arranged along the first direction D so as to repel each other. That is, the second magnet M302 and the third magnet M303, and the fourth magnet M304 and the fifth magnet M305 form a magnetic spring mechanism for the vibration of the vibrator 302 along the first direction D. There is.
 この磁気ばね機構により、振動子302の振動が第3の磁石M303および第5の磁石M305を介して筺体301に伝えられ、リニア振動モータ300の振動として感知される。 By this magnetic spring mechanism, the vibration of the vibrator 302 is transmitted to the housing 301 via the third magnet M303 and the fifth magnet M305, and is sensed as the vibration of the linear vibration motor 300.
米国特許出願公開第2016/0226361号明細書U.S. Patent Application Publication No. 2016/0226361
 リニア振動モータ300では、各磁石は、いずれも第1の方向Dに平行な1つの軸線上に配置されている。すなわち、第2の磁石M302とコイル303との距離が近い。そのため、振動子302が第1の方向Dに沿って振動するとき、第2の磁石M302の磁界が第1の磁石M301の磁界とコイル303に流れる電流とにより生じるローレンツ力を減少させるような影響を与える可能性がある。 In the linear vibration motor 300, all the magnets are arranged on one axis parallel to the first direction D. That is, the distance between the second magnet M302 and the coil 303 is short. Therefore, when the vibrator 302 vibrates along the first direction D, the magnetic field of the second magnet M302 reduces the Lorentz force generated by the magnetic field of the first magnet M301 and the current flowing through the coil 303. Could give.
 その結果、上記のローレンツ力の反力として振動子302に加わる力が減少し、振動子302によるリニア振動モータ300の振動が減少する虞がある。延いては、リニア振動モータ300が用いられた電子機器において、例えばハプティクス技術と呼ばれる皮膚感覚フィードバックのため、またはキー操作および着信などを確認するための振動が減少する虞がある。 As a result, the force applied to the vibrator 302 as a reaction force of the Lorentz force is reduced, and the vibration of the linear vibration motor 300 by the vibrator 302 may be reduced. In addition, in an electronic device using the linear vibration motor 300, vibration for cutaneous sense feedback called haptics technology or for confirming key operation and incoming call may decrease.
 すなわち、この開示の目的は、磁気ばね機構の振動に対する影響を抑制することができるリニア振動モータ、およびそれを用いた電子機器を提供することである。 That is, an object of this disclosure is to provide a linear vibration motor capable of suppressing the influence of the magnetic spring mechanism on the vibration, and an electronic device using the linear vibration motor.
 この開示に従うリニア振動モータでは、磁気ばね機構を構成する各磁石の配置についての改良が図られる。 With the linear vibration motor according to this disclosure, the arrangement of the magnets that make up the magnetic spring mechanism will be improved.
 この開示に従うリニア振動モータは、第1の筺体と、第1の筺体内に収容され、それぞれ少なくとも1つの第1および第2の磁石を含む振動子と、第1の筺体に固定され、振動子が第1の方向に沿って振動可能となるように第1の磁石に駆動力を与えるコイルと、第1の方向に沿って第2の磁石と互いに反発する配置で第1の筺体に固定された、少なくとも1つの第3の磁石と、第1の方向に沿って第2の磁石との間に第3の磁石を挟むように、かつ第3の磁石と互いに反発する配置で振動子に含まれるか、または第1の方向に沿って第3の磁石との間に第2の磁石を挟むように、かつ第2の磁石と互いに反発する配置で第1の筺体に固定された、少なくとも1つの第4の磁石とを備える。 A linear vibration motor according to the present disclosure includes a first housing, a vibrator housed in the first housing, each of which includes at least one first and second magnet, and a vibrator fixed to the first housing. Is fixed to the first casing in a repulsive arrangement with a coil that applies a driving force to the first magnet so that the coil can vibrate along the first direction, and a second magnet along the first direction. In addition, the oscillator is arranged such that the third magnet is sandwiched between at least one third magnet and the second magnet along the first direction, and the third magnet is repulsive to each other. Or fixed to the first housing in such a manner that the second magnet is sandwiched between the third magnet and the third magnet along the first direction and in a repulsive arrangement with the second magnet. And a fourth magnet.
 そして、第1の方向から見たとき、第2ないし第4の磁石は、それぞれの一部が重なっている。また、第1の方向から見たときの第1の磁石の面の重心を通り、第1の方向に平行な第1の軸線とコイルとの間隔は、第1の方向から見たときに第2ないし第4の磁石が互いに重なった領域の重心を通り、第1の方向に平行な第2の軸線とコイルとの間隔より短い。 Then, when viewed from the first direction, the second to fourth magnets partially overlap each other. Further, the distance between the coil and the first axis passing through the center of gravity of the surface of the first magnet when viewed from the first direction and parallel to the first direction is the first distance when viewed from the first direction. It is shorter than the distance between the coil and the second axis parallel to the first direction and passing through the center of gravity of the region where the second to fourth magnets overlap each other.
 また、この開示に従う電子機器は、この開示に従うリニア振動モータと、第2の筺体とを備える。リニア振動モータは、第2の筺体内に収容される。 Also, an electronic device according to this disclosure includes a linear vibration motor according to this disclosure and a second housing. The linear vibration motor is housed in the second housing.
 この開示に従うリニア振動モータは、磁気ばね機構の振動に対する影響を抑制することができる。また、この開示に従う電子機器は、この開示に従うリニア振動モータが用いられているため、リニア振動モータの磁気ばね機構の影響による振動の減少を抑制することができる。 The linear vibration motor according to this disclosure can suppress the influence on the vibration of the magnetic spring mechanism. Further, the electronic device according to the present disclosure uses the linear vibration motor according to the present disclosure, and thus it is possible to suppress a reduction in vibration due to the influence of the magnetic spring mechanism of the linear vibration motor.
図1(A)は、この開示に従うリニア振動モータの模式的な形態を示すリニア振動モータ100の、筺体1の第1の部分1aを除いたときの平面図である。図1(B)は、図1(A)に示されたA-A線を含む面で切断されたリニア振動モータ100の矢視断面図である。図1(C)は、図1(B)に示されたB-B線を含む面で切断されたリニア振動モータ100の矢視断面図である。FIG. 1A is a plan view of linear vibration motor 100 showing a schematic form of a linear vibration motor according to the present disclosure, excluding first portion 1 a of housing 1. FIG. 1B is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line AA shown in FIG. FIG. 1C is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line BB shown in FIG. リニア振動モータ100の分解斜視図である。FIG. 3 is an exploded perspective view of the linear vibration motor 100. 図3(A)ないし(D)は、リニア振動モータ100の一連の動作を説明する、それぞれ図1(B)に相当する断面図である。3A to 3D are cross-sectional views each illustrating a series of operations of the linear vibration motor 100 and corresponding to FIG. 1B. 図4(A)ないし(C)は、リニア振動モータ100の第1の変形例であるリニア振動モータ100Aの、図1(A)ないし(C)に相当する平面図および矢視断面図である。4A to 4C are a plan view and a cross-sectional view of a linear vibration motor 100A, which is a first modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図5(A)ないし(C)は、リニア振動モータ100の第2の変形例であるリニア振動モータ100Bの、図1(A)ないし(C)に相当する平面図および矢視断面図である。5A to 5C are a plan view and a sectional view taken in the direction of an arrow of a linear vibration motor 100B, which is a second modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. リニア振動モータ100Bの分解斜視図である。It is an exploded perspective view of linear vibration motor 100B. 図7(A)ないし(C)は、リニア振動モータ100の第3の変形例であるリニア振動モータ100Cの、図1(A)ないし(C)に相当する平面図および矢視断面図である。7A to 7C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100C, which is a third modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図8(A)ないし(C)は、リニア振動モータ100の第4の変形例であるリニア振動モータ100Dの、図1(A)ないし(C)に相当する平面図および矢視断面図である。8A to 8C are a plan view and a cross-sectional view of a linear vibration motor 100D, which is a fourth modified example of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図9(A)ないし(C)は、リニア振動モータ100の第5の変形例であるリニア振動モータ100Eの、図1(A)ないし(C)に相当する平面図および矢視断面図である。9A to 9C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100E, which is a fifth modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図10(A)ないし(C)は、リニア振動モータ100の第6の変形例であるリニア振動モータ100Fの、図1(A)ないし(C)に相当する平面図および矢視断面図である。10A to 10C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100F, which is a sixth modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図11(A)ないし(C)は、リニア振動モータ100の第76の変形例であるリニア振動モータ100Gの、図1(A)ないし(C)に相当する平面図および矢視断面図である。11A to 11C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100G, which is a 76th modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図12(A)ないし(C)は、リニア振動モータ100の第8の変形例であるリニア振動モータ100Hの、図1(A)ないし(C)に相当する平面図および矢視断面図である。12A to 12C are a plan view and a sectional view taken in the direction of an arrow of a linear vibration motor 100H that is an eighth modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図13(A)ないし(C)は、リニア振動モータ100の第9の変形例であるリニア振動モータ100Iの、図1(A)ないし(C)に相当する平面図および矢視断面図である。13A to 13C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100I, which is a ninth modification of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図14(A)ないし(C)は、リニア振動モータ100の第10の変形例であるリニア振動モータ100Jの、図1(A)ないし(C)に相当する平面図および矢視断面図である。14A to 14C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100J, which is a tenth modified example of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図15(A)ないし(C)は、リニア振動モータ100の第11の変形例であるリニア振動モータ100Kの、図1(A)ないし(C)に相当する平面図および矢視断面図である。15A to 15C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 100K that is an eleventh modified example of the linear vibration motor 100, corresponding to FIGS. 1A to 1C. .. 図16(A)は、この開示に従うリニア振動モータの実施形態を示すリニア振動モータ200の、筺体1の第1の部分1aを除いたときの平面図である。図16(B)は、図16(A)に示されたA-A線を含む面で切断されたリニア振動モータ200の矢視断面図である。図16(C)は、図16(B)に示されたB-B線を含む面で切断されたリニア振動モータ200の矢視断面図である。FIG. 16A is a plan view of linear vibration motor 200 showing an embodiment of a linear vibration motor according to the present disclosure, excluding first portion 1 a of housing 1. 16B is a cross-sectional view of the linear vibration motor 200 taken along the plane including the line AA shown in FIG. FIG. 16C is a cross-sectional view of the linear vibration motor 200 taken along a plane including the line BB shown in FIG. リニア振動モータ200の分解斜視図である。3 is an exploded perspective view of the linear vibration motor 200. FIG. 図18(A)ないし(C)は、リニア振動モータ200の第1の変形例であるリニア振動モータ200Aの、図16(A)ないし(C)に相当する平面図および矢視断面図である。18A to 18C are a plan view and a cross-sectional view taken in the direction of an arrow of a linear vibration motor 200A, which is a first modification of the linear vibration motor 200, corresponding to FIGS. 16A to 16C. .. リニア振動モータ200Aの分解斜視図である。It is an exploded perspective view of linear vibration motor 200A. 図20(A)ないし(C)は、リニア振動モータ200の第2の変形例であるリニア振動モータ200Bの、図16(A)ないし(C)に相当する平面図および矢視断面図である。20A to 20C are a plan view and a cross-sectional view taken along the arrow of a linear vibration motor 200B that is a second modification of the linear vibration motor 200 and correspond to FIGS. 16A to 16C. .. リニア振動モータ200Bの分解斜視図である。It is a disassembled perspective view of the linear vibration motor 200B. この開示に従う電子機器の模式的な形態である携帯型情報端末1000の透過斜視図である。FIG. 25 is a transparent perspective view of a portable information terminal 1000 that is a schematic form of an electronic device according to the present disclosure. 携帯型情報端末1000の要部の断面図である。3 is a cross-sectional view of a main part of portable information terminal 1000. FIG. 背景技術のリニア振動モータ300の断面図である。It is a sectional view of linear vibration motor 300 of background art.
 この開示の特徴とするところを、図面を参照しながら説明する。なお、以下に示すリニア振動モータの模式的な形態および実施形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さないことがある。 The features of this disclosure will be described with reference to the drawings. In the schematic modes and embodiments of the linear vibration motor described below, the same or common portions are denoted by the same reference numerals in the drawings, and the description thereof may not be repeated.
 -リニア振動モータの模式的な形態-
 この開示に従うリニア振動モータの模式的な形態を示すリニア振動モータ100について、図1および図2を用いて説明する。
-Schematic form of linear vibration motor-
A linear vibration motor 100 showing a schematic form of a linear vibration motor according to this disclosure will be described with reference to FIGS. 1 and 2.
 図1(A)は、リニア振動モータ100の、筺体1の第1の部分1a(後述)を除いたときの平面図である。図1(B)は、図1(A)に示されたA-A線を含む面で切断されたリニア振動モータ100の矢視断面図である。図1(C)は、図1(B)に示されたB-B線を含む面で切断されたリニア振動モータ100の矢視断面図である。また、図2は、リニア振動モータ100の分解斜視図である。 FIG. 1A is a plan view of the linear vibration motor 100 excluding a first portion 1 a (described later) of the housing 1. FIG. 1B is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line AA shown in FIG. FIG. 1C is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line BB shown in FIG. Further, FIG. 2 is an exploded perspective view of the linear vibration motor 100.
 リニア振動モータ100は、図1および図2に示されるように、筺体1(第1の筺体)と、振動子2と、コイル3と、第3の磁石M3とを備えている。 As shown in FIGS. 1 and 2, the linear vibration motor 100 includes a housing 1 (first housing), a vibrator 2, a coil 3, and a third magnet M3.
 筺体1は、第1の部分1aと第2の部分1bとを含み、内壁W1ないしW4を有している。リニア振動モータ100において、第1の部分1aは平板状の蓋部であり、第2の部分1bは容器部となっている。すなわち、筺体1は、密閉構造となっているが、形状はこれに限られない。例えば、筺体1は、筒状であってもよく、部分的に開口を備えていてもよい。なお、第2の部分1bは、後述するように、容器部本体1b1と固定部1b2とを含んでいるが、固定部1b2の図示は省略されている(以下同様)。 The housing 1 includes a first portion 1a and a second portion 1b, and has inner walls W1 to W4. In the linear vibration motor 100, the first portion 1a is a flat plate-shaped lid portion and the second portion 1b is a container portion. That is, the housing 1 has a closed structure, but the shape is not limited to this. For example, the housing 1 may have a tubular shape and may partially have an opening. The second portion 1b includes a container body 1b1 and a fixed portion 1b2 as described later, but the fixed portion 1b2 is not shown (the same applies hereinafter).
 内壁W1は、図1(B)に示された筺体1の底面に相当し、内壁W2は、内壁W1と対向する筺体1の天面に相当する。また、内壁W3、W4は、図1(B)に示された筺体1の側壁面に相当する。 The inner wall W1 corresponds to the bottom surface of the housing 1 shown in FIG. 1B, and the inner wall W2 corresponds to the top surface of the housing 1 facing the inner wall W1. The inner walls W3 and W4 correspond to the side wall surfaces of the housing 1 shown in FIG. 1(B).
 振動子2は、筺体1の第2の部分1b内に収容されている。リニア振動モータ100において、振動子2は、2つの第1の磁石M1と、第2の磁石M2と、第4の磁石M4と、基板2aとを含んでいる。2つの第1の磁石M1は、それぞれ後述するコイル3の巻線部と対向するように、第1の方向Dに沿って基板2aの中央部に間隔をおいて固定されている。また、2つの第1の磁石M1は、磁極の配列方向がコイル3の巻回軸線とそれぞれ平行、かつ互いに逆向きとなるように配置されている。 The oscillator 2 is housed in the second portion 1b of the housing 1. In the linear vibration motor 100, the vibrator 2 includes two first magnets M1, a second magnet M2, a fourth magnet M4, and a substrate 2a. The two first magnets M1 are fixed to the central portion of the substrate 2a at intervals along the first direction D so as to face the winding portions of the coil 3 described later. The two first magnets M1 are arranged so that the arrangement directions of the magnetic poles are parallel to the winding axis of the coil 3 and opposite to each other.
 図1(B)では、2つの第1の磁石M1のうち、一方の第1の磁石M1のS極がコイル3の巻線部と対向し、他方の第1の磁石M1のN極がコイル3の巻線部と対向している。このように配置されることにより、後述するコイル3に加わるローレンツ力を大きくすることができる。なお、コイル3の巻回軸線とは、仮想的な軸線である。コイル3は、その巻回軸線の周りに導体線が巻回されることにより形成される。 In FIG. 1B, of the two first magnets M1, the S pole of one of the first magnets M1 faces the winding portion of the coil 3, and the N pole of the other first magnet M1 is the coil. It faces the winding part of No. 3. With such an arrangement, the Lorentz force applied to the coil 3 described later can be increased. The winding axis of the coil 3 is a virtual axis. The coil 3 is formed by winding a conductor wire around its winding axis.
 リニア振動モータ100において、2つの第1の磁石M1は、同じ形状となっている。すなわち、2つの第1の磁石M1は、第1の方向Dから見たとき、互いに重なって見える。ただし、第1の磁石M1の形状は、これに限られない。なお、第1の磁石M1は1つだけでもよい。 In the linear vibration motor 100, the two first magnets M1 have the same shape. That is, the two first magnets M1 appear to overlap each other when viewed from the first direction D. However, the shape of the first magnet M1 is not limited to this. The first magnet M1 may be only one.
 コイル3は、通電されることにより、振動子2が第1の方向Dに沿って振動可能となるように第1の磁石M1に駆動力を与える。図1および図2において、コイル3の巻線およびコイル3への通電経路(配線経路)などの図示は省略されている。リニア振動モータ100において、コイル3は、上記の巻回軸線が筺体1の第1の部分1aの法線方向と平行となる、すなわち巻回軸線が第1の方向Dと直交するように、筺体1の内壁W2に固定されている。巻回軸線方向からコイル3を見たときの形状は、角部が丸められた矩形状である。 When the coil 3 is energized, it gives a driving force to the first magnet M1 so that the vibrator 2 can vibrate along the first direction D. In FIG. 1 and FIG. 2, the winding of the coil 3 and the energization path (wiring path) to the coil 3 are not shown. In the linear vibration motor 100, the coil 3 has a casing in which the winding axis is parallel to the normal direction of the first portion 1a of the casing 1, that is, the winding axis is orthogonal to the first direction D. 1 is fixed to the inner wall W2. The shape of the coil 3 when viewed from the winding axis direction is a rectangular shape with rounded corners.
 コイル3に電流が流れると、コイル3には、第1の磁石M1の磁界により、磁界の向きおよび電流の流れる向きのそれぞれと直交する向きのローレンツ力が加わる。一方、コイル3は、筺体1に固定されているので、第1の磁石M1にローレンツ力の反力が加わる。したがって、コイル3は、通電により第1の磁石M1に、延いては振動子2に第1の方向Dに沿った駆動力を与えることになる。すなわち、第1の磁石M1は、リニア振動モータ100において、駆動磁石として機能している。 When an electric current flows through the coil 3, a Lorentz force is applied to the coil 3 by the magnetic field of the first magnet M1 in a direction orthogonal to the direction of the magnetic field and the direction in which the current flows. On the other hand, since the coil 3 is fixed to the housing 1, a reaction force of the Lorentz force is applied to the first magnet M1. Therefore, the coil 3 applies a driving force along the first direction D to the first magnet M1 and thus to the vibrator 2 by energization. That is, the first magnet M1 functions as a drive magnet in the linear vibration motor 100.
 前述したように、コイル3の巻回軸線方向から見たときの形状が矩形状である場合、コイル3が円環状である場合よりも、前述のローレンツ力の方向が第1の方向Dに揃いやすい。そのため、振動子2に与えられる第1の方向Dに沿った駆動力が大きくなり好ましい。 As described above, when the shape of the coil 3 when viewed from the winding axis direction is rectangular, the direction of the Lorentz force described above is more aligned with the first direction D than when the coil 3 is annular. Cheap. Therefore, the driving force applied to the vibrator 2 along the first direction D becomes large, which is preferable.
 第2の磁石M2は、磁極の配列方向が第1の方向Dと平行、かつ後述する第3の磁石M3と互いに反発する配置で、基板2aの一方側の端部に固定されている。ここで、第2の磁石M2は、振動子2と筺体1との衝突を避けるため、振動前の第2の磁石M2と第3の磁石M3との間隔が、基板2aの端面と筺体1との間隔以下となるように、基板2aに固定される。この場合、磁気ばね機構が効果的に作用する。小型化の観点からすれば、振動前の第2の磁石M2と第3の磁石M3との間隔が、基板2aの端面と筺体1との間隔と同一であることが好ましい。 The second magnet M2 is arranged such that the arrangement direction of the magnetic poles is parallel to the first direction D and repels a third magnet M3 described later, and is fixed to one end of the substrate 2a. Here, in order to avoid the collision between the vibrator 2 and the housing 1, the second magnet M2 has a distance between the second magnet M2 and the third magnet M3 before vibration from the end surface of the substrate 2a and the housing 1 so as to avoid collision. It is fixed to the substrate 2a so as to be equal to or less than the interval. In this case, the magnetic spring mechanism works effectively. From the viewpoint of miniaturization, it is preferable that the distance between the second magnet M2 and the third magnet M3 before vibration is the same as the distance between the end surface of the substrate 2a and the housing 1.
 第3の磁石M3は、前述したように、磁極の配列方向が第1の方向Dと平行、かつ第1の方向Dに沿って第2の磁石M2と互いに反発する配置で、筺体1の内壁W1に固定されている。 As described above, the third magnet M3 is arranged such that the arrangement direction of the magnetic poles is parallel to the first direction D and repels the second magnet M2 along the first direction D, and the third magnet M3 has an inner wall of the housing 1. It is fixed to W1.
 第4の磁石M4は、磁極の配列方向が第1の方向Dと平行、かつ第1の方向Dに沿って第3の磁石M3と互いに反発する配置で、振動子2の基板2aに固定されている。第4の磁石M4も、第2の磁石M2と同様に、振動前の第4の磁石M4と第3の磁石M3との間隔が、基板2aの端面と筺体1との間隔以下となるように、好ましくは同一の間隔で基板2aに固定される。 The fourth magnet M4 is fixed to the substrate 2a of the vibrator 2 in such an arrangement that the arrangement direction of the magnetic poles is parallel to the first direction D and repulsive to the third magnet M3 along the first direction D. ing. Similarly to the second magnet M2, the distance between the fourth magnet M4 and the third magnet M3 before vibration of the fourth magnet M4 is equal to or less than the distance between the end surface of the substrate 2a and the housing 1. , Preferably fixed to the substrate 2a at the same intervals.
 図1(A)に示されているように、第2の磁石M2および第4の磁石M4は、平面視で第3の磁石M3を挟むようにして、同一の軸線上に配置されている。また、図1(B)に示されているように、第3の磁石M3のN極と第2の磁石M2のN極とが互いに対向し、第3の磁石M3のS極と第4の磁石M4のS極とが互いに対向している。これにより、第2の磁石M2、第3の磁石M3および第4の磁石M4は、振動子2の第1の方向Dに沿った振動に対する磁気ばね機構を構成している。 As shown in FIG. 1A, the second magnet M2 and the fourth magnet M4 are arranged on the same axis so as to sandwich the third magnet M3 in a plan view. Further, as shown in FIG. 1B, the N pole of the third magnet M3 and the N pole of the second magnet M2 are opposed to each other, and the S pole of the third magnet M3 and the fourth pole of the third magnet M3 are opposed to each other. The south pole of the magnet M4 faces each other. As a result, the second magnet M2, the third magnet M3, and the fourth magnet M4 form a magnetic spring mechanism for vibration of the vibrator 2 in the first direction D.
 そして、第1の方向Dから見たとき、第2の磁石M2、第3の磁石M3および第4の磁石M4は、それぞれの一部が重なっている。ここで、第1の方向Dから見たときの2つの第1の磁石M1の重なった領域の重心を通り、第1の方向Dに平行な軸線を、第1の軸線A1とする。前述したように、2つの第1の磁石M1は同じ形状を有しているため、2つの第1の磁石M1の重なった領域の重心は、第1の磁石M1の面の重心と等しい。また、第1の方向Dから見たときに第2の磁石M2、第3の磁石M3および第4の磁石M4が互いに重なった領域の重心を通り、第1の方向Dに平行な軸線を、第2の軸線A2とする。 When viewed from the first direction D, the second magnet M2, the third magnet M3, and the fourth magnet M4 partially overlap each other. Here, an axis line that passes through the center of gravity of the overlapping region of the two first magnets M1 when viewed from the first direction D and is parallel to the first direction D is referred to as a first axis line A1. As described above, since the two first magnets M1 have the same shape, the center of gravity of the overlapping region of the two first magnets M1 is equal to the center of gravity of the surface of the first magnet M1. When viewed from the first direction D, the second magnet M2, the third magnet M3, and the fourth magnet M4 pass through the center of gravity of a region where they overlap with each other, and an axis line parallel to the first direction D Let it be the second axis A2.
 上記のように規定したとき、第1の軸線A1とコイル3との間隔L1は、第2の軸線A2とコイル3との間隔L2より短い。 When defined as above, the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
 ここで、第1の磁石M1の面の重心とは、第1の方向から見た第1の磁石M1の外周により表される図形の重心を指す。また、第2の磁石M2、第3の磁石M3および第4の磁石M4が互いに重なった領域の重心とは、第1の方向から見てそれぞれの磁石が互いに重なった領域の外周により表される図形の重心を指す。そして、各軸線とコイルとの間隔とは、各軸線と筺体1から遠い側のコイル3の先端との間の距離を指す。 Here, the center of gravity of the surface of the first magnet M1 refers to the center of gravity of the figure represented by the outer circumference of the first magnet M1 when viewed from the first direction. The center of gravity of the region where the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other is represented by the outer circumference of the region where the respective magnets overlap each other when viewed from the first direction. The center of gravity of the figure. The distance between each axis and the coil means the distance between each axis and the tip of the coil 3 on the side far from the housing 1.
 リニア振動モータ100では、振動子2の駆動磁石である第1の磁石M1と、磁気ばね機構を構成する第2の磁石M2、第3の磁石M3および第4の磁石M4とが、1つの軸線上に配置されていない。すなわち、駆動磁石を通る第1の軸線A1と磁気ばね機構を通る第2の軸線A2とが分離されており、第2の軸線A2が第1の軸線A1に比べてコイル3から離れた位置にある。 In the linear vibration motor 100, the first magnet M1 that is the driving magnet of the vibrator 2 and the second magnet M2, the third magnet M3, and the fourth magnet M4 that form the magnetic spring mechanism form one axis. Not placed on the line. That is, the first axis A1 passing through the drive magnet and the second axis A2 passing through the magnetic spring mechanism are separated from each other, and the second axis A2 is located farther from the coil 3 than the first axis A1. is there.
 ここで、リニア振動モータ100の動作について、図3を用いて説明する。図3(A)ないし(D)は、リニア振動モータ100の一連の動作を説明する、それぞれ図1(B)に相当する断面図である。 Here, the operation of the linear vibration motor 100 will be described with reference to FIG. 3A to 3D are cross-sectional views each illustrating a series of operations of the linear vibration motor 100 and corresponding to FIG. 1B.
 図3(A)は、振動子2が振動しておらず、コイル3に通電が開始された状態を示している。ここで、コイル3の左側の断面に付されている記号は、図上で奥側から手前側に向かって電流が流れていることを表している。同様に、コイル3の右側の断面に付されている記号は、図上で手前側から奥側に向かって電流が流れていることを表している。また、第1の磁石M1のN極から出る上向きの矢印、およびS極に入る下向きの矢印は、第1の磁石M1が発生させている磁界の向きを表している。 FIG. 3(A) shows a state where the vibrator 2 is not vibrating and the coil 3 is energized. Here, the symbol attached to the cross section on the left side of the coil 3 indicates that the current flows from the back side to the front side in the drawing. Similarly, the symbol attached to the cross section on the right side of the coil 3 indicates that the current flows from the front side to the back side in the drawing. Further, the upward arrow coming out from the N pole of the first magnet M1 and the downward arrow coming into the S pole represent the direction of the magnetic field generated by the first magnet M1.
 コイル3に上記の向きで電流が流れると、コイル3には、第1の磁石M1の磁界により、磁界の向きおよび電流の流れる向きのそれぞれと直交する向きのローレンツ力(図上の薄く塗りつぶされた右向きの矢印)が加わる。一方、コイル3は筺体1に固定されているので、第1の磁石M1にローレンツ力の反力(図上の濃く塗りつぶされた左向きの矢印)が加わる。したがって、振動子2には、振動子2を第1の方向Dに沿って図上の左側に動かす駆動力が与えられる。 When a current flows through the coil 3 in the above-described direction, the magnetic field of the first magnet M1 causes a Lorentz force (a thinly-painted area in the figure) in a direction orthogonal to the direction of the magnetic field and the direction in which the current flows. The right-pointing arrow) is added. On the other hand, since the coil 3 is fixed to the housing 1, a reaction force of the Lorentz force (a dark arrow pointing to the left in the figure) is applied to the first magnet M1. Therefore, a driving force that moves the vibrator 2 to the left side in the drawing along the first direction D is applied to the vibrator 2.
 この状態において、磁気ばね機構を構成する各磁石を通る第2の軸線A2は、振動子2の駆動磁石である第1の磁石M1を通る第1の軸線A1に比べてコイル3から離れた位置にある。すなわち、第2の磁石M2および第4の磁石M4の磁界の、コイル3に加わるローレンツ力への影響は抑制されている。 In this state, the second axis A2 passing through each magnet constituting the magnetic spring mechanism is located farther from the coil 3 than the first axis A1 passing through the first magnet M1 which is a driving magnet of the vibrator 2. It is in. That is, the influence of the magnetic fields of the second magnet M2 and the fourth magnet M4 on the Lorentz force applied to the coil 3 is suppressed.
 図3(B)は、振動子2が図上の左側に動いた後、コイル3に流れる電流の向きを反転させた状態を示している。振動子2が左側に動くと、振動子2の第4の磁石M4と筺体1の第2の部分1bに固定された第3の磁石M3とが接近し、両者の間の反発力が大きくなる。その結果、第4の磁石M4には、第4の磁石M4を図上の右側に動かす力(図上の白い右向きの矢印)が加わる。一方、第3の磁石M3には、第3の磁石M3を図上の左側に動かす力(図上の白い左向きの矢印)が加わる。そして、この第3の磁石M3に加わる力は、第3の磁石M3が固定されている筺体1の第2の部分1bを変形させる。図3(B)に示された変形は、模式的に表されている(以下同様)。 FIG. 3B shows a state in which the direction of the current flowing through the coil 3 is reversed after the vibrator 2 moves to the left side in the figure. When the vibrator 2 moves to the left, the fourth magnet M4 of the vibrator 2 and the third magnet M3 fixed to the second portion 1b of the housing 1 approach each other, and the repulsive force between them increases. .. As a result, a force for moving the fourth magnet M4 to the right side in the figure (white arrow pointing to the right in the figure) is applied to the fourth magnet M4. On the other hand, a force for moving the third magnet M3 to the left side in the drawing (white arrow pointing to the left in the drawing) is applied to the third magnet M3. Then, the force applied to the third magnet M3 deforms the second portion 1b of the housing 1 to which the third magnet M3 is fixed. The modification shown in FIG. 3B is schematically represented (the same applies hereinafter).
 そして、コイル3に流れる電流の向きを反転させると、コイル3には、図3(A)に示された向きと逆向きのローレンツ力が加わる。ただし、コイル3の巻回軸線方向から見たときの、コイル3の巻線部と第1の磁石M1とが重なる面積が、図3(A)に示された状態より小さくなっているので、生じるローレンツ力の大きさは小さくなっている(図上の薄く塗りつぶされた左向きの小さな矢印)。そして、このローレンツ力の反力が、第1の磁石M1に加わる(図上の濃く塗りつぶされた右向きの小さな矢印)。 Then, when the direction of the current flowing through the coil 3 is reversed, the Lorentz force in the direction opposite to the direction shown in FIG. 3(A) is applied to the coil 3. However, the area where the winding portion of the coil 3 and the first magnet M1 overlap with each other when viewed from the winding axis direction of the coil 3 is smaller than that shown in FIG. The magnitude of the Lorentz force that occurs is small (the lightly-filled small arrow pointing to the left in the figure). Then, the reaction force of this Lorentz force is applied to the first magnet M1 (small arrow pointing to the right in the drawing, which is darkly filled).
 したがって、前述の第4の磁石M4に加わる力とローレンツ力の反力とにより、振動子2には、振動子2を第1の方向Dに沿って図上の右側に動かす駆動力が与えられる。 Therefore, the driving force that moves the vibrator 2 to the right side in the drawing along the first direction D is applied to the vibrator 2 by the above-mentioned force applied to the fourth magnet M4 and the reaction force of the Lorentz force. ..
 この状態においても、磁気ばね機構を構成する各磁石を通る第2の軸線A2は、振動子2の駆動磁石である第1の磁石M1を通る第1の軸線A1に比べてコイル3から離れた位置にある。すなわち、第4の磁石M4の磁界の、コイル3に加わるローレンツ力への影響は抑制されている。 Even in this state, the second axis A2 passing through each magnet constituting the magnetic spring mechanism is farther from the coil 3 than the first axis A1 passing through the first magnet M1 which is a driving magnet of the vibrator 2. In position. That is, the influence of the magnetic field of the fourth magnet M4 on the Lorentz force applied to the coil 3 is suppressed.
 図3(C)は、振動子2が図上の右側に動いた後、コイル3に流れる電流の向きを反転させた状態を示している。振動子2が右側に動くと、振動子2の第2の磁石M2と筺体1の第2の部分1bに固定された第3の磁石M3とが接近し、両者の間の反発力が大きくなる。その結果、第2の磁石M2には、第2の磁石M2を図上の左側に動かす力(図上の白い左向きの矢印)が加わる。一方、第3の磁石M3には、第3の磁石M3を図上の右側に動かす力(図上の白い右向きの矢印)が加わる。そして、この第3の磁石M3に加わる力は、第3の磁石M3が固定されている筺体1の第2の部分1bを、図3(B)の場合と逆方向に変形させる。 FIG. 3C shows a state in which the direction of the current flowing through the coil 3 is reversed after the vibrator 2 moves to the right side in the figure. When the oscillator 2 moves to the right, the second magnet M2 of the oscillator 2 and the third magnet M3 fixed to the second portion 1b of the housing 1 approach each other, and the repulsive force between them increases. .. As a result, a force that moves the second magnet M2 to the left side in the figure (white arrow pointing to the left in the figure) is applied to the second magnet M2. On the other hand, a force (white arrow pointing to the right in the figure) that moves the third magnet M3 to the right side in the figure is applied to the third magnet M3. Then, the force applied to the third magnet M3 deforms the second portion 1b of the housing 1 to which the third magnet M3 is fixed, in the direction opposite to that in the case of FIG. 3B.
 そして、コイル3に流れる電流の向きを反転させると、コイル3には、図3(B)に示された向きと逆向きのローレンツ力が加わる。図3(B)に示された状態と同様に、生じるローレンツ力の大きさは小さくなっている(図上の薄く塗りつぶされた右向きの小さな矢印)。そして、このローレンツ力の反力が、第1の磁石M1に加わる(図上の濃く塗りつぶされた左向きの小さな矢印)。 Then, when the direction of the current flowing through the coil 3 is reversed, a Lorentz force in the direction opposite to the direction shown in FIG. 3B is applied to the coil 3. Similar to the state shown in FIG. 3(B), the magnitude of the generated Lorentz force is small (the thin arrow pointing to the right, which is lightly painted). Then, the reaction force of the Lorentz force is applied to the first magnet M1 (small arrow pointing to the left, which is darkly filled in the figure).
 したがって、前述の第2の磁石M2に加わる力とローレンツ力の反力とにより、振動子2には、振動子2を第1の方向Dに沿って図上の左側に動かす駆動力が与えられる。 Therefore, the driving force that moves the vibrator 2 to the left side in the drawing along the first direction D is given to the vibrator 2 by the above-mentioned force applied to the second magnet M2 and the reaction force of the Lorentz force. ..
 この状態においても、磁気ばね機構を構成する各磁石を通る第2の軸線A2は、振動子2の駆動磁石である第1の磁石M1を通る第1の軸線A1に比べてコイル3から離れた位置にある。すなわち、第2の磁石M2の磁界の、コイル3に加わるローレンツ力への影響は抑制されている。 Even in this state, the second axis A2 passing through each magnet constituting the magnetic spring mechanism is farther from the coil 3 than the first axis A1 passing through the first magnet M1 which is a driving magnet of the vibrator 2. In position. That is, the influence of the magnetic field of the second magnet M2 on the Lorentz force applied to the coil 3 is suppressed.
 図3(D)は、図3(C)で説明した動作により、振動子2が図3(B)と同じ状態となったことを示している。すなわち、第4の磁石M4の磁界の、コイル3に加わるローレンツ力への影響は抑制されている。また、第3の磁石M3が固定されている筺体1の第2の部分1bは、図3(B)の場合と同方向に変形する。以上で説明した第1の方向Dに沿った振動子2の振動は、磁気ばね機構を構成する第3の磁石M3の振動となって筺体1に伝わり、リニア振動モータ100の振動となる。 FIG. 3(D) shows that the oscillator 2 is brought into the same state as FIG. 3(B) by the operation described in FIG. 3(C). That is, the influence of the magnetic field of the fourth magnet M4 on the Lorentz force applied to the coil 3 is suppressed. Further, the second portion 1b of the housing 1 to which the third magnet M3 is fixed is deformed in the same direction as in the case of FIG. 3(B). The vibration of the vibrator 2 along the first direction D described above becomes the vibration of the third magnet M3 forming the magnetic spring mechanism, is transmitted to the housing 1, and becomes the vibration of the linear vibration motor 100.
 したがって、リニア振動モータ100では、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。その結果、上記のローレンツ力の反力として振動子2に加わる力の減少が抑制でき、リニア振動モータ100の振動の減少を抑制することができる。 Therefore, in the linear vibration motor 100, when the vibrator 2 vibrates in the first direction D, it is possible to suppress the influence of the magnetic field of the magnets forming the magnetic spring mechanism on the Lorentz force applied to the coil 3. it can. As a result, it is possible to suppress a decrease in the force applied to the vibrator 2 as a reaction force of the Lorentz force, and it is possible to suppress a decrease in vibration of the linear vibration motor 100.
 なお、振動子2が第1の方向Dに沿って振動可能となるために、振動子2が筺体1の第2の部分1b内で支持される構造は特に限定されない。一例として、リニア振動モータ100においては、図1および図2に示されているように、振動子2が第1の摺動機構4aと第2の摺動機構4bとを含む摺動機構4により支持されている。 Since the vibrator 2 can vibrate along the first direction D, the structure in which the vibrator 2 is supported in the second portion 1b of the housing 1 is not particularly limited. As an example, in the linear vibration motor 100, as shown in FIGS. 1 and 2, the vibrator 2 includes the sliding mechanism 4 including the first sliding mechanism 4a and the second sliding mechanism 4b. It is supported.
 リニア振動モータ100において、振動子2は、筺体1の内壁W3と第1の摺動機構4aにより接続されており、筺体1の内壁W4と第2の摺動機構4bにより接続されている。摺動機構4の構造は、特に限定されない。一例として、図1(C)に示されているように、ガイドレールとボールベアリングなどが用いられた移動体とを備え、ガイドレール上での移動体の運動時における摩擦が低減された摺動機構を用いることができる。ガイドレールは筺体1側に固定され、移動体は振動子2側に固定される。 In the linear vibration motor 100, the vibrator 2 is connected to the inner wall W3 of the housing 1 by the first sliding mechanism 4a, and is connected to the inner wall W4 of the housing 1 by the second sliding mechanism 4b. The structure of the sliding mechanism 4 is not particularly limited. As an example, as shown in FIG. 1C, a sliding body that includes a guide rail and a moving body using a ball bearing or the like, and has reduced friction during movement of the moving body on the guide rail. Mechanisms can be used. The guide rail is fixed to the housing 1 side, and the moving body is fixed to the vibrator 2 side.
 -リニア振動モータの模式的な形態の第1の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第1の変形例であるリニア振動モータ100Aについて、図4を用いて説明する。
-First Modification of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100A that is a first modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to this disclosure will be described with reference to FIG.
 図4(A)ないし(C)は、リニア振動モータ100Aの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Aは、第2の磁石M2、第3の磁石M3および第4の磁石M4の数、ならびに配置がリニア振動モータ100と異なっている。それ以外の構成は、リニア振動モータ100と同様であるため、重複する説明は省略される。 4A to 4C are a plan view and a cross-sectional view of the linear vibration motor 100A corresponding to FIGS. 1A to 1C, respectively. The linear vibration motor 100A is different from the linear vibration motor 100 in the number and arrangement of the second magnet M2, the third magnet M3, and the fourth magnet M4. The other configurations are similar to those of the linear vibration motor 100, and thus the duplicate description will be omitted.
 リニア振動モータ100Aでは、第2の磁石M2、第3の磁石M3および第4の磁石M4が、それぞれ同じ形状を有している2つの磁石を含んでいる。そして、第1の方向Dから見たとき、第2の磁石M2、第3の磁石M3および第4の磁石M4の一方の一部が重なっている。また、第2の磁石M2、第3の磁石M3および第4の磁石M4の他方の一部が重なっている。 In the linear vibration motor 100A, the second magnet M2, the third magnet M3, and the fourth magnet M4 each include two magnets having the same shape. When viewed from the first direction D, one part of one of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlaps. The other part of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap.
 すなわち、リニア振動モータ100Aでは、2つの磁気ばね機構が並列状態で配置されている。したがって、第2の磁石M2、第3の磁石M3および第4の磁石M4が互いに重なった領域の重心を通り、第1の方向Dに平行な軸線である第2の軸線A2が2本ある。 That is, in the linear vibration motor 100A, two magnetic spring mechanisms are arranged in parallel. Therefore, there are two second axis lines A2, which are axis lines parallel to the first direction D and passing through the center of gravity of the region where the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other.
 リニア振動モータ100Aにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 In the linear vibration motor 100A as well, similar to the linear vibration motor 100, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet that constitutes the magnetic spring mechanism becomes the Lorentz force applied to the coil 3. The influence exerted can be suppressed.
 また、リニア振動モータ100Aでは、前述したように、2つの磁気ばね機構が並列状態で配置されている。そのため、磁気ばね機構の各磁石の取り付け位置の誤差などの影響を抑制することができる。 Further, in the linear vibration motor 100A, as described above, the two magnetic spring mechanisms are arranged in parallel. Therefore, it is possible to suppress the influence of an error in the mounting position of each magnet of the magnetic spring mechanism.
 -リニア振動モータの模式的な形態の第2の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第2の変形例であるリニア振動モータ100Bについて、図5および図6を用いて説明する。
-Second Modification of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100B that is a second modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to this disclosure will be described with reference to FIGS. 5 and 6.
 図5(A)ないし(C)は、リニア振動モータ100Bの、図1(A)ないし(C)に相当する平面図および矢視断面図である。また、図6は、リニア振動モータ100Bの分解斜視図である。リニア振動モータ100Bは、第2の磁石M2、第3の磁石M3および第4の磁石M4の位置関係がリニア振動モータ100と異なっている。それ以外の構成は、リニア振動モータ100と同様であるため、重複する説明は省略される。 5A to 5C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 100B corresponding to FIGS. 1A to 1C. Further, FIG. 6 is an exploded perspective view of the linear vibration motor 100B. The linear vibration motor 100B is different from the linear vibration motor 100 in the positional relationship among the second magnet M2, the third magnet M3, and the fourth magnet M4. The other configurations are similar to those of the linear vibration motor 100, and thus the duplicate description will be omitted.
 リニア振動モータ100Bでは、図5(A)に示されているように、第2の磁石M2は、磁極の配列方向が第1の方向Dと平行となるように、基板2aの中央部に固定されている。また、第3の磁石M3および第4の磁石M4は、平面視で第2の磁石M2を挟み、第2の磁石M2と互いに反発する磁極の配置で、同一の軸線上で筺体1の第2の部分1bに固定されている。 In the linear vibration motor 100B, as shown in FIG. 5A, the second magnet M2 is fixed to the central portion of the substrate 2a so that the arrangement direction of the magnetic poles is parallel to the first direction D. Has been done. The third magnet M3 and the fourth magnet M4 are arranged such that the second magnet M2 is sandwiched between the third magnet M3 and the fourth magnet M2 and the magnetic poles repel each other with the second magnet M2. It is fixed to the portion 1b.
 ここで、第3の磁石M3は、リニア振動モータ100と同様に、振動子2と筺体1との衝突を避けるため、振動前の第2の磁石M2と第3の磁石M3との間隔が、基板2aの端面と筺体1との間隔以下となるように、基板2aに固定される。この場合、磁気ばね機構が効果的に作用する。小型化の観点からすれば、振動前の第2の磁石M2と第3の磁石M3との間隔が、基板2aの端面と筺体1との間隔と同一であることが好ましい。 Here, like the linear vibration motor 100, the third magnet M3 has a distance between the second magnet M2 and the third magnet M3 before vibration in order to avoid collision between the vibrator 2 and the housing 1. It is fixed to the substrate 2a such that the distance between the end surface of the substrate 2a and the housing 1 is equal to or less than the distance between the substrate 1 and the casing 1. In this case, the magnetic spring mechanism works effectively. From the viewpoint of miniaturization, it is preferable that the distance between the second magnet M2 and the third magnet M3 before vibration is the same as the distance between the end surface of the substrate 2a and the housing 1.
 また、第4の磁石M4も、第3の磁石M3と同様に、振動前の第4の磁石M4と第3の磁石M3との間隔が、基板2aの端面と筺体1との間隔以下となるように、好ましくは同一の間隔で基板2aに固定される。 Similarly to the third magnet M3, the distance between the fourth magnet M4 and the third magnet M3 before vibration is less than or equal to the distance between the end surface of the substrate 2a and the housing 1 as well as the third magnet M3. Thus, it is preferably fixed to the substrate 2a at the same intervals.
 すなわち、図5(B)に示されているように、第2の磁石M2のN極と第3の磁石M3のN極とが互いに対向し、第2の磁石M2のS極と第4の磁石M4のS極とが互いに対向している。これにより、第2の磁石M2、第3の磁石M3および第4の磁石M4は、振動子2の第1の方向Dに沿った振動に対する磁気ばね機構を構成している。 That is, as shown in FIG. 5B, the N pole of the second magnet M2 and the N pole of the third magnet M3 face each other, and the S pole of the second magnet M2 and the fourth pole of the third magnet M3 face each other. The south pole of the magnet M4 faces each other. As a result, the second magnet M2, the third magnet M3, and the fourth magnet M4 form a magnetic spring mechanism for vibration of the vibrator 2 in the first direction D.
 そして、第1の方向Dから見たとき、第2の磁石M2、第3の磁石M3および第4の磁石M4は、リニア振動モータ100と同様に、それぞれの一部が重なっている。 When viewed from the first direction D, the second magnet M2, the third magnet M3, and the fourth magnet M4 partially overlap each other, as in the linear vibration motor 100.
 リニア振動モータ100Bにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 In the linear vibration motor 100B as well, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnets forming the magnetic spring mechanism becomes the Lorentz force applied to the coil 3 as in the linear vibration motor 100. The influence exerted can be suppressed.
 なお、リニア振動モータ100Bは、リニア振動モータ100Aのように、第2の磁石M2、第3の磁石M3および第4の磁石M4が、それぞれ同じ形状を有している2つの磁石を含んでいてもよい。 The linear vibration motor 100B, like the linear vibration motor 100A, includes two magnets in which the second magnet M2, the third magnet M3, and the fourth magnet M4 have the same shape. Good.
 -リニア振動モータの模式的な形態の第3の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第3の変形例であるリニア振動モータ100Cについて、図7を用いて説明する。
-Third Modification of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100C that is a third modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to this disclosure will be described with reference to FIG.
 図7(A)ないし(C)は、リニア振動モータ100Cの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Cは、第5の磁石M5をさらに備えることがリニア振動モータ100と異なっている。それ以外の構成は、リニア振動モータ100と同様であるため、重複する説明は省略される。 7(A) to (C) are a plan view and a cross-sectional view taken in the direction of the arrow of the linear vibration motor 100C corresponding to FIGS. 1(A) to (C). The linear vibration motor 100C differs from the linear vibration motor 100 in that it further includes a fifth magnet M5. The other configurations are similar to those of the linear vibration motor 100, and thus the duplicate description will be omitted.
 リニア振動モータ100Cは、駆動磁石として、第1の磁石M1に加えて第5の磁石M5をさらに備えている。第5の磁石M5は、図7(A)および(B)に示されているように、磁極の配列方向が第1の方向Dと平行となり、2つの第1の磁石M1の間に挟まれるように、基板2aの中央部に固定されている。 The linear vibration motor 100C further includes a fifth magnet M5 as a drive magnet in addition to the first magnet M1. As shown in FIGS. 7A and 7B, the fifth magnet M5 has a magnetic pole array direction parallel to the first direction D and is sandwiched between the two first magnets M1. Thus, it is fixed to the central portion of the substrate 2a.
 2つの第1の磁石M1は、前述したように、磁極の配列方向がコイル3の巻回軸線とそれぞれ平行となる、すなわち第1の方向Dと直交し、かつ互いに逆向きとなるように配置されている。また、第5の磁石M5は、2つの第1の磁石M1および第5の磁石M5が構成する磁石の配列の磁界が、第1の磁石M1と第5の磁石M5とを備えた駆動磁石とコイル3との間に集中するように配置されている。 As described above, the two first magnets M1 are arranged such that the arrangement directions of the magnetic poles are parallel to the winding axis of the coil 3, that is, orthogonal to the first direction D and opposite to each other. Has been done. In addition, the fifth magnet M5 is a driving magnet in which the magnetic field of the array of magnets formed by the two first magnets M1 and the fifth magnet M5 is a driving magnet including the first magnet M1 and the fifth magnet M5. It is arranged so as to concentrate between the coil 3 and the coil 3.
 具体的には、2つの第1の磁石M1の一方(図7における左側の第1の磁石M1)の磁極は、コイル3に対向する側がS極であり、基板2aに対向する側がN極である。また、2つの第1の磁石M1の他方(図7における右側の第1の磁石M1)の磁極は、コイル3に対向する側がN極であり、基板2aに対向する側がS極である。そして、第5の磁石M5の磁極は、2つの第1の磁石M1の一方に対向する側がS極であり、他方に対向する側がN極である。 Specifically, the magnetic pole of one of the two first magnets M1 (first left-side first magnet M1 in FIG. 7) has an S pole on the side facing the coil 3 and an N pole on the side facing the substrate 2a. is there. The other magnetic pole of the two first magnets M1 (the first magnet M1 on the right side in FIG. 7) has the N pole on the side facing the coil 3 and the S pole on the side facing the substrate 2a. The magnetic pole of the fifth magnet M5 has an S pole on the side facing one of the two first magnets M1 and an N pole on the side facing the other.
 この開示においては、駆動磁石による磁界を、駆動磁石と振動子を駆動させるコイルとの間に集中させることができる、駆動磁石の各磁石の配列を、広義にハルバッハ配列と呼称する。ハルバッハ配列を構成する磁石の数は3個以上の奇数であればよい。 In this disclosure, the array of each magnet of the drive magnet, which can concentrate the magnetic field by the drive magnet between the drive magnet and the coil that drives the vibrator, is broadly called the Halbach array. The number of magnets forming the Halbach array may be an odd number of 3 or more.
 リニア振動モータ100Cにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 In the linear vibration motor 100C as well as in the linear vibration motor 100, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3. The influence exerted can be suppressed.
 また、リニア振動モータ100Cでは、駆動磁石に第5の磁石M5が加えられることにより、駆動磁石による磁界が駆動磁石とコイル3との間に集中し、駆動磁石が第1の磁石M1だけである場合よりも、コイル3に作用する磁界を強めることができる。したがって、コイル3に加わるローレンツ力を大きくすることができる。その結果、ローレンツ力の反力として振動子2に加わる力を大きくすることができ、振動子2によるリニア振動モータ100の振動を大きくすることができる。 In addition, in the linear vibration motor 100C, by adding the fifth magnet M5 to the drive magnet, the magnetic field generated by the drive magnet is concentrated between the drive magnet and the coil 3, and the drive magnet is only the first magnet M1. The magnetic field acting on the coil 3 can be strengthened more than in the case. Therefore, the Lorentz force applied to the coil 3 can be increased. As a result, the force applied to the vibrator 2 as a reaction force of the Lorentz force can be increased, and the vibration of the linear vibration motor 100 by the vibrator 2 can be increased.
 なお、リニア振動モータ100Cは、リニア振動モータ100Aのように、第2の磁石M2、第3の磁石M3および第4の磁石M4が、それぞれ同じ形状を有している2つの磁石を含むようにしてもよい。また、リニア振動モータ100Cは、リニア振動モータ100Bのような磁気ばね構造となっていてもよい。 Note that, like the linear vibration motor 100A, the linear vibration motor 100C is configured such that the second magnet M2, the third magnet M3, and the fourth magnet M4 each include two magnets having the same shape. Good. Further, the linear vibration motor 100C may have a magnetic spring structure like the linear vibration motor 100B.
 -リニア振動モータの模式的な形態の第4の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第4の変形例であるリニア振動モータ100Dについて、図8を用いて説明する。
-Fourth Modification of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100D that is a fourth modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to the present disclosure will be described with reference to FIG.
 図8(A)ないし(C)は、リニア振動モータ100Dの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Dは、第2の磁石M2、第3の磁石M3および第4の磁石M4の数、ならびに位置関係がリニア振動モータ100と異なっている。それ以外の構成は、リニア振動モータ100と同様であるため、重複する説明は省略される。 8(A) to 8(C) are a plan view and a cross-sectional view of the linear vibration motor 100D corresponding to FIGS. 1(A) to (C), respectively. The linear vibration motor 100D is different from the linear vibration motor 100 in the number of the second magnets M2, the third magnets M3, and the fourth magnets M4, and the positional relationship. The other configurations are similar to those of the linear vibration motor 100, and thus the duplicate description will be omitted.
 リニア振動モータ100Dでは、第2の磁石M2、第3の磁石M3および第4の磁石M4が、それぞれ同じ形状を有している2つの磁石を含んでいる。基板2aの一方側面(内壁W3に対向する側面)および他方側面(内壁W4に対向する側面)には、それぞれ凹部が形成されている。 In the linear vibration motor 100D, the second magnet M2, the third magnet M3, and the fourth magnet M4 each include two magnets having the same shape. Recesses are formed on one side surface (side surface facing the inner wall W3) and the other side surface (side surface facing the inner wall W4) of the substrate 2a.
 2つの第2の磁石M2は、一方が基板2aの一方側面に形成された凹部に配置され、他方が基板2aの他方側面に形成された凹部に配置されている。2つの第4の磁石M4も、一方が基板2aの一方側面に形成された凹部に配置され、他方が基板2aの他方側面に形成された凹部に配置されている。 One of the two second magnets M2 is arranged in a concave portion formed on one side surface of the substrate 2a, and the other is arranged in a concave portion formed on the other side surface of the substrate 2a. One of the two fourth magnets M4 is also arranged in a recess formed on one side surface of the substrate 2a, and the other is arranged in a recess formed on the other side surface of the substrate 2a.
 第3の磁石M3の一方は、一部が基板2aの一方側面側の凹部に入り込んでいる。そして、第3の磁石M3の一方は、第1の方向Dから見たとき、第2の磁石M2の一方と第4の磁石M4の一方とそれぞれ対向する配置で、筺体1の第2の部分1bに固定されている。また、2つの第3の磁石M3の他方は、一部が基板2aの他方側面側の凹部に入り込んでいる。そして、第1の方向Dから見たとき、第2の磁石M2の他方と第4の磁石M4の他方とそれぞれ対向する配置で、筺体1の第2の部分1bに固定されている。 A part of one of the third magnets M3 is inserted into the concave portion on the one side surface side of the substrate 2a. Then, when viewed from the first direction D, one of the third magnets M3 is arranged so as to face one of the second magnet M2 and one of the fourth magnets M4, respectively, and the second portion of the housing 1 is arranged. It is fixed to 1b. In addition, a part of the other of the two third magnets M3 is inserted into the concave portion on the other side surface side of the substrate 2a. When viewed from the first direction D, the second magnet M2 and the fourth magnet M4 are fixed to the second portion 1b of the housing 1 so as to face each other.
 第1の方向Dから見たとき、第2の磁石M2、第3の磁石M3および第4の磁石M4の一方の一部は、互いに重なっている。また、第2の磁石M2、第3の磁石M3および第4の磁石M4の他方の一部は、互いに重なっている。 When viewed from the first direction D, one part of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other. Moreover, the other part of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other.
 すなわち、リニア振動モータ100Dでも、2つの磁気ばね機構が並列状態で配置されている。したがって、第2の磁石M2、第3の磁石M3および第4の磁石M4が互いに重なった領域の重心を通り、第1の方向Dに平行な軸線である第2の軸線A2が2本ある。 That is, also in the linear vibration motor 100D, two magnetic spring mechanisms are arranged in parallel. Therefore, there are two second axis lines A2, which are axis lines parallel to the first direction D and passing through the center of gravity of the region where the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other.
 リニア振動モータ100Dにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。また、2つの磁気ばね機構が並列状態で配置されていることにより、磁気ばね機構の各磁石の取り付け位置の誤差などの影響を抑制することができる。さらに、磁気ばね機構を構成する各磁石が基板2aの側面に備えられているので、リニア振動モータ100Dを低背化することができる。 In the linear vibration motor 100D as well as in the linear vibration motor 100, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3. The influence exerted can be suppressed. Further, since the two magnetic spring mechanisms are arranged in parallel, it is possible to suppress the influence of an error in the mounting position of each magnet of the magnetic spring mechanism. Furthermore, since each magnet forming the magnetic spring mechanism is provided on the side surface of the substrate 2a, the height of the linear vibration motor 100D can be reduced.
 なお、リニア振動モータ100Dは、リニア振動モータ100Cのように、第5の磁石をさらに備え、2つの第1の磁石M1および第5の磁石M5により構成された駆動磁石とコイル3との間に、駆動磁石による磁界が集中するようにしてもよい。また、リニア振動モータ100Dは、リニア振動モータ100Bのような磁気ばね構造となっていてもよい。 Like the linear vibration motor 100C, the linear vibration motor 100D further includes a fifth magnet, and is provided between the coil 3 and the drive magnet configured by the two first magnets M1 and the fifth magnet M5. The magnetic field generated by the driving magnet may be concentrated. Further, the linear vibration motor 100D may have a magnetic spring structure like the linear vibration motor 100B.
 -リニア振動モータの模式的な形態の第5の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第5の変形例であるリニア振動モータ100Eについて、図9を用いて説明する。
-Fifth Modification of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100E that is a fifth modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to this disclosure will be described with reference to FIG.
 図9(A)ないし(C)は、リニア振動モータ100Eの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Eは、第1の磁石M1および第2の磁石M2の形態が第2の変形例であるリニア振動モータ100Bと異なっている。それ以外の構成は、リニア振動モータ100Bと同様であるため、重複する説明は省略される。 9A to 9C are a plan view and a cross-sectional view of the linear vibration motor 100E corresponding to FIGS. 1A to 1C, respectively. The linear vibration motor 100E is different from the linear vibration motor 100B of the second modification in the form of the first magnet M1 and the second magnet M2. The other configurations are the same as those of the linear vibration motor 100B, and thus redundant description will be omitted.
 リニア振動モータ100Eでは、2つの第1の磁石M1は、基板2aを貫通しており、前述の筺体1の内壁W2側である第1の部分と、筺体1の内壁W1側である第2の部分とを有している。2つの第1の磁石M1は、磁極の配列方向がコイル3の巻回軸線とそれぞれ平行、かつ互いに逆向きとなるように配置されている。すなわち、第1の磁石M1の第1の部分は、リニア振動モータ100と同様に駆動磁石として機能している。 In the linear vibration motor 100E, the two first magnets M1 penetrate the substrate 2a, and the first portion on the inner wall W2 side of the housing 1 and the second portion on the inner wall W1 side of the housing 1 described above. And a part. The two first magnets M1 are arranged such that the arrangement directions of the magnetic poles are parallel to the winding axis of the coil 3 and opposite to each other. That is, the first portion of the first magnet M1 functions as a drive magnet as in the linear vibration motor 100.
 そして、第1の方向Dから見たとき、2つの第1の磁石M1のうち一方の第2の部分と第3の磁石M3の一部とが重なっており、他方の第2の部分と第4の磁石M4の一部とが重なっている。また、一方の第2の部分と第3の磁石M3とが互いに反発する配置となっており、他方の第2の部分と第4の磁石M4とが互いに反発する配置となっている。 When viewed from the first direction D, one second portion of the two first magnets M1 and a portion of the third magnet M3 overlap each other, and the other second portion No. 4 magnet M4 partially overlaps. The second portion on one side and the third magnet M3 are arranged so as to repel each other, and the second portion on the other side and the fourth magnet M4 are arranged so as to repel each other.
 これにより、2つの第1の磁石M1のそれぞれの第2の部分、第3の磁石M3および第4の磁石M4は、振動子2の第1の方向Dに沿った振動に対する磁気ばね機構を構成している。すなわち、リニア振動モータ100Eでは、第1の磁石M1の一部が第2の磁石M2となっている。 As a result, the respective second portions of the two first magnets M1, the third magnet M3, and the fourth magnet M4 constitute a magnetic spring mechanism for the vibration of the vibrator 2 along the first direction D. doing. That is, in the linear vibration motor 100E, a part of the first magnet M1 is the second magnet M2.
 ここで、第1の軸線A1は、リニア振動モータ100と同様に、第1の方向Dから見たときの2つの第1の磁石M1の重なった領域の重心を通り、第1の方向Dに平行な軸線とする。また、第2の軸線A2は、第1の方向Dから見たときに2つの第1の磁石M1のそれぞれの第2の部分、第3の磁石M3および第4の磁石M4が互いに重なった領域の重心を通り、第1の方向Dに平行な軸線とする。上記のように規定したとき、第1の軸線A1とコイル3との間隔L1は、第2の軸線A2とコイル3との間隔L2より短い。 Here, like the linear vibration motor 100, the first axis A1 passes through the center of gravity of the overlapping region of the two first magnets M1 when viewed from the first direction D, and goes in the first direction D. Use parallel axes. The second axis A2 is a region where the second portions of the two first magnets M1, the third magnet M3, and the fourth magnet M4 overlap each other when viewed in the first direction D. Is an axis line passing through the center of gravity of and parallel to the first direction D. When defined as described above, the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
 リニア振動モータ100Eにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 Also in the linear vibration motor 100E, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3 as in the linear vibration motor 100. The influence exerted can be suppressed.
 また、リニア振動モータ100Eでは、上記のように第1の磁石M1の一部がリニア振動モータ100Bにおける第2の磁石M2となっている。そのため、リニア振動モータ100Eを構成する磁石の数を減らすことができる。 Further, in the linear vibration motor 100E, as described above, a part of the first magnet M1 is the second magnet M2 in the linear vibration motor 100B. Therefore, the number of magnets forming the linear vibration motor 100E can be reduced.
 なお、リニア振動モータ100Eは、2つの第1の磁石M1の一方および他方がそれぞれ複数であり、第3の磁石M3および第4の磁石M4が、それらに対応したそれぞれ同じ形状を有している複数の磁石を含んでいてもよい。 In the linear vibration motor 100E, one and the other of the two first magnets M1 are plural respectively, and the third magnet M3 and the fourth magnet M4 have the same shape corresponding to them respectively. It may include a plurality of magnets.
 -リニア振動モータの模式的な形態の第6の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第6の変形例であるリニア振動モータ100Fについて、図10を用いて説明する。
-Sixth Modification of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100F that is a sixth modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to the present disclosure will be described with reference to FIG.
 図10(A)ないし(C)は、リニア振動モータ100Fの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Fは、第1の磁石M1および第2の磁石M2の形態が第5の変形例であるリニア振動モータ100Eと異なっている。それ以外の構成は、リニア振動モータ100Eと同様であるため、重複する説明は省略される。 10(A) to (C) are a plan view and a sectional view taken along the arrow of the linear vibration motor 100F corresponding to FIGS. 1(A) to (C). The linear vibration motor 100F is different from the linear vibration motor 100E which is the fifth modification in the form of the first magnet M1 and the second magnet M2. The other configurations are the same as those of the linear vibration motor 100E, and thus redundant description will be omitted.
 リニア振動モータ100Fでは、リニア振動モータ100Eと同様に、2つの第1の磁石M1は、基板2aを貫通しており、前述の筺体1の内壁W2側である第1の部分と、筺体1の内壁W1側である第2の部分とを有している。ただし、リニア振動モータ100Fにおける第1の磁石M1は、図10(B)に示されるように、第1の部分と第2の部分とでL字を成すように曲がっている。なお、第1の磁石M1は、角がとられて滑らかに曲がっていることが好ましい。 In the linear vibration motor 100F, similarly to the linear vibration motor 100E, the two first magnets M1 penetrate the substrate 2a, and the first portion on the inner wall W2 side of the housing 1 and the housing 1 described above. And a second portion on the inner wall W1 side. However, as shown in FIG. 10B, the first magnet M1 in the linear vibration motor 100F is bent so that the first portion and the second portion form an L shape. In addition, it is preferable that the first magnet M1 is sharpened and smoothly bent.
 2つの第1の磁石M1のそれぞれの第1の部分は、磁極の配列方向がコイル3の巻回軸線とそれぞれ平行、かつ互いに逆向きとなっている。図10(B)では、2つの第1の部分の一方において、S極がコイル3の巻線部と対向し、2つの第1の部分の他方において、N極がコイル3の巻線部が対向している。すなわち、第1の磁石M1の第1の部分は、リニア振動モータ100と同様に駆動磁石として機能している。 The magnetic poles of the first parts of the two first magnets M1 are arranged in parallel with the winding axis of the coil 3 and in opposite directions. In FIG. 10B, in one of the two first portions, the S pole faces the winding portion of the coil 3, and in the other of the two first portions, the N pole is the winding portion of the coil 3. Facing each other. That is, the first portion of the first magnet M1 functions as a drive magnet as in the linear vibration motor 100.
 そして、第1の方向Dから見たとき、2つの第1の磁石M1の一方における第2の部分と第3の磁石M3の一部とが重なっており、他方における第2の部分と第4の磁石M4の一部とが重なっている。また、2つの第1の磁石M1の一方における第2の部分と第3の磁石M3とが互いに反発する配置となっており、他方の第2の部分と第4の磁石M4とが互いに反発する配置となっている。図10(B)では、2つの第2の部分の一方において、N極が第3の磁石M3のN極と対向し、他方において、S極が第4の磁石M4のS極と対向している。 Then, when viewed from the first direction D, the second portion of one of the two first magnets M1 and a portion of the third magnet M3 overlap each other, and the second portion of the other one and the fourth portion of the third magnet M3 overlap. Part of the magnet M4 of the above is overlapped. Further, the second portion and the third magnet M3 of one of the two first magnets M1 are arranged to repel each other, and the other second portion and the fourth magnet M4 repel each other. It is arranged. In FIG. 10B, in one of the two second portions, the N pole faces the N pole of the third magnet M3, and on the other side, the S pole faces the S pole of the fourth magnet M4. There is.
 これにより、2つの第1の磁石M1のそれぞれの第2の部分、第3の磁石M3および第4の磁石M4は、振動子2の第1の方向Dに沿った振動に対する磁気ばね機構を構成している。すなわち、リニア振動モータ100Fでも、リニア振動モータ100Eと同様に、第1の磁石M1の一部が第2の磁石M2となっている。 As a result, the respective second portions of the two first magnets M1, the third magnet M3, and the fourth magnet M4 form a magnetic spring mechanism for the vibration of the vibrator 2 along the first direction D. doing. That is, also in the linear vibration motor 100F, as in the linear vibration motor 100E, a part of the first magnet M1 is the second magnet M2.
 ここで、第1の軸線A1および第2の軸線A2は、リニア振動モータ100Eと同様に定義される。そして、第1の軸線A1とコイル3との間隔L1は、第2の軸線A2とコイル3との間隔L2より短い。 Here, the first axis A1 and the second axis A2 are defined similarly to the linear vibration motor 100E. The distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
 リニア振動モータ100Fにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 また、リニア振動モータ100Fでは、リニア振動モータ100Eと同様に、リニア振動モータ100Fを構成する磁石の数を減らすことができる。 Also in the linear vibration motor 100F, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnets forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3 as in the linear vibration motor 100. The influence exerted can be suppressed. Further, in the linear vibration motor 100F, the number of magnets forming the linear vibration motor 100F can be reduced as in the linear vibration motor 100E.
 なお、リニア振動モータ100Fでも、2つの第1の磁石M1の一方および他方がそれぞれ複数であり、第3の磁石M3および第4の磁石M4が、それらに対応したそれぞれ同じ形状を有している複数の磁石を含んでいてもよい。 Also in the linear vibration motor 100F, one and the other of the two first magnets M1 are plural respectively, and the third magnet M3 and the fourth magnet M4 have the same shape corresponding to them respectively. It may include a plurality of magnets.
 -リニア振動モータの模式的な形態の第7の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第7の変形例であるリニア振動モータ100Gについて、図11を用いて説明する。
-Seventh Modification of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100G that is a seventh modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to the present disclosure will be described with reference to FIG.
 図11(A)ないし(C)は、リニア振動モータ100Gの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Gは、第1の磁石M1および第2の磁石M2の形態が第5の変形例であるリニア振動モータ100Eと異なっている。それ以外の構成は、リニア振動モータ100Eと同様であるため、重複する説明は省略される。 11(A) to (C) are a plan view and a cross-sectional view taken in the direction of the arrow of the linear vibration motor 100G corresponding to FIGS. 1(A) to (C). The linear vibration motor 100G is different from the linear vibration motor 100E in the fifth modification in the form of the first magnet M1 and the second magnet M2. The other configurations are the same as those of the linear vibration motor 100E, and thus redundant description will be omitted.
 リニア振動モータ100Gでは、リニア振動モータ100Eと同様に、2つの第1の磁石M1は、基板2aを貫通しており、前述の筺体1の内壁W2側である第1の部分と、筺体1の内壁W1側である第2の部分とを有している。 In the linear vibration motor 100G, as in the linear vibration motor 100E, the two first magnets M1 penetrate the substrate 2a, and the first portion on the inner wall W2 side of the housing 1 and the housing 1 described above. And a second portion on the inner wall W1 side.
 リニア振動モータ100Gは、リニア振動モータ100Eの構成に加え、2つの軟磁性体SFをさらに備えている。軟磁性体SFには、例えばFe、ケイ素鋼、パーマロイ、アモルファス磁性合金などが用いられる。軟磁性体SFは、図11(B)に示されるように、第1の磁石M1の第2の部分の端部に接続されており、第1の磁石M1と軟磁性体SFとでL字を成している。その場合、軟磁性体SFは、第1の磁石M1によって磁化される。そのため、第1の磁石M1と軟磁性体SFとは、1つの擬似的なL字状の磁石のように振る舞う。すなわち、第1の磁石M1の磁極の配列方向を、軟磁性体SFによって変えることができる。 The linear vibration motor 100G further includes two soft magnetic bodies SF in addition to the configuration of the linear vibration motor 100E. For the soft magnetic material SF, for example, Fe, silicon steel, permalloy, amorphous magnetic alloy or the like is used. As shown in FIG. 11B, the soft magnetic body SF is connected to the end of the second portion of the first magnet M1, and the first magnet M1 and the soft magnetic body SF are L-shaped. Is done. In that case, the soft magnetic body SF is magnetized by the first magnet M1. Therefore, the first magnet M1 and the soft magnetic material SF behave like one pseudo L-shaped magnet. That is, the arrangement direction of the magnetic poles of the first magnet M1 can be changed by the soft magnetic material SF.
 したがって、リニア振動モータ100Gにおける第1の磁石M1と軟磁性体SFとは、リニア振動モータ100Fの第1の磁石M1と同様な機能を有する。軟磁性体SFは、図11(B)に示されるように、第1の磁石M1の第2の部分の端部に接続されたときに、第1の磁石M1と軟磁性体SFとが滑らかに曲がったL字を成すような形状であることが好ましい。 Therefore, the first magnet M1 and the soft magnetic material SF in the linear vibration motor 100G have the same function as the first magnet M1 in the linear vibration motor 100F. As shown in FIG. 11B, when the soft magnetic material SF is connected to the end portion of the second portion of the first magnet M1, the first magnet M1 and the soft magnetic material SF are smooth. It is preferable that the shape is a curved L-shape.
 2つの第1の磁石M1のそれぞれの第1の部分は、磁極の配列方向がコイル3の巻回軸線とそれぞれ平行、かつ互いに逆向きとなっている。図11(B)では、2つの第1の部分の一方において、S極がコイル3の巻線部と対向し、2つの第1の部分の他方において、N極がコイル3の巻線部が対向している。すなわち、第1の磁石M1の第1の部分は、リニア振動モータ100と同様に駆動磁石として機能している。 The magnetic poles of the first portions of the two first magnets M1 are arranged in parallel with the winding axis of the coil 3 and opposite to each other. In FIG. 11B, in one of the two first portions, the S pole faces the winding portion of the coil 3, and in the other of the two first portions, the N pole is the winding portion of the coil 3. Facing each other. That is, the first portion of the first magnet M1 functions as a drive magnet as in the linear vibration motor 100.
 そして、第1の方向Dから見たとき、2つの軟磁性体SFの一方と第3の磁石M3の一部とが重なっており、他方と第4の磁石M4の一部とが重なっている。また、軟磁性体SFの一方と第3の磁石M3とが互いに反発する配置となっており、他方と第4の磁石M4とが互いに反発する配置となっている。図11(B)では、第1の磁石M1により磁化された2つの軟磁性体SFの一方において、N極が第3の磁石M3のN極と対向し、他方において、S極が第4の磁石M4のS極と対向している。 When viewed from the first direction D, one of the two soft magnetic bodies SF overlaps with a part of the third magnet M3, and the other overlaps with a part of the fourth magnet M4. .. Further, one of the soft magnetic bodies SF and the third magnet M3 are arranged to repel each other, and the other and the fourth magnet M4 are arranged to repel each other. In FIG. 11B, in one of the two soft magnetic bodies SF magnetized by the first magnet M1, the N pole faces the N pole of the third magnet M3, and on the other side, the S pole is the fourth pole. It faces the south pole of the magnet M4.
 これにより、2つの軟磁性体SF、第3の磁石M3および第4の磁石M4は、振動子2の第1の方向Dに沿った振動に対する磁気ばね機構を構成している。すなわち、リニア振動モータ100Gでは、軟磁性体SFが第2の磁石M2となっている。 Due to this, the two soft magnetic bodies SF, the third magnet M3, and the fourth magnet M4 constitute a magnetic spring mechanism for vibration of the vibrator 2 along the first direction D. That is, in the linear vibration motor 100G, the soft magnetic body SF serves as the second magnet M2.
 ここで、第1の軸線A1および第2の軸線A2は、リニア振動モータ100Eと同様に定義される。そして、第1の軸線A1とコイル3との間隔L1は、第2の軸線A2とコイル3との間隔L2より短い。 Here, the first axis A1 and the second axis A2 are defined similarly to the linear vibration motor 100E. The distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
 リニア振動モータ100Gにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 また、リニア振動モータ100Gでは、リニア振動モータ100Gを構成する磁石を安価な軟磁性体で置き換えることにより、製造コストを低減することができる。 In the linear vibration motor 100G as well as in the linear vibration motor 100, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3. The influence exerted can be suppressed. Further, in the linear vibration motor 100G, the manufacturing cost can be reduced by replacing the magnets forming the linear vibration motor 100G with an inexpensive soft magnetic material.
 なお、リニア振動モータ100Gでも、2つの第1の磁石M1の一方および他方がそれぞれ複数であり、それらにそれぞれ軟磁性体SFが接続され、そして第3の磁石M3および第4の磁石M4が、それらに対応したそれぞれ同じ形状を有している複数の磁石を含んでいてもよい。 Also in the linear vibration motor 100G, one and the other of the two first magnets M1 are respectively plural, the soft magnetic bodies SF are respectively connected thereto, and the third magnet M3 and the fourth magnet M4 are It may include a plurality of magnets each having the same shape corresponding to them.
 -リニア振動モータの模式的な形態の第8の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第8の変形例であるリニア振動モータ100Hについて、図12を用いて説明する。
-Eighth Modification Example of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100H that is an eighth modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to the present disclosure will be described with reference to FIG.
 図12(A)ないし(C)は、リニア振動モータ100Hの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Hは、第6の磁石M6をさらに備えることが第5の変形例であるリニア振動モータ100Eと異なっている。それ以外の構成は、リニア振動モータ100Eと同様であるため、重複する説明は省略される。 12A to 12C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 100H corresponding to FIGS. 1A to 1C. The linear vibration motor 100H is different from the linear vibration motor 100E of the fifth modification in that the linear vibration motor 100H further includes a sixth magnet M6. The other configurations are the same as those of the linear vibration motor 100E, and thus redundant description will be omitted.
 リニア振動モータ100Hは、リニア振動モータ100Eの構成に加え、磁気ばね機構を構成する磁石として、1つの第6の磁石M6をさらに備えている。リニア振動モータ100Hでは、第4の磁石M4は、前述の第1の方向Dに沿って、第3の磁石M3との間に2つの第1の磁石M1の一部を挟んでいる。そして、第4の磁石M4は、2つの第1の磁石M1のうち、隣接する方の一部と互いに反発する配置で筺体1に固定されている。 The linear vibration motor 100H further includes one sixth magnet M6 as a magnet forming a magnetic spring mechanism in addition to the structure of the linear vibration motor 100E. In the linear vibration motor 100H, the fourth magnet M4 sandwiches a part of the two first magnets M1 with the third magnet M3 along the above-described first direction D. Then, the fourth magnet M4 is fixed to the housing 1 in an arrangement in which a part of the two first magnets M1 adjacent to each other repels each other.
 第6の磁石M6は、第1の方向Dから見たとき、第3の磁石M3および第4の磁石M4と一部が重なり、第3の磁石M3および第4の磁石M4と互いに反発するように、2つの第1の磁石M1に跨って接続されている。 When viewed from the first direction D, the sixth magnet M6 partially overlaps with the third magnet M3 and the fourth magnet M4 and repels the third magnet M3 and the fourth magnet M4. Is connected across the two first magnets M1.
 リニア振動モータ100Hにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 In the linear vibration motor 100H as well as in the linear vibration motor 100, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet constituting the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3. The influence exerted can be suppressed.
 また、リニア振動モータ100Hでは、前述したように、磁気ばね機構を構成する磁石として、第1の磁石M1の第2の部分に加え、第3の磁石M3および第4の磁石M4のそれぞれと互いに反発する第6の磁石M6をさらに備えている。そのため、磁気ばね機構の能力を向上させることができる。 In addition, in the linear vibration motor 100H, as described above, as the magnets forming the magnetic spring mechanism, in addition to the second portion of the first magnet M1, the third magnet M3 and the fourth magnet M4 are mutually coupled. It further comprises a repulsive sixth magnet M6. Therefore, the performance of the magnetic spring mechanism can be improved.
 なお、リニア振動モータ100Hは、第6の磁石M6が2つの第1の磁石M1に跨って接続されている複数の磁石を含んでいてもよい。 Note that the linear vibration motor 100H may include a plurality of magnets in which the sixth magnet M6 is connected across the two first magnets M1.
 -リニア振動モータの模式的な形態の第9の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第9の変形例であるリニア振動モータ100Iについて、図13を用いて説明する。
-Ninth Modification of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100I that is a ninth modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to the present disclosure will be described with reference to FIG.
 図13(A)ないし(C)は、リニア振動モータ100Iの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Iは、第6の磁石M6が2つあり、かつ2つの第1の磁石M1に跨っていないことが第8の変形例であるリニア振動モータ100Hと異なっている。それ以外の構成は、リニア振動モータ100Hと同様であるため、重複する説明は省略される。 13A to 13C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 100I corresponding to FIGS. 1A to 1C. The linear vibration motor 100I is different from the linear vibration motor 100H which is the eighth modification in that it has two sixth magnets M6 and does not straddle the two first magnets M1. The other configurations are the same as those of the linear vibration motor 100H, and thus redundant description will be omitted.
 リニア振動モータ100Iは、リニア振動モータ100Eの構成に加え、磁気ばね機構を構成する磁石として、2つの第6の磁石M6をさらに備えている。2つの第6の磁石M6は、図13(B)に示されるように、第3の磁石M3および第4の磁石M4のそれぞれと互いに反発する磁極の配列で2つの第1の磁石M1のそれぞれの端部に接続されており、2つの第1の磁石M1に跨っていない。 In addition to the configuration of the linear vibration motor 100E, the linear vibration motor 100I further includes two sixth magnets M6 as magnets forming a magnetic spring mechanism. As shown in FIG. 13B, the two sixth magnets M6 are arranged such that the third magnet M3 and the fourth magnet M4 have magnetic poles that repel each other, and the two first magnets M1 respectively. Of the first magnet M1 and is not connected to the two first magnets M1.
 また、2つの第6の磁石M6は、それぞれの形状が異なっており、第3の磁石M3に近い方は、第4の磁石M4に近い方に比べて体積が大きく、第4の磁石M4に近い方は、第3の磁石M3に近い方に比べて体積が小さい。 The two sixth magnets M6 have different shapes, and the one closer to the third magnet M3 has a larger volume than the one closer to the fourth magnet M4. The closer one has a smaller volume than the closer one to the third magnet M3.
 リニア振動モータ100Iにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 Also in the linear vibration motor 100I, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet that constitutes the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3 as in the linear vibration motor 100. The influence exerted can be suppressed.
 また、リニア振動モータ100Iでは、リニア振動モータ100Hと同様に、磁気ばね機構の能力を向上させることができる。 Further, in the linear vibration motor 100I, the capacity of the magnetic spring mechanism can be improved as in the linear vibration motor 100H.
 なお、図13に示されたリニア振動モータ100Iでは、2つの第6の磁石M6のそれぞれの形状が異なっているため、磁気ばね機構を構成するそれぞれの磁石の間隔を変えずに、磁気ばね機構に異方性を持たせることができる。 In the linear vibration motor 100I shown in FIG. 13, since the two sixth magnets M6 have different shapes, the magnetic spring mechanism does not change the interval between the magnets constituting the magnetic spring mechanism. Can have anisotropy.
 -リニア振動モータの模式的な形態の第10の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第10の変形例であるリニア振動モータ100Jについて、図14を用いて説明する。
-Tenth Modification of Typical Form of Linear Vibration Motor-
A linear vibration motor 100J that is a tenth modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to the present disclosure will be described with reference to FIG.
 図14(A)ないし(C)は、リニア振動モータ100Jの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Jは、第2の磁石M2および第5の磁石M5が第3の変形例であるリニア振動モータ100Cと異なっている。それ以外の構成は、リニア振動モータ100Cと同様であるため、重複する説明は省略される。 14(A) to (C) are a plan view and a cross-sectional view taken in the direction of the arrow of the linear vibration motor 100J, which correspond to FIGS. 1(A) to (C). The linear vibration motor 100J is different from the linear vibration motor 100C in which the second magnet M2 and the fifth magnet M5 are the third modification. The other configurations are the same as those of the linear vibration motor 100C, and thus redundant description will be omitted.
 リニア振動モータ100Jでは、第2の磁石M2は、直方体状で基板2aを貫通しており、前述の筺体1の内壁W2側である第1の部分と、筺体1の内壁W1側である第2の部分とを有している。そして、第1の部分は、2つの第1の磁石M1および第2の磁石M2の第1の部分により構成された駆動磁石とコイル3との間に、駆動磁石による磁界が集中するように、2つの第1の磁石M1の間に配置されている。 In the linear vibration motor 100J, the second magnet M2 has a rectangular parallelepiped shape and penetrates the substrate 2a, and has a first portion on the inner wall W2 side of the housing 1 and a second portion on the inner wall W1 side of the housing 1 described above. And the part of. Then, the first portion is such that the magnetic field of the drive magnet is concentrated between the coil 3 and the drive magnet constituted by the first portions of the two first magnets M1 and the second magnet M2. It is arranged between the two first magnets M1.
 これにより、第2の磁石M2の第1の部分は、リニア振動モータ100Cの第5の磁石M5と同様に駆動磁石として機能している。すなわち、リニア振動モータ100Jでは、第2の磁石M2の一部が第5の磁石M5となっている。そして、2つの第1の磁石M1と第2の磁石M2の第1の部分とは、前述したように、広義のハルバッハ配列となっている。また、第2の磁石M2の第2の部分は、第3の磁石M3および第4の磁石M4と共に、振動子2の第1の方向Dに沿った振動に対する磁気ばね機構を構成している。 Due to this, the first portion of the second magnet M2 functions as a drive magnet similarly to the fifth magnet M5 of the linear vibration motor 100C. That is, in the linear vibration motor 100J, a part of the second magnet M2 is the fifth magnet M5. Then, the two first magnets M1 and the first portion of the second magnet M2 have a Halbach array in a broad sense, as described above. The second portion of the second magnet M2, together with the third magnet M3 and the fourth magnet M4, constitutes a magnetic spring mechanism for the vibration of the vibrator 2 along the first direction D.
 ここで、第1の軸線A1は、リニア振動モータ100と同様に、第1の方向Dから見たときの2つの第1の磁石M1の重なった領域の重心を通り、第1の方向Dに平行な軸線とする。また、第2の軸線A2は、第1の方向Dから見たときに第2の磁石M2の第2の部分、第3の磁石M3および第4の磁石M4が互いに重なった領域の重心を通り、第1の方向Dに平行な軸線とする。上記のように規定したとき、第1の軸線A1とコイル3との間隔L1は、第2の軸線A2とコイル3との間隔L2より短い。 Here, like the linear vibration motor 100, the first axis A1 passes through the center of gravity of the overlapping region of the two first magnets M1 when viewed from the first direction D, and goes in the first direction D. Use parallel axes. Further, the second axis A2 passes through the center of gravity of a region where the second portion of the second magnet M2, the third magnet M3, and the fourth magnet M4 overlap each other when viewed in the first direction D. , And an axis parallel to the first direction D. When defined as described above, the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
 リニア振動モータ100Jにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 In the linear vibration motor 100J as well as in the linear vibration motor 100, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet that constitutes the magnetic spring mechanism becomes the Lorentz force applied to the coil 3. The influence exerted can be suppressed.
 また、リニア振動モータ100Jでは、上記のように駆動磁石に第2の磁石M2の一部が加えられることにより、広義のハルバッハ配列を構成しているため、駆動磁石とコイル3との間に駆動磁石による磁界が集中し、駆動磁石が第1の磁石M1だけである場合よりも、コイル3に作用する磁界を強めることができる。したがって、コイル3に加わるローレンツ力を大きくすることができる。その結果、ローレンツ力の反力として振動子2に加わる力を大きくすることができ、振動子2によるリニア振動モータ100Jの振動を大きくすることができる。 Further, in the linear vibration motor 100J, since a part of the second magnet M2 is added to the drive magnet as described above to form a Halbach array in a broad sense, the drive is performed between the drive magnet and the coil 3. The magnetic field due to the magnet is concentrated, and the magnetic field acting on the coil 3 can be strengthened as compared with the case where the driving magnet is only the first magnet M1. Therefore, the Lorentz force applied to the coil 3 can be increased. As a result, the force applied to the vibrator 2 as a reaction force of the Lorentz force can be increased, and the vibration of the linear vibration motor 100J by the vibrator 2 can be increased.
 さらに、リニア振動モータ100Jでは、第2の磁石M2の一部がリニア振動モータ100Cにおける第5の磁石M5となっている。そのため、リニア振動モータ100Jを構成する磁石の数を減らすことができる。 Further, in the linear vibration motor 100J, a part of the second magnet M2 is the fifth magnet M5 in the linear vibration motor 100C. Therefore, the number of magnets forming the linear vibration motor 100J can be reduced.
 -リニア振動モータの模式的な形態の第11の変形例-
 この開示に従うリニア振動モータの模式的な形態であるリニア振動モータ100の第11の変形例であるリニア振動モータ100Kについて、図15を用いて説明する。
-Eleventh Modification of Schematic Form of Linear Vibration Motor-
A linear vibration motor 100K that is an eleventh modification of the linear vibration motor 100 that is a schematic form of the linear vibration motor according to the present disclosure will be described with reference to FIG.
 図15(A)ないし(C)は、リニア振動モータ100Kの、図1(A)ないし(C)に相当する平面図および矢視断面図である。リニア振動モータ100Kは、第2の磁石M2の形状が第10の変形例であるリニア振動モータ100Jと異なっている。それ以外の構成は、リニア振動モータ100Jと同様であるため、重複する説明は省略される。 FIGS. 15A to 15C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 100K corresponding to FIGS. 1A to 1C. The linear vibration motor 100K is different from the linear vibration motor 100J in the tenth modification in the shape of the second magnet M2. The other configurations are the same as those of the linear vibration motor 100J, and thus redundant description will be omitted.
 リニア振動モータ100Kでは、第2の磁石M2の形状は、図15(B)に示されるように、断面が凸字状となっている。リニア振動モータ100Kでも、第2の磁石M2は、リニア振動モータ100Jと同様に基板2aを貫通しており、筺体1の内壁W2側である第1の部分と、筺体1の内壁W1側である第2の部分とを有している。 In the linear vibration motor 100K, the second magnet M2 has a convex cross section as shown in FIG. 15(B). Also in the linear vibration motor 100K, the second magnet M2 penetrates the substrate 2a similarly to the linear vibration motor 100J, and is the first portion on the inner wall W2 side of the housing 1 and the inner wall W1 side of the housing 1. And a second portion.
 第2の磁石M2の第1の部分は、リニア振動モータ100Jと同様に2つの第1の磁石M1の間に配置されており、広義のハルバッハ配列を構成している。すなわち、リニア振動モータ100Jと同様に駆動磁石として機能している。第2の部分は、リニア振動モータ100Jと同様に、第3の磁石M3および第4の磁石M4と共に、振動子2の第1の方向Dに沿った振動に対する磁気ばね機構を構成している。第2の部分の体積は、第1の部分の体積より大きくなっている。 The first portion of the second magnet M2 is arranged between the two first magnets M1 as in the linear vibration motor 100J, and constitutes a Halbach array in a broad sense. That is, it functions as a drive magnet like the linear vibration motor 100J. Like the linear vibration motor 100J, the second portion, together with the third magnet M3 and the fourth magnet M4, constitutes a magnetic spring mechanism for vibration of the vibrator 2 along the first direction D. The volume of the second portion is larger than the volume of the first portion.
 リニア振動モータ100Kにおいても、リニア振動モータ100と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 In the linear vibration motor 100K as well as in the linear vibration motor 100, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet that constitutes the magnetic spring mechanism becomes the Lorentz force applied to the coil 3. The influence exerted can be suppressed.
 また、リニア振動モータ100Kでは、上記のように第2の磁石M2の形状が凸字状であり、第2の部分の体積が、第1の部分の体積より大きくなっている。そのため、第2の磁石M2の形状が直方体状であるリニア振動モータ100Jよりも、駆動磁石の磁界をさらに強めることができる。したがって、コイル3に加わるローレンツ力をさらに大きくすることができる。その結果、ローレンツ力の反力として振動子2に加わる力をさらに大きくすることができ、振動子2によるリニア振動モータ100Kの振動をさらに大きくすることができる。 Also, in the linear vibration motor 100K, the shape of the second magnet M2 is a convex shape as described above, and the volume of the second portion is larger than the volume of the first portion. Therefore, the magnetic field of the drive magnet can be further strengthened as compared with the linear vibration motor 100J in which the second magnet M2 has a rectangular parallelepiped shape. Therefore, the Lorentz force applied to the coil 3 can be further increased. As a result, the force applied to the vibrator 2 as a reaction force of the Lorentz force can be further increased, and the vibration of the linear vibration motor 100K by the vibrator 2 can be further increased.
 -リニア振動モータの実施形態-
 この開示に従うリニア振動モータの実施形態を示すリニア振動モータ200について、図16および図17を用いて説明する。
-Embodiment of linear vibration motor-
A linear vibration motor 200 showing an embodiment of a linear vibration motor according to the present disclosure will be described with reference to FIGS. 16 and 17.
 図16(A)は、リニア振動モータ200の、筺体1の第1の部分1aを除いたときの平面図である。図16(B)は、図16(A)に示されたA-A線を含む面で切断されたリニア振動モータ200の矢視断面図である。図16(C)は、図16(B)に示されたB-B線を含む面で切断されたリニア振動モータ100の矢視断面図である。また、図17は、リニア振動モータ200の分解斜視図である。 FIG. 16(A) is a plan view of the linear vibration motor 200 when the first portion 1a of the housing 1 is removed. 16B is a cross-sectional view of the linear vibration motor 200 taken along the plane including the line AA shown in FIG. FIG. 16C is a cross-sectional view of the linear vibration motor 100 taken along a plane including the line BB shown in FIG. 17 is an exploded perspective view of the linear vibration motor 200.
 リニア振動モータ200は、図16および図17に示されるように、筺体1(第1の筺体)と、振動子2と、コイル3と、第3の磁石M3とを備えている。リニア振動モータ200の基本構造は、リニア振動モータ100と同じである。そのため、重複する説明は省略される。 As shown in FIGS. 16 and 17, the linear vibration motor 200 includes a housing 1 (first housing), a vibrator 2, a coil 3, and a third magnet M3. The basic structure of the linear vibration motor 200 is the same as that of the linear vibration motor 100. Therefore, overlapping description will be omitted.
 筺体1は、第1の部分1aと第2の部分1bとを含んでいる。リニア振動モータ200において、第1の部分1aは平板状の蓋部であり、第2の部分1bは容器部となっている。筺体1には、例えばSUS304などのステンレス鋼などが用いられる。なお、第1の部分1aと第2の部分1bとが異なる材質であってもよい。 The housing 1 includes a first portion 1a and a second portion 1b. In the linear vibration motor 200, the first portion 1a is a flat plate-shaped lid portion and the second portion 1b is a container portion. For the housing 1, for example, stainless steel such as SUS304 is used. The first portion 1a and the second portion 1b may be made of different materials.
 振動子2は、筺体1の第2の部分1b内に収容されている。リニア振動モータ200において、振動子2は、2つの第1の磁石M1と、第2の磁石M2と、第4の磁石M4と、基板2aと、錘部2bとを含んでいる。基板2aも、錘部として機能している。一方、錘部2bも、基板として機能している。 The oscillator 2 is housed in the second portion 1b of the housing 1. In the linear vibration motor 200, the vibrator 2 includes two first magnets M1, a second magnet M2, a fourth magnet M4, a substrate 2a, and a weight portion 2b. The substrate 2a also functions as a weight portion. On the other hand, the weight portion 2b also functions as a substrate.
 リニア振動モータ100と同様に、2つの第1の磁石M1は駆動磁石であり、第2の磁石M2、第3の磁石M3および第4の磁石M4は、磁気ばね機構を構成する磁石である。各磁石には、例えばNd-Fe-B系またはSm-Co系などの希土類磁石が用いられる。 Like the linear vibration motor 100, the two first magnets M1 are drive magnets, and the second magnet M2, the third magnet M3, and the fourth magnet M4 are magnets that form a magnetic spring mechanism. For each magnet, a rare earth magnet such as Nd-Fe-B system or Sm-Co system is used.
 第1の磁石M1には、強力な磁力を有し、振動子2の駆動力を大きくすることができるNd-Fe-B系の希土類磁石を用いることが好ましい。また、磁気ばね機構を構成する各磁石には、磁力の温度変化率が小さく、安定して磁気ばね効果を発揮できるSm-Co系の希土類磁石が用いられることが好ましい。各磁石の磁極の配置は、リニア振動モータ100と同様であり、重複する説明は省略される。 It is preferable to use an Nd—Fe—B based rare earth magnet that has a strong magnetic force and can increase the driving force of the vibrator 2 as the first magnet M1. Further, it is preferable to use an Sm—Co-based rare earth magnet, which has a small change rate of magnetic force with temperature and can stably exhibit a magnetic spring effect, for each magnet constituting the magnetic spring mechanism. The arrangement of the magnetic poles of each magnet is the same as that of the linear vibration motor 100, and duplicated description will be omitted.
 基板2aおよび錘部2bには、例えばW(タングステン)あるいはヘビーアロイ、フェロタングステンなどのWを含む合金、SUS304などのステンレス鋼およびAl(アルミニウム)あるいはA2024、A5052などのAl(アルミニウム)を含む合金などが用いられる。振動子2の質量を大きくし、磁気ばね機構を介して筺体1に大きな振動を伝えるためには、基板2aおよび錘部2bの材質が、W(タングステン)などの比重の大きな材質を含むことが好ましい。 For the substrate 2a and the weight portion 2b, for example, W (tungsten) or an alloy containing W such as heavy alloy or ferro-tungsten, stainless steel such as SUS304 and Al (aluminum), or an alloy containing Al (aluminum) such as A2024 or A5052 is used. Is used. In order to increase the mass of the vibrator 2 and transmit a large vibration to the housing 1 via the magnetic spring mechanism, the material of the substrate 2a and the weight portion 2b should include a material having a large specific gravity such as W (tungsten). preferable.
 基板2aには、第2の磁石M2が固定されるスロットSL2と、第4の磁石M4が固定されるスロットSL3とが設けられている。スロットSL2とスロットSL3とは、それぞれ角張ったC字状の部材であり、第2の磁石M2と第3の磁石M3とが対向でき、第3の磁石M3と第4の磁石M4とが対向できるように、第1の方向Dに沿って配置されている。この中に例えばエポキシ系の接着剤によりそれぞれの磁石が固定される。 The substrate 2a is provided with a slot SL2 to which the second magnet M2 is fixed and a slot SL3 to which the fourth magnet M4 is fixed. The slots SL2 and SL3 are angular C-shaped members, and the second magnet M2 and the third magnet M3 can face each other, and the third magnet M3 and the fourth magnet M4 can face each other. Thus, they are arranged along the first direction D. Each magnet is fixed in this with an epoxy adhesive, for example.
 スロットSL2は、振動子2と筺体1との衝突を避けるため、挿入される第2の磁石M2と第3の磁石M3との間隔が、基板2aおよび錘部2bの端面と筺体1との間隔以下となるように、基板2aの一方端部に設けられている。スロットSL3も、同様にして、挿入される第4の磁石M4と第3の磁石M3との間隔が、基板2aおよび錘部2bの端面と筺体1との間隔以下となるように、基板2aの他方端部に設けられている。 In order to avoid collision between the oscillator 2 and the housing 1, the slot SL2 has a distance between the second magnet M2 and the third magnet M3 to be inserted that is equal to a distance between the end surfaces of the substrate 2a and the weight portion 2b and the housing 1. It is provided at one end of the substrate 2a as described below. Similarly, in the slot SL3, the distance between the inserted fourth magnet M4 and the third magnet M3 is equal to or less than the distance between the end faces of the substrate 2a and the weight portion 2b and the housing 1. It is provided at the other end.
 スロットSL2に第2の磁石M2を、スロットSL3に第4の磁石M4を挿入することにより、それぞれの磁石の基板2aへの固定が行ないやすくなり、またそれぞれの磁石を基板2aに精度良く固定することができる。 By inserting the second magnet M2 in the slot SL2 and the fourth magnet M4 in the slot SL3, it becomes easy to fix each magnet to the substrate 2a, and each magnet is accurately fixed to the substrate 2a. be able to.
 錘部2bの中央部には、第1の磁石M1が固定されるスロットSL1が設けられている。スロットSL1は、錘部2bに形成された貫通孔である。スロットSL1に第1の磁石M1を挿入することにより、第1の磁石M1の錘部2bへの固定が行ないやすくなり、また第1の磁石M1を錘部2bに精度良く固定することができる。なお、スロットSL1は、錘部2bを貫通していなくてもよい。 A slot SL1 to which the first magnet M1 is fixed is provided at the center of the weight 2b. The slot SL1 is a through hole formed in the weight portion 2b. By inserting the first magnet M1 into the slot SL1, the first magnet M1 can be easily fixed to the weight portion 2b, and the first magnet M1 can be accurately fixed to the weight portion 2b. The slot SL1 does not have to penetrate the weight portion 2b.
 振動子2は、基板2aのスロットSL2に第2の磁石M2が、スロットSL3に第4の磁石M4が固定され、錘部2bのスロットSL1に第1の磁石M1が固定された後、基板2aと錘部2bとが貼り合わされて形成される。なお、基板2aと錘部2bとが一体となったものに各磁石が固定されることにより、振動子2が形成されるようにしてもよい。 In the vibrator 2, the second magnet M2 is fixed to the slot SL2 of the substrate 2a, the fourth magnet M4 is fixed to the slot SL3, and the first magnet M1 is fixed to the slot SL1 of the weight portion 2b. And the weight portion 2b are bonded together to be formed. Note that the vibrator 2 may be formed by fixing each magnet to an integrated body of the substrate 2a and the weight portion 2b.
 コイル3には、例えば直径0.06mmの被覆Cu線を、約50ターン巻回したものが用いられる。コイル3は、フレキシブル基板などの引き出し配線部材により、パワーアンプを介して安定化電源に接続される(引き出し配線部材および各装置は不図示)。コイル3は、振動子2が第1の方向Dに沿って振動可能となるように第1の磁石M1に駆動力を与える。コイル3の配置および形状は、リニア振動モータ100と同様であり、重複する説明は省略される。 As the coil 3, for example, a coated Cu wire having a diameter of 0.06 mm wound about 50 turns is used. The coil 3 is connected to a stabilized power source via a power amplifier by a lead wiring member such as a flexible substrate (the lead wiring member and each device are not shown). The coil 3 applies a driving force to the first magnet M1 so that the vibrator 2 can vibrate along the first direction D. The arrangement and shape of the coil 3 are the same as those of the linear vibration motor 100, and redundant description will be omitted.
 リニア振動モータ200において、振動子2は、第1の摺動機構4aと第2の摺動機構4bとを含む摺動機構4により支持されている。振動子2は、筺体1の内壁W3と第1の摺動機構4aにより接続されており、筺体1の内壁W4と第2の摺動機構4bにより接続されている(図1参照)。摺動機構4は、ガイドレールとボールベアリングなどが用いられた移動体とを備え、ガイドレール上での移動体の運動時における摩擦が低減されている。ガイドレールは筺体1側に固定され、移動体は振動子2側に固定される。 In the linear vibration motor 200, the vibrator 2 is supported by the sliding mechanism 4 including the first sliding mechanism 4a and the second sliding mechanism 4b. The vibrator 2 is connected to the inner wall W3 of the housing 1 by the first sliding mechanism 4a, and is connected to the inner wall W4 of the housing 1 by the second sliding mechanism 4b (see FIG. 1). The sliding mechanism 4 includes a guide rail and a moving body using a ball bearing or the like, and friction during movement of the moving body on the guide rail is reduced. The guide rail is fixed to the housing 1 side, and the moving body is fixed to the vibrator 2 side.
 リニア振動モータ200において、第1の方向Dから見たとき、第2の磁石M2、第3の磁石M3および第4の磁石M4は、それぞれの一部が重なっている。そして、リニア振動モータ100と同様に、第1の軸線A1とコイル3との間隔L1は、第2の軸線A2とコイル3との間隔L2より短い。 In the linear vibration motor 200, when viewed from the first direction D, the second magnet M2, the third magnet M3, and the fourth magnet M4 partially overlap each other. Then, similar to the linear vibration motor 100, the distance L1 between the first axis A1 and the coil 3 is shorter than the distance L2 between the second axis A2 and the coil 3.
 したがって、リニア振動モータ200でも、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。その結果、上記のローレンツ力の反力として振動子2に加わる力の減少が抑制でき、振動子2によるリニア振動モータ200の振動の減少を抑制することができる。また、振動子2が錘部2bを含むことにより、振動子2の質量が大きくなり、筺体1に大きな振動が伝わる。 Therefore, even in the linear vibration motor 200, when the vibrator 2 vibrates in the first direction D, it is possible to suppress the influence of the magnetic field of the magnets forming the magnetic spring mechanism on the Lorentz force applied to the coil 3. it can. As a result, it is possible to suppress a decrease in the force applied to the vibrator 2 as a reaction force of the Lorentz force, and to suppress a decrease in vibration of the linear vibration motor 200 due to the vibrator 2. Further, since the vibrator 2 includes the weight portion 2b, the mass of the vibrator 2 is increased, and large vibration is transmitted to the housing 1.
 -リニア振動モータの実施形態の第1の変形例-
 この開示に従うリニア振動モータの実施形態を示すリニア振動モータ200の第1の変形例であるリニア振動モータ200Aについて、図18および図19を用いて説明する。
-First Modification of Linear Vibration Motor Embodiment-
A linear vibration motor 200A that is a first modification of the linear vibration motor 200 showing the embodiment of the linear vibration motor according to the present disclosure will be described with reference to FIGS. 18 and 19.
 図18(A)ないし(C)は、リニア振動モータ200Aの、図16(A)ないし(C)に相当する平面図および矢視断面図である。また、図19は、リニア振動モータ200Aの分解斜視図である。リニア振動モータ200Aは、第5の磁石M5をさらに備えることがリニア振動モータ200と異なっている。 18A to 18C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 200A corresponding to FIGS. 16A to 16C. Further, FIG. 19 is an exploded perspective view of the linear vibration motor 200A. The linear vibration motor 200A differs from the linear vibration motor 200 in that it further includes a fifth magnet M5.
 すなわち、第5の磁石M5は、2つの第1の磁石M1および第5の磁石M5が構成する磁石の配列の磁界が、第1の磁石M1と第5の磁石M5とを備えた駆動磁石とコイル3との間に集中するように配置されている。そして、2つの第1の磁石M1および第5の磁石M5が構成する磁石の配列は、錘部2bのスロットSL1に固定されている。それ以外の構成は、リニア振動モータ200と同様であるため、重複する説明は省略される。 That is, the fifth magnet M5 is a driving magnet whose magnetic field of the magnet array formed by the two first magnets M1 and the fifth magnet M5 is a driving magnet including the first magnet M1 and the fifth magnet M5. It is arranged so as to concentrate between the coil 3 and the coil 3. The array of magnets formed by the two first magnets M1 and the fifth magnet M5 is fixed to the slot SL1 of the weight portion 2b. The other configurations are the same as those of the linear vibration motor 200, and thus redundant description will be omitted.
 リニア振動モータ200Aにおいても、リニア振動モータ200と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 In the linear vibration motor 200A as well, similar to the linear vibration motor 200, when the vibrator 2 vibrates in the first direction D, the magnetic field of the magnet forming the magnetic spring mechanism is changed to the Lorentz force applied to the coil 3. The influence exerted can be suppressed.
 また、リニア振動モータ200Aでは、駆動磁石に第5の磁石M5が加えられることにより、駆動磁石による磁界が駆動磁石とコイル3との間に集中し、駆動磁石が第1の磁石M1だけである場合よりも、コイル3に作用する駆動磁石の磁界を強めることができる。したがって、コイル3に加わるローレンツ力を大きくすることができる。その結果、ローレンツ力の反力として振動子2に加わる力を大きくすることができ、振動子2によるリニア振動モータ200Aの振動を大きくすることができる。 In addition, in the linear vibration motor 200A, by adding the fifth magnet M5 to the drive magnet, the magnetic field generated by the drive magnet is concentrated between the drive magnet and the coil 3, and the drive magnet is only the first magnet M1. The magnetic field of the drive magnet acting on the coil 3 can be strengthened more than in the case. Therefore, the Lorentz force applied to the coil 3 can be increased. As a result, the force applied to the vibrator 2 as a reaction force of the Lorentz force can be increased, and the vibration of the linear vibration motor 200A by the vibrator 2 can be increased.
 -リニア振動モータの実施形態の第2の変形例-
 この開示に従うリニア振動モータの実施形態を示すリニア振動モータ200の第2の変形例であるリニア振動モータ200Bについて、図20および図21を用いて説明する。
-Second Modification of Linear Vibration Motor Embodiment-
A linear vibration motor 200B that is a second modification of the linear vibration motor 200 showing the embodiment of the linear vibration motor according to the present disclosure will be described with reference to FIGS. 20 and 21.
 図20(A)ないし(C)は、リニア振動モータ200Bの、図16(A)ないし(C)に相当する平面図および矢視断面図である。また、図21は、リニア振動モータ200Bの分解斜視図である。リニア振動モータ200Bは、第2の磁石M2、第3の磁石M3および第4の磁石M4の位置関係と、錘部2bの構造がリニア振動モータ200と異なっている。それ以外の構成は、リニア振動モータ200と同様であるため、重複する説明は省略される。 20A to 20C are a plan view and a cross-sectional view taken along the arrow of the linear vibration motor 200B corresponding to FIGS. 16A to 16C. In addition, FIG. 21 is an exploded perspective view of the linear vibration motor 200B. The linear vibration motor 200B is different from the linear vibration motor 200 in the positional relationship between the second magnet M2, the third magnet M3, and the fourth magnet M4 and the structure of the weight portion 2b. The other configurations are the same as those of the linear vibration motor 200, and thus redundant description will be omitted.
 リニア振動モータ200Bでは、図20(A)に示されているように、第2の磁石M2は、磁極の配列方向が第1の方向Dと平行となるように、基板2aの中央部に設けられたスロットSL2に固定されている。スロットSL2は、2つの角張ったC字状の部材である。2つの部材は、第2の磁石M2と第3の磁石M3とが対向でき、第2の磁石M2と第4の磁石M4とが対向できるように、第1の方向Dに直交する方向に沿って配置されている。この中に例えばエポキシ系の接着剤により第2の磁石M2が固定される。 In the linear vibration motor 200B, as shown in FIG. 20(A), the second magnet M2 is provided in the central portion of the substrate 2a so that the arrangement direction of the magnetic poles is parallel to the first direction D. It is fixed to the slot SL2. The slot SL2 is two angular C-shaped members. The two members are arranged along a direction orthogonal to the first direction D so that the second magnet M2 and the third magnet M3 can face each other and the second magnet M2 and the fourth magnet M4 can face each other. Are arranged. The second magnet M2 is fixed therein by, for example, an epoxy adhesive.
 リニア振動モータ200Bにおいても、リニア振動モータ200と同様に、振動子2が第1の方向Dに沿って振動したときに、磁気ばね機構を構成する磁石の磁界が、コイル3に加わるローレンツ力へ与える影響を抑制することができる。 In the linear vibration motor 200B as well as in the linear vibration motor 200, when the vibrator 2 vibrates along the first direction D, the magnetic field of the magnet that constitutes the magnetic spring mechanism becomes the Lorentz force applied to the coil 3. The influence exerted can be suppressed.
 なお、リニア振動モータの実施形態は、上記に限られない。例えば前述のリニア振動モータの模式的な形態のいずれであっても、リニア振動モータの実施形態として応用することができる。 The embodiment of the linear vibration motor is not limited to the above. For example, any of the above-described schematic forms of the linear vibration motor can be applied as an embodiment of the linear vibration motor.
 -電子機器の模式的な形態-
 この開示に従うリニア振動モータが用いられた電子機器の模式的な形態を示す携帯型情報端末1000について、図22および図23を用いて説明する。
-Schematic form of electronic equipment-
A portable information terminal 1000 showing a schematic form of an electronic device using a linear vibration motor according to this disclosure will be described with reference to FIGS. 22 and 23.
 図22は、携帯型情報端末1000の透過斜視図である。また、図23は、携帯型情報端末1000の要部の断面図である。 FIG. 22 is a transparent perspective view of the portable information terminal 1000. In addition, FIG. 23 is a cross-sectional view of a main part of the portable information terminal 1000.
 携帯型情報端末1000は、筺体1001(第2の筺体)と、この開示に係るリニア振動モータ100と、送受信および情報処理に関する電子回路(不図示)とを備えている。筺体1001は、第1の部分1001aと第2の部分1001bとを含んでいる。第1の部分1001aは、ディスプレイであり、第2の部分1001bは、フレームである。リニア振動モータ100は、筺体1001内に収容されている。 The portable information terminal 1000 includes a housing 1001 (second housing), the linear vibration motor 100 according to the present disclosure, and an electronic circuit (not shown) related to transmission/reception and information processing. The housing 1001 includes a first portion 1001a and a second portion 1001b. The first portion 1001a is a display and the second portion 1001b is a frame. The linear vibration motor 100 is housed in a housing 1001.
 携帯型情報端末1000には、皮膚感覚フィードバックのため、またはキー操作や着信などを振動で確認するための振動発生装置として、この開示に従うリニア振動モータ100が用いられている。なお、携帯型情報端末1000に用いられるリニア振動モータは、リニア振動モータ100に限られず、この開示に係るリニア振動モータであればよい。その場合、リニア振動モータの磁気ばね機構の影響による携帯型情報端末の振動の減少を抑制することができる。 The linear vibration motor 100 according to the present disclosure is used in the portable information terminal 1000 as a vibration generation device for feedback of skin sensation or for confirming a key operation or an incoming call by vibration. The linear vibration motor used in the portable information terminal 1000 is not limited to the linear vibration motor 100, and any linear vibration motor according to the present disclosure may be used. In that case, it is possible to suppress a decrease in vibration of the portable information terminal due to the influence of the magnetic spring mechanism of the linear vibration motor.
 なお、図23に示されているように、リニア振動モータ100の筺体1の第2の部分1bは、容器部本体1b1と固定部1b2とを含んでいる。固定部1b2は、容器部本体1b1の底部より張り出した部位である。携帯型情報端末1000では、リニア振動モータ100の容器部本体1b1の底部と第2の部分1001bとが接するように、固定部1b2が第2の部分1001bにねじBにより固定されている。 Incidentally, as shown in FIG. 23, the second portion 1b of the housing 1 of the linear vibration motor 100 includes a container body 1b1 and a fixed portion 1b2. The fixed portion 1b2 is a portion protruding from the bottom of the container body 1b1. In the portable information terminal 1000, the fixing portion 1b2 is fixed to the second portion 1001b with the screw B so that the bottom of the container body 1b1 of the linear vibration motor 100 and the second portion 1001b are in contact with each other.
 ここで、リニア振動モータ100において、第3の磁石M3は、容器部本体1b1の底部の内側である筺体1の内壁W1に固定されている(図1参照)。すなわち、携帯型情報端末1000では、筺体1の第3の磁石M3が固定された部位が、筺体1001に接している。 Here, in the linear vibration motor 100, the third magnet M3 is fixed to the inner wall W1 of the housing 1 inside the bottom of the container body 1b1 (see FIG. 1). That is, in the portable information terminal 1000, the part of the housing 1 to which the third magnet M3 is fixed is in contact with the housing 1001.
 リニア振動モータ100の振動子2の振動は、前述のように磁気ばね機構を構成する第3の磁石M3の振動となって筺体1に伝わる。したがって、上記のように筺体1の第3の磁石M3が固定された部位が筺体1001に接している場合、リニア振動モータ100の振動が携帯型情報端末1000の筺体1001に効果的に伝わる。 The vibration of the vibrator 2 of the linear vibration motor 100 is transmitted to the housing 1 as the vibration of the third magnet M3 forming the magnetic spring mechanism as described above. Therefore, when the portion of the housing 1 to which the third magnet M3 is fixed contacts the housing 1001 as described above, the vibration of the linear vibration motor 100 is effectively transmitted to the housing 1001 of the portable information terminal 1000.
 なお、リニア振動モータ100の第3の磁石M3が固定された部位が、携帯型情報端末1000の筺体1001の第1の部分1001a、すなわちディスプレイに接するようにしてもよい。 Note that the portion of the linear vibration motor 100 to which the third magnet M3 is fixed may be in contact with the first portion 1001a of the housing 1001 of the portable information terminal 1000, that is, the display.
 なお、この開示に従うリニア振動モータが用いられた電子機器の模式的な形態の一例として、ディスプレイを備えた携帯型情報端末を示したが、これに限定されるものではない。この開示に従う電子機器は、ディスプレイを備えていなくてもよい。 A portable information terminal equipped with a display has been shown as an example of a schematic form of an electronic device in which the linear vibration motor according to this disclosure is used, but the invention is not limited to this. The electronic device according to this disclosure may not include a display.
 例えばこの開示に従う電子機器として、携帯電話(いわゆるフィーチャーフォン)、スマートフォン、ポータブルビデオゲーム機、ビデオゲーム機用コントローラ、VR(Virtual Reality)装置用コントローラ、スマートウォッチ、タブレット型パソコン、ノート型パソコン、テレビ等の操作に使用するリモートコントローラ、現金自動預け払い機などのタッチパネル型ディスプレイ、各種玩具などの電子機器を挙げることができる。 For example, as electronic devices according to this disclosure, mobile phones (so-called feature phones), smartphones, portable video game machines, controllers for video game machines, controllers for VR (Virtual Reality) devices, smart watches, tablet computers, notebook computers, TVs. Examples thereof include a remote controller used for operations such as, a touch panel type display such as an automatic teller machine, and electronic devices such as various toys.
 この明細書に開示された実施形態は、例示的なものであって、この開示に係る発明は、上記の実施形態および変形例に限定されるものではない。すなわち、この開示に係る発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、上記の範囲内において、種々の応用、変形を加えることができる。 The embodiment disclosed in this specification is an exemplification, and the invention according to this disclosure is not limited to the above embodiment and modification. That is, the scope of the invention according to this disclosure is shown by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope. Further, various applications and modifications can be added within the above range.
 この開示に係る発明は、例えば電子機器における皮膚感覚フィードバックのため、またはキー操作や着信などを振動で確認するための振動発生装置として用いられるリニア振動モータに適用される。皮膚感覚フィードバックとしては、例えばビデオゲーム内での動作(例えばドアの開閉や自動車のハンドル操作など)に対応する触感イメージをコントローラの振動で表現することが挙げられる。ただし、これ以外の皮膚感覚フィードバックであってもよい。 The invention according to this disclosure is applied to, for example, a linear vibration motor used as a vibration generator for feedback of skin sensations in electronic devices or for confirming key operation or incoming call with vibration. As the skin sensation feedback, for example, a tactile image corresponding to an operation in a video game (for example, opening and closing a door or operating a steering wheel of a car) is represented by vibration of a controller. However, other skin sensory feedback may be used.
 また、これに限られず、ロボットのアクチュエータとして用いられるリニア振動モータなどにも適用が可能である。 Also, it is not limited to this, and can be applied to a linear vibration motor used as an actuator of a robot.
100  リニア振動モータ
1  筺体(第1の筺体)
2  振動子
3  コイル
M1  第1の磁石
M2  第2の磁石
M3  第3の磁石
M4  第4の磁石
D  第1の方向
A1  第1の軸線
A2  第2の軸線
L1  第1の軸線とコイルとの間隔
L2  第2の軸線とコイルとの間隔
100 linear vibration motor 1 housing (first housing)
2 oscillator 3 coil M1 first magnet M2 second magnet M3 third magnet M4 fourth magnet D first direction A1 first axis A2 second axis L1 distance between first axis and coil L2 Distance between second axis and coil

Claims (14)

  1.  第1の筺体と、
     前記第1の筺体内に収容され、それぞれ少なくとも1つの第1および第2の磁石を含む振動子と、
     前記第1の筺体に固定され、前記振動子が第1の方向に沿って振動可能となるように前記第1の磁石に駆動力を与えるコイルと、
     前記第1の方向に沿って前記第2の磁石と互いに反発する配置で前記第1の筺体に固定された、少なくとも1つの第3の磁石と、
     前記第1の方向に沿って前記第2の磁石との間に前記第3の磁石を挟むように、かつ前記第3の磁石と互いに反発する配置で前記振動子に含まれるか、または前記第1の方向に沿って前記第3の磁石との間に前記第2の磁石を挟むように、かつ前記第2の磁石と互いに反発する配置で前記第1の筺体に固定された、少なくとも1つの第4の磁石とを備え、
     前記第1の方向から見たとき、前記第2ないし第4の磁石は、それぞれの一部が重なっており、
     前記第1の方向から見たときの前記第1の磁石の面の重心を通り、前記第1の方向に平行な第1の軸線と前記コイルとの間隔は、前記第1の方向から見たときに前記第2ないし第4の磁石が互いに重なった領域の重心を通り、前記第1の方向に平行な第2の軸線と前記コイルとの間隔より短い、リニア振動モータ。
    The first housing,
    A vibrator housed in the first housing and including at least one first and second magnet, respectively;
    A coil that is fixed to the first housing and applies a driving force to the first magnet so that the vibrator can vibrate in a first direction;
    At least one third magnet fixed to the first housing in a repulsive arrangement with the second magnet along the first direction;
    The oscillator is included in the vibrator in such a manner that the third magnet is sandwiched between the second magnet and the second magnet along the first direction, and the oscillator is arranged to repel each other with the third magnet. At least one fixed to the first housing in such a manner that the second magnet is sandwiched between the third magnet and the third magnet along the direction of 1 and is arranged to repel each other with the second magnet. And a fourth magnet,
    When viewed from the first direction, the second to fourth magnets are partially overlapped with each other,
    The distance between the coil and the first axis passing through the center of gravity of the surface of the first magnet when viewed from the first direction and parallel to the first direction is viewed from the first direction. A linear vibration motor, wherein the second to fourth magnets sometimes pass through a center of gravity of a region where they overlap each other and are shorter than a distance between a coil and a second axis parallel to the first direction.
  2.  前記第1の磁石は、磁極の配列が前記コイルの巻回軸線方向において互いに逆向きであり、前記第1の方向に沿って配列された2つの磁石を含み、
     前記第1の軸線は、前記2つの磁石が互いに重なった領域の重心を通る、請求項1に記載のリニア振動モータ。
    The first magnet includes two magnets whose magnetic poles are arranged in directions opposite to each other in the winding axis direction of the coil, and which are arranged along the first direction.
    The linear vibration motor according to claim 1, wherein the first axis passes through a center of gravity of a region where the two magnets overlap each other.
  3.  少なくとも1つの第5の磁石をさらに備え、
     前記第5の磁石は、前記第1の磁石の前記2つの磁石の間に、前記第1の磁石の前記2つの磁石および前記第5の磁石が構成する磁石の配列の磁界が前記コイルに対向する側に集中するように配置されている、請求項2に記載のリニア振動モータ。
    Further comprising at least one fifth magnet,
    In the fifth magnet, a magnetic field of an array of magnets formed by the two magnets of the first magnet and the fifth magnet faces the coil between the two magnets of the first magnet. The linear vibration motor according to claim 2, wherein the linear vibration motor is arranged so as to be concentrated on the side where the vibration occurs.
  4.  前記第1の磁石の前記2つの磁石および前記第5の磁石がハルバッハ配列となるように配置されている、請求項3に記載のリニア振動モータ。 The linear vibration motor according to claim 3, wherein the two magnets of the first magnet and the fifth magnet are arranged in a Halbach array.
  5.  前記第2の磁石の一部が前記第5の磁石となる、請求項3または4に記載のリニア振動モータ。 The linear vibration motor according to claim 3 or 4, wherein a part of the second magnet serves as the fifth magnet.
  6.  前記第1の磁石の一部が前記第2の磁石となる、請求項2に記載のリニア振動モータ。 The linear vibration motor according to claim 2, wherein a part of the first magnet serves as the second magnet.
  7.  前記第1の磁石が2つのL字状の磁石を含み、
     前記2つのL字状の磁石の一方において、一方の磁極が前記コイルに対向し、他方の磁極が前記第3の磁石の磁極と対向しており、
     前記2つのL字状の磁石の他方において、一方の磁極が前記コイルに対向し、他方の磁極が前記第4の磁石の磁極と対向している、請求項6に記載のリニア振動モータ。
    The first magnet includes two L-shaped magnets,
    In one of the two L-shaped magnets, one magnetic pole faces the coil, and the other magnetic pole faces the magnetic pole of the third magnet,
    The linear vibration motor according to claim 6, wherein in the other of the two L-shaped magnets, one magnetic pole faces the coil and the other magnetic pole faces the magnetic pole of the fourth magnet.
  8.  2つの軟磁性体をさらに備え、
     前記第1の磁石が、前記第1の磁石の前記2つの磁石の一方と前記2つの軟磁性体の一方とがL字状に接続され、前記第1の磁石の前記2つの磁石の他方と前記2つの軟磁性体の他方とがL字状に接続されてなる、2つの擬似的なL字状の磁石を含み、
     前記2つの擬似的なL字状の磁石の一方において、一方の磁極が前記コイルに対向し、他方の磁極が前記第3の磁石の磁極と対向しており、
     前記2つの擬似的なL字状の磁石の他方において、一方の磁極が前記コイルに対向し、他方の磁極が前記第4の磁石の磁極と対向している、請求項6に記載のリニア振動モータ。
    Further comprising two soft magnetic materials,
    In the first magnet, one of the two magnets of the first magnet and one of the two soft magnetic bodies are connected in an L-shape, and the other of the two magnets of the first magnet is connected. And a pseudo L-shaped magnet, in which the other of the two soft magnetic bodies is connected in an L-shape,
    In one of the two pseudo L-shaped magnets, one magnetic pole faces the coil and the other magnetic pole faces the magnetic pole of the third magnet,
    7. The linear vibration according to claim 6, wherein in the other of the two pseudo L-shaped magnets, one magnetic pole faces the coil and the other magnetic pole faces the magnetic pole of the fourth magnet. motor.
  9.  少なくとも1つの第6の磁石をさらに備え、
     前記第4の磁石は、前記第1の方向に沿って、前記第3の磁石との間で前記第1の磁石の2つの磁石の一部を挟むように、かつ前記第1の磁石の一部と互いに反発する配置で前記第1の筺体に固定されており、
     前記第6の磁石は、前記第1の方向から見たとき、前記第3および第4の磁石と一部が重なり、前記第3および第4の磁石と互いに反発するように、前記第1の磁石の前記2つの磁石に跨って接続されている、請求項6に記載のリニア振動モータ。
    Further comprising at least one sixth magnet,
    The fourth magnet sandwiches a part of the two magnets of the first magnet with the third magnet along the first direction, and the fourth magnet has one of the first magnets. Is fixed to the first housing in an arrangement that repels each other,
    When viewed from the first direction, the sixth magnet partially overlaps the third and fourth magnets and repels the third and fourth magnets. The linear vibration motor according to claim 6, wherein the linear vibration motor is connected across the two magnets.
  10.  前記振動子は、板状の基板をさらに含み、
     前記第2の磁石は、前記基板の側面に配置されている、請求項1ないし4のいずれか1項に記載のリニア振動モータ。
    The vibrator further includes a plate-shaped substrate,
    The linear vibration motor according to claim 1, wherein the second magnet is arranged on a side surface of the substrate.
  11.  前記振動子は、錘部をさらに含む、請求項1ないし10のいずれか1項に記載のリニア振動モータ。 The linear vibration motor according to any one of claims 1 to 10, wherein the vibrator further includes a weight portion.
  12.  請求項1ないし11のいずれか1項に記載のリニア振動モータと、第2の筺体とを備え、
     前記リニア振動モータは、前記第2の筺体内に収容される、電子機器。
    A linear vibration motor according to any one of claims 1 to 11, and a second housing,
    The said linear vibration motor is an electronic device accommodated in the said 2nd housing.
  13.  前記第1の筺体の前記第3の磁石が固定された部位が、前記第2の筺体に接している、請求項12に記載の電子機器。 The electronic device according to claim 12, wherein a portion of the first housing to which the third magnet is fixed is in contact with the second housing.
  14.  ディスプレイをさらに備え、
     前記第1の筺体の前記第3の磁石が固定された部位が、前記ディスプレイに接している、請求項12または13に記載の電子機器。
    Further equipped with a display,
    The electronic device according to claim 12, wherein a portion of the first housing to which the third magnet is fixed is in contact with the display.
PCT/JP2019/048241 2018-12-18 2019-12-10 Linear vibration motor and electronic device using same WO2020129747A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561331A JP7207428B2 (en) 2018-12-18 2019-12-10 Linear vibration motor and electronic equipment using it

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-236800 2018-12-18
JP2018236800 2018-12-18
JP2019-013243 2019-01-29
JP2019013243 2019-01-29
JP2019062893 2019-03-28
JP2019-062893 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020129747A1 true WO2020129747A1 (en) 2020-06-25

Family

ID=71100839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048241 WO2020129747A1 (en) 2018-12-18 2019-12-10 Linear vibration motor and electronic device using same

Country Status (2)

Country Link
JP (1) JP7207428B2 (en)
WO (1) WO2020129747A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071645A1 (en) * 2021-10-29 2023-05-04 歌尔股份有限公司 Operating apparatus and gamepad

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168869A (en) * 1996-10-30 1999-06-22 Omron Corp Vibration generator
JP2008228545A (en) * 2007-03-16 2008-09-25 Jtekt Corp Moving magnet type linear motor
JP2009240046A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Electromagnetic actuator
JP2015044177A (en) * 2013-08-29 2015-03-12 日本電産コパル株式会社 Vibration actuator
JP2015070729A (en) * 2013-09-30 2015-04-13 日本電産コパル株式会社 Information terminal processing device and vibration generator system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168869A (en) * 1996-10-30 1999-06-22 Omron Corp Vibration generator
JP2008228545A (en) * 2007-03-16 2008-09-25 Jtekt Corp Moving magnet type linear motor
JP2009240046A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Electromagnetic actuator
JP2015044177A (en) * 2013-08-29 2015-03-12 日本電産コパル株式会社 Vibration actuator
JP2015070729A (en) * 2013-09-30 2015-04-13 日本電産コパル株式会社 Information terminal processing device and vibration generator system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071645A1 (en) * 2021-10-29 2023-05-04 歌尔股份有限公司 Operating apparatus and gamepad

Also Published As

Publication number Publication date
JPWO2020129747A1 (en) 2021-10-07
JP7207428B2 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
CN107925333B (en) Linear actuator for use in an electronic device
US10610893B2 (en) Vibration actuator and portable device
US10270326B2 (en) Linear vibration motor
JP7248387B2 (en) Vibration actuators and electronics
US10610894B2 (en) Vibration actuator and portable device
KR20110019144A (en) Apparatus and method for generating vibration pattern
US10610892B2 (en) Vibration actuator and portable device
US10376920B2 (en) Linear vibration motor
KR20110026686A (en) Mobile device and method for controlling vibration thereof
JP6245913B2 (en) Vibration actuator
CN107107112B (en) Linear vibration motor
WO2021106741A1 (en) Linear vibration motor, and electronic instrument employing same
US20190372446A1 (en) Vibration actuator
US20220311320A1 (en) Linear vibration motor, electronic device using linear vibration motor, vibrator, and method of manufacturing vibrator
CN108227911B (en) Electronic device including movable magnet-based actuator for deforming display and related method
US11462986B2 (en) Linear vibration motor with magnets fixed to a base and coils fixed to a weight
US20200212775A1 (en) Linear Vibration Motor
WO2020129747A1 (en) Linear vibration motor and electronic device using same
CN107847976B (en) Linear vibration motor and mobile electronic device including the same
JP2016182569A (en) Vibration actuator
WO2020195452A1 (en) Linear vibration motor and electronic device using same
CN107534376B (en) Linear vibration motor
WO2020162226A1 (en) Vibrator support structure, vibration motor, and electronic equipment
CN113131707A (en) Vibration actuator and electronic device
US20150108854A1 (en) Electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899633

Country of ref document: EP

Kind code of ref document: A1