WO2020129357A1 - Wavelength conversion member, optical device, projector, and manufacturing method for wavelength conversion member - Google Patents

Wavelength conversion member, optical device, projector, and manufacturing method for wavelength conversion member Download PDF

Info

Publication number
WO2020129357A1
WO2020129357A1 PCT/JP2019/039321 JP2019039321W WO2020129357A1 WO 2020129357 A1 WO2020129357 A1 WO 2020129357A1 JP 2019039321 W JP2019039321 W JP 2019039321W WO 2020129357 A1 WO2020129357 A1 WO 2020129357A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
wavelength conversion
conversion member
filler particles
substrate
Prior art date
Application number
PCT/JP2019/039321
Other languages
French (fr)
Japanese (ja)
Inventor
濱田 貴裕
谷 直幸
孝志 大林
純久 長崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/414,401 priority Critical patent/US11474423B2/en
Priority to CN201980082204.5A priority patent/CN113207302B/en
Priority to DE112019006269.7T priority patent/DE112019006269T5/en
Priority to JP2020561168A priority patent/JP7245980B2/en
Publication of WO2020129357A1 publication Critical patent/WO2020129357A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the present disclosure relates to a wavelength conversion member, an optical device, a projector, and a method for manufacturing the wavelength conversion member.
  • the wavelength conversion member has a phosphor embedded in a matrix. Light from the excitation light source is applied to the phosphor as excitation light, and fluorescence light having a wavelength longer than the wavelength of the excitation light is emitted from the phosphor. Attempts have been made to increase the brightness and output of light in this type of optical device.
  • Patent Document 1 discloses a wavelength conversion element in which zinc oxide (ZnO) is used as a matrix material.
  • ZnO is an inorganic material having a refractive index close to that of many phosphors, and also has excellent translucency and thermal conductivity. According to the wavelength conversion element of Patent Document 1, light scattering at the interface between the phosphor and the ZnO matrix can be suppressed, and high light output can be achieved.
  • the wavelength conversion member includes a matrix containing an inorganic material, a phosphor embedded in the matrix, and a plurality of filler particles embedded in the matrix and containing a resin material.
  • This wavelength conversion member can suppress the falling of the phosphor.
  • FIG. 1 is a schematic sectional view of a wavelength conversion member according to a first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of filler particles of the wavelength conversion member shown in FIG.
  • FIG. 3A is a sectional view of a substrate used in the method of manufacturing the wavelength conversion member according to the first embodiment.
  • FIG. 3B is a diagram showing a state in which the precursor of the phosphor portion is formed on the substrate shown in FIG. 3A.
  • FIG. 4 is a schematic cross-sectional view of the wavelength conversion member according to the second embodiment of the present disclosure.
  • FIG. 5 is a schematic sectional view of a wavelength conversion member according to the third embodiment of the present disclosure.
  • FIG. 1 is a schematic sectional view of a wavelength conversion member according to a first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of filler particles of the wavelength conversion member shown in FIG.
  • FIG. 3A is a sectional view of a substrate used in the method of
  • FIG. 6 is a schematic sectional view of a wavelength conversion member according to the fourth embodiment of the present disclosure.
  • FIG. 7 is a schematic sectional view of a wavelength conversion member according to the fifth embodiment of the present disclosure.
  • FIG. 8 is a schematic sectional view of a reflective optical device using the wavelength conversion member of the present disclosure.
  • FIG. 9 is a schematic sectional view of a transmission type optical device using the wavelength conversion member of the present disclosure.
  • FIG. 10 is a schematic configuration diagram of an optical device according to a modified example of the present disclosure.
  • 11 is a perspective view of a wavelength conversion member included in the optical device shown in FIG.
  • FIG. 12 is a schematic configuration diagram of a projector using the optical device of the present disclosure.
  • FIG. 13 is a perspective view of the projector shown in FIG. FIG.
  • FIG. 14 is a schematic configuration diagram of a lighting device using the optical device of the present disclosure.
  • FIG. 15A is a diagram showing a microscope image of the precursor of the phosphor portion of Example 2 before the vibration test is performed.
  • FIG. 15B is a diagram showing a microscope image of the precursor of the phosphor portion of Example 2 after the vibration test was performed.
  • FIG. 16A is a diagram showing a microscope image of the precursor of the phosphor portion of Example 3 before the vibration test is performed.
  • FIG. 16B is a diagram showing a microscope image of the precursor of the phosphor portion of Example 3 after the vibration test was performed.
  • 17A is a diagram showing a scanning electron microscope (SEM) image of a cross section of the wavelength conversion member of Example 2.
  • SEM scanning electron microscope
  • FIG. 17B is an enlarged view of the filler particles shown in FIG. 17A.
  • FIG. 18A is a diagram showing an SEM image of a cross section of the wavelength conversion member of Example 3.
  • 18B is an enlarged view of filler particles of the wavelength conversion member shown in FIG. 18A.
  • FIG. 18C is an enlarged view of another filler particle of the wavelength conversion member shown in FIG. 18A.
  • the wavelength conversion member can be manufactured, for example, by forming a matrix after disposing the phosphor on the substrate.
  • the phosphor may fall off the substrate.
  • the matrix of inorganic crystals is formed by the solution growth method, the phosphor may fall off from the substrate while the substrate is immersed in the solution for crystal growth.
  • the phosphor is likely to fall off the substrate.
  • the phosphor may fall off during the production of the wavelength conversion element.
  • FIG. 1 is a schematic cross-sectional view of the wavelength conversion member 100 according to the first embodiment.
  • the wavelength conversion member 100 includes a phosphor portion 20.
  • the phosphor part 20 has a matrix 21, a phosphor 22 and a plurality of filler particles 23.
  • the phosphor 22 is composed of, for example, a plurality of particles 122.
  • the particles 122 of the phosphor 22 and the plurality of filler particles 23 are embedded in the matrix 21.
  • the particles 122 of the phosphor 22 and the plurality of filler particles 23 are dispersed in the matrix 21.
  • the particles 122 of the phosphor 22 and the plurality of filler particles 23 are surrounded by the matrix 21.
  • the shape of the phosphor unit 20 is, for example, a layer shape.
  • the thickness of the phosphor part 20 is, for example, 20 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the phosphor part 20 may be larger than 50 ⁇ m.
  • the area of the phosphor portion 20 in plan view is, for example, 0.5 mm 2 or more and 1500 mm 2 or less.
  • the wavelength conversion member 100 may further include the substrate 10.
  • the substrate 10 supports the phosphor section 20.
  • the phosphor section 20 is arranged on the substrate 10.
  • the wavelength conversion member 100 When the wavelength conversion member 100 is irradiated with the excitation light having the first wavelength band, the wavelength conversion member 100 converts a part of the excitation light into light having the second wavelength band and emits it.
  • the wavelength conversion member 100 emits light having a wavelength longer than the wavelength of the excitation light.
  • the second wavelength band is a band different from the first wavelength band. However, a part of the second wavelength band may overlap with the first wavelength band.
  • the light emitted from the wavelength conversion member 100 may include not only the light emitted from the phosphor 22 but also the excitation light itself.
  • the substrate 10 has, for example, a substrate body 11 and a thin film 12.
  • the thickness of the substrate 10 is larger than the thickness of the phosphor portion 20, for example.
  • the substrate body 11 is made of stainless steel, a composite material of aluminum and silicon carbide (Al-SiC), a composite material of aluminum and silicon (Al-Si), a composite material of aluminum and carbon (Al-C), copper ( Cu), sapphire (Al 2 O 3 ), alumina, gallium nitride (GaN), aluminum nitride (AlN), silicon (Si), aluminum (Al), glass, quartz (SiO 2 ), silicon carbide (SiC) and oxidation.
  • the substrate body 11 containing copper (Cu) may further contain other elements such as tungsten (W) and molybdenum (Mo).
  • the substrate body 11 is made of stainless steel, a composite material of aluminum and silicon carbide (Al-SiC), a composite material of aluminum and silicon (Al-Si), a composite material of aluminum and carbon (Al-C), and copper ( When at least one selected from the group consisting of Cu) is included, the substrate body 11 has a small thermal expansion coefficient.
  • the substrate 10 including at least one selected from the group is suitable for use as a projector.
  • the substrate body 11 has a light-transmitting property of transmitting, for example, excitation light and light emitted from the phosphor 22.
  • the wavelength conversion member 100 can be suitably used for a transmission type optical device.
  • the wavelength conversion member 100 can be used in a reflective optical device.
  • the substrate body 11 may have a mirror-polished surface.
  • the surface of the substrate body 11 may be covered with an antireflection film, a dichroic mirror, a metal reflection film, a reflection enhancing film, a protective film, or the like.
  • the antireflection film is a film for preventing reflection of excitation light.
  • the dichroic mirror may be composed of a dielectric multilayer film.
  • the metal reflection film is a film for reflecting light and is made of a metal material such as silver or aluminum.
  • the enhanced reflection film may be composed of a dielectric multilayer film.
  • the protective film may be a film for physically or chemically protecting these films.
  • the thin film 12 functions as a base layer for forming the phosphor portion 20.
  • the thin film 12 functions as a seed crystal in the crystal growth process of the matrix 21. That is, the thin film 12 is a single crystal thin film or a polycrystalline thin film.
  • the thin film 12 may be a ZnO single crystal thin film or a ZnO polycrystal thin film. Elements other than Zn may be added to the thin film 12.
  • the thin film 12 has a low electric resistance.
  • the thin film 12 may include an amorphous Zn compound or amorphous ZnO.
  • the thickness of the thin film 12 may be 5 nm or more and 2000 nm or less, or 5 nm or more and 200 nm or less. The thinner the thin film 12 is, the shorter the distance between the phosphor unit 20 and the substrate 10, and thus the better thermal conductivity is obtained.
  • the thin film 12 may be omitted and the phosphor portion 20 may be in direct contact with the substrate body 11.
  • the substrate body 11 is made of crystalline GaN or crystalline ZnO
  • the matrix 21 made of crystalline ZnO can be directly formed on the substrate body 11. Even when the matrix 21 is not crystalline, the thin film 12 may be omitted and the phosphor portion 20 may be in direct contact with the substrate body 11.
  • particles 122 of the phosphor 22 are dispersed in the matrix 21.
  • the particles 122 of the phosphor 22 are separated from each other. However, the particles 122 of the phosphor 22 may be in contact with each other.
  • the filler particles 23 may be located between the two particles 122 of the phosphor 22 or may be located between the particles 122 of the phosphor 22 and the substrate 10.
  • the filler particles 23 are in contact with the particles 122 of the phosphor 22, for example. Specifically, the filler particles 23 are adhered to the particles 122 of the phosphor 22.
  • adheresion means the state where two objects are attached to each other.
  • “adhesion” is used as a term including “adhesion”, “adhesion”, “adhesion” and the like.
  • one filler particle 23 is adhered to both two particles 122 of the phosphor 22
  • one filler particle 23 is the particle 122 of the phosphor 22 and the substrate. 10 is adhered
  • one filler particle 23 is adhered to both the particles 122 of the phosphor 22 and the matrix 21.
  • the plurality of filler particles 23 may be separated from each other or may be in contact with each other.
  • the plurality of filler particles 23 may have a lump shape by being adhered to each other.
  • the filler particles 23 may adhere to the particles 122 of the phosphor 22 to partially cover the surface of the particles 122 of the phosphor 22.
  • the particles 122 of the phosphor 22 and the filler particles 23 may be stacked like a stone wall.
  • the material of the phosphor 22 is not particularly limited. Various fluorescent substances may be used as the material of the phosphor 22. Specifically, Y 3 Al 5 O1 2: Ce (YAG), Y 3 (Al, Ga) 5 O 12: Ce (GYAG), Lu 3 Al 5 O 12: Ce (LuAG), (Si, Al) 6 (O,N) 8 :Eu( ⁇ -SiAlON), (La,Y) 3 Si 6 N 11 :Ce(LYSN), Lu 2 CaMg 2 Si 3 O 12 :Ce(LCMS) and other fluorescent substances are used. Can be done.
  • the phosphor 22 may further include a material other than the fluorescent substance. Examples of the other material include a material having a light-transmitting property.
  • the translucent material examples include glass, SiO 2 , Al 2 O 3 and the like.
  • the phosphor 22 may include a plurality of types of phosphors having different compositions. The material of the phosphor 22 is selected according to the chromaticity of the light to be emitted from the wavelength conversion member 100.
  • the average particle diameter of the particles 122 of the phosphor 22 is, for example, in the range of 0.1 ⁇ m or more and 50 ⁇ m or less.
  • the average particle size of the particles 122 of the phosphor 22 may be larger than 10 ⁇ m.
  • the average particle size of the particles 122 of the phosphor 22 can be specified, for example, by the following method. First, the cross section of the wavelength conversion member 100 is observed with a scanning electron microscope. In the obtained electron microscope image, the area of the particles 122 of the specific phosphor 22 is calculated by image processing. The diameter of a circle having the same area as the calculated area is regarded as the particle diameter (particle diameter) of the particles 122 of the specific phosphor 22.
  • the particle diameters of the particles 122 of the phosphor 22 of an arbitrary number (for example, 50) are calculated, and the average value of the calculated values is regarded as the average particle diameter of the particles 122 of the phosphor 22.
  • the shape of the particles 122 of the phosphor 22 is not limited.
  • the shape of the particles 122 of the phosphor 22 may be spherical, ellipsoidal, scaly, or fibrous.
  • the method for measuring the average particle size is not limited to the above method.
  • the filler particles 23 are dispersed in the matrix 21.
  • the filler particles 23 include a resin material.
  • the filler particles 23 may include a resin material as a main component.
  • the “main component” means a component contained in the filler particles 23 most in a weight ratio.
  • the filler particles 23 are substantially made of a resin material, for example. "Consisting essentially of” means excluding other ingredients that modify the essential characteristics of the material referred to. However, the filler particles 23 may contain impurities in addition to the resin material.
  • the resin material may include a thermoplastic resin or a thermosetting resin.
  • the thermoplastic resin includes, for example, at least one selected from the group consisting of polystyrene (PS), methacrylic resin and polycarbonate (PC).
  • the methacrylic resin contains, for example, polymethylmethacrylate (PMMA).
  • PMMA polymethylmethacrylate
  • the thermoplastic resin may include a thermoplastic elastomer.
  • examples of the thermoplastic elastomer include styrene elastomer, olefin elastomer, vinyl chloride elastomer, urethane elastomer, ester elastomer and amide elastomer.
  • Elastomer means a material having rubber elasticity.
  • the thermosetting resin includes, for example, at least one selected from the group consisting of silicone resin and epoxy resin.
  • the silicone resin is, for example, a polymer compound having a siloxane bond.
  • the silicone resin has, for example, a siloxane bond in the main skeleton.
  • examples of the silicone resin include dimethylpolysiloxane and polyorganosilsesquioxane.
  • Polyorganosilsesquioxane has, for example, a structure in which three-dimensional network cross-links are formed by siloxane bonds. This structure is represented by, for example, the general formula (RSiO 3/2 ) n . In this general formula, R is, for example, an alkyl group.
  • the thermosetting resin may include a thermosetting elastomer.
  • thermosetting elastomers include urethane rubber, silicone rubber, and fluororubber.
  • Silicone rubber is a silicone resin having rubber elasticity. Silicone rubber has, for example, a structure in which dimethylpolysiloxane is crosslinked.
  • filler particles containing silicone resin or silicone rubber for example, KMP series, KSP series, X-52 series, etc. are commercially available from Shin-Etsu Chemical Co., Ltd., EP series, TREFIL series, 30- 424 Additive is commercially available.
  • the resin material contains a polymer compound having a siloxane bond
  • the filler particles 23 have excellent heat resistance.
  • the filler particles 23 may have a surface 24 modified with a functional group. At this time, the filler particles 23 have excellent dispersibility. That is, the surface 24 modified with the functional group can suppress the aggregation of the filler particles 23.
  • the functional group that modifies the surface 24 include an epoxy group, a (meth)acryloyl group, and a methyl group.
  • the average particle diameter of the filler particles 23 may be 0.1 ⁇ m or more and 20 ⁇ m or less, or 1.0 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size of the filler particles 23 is smaller than the average particle size of the particles 122 of the phosphor 22, for example.
  • the ratio (D2/D1) of the average particle diameter D2 of the filler particles 23 to the average particle diameter D1 of the particles 122 of the phosphor 22 is, for example, 0.01 or more and 0.90 or less.
  • the average particle size of the filler particles 23 can be measured by the same method as the average particle size of the particles 122 of the phosphor 22.
  • the value of V2/(V1+V2) defined by the total volume V1 of the particles 122 of the phosphor 22 and the total volume V2 of the filler particles 23 may be 0.01 or more and 0.70 or less, and may be 0.05 or less. It may be 0.16 or less.
  • the specific gravity of the filler particles 23 is, for example, 0.5 g/cm 3 or more and 1.5 g/cm 3 or less.
  • the total volume V1 of the particles 122 of the phosphor 22 is the total volume of the phosphor 22.
  • the shape of the filler particles 23 is not particularly limited.
  • the shape of the filler particles 23 may be spherical, ellipsoidal, scaly, or fibrous.
  • FIG. 2 shows an example of a cross section of the filler particles 23.
  • the filler particles 23 may have a core 30 and a shell 31 that covers the core 30.
  • the shell 31 may cover the entire surface of the core 30 or may partially cover the surface of the core 30.
  • the shell 31 is in contact with the core 30, for example.
  • the composition of the core 30 is different from that of the shell 31, for example.
  • the core 30 is made of silicone rubber
  • the shell 31 is made of a silicone resin other than silicone rubber.
  • the shape of the core 30 is, for example, spherical.
  • the shell 31 is composed of a plurality of particles.
  • the shell 31 may have a layered shape.
  • the average particle size of the particles forming the shell 31 is, for example, 1 nm or more and 1 ⁇ m or less.
  • the filler particles 23 have rubber elasticity.
  • the rubber hardness of the filler particles 23 may be 10 or more and 90 or less, or 30 or more and 75 or less.
  • the rubber hardness of the filler particles 23 can be measured as follows, for example, by a method according to JIS (Japanese Industrial Standard) K6253-3:2012. First, a test piece having the same composition as the filler particles 23 is prepared. The shape of the test piece is specified in JIS K6253-3:2012. For example, the rubber hardness of the test piece is measured by a method using a type A durometer specified in JIS K6253-3:2012. The rubber hardness of the obtained test piece can be regarded as the rubber hardness of the filler particles 23.
  • the method for measuring rubber hardness is not limited to the above method.
  • the glass transition temperature Tg of the filler particles 23 is not particularly limited.
  • the glass transition temperature Tg of the filler particles 23 may be, for example, 50° C. or higher and 300° C. or lower.
  • the glass transition temperature Tg of the filler particles 23 may be 30° C. or lower, or 0° C. or lower.
  • the glass transition temperature Tg of silicone rubber is -125°C.
  • the lower limit value of the glass transition temperature Tg of the filler particles 23 is, for example, ⁇ 273° C.
  • room temperature means 25° C. or higher and 30° C. or lower.
  • the glass transition temperature Tg of the filler particles 23 can be measured, for example, by using a differential scanning calorimeter (DSC) by a method according to JIS K7121:1987. With respect to the filler particles 23 containing a silicone rubber or the like and having a glass transition temperature Tg of 0° C. or lower, when the specific glass transition temperature Tg of the filler particles 23 is specified, the glass transition temperature Tg is 0° C. or lower. A DSC capable of measuring is used. However, in the present disclosure, the method for measuring the glass transition temperature Tg is not limited to the above method.
  • the filler particles 23 When the filler particles 23 are irradiated with the excitation light, the filler particles 23 do not emit fluorescent light or emit only fluorescent light having a negligible intensity.
  • the light absorption rate of the filler particles 23 is not particularly limited.
  • the absorptance of the filler particles 23 with respect to light having a wavelength of 550 nm is preferably 25% or less, more preferably 10% or less, and further preferably 1% or less.
  • the filler particles 23 may not substantially absorb light having a wavelength of 550 nm.
  • the absorptance of the filler particles 23 with respect to light having a wavelength of 450 nm is preferably 25% or less, more preferably 10% or less, and further preferably 1% or less.
  • the filler particles 23 do not have to substantially absorb light having a wavelength of 450 nm.
  • the light absorptance of the filler particles 23 can be measured using, for example, a commercially available absolute PL quantum yield measuring device.
  • the absolute PL quantum yield measuring device is a device that measures the absolute value of the emission quantum yield of a sample such as a fluorescent material for a light emitting diode (LED) by a photoluminescence (PL) method.
  • the emission quantum yield of a sample can be measured by the following method using a sample holder for measurement and a petri dish for measuring powder. First, the sample is placed inside the petri dish. Next, this petri dish is placed inside the integrating sphere. A sample is irradiated with excitation light having a specific wavelength that is separated from a xenon light source.
  • the emission quantum yield of the sample can be measured by measuring the light emitted from the sample.
  • the light absorption rate of the filler particles 23 can be measured, for example, by the following method. First, an empty petri dish on which no sample is placed is placed inside the integrating sphere. The emission quantum yield is measured on an empty petri dish. Thereby, the number of photons of the excitation light can be measured in the state where the sample is not arranged. Next, a petri dish on which the filler particles 23 are arranged is arranged inside the integrating sphere as a sample. The emission quantum yield of the filler particles 23 is measured. Thereby, the number of photons of the excitation light in the state where the filler particles 23 are arranged can be measured.
  • the petri dish is made of, for example, synthetic quartz that absorbs little light in the measurement wavelength range.
  • the bottom surface of the dish has, for example, a circular shape in plan view.
  • the diameter of the bottom surface of the dish in plan view is, for example, about 17 mm.
  • the thickness of the petri dish is, for example, about 5 mm.
  • the dish has, for example, a lid.
  • the absorptance of the filler particles 23 with respect to light having a wavelength of 550 nm is preferably 25% or less, more preferably 10% or less, and further preferably Is 1% or less.
  • the absorptivity of the filler particles 23 for light having a wavelength of 550 nm is preferably 25% or less, more preferably 10% or less, and further preferably Is 1% or less.
  • the matrix 21 includes an inorganic material.
  • the inorganic material may include inorganic crystals. Inorganic materials, for example, ZnO, SiO 2, Al 2 O 3, SnO 2, TiO 2, PbO, B 2 O 3, P 2 O 5, TeO 2, V 2 O 5, Bi 2 O 3, Ag 2 O , Tl 2 O and BaO.
  • the matrix 21 may include glass as an inorganic material.
  • the matrix 21 contains, for example, zinc oxide (ZnO).
  • ZnO is suitable for the material of the matrix 21 from the viewpoint of transparency and thermal conductivity.
  • ZnO has high thermal conductivity. Therefore, when ZnO is used as the material of the matrix 21, the heat of the phosphor portion 20 can be easily released to the outside (mainly the substrate 10). Thereby, the temperature rise of the phosphor 22 can be suppressed.
  • the matrix 21 may contain ZnO as a main component.
  • the matrix 21 is substantially made of ZnO, for example. However, the matrix 21 may contain impurities in addition to ZnO.
  • ZnO as a material of the matrix 21 is a ZnO single crystal or a ZnO polycrystal.
  • ZnO has a wurtzite crystal structure.
  • the matrix 21 is formed by crystal growth, the matrix 21 has a crystal structure according to the crystal structure of the thin film 12, for example. That is, when a polycrystal of ZnO oriented along the c-axis is used as the thin film 12, the matrix 21 has a polycrystal of ZnO oriented along the c-axis.
  • “ZnO oriented in the c-axis” means that the plane parallel to the main surface of the substrate 10 is the c-plane.
  • the “main surface” means the surface of the substrate 10 having the largest area.
  • the c-axis oriented ZnO polycrystal includes a plurality of columnar crystal grains oriented along the c-axis. In a c-axis oriented ZnO polycrystal, there are few crystal grain boundaries in the c-axis direction. “The columnar crystal grains are oriented in the c-axis” means that the growth of ZnO in the c-axis direction is faster than the growth of ZnO in the a-axis direction, and vertically long ZnO crystal grains are formed on the substrate 10. Means that The c-axis of ZnO crystal grains is parallel to the normal direction of the substrate 10.
  • the c-axis of the ZnO crystal grains is parallel to the normal line direction of the surface of the phosphor section 20 that receives the excitation light.
  • ZnO is a c-axis oriented crystal
  • XRD X-ray diffraction
  • the luminous efficiency of the wavelength conversion member 100 is preferably 85% or more, more preferably 90% or more.
  • the light emission efficiency of the wavelength conversion member 100 means that, out of the excitation light irradiated on the wavelength conversion member 100, the wavelength conversion member 100 radiates the number of photons of the excitation light absorbed by the wavelength conversion member 100. It means the ratio of the number of photons of fluorescent light.
  • the luminous efficiency of the wavelength conversion member 100 can be measured by, for example, a multi-channel spectroscope.
  • the emission efficiency of the wavelength conversion member 100 is a value when the wavelength conversion member 100 is irradiated with excitation light having an energy density of 2 W/mm 2 .
  • the light emission efficiency of the wavelength conversion member 100 is preferably 85% or more, more preferably 90% or more.
  • FIG. 3A shows a cross section of the substrate 10 used in the method of manufacturing the wavelength conversion member 100.
  • a crystalline ZnO thin film is formed as the thin film 12 on the substrate body 11.
  • vapor phase film forming methods such as vapor deposition method, electron beam vapor deposition method, reactive plasma vapor deposition method, ion assisted vapor deposition method, sputtering method and pulse laser deposition method are used.
  • the thin film 12 may be formed by the following method. First, a sol containing a precursor such as zinc alkoxide is prepared. The sol is applied to the substrate body 11 by a printing method to form a coating film. Next, the thin film 12 is obtained by heating the coating film.
  • the thin film 12 may be a ZnO single crystal thin film or a ZnO polycrystalline thin film.
  • FIG. 3B is a diagram showing a state in which the precursor 25 of the phosphor unit 20 is formed on the substrate shown in FIG. 3A.
  • the particles 122 of the phosphor 22 and the filler particles 23 are arranged on the substrate 10.
  • a dispersion liquid containing the particles 122 of the phosphor 22 and the filler particles 23 is prepared.
  • the substrate 10 is placed in the dispersion liquid, and the particles 122 of the phosphor 22 and the filler particles 23 are deposited on the substrate 10 by using an electrophoretic method.
  • the particles 122 of the phosphor 22 and the filler particles 23 can be arranged on the substrate 10.
  • the particles 122 of the phosphor 22 and the filler particles 23 can be arranged on the substrate 10 by placing the substrate 10 in the dispersion liquid and allowing the particles 122 of the phosphor 22 and the filler particles 23 to settle.
  • the particles 122 of the phosphor 22 and the filler particles 23 can be arranged on the substrate 10 by using a coating liquid containing the particles 122 of the phosphor 22 and the filler particles 23 and by a thick film forming method such as a printing method.
  • the particles 122 of the phosphor 22 are fixed to the substrate 10 by the filler particles 23.
  • the filler particles 23 are heated, the resin contained in the filler particles 23 is softened. This allows the filler particles 23 to adhere to both the particles 122 of the phosphor 22 and the substrate 10 and fix the particles 122 of the phosphor 22 to the substrate 10.
  • the filler particles 23 have rubber elasticity, the contact area between the filler particles 23 and the particles of the phosphor 22 is wide. At this time, the filler particles 23 can firmly fix the particles 122 of the phosphor 22.
  • the filler particles 23 may not be directly adhered to the substrate 10, but may be adhered to both the particles 122 of the phosphor 22 fixed to the substrate 10 and the particles 122 of the other phosphor 22. When the filler particles 23 have adhesiveness at room temperature, the heat treatment of the filler particles 23 may be omitted.
  • the precursor 25 is obtained by fixing the particles 122 of the phosphor 22 to the substrate 10 with the filler particles 23.
  • the precursor 25 has a porous structure composed of filler particles 23 and particles 122 of the phosphor 22. In other words, the surface of the thin film 12 facing the precursor 25 has both a region covered with the filler particles 23 and a region not covered with the filler particles 23.
  • the conditions for heating the filler particles 23 are not particularly limited.
  • the ambient temperature when heating the filler particles 23 may be 50° C. or higher and 400° C. or lower, or 100° C. or higher and 300° C. or lower.
  • the heating time of the filler particles 23 may be 5 minutes or more and 5 hours or less.
  • the matrix 21 is formed so that the filler particles 23 and the particles 122 of the phosphor 22 are embedded in the matrix 21.
  • the phosphor part 20 can be manufactured.
  • the phosphor part 20 can be manufactured by the following method. First, a sol containing silicon alkoxide is prepared. The sol is applied on the precursor 25. This allows the porous structure of the precursor 25 to be filled with the sol. The sol is gelled and fired. Thereby, the phosphor part 20 is obtained. Even when the matrix 21 contains an inorganic material other than glass, the phosphor part 20 can be formed using a sol containing an alkoxide, as in the above method. Further, by filling the inside of the precursor 25 with a low-melting glass containing an inorganic material, the phosphor portion 20 can be formed.
  • a solution growth method using a solution containing Zn ions can be used as a method of forming the matrix 21.
  • the solution growth method includes a chemical solution deposition method that is performed under atmospheric pressure, a hydrothermal synthesis method that is performed under a pressure higher than atmospheric pressure, and an electrolytic deposition method that applies voltage or current. Electrochemical deposition) or the like is used.
  • a solution for crystal growth for example, an aqueous solution of zinc nitrate (Zinc nitrate: Zn(NO 3 ) 2 ) containing hexamethylenetetramine (C 6 H 12 N 4 ) is used.
  • the pH of the aqueous solution of zinc nitrate is, for example, 5 or more and 7 or less.
  • the matrix 21 is crystal-grown on the thin film 12 by the solution growth method.
  • the matrix 21 also undergoes crystal growth inside the porous structure of the precursor 25.
  • the phosphor section 20 is obtained. Details of the solution growth method are disclosed in, for example, Japanese Patent Laid-Open No. 2004-315342.
  • the manufacturing method of the present embodiment may further include removing the substrate 10 from the wavelength conversion member 100 after forming the matrix 21.
  • the substrate body 11 and the thin film 12 may be separated by heating the substrate body 11. Thereby, the substrate 10 can be removed from the wavelength conversion member 100.
  • the substrate body 11 and the wavelength conversion member 100 may be separated by focusing the laser light on the interface between the substrate body 11 and the thin film 12.
  • the particles 122 of the phosphor 22 are fixed to the substrate 10 by the filler particles 23. Therefore, it is possible to prevent the particles 122 of the phosphor 22 from falling off the substrate 10 before the matrix 21 is formed. That is, in the wavelength conversion member 100 of this embodiment, the particles 122 of the phosphor 22 are prevented from falling off. Thereby, the yield of the wavelength conversion member 100 can be improved. Since the particles 122 of the phosphor 22 are prevented from falling off, the phosphor part 20 of the wavelength conversion member 100 contains the particles 122 of the phosphor 22 in a practically sufficient amount.
  • FIG. 4 is a schematic sectional view of the wavelength conversion member 110 according to the second embodiment.
  • the phosphor 22 of the wavelength conversion member 110 has the shape of a block 222.
  • the structure of the wavelength conversion member 110 is the same as the structure of the wavelength conversion member 100 of the first embodiment. Therefore, the elements common to the wavelength conversion member 100 of the first embodiment and the wavelength conversion member 110 of the present embodiment are denoted by the same reference numerals, and the description thereof may be omitted. That is, the following description of each embodiment can be applied to each other as long as there is no technical contradiction. Further, the respective embodiments may be combined with each other as long as there is no technical contradiction.
  • the block 222 of the phosphor 22 has, for example, a polyhedron shape.
  • the shape of the phosphor 22 may be a rectangular parallelepiped shape or a cubic shape.
  • the shape of the phosphor 22 may be a lump.
  • the block 222 of the block-shaped phosphor 22 can be produced, for example, by crushing a plate-shaped phosphor.
  • the size of the block 222 of the phosphor 22 may be larger than the size of the phosphor particles 122.
  • a part of the plurality of phosphors 22 is partially exposed from the side surface of the phosphor part 20.
  • the phosphor 22 may be exposed from the upper surface of the phosphor unit 20. That is, the phosphor 22 may be partially embedded in the matrix 21, or may not be completely embedded.
  • FIG. 5 is a schematic sectional view of the wavelength conversion member 120 according to the third embodiment.
  • the plurality of phosphors 22 are arranged at equal intervals in the direction orthogonal to the thickness direction of the phosphor part 20.
  • the upper surface and the lower surface of the phosphor 22 may extend in a direction orthogonal to the thickness direction of the phosphor unit 20.
  • the upper surface and the lower surface of the phosphor 22 may be parallel to each other.
  • the side surface of the phosphor 22 may extend in the thickness direction of the phosphor unit 20.
  • the side surfaces of the phosphor 22 may be parallel to each other.
  • the filler particles 23 are adhered to both the lower surface of the phosphor 22 and the substrate 10, for example.
  • the filler particles 23 may be adhered to both the side surface of the phosphor 22 and the side surface of another phosphor 22.
  • some of the plurality of phosphors 22 may be exposed from the phosphor part 20.
  • the phosphor 22 may be exposed from the upper surface of the phosphor unit 20. That is, the phosphor 22 may be partially embedded in the matrix 21, and may not be completely embedded.
  • FIG. 6 is a schematic sectional view of the wavelength conversion member 130 according to the fourth embodiment.
  • the phosphor part 20 of the wavelength conversion member 130 has one phosphor 22.
  • the shape of the phosphor 22 is, for example, a plate shape.
  • the size of the plate-shaped phosphor 22 may be larger than the size of the phosphor particles 122.
  • the structure of the wavelength conversion member 130 is the same as the structure of the wavelength conversion member 100 according to the first embodiment.
  • the phosphor 22 may have a plurality of holes 22a.
  • the plurality of holes 22a are, for example, through holes that penetrate the phosphor 22 in the thickness direction.
  • the matrix 21 is filled in each of the plurality of holes 22a, for example. In FIG. 6, hatching of the matrix 21 is omitted for the sake of explanation.
  • the plurality of holes 22a can be formed, for example, by irradiating the plate-shaped phosphor 22 with a laser beam or an ion beam.
  • the plurality of holes 22a can also be formed, for example, by etching the plate-shaped phosphor 22.
  • the filler particles 23 are adhered to both the lower surface of the phosphor 22 and the substrate 10, for example.
  • the phosphor unit 20 may include a plurality of plate-shaped phosphors 22.
  • a plurality of plate-shaped phosphors 22 may be arranged in the thickness direction of the phosphor unit 20.
  • the filler particles 23 may be bonded to each of the upper surface of the phosphor 22 and the lower surface of the other phosphor 22.
  • the upper surface of the plate-shaped phosphor 22 may be exposed from the phosphor part 20.
  • the side surface of the plate-shaped phosphor 22 may be exposed from the phosphor portion 20. That is, the plate-shaped phosphor 22 may be partially embedded in the matrix 21 or may not be completely embedded.
  • FIG. 7 is a schematic sectional view of the wavelength conversion member 140 according to the fifth embodiment. As shown in FIG. 7, in the wavelength conversion member 140, each of the plurality of holes 22 a is opened only on the lower surface of the phosphor 22 and is not opened on the upper surface. The plurality of holes 22a may be opened only on the upper surface of the phosphor 22 and may be opened on the lower surface.
  • the upper surface of the plate-shaped phosphor 22 may be exposed from the phosphor unit 20.
  • the side surface of the plate-shaped phosphor 22 may be exposed from the phosphor portion 20. That is, the plate-shaped phosphor 22 may be partially embedded in the matrix 21 or may not be completely embedded.
  • FIG. 8 is a schematic cross-sectional view of the optical device 200 according to the embodiment.
  • the optical device 200 includes the wavelength conversion member 100 and the excitation light source 40.
  • the excitation light source 40 emits excitation light.
  • the wavelength conversion member 100 is arranged on the optical path along which the excitation light emitted from the excitation light source 40 travels.
  • the phosphor portion 20 of the wavelength conversion member 100 is located between the excitation light source 40 and the substrate 10 of the wavelength conversion member 100.
  • the optical device 200 is a reflective optical device. Instead of the wavelength conversion member 100, the wavelength conversion member 110 described with reference to FIG. 4, the wavelength conversion member 120 described with reference to FIG. 5, the wavelength conversion member 130 described with reference to FIG.
  • the wavelength conversion member 140 described with reference to FIG. It is also possible to use the combination of the wavelength conversion members 100, 110, 120, 130, 140 in the optical device 200.
  • the excitation light source 40 is typically a semiconductor light emitting element.
  • the semiconductor light emitting element is, for example, a light emitting diode (LED), a super luminescent diode (SLD) or a laser diode (LD).
  • the excitation light source 40 may be configured by one LD or may be configured by a plurality of LDs.
  • the plurality of LDs may be optically coupled.
  • the excitation light source 40 emits blue light, for example.
  • blue light is light having a peak wavelength of 420 nm or more and 470 nm or less.
  • the optical device 200 further includes an optical system 50.
  • the optical system 50 may be located on the optical path of the excitation light emitted from the excitation light source 40.
  • the optical system 50 includes optical components such as a lens, a mirror, and an optical fiber.
  • FIG. 9 is a schematic cross-sectional view of an optical device 210 according to the modification.
  • the excitation light source 40 faces the substrate 10 of the wavelength conversion member 100.
  • the substrate 10 is transparent to the excitation light.
  • the excitation light passes through the substrate 10 and reaches the phosphor unit 20.
  • the optical device 210 is a transmissive optical device.
  • FIG. 10 is a schematic cross-sectional view of an optical device 220 according to another modification.
  • the optical device 220 of this embodiment includes a plurality of excitation light sources 40 and the wavelength conversion member 100.
  • the phosphor section 20 of the wavelength conversion member 100 is located between each of the plurality of excitation light sources 40 and the substrate 10 of the wavelength conversion member 100.
  • the plurality of excitation light sources 40 face the phosphor unit 20 of the wavelength conversion member 100.
  • the optical device 220 is suitable for use as a projector.
  • FIG. 11 is a perspective view of the wavelength conversion member 100 included in the optical device 220.
  • the wavelength conversion member 100 of the optical device 220 has a wheel shape.
  • the substrate 10 of the wavelength conversion member 100 of the optical device 220 has a disc shape.
  • the substrate 10 has a through hole 13 and a transparent portion 14.
  • the through hole 13 extends in the thickness direction of the substrate 10.
  • the through hole 13 is located at the center of a virtual circle defined by the outer peripheral surface of the substrate 10, for example.
  • the light transmitting portion 14 that transmits light has an arc shape, that is, an annular fan shape.
  • the translucent part 14 may be in contact with the phosphor part 20.
  • the transparent portion 14 is, for example, a through hole.
  • the translucent portion 14 may be made of transparent resin or glass.
  • the translucent portion 14 may be made of a translucent material such as sapphire or quartz.
  • the phosphor portion 20 has an arc shape, that is, an annular fan shape.
  • the phosphor body 20 and the translucent portion 14 are arranged along an imaginary circle defined by the outer peripheral surface of the phosphor body 20.
  • the phosphor portion 20 partially covers the main surface of the substrate 10.
  • the wavelength conversion member 100 may include a plurality of phosphor parts 20.
  • a plurality of phosphor parts 20 may be arranged along an imaginary circle defined by the outer peripheral surface of the specific phosphor part 20.
  • the phosphors 22 included in the plurality of phosphor parts 20 may have different compositions from each other.
  • the optical device 220 further includes a motor 60.
  • the wavelength conversion member 100 is arranged on the motor 60. Specifically, the shaft of the motor 60 is inserted into the through hole 13 of the substrate 10.
  • the wavelength conversion member 100 is fixed to the motor 60 by a fixing member such as a screw.
  • the wavelength conversion member 100 is rotated by the motor 60, and the wavelength conversion member 100 is irradiated with the excitation light emitted from the plurality of excitation light sources 40. Thereby, it is possible to prevent the excitation light from being locally applied to the phosphor portion 20. Therefore, it is possible to prevent the temperature of the phosphor unit 20 from rising due to the excitation light and the fluorescence light.
  • the optical device 220 further includes a collimator lens 51, a dichroic mirror 52, lenses 53 and 54, and reflection mirrors 55, 56 and 57.
  • the collimator lens 51, the dichroic mirror 52, and the lens 53 are located between each of the plurality of excitation light sources 40 and the wavelength conversion member 100.
  • the collimating lens 51, the dichroic mirror 52, and the lens 53 are arranged in this order on the optical path where the excitation light emitted from the plurality of excitation light sources 40 travels.
  • the lens 54, the reflection mirrors 55, 56, 57 and the dichroic mirror 52 are arranged in this order on the optical path along which the excitation light transmitted through the wavelength conversion member 100 travels.
  • the collimator lens 51 collects the excitation light emitted from the plurality of excitation light sources 40. Parallel light is obtained by the collimator lens 51.
  • the dichroic mirror 52 can transmit the excitation light and efficiently reflect the light emitted from the wavelength conversion member 100.
  • the lens 53 collects the excitation light and the light emitted from the wavelength conversion member 100.
  • the lens 54 collects the excitation light that has passed through the wavelength conversion member 100. Parallel light is obtained by the lens 54.
  • Each of the reflection mirrors 55, 56, 57 reflects the excitation light.
  • the optical device 220 further includes a heat sink 41.
  • the heat sink 41 is in contact with the plurality of excitation light sources 40. With the heat sink 41, the heat of the plurality of excitation light sources 40 can be easily released to the outside. As a result, it is possible to prevent the temperatures of the plurality of pumping light sources 40 from rising, and thus it is possible to suppress a decrease in energy conversion efficiency in the plurality of pumping light sources 40.
  • a plurality of excitation light sources 40 emit excitation light.
  • the excitation light is condensed by the collimator lens 51 and converted into parallel light.
  • the excitation light passes through the dichroic mirror 52 and is further condensed by the lens 53.
  • the lens 53 can adjust the spot diameter of the excitation light that should be incident on the phosphor unit 20.
  • the excitation light enters the wavelength conversion member 100.
  • the wavelength conversion member 100 is rotated by the motor 60. Therefore, the operation of the optical device 220 has a period in which the excitation light is incident on the phosphor unit 20 and a period in which the excitation light is transmitted through the light transmitting unit 14.
  • the wavelength conversion member 100 emits light having a wavelength longer than the wavelength of the excitation light while the excitation light is incident on the phosphor unit 20.
  • the excitation light is incident on the lens 54 during the period in which the excitation light is transmitted through the transparent portion 14.
  • the light emitted from the wavelength conversion member 100 is condensed by the lens 53 and converted into parallel light.
  • the light emitted from the wavelength conversion member 100 is reflected by the dichroic mirror 52 and sent to the outside of the optical device 220.
  • the excitation light passes through the translucent portion 14, the excitation light is condensed by the lens 54 and converted into parallel light.
  • the excitation light that has passed through the lens 54 is reflected by the reflection mirrors 55, 56 and 57.
  • the excitation light passes through the dichroic mirror 52.
  • the excitation light is sent to the outside of the optical device 220. At this time, the excitation light mixes with the light emitted from the wavelength conversion member 100.
  • FIG. 12 is a schematic configuration diagram of the projector 500 according to the present embodiment.
  • the projector 500 includes an optical device 220, an optical unit 300, and a controller 400.
  • the optical unit 300 converts the light emitted from the optical device 220 and projects an image or video on an object outside the projector 500.
  • the object may be, for example, a screen.
  • the optical unit 300 includes a condenser lens 70, a rod integrator 71, a lens unit 72, a display element 73, and a projection lens 74.
  • the condenser lens 70 condenses the light emitted from the optical device 220. Thereby, the light emitted from the optical device 220 is condensed on the incident end surface of the rod integrator 71.
  • the rod integrator 71 has, for example, a rectangular prism shape.
  • the light incident on the incident end face of the rod integrator 71 is repeatedly totally reflected inside the rod integrator 71, and is emitted from the emitting end face of the rod integrator 71.
  • the light emitted from the rod integrator 71 has a uniform luminance distribution.
  • the lens unit 72 has a plurality of lenses. Examples of the plurality of lenses included in the lens unit 72 include a condenser lens and a relay lens.
  • the lens unit 72 guides the light emitted from the rod integrator 71 to the display element 73.
  • the display element 73 converts light that has passed through the lens unit 72. As a result, an image or video to be projected on an object outside the projector 500 is obtained.
  • the display element 73 is, for example, a digital mirror device (DMD).
  • the projection lens 74 projects the light converted by the display element 73 to the outside of the projector 500. Thereby, the light converted by the display element 73 can be projected on the target object.
  • the projection lens 74 has one or more lenses. Examples of the lens included in the projection lens 74 include a biconvex lens and a plano-concave lens.
  • the control unit 400 controls each unit of the optical device 220 and the optical unit 300.
  • the control unit 400 is, for example, a microcomputer or a processor.
  • FIG. 13 is a perspective view of the projector 500.
  • the projector 500 further includes a housing 510.
  • the housing 510 houses the optical device 220, the optical unit 300, and the control unit 400. A part of the projection lens 74 of the optical unit 300 is exposed to the outside of the housing 510.
  • FIG. 14 is a schematic configuration diagram of the illumination device 600 according to the present embodiment.
  • the lighting device 600 includes an optical device 200 and an optical component 80.
  • the optical device 210 described with reference to FIG. 9 can also be used.
  • the optical component 80 is a component for guiding the light emitted from the optical device 200 forward, and is specifically a reflector.
  • the optical component 80 has, for example, a metal film of Al, Ag, or the like, or an Al film having a dielectric layer formed on the surface thereof.
  • a filter 81 may be provided in front of the optical device 200.
  • the filter 81 absorbs or scatters blue light so that the coherent blue light from the excitation light source of the optical device 200 does not directly go out.
  • the lighting device 600 may be a so-called reflector type or a projector type.
  • the lighting device 600 is, for example, a vehicle headlamp.
  • [Filler particles] Filler particles of Samples 1 to 5 were prepared.
  • the filler particles of Sample 1 were made of alumina.
  • the filler particles of sample 2 were made of polystyrene.
  • the filler particles of Sample 3 were made of polymethylmethacrylate (PMMA).
  • the filler particles of Sample 4 were silicone composite particles composed of a core made of silicone rubber and a shell made of a silicone resin other than silicone rubber.
  • the filler particles of sample 5 were made of silicone rubber.
  • filler particles having an absorption rate of 10% or less for light having a wavelength of 550 nm were evaluated to have good heat resistance (indicated by "G”).
  • the filler particles having an absorptance for light having a wavelength of 550 nm of more than 10% and 25% or less were evaluated to have a slightly good heat resistance (indicated by "F”).
  • the filler particles having an absorptivity for light having a wavelength of 550 nm of more than 25% were evaluated as having poor heat resistance (indicated by “NG”).
  • the filler particles having an absorption rate of 10% or less for light having a wavelength of 550 nm were evaluated to have good heat resistance at 200° C. (indicated by “G”).
  • the filler particles having an absorptivity for light with a wavelength of 550 nm of more than 10% and 25% or less were evaluated as having slightly good heat resistance at 200° C. (indicated by “F”).
  • the filler particles having an absorptance for light having a wavelength of 550 nm of more than 25% were evaluated as having poor heat resistance at 200° C. (indicated by “NG”).
  • the filler particles having an absorption rate of 10% or less for light having a wavelength of 550 nm were evaluated to have good heat resistance at 240° C. (indicated by “G”).
  • the filler particles having an absorptance for light having a wavelength of 550 nm of more than 10% and 25% or less were evaluated to have a slightly good heat resistance at 240° C. (indicated by “F”).
  • the filler particles having an absorptance for light having a wavelength of 550 nm of more than 25% were evaluated as having poor heat resistance at 240° C. (indicated by “NG”).
  • the filler particles of Samples 4 and 5 containing silicone rubber or silicone resin had not only excellent adhesiveness but also excellent heat resistance.
  • [Phosphor precursor] (Comparative Example 1)
  • the precursor of the phosphor part of Comparative Example 1 was produced by the following method. First, a crystalline ZnO thin film was formed on the substrate body. A silicon substrate provided with a reflective layer was used as the substrate body. The substrate body had a square shape in plan view. The length of one side of the substrate body in plan view was 5 mm. Phosphor particles were arranged on the ZnO thin film. Next, the phosphor particles were subjected to heat treatment. The heat treatment was performed at an ambient temperature of 200° C. for 10 minutes and then at an ambient temperature of 250° C. for 30 minutes. As a result, a precursor of the phosphor portion of Comparative Example 1 formed on the substrate was obtained.
  • the phosphor was made of Y 3 Al 5 O 12 :Ce(YAG).
  • the average particle size of the phosphor particles was 16 ⁇ m.
  • the thickness of the precursor was 80 ⁇ m.
  • the precursor had a circular shape in plan view.
  • the diameter of the precursor in plan view was 3 mm.
  • Comparative example 2 A precursor for the phosphor portion of Comparative Example 2 was obtained by the same method as in Comparative Example 1 except that the filler particles of Sample 1 were placed on the ZnO thin film together with the particles of the phosphor.
  • the value of V2/(V1+V2) defined by the total volume V1 of the particles of the phosphor (the total volume of the phosphor) and the total volume V2 of the filler particles is 0. It was 05.
  • Example 1 A precursor of the phosphor part of Example 1 was obtained by the same method as Comparative Example 2 except that the filler particles of Sample 1 were changed to the filler particles of Sample 2.
  • Example 2 A precursor of the phosphor part of Example 2 was obtained by the same method as Comparative Example 2 except that the filler particles of Sample 1 were changed to the filler particles of Sample 3.
  • Example 3 Phosphor part of Example 3 by the same method as Comparative Example 2 except that the filler particles of Sample 1 were changed to the filler particles of Sample 4 and the value of V2/(V1+V2) was adjusted to 0.16. A precursor of was obtained.
  • Example 4 A precursor for the phosphor part of Example 4 was obtained by the same method as Comparative Example 2 except that the filler particles of Sample 1 were changed to the filler particles of Sample 5.
  • Example 5 A precursor for the phosphor part of Example 5 was obtained in the same manner as in Example 4, except that the value of V2/(V1+V2) was adjusted to 0.16.
  • [Vibration test of precursor of phosphor part] A vibration test was performed on each of the precursors of the phosphor parts of Comparative Examples 1 and 2 and Examples 1 to 5.
  • the precursor of the phosphor portion was set together with the substrate in a chip case (CT100-066 manufactured by Dainichi Trading Co., Ltd.).
  • the chip case had a square pocket in plan view. The length of one side of the pocket in plan view was 6.6 mm. The depth of the pocket was 2.54 mm.
  • the chip case was set in the vibration tester. The chip case was vibrated by a vibration tester. At this time, the amplitude of the chip case was 4.5 mm. The vibration tester converts the rotation of the motor into vibration.
  • the value of the intensity of vibration at a rotation speed of the motor of 200 rpm was defined as 1
  • the value of the intensity of vibration at a rotation speed of the motor of 2500 rpm was defined as 10.
  • the vibration test started at a strength of 1. After that, the strength value was increased by 1 every 20 seconds. The vibration test was terminated 20 seconds after the vibration intensity reached a value of 10. The results of the vibration test are shown in Table 3.
  • the numerical value of the vibration test shows the strength of vibration when the particles of the phosphor are dropped from the precursor of the phosphor part.
  • the particles of the phosphor did not fall off even with the vibration of strength 10.
  • FIG. 15A shows a microscope image of the precursor of the phosphor part of Example 2 before carrying out the vibration test.
  • FIG. 15B shows a microscope image of the precursor of the phosphor part of Example 2 after the vibration test was performed. From FIG. 15A and FIG. 15B, it can be seen that the phosphor was dropped from the precursor of the phosphor part due to the large vibration.
  • FIG. 16A shows a microscope image of the precursor of the phosphor part of Example 3 before carrying out the vibration test.
  • FIG. 16B shows a microscope image of the precursor of the phosphor part of Example 3 after performing the vibration test. From FIGS. 16A and 16B, it can be seen that the fluorescent substance has fallen off from the precursor of the fluorescent substance portion due to the large vibration.
  • the number of substrates from which the precursor of the phosphor part had fallen off was counted.
  • the results of the immersion test are shown in Table 3. When the number of substrates from which the precursor of the phosphor part had fallen off by the immersion test was 0 or more and 3 or less, the result of the immersion test was evaluated as good (indicated by "G”). When this number was 4 or more and 10 or less, the result of the immersion test was evaluated as poor (indicated by "NG").
  • the phosphor precursors of Examples 1 to 5 provided with the filler particles containing the resin material have a higher phosphor content from the substrate than the phosphor precursors of Comparative Examples 1 and 2. Was completely suppressed.
  • a wavelength conversion member was produced using each of the precursors of the phosphor parts of Examples 2, 3, and 5. Specifically, a crystalline ZnO matrix was formed on the ZnO thin film by the solution growth method. An aqueous solution of zinc nitrate and hexamethylenetetramine was used as a solution for crystal growth. Thereby, the wavelength conversion members of Examples 2, 3, and 5 were obtained.
  • FIG. 17A shows a SEM image of a cross section of the wavelength conversion member of Example 2.
  • FIG. 17B is an enlarged view of the filler particles shown in FIG. 17A.
  • the filler particles adhered to the phosphor As can be seen from FIG. 17B, some of the filler particles contained in the wavelength conversion member were adhered to each other.
  • Each of the plurality of filler particles adhered to each other maintained the shape of the particles.
  • FIG. 18A shows a SEM image of a cross section of the wavelength conversion member of Example 3.
  • FIG. 18B is an enlarged view of the filler particles shown in FIG. 18A.
  • FIG. 18C is an enlarged view of another filler particle shown in FIG. 18A.
  • the filler particles adhered to the phosphor.
  • FIG. 18A shows a SEM image of a cross section of the wavelength conversion member of Example 3.
  • FIG. 18B is an enlarged view of the filler particles shown in FIG. 18A.
  • FIG. 18C is an enlarged view of another filler particle shown in FIG. 18A.
  • Luminous efficiency was measured for each of the wavelength conversion members of Examples 2, 3, and 5. Luminous efficiency was measured using a multi-channel spectrometer (MCPD-9800 manufactured by Otsuka Electronics Co., Ltd.) and an integrating sphere manufactured by Labsphere. The wavelength of the excitation light of the LD used was 445 nm. The energy density of the excitation light was 2 W/mm 2 . Table 4 shows the measurement results.
  • each of the wavelength conversion members of Examples 2, 3, and 5 was heated.
  • the wavelength conversion member was heated at an ambient temperature of 240° C. for 24 hours.
  • the luminous efficiency of the heated wavelength conversion member was measured by the method described above. Table 4 shows the measurement results.
  • the wavelength conversion members of Examples 2, 3, and 5 all had good luminous efficiency.
  • the wavelength conversion members of Examples 3 and 5 maintained good luminous efficiency even after being heat-treated.
  • the wavelength conversion member 100 (110, 120, 130, 140) of the present disclosure includes a matrix 21 containing an inorganic material, a phosphor 22 embedded in the matrix 21, and a filler embedded in the matrix 21 and containing a resin material. And particles 23.
  • the filler particles 23 include the resin material, the filler particles 23 can be adhered to the phosphor 22. Similarly, the filler particles 23 can be adhered to the substrate 10 used when manufacturing the wavelength conversion member. Therefore, the filler particles 23 can fix the phosphor 22 to the substrate 10. As a result, it is possible to prevent the phosphor 22 from falling off the substrate 10 before the matrix 21 is formed. That is, in the wavelength conversion member, the fluorescent substance 22 is prevented from falling off.
  • the wavelength conversion member may further include the substrate 10 that supports the matrix 21, and the filler particles 23 may be located between the phosphor 22 and the substrate 10. As a result, the fluorescent substance 22 is prevented from falling off in the wavelength conversion member.
  • the substrate 10 includes at least one selected from the group consisting of stainless steel, a composite material of aluminum and silicon carbide, a composite material of aluminum and silicon, a composite material of aluminum and carbon, and copper. You can leave. As a result, the thermal expansion coefficient of the substrate 10 is small. Therefore, even if the temperature of the substrate 10 rises due to the use of the wavelength conversion member, the wavelength conversion member has high reliability.
  • the matrix 21 may include an inorganic crystal. As a result, the matrix 21 has excellent heat dissipation.
  • the inorganic crystal may include zinc oxide.
  • the matrix 21 has a more excellent heat dissipation property.
  • the zinc oxide may be oriented along the c-axis.
  • the matrix 21 has a more excellent heat dissipation property.
  • the resin material may include a thermoplastic resin.
  • the resin material may include a thermosetting resin.
  • the filler particles 23 may have rubber elasticity. As a result, the contact area between the filler particles 23 and the phosphor 22 is wide. Therefore, the filler particles 23 can sufficiently fix the phosphor 22. As a result, in the wavelength conversion member, the phosphor 22 is further suppressed from falling off.
  • the resin material may include a polymer compound having a siloxane bond.
  • the filler particles 23 have excellent heat resistance.
  • the filler particles 23 may have the core 30 and the shell 31 that covers the core 30. Thereby, the filler particles 23 have excellent dispersibility.
  • the filler particles 23 may have a surface modified with a functional group. Thereby, the filler particles 23 have excellent dispersibility.
  • the absorptance of the filler particles 23 for light with a wavelength of 550 nm is preferably 25% or less. As a result, the wavelength conversion member has high luminous efficiency.
  • the value of V2/(V1+V2) defined by the volume V1 of the phosphor 22 and the total volume V2 of the filler particles 23 may be 0.05 or more and 0.16 or less. As a result, in the wavelength conversion member, the phosphor 22 is further suppressed from falling off.
  • the optical device 200 (210, 220) includes a wavelength conversion member 100 (110, 120, 130, 140) and an excitation light source 40 that irradiates the wavelength conversion member with excitation light. As a result, the fluorescent substance 22 is prevented from falling off in the wavelength conversion member included in the optical device.
  • the projector 500 includes the above wavelength conversion member. This prevents the fluorescent substance 22 from falling off in the wavelength conversion member included in the projector 500.
  • a phosphor 22 and filler particles 23 containing a resin material are arranged on the substrate 10.
  • the phosphor 22 is fixed to the substrate 10 by the filler particles 23.
  • the matrix 21 containing an inorganic material is formed so that each of the filler particles 23 and the phosphor 22 is embedded in the matrix 21. Thereby, the wavelength conversion member can be manufactured.
  • the phosphor 22 is fixed to the substrate 10 by the filler particles 23. Therefore, it is possible to prevent the phosphor 22 from falling off the substrate 10 before the matrix 21 is formed.
  • the phosphor 22 may be fixed to the substrate 10 by adhering the filler particles 23 to each of the phosphor 22 and the substrate 10. Thereby, the phosphor 22 can be easily fixed to the substrate 10.
  • the filler particles 23 may be adhered to each of the phosphor 22 and the substrate 10 by heating the filler particles 23. Thereby, the phosphor 22 can be easily fixed to the substrate 10.
  • the wavelength conversion member of the present disclosure includes, for example, general lighting devices such as ceiling lights; special lighting devices such as spotlights, stadium lighting, and studio lighting; vehicle lighting devices such as headlamps; projectors, head-up displays, and the like.
  • Projection device Medical or industrial endoscope light; Imaging device such as digital camera, mobile phone, smartphone; Personal computer (PC) monitor, notebook personal computer, TV, personal digital assistant (PDX), smartphone It can be used as a light source in liquid crystal display devices such as tablet PCs and mobile phones.
  • substrate 11 substrate body 12 thin film 20 phosphor part 21 matrix 22 phosphor 23 filler particle 30 core 31 shell 40 excitation light source 100, 110, 120, 130, 140 wavelength conversion member 200, 210, 220 optical device 500 projector 600 illumination device

Abstract

This wavelength conversion member is provided with: a matrix including an inorganic material; a fluorescent body embedded in the matrix; and a plurality of filler particles that are embedded in the matrix and include a resin material. This wavelength conversion member enables inhibition of detachment of the fluorescent body.

Description

波長変換部材、光学装置、プロジェクタ及び波長変換部材の製造方法Wavelength conversion member, optical device, projector, and method for manufacturing wavelength conversion member
 本開示は、波長変換部材、光学装置、プロジェクタ及び波長変換部材の製造方法に関する。 The present disclosure relates to a wavelength conversion member, an optical device, a projector, and a method for manufacturing the wavelength conversion member.
 近年、励起光源及び波長変換部材を備えた光学装置が開発されている。波長変換部材は、マトリクスに埋め込まれた蛍光体を有する。励起光源の光が励起光として蛍光体に照射され、励起光の波長よりも長い波長の蛍光の光が蛍光体から放射される。このタイプの光学装置において、光の輝度及び出力を高めるための試みがなされている。 In recent years, an optical device equipped with an excitation light source and a wavelength conversion member has been developed. The wavelength conversion member has a phosphor embedded in a matrix. Light from the excitation light source is applied to the phosphor as excitation light, and fluorescence light having a wavelength longer than the wavelength of the excitation light is emitted from the phosphor. Attempts have been made to increase the brightness and output of light in this type of optical device.
 特許文献1は、マトリクスの材料として酸化亜鉛(ZnO)が使用された波長変換素子を開示している。ZnOは、多くの蛍光体の屈折率に近い屈折率を有する無機材料であるとともに、優れた透光性及び熱伝導性を有する。特許文献1の波長変換素子によれば、蛍光体とZnOマトリクスとの界面での光散乱が抑制され、高い光出力が達成されうる。 Patent Document 1 discloses a wavelength conversion element in which zinc oxide (ZnO) is used as a matrix material. ZnO is an inorganic material having a refractive index close to that of many phosphors, and also has excellent translucency and thermal conductivity. According to the wavelength conversion element of Patent Document 1, light scattering at the interface between the phosphor and the ZnO matrix can be suppressed, and high light output can be achieved.
特許第5672622号公報Japanese Patent No. 5672622
 波長変換部材は、無機材料を含むマトリクスと、マトリクスに埋め込まれた蛍光体と、マトリクスに埋め込まれてかつ樹脂材料を含む複数のフィラー粒子とを備える。 The wavelength conversion member includes a matrix containing an inorganic material, a phosphor embedded in the matrix, and a plurality of filler particles embedded in the matrix and containing a resin material.
 この波長変換部材は、蛍光体の脱落を抑制できる。 -This wavelength conversion member can suppress the falling of the phosphor.
図1は本開示の実施形態1にかかる波長変換部材の概略断面図である。FIG. 1 is a schematic sectional view of a wavelength conversion member according to a first embodiment of the present disclosure. 図2は図1に示す波長変換部材のフィラー粒子の断面図である。FIG. 2 is a cross-sectional view of filler particles of the wavelength conversion member shown in FIG. 図3Aは実施形態1にかかる波長変換部材の製造方法に用いられる基板の断面図である。FIG. 3A is a sectional view of a substrate used in the method of manufacturing the wavelength conversion member according to the first embodiment. 図3Bは図3Aに示す基板の上に、蛍光体部の前駆体が形成された状態を示す図である。FIG. 3B is a diagram showing a state in which the precursor of the phosphor portion is formed on the substrate shown in FIG. 3A. 図4は本開示の実施形態2にかかる波長変換部材の概略断面図である。FIG. 4 is a schematic cross-sectional view of the wavelength conversion member according to the second embodiment of the present disclosure. 図5は本開示の実施形態3にかかる波長変換部材の概略断面図である。FIG. 5 is a schematic sectional view of a wavelength conversion member according to the third embodiment of the present disclosure. 図6は本開示の実施形態4にかかる波長変換部材の概略断面図である。FIG. 6 is a schematic sectional view of a wavelength conversion member according to the fourth embodiment of the present disclosure. 図7は本開示の実施形態5にかかる波長変換部材の概略断面図である。FIG. 7 is a schematic sectional view of a wavelength conversion member according to the fifth embodiment of the present disclosure. 図8は本開示の波長変換部材を用いた反射型光学装置の概略断面図である。FIG. 8 is a schematic sectional view of a reflective optical device using the wavelength conversion member of the present disclosure. 図9は本開示の波長変換部材を用いた透過型光学装置の概略断面図である。FIG. 9 is a schematic sectional view of a transmission type optical device using the wavelength conversion member of the present disclosure. 図10は本開示の変形例にかかる光学装置の概略構成図である。FIG. 10 is a schematic configuration diagram of an optical device according to a modified example of the present disclosure. 図11は図10に示す光学装置が備える波長変換部材の斜視図である。11 is a perspective view of a wavelength conversion member included in the optical device shown in FIG. 図12は本開示の光学装置を用いたプロジェクタの概略構成図である。FIG. 12 is a schematic configuration diagram of a projector using the optical device of the present disclosure. 図13は図12に示すプロジェクタの斜視図である。FIG. 13 is a perspective view of the projector shown in FIG. 図14は本開示の光学装置を用いた照明装置の概略構成図である。FIG. 14 is a schematic configuration diagram of a lighting device using the optical device of the present disclosure. 図15Aは振動試験を実施する前における実施例2の蛍光体部の前駆体の顕微鏡画像を示す図である。FIG. 15A is a diagram showing a microscope image of the precursor of the phosphor portion of Example 2 before the vibration test is performed. 図15Bは振動試験を実施した後における実施例2の蛍光体部の前駆体の顕微鏡画像を示す図である。FIG. 15B is a diagram showing a microscope image of the precursor of the phosphor portion of Example 2 after the vibration test was performed. 図16Aは振動試験を実施する前における実施例3の蛍光体部の前駆体の顕微鏡画像を示す図である。FIG. 16A is a diagram showing a microscope image of the precursor of the phosphor portion of Example 3 before the vibration test is performed. 図16Bは振動試験を実施した後における実施例3の蛍光体部の前駆体の顕微鏡画像を示す図である。FIG. 16B is a diagram showing a microscope image of the precursor of the phosphor portion of Example 3 after the vibration test was performed. 図17Aは実施例2の波長変換部材の断面の走査型電子顕微鏡(SEM)画像を示す図である。17A is a diagram showing a scanning electron microscope (SEM) image of a cross section of the wavelength conversion member of Example 2. FIG. 図17Bは図17Aに示すフィラー粒子の拡大図である。FIG. 17B is an enlarged view of the filler particles shown in FIG. 17A. 図18Aは実施例3の波長変換部材の断面のSEM画像を示す図である。FIG. 18A is a diagram showing an SEM image of a cross section of the wavelength conversion member of Example 3. 図18Bは図18Aに示す波長変換部材のフィラー粒子の拡大図である。18B is an enlarged view of filler particles of the wavelength conversion member shown in FIG. 18A. 図18Cは図18Aに示す波長変換部材の別のフィラー粒子の拡大図である。FIG. 18C is an enlarged view of another filler particle of the wavelength conversion member shown in FIG. 18A.
 (本開示の基礎となった知見)
 波長変換部材は、例えば、基板の上に蛍光体を配置した後に、マトリクスを形成することによって作製できる。しかし、基板の上に蛍光体を配置した状態で基板が振動すると、蛍光体が基板から脱落することがある。溶液成長法によって無機結晶のマトリクスを形成する場合、基板を結晶成長用の溶液に浸漬しているときに、蛍光体が基板から脱落することもある。特に、蛍光体のサイズが大きい場合、蛍光体が高く積まれている場合、又は、蛍光体が配置されている範囲が広い場合に、蛍光体は、基板から脱落しやすい。
(Findings that form the basis of this disclosure)
The wavelength conversion member can be manufactured, for example, by forming a matrix after disposing the phosphor on the substrate. However, when the substrate vibrates while the phosphor is placed on the substrate, the phosphor may fall off the substrate. When the matrix of inorganic crystals is formed by the solution growth method, the phosphor may fall off from the substrate while the substrate is immersed in the solution for crystal growth. In particular, when the size of the phosphor is large, when the phosphor is piled up high, or when the range in which the phosphor is arranged is wide, the phosphor is likely to fall off the substrate.
 特許文献1に開示されている波長変換素子では、波長変換素子を作製しているときに蛍光体が脱落することがある。 In the wavelength conversion element disclosed in Patent Document 1, the phosphor may fall off during the production of the wavelength conversion element.
 以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments.
 (実施形態1)
 図1は、実施形態1にかかる波長変換部材100の概略断面図である。図1に示すように、波長変換部材100は、蛍光体部20を備えている。蛍光体部20は、マトリクス21、蛍光体22及び複数のフィラー粒子23を有する。蛍光体22は、例えば、複数の粒子122よりなる。蛍光体22の粒子122及び複数のフィラー粒子23は、マトリクス21に埋め込まれている。言い換えれば、蛍光体22の粒子122及び複数のフィラー粒子23は、マトリクス21に分散されている。蛍光体22の粒子122及び複数のフィラー粒子23は、マトリクス21に囲まれている。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of the wavelength conversion member 100 according to the first embodiment. As shown in FIG. 1, the wavelength conversion member 100 includes a phosphor portion 20. The phosphor part 20 has a matrix 21, a phosphor 22 and a plurality of filler particles 23. The phosphor 22 is composed of, for example, a plurality of particles 122. The particles 122 of the phosphor 22 and the plurality of filler particles 23 are embedded in the matrix 21. In other words, the particles 122 of the phosphor 22 and the plurality of filler particles 23 are dispersed in the matrix 21. The particles 122 of the phosphor 22 and the plurality of filler particles 23 are surrounded by the matrix 21.
 蛍光体部20の形状は、例えば、層状である。蛍光体部20の厚さは、例えば、20μm以上200μm以下である。蛍光体部20の厚さは、50μmより大きくてもよい。蛍光体部20の形状が層状であるとき、平面視での蛍光体部20の面積は、例えば、0.5mm以上1500mm以下である。 The shape of the phosphor unit 20 is, for example, a layer shape. The thickness of the phosphor part 20 is, for example, 20 μm or more and 200 μm or less. The thickness of the phosphor part 20 may be larger than 50 μm. When the phosphor portion 20 has a layered shape, the area of the phosphor portion 20 in plan view is, for example, 0.5 mm 2 or more and 1500 mm 2 or less.
 波長変換部材100は、基板10をさらに備えていてもよい。基板10は、蛍光体部20を支持している。蛍光体部20は、基板10の上に配置されている。 The wavelength conversion member 100 may further include the substrate 10. The substrate 10 supports the phosphor section 20. The phosphor section 20 is arranged on the substrate 10.
 第1の波長帯域を有する励起光が波長変換部材100に照射されたとき、波長変換部材100は、励起光の一部を第2の波長帯域を有する光に変換して放射する。波長変換部材100は、励起光の波長よりも長い波長の光を放射する。第2の波長帯域は、第1の波長帯域と異なる帯域である。ただし、第2の波長帯域の一部が第1の波長帯域に重なっていてもよい。波長変換部材100から放射された光には、蛍光体22から放射された光だけでなく、励起光そのものが含まれていてもよい。 When the wavelength conversion member 100 is irradiated with the excitation light having the first wavelength band, the wavelength conversion member 100 converts a part of the excitation light into light having the second wavelength band and emits it. The wavelength conversion member 100 emits light having a wavelength longer than the wavelength of the excitation light. The second wavelength band is a band different from the first wavelength band. However, a part of the second wavelength band may overlap with the first wavelength band. The light emitted from the wavelength conversion member 100 may include not only the light emitted from the phosphor 22 but also the excitation light itself.
 基板10は、例えば、基板本体11及び薄膜12を有する。基板10の厚さは、例えば、蛍光体部20の厚さよりも大きい。基板本体11は、ステンレス鋼、アルミニウムと炭化ケイ素との複合材料(Al-SiC)、アルミニウムとシリコンとの複合材料(Al-Si)、アルミニウムと炭素との複合材料(Al-C)、銅(Cu)、サファイア(Al)、アルミナ、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、シリコン(Si)、アルミニウム(Al)、ガラス、石英(SiO)、炭化ケイ素(SiC)及び酸化亜鉛からなる群より選ばれる1つの材料で作られている。銅(Cu)を含む基板本体11は、タングステン(W)、モリブデン(Mo)などの他の元素をさらに含んでいてもよい。基板本体11がステンレス鋼、アルミニウムと炭化ケイ素との複合材料(Al-SiC)、アルミニウムとシリコンとの複合材料(Al-Si)、アルミニウムと炭素との複合材料(Al-C)、及び銅(Cu)からなる群より選ばれる少なくとも1つを含むとき、基板本体11は、小さい熱膨張係数を有する。ステンレス鋼、アルミニウムと炭化ケイ素との複合材料(Al-SiC)、アルミニウムとシリコンとの複合材料(Al-Si)、アルミニウムと炭素との複合材料(Al-C)、及び銅(Cu)からなる群より選ばれる少なくとも1つを含む基板10は、プロジェクタの用途に適している。基板本体11は、例えば、励起光及び蛍光体22から放射された光を透過する透光性を有する。この場合、波長変換部材100は、透過型光学装置に好適に使用されうる。基板10が透光性を有していない場合、波長変換部材100は、反射型光学装置に使用されうる。基板本体11は、鏡面研磨された表面を有していてもよい。 The substrate 10 has, for example, a substrate body 11 and a thin film 12. The thickness of the substrate 10 is larger than the thickness of the phosphor portion 20, for example. The substrate body 11 is made of stainless steel, a composite material of aluminum and silicon carbide (Al-SiC), a composite material of aluminum and silicon (Al-Si), a composite material of aluminum and carbon (Al-C), copper ( Cu), sapphire (Al 2 O 3 ), alumina, gallium nitride (GaN), aluminum nitride (AlN), silicon (Si), aluminum (Al), glass, quartz (SiO 2 ), silicon carbide (SiC) and oxidation. Made of one material selected from the group consisting of zinc. The substrate body 11 containing copper (Cu) may further contain other elements such as tungsten (W) and molybdenum (Mo). The substrate body 11 is made of stainless steel, a composite material of aluminum and silicon carbide (Al-SiC), a composite material of aluminum and silicon (Al-Si), a composite material of aluminum and carbon (Al-C), and copper ( When at least one selected from the group consisting of Cu) is included, the substrate body 11 has a small thermal expansion coefficient. Composed of stainless steel, aluminum-silicon carbide composite material (Al-SiC), aluminum-silicon composite material (Al-Si), aluminum-carbon composite material (Al-C), and copper (Cu) The substrate 10 including at least one selected from the group is suitable for use as a projector. The substrate body 11 has a light-transmitting property of transmitting, for example, excitation light and light emitted from the phosphor 22. In this case, the wavelength conversion member 100 can be suitably used for a transmission type optical device. When the substrate 10 does not have a light-transmitting property, the wavelength conversion member 100 can be used in a reflective optical device. The substrate body 11 may have a mirror-polished surface.
 基板本体11の表面は、反射防止膜、ダイクロイックミラー、金属反射膜、増反射膜、保護膜などによって被覆されていてもよい。反射防止膜は、励起光の反射を防止するための膜である。ダイクロイックミラーは、誘電体多層膜によって構成されうる。金属反射膜は、光を反射させるための膜であり、銀、アルミニウムなどの金属材料で作られている。増反射膜は、誘電体多層膜によって構成されうる。保護膜は、これらの膜を物理的又は化学的に保護するための膜でありうる。 The surface of the substrate body 11 may be covered with an antireflection film, a dichroic mirror, a metal reflection film, a reflection enhancing film, a protective film, or the like. The antireflection film is a film for preventing reflection of excitation light. The dichroic mirror may be composed of a dielectric multilayer film. The metal reflection film is a film for reflecting light and is made of a metal material such as silver or aluminum. The enhanced reflection film may be composed of a dielectric multilayer film. The protective film may be a film for physically or chemically protecting these films.
 薄膜12は、蛍光体部20を形成するための下地層として機能する。蛍光体部20のマトリクス21が結晶質であるとき、薄膜12は、マトリクス21の結晶成長過程における種結晶として機能する。つまり、薄膜12は、単結晶薄膜又は多結晶薄膜である。マトリクス21がZnO単結晶又はZnO多結晶によって構成されているとき、薄膜12は、ZnO単結晶薄膜又はZnO多結晶薄膜でありうる。薄膜12には、Zn以外の他の元素が添加されていてもよい。薄膜12にGa、Al、Bなどの元素が添加されているとき、薄膜12は、低い電気抵抗を有する。薄膜12は、アモルファスのZn化合物又はアモルファスのZnOを含んでいてもよい。薄膜12の厚さは、5nm以上2000nm以下であってもよく、5nm以上200nm以下であってもよい。薄膜12が薄ければ薄いほど、蛍光体部20と基板10との間の距離が短いため、優れた熱伝導性が得られる。ただし、基板本体11が種結晶の機能を発揮できる場合、薄膜12は省略されて蛍光体部20が基板本体11と直接当接していてもよい。例えば、基板本体11が結晶質のGaN又は結晶質のZnOによって構成されているとき、結晶質のZnOによって構成されたマトリクス21を基板本体11の上に直接形成することができる。マトリクス21が結晶質でないときにも、薄膜12は省略されて蛍光体部20が基板本体11と直接当接していてもよい。 The thin film 12 functions as a base layer for forming the phosphor portion 20. When the matrix 21 of the phosphor part 20 is crystalline, the thin film 12 functions as a seed crystal in the crystal growth process of the matrix 21. That is, the thin film 12 is a single crystal thin film or a polycrystalline thin film. When the matrix 21 is composed of a ZnO single crystal or a ZnO polycrystal, the thin film 12 may be a ZnO single crystal thin film or a ZnO polycrystal thin film. Elements other than Zn may be added to the thin film 12. When an element such as Ga, Al or B is added to the thin film 12, the thin film 12 has a low electric resistance. The thin film 12 may include an amorphous Zn compound or amorphous ZnO. The thickness of the thin film 12 may be 5 nm or more and 2000 nm or less, or 5 nm or more and 200 nm or less. The thinner the thin film 12 is, the shorter the distance between the phosphor unit 20 and the substrate 10, and thus the better thermal conductivity is obtained. However, when the substrate body 11 can exhibit the function of the seed crystal, the thin film 12 may be omitted and the phosphor portion 20 may be in direct contact with the substrate body 11. For example, when the substrate body 11 is made of crystalline GaN or crystalline ZnO, the matrix 21 made of crystalline ZnO can be directly formed on the substrate body 11. Even when the matrix 21 is not crystalline, the thin film 12 may be omitted and the phosphor portion 20 may be in direct contact with the substrate body 11.
 蛍光体部20において、蛍光体22の粒子122は、マトリクス21に分散されている。図1において、蛍光体22の粒子122は、互いに離れている。ただし、蛍光体22の粒子122は、互いに接していてもよい。フィラー粒子23は、蛍光体22の2つの粒子122の間に位置していてもよく、蛍光体22の粒子122と基板10との間に位置していてもよい。フィラー粒子23は、例えば、蛍光体22の粒子122に接している。詳細には、フィラー粒子23は、蛍光体22の粒子122に接着している。本開示において、「接着(adhesion)」は、2つの物が互いにくっつき合っている状態を意味する。本開示において、「接着」は、「粘着」、「密着」、「付着」などを包含する用語として使用される。波長変換部材100は、例えば、(i)1つのフィラー粒子23が蛍光体22の2つの粒子122の双方と接着している、(ii)1つのフィラー粒子23が蛍光体22の粒子122及び基板10の双方と接着している、及び、(iii)1つのフィラー粒子23が蛍光体22の粒子122及びマトリクス21の双方と接着している、からなる群より選ばれる少なくとも1つの要件を満たす。複数のフィラー粒子23は、互いに離れていてもよく、互いに接していてもよい。複数のフィラー粒子23が互いに接着していることによって、複数のフィラー粒子23が塊状の形状を有していてもよい。フィラー粒子23は、蛍光体22の粒子122に接着することによって、蛍光体22の粒子122の表面を部分的に被覆していてもよい。蛍光体22の粒子122及びフィラー粒子23は、石垣のように積まれていてもよい。 In the phosphor unit 20, particles 122 of the phosphor 22 are dispersed in the matrix 21. In FIG. 1, the particles 122 of the phosphor 22 are separated from each other. However, the particles 122 of the phosphor 22 may be in contact with each other. The filler particles 23 may be located between the two particles 122 of the phosphor 22 or may be located between the particles 122 of the phosphor 22 and the substrate 10. The filler particles 23 are in contact with the particles 122 of the phosphor 22, for example. Specifically, the filler particles 23 are adhered to the particles 122 of the phosphor 22. In the present disclosure, "adhesion" means the state where two objects are attached to each other. In the present disclosure, “adhesion” is used as a term including “adhesion”, “adhesion”, “adhesion” and the like. In the wavelength conversion member 100, for example, (i) one filler particle 23 is adhered to both two particles 122 of the phosphor 22, (ii) one filler particle 23 is the particle 122 of the phosphor 22 and the substrate. 10 is adhered, and (iii) one filler particle 23 is adhered to both the particles 122 of the phosphor 22 and the matrix 21. At least one requirement selected from the group consisting of: The plurality of filler particles 23 may be separated from each other or may be in contact with each other. The plurality of filler particles 23 may have a lump shape by being adhered to each other. The filler particles 23 may adhere to the particles 122 of the phosphor 22 to partially cover the surface of the particles 122 of the phosphor 22. The particles 122 of the phosphor 22 and the filler particles 23 may be stacked like a stone wall.
 蛍光体22の材料は、特に限定されない。種々の蛍光物質が蛍光体22の材料として使用されうる。具体的には、YAlO1:Ce(YAG)、Y(Al,Ga)12:Ce(GYAG)、LuAl12:Ce(LuAG)、(Si,Al)(O,N):Eu(β-SiAlON)、(La,Y)Si11:Ce(LYSN)、LuCaMgSi12:Ce(LCMS)などの蛍光物質が使用されうる。蛍光体22は、蛍光物質以外の他の材料をさらに含んでいてもよい。他の材料としては、例えば、透光性を有する材料が挙げられる。透光性を有する材料としては、例えば、ガラス、SiO、Alなどが挙げられる。蛍光体22は、互いに異なる組成を有する複数の種類の蛍光体を含んでいてもよい。蛍光体22の材料は、波長変換部材100から放射されるべき光の色度に応じて選択される。 The material of the phosphor 22 is not particularly limited. Various fluorescent substances may be used as the material of the phosphor 22. Specifically, Y 3 Al 5 O1 2: Ce (YAG), Y 3 (Al, Ga) 5 O 12: Ce (GYAG), Lu 3 Al 5 O 12: Ce (LuAG), (Si, Al) 6 (O,N) 8 :Eu(β-SiAlON), (La,Y) 3 Si 6 N 11 :Ce(LYSN), Lu 2 CaMg 2 Si 3 O 12 :Ce(LCMS) and other fluorescent substances are used. Can be done. The phosphor 22 may further include a material other than the fluorescent substance. Examples of the other material include a material having a light-transmitting property. Examples of the translucent material include glass, SiO 2 , Al 2 O 3 and the like. The phosphor 22 may include a plurality of types of phosphors having different compositions. The material of the phosphor 22 is selected according to the chromaticity of the light to be emitted from the wavelength conversion member 100.
 蛍光体22の粒子122の平均粒径は、例えば、0.1μm以上50μm以下の範囲にある。蛍光体22の粒子122の平均粒径は、10μmより大きくてもよい。蛍光体22の粒子122の平均粒径は、例えば、次の方法によって特定することができる。まず、波長変換部材100の断面を走査電子顕微鏡で観察する。得られた電子顕微鏡像において、特定の蛍光体22の粒子122の面積を画像処理によって算出する。算出された面積と同じ面積を有する円の直径をその特定の蛍光体22の粒子122の粒径(粒子の直径)とみなす。任意の個数(例えば50個)の蛍光体22の粒子122の粒径をそれぞれ算出し、算出値の平均値を蛍光体22の粒子122の平均粒径とみなす。本開示において、蛍光体22の粒子122の形状は限定されない。蛍光体22の粒子122の形状は、球状であってもよく、楕円体状であってもよく、鱗片状であってもよく、繊維状であってもよい。本開示において、平均粒径の測定方法は、上記の方法に限定されない。 The average particle diameter of the particles 122 of the phosphor 22 is, for example, in the range of 0.1 μm or more and 50 μm or less. The average particle size of the particles 122 of the phosphor 22 may be larger than 10 μm. The average particle size of the particles 122 of the phosphor 22 can be specified, for example, by the following method. First, the cross section of the wavelength conversion member 100 is observed with a scanning electron microscope. In the obtained electron microscope image, the area of the particles 122 of the specific phosphor 22 is calculated by image processing. The diameter of a circle having the same area as the calculated area is regarded as the particle diameter (particle diameter) of the particles 122 of the specific phosphor 22. The particle diameters of the particles 122 of the phosphor 22 of an arbitrary number (for example, 50) are calculated, and the average value of the calculated values is regarded as the average particle diameter of the particles 122 of the phosphor 22. In the present disclosure, the shape of the particles 122 of the phosphor 22 is not limited. The shape of the particles 122 of the phosphor 22 may be spherical, ellipsoidal, scaly, or fibrous. In the present disclosure, the method for measuring the average particle size is not limited to the above method.
 蛍光体部20において、フィラー粒子23は、マトリクス21に分散されている。フィラー粒子23は、樹脂材料を含む。フィラー粒子23は、樹脂材料を主成分として含んでいてもよい。「主成分」とは、フィラー粒子23に重量比で最も多く含まれた成分を意味する。フィラー粒子23は、例えば、実質的に樹脂材料からなる。「実質的に~からなる」は、言及された材料の本質的特徴を変更する他の成分を排除することを意味する。ただし、フィラー粒子23は、樹脂材料の他に不純物を含んでいてもよい。樹脂材料は、熱可塑性樹脂を含んでいてもよく、熱硬化性樹脂を含んでいてもよい。熱可塑性樹脂は、例えば、ポリスチレン(PS)、メタクリル樹脂及びポリカーボネート(PC)からなる群より選ばれる少なくとも1つを含む。メタクリル樹脂は、例えば、ポリメタクリル酸メチル(PMMA)を含む。フィラー粒子23が熱可塑性樹脂を含むとき、波長変換部材100の強度が向上する。熱可塑性樹脂は、熱可塑性エラストマーを含んでいてもよい。熱可塑性エラストマーとしては、例えば、スチレン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ウレタン系エラストマー、エステル系エラストマー及びアミド系エラストマーが挙げられる。エラストマー(elastomer)とは、ゴム弾性を有する材料を意味する。 In the phosphor part 20, the filler particles 23 are dispersed in the matrix 21. The filler particles 23 include a resin material. The filler particles 23 may include a resin material as a main component. The “main component” means a component contained in the filler particles 23 most in a weight ratio. The filler particles 23 are substantially made of a resin material, for example. "Consisting essentially of" means excluding other ingredients that modify the essential characteristics of the material referred to. However, the filler particles 23 may contain impurities in addition to the resin material. The resin material may include a thermoplastic resin or a thermosetting resin. The thermoplastic resin includes, for example, at least one selected from the group consisting of polystyrene (PS), methacrylic resin and polycarbonate (PC). The methacrylic resin contains, for example, polymethylmethacrylate (PMMA). When the filler particles 23 contain a thermoplastic resin, the strength of the wavelength conversion member 100 is improved. The thermoplastic resin may include a thermoplastic elastomer. Examples of the thermoplastic elastomer include styrene elastomer, olefin elastomer, vinyl chloride elastomer, urethane elastomer, ester elastomer and amide elastomer. Elastomer means a material having rubber elasticity.
 熱硬化性樹脂は、例えば、シリコーン樹脂及びエポキシ樹脂からなる群より選ばれる少なくとも1つを含む。シリコーン樹脂は、例えば、シロキサン結合を有する高分子化合物である。シリコーン樹脂は、例えば、シロキサン結合を主骨格に有する。シリコーン樹脂としては、例えば、ジメチルポリシロキサン及びポリオルガノシルセスキオキサンなどが挙げられる。ポリオルガノシルセスキオキサンは、例えば、シロキサン結合によって三次元網目状に架橋した構造を有する。この構造は、例えば、一般式(RSiO3/2で表される。この一般式において、Rは、例えば、アルキル基である。 The thermosetting resin includes, for example, at least one selected from the group consisting of silicone resin and epoxy resin. The silicone resin is, for example, a polymer compound having a siloxane bond. The silicone resin has, for example, a siloxane bond in the main skeleton. Examples of the silicone resin include dimethylpolysiloxane and polyorganosilsesquioxane. Polyorganosilsesquioxane has, for example, a structure in which three-dimensional network cross-links are formed by siloxane bonds. This structure is represented by, for example, the general formula (RSiO 3/2 ) n . In this general formula, R is, for example, an alkyl group.
 熱硬化性樹脂は、熱硬化性エラストマーを含んでいてもよい。熱硬化性エラストマーとしては、例えば、ウレタンゴム、シリコーンゴム及びフッ素ゴムなどが挙げられる。シリコーンゴムは、ゴム弾性を有するシリコーン樹脂である。シリコーンゴムは、例えば、ジメチルポリシロキサンを架橋した構造を有する。 The thermosetting resin may include a thermosetting elastomer. Examples of thermosetting elastomers include urethane rubber, silicone rubber, and fluororubber. Silicone rubber is a silicone resin having rubber elasticity. Silicone rubber has, for example, a structure in which dimethylpolysiloxane is crosslinked.
 シリコーン樹脂又はシリコーンゴムを含むフィラー粒子としては、例えば、信越化学工業社からKMPシリーズ、KSPシリーズ、X-52シリーズなどが市販されており、東レ・ダウコーニング社からEPシリーズ、TREFILシリーズ、30-424 Additiveなどが市販されている。樹脂材料がシロキサン結合を有する高分子化合物を含むとき、フィラー粒子23は、優れた耐熱性を有する。 As filler particles containing silicone resin or silicone rubber, for example, KMP series, KSP series, X-52 series, etc. are commercially available from Shin-Etsu Chemical Co., Ltd., EP series, TREFIL series, 30- 424 Additive is commercially available. When the resin material contains a polymer compound having a siloxane bond, the filler particles 23 have excellent heat resistance.
 フィラー粒子23は、官能基で修飾された表面24を有していてもよい。このとき、フィラー粒子23は、優れた分散性を有する。すなわち、官能基で修飾された表面24によって、フィラー粒子23が凝集することを抑制できる。表面24を修飾している官能基としては、例えば、エポキシ基、(メタ)アクリロイル基、メチル基などが挙げられる。 The filler particles 23 may have a surface 24 modified with a functional group. At this time, the filler particles 23 have excellent dispersibility. That is, the surface 24 modified with the functional group can suppress the aggregation of the filler particles 23. Examples of the functional group that modifies the surface 24 include an epoxy group, a (meth)acryloyl group, and a methyl group.
 フィラー粒子23の平均粒径は、0.1μm以上20μm以下であってもよく、1.0μm以上10μm以下であってもよい。フィラー粒子23の平均粒径は、例えば、蛍光体22の粒子122の平均粒径よりも小さい。蛍光体22の粒子122の平均粒径D1に対するフィラー粒子23の平均粒径D2の比率(D2/D1)は、例えば、0.01以上0.90以下である。フィラー粒子23の平均粒径は、蛍光体22の粒子122の平均粒径と同じ方法によって測定されうる。蛍光体22の粒子122の合計体積V1と、フィラー粒子23の合計体積V2とで定義されるV2/(V1+V2)の値は、0.01以上0.70以下であってもよく、0.05以上0.16以下であってもよい。フィラー粒子23の比重は、例えば、0.5g/cm以上1.5g/cm以下である。蛍光体22の粒子122の合計体積V1は蛍光体22の全体の体積である。 The average particle diameter of the filler particles 23 may be 0.1 μm or more and 20 μm or less, or 1.0 μm or more and 10 μm or less. The average particle size of the filler particles 23 is smaller than the average particle size of the particles 122 of the phosphor 22, for example. The ratio (D2/D1) of the average particle diameter D2 of the filler particles 23 to the average particle diameter D1 of the particles 122 of the phosphor 22 is, for example, 0.01 or more and 0.90 or less. The average particle size of the filler particles 23 can be measured by the same method as the average particle size of the particles 122 of the phosphor 22. The value of V2/(V1+V2) defined by the total volume V1 of the particles 122 of the phosphor 22 and the total volume V2 of the filler particles 23 may be 0.01 or more and 0.70 or less, and may be 0.05 or less. It may be 0.16 or less. The specific gravity of the filler particles 23 is, for example, 0.5 g/cm 3 or more and 1.5 g/cm 3 or less. The total volume V1 of the particles 122 of the phosphor 22 is the total volume of the phosphor 22.
 本開示において、フィラー粒子23の形状は特に限定されない。フィラー粒子23の形状は、球状であってもよく、楕円体状であってもよく、鱗片状であってもよく、繊維状であってもよい。図2は、フィラー粒子23の断面の一例を示している。図2に示すように、フィラー粒子23は、コア30とコア30を被覆しているシェル31とを有していてもよい。シェル31は、コア30の表面全体を被覆していてもよく、コア30の表面を部分的に被覆していてもよい。シェル31は、例えば、コア30に接している。コア30の組成は、例えば、シェル31の組成と異なる。一例として、コア30がシリコーンゴムでできており、シェル31がシリコーンゴム以外の他のシリコーン樹脂でできている。コア30の形状は、例えば、球状である。図2では、シェル31は、複数の粒子によって構成されている。ただし、シェル31の形状は、層状であってもよい。シェル31を構成する粒子の平均粒径は、例えば、1nm以上1μm以下である。フィラー粒子23がシェル31を有しているとき、フィラー粒子23は、優れた分散性を有する。すなわち、シェル31によって、フィラー粒子23が凝集することを抑制できる。 In the present disclosure, the shape of the filler particles 23 is not particularly limited. The shape of the filler particles 23 may be spherical, ellipsoidal, scaly, or fibrous. FIG. 2 shows an example of a cross section of the filler particles 23. As shown in FIG. 2, the filler particles 23 may have a core 30 and a shell 31 that covers the core 30. The shell 31 may cover the entire surface of the core 30 or may partially cover the surface of the core 30. The shell 31 is in contact with the core 30, for example. The composition of the core 30 is different from that of the shell 31, for example. As an example, the core 30 is made of silicone rubber, and the shell 31 is made of a silicone resin other than silicone rubber. The shape of the core 30 is, for example, spherical. In FIG. 2, the shell 31 is composed of a plurality of particles. However, the shell 31 may have a layered shape. The average particle size of the particles forming the shell 31 is, for example, 1 nm or more and 1 μm or less. When the filler particles 23 have the shell 31, the filler particles 23 have excellent dispersibility. That is, the shell 31 can suppress aggregation of the filler particles 23.
 樹脂材料が熱可塑性エラストマー又は熱硬化性エラストマーを含むとき、フィラー粒子23は、ゴム弾性を有する。フィラー粒子23のゴム硬度は、10以上90以下であってもよく、30以上75以下であってもよい。フィラー粒子23のゴム硬度は、例えば、JIS(日本工業規格) K6253-3:2012に準拠した方法によって、次のように測定することができる。まず、フィラー粒子23と同じ組成を有する試験片を準備する。試験片の形状は、JIS K6253-3:2012に規定されている。例えば、JIS K6253-3:2012に規定されたタイプAデュロメータを用いた方法によって、試験片のゴム硬度を測定する。得られた試験片のゴム硬度をフィラー粒子23のゴム硬度とみなすことができる。ただし、本開示において、ゴム硬度の測定方法は、上記の方法に限定されない。 When the resin material contains a thermoplastic elastomer or a thermosetting elastomer, the filler particles 23 have rubber elasticity. The rubber hardness of the filler particles 23 may be 10 or more and 90 or less, or 30 or more and 75 or less. The rubber hardness of the filler particles 23 can be measured as follows, for example, by a method according to JIS (Japanese Industrial Standard) K6253-3:2012. First, a test piece having the same composition as the filler particles 23 is prepared. The shape of the test piece is specified in JIS K6253-3:2012. For example, the rubber hardness of the test piece is measured by a method using a type A durometer specified in JIS K6253-3:2012. The rubber hardness of the obtained test piece can be regarded as the rubber hardness of the filler particles 23. However, in the present disclosure, the method for measuring rubber hardness is not limited to the above method.
 フィラー粒子23のガラス転移温度Tgは、特に限定されない。フィラー粒子23が熱可塑性樹脂を含むとき、フィラー粒子23のガラス転移温度Tgは、例えば、50℃以上300℃以下であってもよい。フィラー粒子23が熱硬化性エラストマーを含むとき、フィラー粒子23のガラス転移温度Tgは、30℃以下であってもよく、0℃以下であってもよい。一例として、シリコーンゴムのガラス転移温度Tgは、-125℃である。フィラー粒子23のガラス転移温度Tgの下限値は、例えば、-273℃である。フィラー粒子23のガラス転移温度Tgが室温よりも低いとき、フィラー粒子23は、室温で優れた接着性を有する。本開示において、室温は、25℃以上30℃以下を意味する。フィラー粒子23のガラス転移温度Tgは、例えば、示差走査熱量計(DSC)を用いて、JIS K7121:1987に準拠した方法によって測定できる。シリコーンゴムなどを含み、かつ0℃以下のガラス転移温度Tgを有するフィラー粒子23に関して、フィラー粒子23の具体的なガラス転移温度Tgを特定する場合には、0℃以下の温度でもガラス転移温度Tgを測定することができるDSCを用いる。ただし、本開示において、ガラス転移温度Tgの測定方法は、上記の方法に限定されない。 The glass transition temperature Tg of the filler particles 23 is not particularly limited. When the filler particles 23 contain a thermoplastic resin, the glass transition temperature Tg of the filler particles 23 may be, for example, 50° C. or higher and 300° C. or lower. When the filler particles 23 contain a thermosetting elastomer, the glass transition temperature Tg of the filler particles 23 may be 30° C. or lower, or 0° C. or lower. As an example, the glass transition temperature Tg of silicone rubber is -125°C. The lower limit value of the glass transition temperature Tg of the filler particles 23 is, for example, −273° C. When the glass transition temperature Tg of the filler particles 23 is lower than room temperature, the filler particles 23 have excellent adhesiveness at room temperature. In the present disclosure, room temperature means 25° C. or higher and 30° C. or lower. The glass transition temperature Tg of the filler particles 23 can be measured, for example, by using a differential scanning calorimeter (DSC) by a method according to JIS K7121:1987. With respect to the filler particles 23 containing a silicone rubber or the like and having a glass transition temperature Tg of 0° C. or lower, when the specific glass transition temperature Tg of the filler particles 23 is specified, the glass transition temperature Tg is 0° C. or lower. A DSC capable of measuring is used. However, in the present disclosure, the method for measuring the glass transition temperature Tg is not limited to the above method.
 フィラー粒子23に励起光が照射されたとき、フィラー粒子23は、蛍光の光を放射しないか、無視できる強度の蛍光の光のみを放射する。フィラー粒子23の光の吸収率は、特に限定されない。550nmの波長の光に対するフィラー粒子23の吸収率は、好ましくは25%以下であり、よりこのましくは10%以下であり、さらに好ましくは1%以下である。フィラー粒子23は、550nmの波長の光を実質的に吸収しなくてもよい。450nmの波長の光に対するフィラー粒子23の吸収率は、好ましくは25%以下であり、より好ましくは10%以下であり、さらに好ましくは1%以下である。フィラー粒子23は、450nmの波長の光を実質的に吸収しなくてもよい。 When the filler particles 23 are irradiated with the excitation light, the filler particles 23 do not emit fluorescent light or emit only fluorescent light having a negligible intensity. The light absorption rate of the filler particles 23 is not particularly limited. The absorptance of the filler particles 23 with respect to light having a wavelength of 550 nm is preferably 25% or less, more preferably 10% or less, and further preferably 1% or less. The filler particles 23 may not substantially absorb light having a wavelength of 550 nm. The absorptance of the filler particles 23 with respect to light having a wavelength of 450 nm is preferably 25% or less, more preferably 10% or less, and further preferably 1% or less. The filler particles 23 do not have to substantially absorb light having a wavelength of 450 nm.
 フィラー粒子23の光の吸収率は、例えば、市販の絶対PL量子収率測定装置を用いて測定することができる。絶対PL量子収率測定装置は、フォトルミネッセンス(PL)法により、発光ダイオード(LED)用蛍光材料などのサンプルの発光量子収率の絶対値を測定する装置である。サンプルの発光量子収率は、計測用のサンプルホルダ及び粉体計測用のシャーレを用いて、次の方法によって測定できる。まず、シャーレの内部にサンプルを配置する。次に、このシャーレを積分球の内部に配置する。キセノン光源から分光され、特定の波長を有する励起光をサンプルに照射する。このとき、サンプルから放射された光について測定することによって、サンプルの発光量子収率を測定できる。フィラー粒子23の光の吸収率は、例えば、次の方法によって測定できる。まず、サンプルが配置されていない空のシャーレを積分球の内部に配置する。空のシャーレについて発光量子収率の測定を行う。これにより、サンプルが配置されていない状態での励起光の光子数を測定できる。次に、サンプルとしてフィラー粒子23が配置されたシャーレを積分球の内部に配置する。フィラー粒子23について発光量子収率の測定を行う。これにより、フィラー粒子23が配置された状態での励起光の光子数を測定できる。これらの測定結果から、フィラー粒子23に照射された励起光の光子数に対する、フィラー粒子23に吸収された光子数の比率を算出できる。この比率をフィラー粒子23の光の吸収率とみなすことができる。シャーレは、例えば、測定波長範囲での光の吸収が少ない合成石英でできている。シャーレの底面は、例えば、平面視で円の形状を有している。平面視でのシャーレの底面の直径は、例えば、約17mmである。シャーレの厚さは、例えば、約5mmである。シャーレは、例えば、蓋を備えている。 The light absorptance of the filler particles 23 can be measured using, for example, a commercially available absolute PL quantum yield measuring device. The absolute PL quantum yield measuring device is a device that measures the absolute value of the emission quantum yield of a sample such as a fluorescent material for a light emitting diode (LED) by a photoluminescence (PL) method. The emission quantum yield of a sample can be measured by the following method using a sample holder for measurement and a petri dish for measuring powder. First, the sample is placed inside the petri dish. Next, this petri dish is placed inside the integrating sphere. A sample is irradiated with excitation light having a specific wavelength that is separated from a xenon light source. At this time, the emission quantum yield of the sample can be measured by measuring the light emitted from the sample. The light absorption rate of the filler particles 23 can be measured, for example, by the following method. First, an empty petri dish on which no sample is placed is placed inside the integrating sphere. The emission quantum yield is measured on an empty petri dish. Thereby, the number of photons of the excitation light can be measured in the state where the sample is not arranged. Next, a petri dish on which the filler particles 23 are arranged is arranged inside the integrating sphere as a sample. The emission quantum yield of the filler particles 23 is measured. Thereby, the number of photons of the excitation light in the state where the filler particles 23 are arranged can be measured. From these measurement results, the ratio of the number of photons absorbed by the filler particles 23 to the number of photons of the excitation light with which the filler particles 23 are irradiated can be calculated. This ratio can be regarded as the light absorption rate of the filler particles 23. The petri dish is made of, for example, synthetic quartz that absorbs little light in the measurement wavelength range. The bottom surface of the dish has, for example, a circular shape in plan view. The diameter of the bottom surface of the dish in plan view is, for example, about 17 mm. The thickness of the petri dish is, for example, about 5 mm. The dish has, for example, a lid.
 フィラー粒子23が周囲温度200℃で24時間加熱された場合において、550nmの波長の光に対するフィラー粒子23の吸収率は、好ましくは25%以下であり、より好ましくは10%以下であり、さらに好ましくは1%以下である。フィラー粒子23が周囲温度240℃で24時間加熱された場合において、550nmの波長の光に対するフィラー粒子23の吸収率は、好ましくは25%以下であり、より好ましくは10%以下であり、さらに好ましくは1%以下である。 When the filler particles 23 are heated at an ambient temperature of 200° C. for 24 hours, the absorptance of the filler particles 23 with respect to light having a wavelength of 550 nm is preferably 25% or less, more preferably 10% or less, and further preferably Is 1% or less. When the filler particles 23 are heated at an ambient temperature of 240° C. for 24 hours, the absorptivity of the filler particles 23 for light having a wavelength of 550 nm is preferably 25% or less, more preferably 10% or less, and further preferably Is 1% or less.
 マトリクス21は、無機材料を含む。無機材料は、無機結晶を含んでいてもよい。無機材料は、例えば、ZnO、SiO、Al、SnO、TiO、PbO、B、P、TeO、V、Bi、AgO、TlO及びBaOからなる群より選ばれる少なくとも1つを含む。マトリクス21は、無機材料としてガラスを含んでいてもよい。 The matrix 21 includes an inorganic material. The inorganic material may include inorganic crystals. Inorganic materials, for example, ZnO, SiO 2, Al 2 O 3, SnO 2, TiO 2, PbO, B 2 O 3, P 2 O 5, TeO 2, V 2 O 5, Bi 2 O 3, Ag 2 O , Tl 2 O and BaO. The matrix 21 may include glass as an inorganic material.
 マトリクス21は、例えば、酸化亜鉛(ZnO)を含む。ZnOは、透明性及び熱伝導性の観点から、マトリクス21の材料に適している。ZnOは、高い熱伝導性を有する。そのため、ZnOがマトリクス21の材料として使用されているとき、蛍光体部20の熱を外部(主に基板10)に容易に逃がすことができる。これにより、蛍光体22の温度の上昇を抑制することができる。マトリクス21は、ZnOを主成分として含んでいてもよい。マトリクス21は、例えば、実質的にZnOからなる。ただし、マトリクス21は、ZnOの他に不純物を含んでいてもよい。 The matrix 21 contains, for example, zinc oxide (ZnO). ZnO is suitable for the material of the matrix 21 from the viewpoint of transparency and thermal conductivity. ZnO has high thermal conductivity. Therefore, when ZnO is used as the material of the matrix 21, the heat of the phosphor portion 20 can be easily released to the outside (mainly the substrate 10). Thereby, the temperature rise of the phosphor 22 can be suppressed. The matrix 21 may contain ZnO as a main component. The matrix 21 is substantially made of ZnO, for example. However, the matrix 21 may contain impurities in addition to ZnO.
 マトリクス21の材料としてのZnOは、詳細には、ZnOの単結晶又はZnOの多結晶である。ZnOは、ウルツ鉱型の結晶構造を有する。結晶成長によってマトリクス21を形成したとき、マトリクス21は、例えば、薄膜12の結晶構造に応じた結晶構造を有する。すなわち、薄膜12として、c軸に配向したZnOの多結晶を用いたとき、マトリクス21は、c軸に配向したZnOの多結晶を有する。「c軸に配向したZnO」とは、基板10の主面に平行な面がc面であることを意味する。「主面」とは、基板10の最も広い面積を有する面を意味する。マトリクス21がc軸に配向したZnO多結晶を含むとき、蛍光体部20の内部において光散乱が抑制され、高い光出力を達成できる。 Specifically, ZnO as a material of the matrix 21 is a ZnO single crystal or a ZnO polycrystal. ZnO has a wurtzite crystal structure. When the matrix 21 is formed by crystal growth, the matrix 21 has a crystal structure according to the crystal structure of the thin film 12, for example. That is, when a polycrystal of ZnO oriented along the c-axis is used as the thin film 12, the matrix 21 has a polycrystal of ZnO oriented along the c-axis. “ZnO oriented in the c-axis” means that the plane parallel to the main surface of the substrate 10 is the c-plane. The “main surface” means the surface of the substrate 10 having the largest area. When the matrix 21 includes a ZnO polycrystal oriented in the c-axis, light scattering is suppressed inside the phosphor portion 20, and a high light output can be achieved.
 c軸に配向したZnO多結晶は、c軸に配向した複数の柱状の結晶粒を含む。c軸に配向したZnO多結晶において、c軸方向の結晶粒界が少ない。「柱状の結晶粒がc軸に配向している」とは、c軸方向のZnOの成長がa軸方向のZnOの成長よりも速く、基板10の上に縦長のZnO結晶粒が形成されていることを意味する。ZnO結晶粒のc軸は、基板10の法線方向に平行である。言い換えると、ZnO結晶粒のc軸は、蛍光体部20の励起光を受光する表面の法線方向に平行である。ZnOがc軸配向の結晶であるかどうかは、X線回折(XRD)測定(2θ/ωスキャン)によって確認できる。XRD測定結果から得られたZnOの回折ピークにおいて、ZnOのc面に起因する回折ピークが、ZnOのc面以外に起因する回折ピークよりも大きい強度を有する場合、ZnOがc軸配向の結晶であると判断できる。国際公開第2013/172025号は、c軸に配向したZnO多結晶によって構成されたマトリクスを詳しく開示している。 The c-axis oriented ZnO polycrystal includes a plurality of columnar crystal grains oriented along the c-axis. In a c-axis oriented ZnO polycrystal, there are few crystal grain boundaries in the c-axis direction. “The columnar crystal grains are oriented in the c-axis” means that the growth of ZnO in the c-axis direction is faster than the growth of ZnO in the a-axis direction, and vertically long ZnO crystal grains are formed on the substrate 10. Means that The c-axis of ZnO crystal grains is parallel to the normal direction of the substrate 10. In other words, the c-axis of the ZnO crystal grains is parallel to the normal line direction of the surface of the phosphor section 20 that receives the excitation light. Whether or not ZnO is a c-axis oriented crystal can be confirmed by X-ray diffraction (XRD) measurement (2θ/ω scan). In the diffraction peak of ZnO obtained from the XRD measurement result, when the diffraction peak due to the c-plane of ZnO has a higher intensity than the diffraction peak due to other than the c-plane of ZnO, ZnO is a c-axis oriented crystal. It can be judged that there is. WO 2013/172025 discloses in detail a matrix constituted by c-axis oriented ZnO polycrystals.
 波長変換部材100の発光効率は、好ましくは85%以上であり、より好ましくは90%以上である。本開示において、波長変換部材100の発光効率とは、波長変換部材100に照射された励起光のうち、波長変換部材100に吸収された励起光の光子数に対する、波長変換部材100から放射された蛍光の光の光子数の比率を意味する。波長変換部材100の発光効率は、例えば、マルチチャンネル分光器によって測定できる。波長変換部材100の発光効率は、例えば、2W/mmのエネルギー密度を有する励起光を波長変換部材100に照射したときの値である。 The luminous efficiency of the wavelength conversion member 100 is preferably 85% or more, more preferably 90% or more. In the present disclosure, the light emission efficiency of the wavelength conversion member 100 means that, out of the excitation light irradiated on the wavelength conversion member 100, the wavelength conversion member 100 radiates the number of photons of the excitation light absorbed by the wavelength conversion member 100. It means the ratio of the number of photons of fluorescent light. The luminous efficiency of the wavelength conversion member 100 can be measured by, for example, a multi-channel spectroscope. The emission efficiency of the wavelength conversion member 100 is a value when the wavelength conversion member 100 is irradiated with excitation light having an energy density of 2 W/mm 2 .
 さらに、波長変換部材100が周囲温度240℃で24時間加熱された場合において、波長変換部材100の発光効率は、好ましくは85%以上であり、より好ましくは90%以上である。 Further, when the wavelength conversion member 100 is heated at an ambient temperature of 240° C. for 24 hours, the light emission efficiency of the wavelength conversion member 100 is preferably 85% or more, more preferably 90% or more.
 次に、波長変換部材100の製造方法を説明する。 Next, a method of manufacturing the wavelength conversion member 100 will be described.
 まず、基板10を作製する方法について説明する。図3Aは、波長変換部材100の製造方法に用いられる基板10の断面を示している。例えば、基板本体11の上に薄膜12として結晶性のZnO薄膜を形成する。ZnO薄膜を形成する方法としては、蒸着法、電子ビーム蒸着法、反応性プラズマ蒸着法、イオンアシスト蒸着法、スパッタリング法、パルスレーザ堆積法などの気相成膜法が用いられる。薄膜12は、次の方法によって形成してもよい。まず、亜鉛アルコキシドなどの前駆体を含むゾルを調製する。印刷法によって、ゾルを基板本体11に塗布し、塗膜を形成する。次に、塗膜を加熱処理することによって薄膜12が得られる。薄膜12は、ZnO単結晶薄膜又はZnO多結晶薄膜でありうる。 First, a method of manufacturing the substrate 10 will be described. FIG. 3A shows a cross section of the substrate 10 used in the method of manufacturing the wavelength conversion member 100. For example, a crystalline ZnO thin film is formed as the thin film 12 on the substrate body 11. As a method for forming a ZnO thin film, vapor phase film forming methods such as vapor deposition method, electron beam vapor deposition method, reactive plasma vapor deposition method, ion assisted vapor deposition method, sputtering method and pulse laser deposition method are used. The thin film 12 may be formed by the following method. First, a sol containing a precursor such as zinc alkoxide is prepared. The sol is applied to the substrate body 11 by a printing method to form a coating film. Next, the thin film 12 is obtained by heating the coating film. The thin film 12 may be a ZnO single crystal thin film or a ZnO polycrystalline thin film.
 次に、基板10の上(薄膜12の上)に蛍光体部20の前駆体25を作製する方法について説明する。図3Bは、図3Aに示す基板の上に、蛍光体部20の前駆体25が形成された状態を示す図である。まず、基板10の上に蛍光体22の粒子122及びフィラー粒子23を配置する。例えば、蛍光体22の粒子122及びフィラー粒子23を含む分散液を調製する。基板10を分散液中に配置し、電気泳動法を用いて蛍光体22の粒子122及びフィラー粒子23を基板10の上に堆積させる。これにより、基板10の上に蛍光体22の粒子122及びフィラー粒子23を配置することができる。もしくは、基板10を分散液中に配置し、蛍光体22の粒子122及びフィラー粒子23を沈降させることによって基板10の上に蛍光体22の粒子122及びフィラー粒子23を配置することもできる。もしくは、蛍光体22の粒子122及びフィラー粒子23を含む塗布液を用い、印刷法などの厚膜形成方法によって蛍光体22の粒子122及びフィラー粒子23を基板10の上に配置することもできる。 Next, a method for producing the precursor 25 of the phosphor part 20 on the substrate 10 (on the thin film 12) will be described. FIG. 3B is a diagram showing a state in which the precursor 25 of the phosphor unit 20 is formed on the substrate shown in FIG. 3A. First, the particles 122 of the phosphor 22 and the filler particles 23 are arranged on the substrate 10. For example, a dispersion liquid containing the particles 122 of the phosphor 22 and the filler particles 23 is prepared. The substrate 10 is placed in the dispersion liquid, and the particles 122 of the phosphor 22 and the filler particles 23 are deposited on the substrate 10 by using an electrophoretic method. As a result, the particles 122 of the phosphor 22 and the filler particles 23 can be arranged on the substrate 10. Alternatively, the particles 122 of the phosphor 22 and the filler particles 23 can be arranged on the substrate 10 by placing the substrate 10 in the dispersion liquid and allowing the particles 122 of the phosphor 22 and the filler particles 23 to settle. Alternatively, the particles 122 of the phosphor 22 and the filler particles 23 can be arranged on the substrate 10 by using a coating liquid containing the particles 122 of the phosphor 22 and the filler particles 23 and by a thick film forming method such as a printing method.
 次に、フィラー粒子23によって蛍光体22の粒子122を基板10に固定する。例えば、フィラー粒子23を加熱すると、フィラー粒子23に含まれる樹脂が軟化する。これにより、フィラー粒子23が蛍光体22の粒子122及び基板10の双方に接着し、蛍光体22の粒子122を基板10に固定することができる。フィラー粒子23がゴム弾性を有するとき、フィラー粒子23と蛍光体22の粒子との接触面積が広い。このとき、フィラー粒子23は、蛍光体22の粒子122を強固に固定できる。フィラー粒子23は、基板10に直接接着せずに、基板10に固定された蛍光体22の粒子122、及び、他の蛍光体22の粒子122の双方と接着していてもよい。フィラー粒子23が室温で接着性を有するとき、フィラー粒子23の加熱処理は省略されてもよい。フィラー粒子23によって蛍光体22の粒子122を基板10に固定することによって、前駆体25が得られる。前駆体25は、フィラー粒子23及び蛍光体22の粒子122で構成された多孔質構造を有している。言いかえると、前駆体25に対向している薄膜12の表面は、フィラー粒子23で被覆されている領域と、フィラー粒子23で被覆されていない領域との双方を有する。 Next, the particles 122 of the phosphor 22 are fixed to the substrate 10 by the filler particles 23. For example, when the filler particles 23 are heated, the resin contained in the filler particles 23 is softened. This allows the filler particles 23 to adhere to both the particles 122 of the phosphor 22 and the substrate 10 and fix the particles 122 of the phosphor 22 to the substrate 10. When the filler particles 23 have rubber elasticity, the contact area between the filler particles 23 and the particles of the phosphor 22 is wide. At this time, the filler particles 23 can firmly fix the particles 122 of the phosphor 22. The filler particles 23 may not be directly adhered to the substrate 10, but may be adhered to both the particles 122 of the phosphor 22 fixed to the substrate 10 and the particles 122 of the other phosphor 22. When the filler particles 23 have adhesiveness at room temperature, the heat treatment of the filler particles 23 may be omitted. The precursor 25 is obtained by fixing the particles 122 of the phosphor 22 to the substrate 10 with the filler particles 23. The precursor 25 has a porous structure composed of filler particles 23 and particles 122 of the phosphor 22. In other words, the surface of the thin film 12 facing the precursor 25 has both a region covered with the filler particles 23 and a region not covered with the filler particles 23.
 フィラー粒子23を加熱する条件は、特に限定されない。フィラー粒子23を加熱するときの周囲温度は、50℃以上400℃以下であってもよく、100℃以上300℃以下であってもよい。フィラー粒子23の加熱時間は、5分以上5時間以下であってもよい。 The conditions for heating the filler particles 23 are not particularly limited. The ambient temperature when heating the filler particles 23 may be 50° C. or higher and 400° C. or lower, or 100° C. or higher and 300° C. or lower. The heating time of the filler particles 23 may be 5 minutes or more and 5 hours or less.
 次に、フィラー粒子23及び蛍光体22の粒子122のそれぞれがマトリクス21に埋め込まれるように、マトリクス21を形成する。これにより、蛍光体部20を作製できる。マトリクス21がガラスを含む場合、次の方法によって、蛍光体部20を作製できる。まず、シリコンアルコキシドを含むゾルを調製する。ゾルを前駆体25の上に塗布する。これにより、前駆体25の多孔質構造にゾルを充填することができる。ゾルをゲル化させ、焼成する。これにより、蛍光体部20が得られる。マトリクス21がガラス以外の他の無機材料を含む場合も、上記の方法と同様に、アルコキシドを含むゾルを用いて、蛍光体部20を形成することができる。さらに、無機材料を含む低融点のガラスを前駆体25の内部に充填することによって、蛍光体部20を形成することもできる。 Next, the matrix 21 is formed so that the filler particles 23 and the particles 122 of the phosphor 22 are embedded in the matrix 21. Thereby, the phosphor part 20 can be manufactured. When the matrix 21 contains glass, the phosphor part 20 can be manufactured by the following method. First, a sol containing silicon alkoxide is prepared. The sol is applied on the precursor 25. This allows the porous structure of the precursor 25 to be filled with the sol. The sol is gelled and fired. Thereby, the phosphor part 20 is obtained. Even when the matrix 21 contains an inorganic material other than glass, the phosphor part 20 can be formed using a sol containing an alkoxide, as in the above method. Further, by filling the inside of the precursor 25 with a low-melting glass containing an inorganic material, the phosphor portion 20 can be formed.
 マトリクス21が酸化亜鉛を含む場合、マトリクス21を形成する方法としては、Znイオンを含有する溶液を使用した溶液成長法を利用できる。溶液成長法には、大気圧下で行われる化学溶液析出法(chemical bath deposition)、大気圧以上の圧力下で行う水熱合成法(hydrothermal synthesis)、電圧又は電流を印加する電解析出法(electrochemical deposition)などが用いられる。結晶成長用の溶液として、例えば、ヘキサメチレンテトラミン(Hexamethylenetetramine:C12)を含有する硝酸亜鉛(Zinc nitrate:Zn(NO)の水溶液が用いられる。硝酸亜鉛の水溶液のpHは、例えば、5以上7以下である。溶液成長法によって、マトリクス21が薄膜12の上に結晶成長する。マトリクス21は、前駆体25の多孔質構造の内部においても結晶成長する。これによって、蛍光体部20が得られる。溶液成長法の詳細は、例えば、特開2004-315342号公報に開示されている。 When the matrix 21 contains zinc oxide, a solution growth method using a solution containing Zn ions can be used as a method of forming the matrix 21. The solution growth method includes a chemical solution deposition method that is performed under atmospheric pressure, a hydrothermal synthesis method that is performed under a pressure higher than atmospheric pressure, and an electrolytic deposition method that applies voltage or current. Electrochemical deposition) or the like is used. As a solution for crystal growth, for example, an aqueous solution of zinc nitrate (Zinc nitrate: Zn(NO 3 ) 2 ) containing hexamethylenetetramine (C 6 H 12 N 4 ) is used. The pH of the aqueous solution of zinc nitrate is, for example, 5 or more and 7 or less. The matrix 21 is crystal-grown on the thin film 12 by the solution growth method. The matrix 21 also undergoes crystal growth inside the porous structure of the precursor 25. As a result, the phosphor section 20 is obtained. Details of the solution growth method are disclosed in, for example, Japanese Patent Laid-Open No. 2004-315342.
 本実施形態の製造方法は、マトリクス21を形成した後に、波長変換部材100から基板10を除去することをさらに含んでいてもよい。例えば、基板本体11を加熱することによって、基板本体11と薄膜12とを分離してもよい。これにより、波長変換部材100から基板10を除去することができる。レーザー光を基板本体11と薄膜12との界面に集光させることによって、基板本体11と波長変換部材100とを分離してもよい。 The manufacturing method of the present embodiment may further include removing the substrate 10 from the wavelength conversion member 100 after forming the matrix 21. For example, the substrate body 11 and the thin film 12 may be separated by heating the substrate body 11. Thereby, the substrate 10 can be removed from the wavelength conversion member 100. The substrate body 11 and the wavelength conversion member 100 may be separated by focusing the laser light on the interface between the substrate body 11 and the thin film 12.
 前駆体25において、蛍光体22の粒子122は、フィラー粒子23によって基板10に固定されている。そのため、マトリクス21が形成されるまでに、蛍光体22の粒子122が基板10から脱落することを抑制できる。すなわち、本実施形態の波長変換部材100において、蛍光体22の粒子122の脱落が抑制されている。これにより、波長変換部材100の歩留まりを向上することができる。蛍光体22の粒子122の脱落が抑制されているため、波長変換部材100の蛍光体部20は、実用上十分な量の蛍光体22の粒子122を含んでいる。 In the precursor 25, the particles 122 of the phosphor 22 are fixed to the substrate 10 by the filler particles 23. Therefore, it is possible to prevent the particles 122 of the phosphor 22 from falling off the substrate 10 before the matrix 21 is formed. That is, in the wavelength conversion member 100 of this embodiment, the particles 122 of the phosphor 22 are prevented from falling off. Thereby, the yield of the wavelength conversion member 100 can be improved. Since the particles 122 of the phosphor 22 are prevented from falling off, the phosphor part 20 of the wavelength conversion member 100 contains the particles 122 of the phosphor 22 in a practically sufficient amount.
 (実施形態2)
 図4は、実施形態2にかかる波長変換部材110の概略断面図である。図4に示すように、波長変換部材110の蛍光体22は、ブロック222の形状を有している。蛍光体部20に含まれた複数の蛍光体22のうち、一部の蛍光体22が蛍光体部20から部分的に露出している。以上を除き、波長変換部材110の構造は、実施形態1の波長変換部材100の構造と同じである。したがって、実施形態1の波長変換部材100と本実施形態の波長変換部材110とで共通する要素には同じ参照符号を付し、それらの説明を省略することがある。すなわち、以下の各実施形態に関する説明は、技術的に矛盾しない限り、相互に適用されうる。さらに、技術的に矛盾しない限り、各実施形態は、相互に組み合わされてもよい。
(Embodiment 2)
FIG. 4 is a schematic sectional view of the wavelength conversion member 110 according to the second embodiment. As shown in FIG. 4, the phosphor 22 of the wavelength conversion member 110 has the shape of a block 222. Of the plurality of phosphors 22 included in the phosphor unit 20, some of the phosphors 22 are partially exposed from the phosphor unit 20. Except for the above, the structure of the wavelength conversion member 110 is the same as the structure of the wavelength conversion member 100 of the first embodiment. Therefore, the elements common to the wavelength conversion member 100 of the first embodiment and the wavelength conversion member 110 of the present embodiment are denoted by the same reference numerals, and the description thereof may be omitted. That is, the following description of each embodiment can be applied to each other as long as there is no technical contradiction. Further, the respective embodiments may be combined with each other as long as there is no technical contradiction.
 蛍光体22のブロック222は、例えば、多面体の形状を有する。蛍光体22の形状は、直方体状であってもよく、立方体状であってもよい。蛍光体22の形状は、塊状であってもよい。ブロック状の蛍光体22のブロック222は、例えば、板状の蛍光体を破砕することによって作製することができる。蛍光体22のブロック222のサイズは、蛍光体の粒子122のサイズより大きくてもよい。 The block 222 of the phosphor 22 has, for example, a polyhedron shape. The shape of the phosphor 22 may be a rectangular parallelepiped shape or a cubic shape. The shape of the phosphor 22 may be a lump. The block 222 of the block-shaped phosphor 22 can be produced, for example, by crushing a plate-shaped phosphor. The size of the block 222 of the phosphor 22 may be larger than the size of the phosphor particles 122.
 波長変換部材110において、複数の蛍光体22のうち、一部の蛍光体22は、蛍光体部20の側面から部分的に露出している。蛍光体22は、蛍光体部20の上面から露出していてもよい。すなわち、蛍光体22は、マトリクス21に部分的に埋め込まれてもよく、完全には埋め込まれていなくてもよい。 In the wavelength conversion member 110, a part of the plurality of phosphors 22 is partially exposed from the side surface of the phosphor part 20. The phosphor 22 may be exposed from the upper surface of the phosphor unit 20. That is, the phosphor 22 may be partially embedded in the matrix 21, or may not be completely embedded.
 (実施形態3)
 実施形態2の波長変換部材110において、複数の蛍光体22は、規則的に並んでいてもよい。図5は、実施形態3にかかる波長変換部材120の概略断面図である。図5に示すように、波長変換部材120では、複数の蛍光体22は、蛍光体部20の厚さ方向と直交する方向に等間隔で並んでいる。蛍光体22の上面及び下面は、蛍光体部20の厚さ方向と直交する方向に延びていてもよい。蛍光体22の上面及び下面は、互いに平行であってもよい。蛍光体22の側面は、蛍光体部20の厚さ方向に延びていてもよい。蛍光体22の側面は、互いに平行であってもよい。
(Embodiment 3)
In the wavelength conversion member 110 of the second embodiment, the plurality of phosphors 22 may be regularly arranged. FIG. 5 is a schematic sectional view of the wavelength conversion member 120 according to the third embodiment. As shown in FIG. 5, in the wavelength conversion member 120, the plurality of phosphors 22 are arranged at equal intervals in the direction orthogonal to the thickness direction of the phosphor part 20. The upper surface and the lower surface of the phosphor 22 may extend in a direction orthogonal to the thickness direction of the phosphor unit 20. The upper surface and the lower surface of the phosphor 22 may be parallel to each other. The side surface of the phosphor 22 may extend in the thickness direction of the phosphor unit 20. The side surfaces of the phosphor 22 may be parallel to each other.
 フィラー粒子23は、例えば、蛍光体22の下面及び基板10の双方と接着している。フィラー粒子23は、蛍光体22の側面及び他の蛍光体22の側面の双方と接着していてもよい。 The filler particles 23 are adhered to both the lower surface of the phosphor 22 and the substrate 10, for example. The filler particles 23 may be adhered to both the side surface of the phosphor 22 and the side surface of another phosphor 22.
 波長変換部材120において、複数の蛍光体22のうち、一部の蛍光体22は、蛍光体部20から露出していてもよい。蛍光体22は、蛍光体部20の上面から露出していてもよい。すなわち、蛍光体22は、マトリクス21に部分的に埋め込まれてよく、完全には埋め込まれていなくてもよい。 In the wavelength conversion member 120, some of the plurality of phosphors 22 may be exposed from the phosphor part 20. The phosphor 22 may be exposed from the upper surface of the phosphor unit 20. That is, the phosphor 22 may be partially embedded in the matrix 21, and may not be completely embedded.
 (実施形態4)
 図6は、実施形態4にかかる波長変換部材130の概略断面図である。図6に示すように、波長変換部材130の蛍光体部20は、1つの蛍光体22を有している。蛍光体22の形状は、例えば、板状である。板状の蛍光体22のサイズは、蛍光体の粒子122のサイズより大きくてもよい。以上を除き、波長変換部材130の構造は、実施形態1にかかる波長変換部材100の構造と同じである。
(Embodiment 4)
FIG. 6 is a schematic sectional view of the wavelength conversion member 130 according to the fourth embodiment. As shown in FIG. 6, the phosphor part 20 of the wavelength conversion member 130 has one phosphor 22. The shape of the phosphor 22 is, for example, a plate shape. The size of the plate-shaped phosphor 22 may be larger than the size of the phosphor particles 122. Except for the above, the structure of the wavelength conversion member 130 is the same as the structure of the wavelength conversion member 100 according to the first embodiment.
 蛍光体22は、複数の孔22aを有していてもよい。複数の孔22aは、例えば、蛍光体22を厚さ方向に貫通する貫通孔である。複数の孔22aのそれぞれには、例えば、マトリクス21が充填されている。図6では、説明のため、マトリクス21のハッチングが省略されている。 The phosphor 22 may have a plurality of holes 22a. The plurality of holes 22a are, for example, through holes that penetrate the phosphor 22 in the thickness direction. The matrix 21 is filled in each of the plurality of holes 22a, for example. In FIG. 6, hatching of the matrix 21 is omitted for the sake of explanation.
 複数の孔22aは、例えば、板状の蛍光体22に対して、レーザー光又はイオンビームを照射することによって形成することができる。複数の孔22aは、例えば、板状の蛍光体22をエッチングすることによって形成することもできる。 The plurality of holes 22a can be formed, for example, by irradiating the plate-shaped phosphor 22 with a laser beam or an ion beam. The plurality of holes 22a can also be formed, for example, by etching the plate-shaped phosphor 22.
 フィラー粒子23は、例えば、蛍光体22の下面及び基板10の双方と接着している。蛍光体部20は、複数の板状の蛍光体22を含んでいてもよい。蛍光体部20において、複数の板状の蛍光体22が蛍光体部20の厚さ方向に並んでいてもよい。このとき、フィラー粒子23は、蛍光体22の上面及び他の蛍光体22の下面のそれぞれと接着していてもよい。 The filler particles 23 are adhered to both the lower surface of the phosphor 22 and the substrate 10, for example. The phosphor unit 20 may include a plurality of plate-shaped phosphors 22. In the phosphor unit 20, a plurality of plate-shaped phosphors 22 may be arranged in the thickness direction of the phosphor unit 20. At this time, the filler particles 23 may be bonded to each of the upper surface of the phosphor 22 and the lower surface of the other phosphor 22.
 波長変換部材130において、板状の蛍光体22の上面は、蛍光体部20から露出していてもよい。板状の蛍光体22の側面が蛍光体部20から露出していてもよい。すなわち、板状の蛍光体22は、マトリクス21に部分的に埋め込まれてもよく、完全には埋め込まれていなくてもよい。 In the wavelength conversion member 130, the upper surface of the plate-shaped phosphor 22 may be exposed from the phosphor part 20. The side surface of the plate-shaped phosphor 22 may be exposed from the phosphor portion 20. That is, the plate-shaped phosphor 22 may be partially embedded in the matrix 21 or may not be completely embedded.
 (実施形態5)
 実施形態4にかかる波長変換部材130において、複数の孔22aは、貫通孔でなくてもよい。図7は、実施形態5にかかる波長変換部材140の概略断面図である。図7に示すように、波長変換部材140において、複数の孔22aのそれぞれは、蛍光体22の下面のみに開口しており、上面には開口していない。複数の孔22aは、蛍光体22の上面のみに開口し、下面に開口していてもよい。
(Embodiment 5)
In the wavelength conversion member 130 according to the fourth embodiment, the plurality of holes 22a need not be through holes. FIG. 7 is a schematic sectional view of the wavelength conversion member 140 according to the fifth embodiment. As shown in FIG. 7, in the wavelength conversion member 140, each of the plurality of holes 22 a is opened only on the lower surface of the phosphor 22 and is not opened on the upper surface. The plurality of holes 22a may be opened only on the upper surface of the phosphor 22 and may be opened on the lower surface.
 波長変換部材140において、板状の蛍光体22の上面は、蛍光体部20から露出していてもよい。板状の蛍光体22の側面が蛍光体部20から露出していてもよい。すなわち、板状の蛍光体22は、マトリクス21に部分的に埋め込まれてもよく、完全には埋め込まれていなくてもよい。 In the wavelength conversion member 140, the upper surface of the plate-shaped phosphor 22 may be exposed from the phosphor unit 20. The side surface of the plate-shaped phosphor 22 may be exposed from the phosphor portion 20. That is, the plate-shaped phosphor 22 may be partially embedded in the matrix 21 or may not be completely embedded.
 (光学装置の実施形態)
 図8は、実施形態にかかる光学装置200の概略断面図である。図8に示すように、光学装置200は、波長変換部材100及び励起光源40を備えている。励起光源40は、励起光を放射する。波長変換部材100は、励起光源40から放射された励起光が進む光路上に配置されている。励起光源40と波長変換部材100の基板10との間に波長変換部材100の蛍光体部20が位置している。光学装置200は、反射型光学装置である。波長変換部材100に代えて、図4を参照して説明した波長変換部材110、図5を参照して説明した波長変換部材120、図6を参照して説明した波長変換部材130及び図7を参照して説明した波長変換部材140も使用可能である。波長変換部材100、110、120、130、140の組み合わせを光学装置200に使用することも可能である。
(Embodiment of optical device)
FIG. 8 is a schematic cross-sectional view of the optical device 200 according to the embodiment. As shown in FIG. 8, the optical device 200 includes the wavelength conversion member 100 and the excitation light source 40. The excitation light source 40 emits excitation light. The wavelength conversion member 100 is arranged on the optical path along which the excitation light emitted from the excitation light source 40 travels. The phosphor portion 20 of the wavelength conversion member 100 is located between the excitation light source 40 and the substrate 10 of the wavelength conversion member 100. The optical device 200 is a reflective optical device. Instead of the wavelength conversion member 100, the wavelength conversion member 110 described with reference to FIG. 4, the wavelength conversion member 120 described with reference to FIG. 5, the wavelength conversion member 130 described with reference to FIG. The wavelength conversion member 140 described with reference to FIG. It is also possible to use the combination of the wavelength conversion members 100, 110, 120, 130, 140 in the optical device 200.
 励起光源40は、典型的には、半導体発光素子である。半導体発光素子は、例えば、発光ダイオード(LED)、スーパールミネッセントダイオード(SLD)又はレーザーダイオード(LD)である。 The excitation light source 40 is typically a semiconductor light emitting element. The semiconductor light emitting element is, for example, a light emitting diode (LED), a super luminescent diode (SLD) or a laser diode (LD).
 励起光源40は、1つのLDによって構成されていてもよく、複数のLDによって構成されていてもよい。複数のLDは、光学的に結合されていてもよい。励起光源40は、例えば、青色光を放射する。本開示において、青色光は、420nm以上470nm以下のピーク波長を有する光である。 The excitation light source 40 may be configured by one LD or may be configured by a plurality of LDs. The plurality of LDs may be optically coupled. The excitation light source 40 emits blue light, for example. In the present disclosure, blue light is light having a peak wavelength of 420 nm or more and 470 nm or less.
 光学装置200は、光学系50をさらに備えている。励起光源40から放射された励起光の光路上に光学系50が位置していてもよい。光学系50は、レンズ、ミラー、光ファイバーなどの光学部品を含む。 The optical device 200 further includes an optical system 50. The optical system 50 may be located on the optical path of the excitation light emitted from the excitation light source 40. The optical system 50 includes optical components such as a lens, a mirror, and an optical fiber.
 (光学装置の変形例)
 蛍光体部20は、励起光源40と波長変換部材100の基板10との間に位置していなくてもよい。図9は、変形例にかかる光学装置210の概略断面図である。図9の光学装置210において、励起光源40は、波長変換部材100の基板10に向かい合っている。光学装置210において、基板10は、励起光に対して透光性を有する。励起光は、基板10を透過して蛍光体部20に到達する。光学装置210は、透過型光学装置である。
(Modification of optical device)
The phosphor unit 20 may not be located between the excitation light source 40 and the substrate 10 of the wavelength conversion member 100. FIG. 9 is a schematic cross-sectional view of an optical device 210 according to the modification. In the optical device 210 of FIG. 9, the excitation light source 40 faces the substrate 10 of the wavelength conversion member 100. In the optical device 210, the substrate 10 is transparent to the excitation light. The excitation light passes through the substrate 10 and reaches the phosphor unit 20. The optical device 210 is a transmissive optical device.
 (光学装置の別の変形例)
 図10は、別の変形例にかかる光学装置220の概略断面図である。図10に示すように、本実施形態の光学装置220は、複数の励起光源40及び波長変換部材100を備えている。図10では、波長変換部材100の蛍光体部20は、複数の励起光源40のそれぞれと波長変換部材100の基板10との間に位置している。複数の励起光源40は、波長変換部材100の蛍光体部20に向かい合っている。光学装置220は、プロジェクタの用途に適している。
(Another modification of the optical device)
FIG. 10 is a schematic cross-sectional view of an optical device 220 according to another modification. As shown in FIG. 10, the optical device 220 of this embodiment includes a plurality of excitation light sources 40 and the wavelength conversion member 100. In FIG. 10, the phosphor section 20 of the wavelength conversion member 100 is located between each of the plurality of excitation light sources 40 and the substrate 10 of the wavelength conversion member 100. The plurality of excitation light sources 40 face the phosphor unit 20 of the wavelength conversion member 100. The optical device 220 is suitable for use as a projector.
 図11は、光学装置220が備える波長変換部材100の斜視図である。図11に示すように、光学装置220の波長変換部材100は、ホイールの形状を有する。詳細には、光学装置220の波長変換部材100の基板10は、円板の形状を有する。基板10は、貫通孔13及び透光部14を有する。貫通孔13は、基板10の厚さ方向に延びている。貫通孔13は、例えば、基板10の外周面によって規定された仮想円の中心に位置する。光を透過する透光部14は、円弧の形状すなわち円環扇形状を有する。透光部14は、蛍光体部20に接していてもよい。透光部14は、例えば、貫通孔である。透光部14は、透明樹脂又はガラスでできていてもよい。透光部14は、サファイア、石英などの透光性を有する材料でできていてもよい。 FIG. 11 is a perspective view of the wavelength conversion member 100 included in the optical device 220. As shown in FIG. 11, the wavelength conversion member 100 of the optical device 220 has a wheel shape. Specifically, the substrate 10 of the wavelength conversion member 100 of the optical device 220 has a disc shape. The substrate 10 has a through hole 13 and a transparent portion 14. The through hole 13 extends in the thickness direction of the substrate 10. The through hole 13 is located at the center of a virtual circle defined by the outer peripheral surface of the substrate 10, for example. The light transmitting portion 14 that transmits light has an arc shape, that is, an annular fan shape. The translucent part 14 may be in contact with the phosphor part 20. The transparent portion 14 is, for example, a through hole. The translucent portion 14 may be made of transparent resin or glass. The translucent portion 14 may be made of a translucent material such as sapphire or quartz.
 蛍光体部20は、円弧の形状すなわち円環扇形状を有している。蛍光体部20の外周面によって規定された仮想円に沿って、蛍光体部20と透光部14とが並んでいる。蛍光体部20は、基板10の主面を部分的に被覆している。光学装置220において、波長変換部材100は、複数の蛍光体部20を含んでいてもよい。特定の蛍光体部20の外周面によって規定された仮想円に沿って、複数の蛍光体部20が並んでいてもよい。複数の蛍光体部20に含まれる蛍光体22は、それぞれ、互いに異なる組成を有していてもよい。 The phosphor portion 20 has an arc shape, that is, an annular fan shape. The phosphor body 20 and the translucent portion 14 are arranged along an imaginary circle defined by the outer peripheral surface of the phosphor body 20. The phosphor portion 20 partially covers the main surface of the substrate 10. In the optical device 220, the wavelength conversion member 100 may include a plurality of phosphor parts 20. A plurality of phosphor parts 20 may be arranged along an imaginary circle defined by the outer peripheral surface of the specific phosphor part 20. The phosphors 22 included in the plurality of phosphor parts 20 may have different compositions from each other.
 図10に示すように、光学装置220は、モーター60をさらに備える。波長変換部材100は、モーター60に配置されている。詳細には、モーター60のシャフトが基板10の貫通孔13に挿入されている。波長変換部材100は、例えば、ネジなどの固定部材によって、モーター60に固定されている。モーター60によって波長変換部材100が回転させられ、複数の励起光源40から放射された励起光が波長変換部材100に照射される。これにより、励起光が蛍光体部20に局所的に照射されることを防ぐことができる。そのため、励起光及び蛍光の光によって、蛍光体部20の温度が上昇することを抑制できる。 As shown in FIG. 10, the optical device 220 further includes a motor 60. The wavelength conversion member 100 is arranged on the motor 60. Specifically, the shaft of the motor 60 is inserted into the through hole 13 of the substrate 10. The wavelength conversion member 100 is fixed to the motor 60 by a fixing member such as a screw. The wavelength conversion member 100 is rotated by the motor 60, and the wavelength conversion member 100 is irradiated with the excitation light emitted from the plurality of excitation light sources 40. Thereby, it is possible to prevent the excitation light from being locally applied to the phosphor portion 20. Therefore, it is possible to prevent the temperature of the phosphor unit 20 from rising due to the excitation light and the fluorescence light.
 光学装置220は、コリメートレンズ51、ダイクロイックミラー52、レンズ53及び54、並びに、反射ミラー55、56、57をさらに備える。コリメートレンズ51、ダイクロイックミラー52及びレンズ53は、複数の励起光源40のそれぞれと波長変換部材100との間に位置する。コリメートレンズ51、ダイクロイックミラー52及びレンズ53は、複数の励起光源40から放射された励起光が進む光路上にこの順番で並んでいる。レンズ54、反射ミラー55,56、57とダイクロイックミラー52は、波長変換部材100を透過した励起光が進む光路上に、この順番で並んでいる。 The optical device 220 further includes a collimator lens 51, a dichroic mirror 52, lenses 53 and 54, and reflection mirrors 55, 56 and 57. The collimator lens 51, the dichroic mirror 52, and the lens 53 are located between each of the plurality of excitation light sources 40 and the wavelength conversion member 100. The collimating lens 51, the dichroic mirror 52, and the lens 53 are arranged in this order on the optical path where the excitation light emitted from the plurality of excitation light sources 40 travels. The lens 54, the reflection mirrors 55, 56, 57 and the dichroic mirror 52 are arranged in this order on the optical path along which the excitation light transmitted through the wavelength conversion member 100 travels.
 コリメートレンズ51は、複数の励起光源40から放射された励起光を集光する。コリメートレンズ51により、平行光が得られる。ダイクロイックミラー52は、励起光を透過し、かつ、波長変換部材100から放射された光を効率的に反射できる。レンズ53は、励起光及び波長変換部材100から放射された光を集光する。レンズ54は、波長変換部材100を透過した励起光を集光する。レンズ54により、平行光が得られる。反射ミラー55,56、57のそれぞれは、励起光を反射する。 The collimator lens 51 collects the excitation light emitted from the plurality of excitation light sources 40. Parallel light is obtained by the collimator lens 51. The dichroic mirror 52 can transmit the excitation light and efficiently reflect the light emitted from the wavelength conversion member 100. The lens 53 collects the excitation light and the light emitted from the wavelength conversion member 100. The lens 54 collects the excitation light that has passed through the wavelength conversion member 100. Parallel light is obtained by the lens 54. Each of the reflection mirrors 55, 56, 57 reflects the excitation light.
 光学装置220は、ヒートシンク41をさらに備える。ヒートシンク41は、複数の励起光源40に接している。ヒートシンク41により、複数の励起光源40の熱を外部に容易に逃がすことができる。これにより、複数の励起光源40の温度が上昇することを抑制できるため、複数の励起光源40におけるエネルギーの変換効率の低下を抑制できる。 The optical device 220 further includes a heat sink 41. The heat sink 41 is in contact with the plurality of excitation light sources 40. With the heat sink 41, the heat of the plurality of excitation light sources 40 can be easily released to the outside. As a result, it is possible to prevent the temperatures of the plurality of pumping light sources 40 from rising, and thus it is possible to suppress a decrease in energy conversion efficiency in the plurality of pumping light sources 40.
 次に、光学装置220の動作を説明する。 Next, the operation of the optical device 220 will be described.
 まず、複数の励起光源40が励起光を放射する。励起光は、コリメートレンズ51によって集光され、平行光に変換される。次に、励起光は、ダイクロイックミラー52を透過し、レンズ53によってさらに集光される。レンズ53により、蛍光体部20に入射するべき励起光のスポット径を調節できる。次に、励起光が波長変換部材100に入射する。波長変換部材100は、モーター60によって回転されている。そのため、光学装置220の動作には、励起光が蛍光体部20に入射する期間と、励起光が透光部14を透過する期間とが存在する。励起光が蛍光体部20に入射する期間には、波長変換部材100は、励起光の波長よりも長い波長の光を放射する。励起光が透光部14を透過する期間には、励起光がレンズ54に入射する。波長変換部材100から放射された光は、レンズ53によって集光され、平行光に変換される。波長変換部材100から放射された光は、ダイクロイックミラー52によって反射され、光学装置220の外部へ送られる。 First, a plurality of excitation light sources 40 emit excitation light. The excitation light is condensed by the collimator lens 51 and converted into parallel light. Next, the excitation light passes through the dichroic mirror 52 and is further condensed by the lens 53. The lens 53 can adjust the spot diameter of the excitation light that should be incident on the phosphor unit 20. Next, the excitation light enters the wavelength conversion member 100. The wavelength conversion member 100 is rotated by the motor 60. Therefore, the operation of the optical device 220 has a period in which the excitation light is incident on the phosphor unit 20 and a period in which the excitation light is transmitted through the light transmitting unit 14. The wavelength conversion member 100 emits light having a wavelength longer than the wavelength of the excitation light while the excitation light is incident on the phosphor unit 20. The excitation light is incident on the lens 54 during the period in which the excitation light is transmitted through the transparent portion 14. The light emitted from the wavelength conversion member 100 is condensed by the lens 53 and converted into parallel light. The light emitted from the wavelength conversion member 100 is reflected by the dichroic mirror 52 and sent to the outside of the optical device 220.
 励起光が透光部14を透過するとき、励起光は、レンズ54によって集光され、平行光に変換される。レンズ54を通過した励起光は、反射ミラー55,56、57によって反射される。次に、励起光は、ダイクロイックミラー52を透過する。これにより、励起光は、光学装置220の外部へ送られる。このとき、励起光は、波長変換部材100から放射された光と混ざる。 When the excitation light passes through the translucent portion 14, the excitation light is condensed by the lens 54 and converted into parallel light. The excitation light that has passed through the lens 54 is reflected by the reflection mirrors 55, 56 and 57. Next, the excitation light passes through the dichroic mirror 52. As a result, the excitation light is sent to the outside of the optical device 220. At this time, the excitation light mixes with the light emitted from the wavelength conversion member 100.
 (プロジェクタの実施形態)
 図12は、本実施形態にかかるプロジェクタ500の概略構成図である。図12に示すように、プロジェクタ500は、光学装置220、光学ユニット300及び制御部400を備える。光学ユニット300は、光学装置220から放射された光を変換し、プロジェクタ500の外部の対象物に画像又は映像を投射する。対象物としては、例えば、スクリーンが挙げられる。光学ユニット300は、集光レンズ70、ロッドインテグレータ71、レンズユニット72、表示素子73及び投射レンズ74を備える。
(Embodiment of projector)
FIG. 12 is a schematic configuration diagram of the projector 500 according to the present embodiment. As shown in FIG. 12, the projector 500 includes an optical device 220, an optical unit 300, and a controller 400. The optical unit 300 converts the light emitted from the optical device 220 and projects an image or video on an object outside the projector 500. The object may be, for example, a screen. The optical unit 300 includes a condenser lens 70, a rod integrator 71, a lens unit 72, a display element 73, and a projection lens 74.
 集光レンズ70は、光学装置220から放射された光を集光させる。これにより、光学装置220から放射された光は、ロッドインテグレータ71の入射端面に集光する。 The condenser lens 70 condenses the light emitted from the optical device 220. Thereby, the light emitted from the optical device 220 is condensed on the incident end surface of the rod integrator 71.
 ロッドインテグレータ71は、例えば、四角柱の形状を有する。ロッドインテグレータ71の入射端面に入射した光は、ロッドインテグレータ71内で全反射を繰り返し、ロッドインテグレータ71の出射端面から出射される。ロッドインテグレータ71から出射した光は、均一な輝度分布を有する。 The rod integrator 71 has, for example, a rectangular prism shape. The light incident on the incident end face of the rod integrator 71 is repeatedly totally reflected inside the rod integrator 71, and is emitted from the emitting end face of the rod integrator 71. The light emitted from the rod integrator 71 has a uniform luminance distribution.
 レンズユニット72は、複数のレンズを有する。レンズユニット72が有する複数のレンズとしては、例えば、コンデンサレンズ及びリレーレンズが挙げられる。レンズユニット72は、ロッドインテグレータ71から出射した光を表示素子73に導く。 The lens unit 72 has a plurality of lenses. Examples of the plurality of lenses included in the lens unit 72 include a condenser lens and a relay lens. The lens unit 72 guides the light emitted from the rod integrator 71 to the display element 73.
 表示素子73は、レンズユニット72を通過した光を変換する。これにより、プロジェクタ500の外部の対象物に投射されるべき画像又は映像が得られる。表示素子73は、例えば、デジタルミラーデバイス(DMD)である。 The display element 73 converts light that has passed through the lens unit 72. As a result, an image or video to be projected on an object outside the projector 500 is obtained. The display element 73 is, for example, a digital mirror device (DMD).
 投射レンズ74は、表示素子73によって変換された光をプロジェクタ500の外部に投射する。これにより、表示素子73によって変換された光を対象物に投射することができる。投射レンズ74は、1又は2以上のレンズを有する。投射レンズ74が有するレンズとしては、例えば、両凸レンズ及び平凹レンズが挙げられる。 The projection lens 74 projects the light converted by the display element 73 to the outside of the projector 500. Thereby, the light converted by the display element 73 can be projected on the target object. The projection lens 74 has one or more lenses. Examples of the lens included in the projection lens 74 include a biconvex lens and a plano-concave lens.
 制御部400は、光学装置220及び光学ユニット300の各部を制御する。制御部400は、例えば、マイクロコンピュータ又はプロセッサである。 The control unit 400 controls each unit of the optical device 220 and the optical unit 300. The control unit 400 is, for example, a microcomputer or a processor.
 図13は、プロジェクタ500の斜視図である。図13に示すように、プロジェクタ500は、筐体510をさらに備える。筐体510は、光学装置220、光学ユニット300及び制御部400を収容している。光学ユニット300の投射レンズ74の一部は、筐体510の外部に露出している。 FIG. 13 is a perspective view of the projector 500. As shown in FIG. 13, the projector 500 further includes a housing 510. The housing 510 houses the optical device 220, the optical unit 300, and the control unit 400. A part of the projection lens 74 of the optical unit 300 is exposed to the outside of the housing 510.
 (照明装置の実施形態)
 図14は、本実施形態にかかる照明装置600の概略構成図である。図14に示すように、照明装置600は、光学装置200及び光学部品80を備えている。光学装置200に代えて、図9を参照して説明した光学装置210も使用可能である。光学部品80は、光学装置200から放射された光を前方に導くための部品であり、具体的には、リフレクタである。光学部品80は、例えば、Al、Agなどの金属膜又は表面に誘電体層が形成されたAl膜を有する。光学装置200の前方には、フィルタ81が設けられていてもよい。フィルタ81は、光学装置200の励起光源からのコヒーレントな青色光が直接外部に出ないように、青色光を吸収又は散乱させる。照明装置600は、いわゆるリフレクタータイプであってもよく、プロジェクタータイプであってもよい。照明装置600は、例えば、車両用ヘッドランプである。
(Embodiment of lighting device)
FIG. 14 is a schematic configuration diagram of the illumination device 600 according to the present embodiment. As shown in FIG. 14, the lighting device 600 includes an optical device 200 and an optical component 80. Instead of the optical device 200, the optical device 210 described with reference to FIG. 9 can also be used. The optical component 80 is a component for guiding the light emitted from the optical device 200 forward, and is specifically a reflector. The optical component 80 has, for example, a metal film of Al, Ag, or the like, or an Al film having a dielectric layer formed on the surface thereof. A filter 81 may be provided in front of the optical device 200. The filter 81 absorbs or scatters blue light so that the coherent blue light from the excitation light source of the optical device 200 does not directly go out. The lighting device 600 may be a so-called reflector type or a projector type. The lighting device 600 is, for example, a vehicle headlamp.
 本開示を実施例に基づき、具体的に説明する。ただし、本開示は、以下の実施例によって何ら限定されるものではない。 The present disclosure will be specifically described based on examples. However, the present disclosure is not limited to the following examples.
 [フィラー粒子]
 (サンプル1~5)
 サンプル1~5のフィラー粒子を準備した。サンプル1のフィラー粒子は、アルミナでできていた。サンプル2のフィラー粒子は、ポリスチレンでできていた。サンプル3のフィラー粒子は、ポリメタクリル酸メチル(PMMA)でできていた。サンプル4のフィラー粒子は、シリコーンゴムでできたコア、及び、シリコーンゴム以外の他のシリコーン樹脂でできたシェルで構成されたシリコーン複合粒子であった。サンプル5のフィラー粒子は、シリコーンゴムでできていた。
[Filler particles]
(Samples 1-5)
Filler particles of Samples 1 to 5 were prepared. The filler particles of Sample 1 were made of alumina. The filler particles of sample 2 were made of polystyrene. The filler particles of Sample 3 were made of polymethylmethacrylate (PMMA). The filler particles of Sample 4 were silicone composite particles composed of a core made of silicone rubber and a shell made of a silicone resin other than silicone rubber. The filler particles of sample 5 were made of silicone rubber.
 [フィラー粒子の接着性]
 サンプル1~5のフィラー粒子のそれぞれについて、接着性試験を行った。接着性試験は、サンプルごとに、シャーレに複数のフィラー粒子を配置し、シャーレを加熱することによって行った。加熱は、乾燥器を用いて行った。複数のフィラー粒子の加熱は、周囲温度200℃で24時間行った。接着性試験の結果を表1に示す。複数のフィラー粒子を加熱した後に、複数のフィラー粒子が互いに接着し、塊状になった場合、接着性が良好(「G」で示す)であると評価した。複数のフィラー粒子が互いに接着していない場合、接着性が不良(「NG」で示す)であると評価した。複数のフィラー粒子の加熱は、周囲温度240℃で24時間の条件でも行った。
[Adhesiveness of filler particles]
An adhesion test was performed on each of the filler particles of Samples 1-5. The adhesion test was carried out by placing a plurality of filler particles in a petri dish and heating the petri dish for each sample. The heating was performed using a dryer. The heating of the plurality of filler particles was performed at an ambient temperature of 200° C. for 24 hours. The results of the adhesion test are shown in Table 1. After heating the plurality of filler particles, and when the plurality of filler particles adhere to each other to form a lump, the adhesiveness was evaluated as good (indicated by “G”). When the plurality of filler particles did not adhere to each other, the adhesiveness was evaluated as poor (indicated by “NG”). The heating of the plurality of filler particles was also performed at an ambient temperature of 240° C. for 24 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からわかるとおり、樹脂材料を含むサンプル2~5のフィラー粒子は、接着性を有していた。 As can be seen from Table 1, the filler particles of Samples 2 to 5 containing the resin material had adhesiveness.
 [フィラー粒子の光の吸収率]
 サンプル1~5のフィラー粒子のそれぞれについて、450nmの波長の光に対する吸収率、及び、550nmの波長の光に対する吸収率を測定した。吸収率の測定には、絶対PL量子収率測定装置(浜松ホトニクス社製のC9920-02G)を用いた。吸収率の測定には、合成石英でできたシャーレを用いた。シャーレの底面は、平面視で円形状を有していた。平面視でのシャーレの底面の直径は、約17mmであった。シャーレの厚さは、約5mmであった。シャーレは、蓋を備えていた。測定の結果を表2に示す。
[Light absorption rate of filler particles]
For each of the filler particles of Samples 1 to 5, the absorptance with respect to light having a wavelength of 450 nm and the absorptance with respect to light having a wavelength of 550 nm were measured. An absolute PL quantum yield measuring device (C9920-02G manufactured by Hamamatsu Photonics KK) was used for measuring the absorptance. A petri dish made of synthetic quartz was used for measuring the absorptance. The bottom surface of the petri dish had a circular shape in plan view. The diameter of the bottom surface of the dish in plan view was about 17 mm. The thickness of the petri dish was about 5 mm. The dish was equipped with a lid. The measurement results are shown in Table 2.
 表2において、550nmの波長の光に対する吸収率が10%以下であるフィラー粒子については、耐熱性が良好(「G」でしめす)であると評価した。550nmの波長の光に対する吸収率が10%より大きく、25%以下であるフィラー粒子については、耐熱性がやや良好(「F」で示す)であると評価した。550nmの波長の光に対する吸収率が25%よりも大きいフィラー粒子については、耐熱性が不良(「NG」で示す)であると評価した。 In Table 2, filler particles having an absorption rate of 10% or less for light having a wavelength of 550 nm were evaluated to have good heat resistance (indicated by "G"). The filler particles having an absorptance for light having a wavelength of 550 nm of more than 10% and 25% or less were evaluated to have a slightly good heat resistance (indicated by "F"). The filler particles having an absorptivity for light having a wavelength of 550 nm of more than 25% were evaluated as having poor heat resistance (indicated by “NG”).
 [フィラー粒子の200℃での耐熱性]
 サンプル1~5のフィラー粒子のそれぞれを周囲温度200℃で24時間加熱した。加熱した後のフィラー粒子について、上記と同様の方法で、450nmの波長の光に対する吸収率、及び、550nmの波長の光に対する吸収率を測定した。措定の結果を表2に示す。
[Heat resistance of filler particles at 200°C]
Each of the filler particles of Samples 1-5 was heated at ambient temperature of 200° C. for 24 hours. With respect to the filler particles after heating, the absorptance for light having a wavelength of 450 nm and the absorptance for light having a wavelength of 550 nm were measured by the same method as described above. Table 2 shows the results of the measures.
 表2において、550nmの波長の光に対する吸収率が10%以下であるフィラー粒子については、200℃での耐熱性が良好(「G」で示す)であると評価した。550nmの波長の光に対する吸収率が10%より大きく、25%以下であるフィラー粒子については、200℃での耐熱性がやや良好(「F」で示す)であると評価した。550nmの波長の光に対する吸収率が25%よりも大きいフィラー粒子については、200℃での耐熱性が不良(「NG」で示す)であると評価した。 In Table 2, the filler particles having an absorption rate of 10% or less for light having a wavelength of 550 nm were evaluated to have good heat resistance at 200° C. (indicated by “G”). The filler particles having an absorptivity for light with a wavelength of 550 nm of more than 10% and 25% or less were evaluated as having slightly good heat resistance at 200° C. (indicated by “F”). The filler particles having an absorptance for light having a wavelength of 550 nm of more than 25% were evaluated as having poor heat resistance at 200° C. (indicated by “NG”).
 [フィラー粒子の240℃での耐熱性]
 サンプル1~5のフィラー粒子のそれぞれを周囲温度240℃で24時間加熱した。加熱した後のフィラー粒子について、上記と同様の方法で、450nmの波長の光に対する吸収率、及び、550nmの波長の光に対する吸収率を測定した。測定の結果を表2に示す。
[Heat resistance of filler particles at 240°C]
Each of the filler particles of Samples 1-5 was heated at an ambient temperature of 240°C for 24 hours. With respect to the filler particles after heating, the absorptance for light having a wavelength of 450 nm and the absorptance for light having a wavelength of 550 nm were measured by the same method as described above. The measurement results are shown in Table 2.
 表2において、550nmの波長の光に対する吸収率が10%以下であるフィラー粒子については、240℃での耐熱性が良好(「G」で示す)であると評価した。550nmの波長の光に対する吸収率が10%より大きく、25%以下であるフィラー粒子については、240℃での耐熱性がやや良好(「F」で示す)であると評価した。550nmの波長の光に対する吸収率が25%よりも大きいフィラー粒子については、240℃での耐熱性が不良(「NG」で示す)であると評価した。 In Table 2, the filler particles having an absorption rate of 10% or less for light having a wavelength of 550 nm were evaluated to have good heat resistance at 240° C. (indicated by “G”). The filler particles having an absorptance for light having a wavelength of 550 nm of more than 10% and 25% or less were evaluated to have a slightly good heat resistance at 240° C. (indicated by “F”). The filler particles having an absorptance for light having a wavelength of 550 nm of more than 25% were evaluated as having poor heat resistance at 240° C. (indicated by “NG”).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2からわかるとおり、シリコーンゴム又はシリコーン樹脂を含むサンプル4、5のフィラー粒子は、優れた接着性だけでなく、優れた耐熱性を有していた。 As can be seen from Table 2, the filler particles of Samples 4 and 5 containing silicone rubber or silicone resin had not only excellent adhesiveness but also excellent heat resistance.
 [蛍光体部の前駆体]
 (比較例1)
 次の方法によって、比較例1の蛍光体部の前駆体を作製した。まず、基板本体の上に、結晶性のZnO薄膜を形成した。基板本体としては、反射層を備えたシリコン基板を用いた。基板本体は、平面視で正方形の形状を有していた。平面視での基板本体の一辺の長さは、5mmであった。ZnO薄膜の上に、蛍光体の粒子を配置した。次に、蛍光体の粒子に対して、加熱処理を行った。加熱処理は、周囲温度200℃で10分行った後、周囲温度250℃で30分行った。これにより、基板の上に形成された比較例1の蛍光体部の前駆体を得た。蛍光体は、YAl12:Ce(YAG)でできていた。蛍光体の粒子の平均粒径は、16μmであった。前駆体の厚さは、80μmであった。前駆体は、平面視で円の形状を有していた。平面視での前駆体の直径は、3mmであった。
[Phosphor precursor]
(Comparative Example 1)
The precursor of the phosphor part of Comparative Example 1 was produced by the following method. First, a crystalline ZnO thin film was formed on the substrate body. A silicon substrate provided with a reflective layer was used as the substrate body. The substrate body had a square shape in plan view. The length of one side of the substrate body in plan view was 5 mm. Phosphor particles were arranged on the ZnO thin film. Next, the phosphor particles were subjected to heat treatment. The heat treatment was performed at an ambient temperature of 200° C. for 10 minutes and then at an ambient temperature of 250° C. for 30 minutes. As a result, a precursor of the phosphor portion of Comparative Example 1 formed on the substrate was obtained. The phosphor was made of Y 3 Al 5 O 12 :Ce(YAG). The average particle size of the phosphor particles was 16 μm. The thickness of the precursor was 80 μm. The precursor had a circular shape in plan view. The diameter of the precursor in plan view was 3 mm.
 (比較例2)
 蛍光体の粒子とともに、サンプル1のフィラー粒子をZnO薄膜の上に配置したことを除き、比較例1と同じ方法によって比較例2の蛍光体部の前駆体を得た。比較例2の蛍光体部の前駆体において、蛍光体の粒子の合計体積V1(蛍光体の全体の体積)とフィラー粒子の合計体積V2で定義されるV2/(V1+V2)の値は、0.05であった。
(Comparative example 2)
A precursor for the phosphor portion of Comparative Example 2 was obtained by the same method as in Comparative Example 1 except that the filler particles of Sample 1 were placed on the ZnO thin film together with the particles of the phosphor. In the precursor of the phosphor part of Comparative Example 2, the value of V2/(V1+V2) defined by the total volume V1 of the particles of the phosphor (the total volume of the phosphor) and the total volume V2 of the filler particles is 0. It was 05.
 (実施例1)
 サンプル1のフィラー粒子をサンプル2のフィラー粒子に変更したことを除き、比較例2と同じ方法によって実施例1の蛍光体部の前駆体を得た。
(Example 1)
A precursor of the phosphor part of Example 1 was obtained by the same method as Comparative Example 2 except that the filler particles of Sample 1 were changed to the filler particles of Sample 2.
 (実施例2)
 サンプル1のフィラー粒子をサンプル3のフィラー粒子に変更したことを除き、比較例2と同じ方法によって実施例2の蛍光体部の前駆体を得た。
(Example 2)
A precursor of the phosphor part of Example 2 was obtained by the same method as Comparative Example 2 except that the filler particles of Sample 1 were changed to the filler particles of Sample 3.
 (実施例3)
 サンプル1のフィラー粒子をサンプル4のフィラー粒子に変更したこと、及び、V2/(V1+V2)の値を0.16に調節したことを除き、比較例2と同じ方法によって実施例3の蛍光体部の前駆体を得た。
(Example 3)
Phosphor part of Example 3 by the same method as Comparative Example 2 except that the filler particles of Sample 1 were changed to the filler particles of Sample 4 and the value of V2/(V1+V2) was adjusted to 0.16. A precursor of was obtained.
 (実施例4)
 サンプル1のフィラー粒子をサンプル5のフィラー粒子に変更したことを除き、比較例2と同じ方法によって実施例4の蛍光体部の前駆体を得た。
(Example 4)
A precursor for the phosphor part of Example 4 was obtained by the same method as Comparative Example 2 except that the filler particles of Sample 1 were changed to the filler particles of Sample 5.
 (実施例5)
 V2/(V1+V2)の値を0.16に調節したことを除き、実施例4と同じ方法によって実施例5の蛍光体部の前駆体を得た。
(Example 5)
A precursor for the phosphor part of Example 5 was obtained in the same manner as in Example 4, except that the value of V2/(V1+V2) was adjusted to 0.16.
 [蛍光体部の前駆体の振動試験]
 比較例1、2及び実施例1~5の蛍光体部の前駆体のそれぞれについて、振動試験を行った。まず、蛍光体部の前駆体を基板とともに、チップケース(大日商事社製のCT100-066)にセットした。チップケースは、平面視で正方形の形状のポケットを有していた。平面視でのポケットの一辺の長さは、6.6mmであった。ポケットの深さは、2.54mmであった。次に、チップケースを振動試験機にセットした。振動試験機によってチップケースを振動させた。このとき、チップケースの振幅は、4.5mmであった。振動試験機では、モーターの回転を振動に変換している。振動の強度について、モーターの回転数200rpmでの振動の強さの値を1と定義し、モーターの回転数2500rpmでの振動の強さの値を10と定義した。振動試験は、1の強さから開始した。その後、20秒経過ごとに、強さの値を1ずつ増加させた。振動の強度が値10に達してから20秒経過後に振動試験を終了した。振動試験の結果を表3に示す。
[Vibration test of precursor of phosphor part]
A vibration test was performed on each of the precursors of the phosphor parts of Comparative Examples 1 and 2 and Examples 1 to 5. First, the precursor of the phosphor portion was set together with the substrate in a chip case (CT100-066 manufactured by Dainichi Trading Co., Ltd.). The chip case had a square pocket in plan view. The length of one side of the pocket in plan view was 6.6 mm. The depth of the pocket was 2.54 mm. Next, the chip case was set in the vibration tester. The chip case was vibrated by a vibration tester. At this time, the amplitude of the chip case was 4.5 mm. The vibration tester converts the rotation of the motor into vibration. Regarding the intensity of vibration, the value of the intensity of vibration at a rotation speed of the motor of 200 rpm was defined as 1, and the value of the intensity of vibration at a rotation speed of the motor of 2500 rpm was defined as 10. The vibration test started at a strength of 1. After that, the strength value was increased by 1 every 20 seconds. The vibration test was terminated 20 seconds after the vibration intensity reached a value of 10. The results of the vibration test are shown in Table 3.
 表3において、振動試験の数値は、蛍光体部の前駆体から蛍光体の粒子が脱落したときの振動の強さを示す。ただし、表3において、実施例5の蛍光体部の前駆体では、強さ10の振動でも蛍光体の粒子が脱落しなかった。 In Table 3, the numerical value of the vibration test shows the strength of vibration when the particles of the phosphor are dropped from the precursor of the phosphor part. However, in Table 3, in the precursor of the phosphor part of Example 5, the particles of the phosphor did not fall off even with the vibration of strength 10.
 さらに、振動試験を実施する前後において、蛍光体部の前駆体の表面を顕微鏡によって50倍の倍率で観察した。顕微鏡としては、KEYENCE社製のデジタルマイクロスコープVH-5000を用いた。図15Aは、振動試験を実施する前における実施例2の蛍光体部の前駆体の顕微鏡画像を示している。図15Bは、振動試験を実施した後における実施例2の蛍光体部の前駆体の顕微鏡画像を示している。図15A及び図15Bから、大きな振動によって、蛍光体部の前駆体から蛍光体が脱落したことがわかる。さらに、図16Aは、振動試験を実施する前における実施例3の蛍光体部の前駆体の顕微鏡画像を示している。図16Bは、振動試験を実施した後における実施例3の蛍光体部の前駆体の顕微鏡画像を示している。図16A及び図16Bからも、大きな振動によって、蛍光体部の前駆体から蛍光体が脱落したことがわかる。 Furthermore, before and after the vibration test, the surface of the precursor of the phosphor part was observed with a microscope at a magnification of 50 times. As the microscope, a digital microscope VH-5000 manufactured by KEYENCE was used. FIG. 15A shows a microscope image of the precursor of the phosphor part of Example 2 before carrying out the vibration test. FIG. 15B shows a microscope image of the precursor of the phosphor part of Example 2 after the vibration test was performed. From FIG. 15A and FIG. 15B, it can be seen that the phosphor was dropped from the precursor of the phosphor part due to the large vibration. Further, FIG. 16A shows a microscope image of the precursor of the phosphor part of Example 3 before carrying out the vibration test. FIG. 16B shows a microscope image of the precursor of the phosphor part of Example 3 after performing the vibration test. From FIGS. 16A and 16B, it can be seen that the fluorescent substance has fallen off from the precursor of the fluorescent substance portion due to the large vibration.
 [蛍光体部の前駆体の浸漬試験]
 比較例1、2及び実施例1~5の蛍光体部の前駆体のそれぞれについて、浸漬試験を行った。まず、比較例1、2及び実施例1~5の蛍光体部の前駆体をそれぞれ10個ずつ準備した。これらの前駆体は、それぞれ、基板に支持されていた。次に、蛍光体部の前駆体を支持する基板を冶具で固定した。基板を試験用の容器の内部にセットした。容器内にZnOの結晶成長用の溶液を加えた。結晶成長用の溶液としては、硝酸亜鉛及びヘキサメチレンテトラミンの水溶液を用いた。基板を結晶成長用の溶液から取り出した。浸漬試験後に、蛍光体部の前駆体が脱落した基板の個数を計数した。浸清試験の結果を表3に示す。浸漬試験によって蛍光体部の前駆体が脱落した基板の個数が0個以上3個以下のとき、浸漬試験の結果が良好(「G」で示す)であると評価した。この個数が4個以上10個以下のとき、浸漬試験の結果が不良(「NG」で示す)であると評価した。
[Dip test of precursor of phosphor part]
An immersion test was performed on each of the precursors of the phosphor parts of Comparative Examples 1 and 2 and Examples 1 to 5. First, 10 precursors each of the phosphor portions of Comparative Examples 1 and 2 and Examples 1 to 5 were prepared. Each of these precursors was supported by the substrate. Next, the substrate supporting the precursor of the phosphor portion was fixed with a jig. The substrate was set inside the test container. A ZnO crystal growth solution was added to the container. An aqueous solution of zinc nitrate and hexamethylenetetramine was used as a solution for crystal growth. The substrate was taken out of the solution for crystal growth. After the immersion test, the number of substrates from which the precursor of the phosphor part had fallen off was counted. The results of the immersion test are shown in Table 3. When the number of substrates from which the precursor of the phosphor part had fallen off by the immersion test was 0 or more and 3 or less, the result of the immersion test was evaluated as good (indicated by "G"). When this number was 4 or more and 10 or less, the result of the immersion test was evaluated as poor (indicated by "NG").
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3からわかるとおり、樹脂材料を含むフィラー粒子を備えた実施例1~5の蛍光体部の前駆体では、比較例1、2の蛍光体部の前駆体に比べて、基板からの蛍光体の脱落が十分に抑制されていた。 As can be seen from Table 3, the phosphor precursors of Examples 1 to 5 provided with the filler particles containing the resin material have a higher phosphor content from the substrate than the phosphor precursors of Comparative Examples 1 and 2. Was completely suppressed.
 [波長変換部材]
 次に、実施例2、3、5の蛍光体部の前駆体のそれぞれを用いて、波長変換部材を作製した。詳細には、溶液成長法によって、ZnO薄膜の上に結晶質のZnOマトリクスを作製した。結晶成長用の溶液としては、硝酸亜鉛及びヘキサメチレンテトラミンの水溶液を用いた。これにより、実施例2、3、5の波長変換部材を得た。
[Wavelength conversion member]
Next, a wavelength conversion member was produced using each of the precursors of the phosphor parts of Examples 2, 3, and 5. Specifically, a crystalline ZnO matrix was formed on the ZnO thin film by the solution growth method. An aqueous solution of zinc nitrate and hexamethylenetetramine was used as a solution for crystal growth. Thereby, the wavelength conversion members of Examples 2, 3, and 5 were obtained.
 次に、実施例2の波長変換部材を切断し、その切断面を走査型電子顕微鏡(SEM)によって観察した。SEMとしては、日立ハイテクノロジーズ社製のS-4300を用いた。図17Aは、実施例2の波長変換部材の断面のSEM画像を示している。図17Bは、図17Aに示すフィラー粒子の拡大図である。図17Aからわかるとおり、波長変換部材において、フィラー粒子は、蛍光体に接着していた。図17Bからわかるとおり、波長変換部材に含まれる複数のフィラー粒子のうち、一部のフィラー粒子は、互いに接着していた。互いに接着している複数のフィラー粒子は、それぞれ、粒子の形状を維持していた。 Next, the wavelength conversion member of Example 2 was cut, and the cut surface was observed with a scanning electron microscope (SEM). As the SEM, S-4300 manufactured by Hitachi High-Technologies Corporation was used. FIG. 17A shows a SEM image of a cross section of the wavelength conversion member of Example 2. FIG. 17B is an enlarged view of the filler particles shown in FIG. 17A. As can be seen from FIG. 17A, in the wavelength conversion member, the filler particles adhered to the phosphor. As can be seen from FIG. 17B, some of the filler particles contained in the wavelength conversion member were adhered to each other. Each of the plurality of filler particles adhered to each other maintained the shape of the particles.
 実施例2の波長変換部材と同様に、実施例3の波長変換部材を切断し、その切断面をSEMによって観察した。SEMとしては、日立ハイテクノロジーズ社製の卓上顕微鏡Miniscope TM4000Plusを用いた。図18Aは、実施例3の波長変換部材の断面のSEM画像を示している。図18Bは、図18Aに示すフィラー粒子の拡大図である。図18Cは、図18Aに示す別のフィラー粒子の拡大図である。図18Aからわかるとおり、波長変換部材において、フィラー粒子は、蛍光体に接着していた。図18Bからわかるとおり、波長変換部材に含まれる複数のフィラー粒子のうち、一部のフィラー粒子は、蛍光体の2つの粒子のそれぞれと接着していた。図18Cからわかるとおり、波長変換部材に含まれる複数のフィラー粒子のうち、一部のフィラー粒子は、蛍光体の粒子及び基板のそれぞれと接着していた。 Like the wavelength conversion member of Example 2, the wavelength conversion member of Example 3 was cut, and the cut surface was observed by SEM. As the SEM, a tabletop microscope Miniscope TM4000 Plus manufactured by Hitachi High-Technologies Corporation was used. FIG. 18A shows a SEM image of a cross section of the wavelength conversion member of Example 3. FIG. 18B is an enlarged view of the filler particles shown in FIG. 18A. FIG. 18C is an enlarged view of another filler particle shown in FIG. 18A. As can be seen from FIG. 18A, in the wavelength conversion member, the filler particles adhered to the phosphor. As can be seen from FIG. 18B, among the plurality of filler particles contained in the wavelength conversion member, some filler particles were adhered to each of the two particles of the phosphor. As can be seen from FIG. 18C, some of the plurality of filler particles included in the wavelength conversion member were adhered to the phosphor particles and the substrate, respectively.
 [波長変換部材の発光効率]
 実施例2、3、5の波長変換部材のそれぞれについて、発光効率を測定した。発光効率の測定は、マルチチャンネル分光器(大塚電子社製のMCPD-9800)及びラブスフェア社製の積分球を用いて行った。用いたLDの励起光の波長は、445nmであった。励起光のエネルギー密度は、2W/mmであった。測定の結果を表4に示す。
[Emission efficiency of wavelength conversion member]
Luminous efficiency was measured for each of the wavelength conversion members of Examples 2, 3, and 5. Luminous efficiency was measured using a multi-channel spectrometer (MCPD-9800 manufactured by Otsuka Electronics Co., Ltd.) and an integrating sphere manufactured by Labsphere. The wavelength of the excitation light of the LD used was 445 nm. The energy density of the excitation light was 2 W/mm 2 . Table 4 shows the measurement results.
 次に、実施例2、3、5の波長変換部材のそれぞれを加熱した。波長変換部材の加熱は、周囲温度240℃で24時間行った。加熱後の波長変換部材について、上述した方法で発光効率を測定した。測定の結果を表4に示す。 Next, each of the wavelength conversion members of Examples 2, 3, and 5 was heated. The wavelength conversion member was heated at an ambient temperature of 240° C. for 24 hours. The luminous efficiency of the heated wavelength conversion member was measured by the method described above. Table 4 shows the measurement results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4からわかるとおり、実施例2、3、5の波長変換部材は、いずれも良好な発光効率を有していた。特に、実施例3、5の波長変換部材は、加熱処理された後であっても、良好な発光効率を維持していた。 As can be seen from Table 4, the wavelength conversion members of Examples 2, 3, and 5 all had good luminous efficiency. In particular, the wavelength conversion members of Examples 3 and 5 maintained good luminous efficiency even after being heat-treated.
 本開示の波長変換部材100(110、120、130、140)は、無機材料を含むマトリクス21と、マトリクス21に埋め込まれた蛍光体22と、マトリクス21に埋め込まれ、かつ、樹脂材料を含むフィラー粒子23とを備える。 The wavelength conversion member 100 (110, 120, 130, 140) of the present disclosure includes a matrix 21 containing an inorganic material, a phosphor 22 embedded in the matrix 21, and a filler embedded in the matrix 21 and containing a resin material. And particles 23.
 フィラー粒子23が樹脂材料を含むため、フィラー粒子23は、蛍光体22に接着することができる。同様に、フィラー粒子23は、波長変換部材を製造するときに用いられる基板10に接着することができる。そのため、フィラー粒子23は、蛍光体22を基板10に固定することができる。これにより、マトリクス21が形成されるまでに、蛍光体22が基板10から脱落することを抑制できる。すなわち、波長変換部材において、蛍光体22の脱落が抑制されている。 Since the filler particles 23 include the resin material, the filler particles 23 can be adhered to the phosphor 22. Similarly, the filler particles 23 can be adhered to the substrate 10 used when manufacturing the wavelength conversion member. Therefore, the filler particles 23 can fix the phosphor 22 to the substrate 10. As a result, it is possible to prevent the phosphor 22 from falling off the substrate 10 before the matrix 21 is formed. That is, in the wavelength conversion member, the fluorescent substance 22 is prevented from falling off.
 波長変換部材は、マトリクス21を支持する基板10をさらに備え、フィラー粒子23は、蛍光体22と基板10との間に位置していてもよい。これにより、波長変換部材において、蛍光体22の脱落が抑制されている。 The wavelength conversion member may further include the substrate 10 that supports the matrix 21, and the filler particles 23 may be located between the phosphor 22 and the substrate 10. As a result, the fluorescent substance 22 is prevented from falling off in the wavelength conversion member.
 波長変換部材では、基板10は、ステンレス鋼、アルミニウムと炭化ケイ素との複合材料、アルミニウムとシリコンとの複合材料、アルミニウムと炭素との複合材料、及び銅からなる群より選ばれる少なくとも1つを含んでいてもよい。これにより、基板10の熱膨張係数が小さい。そのため、波長変換部材の使用によって基板10の温度が上昇しても、波長変換部材は、高い信頼性を有する。 In the wavelength conversion member, the substrate 10 includes at least one selected from the group consisting of stainless steel, a composite material of aluminum and silicon carbide, a composite material of aluminum and silicon, a composite material of aluminum and carbon, and copper. You can leave. As a result, the thermal expansion coefficient of the substrate 10 is small. Therefore, even if the temperature of the substrate 10 rises due to the use of the wavelength conversion member, the wavelength conversion member has high reliability.
 波長変換部材では、マトリクス21は、無機結晶を含んでいてもよい。これにより、マトリクス21は、優れた放熱性を有する。 In the wavelength conversion member, the matrix 21 may include an inorganic crystal. As a result, the matrix 21 has excellent heat dissipation.
 波長変換部材では、上記無機結晶は、酸化亜鉛を含んでいてもよい。これにより、マトリクス21は、より優れた放熱性を有する。 In the wavelength conversion member, the inorganic crystal may include zinc oxide. Thereby, the matrix 21 has a more excellent heat dissipation property.
 波長変換部材では、上記酸化亜鉛は、c軸に配向していてもよい。これにより、マトリクス21は、より優れた放熱性を有する。 In the wavelength conversion member, the zinc oxide may be oriented along the c-axis. Thereby, the matrix 21 has a more excellent heat dissipation property.
 波長変換部材では、上記樹脂材料は、熱可塑性樹脂を含んでいてもよい。これにより、波長変換部材において、蛍光体22の脱落が抑制されている。 In the wavelength conversion member, the resin material may include a thermoplastic resin. As a result, the fluorescent substance 22 is prevented from falling off in the wavelength conversion member.
 波長変換部材では、上記樹脂材料は、熱硬化性樹脂を含んでいてもよい。これにより、波長変換部材において、蛍光体22の脱落が抑制されている。 In the wavelength conversion member, the resin material may include a thermosetting resin. As a result, the fluorescent substance 22 is prevented from falling off in the wavelength conversion member.
 波長変換部材では、フィラー粒子23は、ゴム弾性を有していてもよい。これにより、フィラー粒子23と蛍光体22との接触面積が広い。そのため、フィラー粒子23は、蛍光体22を十分に固定できる。これにより、波長変換部材において、蛍光体22の脱落がより抑制されている。 In the wavelength conversion member, the filler particles 23 may have rubber elasticity. As a result, the contact area between the filler particles 23 and the phosphor 22 is wide. Therefore, the filler particles 23 can sufficiently fix the phosphor 22. As a result, in the wavelength conversion member, the phosphor 22 is further suppressed from falling off.
 波長変換部材では、上記樹脂材料は、シロキサン結合を有する高分子化合物を含んでいてもよい。これにより、フィラー粒子23は、優れた耐熱性を有する。 In the wavelength conversion member, the resin material may include a polymer compound having a siloxane bond. Thereby, the filler particles 23 have excellent heat resistance.
 波長変換部材では、フィラー粒子23は、コア30と、コア30を被覆しているシェル31とを有していてもよい。これにより、フィラー粒子23は、優れた分散性を有する。 In the wavelength conversion member, the filler particles 23 may have the core 30 and the shell 31 that covers the core 30. Thereby, the filler particles 23 have excellent dispersibility.
 波長変換部材では、フィラー粒子23は、官能基で修飾された表面を有していてもよい。これにより、フィラー粒子23は、優れた分散性を有する。 In the wavelength conversion member, the filler particles 23 may have a surface modified with a functional group. Thereby, the filler particles 23 have excellent dispersibility.
 波長変換部材では、550nmの波長の光に対するフィラー粒子23の吸収率が好ましくは25%以下である。これにより、波長変換部材は、高い発光効率を有する。 In the wavelength conversion member, the absorptance of the filler particles 23 for light with a wavelength of 550 nm is preferably 25% or less. As a result, the wavelength conversion member has high luminous efficiency.
 波長変換部材では、蛍光体22の体積V1とフィラー粒子23の合計体積V2とで定義されるV2/(V1+V2)の値が0.05以上0.16以下であってもよい。これにより、波長変換部材において、蛍光体22の脱落がより抑制されている。 In the wavelength conversion member, the value of V2/(V1+V2) defined by the volume V1 of the phosphor 22 and the total volume V2 of the filler particles 23 may be 0.05 or more and 0.16 or less. As a result, in the wavelength conversion member, the phosphor 22 is further suppressed from falling off.
 光学装置200(210、220)は、波長変換部材100(110、120、130、140)と、波長変換部材に励起光を照射する励起光源40とを備える。これにより、光学装置が備える波長変換部材において、蛍光体22の脱落が抑制されている。 The optical device 200 (210, 220) includes a wavelength conversion member 100 (110, 120, 130, 140) and an excitation light source 40 that irradiates the wavelength conversion member with excitation light. As a result, the fluorescent substance 22 is prevented from falling off in the wavelength conversion member included in the optical device.
 プロジェクタ500は、上記波長変換部材を備える。これにより、プロジェクタ500が備える波長変換部材において、蛍光体22の脱落が抑制されている。 The projector 500 includes the above wavelength conversion member. This prevents the fluorescent substance 22 from falling off in the wavelength conversion member included in the projector 500.
 基板10の上に蛍光体22と樹脂材料を含むフィラー粒子23とを配置する。フィラー粒子23によって蛍光体22を基板10に固定する。フィラー粒子23及び蛍光体22のそれぞれがマトリクス21に埋め込まれるように、無機材料を含むマトリクス21を形成する。これにより波長変換部材を製造できる。 A phosphor 22 and filler particles 23 containing a resin material are arranged on the substrate 10. The phosphor 22 is fixed to the substrate 10 by the filler particles 23. The matrix 21 containing an inorganic material is formed so that each of the filler particles 23 and the phosphor 22 is embedded in the matrix 21. Thereby, the wavelength conversion member can be manufactured.
 これにより、蛍光体22は、フィラー粒子23によって基板10に固定されている。そのため、マトリクス21が形成されるまでに蛍光体22が基板10から脱落することを抑制できる。 Thereby, the phosphor 22 is fixed to the substrate 10 by the filler particles 23. Therefore, it is possible to prevent the phosphor 22 from falling off the substrate 10 before the matrix 21 is formed.
 この製造方法では、蛍光体22及び基板10のそれぞれにフィラー粒子23を接着させることによって、蛍光体22を基板10に固定してもよい。これにより、蛍光体22を基板10に容易に固定できる。 In this manufacturing method, the phosphor 22 may be fixed to the substrate 10 by adhering the filler particles 23 to each of the phosphor 22 and the substrate 10. Thereby, the phosphor 22 can be easily fixed to the substrate 10.
 この製造方法では、蛍光体22及び基板10のそれぞれにフィラー粒子23を接着させることは、フィラー粒子23を加熱することによって行われてもよい。これにより、蛍光体22を基板10に容易に固定できる。 In this manufacturing method, the filler particles 23 may be adhered to each of the phosphor 22 and the substrate 10 by heating the filler particles 23. Thereby, the phosphor 22 can be easily fixed to the substrate 10.
 本開示の波長変換部材は、例えば、シーリングライトなどの一般照明装置;スポットライト、スタジアム用照明、スタジオ用照明などの特殊照明装置;ヘッドランプなどの車両用照明装置;プロジェクタ、ヘッドアップディスプレイなどの投影装置;医療用又は工業用の内視鏡用ライト;デジタルカメラ、携帯電話機、スマートフォンなどの撮像装置;パーソナルコンピュータ(PC)用モニター、ノート型パーソナルコンピュータ、テレビ、携帯情報端末(PDX)、スマートフォン、タブレットPC、携帯電話などの液晶ディスプレイ装置などにおける光源に利用することができる。 The wavelength conversion member of the present disclosure includes, for example, general lighting devices such as ceiling lights; special lighting devices such as spotlights, stadium lighting, and studio lighting; vehicle lighting devices such as headlamps; projectors, head-up displays, and the like. Projection device; Medical or industrial endoscope light; Imaging device such as digital camera, mobile phone, smartphone; Personal computer (PC) monitor, notebook personal computer, TV, personal digital assistant (PDX), smartphone It can be used as a light source in liquid crystal display devices such as tablet PCs and mobile phones.
10  基板
11  基板本体
12  薄膜
20  蛍光体部
21  マトリクス
22  蛍光体
23  フィラー粒子
30  コア
31  シェル
40  励起光源
100,110,120,130,140  波長変換部材
200,210,220  光学装置
500  プロジェクタ
600  照明装置
10 substrate 11 substrate body 12 thin film 20 phosphor part 21 matrix 22 phosphor 23 filler particle 30 core 31 shell 40 excitation light source 100, 110, 120, 130, 140 wavelength conversion member 200, 210, 220 optical device 500 projector 600 illumination device

Claims (19)

  1.  無機材料を含むマトリクスと、
     前記マトリクスに埋め込まれた蛍光体と、
     前記マトリクスに埋め込まれてかつ樹脂材料を含む複数のフィラー粒子と、
    を備えた波長変換部材。
    A matrix containing an inorganic material,
    A phosphor embedded in the matrix,
    A plurality of filler particles embedded in the matrix and containing a resin material,
    A wavelength conversion member provided with.
  2. 前記マトリクスを支持する基板をさらに備え、
    前記複数のフィラー粒子は前記蛍光体と前記基板との間に位置する、請求項1に記載の波長変換部材。
    Further comprising a substrate supporting the matrix,
    The wavelength conversion member according to claim 1, wherein the plurality of filler particles are located between the phosphor and the substrate.
  3. 前記基板は、ステンレス鋼、アルミニウムと炭化ケイ素との複合材料、アルミニウムとシリコンとの複合材料、アルミニウムと炭素との複合材料、及び銅からなる群より選ばれる少なくとも1つを含む、請求項2に記載の波長変換部材。 The substrate includes at least one selected from the group consisting of stainless steel, a composite material of aluminum and silicon carbide, a composite material of aluminum and silicon, a composite material of aluminum and carbon, and copper. The wavelength conversion member described.
  4. 前記マトリクスは無機結晶を含む、請求項1から3のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the matrix contains an inorganic crystal.
  5. 前記無機結晶は酸化亜鉛を含む、請求項4に記載の波長変換部材。 The wavelength conversion member according to claim 4, wherein the inorganic crystal contains zinc oxide.
  6. 前記酸化亜鉛はc軸に配向している、請求項5に記載の波長変換部材。 The wavelength conversion member according to claim 5, wherein the zinc oxide is c-axis oriented.
  7. 前記樹脂材料は熱可塑性樹脂を含む、請求項1から6のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the resin material contains a thermoplastic resin.
  8. 前記樹脂材料は熱硬化性樹脂を含む、請求項1から7のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the resin material includes a thermosetting resin.
  9. 前記複数のフィラー粒子はゴム弾性を有する、請求項1から8のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the plurality of filler particles have rubber elasticity.
  10. 前記樹脂材料はシロキサン結合を有する高分子化合物を含む、請求項1から9のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the resin material includes a polymer compound having a siloxane bond.
  11. 前記複数のフィラー粒子は、コアと、前記コアを被覆しているシェルとを有する、請求項1から10のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 10, wherein the plurality of filler particles have a core and a shell covering the core.
  12. 前記複数のフィラー粒子は官能基で修飾された表面を有している、請求項1から11のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 11, wherein the plurality of filler particles have a surface modified with a functional group.
  13. 550nmの波長の光に対する前記複数のフィラー粒子の吸収率が25%以下である、請求項1から12のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 12, wherein an absorptivity of the plurality of filler particles with respect to light having a wavelength of 550 nm is 25% or less.
  14. 前記蛍光体の体積V1と、前記複数のフィラー粒子の合計体積V2とで定義されるV2/(V1+V2)の値は0.05以上0.16以下である、請求項1から13のいずれか1項に記載の波長変換部材。 The value of V2/(V1+V2) defined by the volume V1 of the phosphor and the total volume V2 of the plurality of filler particles is 0.05 or more and 0.16 or less. The wavelength conversion member according to the item.
  15.  請求項1から14のいずれか1項に記載の波長変換部材と、
     前記波長変換部材に励起光を照射する励起光源と、
    を備えた光学装置。
    The wavelength conversion member according to any one of claims 1 to 14,
    An excitation light source that irradiates the wavelength conversion member with excitation light,
    Optical device equipped with.
  16. 請求項1から14のいずれか1項に記載の波長変換部材を備えたプロジェクタ。 A projector comprising the wavelength conversion member according to claim 1.
  17.  樹脂材料を含む複数のフィラー粒子によって蛍光体を基板に固定することと、
     前記複数のフィラー粒子と前記蛍光体とが、無機材料を含むマトリクスに埋め込まれるように前記マトリクスを形成することと、
    を含む、波長変換部材の製造方法。
    Fixing the phosphor to the substrate with a plurality of filler particles containing a resin material,
    Forming the matrix so that the plurality of filler particles and the phosphor are embedded in a matrix containing an inorganic material,
    A method of manufacturing a wavelength conversion member, comprising:
  18. 前記蛍光体を前記基板に固定することは、前記蛍光体と前記基板とに前記複数のフィラー粒子を接着させることを含む、請求項17に記載の製造方法。 The manufacturing method according to claim 17, wherein fixing the phosphor to the substrate includes adhering the plurality of filler particles to the phosphor and the substrate.
  19. 前記蛍光体と前記基板とに前記複数のフィラー粒子を接着させることは、前記複数のフィラー粒子を加熱することによって前記蛍光体と前記基板とに前記複数のフィラー粒子を接着させることを含む、請求項18に記載の製造方法。 Bonding the plurality of filler particles to the phosphor and the substrate includes bonding the plurality of filler particles to the phosphor and the substrate by heating the plurality of filler particles, Item 19. The manufacturing method according to Item 18.
PCT/JP2019/039321 2018-12-18 2019-10-04 Wavelength conversion member, optical device, projector, and manufacturing method for wavelength conversion member WO2020129357A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/414,401 US11474423B2 (en) 2018-12-18 2019-10-04 Wavelength conversion member, optical device, projector, and manufacturing method for wavelength conversion member
CN201980082204.5A CN113207302B (en) 2018-12-18 2019-10-04 Wavelength conversion member, optical device, projector, and method for manufacturing wavelength conversion member
DE112019006269.7T DE112019006269T5 (en) 2018-12-18 2019-10-04 Wavelength converting element, optical device, projector and manufacturing method for a wavelength converting element
JP2020561168A JP7245980B2 (en) 2018-12-18 2019-10-04 Wavelength conversion member, optical device, projector, and method for manufacturing wavelength conversion member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236355 2018-12-18
JP2018236355 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020129357A1 true WO2020129357A1 (en) 2020-06-25

Family

ID=71102702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039321 WO2020129357A1 (en) 2018-12-18 2019-10-04 Wavelength conversion member, optical device, projector, and manufacturing method for wavelength conversion member

Country Status (5)

Country Link
US (1) US11474423B2 (en)
JP (1) JP7245980B2 (en)
CN (1) CN113207302B (en)
DE (1) DE112019006269T5 (en)
WO (1) WO2020129357A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289271A1 (en) * 2008-05-20 2009-11-26 Lightscape Materials, Inc. Silicate-based phosphors and led lighting devices using the same
JP2016018010A (en) * 2014-07-04 2016-02-01 セイコーエプソン株式会社 Wavelength conversion apparatus, illumination device, and projector
JP2017215459A (en) * 2016-05-31 2017-12-07 日東電工株式会社 Phosphor resin sheet, adhesive optical semiconductor element, and manufacturing method thereof
WO2018159268A1 (en) * 2017-03-02 2018-09-07 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source and lighting device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243727A (en) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd Light emitting apparatus
JP2006100730A (en) * 2004-09-30 2006-04-13 Toshiba Corp Light emitting element and method for manufacturing the same
KR101271273B1 (en) * 2005-03-31 2013-06-04 세키스이가가쿠 고교가부시키가이샤 Binder resin composition and inorgnaic fine particle-dispersed paste composition
JP5614675B2 (en) 2010-02-16 2014-10-29 独立行政法人物質・材料研究機構 Method for manufacturing wavelength conversion member
CN103534824B (en) 2012-05-16 2016-05-25 松下知识产权经营株式会社 LED element and the semiconductor laser light emitting device of Wavelength conversion element and manufacture method thereof and use Wavelength conversion element
CN104271495B (en) * 2012-05-18 2017-08-25 住友大阪水泥股份有限公司 Surface modification metal oxide particle material, dispersion liquid, polysiloxane resin composition, polyorganosiloxane resin complex, photosemiconductor light-emitting device, ligthing paraphernalia and liquid crystal image device
WO2013175773A1 (en) 2012-05-22 2013-11-28 パナソニック株式会社 Wavelength conversion element and method for manufacturing same, as well as led element and semiconductor laser emission device using wavelength conversion element
JP2014105313A (en) 2012-11-29 2014-06-09 Mitsubishi Chemicals Corp Method for producing thermosetting silicone composition containing phosphor and method for producing wavelength conversion component
CN103050606A (en) * 2013-01-11 2013-04-17 华南师范大学 High-color-rendering high-power LED (light emitting diode) encapsulation structure and manufacture method of high-color-rendering high-power LED encapsulation structure
JPWO2014162893A1 (en) 2013-04-01 2017-02-16 旭硝子株式会社 Light conversion member, method for manufacturing the same, illumination light source, and liquid crystal display device
JP5630525B2 (en) * 2013-04-04 2014-11-26 日本ゼオン株式会社 Optical laminate
CN105264042A (en) * 2013-06-05 2016-01-20 柯尼卡美能达株式会社 Optical material, optical film, and light-emitting device
JP2015073084A (en) * 2013-09-06 2015-04-16 日東電工株式会社 Wavelength conversion sheet, sealed optical semiconductor, and optical semiconductor element device
JP6357835B2 (en) 2014-03-31 2018-07-18 ソニー株式会社 Light emitting element, light source device and projector
KR101613959B1 (en) * 2014-06-27 2016-04-20 엘지전자 주식회사 Back light unit and display device having the same
JP2016150989A (en) * 2015-02-18 2016-08-22 日東電工株式会社 Method for producing phosphor ceramic
CN104730605B (en) * 2015-03-04 2017-04-26 东南大学 Light diffusion membrane for display and preparation method thereof
JP2017028251A (en) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source device, illumination device vehicle and method of manufacturing wavelength conversion member
JP2017043682A (en) * 2015-08-25 2017-03-02 デクセリアルズ株式会社 Wavelength conversion member, phosphor sheet, white light source device, and display device
CN108139038B (en) * 2015-10-09 2020-10-27 松下知识产权经营株式会社 Wavelength conversion device and illumination device
US20200255729A1 (en) * 2015-12-11 2020-08-13 Panasonic intellectual property Management co., Ltd Wavelength converter, wavelength conversion member and light emitting device
JP2017151199A (en) * 2016-02-23 2017-08-31 セイコーエプソン株式会社 Wavelength conversion device, illumination device, and projector
CN107450261B (en) * 2016-05-31 2021-02-05 佳能株式会社 Wavelength conversion element, light source device, and image projection device
CN106118628B (en) * 2016-06-15 2018-12-11 武汉理工大学 A kind of preparation method of the upconversion fluorescence nano material with core-shell structure
US20190171093A1 (en) * 2016-10-21 2019-06-06 Nippon Electric Glass Co., Ltd. Wavelength conversion member, light-emitting device, and method for manufacturing wavelength conversion member
JP6806555B2 (en) * 2016-12-19 2021-01-06 富士フイルム株式会社 Wavelength conversion film and manufacturing method of wavelength conversion film
CN108795427A (en) * 2017-04-26 2018-11-13 中国科学院宁波材料技术与工程研究所 A kind of fluorescence array and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289271A1 (en) * 2008-05-20 2009-11-26 Lightscape Materials, Inc. Silicate-based phosphors and led lighting devices using the same
JP2016018010A (en) * 2014-07-04 2016-02-01 セイコーエプソン株式会社 Wavelength conversion apparatus, illumination device, and projector
JP2017215459A (en) * 2016-05-31 2017-12-07 日東電工株式会社 Phosphor resin sheet, adhesive optical semiconductor element, and manufacturing method thereof
WO2018159268A1 (en) * 2017-03-02 2018-09-07 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source and lighting device

Also Published As

Publication number Publication date
DE112019006269T5 (en) 2021-10-14
US20220057702A1 (en) 2022-02-24
JP7245980B2 (en) 2023-03-27
JPWO2020129357A1 (en) 2021-10-21
CN113207302B (en) 2023-07-14
US11474423B2 (en) 2022-10-18
CN113207302A (en) 2021-08-03

Similar Documents

Publication Publication Date Title
JP5966501B2 (en) Inorganic molded body for wavelength conversion, method for producing the same, and light emitting device
US9835310B2 (en) Wave-length conversion inorganic member, and method for manufacturing the same
JP6937489B2 (en) Wavelength conversion member, light source and lighting device
JP5966539B2 (en) Inorganic molded body for wavelength conversion, method for producing the same, and light emitting device
JP6982746B2 (en) Manufacturing method of wavelength conversion member, light source, lighting device and wavelength conversion member
JP7117517B2 (en) Wavelength conversion member, optical device and projector
JP5966529B2 (en) Inorganic molded body for wavelength conversion and light emitting device
JP6982745B2 (en) Wavelength conversion member and light source
WO2020129357A1 (en) Wavelength conversion member, optical device, projector, and manufacturing method for wavelength conversion member
WO2020054192A1 (en) Wavelength conversion member, light source device using same, projector and vehicle
WO2020100479A1 (en) Phosphor particles, wavelength conversion member, light emitting device and method for producing phosphor particles
US20220100068A1 (en) Wavelength conversion member and projector
WO2020012923A1 (en) Light source device, projector, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561168

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19900450

Country of ref document: EP

Kind code of ref document: A1