WO2020129207A1 - Rotor, electric motor, blower, air-conditioning device, and method for manufacturing rotor - Google Patents

Rotor, electric motor, blower, air-conditioning device, and method for manufacturing rotor Download PDF

Info

Publication number
WO2020129207A1
WO2020129207A1 PCT/JP2018/046931 JP2018046931W WO2020129207A1 WO 2020129207 A1 WO2020129207 A1 WO 2020129207A1 JP 2018046931 W JP2018046931 W JP 2018046931W WO 2020129207 A1 WO2020129207 A1 WO 2020129207A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor core
core
shaft
magnet
Prior art date
Application number
PCT/JP2018/046931
Other languages
French (fr)
Japanese (ja)
Inventor
諒伍 ▲高▼橋
洋樹 麻生
貴也 下川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020560720A priority Critical patent/JP7012878B2/en
Priority to PCT/JP2018/046931 priority patent/WO2020129207A1/en
Publication of WO2020129207A1 publication Critical patent/WO2020129207A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present invention relates to a rotor, an electric motor, a blower, an air conditioner, and a rotor manufacturing method.
  • the rotor of the electric motor has an annular sensor magnet used to detect the rotational position of the rotor.
  • the sensor magnet is attached to the rotor core via a resin pedestal (for example, see Patent Document 1).
  • the present invention has been made to solve the above problems, and an object of the present invention is to reduce the number of rotor parts and manufacturing costs.
  • the rotor of the present invention includes a shaft, an annular rotor core that surrounds the shaft from the outside in the radial direction centered on the central axis of the shaft, a main magnet attached to the rotor core, and in the direction of the central axis.
  • a sensor magnet is provided on one side of the main magnet, and a resin portion is provided on the rotor core and holds the sensor magnet.
  • the resin portion has a hollow portion where a part of the sensor magnet is exposed.
  • the resin portion has a hollow portion where a part of the sensor magnet is exposed. Therefore, a rotor is manufactured by arranging a rotor core to which a main magnet is attached and a shaft in a molding die, holding a sensor magnet by a jig of the molding die, and integrally molding the resin. You can Since it is not necessary to attach a pedestal for the sensor magnet to the rotor, the number of parts of the rotor can be reduced and the manufacturing cost can be reduced.
  • FIG. 3 is a partial cross-sectional view showing the electric motor of the first embodiment.
  • FIG. 3 is a diagram showing a stator core according to the first embodiment.
  • FIG. 3 is a vertical sectional view showing the rotor of the first embodiment.
  • FIG. 3 is an enlarged vertical sectional view showing the rotor of the first embodiment.
  • FIG. 3 is a sectional view showing the rotor of the first embodiment.
  • FIG. 3 is a diagram showing a rotor core according to the first embodiment.
  • FIG. 3 is a front view showing the rotor of the first embodiment. 3 is a rear view showing the rotor according to the first embodiment.
  • FIG. FIG. 3 is a vertical sectional view showing the molding die according to the first embodiment.
  • FIG. 6 is a flowchart showing a rotor manufacturing process in the first embodiment.
  • FIG. 3 is a schematic diagram showing a pin, a rotor core, and a sensor magnet of the molding die according to the first embodiment.
  • FIG. 3 is a schematic view showing an enlarged tip end portion of a pin of the molding die according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing a rotor according to a modified example of the first embodiment. It is a figure (A) showing an example of composition of an air harmony device to which a motor of Embodiment 1 and each modification is applicable, and a sectional view (B) showing an outdoor unit.
  • Embodiment 1 is a vertical sectional view showing an electric motor 1 according to Embodiment 1 of the present invention.
  • the electric motor 1 is a brushless DC motor used in, for example, a blower of an air conditioner and driven by an inverter.
  • the electric motor 1 is an IPM (Interior Permanent Magnet) motor in which the main magnet 25 is embedded in the rotor 2.
  • the electric motor 1 has a rotor 2 having a shaft 11 and a mold stator 50 surrounding the rotor 2.
  • the mold stator 50 has an annular stator 5 that surrounds the rotor 2 and a mold resin portion 55 that covers the stator 5.
  • the shaft 11 is the rotation axis of the rotor 2.
  • the direction of the central axis C1 of the shaft 11 will be referred to as the "axial direction”.
  • the circumferential direction (indicated by the arrow S in FIG. 2 etc.) about the central axis C1 of the shaft 11 is referred to as “circumferential direction”.
  • the radial direction centered on the central axis C1 of the shaft 11 is referred to as the “radial direction”.
  • a sectional view taken along a section parallel to the axial direction is called a vertical sectional view.
  • the shaft 11 protrudes from the mold stator 50 to the left side in FIG. 1, and an impeller 505 (FIG. 14A) of a blower is attached to the attachment portion 11a formed on the protrusion. Therefore, the protruding side (left side in FIG. 1) of the shaft 11 is referred to as “load side”, and the opposite side (right side in FIG. 1) is referred to as “anti-load side”.
  • the mold stator 50 has the stator 5 and the mold resin portion 55.
  • the stator 5 surrounds the rotor 2 from the outside in the radial direction.
  • the stator 5 has a stator core 51, an insulating portion (insulator) 52 provided in the stator core 51, and a coil (winding) 53 wound around the stator core 51 via the insulating portion 52. ..
  • the mold resin portion 55 is formed of a thermosetting resin such as BMC (bulk molding compound).
  • the mold resin portion 55 has a bearing support portion 55a on one side (here, an anti-load side) in the axial direction, and has an opening portion 55b on the other side (here, a load side).
  • the rotor 2 is inserted into the hollow portion 56 inside the mold stator 50 through the opening 55b.
  • a metal bracket 15 is attached to the opening 55b of the mold resin portion 55.
  • the bracket 15 holds one bearing 12 that supports the shaft 11.
  • a cap 14 is attached to the outside of the bracket 15 to prevent water and the like from entering.
  • the bearing support portion 55a of the mold resin portion 55 has a cylindrical inner peripheral surface, and the other bearing 13 that supports the shaft 11 is held on this inner peripheral surface.
  • FIG. 2 is a plan view showing the stator core 51.
  • the stator core 51 is formed by stacking a plurality of laminated elements in the axial direction and integrally fixing them by caulking, welding, bonding or the like.
  • the laminated element is, for example, a magnetic steel sheet.
  • the stator core 51 has a yoke 511 extending annularly in the circumferential direction centered on the central axis C1 and a plurality of teeth 512 extending radially inward from the yoke 511. Teeth tips 513 on the radially inner side of the teeth 512 face the outer peripheral surface of the rotor 2 (FIG. 1 ).
  • the number of teeth 512 is twelve here, but is not limited to this.
  • the stator core 51 has a configuration in which a plurality of (here, 12) divided cores 51A are divided for each tooth 512.
  • the split core 51A is split by a split surface 514 formed on the yoke 511.
  • the dividing surface 514 extends radially outward from the inner peripheral surface of the yoke 511.
  • a plastically deformable thin portion 515 is formed between the end of the dividing surface 514 and the outer peripheral surface of the yoke 511. By the plastic deformation of the thin portion 515, the stator core 51 can be expanded in a band shape.
  • the coil 53 can be wound around the tooth 512 in a state where the stator core 51 is expanded in a strip shape. After winding the coil 53, the band-shaped stator cores 51 are combined in an annular shape, and the ends (shown by the symbol W in FIG. 2) are welded.
  • the stator core 51 is not limited to a combination of such split cores, and may be integrally formed.
  • the insulating portion 52 is formed of a thermoplastic resin such as PBT (polybutylene terephthalate).
  • the insulating portion 52 is formed by integrally molding a thermoplastic resin with the stator core 51 or by assembling a molded body of the thermoplastic resin to the stator core 51.
  • the coil 53 is a magnet wire wound around the tooth 512 (FIG. 2) via the insulating portion 52.
  • the insulating portion 52 has wall portions inside and outside the coil 53 in the radial direction, and guides the coil 53 from both sides in the radial direction.
  • a board 6 is arranged on one side in the axial direction with respect to the stator 5 (here, an anti-load side).
  • the board 6 is a printed board on which a drive circuit 60 such as a power transistor for driving the electric motor 1 and a hall element are mounted, and lead wires 61 are wired.
  • the lead wire 61 of the substrate 6 is drawn out of the electric motor 1 from a lead wire lead-out component 62 attached to the outer peripheral portion of the mold resin portion 55.
  • the bracket 15 is press-fitted into an annular portion provided on the outer peripheral edge of the opening 55b of the mold resin portion 55.
  • the bracket 15 is formed of a conductive metal, such as a galvanized steel plate, but is not limited thereto.
  • the cap 14 is attached to the outside of the bracket 15 and prevents water and the like from entering the bearing 12.
  • FIG. 3 is a vertical sectional view showing the rotor 2.
  • FIG. 4 is a vertical cross-sectional view showing a part of the rotor 2 in an enlarged manner.
  • FIG. 5 is a cross-sectional view taken along the line 5-5 shown in FIG.
  • the rotor 2 includes a shaft 11 that is a rotation axis, a rotor core 20 that is provided radially outward from the shaft 11, and a rotor core 20 that is embedded in the rotor core 20. It has a plurality of main magnets 25 and a resin portion 3 provided between the shaft 11 and the rotor core 20.
  • the number of main magnets 25 is five here.
  • the main magnet 25 is also referred to as a drive magnet or a rotor magnet.
  • the shaft 11 is made of a magnetic material such as carbon steel (S45C), but may be made of a non-magnetic material such as stainless steel.
  • the shaft 11 has a circular cross section centered on the above-mentioned central axis C1.
  • FIG. 6 is a diagram showing the rotor core 20.
  • the rotor core 20 is an annular member centered on the central axis C1.
  • the rotor core 20 has an outer circumference 20a and an inner circumference 20b, and the inner circumference 20b faces the shaft 11 with a distance.
  • the rotor core 20 is formed by laminating a plurality of laminated elements in the axial direction and fixing them by crimping, welding, or bonding.
  • the laminated element is, for example, an electromagnetic steel plate and has a thickness of 0.1 mm to 0.7 mm.
  • the rotor core 20 has a plurality of magnet insertion holes 21 in the circumferential direction.
  • the magnet insertion holes 21 are arranged at equal intervals in the circumferential direction and at the same distance from the central axis C1.
  • the number of magnet insertion holes 21 is five here.
  • the magnet insertion hole 21 is formed along the outer periphery 20a of the rotor core 20 and penetrates the rotor core 20 in the axial direction.
  • the main magnet 25 is inserted into each magnet insertion hole 21.
  • the main magnet 25 has a flat plate shape, and a cross-sectional shape orthogonal to the axial direction is a rectangular shape.
  • the main magnet 25 is a rare earth magnet, and more specifically, a neodymium sintered magnet containing Nd(neodymium)-Fe(iron)-B(boron) as a main component.
  • Flux barriers 22 that are voids are formed at both ends of the magnet insertion hole 21 in the circumferential direction. The flux barrier 22 suppresses a short circuit of magnetic flux between the adjacent main magnets 25.
  • the main magnet 25 is arranged with the same magnetic poles (for example, N poles) facing the outer peripheral side of the rotor core 20.
  • a magnetic pole for example, an S pole
  • a magnetic pole opposite to the main magnet 25 is formed in a region between the main magnets 25 that are adjacent to each other in the circumferential direction.
  • the rotor 2 has five first magnetic poles P1 (for example, N poles) and five second magnetic poles P2 (for example, S poles) arranged alternately in the circumferential direction. Therefore, the rotor 2 has 10 magnetic poles.
  • the ten magnetic poles P1 and P2 of the rotor 2 are arranged at equal angular intervals in the circumferential direction with a pole pitch of 36 degrees (360 degrees/10).
  • first magnetic pole P1 half the five magnetic poles (first magnetic pole P1) are formed by the main magnet 25, but the remaining five magnetic poles (second magnetic pole P2). Is formed by the rotor core 20.
  • second magnetic pole P2 Such a configuration is called a consequent pole type.
  • magnetic pole when simply referred to as a “magnetic pole”, it includes both the first magnetic pole P1 and the second magnetic pole P2.
  • the outer circumference 20a of the rotor core 20 has a so-called flower circle shape in a cross section orthogonal to the axial direction.
  • the outer circumference 20a of the rotor core 20 has the maximum outer diameter at the pole centers of the magnetic poles P1 and P2 (that is, the center in the circumferential direction) and the minimum outer diameter at the pole gap M, and It has an arc shape up to M.
  • the outer periphery 20a of the rotor core 20 is not limited to a flower circle shape, but may be a circular shape.
  • the inner circumference 20b of the rotor core 20 has a circular shape in a cross section orthogonal to the axial direction.
  • the number of main magnets 25 can be halved compared to a non-consequent pole type rotor with the same number of poles. Since the number of expensive main magnets 25 is small, the manufacturing cost of the rotor 2 is reduced.
  • the number of poles of the rotor 2 is 10 here, but the number of poles may be an even number of 4 or more.
  • one main magnet 25 is arranged in one magnet insertion hole 21 here, two or more main magnets 25 may be arranged in one magnet insertion hole 21.
  • the first magnetic pole P1 may be the S pole and the second magnetic pole P2 may be the N pole.
  • a plurality of core holes 26 are formed inside the magnet insertion hole 21 in the radial direction.
  • the number of core holes 26 is, for example, half the number of poles, and is five here.
  • the core hole 26 is for positioning a rotor core 20 by engaging a pin 77 of a molding die 9 (FIG. 9) described later.
  • Each core hole 26 is equidistant from the central axis C1 and has the same relative position to the closest magnetic pole.
  • each core hole 26 is formed radially inside the pole center of the first magnetic pole P1. With such an arrangement, any core hole 26 of the rotor core 20 can be engaged with the pin 77 of the molding die 9.
  • each core hole 26 is formed radially inside the pole center of the first magnetic pole P1, but it may be formed radially inside the pole center of the second magnetic pole P2.
  • the cross-sectional shape of the core hole 26 is circular here, but may be rectangular, for example, or may be another cross-sectional shape (see FIG. 17 described later).
  • the magnetic flux from the first magnetic pole P1 is easily disturbed.
  • the disturbance of the magnetic flux leads to an imbalance of the magnetic force, which causes vibration or noise.
  • the weight balance in the circumferential direction of the rotor core 20 is improved by making the number of core holes 26 half the number of poles and making the circumferential position of each core hole 26 coincide with the pole center of the first magnetic pole P1.
  • the number of core holes 26 is not limited to half the number of poles.
  • the inner periphery 20b of the rotor core 20 has a circular shape in a cross section orthogonal to the axial direction, but the portion corresponding to the core hole 26 is a protrusion 20c that protrudes radially inward.
  • the protruding portion 20c is formed in an arc shape along the edge of the core hole 26.
  • the resin portion 3 is provided between the shaft 11 and the rotor core 20.
  • the resin portion 3 connects the shaft 11 and the rotor core 20 and has electrical insulation.
  • the resin portion 3 is preferably formed of a thermoplastic resin such as PBT.
  • the resin portion 3 connects the annular inner ring portion 31 that contacts the outer circumference of the shaft 11, the annular outer ring portion 33 that contacts the inner circumference 20 b of the rotor core 20, and the inner ring portion 31 and the outer ring portion 33. And a plurality of ribs 32.
  • the ribs 32 are arranged at equal intervals in the circumferential direction around the central axis C1.
  • the number of ribs 32 is, for example, half of the number of poles, and is five here.
  • the shaft 11 penetrates the inner ring portion 31 of the resin portion 3 in the axial direction.
  • the outer ring portion 33 supports the rotor core 20 from the inner circumference 20b side.
  • the outer ring portion 33 has, at a position corresponding to the core hole 26, an arc-shaped edge portion 34 that projects radially inward along the projecting portion 20 c of the rotor core 20.
  • the ribs 32 are arranged at equal intervals in the circumferential direction and extend radially outward from the inner ring portion 31.
  • a cavity 35 is formed between the ribs 32 that are adjacent to each other in the circumferential direction.
  • the cavity 35 preferably penetrates the rotor 2 in the axial direction.
  • the number of ribs 32 is half the number of poles, and the circumferential position of each rib 32 is coincident with the pole center of the second magnetic pole P2. Therefore, the weight balance of the rotor 2 in the circumferential direction is improved.
  • the number of ribs 32 is not limited to half the number of poles. Further, the circumferential position of the rib 32 may coincide with the pole center of the first magnetic pole P1.
  • the resin portion 3 has electric insulation, the rotor core 20 and the shaft 11 are electrically insulated, and as a result, the current flowing from the rotor core 20 to the shaft 11 (referred to as axial current) is suppressed. As a result, electrolytic corrosion of the bearings 12 and 13 (that is, damage to the raceways of the inner and outer rings and the rolling surfaces of the rolling elements) is suppressed.
  • the resonance frequency (natural frequency) of the rotor 2 can be adjusted by changing the radial length and the circumferential width of the rib 32 of the resin portion 3. For example, the shorter the rib 32 is and the wider the rib 32 is, the higher the resonance frequency of the rotor 2 is. The longer the rib 32 is and the narrower the rib 32 is, the lower the resonance frequency of the rotor 2 is. As described above, since the resonance frequency of the rotor 2 can be adjusted by the size of the rib 32, the torsional resonance between the electric motor 1 and the impeller attached to the electric motor 1 and the resonance of the entire unit including the blower are suppressed. Noise can be suppressed.
  • the resin portion 3 includes an end surface portion 38 that covers one end surface (here, an end surface on the load side) of the rotor core 20 in the axial direction, and the other end surface (here, the other end surface of the rotor core 20 in the axial direction).
  • End face portion 39 that covers the end face on the counter load side).
  • the end surface portion 38 does not need to completely cover one end surface of the rotor core 20, but may cover at least a part thereof. The same applies to the end face portion 39.
  • FIG. 7 is a view of the rotor 2 viewed from the load side, that is, a front view.
  • the end surface portion 38 covers one end surface of the rotor core 20 in the axial direction.
  • the end surface portion 38 has a hole portion (referred to as a resin hole portion) 37 at a position corresponding to the core hole 26 of the rotor core 20.
  • the resin hole portion 37 is a hole formed by the pin 77 of the molding die 9 engaging with the core hole 26 of the rotor core 20 (therefore, the resin does not enter).
  • FIG. 8 is a view of the rotor 2 viewed from the anti-load side, that is, a rear view.
  • the end face portion 39 covers the other end face of the rotor core 20 in the axial direction and holds the annular sensor magnet 4 described below with its surface exposed. However, the end surface portion 39 may completely cover the sensor magnet 4.
  • the sensor magnet 4 is arranged so as to face the rotor core 20 in the axial direction, and is held from the periphery by the end face portion 39.
  • the sensor magnet 4 is an annular member centered on the central axis C1 and has the same number of magnetic poles as the rotor 2 (here, 10).
  • the magnetic flux of the sensor magnet 4 is detected by the Hall element as a magnetic sensor mounted on the board 6, and the circumferential position (rotational position) of the rotor 2 is thereby detected.
  • the sensor magnet 4 is also referred to as a position detecting main magnet.
  • a protrusion 41 is formed on the inner peripheral surface 4b of the sensor magnet 4 so as to protrude inward in the radial direction.
  • the protrusion 41 is held by the end surface portion 39 of the resin portion 3 from both sides in the axial direction, and prevents the sensor magnet 4 from falling off in the axial direction.
  • the end surface portion 39 of the resin portion 3 has an interposition portion 39 a interposed between the rotor core 20 and the sensor magnet 4.
  • the interposition part 39a keeps the rotor core 20 and the sensor magnet 4 out of contact with each other. As a result, the influence of the main magnet 25 on the magnetic flux of the sensor magnet 4 is suppressed, and the accuracy of magnetic flux detection by the Hall element of the substrate 6 is improved. ..
  • the resin portion 3 has a cavity portion 36 at a position corresponding to the core hole 26 of the rotor core 20.
  • the core hole 26 penetrates the rotor core 20 in the axial direction, and the hollow portion 36 of the resin portion 3 is formed so as to overlap the core hole 26 in the axial direction.
  • the hollow portion 36 of the resin portion 3 is continuous with the core hole 26 of the rotor core 20 in the axial direction.
  • the cavity portion 36 of the resin portion 3 is a portion where the holding portion 78 (FIG. 9) provided at the tip of the pin 77 of the molding die 9 is provided when the shaft 11 and the rotor core 20 are integrally molded with resin. is there.
  • the cavity 36 corresponding to the holding portion 78 is formed in the resin portion 3.
  • a part of the surface of the sensor magnet 4 on the rotor core 20 side (that is, the surface opposite to the substrate 6) 4a and the inner peripheral surface 4b are exposed in the cavity 36. Exposure is the appearance of a surface in a space. In other words, a part of the surface 4a of the sensor magnet 4 on the rotor core 20 side and the inner peripheral surface 4b are not covered with the resin portion 3.
  • the resin hole portion 37 of the resin portion 3, the core hole 26 of the rotor core 20, and the cavity portion 36 of the resin portion 3 are aligned in the axial direction and are continuous with each other. Therefore, when the rotor 2 is viewed from the load side, a part of the sensor magnet 4 is visible as shown in FIG.
  • the radially inner portion of the sensor magnet 4 is exposed to the cavity portion 36, but the radially outer portion of the sensor magnet 4 may be exposed to the cavity portion 36.
  • the rotor 2 is manufactured by integrally molding the shaft 11, the rotor core 20, the main magnet 25, and the sensor magnet 4 with resin.
  • FIG. 9 is a vertical sectional view showing the molding die 9.
  • the molding die 9 has a fixed die (lower die) 7 and a movable die (upper die) 8.
  • the fixed mold 7 and the movable mold 8 have mold mating surfaces 75 and 85 facing each other.
  • the fixed mold 7 has a shaft insertion hole 71 into which one end of the shaft 11 is inserted, a rotor core insertion portion 73 into which the rotor core 20 is inserted, and an axial end surface of the rotor core 20 (here, a lower surface).
  • the contact portion 70 that contacts the outer peripheral portion of the axial end surface of the rotor core 20, the cylindrical portion 74 that faces the outer peripheral surface of the shaft 11, and the inner surface of the rotor core 20.
  • a pin (projection) 77 as a jig protruding from the facing surface 72.
  • a holding portion 78 that holds the sensor magnet 4 from the inner peripheral side is provided at the tip of the pin 77.
  • the pin 77 is a portion that engages with the core hole 26 of the rotor core 20 and positions the rotor core 20.
  • a holding portion 78 for holding the sensor magnet 4 is provided at the tip of the pin 77.
  • the number of the pins 77 is equal to the number (for example, 5) of the core holes 26 of the rotor core 20 here, and is arranged in the same manner as the core holes 26. However, the number of pins 77 may be smaller than the number of core holes 26. In order to hold the sensor magnet 4 in a stable state, the number of the pins 77 is preferably two or more, and more preferably three or more.
  • the movable mold 8 includes a shaft insertion hole 81 into which the other end of the shaft 11 is inserted, a rotor core insertion portion 83 into which the rotor core 20 is inserted, and an axial end surface of the rotor core 20 (here, an upper surface). ), a cylindrical portion 84 that faces the periphery of the shaft 11, and a cavity forming portion 86 that is inserted inside the rotor core 20.
  • FIG. 10 is a flowchart showing the manufacturing process of the rotor 2.
  • magnetic steel sheets are laminated and fixed by caulking or the like to form the rotor core 20 (step S101).
  • the main magnet 25 is inserted into the magnet insertion hole 21 of the rotor core 20 (step S102).
  • the rotor core 20 and the shaft 11 are mounted on the molding die 9 and integrally molded with resin such as PBT. Specifically, the shaft 11 is inserted into the shaft insertion hole 71 of the fixed mold 7, and the rotor core 20 is inserted into the rotor core insertion portion 73 (step S103). At this time, the pin 77 of the fixed mold 7 engages with the core hole 26 of the rotor core 20. The engagement between the pin 77 and the core hole 26 positions the rotor core 20.
  • the plurality of core holes 26 of the rotor core 20 are equidistant from the central axis C1 and have the same relative positions with respect to the closest magnetic poles, even if the circumferential position of the rotor core 20 is changed,
  • the hole 26 and the pin 77 can be engaged with each other.
  • the pin 77 penetrates the core hole 26 of the rotor core 20 and projects upward.
  • FIG. 11 is a diagram showing the shaft 11, the rotor core 20, and the holding portion 78.
  • FIG. 12 is a diagram showing the shape of the holding portion 78. As shown in FIG. 11, the holding portion 78 formed at the tip of the pin 77 holds the sensor magnet 4 from the inner peripheral side.
  • the holding portion 78 has an end face 78a orthogonal to the protruding direction of the pin 77 (that is, the axial direction of the shaft 11), and the sensor magnet 4 is axially positioned by this end face 78a. Further, the holding portion 78 has a protrusion 79 that contacts the protrusion 41 of the sensor magnet 4 from the inside in the radial direction, and the protrusion 79 positions the sensor magnet 4 in the radial direction.
  • the movable mold 8 is lowered as shown by the arrow in FIG. ,
  • the die mating surfaces 75 and 85 are brought into contact with each other.
  • a gap is formed between the lower surface of the rotor core 20 and the facing surface 72, and a gap is also formed between the upper surface of the rotor core 20 and the facing surface 82. Is formed.
  • the molding die 9 is heated, and molten resin such as PBT is injected from the runner (step S105).
  • the resin is filled inside the rotor core 20 inserted into the rotor core insertion portions 73 and 83, inside the magnet insertion hole 21, and inside the core hole 26.
  • the resin is also filled in the space inside the tubular portions 74, 84, and further in the gap between the facing surfaces 72, 82 and the rotor core 20.
  • the molding die 9 is cooled. As a result, the resin in the molding die 9 is cured and the resin portion 3 is formed. That is, the shaft 11, the rotor core 20, and the sensor magnet 4 are integrated by the resin portion 3 to form the rotor 2.
  • the resin cured between the tubular portions 74 and 84 of the molding die 9 and the shaft 11 becomes the inner ring portion 31 (FIG. 5).
  • the resin cured on the inner peripheral side of the rotor core 20 (where the cavity forming portions 76 and 86 are not arranged) becomes the inner ring portion 31, the rib 32, and the outer ring portion 33 (FIG. 5 ).
  • the portions corresponding to the cavity forming portions 76 and 86 of the molding die 9 are the cavities 35 (FIG. 5).
  • the resin cured between the facing surfaces 72 and 82 of the molding die 9 and the rotor core 20 becomes the end surface portions 38 and 39 (FIG. 4).
  • the movable mold 8 is raised and the rotor 2 is taken out from the fixed mold 7.
  • the pin 77 of the molding die 9 comes out of the core hole 26 of the rotor core 20, and the holding portion 78 comes out of the resin portion 3. Therefore, the hollow portion 36 is formed in the portion of the resin portion 3 where the holding portion 78 was located. Further, a resin hole portion 37 (FIG. 7) is formed in a portion of the end surface portion 38 where the pin 77 was located.
  • the stator core 51 is formed by laminating electromagnetic steel plates and fixing them by caulking or the like.
  • the stator 5 is obtained by attaching the insulating portion 52 to the stator core 51 and winding the coil 53.
  • the substrate 6 to which the lead wire 61 is attached is attached to the stator 5. Specifically, the substrate 6 is fixed to the stator 5 by inserting a protrusion provided on the resin portion 3 of the stator 5 into a mounting hole of the substrate 6 and performing heat welding or ultrasonic welding.
  • the stator 5 to which the substrate 6 is fixed is placed in a molding die, and a resin (mold resin) such as BMC is injected and heated to form the mold resin portion 55.
  • a resin such as BMC
  • the bearings 12 and 13 are attached to the shaft 11 of the rotor 2 and inserted into the hollow portion 56 from the opening 55b of the mold stator 50.
  • the bracket 15 is attached to the opening 55b of the mold stator 50.
  • the cap 14 is attached to the outside of the bracket 15. Thereby, the electric motor 1 is completed.
  • the shaft 11, the rotor core 20, the main magnet 25, and the sensor magnet 4 are integrally molded with resin, so that the rotor 2 is manufactured as compared with the case where the rotor 2 is configured by assembling the components. The process becomes simple.
  • the sensor magnet 4 and the Hall element on the substrate 6 are changed.
  • the sensor magnet 4 since the sensor magnet 4 is held by the holding portion 78 of the pin 77 provided on the molding die 9, the distance between the sensor magnet 4 and the Hall element on the substrate 6 can be maintained with high accuracy. Therefore, the detection accuracy of the magnetic flux by the Hall element is improved, and the rotation accuracy and the quietness of the electric motor 1 are improved.
  • the pin 77 engages with the core hole 26 of the rotor core 20 and the holding portion 78 provided at the tip of the pin 77 holds the sensor magnet 4, the pin 77 is used to fix the rotor core 20. Both positioning and holding of the sensor magnet 4 can be performed.
  • the main magnet 25 may be magnetized after the rotor 2 is completed or the electric motor 1 is completed.
  • a magnetizing device is used.
  • a magnetizing current is passed through the coil 53 of the stator 5.
  • a main magnet that is, a magnetic body
  • the positioning pin 77 is provided on the fixed mold 7, but it may be provided on the movable mold 8. In any case, the rotor core 20 can be positioned with respect to the molding die 9.
  • the resin portion 3 has the hollow portion 36 in which a part of the sensor magnet 4 is exposed. Therefore, the rotor core 20 to which the main magnet 25 is attached and the shaft 11 are arranged in the molding die 9 and integrally molded with the pin 77 provided in the molding die 9 holding the sensor magnet 4. , The rotor 2 can be manufactured.
  • the position of the sensor magnet 4 is determined by the pin 77 and the holding portion 78 thereof, even if the laminated thickness (that is, the axial dimension) of the rotor core 20 varies due to the tolerance, the sensor magnet 4 is placed on the substrate 6. It can be accurately positioned relative to it. Therefore, the detection accuracy of the magnetic flux by the Hall element of the substrate 6 is improved, and the rotation accuracy and the quietness of the electric motor 1 can be improved.
  • the hollow portion 36 is formed inside or outside the sensor magnet 4 in the radial direction, the sensor magnet 4 can be positioned and held from the inside or outside in the radial direction. Thereby, the accuracy of the mounting position of the sensor magnet 4 in the radial direction can be improved.
  • the interposition portion 39a of the resin portion 3 is interposed between the rotor core 20 and the sensor magnet 4, the influence of the main magnet 25 on the magnetic flux of the sensor magnet 4 is suppressed, and the magnetic flux detection accuracy is improved. can do. As a result, the rotation accuracy and quietness of the electric motor 1 can be improved.
  • the rotor 2 is of the consequent pole type, the number of main magnets can be reduced to half of that of the non-consequent pole type rotor, and the manufacturing cost can be reduced. Further, since the core hole 26 of the rotor core 20 plays a role of adjusting the flow of the magnetic flux, it is possible to suppress the disturbance of the magnetic flux and thereby suppress the vibration and noise of the electric motor 1.
  • the rotor core 20 is provided with a distance from the shaft 11 and the resin portion 3 connects the shaft 11 and the rotor core 20, the weight of the rotor 2 can be reduced. Further, it is possible to reduce the magnetic flux leakage from the rotor core 20 to the shaft 11 and improve the motor efficiency. Further, since the rotor core 20 and the shaft 11 are electromagnetically insulated from each other, it is possible to suppress the occurrence of electrolytic corrosion due to the axial current, and to suppress the vibration and noise of the electric motor 1 due to this.
  • the resin portion 3 includes an inner ring portion 31 that contacts the outer circumference of the shaft 11, an outer ring portion 33 that contacts the inner circumference 20 b of the rotor core 20, and a rib 32 that connects the inner ring portion 31 and the outer ring portion 33. Since it has, the amount of material forming the resin portion 3 can be reduced, and the manufacturing cost can be reduced. Further, since the resonance frequency of the rotor core 20 can be adjusted by the size of the rib 32, it is possible to suppress vibration and noise in, for example, a blower.
  • the pin 77 of the molding die 9 can be engaged with the core hole 26 to position the rotor core 20. Further, the sensor magnet 4 can be positioned by the holding portion 78 provided on the pin 77 penetrating the core hole 26.
  • the core hole 26 is located inside the pole center of the first magnetic pole P1 or the second magnetic pole P2 in the circumferential direction, the flow of the magnetic flux in the rotor core 20 can be adjusted, whereby the magnetic force Unbalance can be suppressed and vibration and noise can be suppressed.
  • the molding die 9 is used in the circumferential direction of the rotor core 20. Even if the position is changed, the core hole 26 and the pin 77 can be engaged with each other.
  • FIG. 13 is a cross-sectional view showing a rotor 2A of a modified example of the first embodiment, which corresponds to a cross-sectional view taken along line 5-5 shown in FIG.
  • the rotor 2A of this modified example is a non-consistent pole type rotor in which all magnetic poles are composed of the main magnet 25, that is, a normal pole type rotor.
  • the rotor 2A includes a shaft 11, a rotor core 20 provided at a distance radially outward from the shaft 11, and a plurality of main magnets embedded in the rotor core 20. 25, a sensor magnet 4 (FIG. 4) arranged on one side in the axial direction with respect to the main magnet 25, and a resin portion 3 provided between the shaft 11 and the rotor core 20.
  • the configurations of the shaft 11, the resin portion 3, and the sensor magnet 4 are as described in the first embodiment.
  • the rotor core 20 has a plurality of magnet insertion holes 21 in the circumferential direction.
  • the magnet insertion holes 21 are arranged at equal intervals in the circumferential direction and at the same distance from the central axis C1.
  • the number of magnet insertion holes 21 is ten here.
  • One main magnet 25 is inserted into each magnet insertion hole 21, so that the number of main magnets 25 is ten.
  • the shape and material of the main magnet 25 are as described in the first embodiment.
  • the main magnets 25 adjacent to each other in the circumferential direction have magnetic poles opposite to each other on the outer peripheral side of the rotor core 20.
  • the main magnet 25 having the N pole on the outer peripheral side constitutes the first magnetic pole P1
  • the main magnet 25 having the S pole on the outer peripheral side constitutes the second magnetic pole P2. That is, all the magnetic poles P1 and P2 of the rotor 2A are composed of the main magnet 25, and the number of poles is 10.
  • the number of poles of the rotor 2 is 10 here, but the number of poles may be an even number of 4 or more.
  • one main magnet 25 is arranged in one magnet insertion hole 21 here, two or more main magnets 25 may be arranged in one magnet insertion hole 21.
  • core holes 26 are formed inside the 5 magnet insertion holes 21 in the radial direction.
  • the pins 77 (FIG. 9) of the molding die 9 are inserted into these core holes 26 as described in the first embodiment.
  • a holding portion 78 is provided at the tip of the pin 77 to hold the sensor magnet 4 (FIG. 9).
  • the resin portion 3 having the hollow portion 36 (FIG. 4) is as described in the first embodiment.
  • the number of core holes 26 is arbitrary, but in order to hold the sensor magnet 4 in a stable posture, two or more are desirable, and three or more are more desirable. Further, the core holes 26 may be provided on the radially inner side of all the magnet insertion holes 21.
  • the outer periphery 20a of the rotor core 20 has a circular shape, but it may have the flower circle shape described in the first embodiment.
  • the rotor 2A of the modified example is the same as the rotor 2 of the first embodiment except that all magnetic poles are composed of the main magnets 25. Therefore, the rotor core 20 to which the main magnet 25 is attached and the shaft 11 are arranged in the molding die 9 and integrally molded with the pin 77 provided in the molding die 9 holding the sensor magnet 4. , The rotor 2A can be manufactured. Therefore, the same effect as that of the first embodiment can be obtained.
  • FIG. 14A is a diagram showing a configuration of an air conditioner 500 to which the electric motor 1 according to the first embodiment is applied.
  • the air conditioner 500 includes an outdoor unit 501, an indoor unit 502, and a refrigerant pipe 503 connecting these units.
  • the outdoor unit 501 includes an outdoor blower 510 such as a propeller fan
  • the indoor unit 502 includes an indoor blower 520 such as a cross flow fan.
  • the outdoor blower 510 includes an impeller 505 and the electric motor 1 that drives the impeller 505.
  • the indoor blower 520 includes an impeller 521 and the electric motor 1 that drives the impeller 521.
  • Each of the electric motors 1 has the configuration described in the first embodiment.
  • a compressor 504 that compresses the refrigerant is also shown in FIG.
  • FIG. 14B is a cross-sectional view of the outdoor unit 501.
  • the electric motor 1 is supported by a frame 509 arranged inside a housing 508 of the outdoor unit 501.
  • An impeller 505 is attached to the shaft 11 of the electric motor 1 via a hub 506.
  • the impeller 505 is rotated by the rotation of the rotor 2 of the electric motor 1 to blow the air to the outside.
  • the heat released when the refrigerant compressed by the compressor 504 is condensed by the condenser (not shown) is released to the outside by the blower of the outdoor blower 510.
  • the rotation of the rotor 2 of the electric motor 1 causes the impeller 521 to rotate and blows the air indoors.
  • the air from which heat is removed when the refrigerant evaporates in the evaporator (not shown) is blown indoors by the blower 520.
  • the electric motor 1 of the first embodiment described above has a high electric motor efficiency due to the suppression of magnetic flux leakage, so that the operating efficiency of the air conditioner 500 can be improved. Further, since the resonance frequency of the electric motor 1 can be adjusted, the resonance between the electric motor 1 and the impeller 505 (521), the resonance of the entire outdoor unit 501, and the resonance of the entire indoor unit 502 can be suppressed, and noise is reduced. It can be reduced.
  • the rotor 2A (FIG. 13) of the modified example may be used for the electric motor 1.
  • the electric motor 1 is used as the drive source of the outdoor blower 510 and the drive source of the indoor blower 520 here, the electric motor 1 may be used as at least one of the drive sources.
  • the electric motor 1 described in the first embodiment and the modified example can be mounted on an electric device other than the blower of the air conditioner.

Abstract

Provided is a rotor comprising: a shaft; an annular rotor core surrounding the shaft from radially outward of a center at the central axis of the shaft; a main magnet attached to the rotor core; a sensor magnet disposed on one side of the main magnet in the direction of the central axis; and a resin portion which is disposed on the rotor core and holds the sensor magnet. The resin portion has a hollow portion in which a part of the sensor magnet is exposed.

Description

回転子、電動機、送風機、空気調和装置および回転子の製造方法Rotor, electric motor, blower, air conditioner, and method for manufacturing rotor
 本発明は、回転子、電動機、送風機、空気調和装置および回転子の製造方法に関する。 The present invention relates to a rotor, an electric motor, a blower, an air conditioner, and a rotor manufacturing method.
 電動機の回転子は、当該回転子の回転位置の検出に用いられる環状のセンサマグネットを有する。センサマグネットは、回転子コアに、樹脂製の台座を介して取り付けられる(例えば、特許文献1参照)。 The rotor of the electric motor has an annular sensor magnet used to detect the rotational position of the rotor. The sensor magnet is attached to the rotor core via a resin pedestal (for example, see Patent Document 1).
特開2014-050309号公報(図6参照)JP-A-2014-050309 (see FIG. 6)
 しかしながら、台座を用いてセンサマグネットを取り付けると、回転子の部品点数が増加し、製造コストが増加する。 However, if the sensor magnet is attached using the pedestal, the number of parts of the rotor increases and the manufacturing cost increases.
 本発明は、上記の課題を解決するためになされたものであり、回転子の部品点数を低減し、製造コストを低減することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to reduce the number of rotor parts and manufacturing costs.
 本発明の回転子は、シャフトと、シャフトを当該シャフトの中心軸線を中心とする径方向の外側から囲む環状の回転子コアと、回転子コアに取り付けられたメインマグネットと、中心軸線の方向においてメインマグネットの一方の側に配置されたセンサマグネットと、回転子コアに設けられ、センサマグネットを保持する樹脂部とを備える。樹脂部は、センサマグネットの一部が露出する空洞部を有する。 The rotor of the present invention includes a shaft, an annular rotor core that surrounds the shaft from the outside in the radial direction centered on the central axis of the shaft, a main magnet attached to the rotor core, and in the direction of the central axis. A sensor magnet is provided on one side of the main magnet, and a resin portion is provided on the rotor core and holds the sensor magnet. The resin portion has a hollow portion where a part of the sensor magnet is exposed.
 本発明の回転子では、樹脂部が、センサマグネットの一部が露出する空洞部を有する。そのため、メインマグネットを取り付けた回転子コアとシャフトとを成形金型内に配置し、成形金型の治具でセンサマグネットを保持し、樹脂による一体成形を行うことで、回転子を製造することができる。回転子にセンサマグネット用の台座を取り付ける必要がないため、回転子の部品点数を低減し、製造コストを低減することができる。 In the rotor of the present invention, the resin portion has a hollow portion where a part of the sensor magnet is exposed. Therefore, a rotor is manufactured by arranging a rotor core to which a main magnet is attached and a shaft in a molding die, holding a sensor magnet by a jig of the molding die, and integrally molding the resin. You can Since it is not necessary to attach a pedestal for the sensor magnet to the rotor, the number of parts of the rotor can be reduced and the manufacturing cost can be reduced.
実施の形態1の電動機を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing the electric motor of the first embodiment. 実施の形態1の固定子コアを示す図である。FIG. 3 is a diagram showing a stator core according to the first embodiment. 実施の形態1の回転子を示す縦断面図である。FIG. 3 is a vertical sectional view showing the rotor of the first embodiment. 実施の形態1の回転子を拡大して示す縦断面図である。FIG. 3 is an enlarged vertical sectional view showing the rotor of the first embodiment. 実施の形態1の回転子を示す断面図である。FIG. 3 is a sectional view showing the rotor of the first embodiment. 実施の形態1の回転子コアを示す図である。FIG. 3 is a diagram showing a rotor core according to the first embodiment. 実施の形態1の回転子を示す正面図である。FIG. 3 is a front view showing the rotor of the first embodiment. 実施の形態1の回転子を示す背面図である。3 is a rear view showing the rotor according to the first embodiment. FIG. 実施の形態1の成形金型を示す縦断面図である。FIG. 3 is a vertical sectional view showing the molding die according to the first embodiment. 実施の形態1における回転子の製造工程を示すフローチャートである。6 is a flowchart showing a rotor manufacturing process in the first embodiment. 実施の形態1の成形金型のピンと回転子コアとセンサマグネットとを示す模式図である。FIG. 3 is a schematic diagram showing a pin, a rotor core, and a sensor magnet of the molding die according to the first embodiment. 実施の形態1の成形金型のピンの先端部を拡大して示す模式図である。FIG. 3 is a schematic view showing an enlarged tip end portion of a pin of the molding die according to the first embodiment. 実施の形態1の変形例における回転子を示す断面図である。FIG. 7 is a cross-sectional view showing a rotor according to a modified example of the first embodiment. 実施の形態1および各変形例の電動機が適用可能な空気調和装置の構成例を示す図(A)および室外機を示す断面図(B)である。It is a figure (A) showing an example of composition of an air harmony device to which a motor of Embodiment 1 and each modification is applicable, and a sectional view (B) showing an outdoor unit.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
<電動機1の構成>
 図1は、本発明の実施の形態1における電動機1を示す縦断面図である。電動機1は、例えば空気調和装置の送風機に用いられ、インバータで駆動されるブラシレスDCモータである。また、電動機1は、回転子2にメインマグネット25が埋め込まれたIPM(Interior Permanent Magnet)モータである。
Embodiment 1.
<Structure of electric motor 1>
1 is a vertical sectional view showing an electric motor 1 according to Embodiment 1 of the present invention. The electric motor 1 is a brushless DC motor used in, for example, a blower of an air conditioner and driven by an inverter. The electric motor 1 is an IPM (Interior Permanent Magnet) motor in which the main magnet 25 is embedded in the rotor 2.
 電動機1は、シャフト11を有する回転子2と、回転子2を囲むモールド固定子50とを有する。モールド固定子50は、回転子2を囲む環状の固定子5と、固定子5を覆うモールド樹脂部55とを有する。シャフト11は、回転子2の回転軸である。 The electric motor 1 has a rotor 2 having a shaft 11 and a mold stator 50 surrounding the rotor 2. The mold stator 50 has an annular stator 5 that surrounds the rotor 2 and a mold resin portion 55 that covers the stator 5. The shaft 11 is the rotation axis of the rotor 2.
 以下の説明では、シャフト11の中心軸線C1の方向を、「軸方向」と称する。また、シャフト11の中心軸線C1を中心とする周方向(図2等に矢印Sで示す)を、「周方向」と称する。シャフト11の中心軸線C1を中心とする半径方向を、「径方向」と称する。また、軸方向に平行な断面における断面図を、縦断面図と称する。 In the following description, the direction of the central axis C1 of the shaft 11 will be referred to as the "axial direction". The circumferential direction (indicated by the arrow S in FIG. 2 etc.) about the central axis C1 of the shaft 11 is referred to as "circumferential direction". The radial direction centered on the central axis C1 of the shaft 11 is referred to as the “radial direction”. A sectional view taken along a section parallel to the axial direction is called a vertical sectional view.
 シャフト11は、モールド固定子50から図1における左側に突出しており、その突出部に形成された取付け部11aには、例えば送風機の羽根車505(図14(A))が取り付けられる。そのため、シャフト11の突出側(図1における左側)を「負荷側」と称し、反対側(図1における右側)を「反負荷側」と称する。 The shaft 11 protrudes from the mold stator 50 to the left side in FIG. 1, and an impeller 505 (FIG. 14A) of a blower is attached to the attachment portion 11a formed on the protrusion. Therefore, the protruding side (left side in FIG. 1) of the shaft 11 is referred to as “load side”, and the opposite side (right side in FIG. 1) is referred to as “anti-load side”.
<モールド固定子50の構成>
 モールド固定子50は、上記の通り、固定子5とモールド樹脂部55とを有する。固定子5は、回転子2を径方向外側から囲んでいる。固定子5は、固定子コア51と、固定子コア51に設けられた絶縁部(インシュレータ)52と、絶縁部52を介して固定子コア51に巻き付けられたコイル(巻線)53とを有する。
<Structure of mold stator 50>
As described above, the mold stator 50 has the stator 5 and the mold resin portion 55. The stator 5 surrounds the rotor 2 from the outside in the radial direction. The stator 5 has a stator core 51, an insulating portion (insulator) 52 provided in the stator core 51, and a coil (winding) 53 wound around the stator core 51 via the insulating portion 52. ..
 モールド樹脂部55は、BMC(バルクモールディングコンパウンド)等の熱硬化性樹脂で形成される。モールド樹脂部55は、軸方向の一方の側(ここでは反負荷側)に軸受支持部55aを有し、他方の側(ここでは負荷側)に開口部55bを有する。回転子2は、開口部55bからモールド固定子50の内部の中空部分56に挿入される。 The mold resin portion 55 is formed of a thermosetting resin such as BMC (bulk molding compound). The mold resin portion 55 has a bearing support portion 55a on one side (here, an anti-load side) in the axial direction, and has an opening portion 55b on the other side (here, a load side). The rotor 2 is inserted into the hollow portion 56 inside the mold stator 50 through the opening 55b.
 モールド樹脂部55の開口部55bには、金属製のブラケット15が取り付けられている。このブラケット15には、シャフト11を支持する一方の軸受12が保持される。また、ブラケット15の外側には、水等の侵入を防止するためのキャップ14が取り付けられている。モールド樹脂部55の軸受支持部55aは、円筒状の内周面を有し、この内周面には、シャフト11を支持するもう一方の軸受13が保持される。 A metal bracket 15 is attached to the opening 55b of the mold resin portion 55. The bracket 15 holds one bearing 12 that supports the shaft 11. A cap 14 is attached to the outside of the bracket 15 to prevent water and the like from entering. The bearing support portion 55a of the mold resin portion 55 has a cylindrical inner peripheral surface, and the other bearing 13 that supports the shaft 11 is held on this inner peripheral surface.
 図2は、固定子コア51を示す平面図である。固定子コア51は、複数の積層要素を軸方向に積層し、カシメ、溶接または接着等によって一体に固定したものである。積層要素は、例えば電磁鋼板である。固定子コア51は、中心軸線C1を中心とする周方向に環状に延在するヨーク511と、ヨーク511から径方向内側に延在する複数のティース512とを有する。ティース512の径方向内側のティース先端部513は、回転子2(図1)の外周面に対向する。ティース512の数は、ここでは12であるが、これに限定されるものではない。 FIG. 2 is a plan view showing the stator core 51. The stator core 51 is formed by stacking a plurality of laminated elements in the axial direction and integrally fixing them by caulking, welding, bonding or the like. The laminated element is, for example, a magnetic steel sheet. The stator core 51 has a yoke 511 extending annularly in the circumferential direction centered on the central axis C1 and a plurality of teeth 512 extending radially inward from the yoke 511. Teeth tips 513 on the radially inner side of the teeth 512 face the outer peripheral surface of the rotor 2 (FIG. 1 ). The number of teeth 512 is twelve here, but is not limited to this.
 固定子コア51は、ここでは、ティース512毎に複数(ここでは12)の分割コア51Aに分割された構成を有する。分割コア51Aは、ヨーク511に形成された分割面514で分割されている。分割面514は、ヨーク511の内周面から径方向外側に延在する。分割面514の終端とヨーク511の外周面との間には、塑性変形可能な薄肉部515が形成される。薄肉部515の塑性変形により、固定子コア51を帯状に展開することができる。 The stator core 51 has a configuration in which a plurality of (here, 12) divided cores 51A are divided for each tooth 512. The split core 51A is split by a split surface 514 formed on the yoke 511. The dividing surface 514 extends radially outward from the inner peripheral surface of the yoke 511. A plastically deformable thin portion 515 is formed between the end of the dividing surface 514 and the outer peripheral surface of the yoke 511. By the plastic deformation of the thin portion 515, the stator core 51 can be expanded in a band shape.
 この構成では、固定子コア51を帯状に展開した状態で、ティース512へのコイル53の巻き付けを行うことができる。コイル53の巻き付け後、帯状の固定子コア51を環状に組み合わせ、端部(図2に符号Wで示す)を溶接する。なお、固定子コア51は、このような分割コアを組み合わせたものには限定されず、一体に構成されていてもよい。 With this configuration, the coil 53 can be wound around the tooth 512 in a state where the stator core 51 is expanded in a strip shape. After winding the coil 53, the band-shaped stator cores 51 are combined in an annular shape, and the ends (shown by the symbol W in FIG. 2) are welded. The stator core 51 is not limited to a combination of such split cores, and may be integrally formed.
 図1に戻り、絶縁部52は、例えばPBT(ポリブチレンテレフタレート)等の熱可塑性樹脂で形成されている。絶縁部52は、熱可塑性樹脂を固定子コア51と一体成形するか、あるいは熱可塑性樹脂の成形体を固定子コア51に組み付けることによって形成される。 Returning to FIG. 1, the insulating portion 52 is formed of a thermoplastic resin such as PBT (polybutylene terephthalate). The insulating portion 52 is formed by integrally molding a thermoplastic resin with the stator core 51 or by assembling a molded body of the thermoplastic resin to the stator core 51.
 コイル53は、マグネットワイヤを、絶縁部52を介してティース512(図2)の周囲に巻き付けたものである。絶縁部52は、コイル53の径方向内側および外側にそれぞれ壁部を有し、コイル53を径方向両側からガイドする。 The coil 53 is a magnet wire wound around the tooth 512 (FIG. 2) via the insulating portion 52. The insulating portion 52 has wall portions inside and outside the coil 53 in the radial direction, and guides the coil 53 from both sides in the radial direction.
 固定子5に対して軸方向の一方の側(ここでは反負荷側)には、基板6が配置されている。基板6は、電動機1を駆動するためのパワートランジスタ等の駆動回路60およびホール素子が実装されたプリント基板であり、リード線61が配線されている。基板6のリード線61は、モールド樹脂部55の外周部分に取り付けられたリード線口出し部品62から、電動機1の外部に引き出される。 A board 6 is arranged on one side in the axial direction with respect to the stator 5 (here, an anti-load side). The board 6 is a printed board on which a drive circuit 60 such as a power transistor for driving the electric motor 1 and a hall element are mounted, and lead wires 61 are wired. The lead wire 61 of the substrate 6 is drawn out of the electric motor 1 from a lead wire lead-out component 62 attached to the outer peripheral portion of the mold resin portion 55.
 ブラケット15は、モールド樹脂部55の開口部55bの外周縁に設けられた環状部分に圧入される。ブラケット15は、導電性を有する金属、例えば亜鉛メッキ鋼板で形成されるが、これに限定されるものではない。キャップ14は、ブラケット15の外側に取り付けられ、軸受12への水等の侵入を防止する。 The bracket 15 is press-fitted into an annular portion provided on the outer peripheral edge of the opening 55b of the mold resin portion 55. The bracket 15 is formed of a conductive metal, such as a galvanized steel plate, but is not limited thereto. The cap 14 is attached to the outside of the bracket 15 and prevents water and the like from entering the bearing 12.
<回転子2の構成>
 図3は、回転子2を示す縦断面図である。図4は、回転子2の一部を拡大して示す縦断面図である。図5は、図3に示した線分5-5における矢視方向の断面図である。
<Structure of rotor 2>
FIG. 3 is a vertical sectional view showing the rotor 2. FIG. 4 is a vertical cross-sectional view showing a part of the rotor 2 in an enlarged manner. FIG. 5 is a cross-sectional view taken along the line 5-5 shown in FIG.
 図5に示すように、回転子2は、回転軸であるシャフト11と、シャフト11に対して径方向外側に距離を開けて設けられた回転子コア20と、回転子コア20に埋め込まれた複数のメインマグネット25と、シャフト11と回転子コア20との間に設けられた樹脂部3とを有する。メインマグネット25の数は、ここでは5個である。メインマグネット25は、駆動マグネットまたは回転子マグネットとも称する。 As shown in FIG. 5, the rotor 2 includes a shaft 11 that is a rotation axis, a rotor core 20 that is provided radially outward from the shaft 11, and a rotor core 20 that is embedded in the rotor core 20. It has a plurality of main magnets 25 and a resin portion 3 provided between the shaft 11 and the rotor core 20. The number of main magnets 25 is five here. The main magnet 25 is also referred to as a drive magnet or a rotor magnet.
 シャフト11は、炭素鋼(S45C)等の磁性体で構成されているが、ステンレス鋼等の非磁性体で構成してもよい。シャフト11は、上述した中心軸線C1を中心とする円形断面を有する。 The shaft 11 is made of a magnetic material such as carbon steel (S45C), but may be made of a non-magnetic material such as stainless steel. The shaft 11 has a circular cross section centered on the above-mentioned central axis C1.
 図6は、回転子コア20を示す図である。回転子コア20は、中心軸線C1を中心とする環状の部材である。回転子コア20は、外周20aと内周20bとを有し、内周20bはシャフト11に距離を開けて対向している。回転子コア20は、複数の積層要素を軸方向に積層し、カシメ、溶接または接着等によって固定したものである。積層要素は、例えば電磁鋼板であり、厚さは0.1mm~0.7mmである。 FIG. 6 is a diagram showing the rotor core 20. The rotor core 20 is an annular member centered on the central axis C1. The rotor core 20 has an outer circumference 20a and an inner circumference 20b, and the inner circumference 20b faces the shaft 11 with a distance. The rotor core 20 is formed by laminating a plurality of laminated elements in the axial direction and fixing them by crimping, welding, or bonding. The laminated element is, for example, an electromagnetic steel plate and has a thickness of 0.1 mm to 0.7 mm.
 回転子コア20は、周方向に複数の磁石挿入孔21を有する。磁石挿入孔21は、周方向に等間隔で、且つ中心軸線C1から等距離に配置されている。磁石挿入孔21の数は、ここでは5個である。磁石挿入孔21は、回転子コア20の外周20aに沿って形成され、回転子コア20を軸方向に貫通している。 The rotor core 20 has a plurality of magnet insertion holes 21 in the circumferential direction. The magnet insertion holes 21 are arranged at equal intervals in the circumferential direction and at the same distance from the central axis C1. The number of magnet insertion holes 21 is five here. The magnet insertion hole 21 is formed along the outer periphery 20a of the rotor core 20 and penetrates the rotor core 20 in the axial direction.
 図5に戻り、各磁石挿入孔21には、メインマグネット25が挿入されている。メインマグネット25は平板状であり、軸方向に直交する断面形状は矩形状である。メインマグネット25は、希土類磁石であり、より具体的には、Nd(ネオジム)-Fe(鉄)-B(ホウ素)を主成分とするネオジム焼結磁石である。磁石挿入孔21の周方向の両端には、空隙であるフラックスバリア22が形成されている。フラックスバリア22は、隣り合うメインマグネット25の間の磁束の短絡を抑制する。 Returning to FIG. 5, the main magnet 25 is inserted into each magnet insertion hole 21. The main magnet 25 has a flat plate shape, and a cross-sectional shape orthogonal to the axial direction is a rectangular shape. The main magnet 25 is a rare earth magnet, and more specifically, a neodymium sintered magnet containing Nd(neodymium)-Fe(iron)-B(boron) as a main component. Flux barriers 22 that are voids are formed at both ends of the magnet insertion hole 21 in the circumferential direction. The flux barrier 22 suppresses a short circuit of magnetic flux between the adjacent main magnets 25.
 メインマグネット25は、互いに同一の磁極(例えばN極)を回転子コア20の外周側に向けて配置されている。回転子コア20において、周方向に隣り合うメインマグネット25の間の領域には、メインマグネット25とは反対の磁極(例えばS極)が形成される。 The main magnet 25 is arranged with the same magnetic poles (for example, N poles) facing the outer peripheral side of the rotor core 20. In the rotor core 20, a magnetic pole (for example, an S pole) opposite to the main magnet 25 is formed in a region between the main magnets 25 that are adjacent to each other in the circumferential direction.
 そのため、回転子2には、5つの第1の磁極P1(例えばN極)と、5つの第2の磁極P2(例えばS極)とが周方向に交互に配列される。従って、回転子2は、10個の磁極を有する。回転子2の10個の磁極P1,P2は、極ピッチを36度(360度/10)として、周方向に等角度間隔に配置される。 Therefore, the rotor 2 has five first magnetic poles P1 (for example, N poles) and five second magnetic poles P2 (for example, S poles) arranged alternately in the circumferential direction. Therefore, the rotor 2 has 10 magnetic poles. The ten magnetic poles P1 and P2 of the rotor 2 are arranged at equal angular intervals in the circumferential direction with a pole pitch of 36 degrees (360 degrees/10).
 すなわち、回転子2の10個の磁極P1,P2のうち、半分の5つの磁極(第1の磁極P1)はメインマグネット25によって形成されるが、残りの5つの磁極(第2の磁極P2)は回転子コア20によって形成される。このような構成を、コンシクエントポール型と称する。以下では、単に「磁極」という場合、第1の磁極P1と第2の磁極P2の両方を含むものとする。 That is, of the 10 magnetic poles P1 and P2 of the rotor 2, half the five magnetic poles (first magnetic pole P1) are formed by the main magnet 25, but the remaining five magnetic poles (second magnetic pole P2). Is formed by the rotor core 20. Such a configuration is called a consequent pole type. Hereinafter, when simply referred to as a “magnetic pole”, it includes both the first magnetic pole P1 and the second magnetic pole P2.
 回転子コア20の外周20aは、軸方向に直交する断面において、いわゆる花丸形状を有する。言い換えると、回転子コア20の外周20aは、磁極P1,P2のそれぞれの極中心(すなわち周方向の中心)で外径が最大となり、極間Mで外径が最小となり、極中心から極間Mまでが弧状となる形状を有する。回転子コア20の外周20aは、花丸形状に限らず、円形状であってもよい。一方、回転子コア20の内周20bは、軸方向に直交する断面において、円形状を有する。 The outer circumference 20a of the rotor core 20 has a so-called flower circle shape in a cross section orthogonal to the axial direction. In other words, the outer circumference 20a of the rotor core 20 has the maximum outer diameter at the pole centers of the magnetic poles P1 and P2 (that is, the center in the circumferential direction) and the minimum outer diameter at the pole gap M, and It has an arc shape up to M. The outer periphery 20a of the rotor core 20 is not limited to a flower circle shape, but may be a circular shape. On the other hand, the inner circumference 20b of the rotor core 20 has a circular shape in a cross section orthogonal to the axial direction.
 コンシクエントポール型の回転子2では、同じ極数の非コンシクエントポール型の回転子と比較して、メインマグネット25の数を半分にすることができる。高価なメインマグネット25の数が少ないため、回転子2の製造コストが低減される。 With the consequent pole type rotor 2, the number of main magnets 25 can be halved compared to a non-consequent pole type rotor with the same number of poles. Since the number of expensive main magnets 25 is small, the manufacturing cost of the rotor 2 is reduced.
 ここでは回転子2の極数を10としたが、極数は4以上の偶数であればよい。また、ここでは1つの磁石挿入孔21に1つのメインマグネット25を配置しているが、1つの磁石挿入孔21に2つ以上のメインマグネット25を配置してもよい。第1の磁極P1をS極とし、第2の磁極P2をN極としてもよい。 The number of poles of the rotor 2 is 10 here, but the number of poles may be an even number of 4 or more. Although one main magnet 25 is arranged in one magnet insertion hole 21 here, two or more main magnets 25 may be arranged in one magnet insertion hole 21. The first magnetic pole P1 may be the S pole and the second magnetic pole P2 may be the N pole.
 コンシクエントポール型の回転子2は、第2の磁極P2にメインマグネットが存在しないため、磁束がシャフト11に流れやすい。シャフト11と回転子コア20との間に非磁性体である樹脂部3を設けることにより、コンシクエントポール型の回転子2における磁束漏れが抑制される。 In the consequent pole type rotor 2, since there is no main magnet in the second magnetic pole P2, magnetic flux easily flows into the shaft 11. By providing the resin portion 3 which is a non-magnetic material between the shaft 11 and the rotor core 20, magnetic flux leakage in the consequent pole type rotor 2 is suppressed.
 回転子コア20において、磁石挿入孔21の径方向内側には、複数のコア穴26が形成されている。コア穴26の数は、例えば極数の半分であり、ここでは5個である。コア穴26は、後述する成形金型9(図9)のピン77に係合し、回転子コア20を位置決めするためのものである。 In the rotor core 20, a plurality of core holes 26 are formed inside the magnet insertion hole 21 in the radial direction. The number of core holes 26 is, for example, half the number of poles, and is five here. The core hole 26 is for positioning a rotor core 20 by engaging a pin 77 of a molding die 9 (FIG. 9) described later.
 各コア穴26は、中心軸線C1から等距離にあり、また最も近い磁極に対する相対位置が互いに等しい。ここでは、各コア穴26は、いずれも第1の磁極P1の極中心の径方向内側に形成されている。このような配置であれば、成形金型9のピン77に、回転子コア20のどのコア穴26を係合させることもできる。 Each core hole 26 is equidistant from the central axis C1 and has the same relative position to the closest magnetic pole. Here, each core hole 26 is formed radially inside the pole center of the first magnetic pole P1. With such an arrangement, any core hole 26 of the rotor core 20 can be engaged with the pin 77 of the molding die 9.
 ここでは、各コア穴26が第1の磁極P1の極中心の径方向内側に形成されているが、第2の磁極P2の極中心の径方向内側に形成してもよい。コア穴26の断面形状は、ここでは円形であるが、例えば矩形状であってもよく、他の断面形状(後述する図17参照)であってもよい。 Here, each core hole 26 is formed radially inside the pole center of the first magnetic pole P1, but it may be formed radially inside the pole center of the second magnetic pole P2. The cross-sectional shape of the core hole 26 is circular here, but may be rectangular, for example, or may be another cross-sectional shape (see FIG. 17 described later).
 コンシクエントポール型の回転子2では、第2の磁極P2にメインマグネットが存在しないため、第1の磁極P1からの磁束が乱れやすい。磁束の乱れは、磁力のアンバランスにつながり、振動あるいは騒音の原因となる。コア穴26を第1の磁極P1または第2の磁極P2の極中心に配置することにより、磁束の流れを整えることができ、これにより電動機1の振動および騒音を低減することができる。 In the consequent pole type rotor 2, since the main magnet does not exist in the second magnetic pole P2, the magnetic flux from the first magnetic pole P1 is easily disturbed. The disturbance of the magnetic flux leads to an imbalance of the magnetic force, which causes vibration or noise. By arranging the core hole 26 at the pole center of the first magnetic pole P1 or the second magnetic pole P2, the flow of the magnetic flux can be adjusted, and thus the vibration and noise of the electric motor 1 can be reduced.
 コア穴26の数を極数の半分とし、それぞれのコア穴26の周方向位置を第1の磁極P1の極中心と一致させることで、回転子コア20の周方向の重量バランスが向上する。但し、コア穴26の数は、極数の半分に限定されるものではない。 The weight balance in the circumferential direction of the rotor core 20 is improved by making the number of core holes 26 half the number of poles and making the circumferential position of each core hole 26 coincide with the pole center of the first magnetic pole P1. However, the number of core holes 26 is not limited to half the number of poles.
 回転子コア20の内周20bは、軸方向に直交する断面において円形状を有するが、コア穴26に対応する部分は径方向内側に突出する突出部20cとなっている。突出部20cは、コア穴26の縁に沿って円弧状に形成されている。 The inner periphery 20b of the rotor core 20 has a circular shape in a cross section orthogonal to the axial direction, but the portion corresponding to the core hole 26 is a protrusion 20c that protrudes radially inward. The protruding portion 20c is formed in an arc shape along the edge of the core hole 26.
 シャフト11と回転子コア20との間には、樹脂部3が設けられている。樹脂部3は、シャフト11と回転子コア20とを連結するものであり、電気絶縁性を有する。樹脂部3は、望ましくはPBT等の熱可塑性樹脂で形成される。 The resin portion 3 is provided between the shaft 11 and the rotor core 20. The resin portion 3 connects the shaft 11 and the rotor core 20 and has electrical insulation. The resin portion 3 is preferably formed of a thermoplastic resin such as PBT.
 樹脂部3は、シャフト11の外周に接する環状の内環部31と、回転子コア20の内周20bに接する環状の外環部33と、内環部31と外環部33とを連結する複数のリブ32とを有する。リブ32は、中心軸線C1を中心として周方向に等間隔に配置されている。リブ32の数は、例えば極数の半分であり、ここでは5個である。 The resin portion 3 connects the annular inner ring portion 31 that contacts the outer circumference of the shaft 11, the annular outer ring portion 33 that contacts the inner circumference 20 b of the rotor core 20, and the inner ring portion 31 and the outer ring portion 33. And a plurality of ribs 32. The ribs 32 are arranged at equal intervals in the circumferential direction around the central axis C1. The number of ribs 32 is, for example, half of the number of poles, and is five here.
 樹脂部3の内環部31には、シャフト11が軸方向に貫通している。外環部33は、回転子コア20を内周20b側から支持している。外環部33は、コア穴26に対応する位置に、回転子コア20の突出部20cに沿って径方向内側に突出する円弧状の縁部34を有する。 The shaft 11 penetrates the inner ring portion 31 of the resin portion 3 in the axial direction. The outer ring portion 33 supports the rotor core 20 from the inner circumference 20b side. The outer ring portion 33 has, at a position corresponding to the core hole 26, an arc-shaped edge portion 34 that projects radially inward along the projecting portion 20 c of the rotor core 20.
 リブ32は、周方向に等間隔で配置され、内環部31から径方向外側に放射状に延在している。周方向に隣り合うリブ32間には、空洞35が形成される。空洞35は、回転子2を軸方向に貫通することが望ましい。 The ribs 32 are arranged at equal intervals in the circumferential direction and extend radially outward from the inner ring portion 31. A cavity 35 is formed between the ribs 32 that are adjacent to each other in the circumferential direction. The cavity 35 preferably penetrates the rotor 2 in the axial direction.
 ここでは、リブ32の数が極数の半分であり、それぞれのリブ32の周方向位置が第2の磁極P2の極中心と一致している。そのため、回転子2の周方向の重量バランスが向上する。但し、リブ32の数は、極数の半分に限定されるものではない。また、リブ32の周方向位置が第1磁極P1の極中心と一致していてもよい。 Here, the number of ribs 32 is half the number of poles, and the circumferential position of each rib 32 is coincident with the pole center of the second magnetic pole P2. Therefore, the weight balance of the rotor 2 in the circumferential direction is improved. However, the number of ribs 32 is not limited to half the number of poles. Further, the circumferential position of the rib 32 may coincide with the pole center of the first magnetic pole P1.
 樹脂部3が電気絶縁性を有するため、回転子コア20とシャフト11とが電気的に絶縁され、その結果、回転子コア20からシャフト11に流れる電流(軸電流と称する)が抑制される。これにより軸受12,13の電食(すなわち、内輪および外輪の軌道面、並びに転動体の転動面の損傷)が抑制される。 Since the resin portion 3 has electric insulation, the rotor core 20 and the shaft 11 are electrically insulated, and as a result, the current flowing from the rotor core 20 to the shaft 11 (referred to as axial current) is suppressed. As a result, electrolytic corrosion of the bearings 12 and 13 (that is, damage to the raceways of the inner and outer rings and the rolling surfaces of the rolling elements) is suppressed.
 また、樹脂部3のリブ32の径方向の長さおよび周方向の幅を変えることによって、回転子2の共振周波数(固有振動数)を調整することができる。例えば、リブ32の長さが短く、幅が太いほど、回転子2の共振周波数は高くなり、リブ32の長さが長く、幅が狭いほど、回転子2の共振周波数は低くなる。このように、リブ32の寸法によって回転子2の共振周波数が調整可能であるため、電動機1とそれに取り付けられる羽根車とのねじり共振、および、送風機を含むユニット全体の共振を抑制し、これにより騒音を抑制することができる。 The resonance frequency (natural frequency) of the rotor 2 can be adjusted by changing the radial length and the circumferential width of the rib 32 of the resin portion 3. For example, the shorter the rib 32 is and the wider the rib 32 is, the higher the resonance frequency of the rotor 2 is. The longer the rib 32 is and the narrower the rib 32 is, the lower the resonance frequency of the rotor 2 is. As described above, since the resonance frequency of the rotor 2 can be adjusted by the size of the rib 32, the torsional resonance between the electric motor 1 and the impeller attached to the electric motor 1 and the resonance of the entire unit including the blower are suppressed. Noise can be suppressed.
 樹脂部3は、図4に示すように、回転子コア20の軸方向の一端面(ここでは負荷側の端面)を覆う端面部38と、回転子コア20の軸方向の他端面(ここでは反負荷側の端面)を覆う端面部39とを有する。なお、端面部38は、回転子コア20の一端面を完全に覆っている必要はなく、少なくとも一部を覆っていればよい。端面部39も同様である。 As shown in FIG. 4, the resin portion 3 includes an end surface portion 38 that covers one end surface (here, an end surface on the load side) of the rotor core 20 in the axial direction, and the other end surface (here, the other end surface of the rotor core 20 in the axial direction). End face portion 39 that covers the end face on the counter load side). The end surface portion 38 does not need to completely cover one end surface of the rotor core 20, but may cover at least a part thereof. The same applies to the end face portion 39.
 図7は、回転子2を負荷側から見た図、すなわち正面図である。上記の通り、端面部38は、回転子コア20の軸方向の一端面を覆っている。また、端面部38は、回転子コア20のコア穴26に対応する位置に、穴部(樹脂穴部と称する)37を有する。樹脂穴部37は、回転子コア20のコア穴26に成形金型9のピン77が係合する(従って樹脂が入り込まない)ことによって生じた穴である。 FIG. 7 is a view of the rotor 2 viewed from the load side, that is, a front view. As described above, the end surface portion 38 covers one end surface of the rotor core 20 in the axial direction. Further, the end surface portion 38 has a hole portion (referred to as a resin hole portion) 37 at a position corresponding to the core hole 26 of the rotor core 20. The resin hole portion 37 is a hole formed by the pin 77 of the molding die 9 engaging with the core hole 26 of the rotor core 20 (therefore, the resin does not enter).
 なお、ここでは5つのコア穴26の全てに成形金型9のピン77が係合するため、端面部38にコア穴26と同数の樹脂穴部37が形成されている。しかしながら、成形金型9のピン77の数がコア穴26の数よりも少ない場合には、ピン77が係合しないコア穴26には樹脂が入り込むため、ピン77の数と同数の樹脂穴部37が形成される。 Note that, here, since the pins 77 of the molding die 9 engage with all of the five core holes 26, the same number of resin hole portions 37 as the core holes 26 are formed in the end face portion 38. However, when the number of the pins 77 of the molding die 9 is smaller than the number of the core holes 26, the resin enters the core holes 26 which are not engaged with the pins 77, so that the same number of resin hole portions as the number of the pin 77 are provided. 37 is formed.
 図8は、回転子2を反負荷側から見た図、すなわち背面図である。端面部39は、回転子コア20の軸方向の他端面を覆うと共に、以下で説明する環状のセンサマグネット4を、その表面を露出させた状態で保持している。但し、端面部39がセンサマグネット4を完全に覆っていてもよい。 FIG. 8 is a view of the rotor 2 viewed from the anti-load side, that is, a rear view. The end face portion 39 covers the other end face of the rotor core 20 in the axial direction and holds the annular sensor magnet 4 described below with its surface exposed. However, the end surface portion 39 may completely cover the sensor magnet 4.
 図4に戻り、センサマグネット4は、回転子コア20に軸方向に対向して配置され、端面部39によって周囲から保持されている。センサマグネット4は、中心軸線C1を中心とする環状の部材であり、回転子2の極数と同数(ここでは10)の磁極を有する。 Returning to FIG. 4, the sensor magnet 4 is arranged so as to face the rotor core 20 in the axial direction, and is held from the periphery by the end face portion 39. The sensor magnet 4 is an annular member centered on the central axis C1 and has the same number of magnetic poles as the rotor 2 (here, 10).
 センサマグネット4の磁束は、基板6に実装された磁気センサとしてのホール素子によって検出され、これにより回転子2の周方向位置(回転位置)が検出される。センサマグネット4は、位置検出用メインマグネットとも称する。 The magnetic flux of the sensor magnet 4 is detected by the Hall element as a magnetic sensor mounted on the board 6, and the circumferential position (rotational position) of the rotor 2 is thereby detected. The sensor magnet 4 is also referred to as a position detecting main magnet.
 センサマグネット4の内周面4bには、径方向内側に突出する突起41が形成されている。この突起41は、樹脂部3の端面部39によって軸方向の両側から保持され、センサマグネット4の軸方向の脱落を防止する。 A protrusion 41 is formed on the inner peripheral surface 4b of the sensor magnet 4 so as to protrude inward in the radial direction. The protrusion 41 is held by the end surface portion 39 of the resin portion 3 from both sides in the axial direction, and prevents the sensor magnet 4 from falling off in the axial direction.
 また、樹脂部3の端面部39は、回転子コア20とセンサマグネット4との間に介在する介在部39aを有する。介在部39aは、回転子コア20とセンサマグネット4とを互いに非接触に保つ。これにより、センサマグネット4の磁束へのメインマグネット25の影響が抑制され、基板6のホール素子による磁束の検出精度が向上する。  Moreover, the end surface portion 39 of the resin portion 3 has an interposition portion 39 a interposed between the rotor core 20 and the sensor magnet 4. The interposition part 39a keeps the rotor core 20 and the sensor magnet 4 out of contact with each other. As a result, the influence of the main magnet 25 on the magnetic flux of the sensor magnet 4 is suppressed, and the accuracy of magnetic flux detection by the Hall element of the substrate 6 is improved. ‥
 樹脂部3は、回転子コア20のコア穴26に対応する位置に、空洞部36を有する。コア穴26は回転子コア20を軸方向に貫通しており、このコア穴26に軸方向に重なり合うように樹脂部3の空洞部36が形成されている。言い換えると、樹脂部3の空洞部36は、回転子コア20のコア穴26と軸方向に連続している。 The resin portion 3 has a cavity portion 36 at a position corresponding to the core hole 26 of the rotor core 20. The core hole 26 penetrates the rotor core 20 in the axial direction, and the hollow portion 36 of the resin portion 3 is formed so as to overlap the core hole 26 in the axial direction. In other words, the hollow portion 36 of the resin portion 3 is continuous with the core hole 26 of the rotor core 20 in the axial direction.
 樹脂部3の空洞部36は、シャフト11および回転子コア20を樹脂で一体成形する際に、成形金型9のピン77の先端に設けられた保持部78(図9)があった部分である。回転子2を成形金型9から取り出すと、樹脂部3には保持部78に対応する空洞部36が形成される。 The cavity portion 36 of the resin portion 3 is a portion where the holding portion 78 (FIG. 9) provided at the tip of the pin 77 of the molding die 9 is provided when the shaft 11 and the rotor core 20 are integrally molded with resin. is there. When the rotor 2 is taken out of the molding die 9, the cavity 36 corresponding to the holding portion 78 is formed in the resin portion 3.
 センサマグネット4の回転子コア20側の面(すなわち基板6と反対側の面)4aの一部および内周面4bは、空洞部36内に露出している。露出とは、ある空間内に面が表れていることを言う。言い換えると、センサマグネット4の回転子コア20側の面4aの一部および内周面4bは、樹脂部3に覆われていない。 A part of the surface of the sensor magnet 4 on the rotor core 20 side (that is, the surface opposite to the substrate 6) 4a and the inner peripheral surface 4b are exposed in the cavity 36. Exposure is the appearance of a surface in a space. In other words, a part of the surface 4a of the sensor magnet 4 on the rotor core 20 side and the inner peripheral surface 4b are not covered with the resin portion 3.
 樹脂部3の樹脂穴部37と、回転子コア20のコア穴26と、樹脂部3の空洞部36とは、軸方向に並んで互いに連続している。そのため、回転子2を負荷側から見ると、図7に示したようにセンサマグネット4の一部が見える。 The resin hole portion 37 of the resin portion 3, the core hole 26 of the rotor core 20, and the cavity portion 36 of the resin portion 3 are aligned in the axial direction and are continuous with each other. Therefore, when the rotor 2 is viewed from the load side, a part of the sensor magnet 4 is visible as shown in FIG.
 なお、ここでは、センサマグネット4の径方向内側の部分が空洞部36に露出しているが、センサマグネット4の径方向外側の部分が空洞部36に露出していてもよい。 Note that, here, the radially inner portion of the sensor magnet 4 is exposed to the cavity portion 36, but the radially outer portion of the sensor magnet 4 may be exposed to the cavity portion 36.
<回転子2の製造方法>
 次に、回転子2の製造方法について説明する。回転子2は、シャフト11と回転子コア20とメインマグネット25とセンサマグネット4とを樹脂で一体成形することによって製造される。
<Method of manufacturing rotor 2>
Next, a method of manufacturing the rotor 2 will be described. The rotor 2 is manufactured by integrally molding the shaft 11, the rotor core 20, the main magnet 25, and the sensor magnet 4 with resin.
 図9は、成形金型9を示す縦断面図である。成形金型9は、固定金型(下型)7と可動金型(上型)8とを有する。固定金型7および可動金型8は、互いに対向する金型合わせ面75,85を有している。 FIG. 9 is a vertical sectional view showing the molding die 9. The molding die 9 has a fixed die (lower die) 7 and a movable die (upper die) 8. The fixed mold 7 and the movable mold 8 have mold mating surfaces 75 and 85 facing each other.
 固定金型7は、シャフト11の一端部が挿入されるシャフト挿入孔71と、回転子コア20が挿入される回転子コア挿入部73と、回転子コア20の軸方向端面(ここでは下面)に対向する対向面72と、回転子コア20の軸方向端面の外周部に当接する当接部70と、シャフト11の外周面に対向する筒状部74と、回転子コア20の内側に挿入される空洞形成部76と、対向面72から突出する治具としてのピン(突起部)77とを有する。 The fixed mold 7 has a shaft insertion hole 71 into which one end of the shaft 11 is inserted, a rotor core insertion portion 73 into which the rotor core 20 is inserted, and an axial end surface of the rotor core 20 (here, a lower surface). To the inner surface of the rotor core 20, the contact portion 70 that contacts the outer peripheral portion of the axial end surface of the rotor core 20, the cylindrical portion 74 that faces the outer peripheral surface of the shaft 11, and the inner surface of the rotor core 20. And a pin (projection) 77 as a jig protruding from the facing surface 72.
 ピン77の先端部には、センサマグネット4を内周側から保持する保持部78が設けられている。ピン77は、回転子コア20のコア穴26に係合し、回転子コア20を位置決めする部分である。また、ピン77の先端部には、センサマグネット4を保持するための保持部78が設けられている。 A holding portion 78 that holds the sensor magnet 4 from the inner peripheral side is provided at the tip of the pin 77. The pin 77 is a portion that engages with the core hole 26 of the rotor core 20 and positions the rotor core 20. A holding portion 78 for holding the sensor magnet 4 is provided at the tip of the pin 77.
 ピン77は、ここでは回転子コア20のコア穴26の数(例えば5個)と同数だけ設けられ、コア穴26と同様に配置されている。但し、ピン77の数がコア穴26の数よりも少なくてもよい。なお、センサマグネット4を安定した状態で保持するためには、ピン77の数は2つ以上が望ましく、3つ以上であればより望ましい。 The number of the pins 77 is equal to the number (for example, 5) of the core holes 26 of the rotor core 20 here, and is arranged in the same manner as the core holes 26. However, the number of pins 77 may be smaller than the number of core holes 26. In order to hold the sensor magnet 4 in a stable state, the number of the pins 77 is preferably two or more, and more preferably three or more.
 可動金型8は、シャフト11の他端部が挿入されるシャフト挿入孔81と、回転子コア20が挿入される回転子コア挿入部83と、回転子コア20の軸方向端面(ここでは上面)に対向する対向面82と、シャフト11の周囲に対向する筒状部84と、回転子コア20の内側に挿入される空洞形成部86とを有する。 The movable mold 8 includes a shaft insertion hole 81 into which the other end of the shaft 11 is inserted, a rotor core insertion portion 83 into which the rotor core 20 is inserted, and an axial end surface of the rotor core 20 (here, an upper surface). ), a cylindrical portion 84 that faces the periphery of the shaft 11, and a cavity forming portion 86 that is inserted inside the rotor core 20.
 図10は、回転子2の製造工程を示すフローチャートである。まず、電磁鋼板を積層し、カシメ等で固定することにより、回転子コア20を形成する(ステップS101)。次に、回転子コア20の磁石挿入孔21に、メインマグネット25を挿入する(ステップS102)。 FIG. 10 is a flowchart showing the manufacturing process of the rotor 2. First, magnetic steel sheets are laminated and fixed by caulking or the like to form the rotor core 20 (step S101). Next, the main magnet 25 is inserted into the magnet insertion hole 21 of the rotor core 20 (step S102).
 次に、回転子コア20とシャフト11を成形金型9に装着し、PBT等の樹脂で一体成形する。具体的には、シャフト11を固定金型7のシャフト挿入孔71に挿入し、回転子コア20を回転子コア挿入部73に挿入する(ステップS103)。このとき、固定金型7のピン77が、回転子コア20のコア穴26に係合する。ピン77とコア穴26との係合により、回転子コア20が位置決めされる。 Next, the rotor core 20 and the shaft 11 are mounted on the molding die 9 and integrally molded with resin such as PBT. Specifically, the shaft 11 is inserted into the shaft insertion hole 71 of the fixed mold 7, and the rotor core 20 is inserted into the rotor core insertion portion 73 (step S103). At this time, the pin 77 of the fixed mold 7 engages with the core hole 26 of the rotor core 20. The engagement between the pin 77 and the core hole 26 positions the rotor core 20.
 上記の通り、回転子コア20の複数のコア穴26は、中心軸線C1から等距離にあり、また最も近い磁極に対する相対位置が互いに等しいため、回転子コア20の周方向位置を変えてもコア穴26とピン77とを係合させることができる。ピン77は、回転子コア20のコア穴26を貫通して上方に突出する。 As described above, since the plurality of core holes 26 of the rotor core 20 are equidistant from the central axis C1 and have the same relative positions with respect to the closest magnetic poles, even if the circumferential position of the rotor core 20 is changed, The hole 26 and the pin 77 can be engaged with each other. The pin 77 penetrates the core hole 26 of the rotor core 20 and projects upward.
 次に、ピン77の先端部の保持部78に、センサマグネット4を載置する(ステップS104)。図11は、シャフト11と回転子コア20と保持部78とを示す図である。図12は、保持部78の形状を示す図である。図11に示すように、ピン77の先端部に形成された保持部78は、センサマグネット4を内周側から保持する。 Next, the sensor magnet 4 is placed on the holding portion 78 at the tip of the pin 77 (step S104). FIG. 11 is a diagram showing the shaft 11, the rotor core 20, and the holding portion 78. FIG. 12 is a diagram showing the shape of the holding portion 78. As shown in FIG. 11, the holding portion 78 formed at the tip of the pin 77 holds the sensor magnet 4 from the inner peripheral side.
 図12に示すように、保持部78は、ピン77の突出方向(すなわちシャフト11の軸方向)に直交する端面78aを有し、この端面78aでセンサマグネット4を軸方向に位置決めする。また、保持部78は、センサマグネット4の突起41に径方向内側から当接する突出部79を有し、この突出部79でセンサマグネット4を径方向に位置決めする。 As shown in FIG. 12, the holding portion 78 has an end face 78a orthogonal to the protruding direction of the pin 77 (that is, the axial direction of the shaft 11), and the sensor magnet 4 is axially positioned by this end face 78a. Further, the holding portion 78 has a protrusion 79 that contacts the protrusion 41 of the sensor magnet 4 from the inside in the radial direction, and the protrusion 79 positions the sensor magnet 4 in the radial direction.
 このように、固定金型7にシャフト11および回転子コア20を設置し、保持部78にセンサマグネット4を載置した状態で、可動金型8を図9に矢印で示すように下降させて、金型合わせ面75,85を当接させる。金型合わせ面75,85が互いに当接した状態で、回転子コア20の下面と対向面72との間に隙間が形成され、回転子コア20の上面と対向面82との間にも隙間が形成される。 In this way, with the shaft 11 and the rotor core 20 installed in the fixed mold 7 and the sensor magnet 4 placed on the holding portion 78, the movable mold 8 is lowered as shown by the arrow in FIG. , The die mating surfaces 75 and 85 are brought into contact with each other. With the die mating surfaces 75 and 85 in contact with each other, a gap is formed between the lower surface of the rotor core 20 and the facing surface 72, and a gap is also formed between the upper surface of the rotor core 20 and the facing surface 82. Is formed.
 この状態で、成形金型9を加熱し、ランナからPBT等の溶融した樹脂を注入する(ステップS105)。樹脂は、回転子コア挿入部73,83に挿入された回転子コア20の内側、磁石挿入孔21の内部、およびコア穴26の内部に充填される。樹脂は、また、筒状部74,84の内側の空間にも充填され、さらに、対向面72,82と回転子コア20との隙間にも充填される。 In this state, the molding die 9 is heated, and molten resin such as PBT is injected from the runner (step S105). The resin is filled inside the rotor core 20 inserted into the rotor core insertion portions 73 and 83, inside the magnet insertion hole 21, and inside the core hole 26. The resin is also filled in the space inside the tubular portions 74, 84, and further in the gap between the facing surfaces 72, 82 and the rotor core 20.
 その後、成形金型9を冷却する。これにより、成形金型9内の樹脂が硬化して、樹脂部3が形成される。すなわち、シャフト11、回転子コア20およびセンサマグネット4が、樹脂部3によって一体化され、回転子2が形成される。 After that, the molding die 9 is cooled. As a result, the resin in the molding die 9 is cured and the resin portion 3 is formed. That is, the shaft 11, the rotor core 20, and the sensor magnet 4 are integrated by the resin portion 3 to form the rotor 2.
 具体的には、成形金型9の筒状部74,84とシャフト11との間で硬化した樹脂は、内環部31(図5)となる。回転子コア20の内周側(但し、空洞形成部76,86が配置されていない部分)で硬化した樹脂は、内環部31、リブ32および外環部33(図5)となる。成形金型9の空洞形成部76,86に相当する部分は、空洞35(図5)となる。また、成形金型9の対向面72,82と回転子コア20との間で硬化した樹脂は、端面部38,39(図4)となる。 Specifically, the resin cured between the tubular portions 74 and 84 of the molding die 9 and the shaft 11 becomes the inner ring portion 31 (FIG. 5). The resin cured on the inner peripheral side of the rotor core 20 (where the cavity forming portions 76 and 86 are not arranged) becomes the inner ring portion 31, the rib 32, and the outer ring portion 33 (FIG. 5 ). The portions corresponding to the cavity forming portions 76 and 86 of the molding die 9 are the cavities 35 (FIG. 5). The resin cured between the facing surfaces 72 and 82 of the molding die 9 and the rotor core 20 becomes the end surface portions 38 and 39 (FIG. 4).
 その後、可動金型8を上昇させ、固定金型7から回転子2を取り出す。このとき、成形金型9のピン77が回転子コア20のコア穴26から抜け、保持部78が樹脂部3から抜ける。そのため、樹脂部3において保持部78が位置していた部分には、空洞部36が形成される。また、端面部38においてピン77が位置していた部分には、樹脂穴部37(図7)となる。 After that, the movable mold 8 is raised and the rotor 2 is taken out from the fixed mold 7. At this time, the pin 77 of the molding die 9 comes out of the core hole 26 of the rotor core 20, and the holding portion 78 comes out of the resin portion 3. Therefore, the hollow portion 36 is formed in the portion of the resin portion 3 where the holding portion 78 was located. Further, a resin hole portion 37 (FIG. 7) is formed in a portion of the end surface portion 38 where the pin 77 was located.
 一方、固定子コア51は、電磁鋼板を積層し、カシメ等で固定することにより形成する。固定子コア51に絶縁部52を取り付け、コイル53を巻き付けることにより、固定子5が得られる。さらに、リード線61を組み付けた基板6を、固定子5に取り付ける。具体的には、固定子5の樹脂部3に設けた突起を基板6の取付け穴に挿通し、熱溶着または超音波溶着することで、基板6を固定子5に固定する。 On the other hand, the stator core 51 is formed by laminating electromagnetic steel plates and fixing them by caulking or the like. The stator 5 is obtained by attaching the insulating portion 52 to the stator core 51 and winding the coil 53. Further, the substrate 6 to which the lead wire 61 is attached is attached to the stator 5. Specifically, the substrate 6 is fixed to the stator 5 by inserting a protrusion provided on the resin portion 3 of the stator 5 into a mounting hole of the substrate 6 and performing heat welding or ultrasonic welding.
 そして、基板6を固定した固定子5を成形金型に設置し、BMC等の樹脂(モールド樹脂)を注入して加熱することにより、モールド樹脂部55を形成する。これにより、モールド固定子50が完成する。 Then, the stator 5 to which the substrate 6 is fixed is placed in a molding die, and a resin (mold resin) such as BMC is injected and heated to form the mold resin portion 55. As a result, the mold stator 50 is completed.
 その後、上記の回転子2のシャフト11に軸受12,13を取り付け、モールド固定子50の開口部55bから中空部分56に挿入する。次に、ブラケット15をモールド固定子50の開口部55bに取り付ける。さらに、ブラケット15の外側にキャップ14を取り付ける。これにより、電動機1が完成する。 After that, the bearings 12 and 13 are attached to the shaft 11 of the rotor 2 and inserted into the hollow portion 56 from the opening 55b of the mold stator 50. Next, the bracket 15 is attached to the opening 55b of the mold stator 50. Further, the cap 14 is attached to the outside of the bracket 15. Thereby, the electric motor 1 is completed.
 このようにシャフト11、回転子コア20、メインマグネット25およびセンサマグネット4を樹脂で一体成形することにより、各構成部品の組み立てによって回転子2を構成する場合と比較して、回転子2の製造工程が簡単になる。 As described above, the shaft 11, the rotor core 20, the main magnet 25, and the sensor magnet 4 are integrally molded with resin, so that the rotor 2 is manufactured as compared with the case where the rotor 2 is configured by assembling the components. The process becomes simple.
 また、回転子コア20に台座を取り付けてセンサマグネット4を保持する方法では、回転子コア20の軸方向寸法(すなわち積層厚さ)が公差により変動すると、センサマグネット4と基板6上のホール素子との距離も変動する。この実施の形態1では、成形金型9に設けたピン77の保持部78でセンサマグネット4を保持するため、センサマグネット4と基板6上のホール素子との距離が高精度に保たれる。そのため、ホール素子による磁束の検出精度が向上し、電動機1の回転精度および静音性が向上する。 Further, in the method of mounting the pedestal on the rotor core 20 and holding the sensor magnet 4, when the axial dimension (that is, the laminated thickness) of the rotor core 20 changes due to the tolerance, the sensor magnet 4 and the Hall element on the substrate 6 are changed. The distance between and also changes. In the first embodiment, since the sensor magnet 4 is held by the holding portion 78 of the pin 77 provided on the molding die 9, the distance between the sensor magnet 4 and the Hall element on the substrate 6 can be maintained with high accuracy. Therefore, the detection accuracy of the magnetic flux by the Hall element is improved, and the rotation accuracy and the quietness of the electric motor 1 are improved.
 さらに、ピン77の保持部78に設けられた突出部79が、センサマグネット4に径方向内側から当接するため、センサマグネット4の径方向の高い位置精度が得られる。 Further, since the protruding portion 79 provided on the holding portion 78 of the pin 77 comes into contact with the sensor magnet 4 from the inside in the radial direction, a high positional accuracy in the radial direction of the sensor magnet 4 can be obtained.
 また、ピン77が回転子コア20のコア穴26に係合し、ピン77の先端部に設けられた保持部78がセンサマグネット4を保持するため、ピン77を利用して回転子コア20の位置決めとセンサマグネット4の保持の両方を行うことができる。 Further, since the pin 77 engages with the core hole 26 of the rotor core 20 and the holding portion 78 provided at the tip of the pin 77 holds the sensor magnet 4, the pin 77 is used to fix the rotor core 20. Both positioning and holding of the sensor magnet 4 can be performed.
 なお、メインマグネット25の着磁は、回転子2の完成後に行ってもよく、電動機1の完成後に行ってもよい。回転子2の完成後にメインマグネット25を着磁する場合には、着磁装置を用いる。電動機1の完成後にメインマグネット25を着磁する場合には、固定子5のコイル53に着磁電流を流す。この明細書では、着磁前のメインマグネット(すなわち磁性体)であっても、メインマグネットと称する。 The main magnet 25 may be magnetized after the rotor 2 is completed or the electric motor 1 is completed. When the main magnet 25 is magnetized after the rotor 2 is completed, a magnetizing device is used. When the main magnet 25 is magnetized after completion of the electric motor 1, a magnetizing current is passed through the coil 53 of the stator 5. In this specification, even a main magnet (that is, a magnetic body) before being magnetized is referred to as a main magnet.
 図9に示した例では、位置決め用のピン77を固定金型7に設けたが、可動金型8に設けてもよい。何れの場合も、成形金型9に対して回転子コア20を位置決めすることができる。 In the example shown in FIG. 9, the positioning pin 77 is provided on the fixed mold 7, but it may be provided on the movable mold 8. In any case, the rotor core 20 can be positioned with respect to the molding die 9.
<実施の形態の効果>
 以上説明したように、実施の形態1の回転子2は、樹脂部3が、センサマグネット4の一部が露出する空洞部36を有する。そのため、メインマグネット25を取り付けた回転子コア20とシャフト11とを成形金型9内に配置し、成形金型9に設けたピン77でセンサマグネット4を保持した状態で一体成形を行うことにより、回転子2を製造することができる。
<Effects of the embodiment>
As described above, in the rotor 2 of the first embodiment, the resin portion 3 has the hollow portion 36 in which a part of the sensor magnet 4 is exposed. Therefore, the rotor core 20 to which the main magnet 25 is attached and the shaft 11 are arranged in the molding die 9 and integrally molded with the pin 77 provided in the molding die 9 holding the sensor magnet 4. , The rotor 2 can be manufactured.
 回転子2にセンサマグネット4を保持する台座を設ける必要がないため、回転子2の部品点数を低減することができ、また、台座を回転子コア20に組み付ける工程も不要になる。そのため、製造コストを低減することができる。 Since it is not necessary to provide a pedestal for holding the sensor magnet 4 on the rotor 2, the number of parts of the rotor 2 can be reduced, and the step of assembling the pedestal to the rotor core 20 is also unnecessary. Therefore, the manufacturing cost can be reduced.
 加えて、センサマグネット4の位置が、ピン77およびその保持部78によって決まるため、回転子コア20の積層厚さ(すなわち軸方向寸法)が公差により変動しても、センサマグネット4を基板6に対して正確に位置決めすることができる。そのため、基板6のホール素子による磁束の検出精度が向上し、電動機1の回転精度および静音性を向上することができる。 In addition, since the position of the sensor magnet 4 is determined by the pin 77 and the holding portion 78 thereof, even if the laminated thickness (that is, the axial dimension) of the rotor core 20 varies due to the tolerance, the sensor magnet 4 is placed on the substrate 6. It can be accurately positioned relative to it. Therefore, the detection accuracy of the magnetic flux by the Hall element of the substrate 6 is improved, and the rotation accuracy and the quietness of the electric motor 1 can be improved.
 また、空洞部36は、センサマグネット4の径方向の内側または外側に形成されているため、センサマグネット4を径方向の内側または外側から位置決めして保持することができる。これにより、センサマグネット4の径方向の取り付け位置精度を向上することができる。 Further, since the hollow portion 36 is formed inside or outside the sensor magnet 4 in the radial direction, the sensor magnet 4 can be positioned and held from the inside or outside in the radial direction. Thereby, the accuracy of the mounting position of the sensor magnet 4 in the radial direction can be improved.
 また、樹脂部3の介在部39aが、回転子コア20とセンサマグネット4との間に介在しているため、センサマグネット4の磁束に対するメインマグネット25の影響を抑制し、磁束の検出精度を向上することができる。これにより、電動機1の回転精度および静音性を向上することができる。 Further, since the interposition portion 39a of the resin portion 3 is interposed between the rotor core 20 and the sensor magnet 4, the influence of the main magnet 25 on the magnetic flux of the sensor magnet 4 is suppressed, and the magnetic flux detection accuracy is improved. can do. As a result, the rotation accuracy and quietness of the electric motor 1 can be improved.
 また、回転子2がコンシクエントポール型であるため、メインマグネットの数を非コンシクエントポール型の回転子の半分に減らすことができ、製造コストを低減することができる。また、回転子コア20のコア穴26が磁束の流れを整える役割を果たすため、磁束の乱れを抑制して、これにより電動機1の振動および騒音を抑制することができる。 Also, since the rotor 2 is of the consequent pole type, the number of main magnets can be reduced to half of that of the non-consequent pole type rotor, and the manufacturing cost can be reduced. Further, since the core hole 26 of the rotor core 20 plays a role of adjusting the flow of the magnetic flux, it is possible to suppress the disturbance of the magnetic flux and thereby suppress the vibration and noise of the electric motor 1.
 また、回転子コア20がシャフト11に対して距離を開けて設けられ、樹脂部3がシャフト11と回転子コア20とを連結するため、回転子2を軽量化することができる。また、回転子コア20からシャフト11への磁束漏れを低減し、電動機効率を向上することができる。また、回転子コア20とシャフト11とが電磁的に絶縁されるため、軸電流による電食の発生を抑制し、これに伴う電動機1の振動および騒音を抑制することができる。 Further, since the rotor core 20 is provided with a distance from the shaft 11 and the resin portion 3 connects the shaft 11 and the rotor core 20, the weight of the rotor 2 can be reduced. Further, it is possible to reduce the magnetic flux leakage from the rotor core 20 to the shaft 11 and improve the motor efficiency. Further, since the rotor core 20 and the shaft 11 are electromagnetically insulated from each other, it is possible to suppress the occurrence of electrolytic corrosion due to the axial current, and to suppress the vibration and noise of the electric motor 1 due to this.
 また、樹脂部3が、シャフト11の外周に接する内環部31と、回転子コア20の内周20bに接する外環部33と、内環部31と外環部33とを連結するリブ32とを有するため、樹脂部3を形成する材料を少なくし、製造コストを低減することができる。また、リブ32の寸法によって回転子コア20の共振周波数を調整することが可能になるため、例えば送風機等における振動および騒音を抑制することができる。 In addition, the resin portion 3 includes an inner ring portion 31 that contacts the outer circumference of the shaft 11, an outer ring portion 33 that contacts the inner circumference 20 b of the rotor core 20, and a rib 32 that connects the inner ring portion 31 and the outer ring portion 33. Since it has, the amount of material forming the resin portion 3 can be reduced, and the manufacturing cost can be reduced. Further, since the resonance frequency of the rotor core 20 can be adjusted by the size of the rib 32, it is possible to suppress vibration and noise in, for example, a blower.
 また、回転子コア20が、空洞部36に対向する位置にコア穴26を有するため、成形金型9のピン77をコア穴26に係合させて回転子コア20を位置決めすることができる。また、コア穴26を貫通したピン77に設けられた保持部78によって、センサマグネット4を位置決めすることができる。 Further, since the rotor core 20 has the core hole 26 at a position facing the cavity 36, the pin 77 of the molding die 9 can be engaged with the core hole 26 to position the rotor core 20. Further, the sensor magnet 4 can be positioned by the holding portion 78 provided on the pin 77 penetrating the core hole 26.
 また、コア穴26が第1の磁極P1または第2の磁極P2の極中心の周方向内側に位置しているため、回転子コア20内の磁束の流れを整えることができ、これにより磁力のアンバランスを抑え、振動および騒音を抑制することができる。 In addition, since the core hole 26 is located inside the pole center of the first magnetic pole P1 or the second magnetic pole P2 in the circumferential direction, the flow of the magnetic flux in the rotor core 20 can be adjusted, whereby the magnetic force Unbalance can be suppressed and vibration and noise can be suppressed.
 また、回転子コア20の複数のコア穴26は、中心軸線C1から等距離にあり、且つ、それぞれに最も近い磁極に対する相対位置が互いに等しいため、成形金型9で回転子コア20の周方向位置を変えても、コア穴26とピン77とを係合させることができる。 Further, since the plurality of core holes 26 of the rotor core 20 are equidistant from the central axis C1 and have the same relative positions with respect to the magnetic poles closest to each of them, the molding die 9 is used in the circumferential direction of the rotor core 20. Even if the position is changed, the core hole 26 and the pin 77 can be engaged with each other.
 また、回転子2の製造工程において、シャフト11と回転子コア20とを樹脂で一体成形するため、シャフト11の圧入工程等が不要になり、回転子2の製造工程を簡単にすることができる。 Further, in the manufacturing process of the rotor 2, since the shaft 11 and the rotor core 20 are integrally molded with resin, the press-fitting process of the shaft 11 and the like are unnecessary, and the manufacturing process of the rotor 2 can be simplified. ..
変形例.
 図13は、実施の形態1の変形例の回転子2Aを示す断面図であり、図3に示した線分5-5における矢視方向の断面図に相当する。この変形例の回転子2Aは、全ての磁極がメインマグネット25で構成された非コンシクエントポール型、すなわち通常ポール型の回転子である。
Modified example.
FIG. 13 is a cross-sectional view showing a rotor 2A of a modified example of the first embodiment, which corresponds to a cross-sectional view taken along line 5-5 shown in FIG. The rotor 2A of this modified example is a non-consistent pole type rotor in which all magnetic poles are composed of the main magnet 25, that is, a normal pole type rotor.
 図13に示すように、回転子2Aは、シャフト11と、シャフト11に対して径方向外側に距離を開けて設けられた回転子コア20と、回転子コア20に埋め込まれた複数のメインマグネット25と、メインマグネット25に対して軸方向の一方の側に配置されたセンサマグネット4(図4)と、シャフト11と回転子コア20との間に設けられた樹脂部3とを有する。シャフト11、樹脂部3およびセンサマグネット4の構成は、実施の形態1で説明したとおりである。 As shown in FIG. 13, the rotor 2A includes a shaft 11, a rotor core 20 provided at a distance radially outward from the shaft 11, and a plurality of main magnets embedded in the rotor core 20. 25, a sensor magnet 4 (FIG. 4) arranged on one side in the axial direction with respect to the main magnet 25, and a resin portion 3 provided between the shaft 11 and the rotor core 20. The configurations of the shaft 11, the resin portion 3, and the sensor magnet 4 are as described in the first embodiment.
 回転子コア20は、周方向に複数の磁石挿入孔21を有する。磁石挿入孔21は、周方向に等間隔で、且つ中心軸線C1から等距離に配置されている。磁石挿入孔21の数は、ここでは10個である。各磁石挿入孔21には、メインマグネット25が1つずつ挿入されており、従ってメインマグネット25の数も10個である。メインマグネット25の形状および材質は、実施の形態1で説明したとおりである。 The rotor core 20 has a plurality of magnet insertion holes 21 in the circumferential direction. The magnet insertion holes 21 are arranged at equal intervals in the circumferential direction and at the same distance from the central axis C1. The number of magnet insertion holes 21 is ten here. One main magnet 25 is inserted into each magnet insertion hole 21, so that the number of main magnets 25 is ten. The shape and material of the main magnet 25 are as described in the first embodiment.
 周方向に隣り合うメインマグネット25は、回転子コア20の外周側に互いに反対の磁極を有する。例えば、外周側にN極を有するメインマグネット25は第1の磁極P1を構成し、外周側にS極を有するメインマグネット25は第2の磁極P2を構成する。すなわち、回転子2Aの全ての磁極P1,P2がメインマグネット25で構成され、極数は10となる。 The main magnets 25 adjacent to each other in the circumferential direction have magnetic poles opposite to each other on the outer peripheral side of the rotor core 20. For example, the main magnet 25 having the N pole on the outer peripheral side constitutes the first magnetic pole P1, and the main magnet 25 having the S pole on the outer peripheral side constitutes the second magnetic pole P2. That is, all the magnetic poles P1 and P2 of the rotor 2A are composed of the main magnet 25, and the number of poles is 10.
 ここでは回転子2の極数を10としたが、極数は4以上の偶数であればよい。また、ここでは1つの磁石挿入孔21に1つのメインマグネット25を配置しているが、1つの磁石挿入孔21に2つ以上のメインマグネット25を配置してもよい。 The number of poles of the rotor 2 is 10 here, but the number of poles may be an even number of 4 or more. Although one main magnet 25 is arranged in one magnet insertion hole 21 here, two or more main magnets 25 may be arranged in one magnet insertion hole 21.
 回転子コア20の10個の磁石挿入孔21のうち、5個の磁石挿入孔21の径方向内側には、コア穴26が形成されている。これらのコア穴26には、実施の形態1で説明したように成形金型9のピン77(図9)が挿入される。ピン77の先端部には保持部78が設けられ、センサマグネット4(図9)が保持される。樹脂部3が空洞部36(図4)を有することは、実施の形態1で説明した通りである。 Among the 10 magnet insertion holes 21 of the rotor core 20, core holes 26 are formed inside the 5 magnet insertion holes 21 in the radial direction. The pins 77 (FIG. 9) of the molding die 9 are inserted into these core holes 26 as described in the first embodiment. A holding portion 78 is provided at the tip of the pin 77 to hold the sensor magnet 4 (FIG. 9). The resin portion 3 having the hollow portion 36 (FIG. 4) is as described in the first embodiment.
 コア穴26の数は任意であるが、センサマグネット4を安定した姿勢で保持するためには、2つ以上が望ましく、3つ以上であればより望ましい。また、全ての磁石挿入孔21の径方向内側にコア穴26を設けてもよい。なお、図13では、回転子コア20の外周20aは円形状を有しているが、実施の形態1で説明した花丸形状であってもよい。 The number of core holes 26 is arbitrary, but in order to hold the sensor magnet 4 in a stable posture, two or more are desirable, and three or more are more desirable. Further, the core holes 26 may be provided on the radially inner side of all the magnet insertion holes 21. In FIG. 13, the outer periphery 20a of the rotor core 20 has a circular shape, but it may have the flower circle shape described in the first embodiment.
 変形例の回転子2Aは、全ての磁極がメインマグネット25で構成されている点を除き、実施の形態1の回転子2と同様である。そのため、メインマグネット25を取り付けた回転子コア20とシャフト11とを成形金型9内に配置し、成形金型9に設けたピン77でセンサマグネット4を保持した状態で一体成形を行うことにより、回転子2Aを製造することができる。そのため、実施の形態1と同様の効果を得ることができる。 The rotor 2A of the modified example is the same as the rotor 2 of the first embodiment except that all magnetic poles are composed of the main magnets 25. Therefore, the rotor core 20 to which the main magnet 25 is attached and the shaft 11 are arranged in the molding die 9 and integrally molded with the pin 77 provided in the molding die 9 holding the sensor magnet 4. , The rotor 2A can be manufactured. Therefore, the same effect as that of the first embodiment can be obtained.
<空気調和装置>
 次に、上述した実施の形態1またはその変形例の電動機を適用した空気調和装置について説明する。図14(A)は、実施の形態1の電動機1を適用した空気調和装置500の構成を示す図である。空気調和装置500は、室外機501と、室内機502と、これらを接続する冷媒配管503とを備える。
<Air conditioner>
Next, an air conditioner to which the electric motor according to the first embodiment or its modification described above is applied will be described. FIG. 14A is a diagram showing a configuration of an air conditioner 500 to which the electric motor 1 according to the first embodiment is applied. The air conditioner 500 includes an outdoor unit 501, an indoor unit 502, and a refrigerant pipe 503 connecting these units.
 室外機501は、例えばプロペラファンである室外送風機510を備え、室内機502は、例えばクロスフローファンである室内送風機520を備える。室外送風機510は、羽根車505と、これを駆動する電動機1とを有する。室内送風機520は、羽根車521と、これを駆動する電動機1とを有する。電動機1は、いずれも実施の形態1で説明した構成を有する。なお、図14(A)には、冷媒を圧縮する圧縮機504も示されている。 The outdoor unit 501 includes an outdoor blower 510 such as a propeller fan, and the indoor unit 502 includes an indoor blower 520 such as a cross flow fan. The outdoor blower 510 includes an impeller 505 and the electric motor 1 that drives the impeller 505. The indoor blower 520 includes an impeller 521 and the electric motor 1 that drives the impeller 521. Each of the electric motors 1 has the configuration described in the first embodiment. A compressor 504 that compresses the refrigerant is also shown in FIG.
 図14(B)は、室外機501の断面図である。電動機1は、室外機501のハウジング508内に配置されたフレーム509によって支持されている。電動機1のシャフト11には、ハブ506を介して羽根車505が取り付けられている。 FIG. 14B is a cross-sectional view of the outdoor unit 501. The electric motor 1 is supported by a frame 509 arranged inside a housing 508 of the outdoor unit 501. An impeller 505 is attached to the shaft 11 of the electric motor 1 via a hub 506.
 室外送風機510では、電動機1の回転子2の回転により、羽根車505が回転し、室外に送風する。空気調和装置500の冷房運転時には、圧縮機504で圧縮された冷媒が凝縮器(図示せず)で凝縮する際に放出された熱を、室外送風機510の送風によって室外に放出する。 In the outdoor blower 510, the impeller 505 is rotated by the rotation of the rotor 2 of the electric motor 1 to blow the air to the outside. During the cooling operation of the air conditioner 500, the heat released when the refrigerant compressed by the compressor 504 is condensed by the condenser (not shown) is released to the outside by the blower of the outdoor blower 510.
 同様に、室内送風機520(図14(A))では、電動機1の回転子2の回転により、羽根車521が回転し、室内に送風する。空気調和装置500の冷房運転時には、冷媒が蒸発器(図示せず)で蒸発する際に熱が奪われた空気を、室内送風機520の送風によって室内に送風する。 Similarly, in the indoor blower 520 (FIG. 14(A)), the rotation of the rotor 2 of the electric motor 1 causes the impeller 521 to rotate and blows the air indoors. During the cooling operation of the air conditioner 500, the air from which heat is removed when the refrigerant evaporates in the evaporator (not shown) is blown indoors by the blower 520.
 上述した実施の形態1の電動機1は、磁束漏れの抑制により高い電動機効率を有するため、空気調和装置500の運転効率を向上することができる。また、電動機1の共振周波数が調整可能であるため、電動機1と羽根車505(521)との共振、室外機501全体の共振、および室内機502全体の共振を抑制することができ、騒音を低減することができる。 The electric motor 1 of the first embodiment described above has a high electric motor efficiency due to the suppression of magnetic flux leakage, so that the operating efficiency of the air conditioner 500 can be improved. Further, since the resonance frequency of the electric motor 1 can be adjusted, the resonance between the electric motor 1 and the impeller 505 (521), the resonance of the entire outdoor unit 501, and the resonance of the entire indoor unit 502 can be suppressed, and noise is reduced. It can be reduced.
 なお、電動機1に、変形例の回転子2A(図13)を用いてもよい。また、ここでは、室外送風機510の駆動源および室内送風機520の駆動源に電動機1を用いたが、少なくとも何れか一方の駆動源に電動機1を用いていればよい。 Note that the rotor 2A (FIG. 13) of the modified example may be used for the electric motor 1. Although the electric motor 1 is used as the drive source of the outdoor blower 510 and the drive source of the indoor blower 520 here, the electric motor 1 may be used as at least one of the drive sources.
 また、実施の形態1および変形例で説明した電動機1は、空気調和装置の送風機以外の電気機器に搭載することもできる。 Also, the electric motor 1 described in the first embodiment and the modified example can be mounted on an electric device other than the blower of the air conditioner.
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。 Although the preferred embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various improvements or modifications can be made without departing from the scope of the present invention. be able to.
 1 電動機、 2,2A 回転子、 3 樹脂部、 4 センサマグネット、 5 固定子、 6 基板、 7 固定金型、 8 可動金型、 9 成形金型、 11 シャフト、 20 回転子コア、 21 磁石挿入孔、 25 メインマグネット、 26 コア穴、 31 内環部、 32 リブ、 33 外環部、 36 空洞部、 37 樹脂穴部、 38,39 端面部、 39a 介在部、 50 モールド固定子、 51 固定子コア、 52 絶縁部、 53 コイル、 55 モールド樹脂部、 70 当接部、 71 シャフト挿入孔、 72 対向面、 73 回転子コア挿入部、 74 筒状部、 75 金型合わせ面、 76 空洞形成部、 77 ピン(突起部)、 78 保持部、 81 シャフト挿入孔、 82 対向面、 83 回転子コア挿入部、 84 筒状部、 85 金型合わせ面、 86 空洞形成部、 501 室外機、 502 室内機、 503 冷媒配管、 505 羽根車、 510 室外送風機、 520 室内送風機、 521 羽根車。
 
1 electric motor, 2, 2A rotor, 3 resin part, 4 sensor magnet, 5 stator, 6 substrate, 7 fixed mold, 8 movable mold, 9 molding mold, 11 shaft, 20 rotor core, 21 magnet insertion Hole, 25 main magnet, 26 core hole, 31 inner ring part, 32 rib, 33 outer ring part, 36 hollow part, 37 resin hole part, 38, 39 end face part, 39a interposition part, 50 mold stator, 51 stator Core, 52 insulating part, 53 coil, 55 mold resin part, 70 contact part, 71 shaft insertion hole, 72 facing surface, 73 rotor core insertion part, 74 tubular part, 75 mold matching surface, 76 cavity forming part , 77 pin (projection part), 78 holding part, 81 shaft insertion hole, 82 facing surface, 83 rotor core insertion part, 84 cylindrical part, 85 mold matching surface, 86 cavity forming part, 501 outdoor unit, 502 indoor Machine, 503 refrigerant pipe, 505 impeller, 510 outdoor blower, 520 indoor blower, 521 impeller.

Claims (16)

  1.  シャフトと、
     前記シャフトを、前記シャフトの中心軸線を中心とする径方向の外側から囲む環状の回転子コアと、
     前記回転子コアに取り付けられたメインマグネットと、
     前記中心軸線の方向において前記メインマグネットの一方の側に配置されたセンサマグネットと、
     前記回転子コアに設けられ、前記センサマグネットを保持する樹脂部と
     を備え、
     前記樹脂部は、前記センサマグネットの一部が露出する空洞部を有する
     回転子。
    Shaft,
    An annular rotor core that surrounds the shaft from the outside in the radial direction around the central axis of the shaft,
    A main magnet attached to the rotor core;
    A sensor magnet arranged on one side of the main magnet in the direction of the central axis;
    A resin portion that is provided on the rotor core and holds the sensor magnet,
    The resin part has a hollow part where a part of the sensor magnet is exposed.
  2.  前記空洞部は、前記センサマグネットの前記中心軸線を中心とする径方向の内側または外側に形成されている
     請求項1に記載の回転子。
    The rotor according to claim 1, wherein the hollow portion is formed inside or outside in a radial direction centered on the central axis of the sensor magnet.
  3.  前記樹脂部は、前記回転子コアと前記センサマグネットとの間に位置する介在部を有する
     請求項1または2に記載の回転子。
    The rotor according to claim 1 or 2, wherein the resin portion has an interposition portion located between the rotor core and the sensor magnet.
  4.  前記センサマグネットは、前記中心軸線を囲む環状である
     請求項1から3までのいずれか1項に記載の回転子。
    The rotor according to any one of claims 1 to 3, wherein the sensor magnet has a ring shape surrounding the central axis.
  5.  前記メインマグネットが第1の磁極を構成し、
     前記回転子コアの一部が第2の磁極を構成する
     請求項1から4までのいずれか1項に記載の回転子。
    The main magnet constitutes the first magnetic pole,
    The rotor according to any one of claims 1 to 4, wherein a part of the rotor core constitutes a second magnetic pole.
  6.  前記メインマグネットが第1の磁極を構成し、
     前記メインマグネットに隣接する別のメインマグネットが第2の磁極を構成する
     請求項1から4までのいずれか1項に記載の回転子。
    The main magnet constitutes the first magnetic pole,
    The rotor according to any one of claims 1 to 4, wherein another main magnet adjacent to the main magnet constitutes a second magnetic pole.
  7.  前記回転子コアは、前記シャフトに対して距離を開けて設けられ、
     前記樹脂部は、前記シャフトと前記回転子コアとを連結する
     請求項1から6までのいずれか1項に記載の回転子。
    The rotor core is provided at a distance from the shaft,
    The rotor according to any one of claims 1 to 6, wherein the resin portion connects the shaft and the rotor core.
  8.  前記樹脂部は、前記シャフトの外周に接する内環部と、前記回転子コアの内周に接する外環部と、前記内環部と前記外環部とを連結するリブとを有する
     請求項7に記載の回転子。
    The said resin part has an inner ring part which contacts the outer periphery of the said shaft, the outer ring part which contacts the inner periphery of the said rotor core, and the rib which connects the said inner ring part and the said outer ring part. The rotor described in.
  9.  前記回転子コアは、前記空洞部に対応する位置にコア穴を有する
     請求項1から8までの何れか1項に記載の回転子。
    The rotor according to any one of claims 1 to 8, wherein the rotor core has a core hole at a position corresponding to the hollow portion.
  10.  前記回転子は、前記中心軸線を中心とする周方向に複数の磁極を有し、
     前記回転子コアは、前記中心軸線から等距離にある複数のコア穴を有し、
     前記複数のコア穴は、それぞれに最も近い磁極に対する相対位置が互いに等しい
     請求項1から8までの何れか1項に記載の回転子。
    The rotor has a plurality of magnetic poles in a circumferential direction around the central axis,
    The rotor core has a plurality of core holes equidistant from the central axis,
    The rotor according to any one of claims 1 to 8, wherein the plurality of core holes have the same relative positions with respect to the closest magnetic poles.
  11.  前記樹脂部は、前記中心軸線の方向における前記回転子コアの端面の少なくとも一部を覆う端面部を有し、
     前記端面部は、前記複数のコア穴の数以下の数の穴部を有する
     請求項10に記載の回転子。
    The resin portion has an end surface portion that covers at least a part of the end surface of the rotor core in the direction of the central axis,
    The rotor according to claim 10, wherein the end surface portion has a number of hole portions equal to or less than the number of the plurality of core holes.
  12.  請求項1から11までの何れか1項に記載の回転子と、
     前記回転子を前記径方向の外側から囲む固定子と
     を備えた電動機。
    A rotor according to any one of claims 1 to 11,
    A stator surrounding the rotor from the outside in the radial direction.
  13.  請求項12に記載の電動機と、
     前記電動機によって回転する羽根車と
     を備えた送風機。
    An electric motor according to claim 12;
    An impeller rotated by the electric motor.
  14.  室外機と、室内機と、前記室外機と前記室内機とを連結する冷媒配管とを備え、
     前記室外機と前記室内機の少なくとも一方は、
     請求項13に記載の送風機を有する
     空気調和装置。
    An outdoor unit, an indoor unit, and a refrigerant pipe connecting the outdoor unit and the indoor unit,
    At least one of the outdoor unit and the indoor unit,
    An air conditioner including the blower according to claim 13.
  15.  メインマグネットが取り付けられた環状の回転子コアと、シャフトとを用意する工程と、
     成形金型内に前記シャフトと前記回転子コアとを配置し、前記成形金型に設けた治具によって前記回転子コアの前記シャフトの中心軸線の方向の一方の側でセンサマグネットを保持し、前記シャフト、前記回転子コア、前記メインマグネットおよび前記センサマグネットを樹脂により一体に成形する工程と
     を有する回転子の製造方法。
    A step of preparing an annular rotor core to which a main magnet is attached and a shaft,
    The shaft and the rotor core are arranged in a molding die, and a jig provided on the molding die holds a sensor magnet on one side in the direction of the central axis of the shaft of the rotor core, A step of integrally molding the shaft, the rotor core, the main magnet, and the sensor magnet with a resin.
  16.  前記治具は前記回転子コアに設けられたコア穴を貫通し、前記治具の先端部で前記センサマグネットを保持する
     請求項15に記載の回転子の製造方法。
     
     
    The method of manufacturing a rotor according to claim 15, wherein the jig penetrates a core hole provided in the rotor core, and the sensor magnet is held by a tip portion of the jig.

PCT/JP2018/046931 2018-12-20 2018-12-20 Rotor, electric motor, blower, air-conditioning device, and method for manufacturing rotor WO2020129207A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020560720A JP7012878B2 (en) 2018-12-20 2018-12-20 How to manufacture rotors, motors, blowers, air conditioners and rotors
PCT/JP2018/046931 WO2020129207A1 (en) 2018-12-20 2018-12-20 Rotor, electric motor, blower, air-conditioning device, and method for manufacturing rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046931 WO2020129207A1 (en) 2018-12-20 2018-12-20 Rotor, electric motor, blower, air-conditioning device, and method for manufacturing rotor

Publications (1)

Publication Number Publication Date
WO2020129207A1 true WO2020129207A1 (en) 2020-06-25

Family

ID=71100699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046931 WO2020129207A1 (en) 2018-12-20 2018-12-20 Rotor, electric motor, blower, air-conditioning device, and method for manufacturing rotor

Country Status (2)

Country Link
JP (1) JP7012878B2 (en)
WO (1) WO2020129207A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194944A (en) * 2008-02-12 2009-08-27 Mitsubishi Electric Corp Rotor of motor, motor, and air conditioner
WO2012098943A1 (en) * 2011-01-18 2012-07-26 三菱電機株式会社 Motor rotor, molded motor, air conditioner, and method for producing molded motor
WO2017033239A1 (en) * 2015-08-21 2017-03-02 三菱電機株式会社 Dynamo-electric machine and air conditioning device
JP2018023241A (en) * 2016-08-05 2018-02-08 三菱電機株式会社 Rotor and rotary electric machine
WO2018134988A1 (en) * 2017-01-23 2018-07-26 三菱電機株式会社 Rotor, electric motor, air conditioning device, and method for manufacturing rotor
WO2018180636A1 (en) * 2017-03-31 2018-10-04 日本電産サーボ株式会社 Motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230694B2 (en) * 2010-07-06 2013-07-10 三菱電機株式会社 Motor rotor, motor and air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194944A (en) * 2008-02-12 2009-08-27 Mitsubishi Electric Corp Rotor of motor, motor, and air conditioner
WO2012098943A1 (en) * 2011-01-18 2012-07-26 三菱電機株式会社 Motor rotor, molded motor, air conditioner, and method for producing molded motor
WO2017033239A1 (en) * 2015-08-21 2017-03-02 三菱電機株式会社 Dynamo-electric machine and air conditioning device
JP2018023241A (en) * 2016-08-05 2018-02-08 三菱電機株式会社 Rotor and rotary electric machine
WO2018134988A1 (en) * 2017-01-23 2018-07-26 三菱電機株式会社 Rotor, electric motor, air conditioning device, and method for manufacturing rotor
WO2018180636A1 (en) * 2017-03-31 2018-10-04 日本電産サーボ株式会社 Motor

Also Published As

Publication number Publication date
JPWO2020129207A1 (en) 2021-06-03
JP7012878B2 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
US11394260B2 (en) Rotor, motor, fan, and air conditioning apparatus
US11101708B2 (en) Rotor, motor, air conditioning apparatus, and manufacturing method of rotor
CN208835850U (en) Commutate polar form rotor, motor and air conditioner
JP2023054248A (en) Rotor, electric motor, blower, air conditioner, and manufacturing method of rotor
JP7090740B2 (en) How to manufacture rotors, motors, blowers, air conditioners and rotors
JP7012878B2 (en) How to manufacture rotors, motors, blowers, air conditioners and rotors
EP4113789A1 (en) Electric motor, blower, and air conditioner
CN113169598B (en) Rotor, motor, blower, air conditioner, and method for manufacturing rotor
JP7258213B2 (en) Stator, electric motor, blower, air conditioner, and stator manufacturing method
JP7301972B2 (en) Electric motor, blower, air conditioner, and method for manufacturing electric motor
JP7219331B2 (en) Electric motor, blower, air conditioner, and method for manufacturing electric motor
WO2022190308A1 (en) Rotor, electric motor, blower, air conditioner, and manufacturing method for rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943920

Country of ref document: EP

Kind code of ref document: A1