WO2020129157A1 - Power conversion device - Google Patents
Power conversion device Download PDFInfo
- Publication number
- WO2020129157A1 WO2020129157A1 PCT/JP2018/046577 JP2018046577W WO2020129157A1 WO 2020129157 A1 WO2020129157 A1 WO 2020129157A1 JP 2018046577 W JP2018046577 W JP 2018046577W WO 2020129157 A1 WO2020129157 A1 WO 2020129157A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power conversion
- voltage
- conversion circuit
- power
- capacitor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
Definitions
- the present invention relates to a power conversion device having at least three power conversion circuits.
- a power converter is used that insulates the power supplied from the AC power supply, converts it to DC power, and supplies it to the load.
- a power converter is generally a power conversion circuit (AC/DC converter) that converts AC power into DC power, and converts the DC power into DC power of a desired size using an insulating transformer.
- a power conversion circuit isolated DC/DC converter
- a power conversion device may be configured by two power conversion circuits, that is, a power conversion circuit (DC/DC converter) that converts electric power into a certain DC power and an insulating DC/DC converter.
- a power conversion device When configuring a power conversion device with two power conversion circuits in this way, if the output voltage is controlled over a wide range, there is a problem that the loss of the insulation type DC/DC converter increases. Therefore, it is considered that a power conversion device is configured by three power conversion circuits connected in series by adding a power conversion circuit to the output side of the insulating converter (see, for example, Patent Document 1).
- the power supply device described in Patent Document 1 includes an AC/DC converter, an insulating DC/DC converter, and a bidirectional DC/DC converter that are connected in series.
- the AC/DC converter converts an AC voltage from an AC power source and outputs a DC voltage.
- the insulation type DC/DC converter converts the DC voltage output from the AC/DC converter and outputs a link voltage.
- the bidirectional DC/DC converter adjusts the value of the link voltage output from the isolated DC/DC converter, and gives the adjusted link voltage to the battery. Smoothing capacitors are respectively connected between the AC/DC converter and the isolated DC/DC converter, and between the isolated DC/DC converter and the bidirectional DC/DC converter.
- the present invention has been made to solve the above problems, and an object thereof is to obtain a power conversion device capable of preventing the occurrence of overcurrent at the start of operation.
- a power conversion device converts a voltage from an input power source into a DC voltage and outputs a converted DC voltage, and a first power conversion circuit via a first DC bus.
- a second power conversion circuit that is connected to the circuit, transforms the DC voltage output from the first power conversion circuit, and outputs the transformed DC voltage; and second power conversion via a second DC bus bar.
- a third power conversion circuit connected to the circuit for converting the DC voltage output from the second power conversion circuit and outputting the converted DC voltage to the load; and a first power conversion circuit connected to the first DC bus.
- the second DC capacitor connected to the second DC bus, and the first, second, and third power conversion circuits start to operate in stages, and the voltage of the first DC capacitor becomes After the first threshold voltage is reached and the voltage of the second DC capacitor reaches the second threshold voltage, the first power conversion circuit outputs power to the load so that the first power conversion circuit outputs the power to the load.
- the control part which controls the power converter circuit of 3 is provided.
- the operations of the first, second, and third power conversion circuits are started in stages, so that the voltages of the first and second DC capacitors can be individually controlled. Therefore, it is possible to prevent the occurrence of overcurrent.
- FIG. 1 is a schematic diagram showing a schematic configuration of a power supply system including a power conversion device according to a first embodiment. It is a figure which shows the specific circuit structural example of the power converter device which concerns on Embodiment 1. It is a figure which shows the specific circuit structural example of the power converter device which concerns on Embodiment 1.
- FIG. 4 is a diagram for explaining an initial operation of the power conversion device when a resistive load is used as a load in the first embodiment.
- FIG. 6 is a diagram for describing a first example of an initial operation of the power conversion device when a voltage source load is used as a load in the first embodiment.
- FIG. 5 is a diagram for describing a second example of the initial operation of the power conversion device when the voltage source load is used as the load in the first embodiment.
- FIG. 9 is a diagram for describing a third example of the initial operation of the power conversion device when the voltage source load is used as the load in the first embodiment. It is a figure which shows the modification of the power converter device which concerns on Embodiment 1. It is a figure which shows the other modification of the power converter device which concerns on Embodiment 1. It is a figure which shows the specific circuit structural example of the power converter device which concerns on Embodiment 2.
- FIG. 9 is a diagram for explaining an initial operation of the power conversion device according to the second embodiment. It is a figure which shows the example in which the at least one part function of a control part is implement
- FIG. 1 is a schematic diagram showing a schematic configuration of a power supply system including a power conversion device according to a first embodiment of the present invention.
- the same or similar components are designated by the same reference numerals.
- the power supply system includes a power conversion device 100, an input power supply 1 and a load 7.
- the power conversion device 100 includes a first power conversion circuit 2, a first DC capacitor 3, a second power conversion circuit 4, a second DC capacitor 5, a third power conversion circuit 6 and a control unit 8.
- One end (input terminal) of the first power conversion circuit 2 is connected to the input power supply 1.
- One end (input terminal) of the second power conversion circuit 4 is connected to the other end (output terminal) of the first power conversion circuit 2.
- One end (input terminal) of the third power conversion circuit 6 is connected to the other end (output terminal) of the second power conversion circuit 4.
- the other end (output terminal) of the third power conversion circuit 6 is connected to the load 7.
- the first power conversion circuit 2 converts the voltage from the input power supply into a DC voltage.
- the second power conversion circuit 4 transforms the DC voltage from the first power conversion circuit 2 through an insulation transformer.
- the third power conversion circuit 6 converts the DC voltage from the second power conversion circuit 4 and outputs it to the load 7.
- the first DC capacitor 3 is connected between a pair of first DC buses 31 that connect the first power conversion circuit 2 and the second power conversion circuit 4, and the second DC capacitor 5 is It is connected between a pair of second DC buses 51 that connect the second power conversion circuit 4 and the third power conversion circuit 6.
- the control unit 8 can control all of the first to third power conversion circuits 2, 4, and 6, and controls each switching element included in each power conversion circuit. In this case, the control unit 8 transmits a drive signal to each switching element included in all power conversion circuits, based on a part or all of detection results obtained from a current detector and a voltage detector described later, A desired operation is realized by controlling ON/OFF of the switching element.
- the input power supply 1 is an AC power supply such as a commercial AC system or a private generator, or a DC power supply such as a battery.
- the load 7 is a resistance load or a voltage source load.
- the resistive load is a load that does not spontaneously generate a voltage, and is, for example, a lighting device or a temperature control device.
- the voltage source load is a load that spontaneously generates a voltage, and is, for example, a high-voltage battery for vehicle running or a lead battery of vehicle electrical equipment. It goes without saying that the input power supply 1 and the load 7 are not limited to these examples.
- FIGS. 2 and 3 are diagrams showing a specific circuit configuration example of the power conversion apparatus 100 according to the first embodiment.
- an AC power supply is used as the input power supply 1.
- a resistive load is used as the load 7
- a voltage source load is used as the load 7.
- the configuration of the power conversion device 100 is the same in the example of FIG. 2 and the example of FIG. 3.
- the power conversion device 100 includes an AC/DC converter 20 that controls an input current to a high power factor as the first power conversion circuit 2, and a DC voltage as the second power conversion circuit 4.
- An insulating DC/DC converter 40 that transforms is included, and a non-insulating DC/DC converter 60 that transforms a DC voltage is included as the third power conversion circuit 6.
- the AC/DC converter 20 corresponds to a PFC (Power Factor Correction) that improves the power factor.
- the first power conversion circuit 2 (AC/DC converter 20) shown in FIGS. 2 and 3 includes switching elements 21 to 24 and power factor improving AC reactors 215 and 216.
- the switching elements 21 to 24 are connected in a full bridge type.
- One end of the AC reactor 215 is connected to the AC power supply 11, and the other end is connected to a connection point between the switching element 21 and the switching element 22.
- one end of the AC reactor 216 is connected to the AC power supply 11, and the other end is connected to a connection point between the switching element 23 and the switching element 24.
- the AC reactors 215 and 216 are connected to both sides of the AC power supply 11, respectively, but may be connected to only one side. That is, only one of AC reactors 215 and 216 may be used.
- the first power conversion circuit 2 shown in FIGS. 2 and 3 has a configuration in which switching elements are used for all semiconductor elements, but is a semi-bridgeless type or totem pole using passive semiconductor elements such as diodes. It goes without saying that it may be a mold configuration.
- the second power conversion circuit 4 (insulation type DC/DC converter 40) shown in FIGS. 2 and 3 includes an insulation transformer 49, a primary side conversion circuit 4A and a secondary side conversion circuit 4B.
- Isolation transformer 49 includes two windings that are magnetically coupled to each other. One winding of the isolation transformer 49 is connected to the terminal of the primary side conversion circuit 4A, and the other winding is connected to the terminal of the secondary side conversion circuit 4B.
- the winding connected to the terminal of the primary side conversion circuit 4A is referred to as a primary side winding
- the winding connected to the terminal of the secondary side conversion circuit 4B is referred to as a secondary side winding.
- the primary side conversion circuit 4A includes switching elements 41 to 44.
- the switching elements 41 to 44 are connected in a full bridge type.
- the DC side terminal of the primary side conversion circuit 4A is connected to the first power conversion circuit 2 and the first DC capacitor 3 via the pair of first DC bus lines 31, and the AC side terminal.
- one end of the primary winding of the insulating transformer 49 is connected to the connection point between the switching elements 41 and 42 connected in series, and the connection point between the switching element 43 and switching element 44 connected in series is connected.
- the other end of the primary winding of the insulating transformer 49 is connected.
- the secondary side conversion circuit 4B of the isolation transformer 49 includes switching elements 45 to 48.
- the switching elements 45 to 48 are connected in a full bridge type.
- the DC side terminal of the secondary side conversion circuit 4B is connected to the second DC capacitor 5 and the third power conversion circuit 6 via the pair of second DC bus lines 51, and the AC side terminal. Is connected to the secondary winding of the insulating transformer 49.
- one end of the secondary winding of the insulating transformer 49 is connected to the connection point between the switching elements 45 and 46 connected in series, and the connection point between the switching elements 47 and 48 connected in series is connected.
- the other end of the secondary winding of the insulating transformer 49 is connected.
- the second power conversion circuit 4 may include a reactor, a capacitor, etc. connected in series or in parallel with the primary winding or the secondary winding of the insulating transformer 49.
- a reactor and a capacitor By using a reactor and a capacitor, low-loss soft switching operation becomes possible.
- a separately prepared reactor may be externally attached to the insulating transformer 49, and the leakage inductance or the exciting inductance of the insulating transformer 49 may be used as a reactor for reducing loss.
- the secondary side conversion circuit 4B may be configured by a diode rectifier circuit using a diode or a voltage doubler rectifier circuit using a capacitor.
- the third power conversion circuit 6 (DC/DC converter 60) shown in FIGS. 2 and 3 includes switching elements 61 and 62, a smoothing DC reactor 63, and a smoothing capacitor 64.
- the third power conversion circuit 6 has a circuit configuration of a step-down chopper.
- the resistive load 71 is connected to the output terminal of the third power conversion circuit 6.
- the voltage source load 72 is connected to the output terminal of the third power conversion circuit 6.
- the third power conversion circuit 6 shown in FIGS. 2 and 3 has a step-down chopper circuit configuration, it may have a step-up or step-up/step-down circuit configuration, and also has an interleave configuration or parallel connection. It goes without saying that it may have a configuration.
- IGBTs Insulated Gate Bipolar
- Transistor Metal Oxide Semiconductor Field Effect Transistor
- SiC Silicon Carbide
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- GaN GaN Nitride Emitter
- FET Field Effect Transistor
- FET GaN (Galium Nitride Emitter)
- the power conversion device 100 further includes current detectors D1 and D2 and voltage detectors D3 to D6.
- the current detector D1 detects an AC input current iac flowing from the AC power supply 11 to the first power conversion circuit 2.
- the current detector D2 detects the DC output current Iout flowing from the third power conversion circuit 6 to the load 7.
- the voltage detector D3 detects the AC input voltage vac applied to the first power conversion circuit 2 from the AC power supply 11.
- the voltage detector D4 detects the voltage Vlink of the first DC capacitor 3.
- the voltage detector D5 detects the voltage Vint of the second DC capacitor 5.
- the voltage detector D6 detects the voltage of the smoothing capacitor 64 of the third power conversion circuit 6 as the DC output voltage Vout given to the load 7 from the third power conversion circuit 6.
- the detectors D1 to D6 provide the detection result to the control unit 8.
- the control unit 8 performs feedback calculation based on a part or all of the given detection value to control ON/OFF of each switching element.
- the control unit 8 controls the first to third power converters so that the first to third power converter circuits 2, 4 and 6 start the operation stepwise as an initial operation. Control the circuits 2, 4, and 6. After all the first to third power conversion circuits 2, 4 and 6 start operating, the control unit 8 controls the first to third power conversion circuits 2, 4 and 6 so as to perform steady operation.
- the start of the operation means that the switching operation (ON/OFF operation) of at least one switching element included in the corresponding circuit is started.
- the fact that the first to third power conversion circuits 2, 4 and 6 start operating stepwise means that at least two power conversion circuits start operating at different times.
- the control unit 8 calculates various output values based on the detection results of the detectors D1 to D6, and controls the first to third power conversion circuits 2, 4, 6 based on the output values.
- the AC input current iac is controlled so as to follow a predetermined target sine wave current iac*
- the voltage Vlink of the first DC capacitor 3 follows the predetermined target DC voltage Vlink*
- the voltage Vint of the second DC capacitor 5 is controlled so as to follow the predetermined target DC voltage Vint*.
- the resistance load 71 is applied as the load 7
- the DC output voltage Vout is controlled so as to follow a predetermined target DC output voltage Vout*
- the voltage source load 72 is applied as the load 7.
- the DC output current Iout is controlled so as to follow the predetermined target DC output current Iout*.
- control unit 8 calculates the current difference between the sinusoidal current command (target sine wave current) iac* synchronized with the detected value of the AC voltage vac and the detected value of the AC input current iac.
- the control unit 8 calculates the output value by proportional control or proportional integral control with the calculated current difference as the feedback amount.
- the control unit 8 also calculates the voltage difference between the target DC voltage Vlink* and the detected value of the DC voltage Vlink of the first DC capacitor 3, and outputs the calculated voltage difference as a feedback amount by proportional control or proportional-integral control. Calculate the value.
- the control unit 8 also calculates the voltage difference between the target DC voltage Vint* and the detected value of the DC voltage Vint of the second DC capacitor 5, and outputs the calculated voltage difference as a feedback amount by proportional control or proportional-integral control. Calculate the value.
- the control unit 8 calculates the voltage difference between the target DC output voltage Vout* and the detected value of the DC output voltage Vout, and uses the calculated voltage difference as the feedback amount.
- Output value is calculated by proportional control or proportional integral control.
- the control unit 8 calculates the voltage difference between the target DC output current Iout* and the detected value of the DC output current Iout, and calculates the calculated voltage difference as the feedback amount.
- the output value is calculated by proportional control or proportional integral control.
- the control unit 8 determines that the AC input current iac, the voltages Vlink and Vint of the first and second DC capacitors 3 and 5 and the DC output voltage Vout (or the DC output current Iout) are the target values.
- the first to third power conversion circuits 2, 4 and 6 are controlled so as to follow.
- FIG. 4 is a diagram for explaining the initial operation of the power conversion device 100 when the resistive load 71 is used as the load 7.
- FIG. 4 shows detected values of the voltage Vlink of the first DC capacitor 3, the AC input voltage vac, the AC input current iac, the voltage Vint of the second DC capacitor 5, and the DC output voltage Vout.
- the horizontal axis represents time, and the vertical axis represents current or voltage.
- “1st” shown in the lower stage represents the operation start time of the first power conversion circuit 2
- "2nd” represents the operation start time of the second power conversion circuit 4
- “3rd” represents the operation start time.
- 3 represents the operation start time of the power conversion circuit 6 of No. 3.
- the time when the power conversion device 100 is in the non-operating state is defined as the initial time t0. That is, at time t0, the switching operations of the first power conversion circuit 2, the second power conversion circuit 4, and the third power conversion circuit 6 are all stopped. At time t0, the voltage Vlink of the first DC capacitor 3 and the voltage Vint of the second DC capacitor 5 are 0, respectively.
- the controller 8 controls the voltage Vlink of the first DC capacitor 3, the voltage Vint of the second DC capacitor 5, and the DC output voltage Vout to change as follows based on the detection results of the detectors D1 to D6. , And controls the first to third power conversion circuits 2, 4, and 6.
- the AC input voltage vac is applied to the input terminal of the first power conversion circuit 2.
- the first DC capacitor 3 is passively charged via the built-in diode of each switching element of the first power conversion circuit 2 or the external diode.
- the voltage Vlink of the first DC capacitor 3 rises to the initial charging voltage Vlink0.
- the initial charging voltage Vlink0 satisfies the equation (1) with respect to the effective values Vac and rms of the AC input voltage vac. Note that “ ⁇ 2Vac,rms” in the equation (1) corresponds to the maximum value of the AC input voltage vac.
- the switching operation of the first power conversion circuit 2 is started.
- the effective duty ratio of the first power conversion circuit 2 is gradually increased, so that the voltage Vlink of the first DC capacitor 3 is gradually increased. Thereby, abrupt voltage change is prevented.
- the switching operations of the second power conversion circuit 4 and the third power conversion circuit 6 are stopped.
- the voltage Vlink of the first DC capacitor 3 reaches the predetermined first threshold voltage Vlink,th.
- the power factor control of the AC input current iac by the first power conversion circuit 2 is started, and the switching operation of the second power conversion circuit 4 is started.
- the first threshold voltage Vlink,th satisfies the condition of Expression (2).
- the first power conversion circuit 2 continues the normal operation (boosting operation). Can't do it. Specifically, the current path between the AC power supply 11 and the first DC capacitor 3 is fixed regardless of whether the switching elements 21 to 24 are turned on or off. Therefore, the voltage Vlink of the first DC capacitor 3 needs to be maintained at or above the maximum value of the AC input voltage vac.
- the initial charging voltage Vlink0 of the first DC capacitor 3 is equal to or higher than the maximum value ( ⁇ 2Vac, rms) of the AC input voltage vac, and before the operation of the second power conversion circuit 4 starts, The voltage Vlink of the DC capacitor 3 is maintained above the AC input voltage vac. However, when the operation of the second power conversion circuit 4 is started, a current flows from the first DC capacitor 3 to the second DC capacitor 5, so that the voltage Vlink of the first DC capacitor 3 decreases, and The voltage Vlink of the DC capacitor 3 of No. 1 may be lower than the maximum value of the AC input voltage vac.
- the switching operation of the second power conversion circuit 4 is performed after the voltage Vlink of the first DC capacitor 3 is raised to the first threshold voltage Vlink,th by the first power conversion circuit 2. Be started.
- the switching operation of the second power conversion circuit 4 can be started in a state where a certain margin is secured between the voltage Vlink of the first DC capacitor 3 and the AC input voltage vac.
- the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0, and the current flowing from the first DC capacitor 3 to the second DC capacitor 5 is gradually increased from 0. ..
- a sharp decrease in the voltage Vlink of the first DC capacitor 3 due to the start of the operation of the second power conversion circuit 4 is suppressed.
- the duty ratio gradually increases is not limited to the case where the duty ratio linearly and continuously increases at a constant rate of change as in the example of Fig. 4, and the duty ratio is curvilinear and continuous. And the case where the duty ratio increases stepwise through a plurality of steps. However, when the duty ratio is increased stepwise, it is preferable that the number of steps is set sufficiently large and the change width in one step is as small as possible.
- the voltage Vlink of the first DC capacitor 3 is prevented from becoming lower than the maximum value of the AC input voltage vac, and the first power conversion circuit 2 can stably continue normal operation.
- the first threshold voltage Vlink,th is set to a value smaller than the target DC voltage Vlink*, the voltage Vlink of the first DC capacitor 3 is prevented from becoming an overvoltage, and the second power is reduced. The time until the operation of the conversion circuit 4 starts can be shortened.
- the switching operation of the second power conversion circuit 4 is started, and at the same time, the power factor control by the first power conversion circuit 2 is started.
- the magnitude (amplitude) of the AC input current iac can be gradually increased from 0 to the maximum value. Therefore, the first and second DC capacitors 3 and 5 can be stably charged.
- the voltage Vlink of the first DC capacitor 3 reaches the target DC voltage Vlink*
- the voltage Vlink is controlled so as to follow the target DC voltage Vlink*. Control is performed such that the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th at time t3, and the voltage Vlink of the first DC capacitor 3 follows the target DC voltage Vlink*. May be done.
- the second threshold voltage Vint,th satisfies the condition of Expression (3).
- the third power conversion circuit 6 when the voltage Vint of the second DC capacitor 5 becomes lower than the DC output voltage Vout output to the resistive load 71 during the operation of the third power conversion circuit 6, the third power conversion circuit 6 operates normally. It becomes impossible to continue the operation (step-down operation). Specifically, by setting the duty ratio of the third power conversion circuit 6 to 0, the switching element 61 is constantly turned off, and power cannot be supplied to the resistive load 71. Therefore, the voltage Vint of the second DC capacitor 5 needs to be maintained higher than the DC output voltage Vout.
- the operation of the third power conversion circuit 6 is started after the voltage Vint of the second DC capacitor 5 is raised to the second threshold voltage Vint,th by the second power conversion circuit 4. ..
- the switching operation of the third power conversion circuit 6 can be started with a certain margin secured between the voltage Vint of the second DC capacitor 5 and the DC output voltage Vout.
- the effective duty ratio of the third power conversion circuit 6 is gradually increased from 0, and the current flowing from the second DC capacitor 5 to the resistive load 71 is gradually increased from 0.
- a sharp drop in the voltage Vint of the second DC capacitor 5 due to the start of the operation of the third power conversion circuit 6 is suppressed.
- the voltage Vint of the second DC capacitor 5 is prevented from becoming lower than the DC output voltage Vout, and the third power conversion circuit 6 can stably continue normal operation.
- the voltage Vint of the second DC capacitor 5 is controlled so as to follow the target DC voltage Vint*. Control is performed such that the voltage Vint of the second DC capacitor 5 follows the target DC voltage Vint* from the time when the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th at time t4. May be done.
- FIG. 4 shows only the change in the DC output voltage Vout as the change in the power supplied to the resistive load 71
- the DC output current Iout also increases as the DC output voltage Vout increases.
- the on/off control of the switching element is performed using the detected value of the DC output voltage Vout instead of the detected value of the DC output current Iout. Illustration of the DC output current Iout is omitted.
- the operations of the first to third power conversion circuits 2, 4, and 6 are sequentially started, so that the first and second power conversion circuits are started.
- the DC capacitors 3 and 5 are sequentially charged.
- the overcurrent in the first to third power conversion circuits 2, 4, and 6 The power supply to the load 7 can be stably started without generating the overvoltage of the second DC capacitors 3 and 5.
- the voltage is applied to the first and second DC capacitors 3 and 5 and the load 7 at the same time.
- the current flows in.
- an overcurrent may occur in the first to third power conversion circuits 2, 4, 6 and the first and second DC capacitors 3, 5 may become overvoltage.
- the voltages of the first and second DC capacitors 3 and 5 can be individually controlled. .. Specifically, the voltage Vlink of the first DC capacitor 3 can be controlled by adjusting the duty ratio of the first power conversion circuit 2 while the operation of the second power conversion circuit 4 is stopped. it can. Further, the voltage Vint of the second DC capacitor 5 can be controlled by adjusting the duty ratio of the second power conversion circuit 4 while the operation of the third power conversion circuit 6 is stopped. Therefore, the voltage of the first and second DC capacitors 3 and 5 can be stably increased.
- the rate of change (gradient) of the voltage Vlink is different, the rate of change of the voltage Vlink may be constant from the voltage Vlink of 0 to the target DC voltage Vlink*.
- the voltage Vint is divided into a period from the voltage Vint reaching 0 to the second threshold voltage Vint,th and a period from the voltage Vint reaching the second threshold voltage Vint,th to the target DC voltage Vint*.
- the rate of change of the voltage Vint may be constant from the voltage Vint of 0 to the target DC voltage Vint*.
- the voltage Vlink and the voltage Vint may not change continuously, but may change stepwise through a plurality of steps. However, in order to effectively prevent the occurrence of overcurrent and overvoltage, it is preferable that the number of steps is set sufficiently large and the voltage change width in one step is as small as possible.
- FIG. 5 is a diagram for explaining a first example of the initial operation of the power conversion device 100 when the voltage source load 72 is applied to the load 7. Similar to the example of FIG. 4, FIG. 5 shows the detected values of the voltages Vlink, vac, Vint, Vout and the current iac, as well as the detected values of the DC output current Iout. As described above, when the voltage source load 72 is used as the load 7, the on/off control of the switching element is performed using the detected value of the DC output current Iout.
- the voltage source load 72 generates a constant DC voltage. Therefore, at time t0 when the power conversion device 100 is in the non-operating state, the DC voltage from the voltage source load 72 is applied to the output terminal of the third power conversion circuit 6. This voltage is detected as the voltage Vout. In this case, the second DC capacitor 5 is passively charged through the built-in diode of the switching element of the third power conversion circuit 6 or the external diode. As a result, the voltage Vint of the second DC capacitor 5 is maintained at the initial charging voltage Vint0.
- the AC input voltage vac is applied to the input terminal of the first power conversion circuit 2 at time t1.
- the voltage Vlink of the first DC capacitor 3 rises to the initial charging voltage Vlink0.
- the switching operation of the first power conversion circuit 2 is started.
- the effective duty ratio of the first power conversion circuit 2 is gradually increased, so that the voltage Vlink of the first DC capacitor 3 is gradually increased.
- the first DC capacitor 3 The switching operation of the second power conversion circuit 4 may be started before the voltage Vlink reaches the first threshold voltage Vlink,th.
- the third power is added to the first power conversion circuit 2 and the second power conversion circuit 4.
- the switching operation of the conversion circuit 6 is started, and power is supplied from the third power conversion circuit 6 to the resistance load 71.
- the effective duty ratio of the third power conversion circuit 6 is gradually increased from 0, so that the DC current Iout given to the voltage source load 72 is gradually increased from 0. That is, the electric power applied to the voltage source load 72 gradually increases from zero.
- the first to third power conversion circuits 2, 4, and 6 are started in order, so that the first and the second power conversion circuits are started.
- the voltages Vlink and Vint of the two DC capacitors 3 and 5 can be individually and accurately controlled.
- the power converter 100 transfers the load 7 to the load 7 without generating an overcurrent in the first to third power conversion circuits 2, 4 and 6 and an overvoltage in the first and second DC capacitors 3 and 5.
- the power supply can be stably started.
- the operation start timing of the second power conversion circuit 4 and the operation start timing of the third power conversion circuit 6 can be set relatively flexibly. it can. A specific example will be described below.
- FIG. 6 is a diagram for explaining a second example of the initial operation of the power conversion device 100 when the voltage source load 72 is applied to the load 7.
- the example of FIG. 6 will be described focusing on the points different from the example of FIG.
- the operation of the second power conversion circuit 4 has not started, so no current flows between the first DC capacitor 3 and the second DC capacitor 5. Therefore, the operation of the first power conversion circuit 2 does not affect the voltage Vint of the second DC capacitor 5, and the operation of the third power conversion circuit 6 does not affect the voltage Vlink of the first DC capacitor 3. .. Therefore, by individually adjusting the duty ratios of the first and third power conversion circuits 2 and 6, the voltages Vlink and Vint of the first and second DC capacitors 3 can be individually controlled.
- the time when the operation of the third power conversion circuit 6 is started may coincide with the time when the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th. It may be before the voltage Vlink of the DC capacitor 3 reaches the first threshold voltage Vlink,th.
- the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th.
- the power factor control by the first power conversion circuit 2 is started, and the switching operation of the second power conversion circuit 4 is started.
- current flows from the power conversion device 100 to the voltage source load 72, and power is supplied to the voltage source load 72.
- the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0, so that the DC current Iout given to the voltage source load 72 is gradually increased from 0.
- the second DC capacitor 5 can be charged with the electric power from the voltage source load 72. If the operation of the second power conversion circuit 4 is not started, the operation of the first power conversion circuit 2 and the operation of the third power conversion circuit 6 do not affect each other. Therefore, as in the example of FIG. 6, the operation of the third power conversion circuit 6 is started after the first power conversion circuit 2, and the operation of the third power conversion circuit 6 is followed by the second power conversion circuit 4. The operation of can be started.
- FIG. 7 is a diagram for explaining a third example of the initial operation of the power conversion device 100 when the voltage source load 72 is applied to the load 7.
- the example of FIG. 7 will be described focusing on the points different from the example of FIG.
- the voltage source load 72 is not electrically connected to the output terminal of the third power conversion circuit 6 at time t0. Therefore, at time t0, no voltage is applied from the voltage source load 72 to the output terminal of the third power conversion circuit 6, and the voltage Vint of the second DC capacitor 5 is zero.
- the voltage source load 72 is electrically connected to the output terminal of the third power conversion circuit 6 at time t2c. Connected. As a result, the voltage of the voltage source load 72 is applied to the output terminal of the third power conversion circuit 6 and detected as the voltage Vout.
- the second DC capacitor 5 is passively charged via the built-in diode of the switching element of the third power conversion circuit 6 or the external diode, and at time t3c, the second DC capacitor 5 is charged.
- the voltage Vint reaches the initial charging voltage Vint0.
- time t1 even if the AC input voltage vac is applied to the input terminal of the first power conversion circuit 2 and the voltage of the voltage source load 72 is applied to the output terminal of the third power conversion circuit 6 at the same time. Good.
- the switching operation of the third power conversion circuit 6 is started.
- the effective duty ratio of the third power conversion circuit 6 is gradually increased, so that the voltage Vint of the second DC capacitor 5 is gradually increased.
- the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th.
- the switching operation of the first power conversion circuit 2 is started.
- the effective duty ratio of the first power conversion circuit 2 is gradually increased, so that the voltage Vlink of the first DC capacitor 3 is gradually increased.
- the power factor control of the first power conversion circuit 2 is started and the second power conversion circuit is started.
- the switching operation of No. 4 is started.
- the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0, so that the DC current Iout given to the voltage source load 72 is gradually increased from 0.
- the second DC capacitor 5 can be charged by the electric power from the voltage source load 72. Further, in a state where the operation of the second power conversion circuit 4 is not started, the operation of the first power conversion circuit 2 and the operation of the third power conversion circuit 6 do not influence each other. Therefore, as in the example of FIG. 7, the operation of the third power conversion circuit 6 is started after the first power conversion circuit 2, and the operation of the second power conversion circuit 4 is started after the third power conversion circuit 6. The operation of can be started.
- the first power conversion circuit 2 and the third power conversion circuit 6 start operating at different times, but the first power conversion circuit 2 and the third power conversion circuit The circuit 6 and the circuit 6 may start operating at the same time.
- the operations of the first to third power conversion circuits 2, 4, and 6 are started stepwise, so that the first to third power conversion circuits are started.
- the voltages of the first and second DC capacitors 3, 5 can be individually controlled. Thereby, the voltage of the first and second DC capacitors 3 can be stably increased.
- the first power conversion circuit 2 is composed only of the AC/DC converter 20
- the third power conversion circuit 6 is composed only of the DC/DC converter 60.
- the configurations of the power conversion circuits 2 and 6 are not limited to this.
- FIG. 8: is a figure which shows the modification of the power converter device 100 which concerns on Embodiment 1. As shown in FIG.
- the power conversion device 100 shown in FIG. 8 includes a first power conversion circuit 2A in place of the first power conversion circuit 2 and a third power conversion circuit 6A in place of the third power conversion circuit 6.
- the first power conversion circuit 2A includes a step-down DC/DC converter 200 in addition to the AC/DC converter 20 of FIGS. 2 and 3.
- DC/DC converter 200 includes a capacitor 211, switching elements 212 and 213, and a reactor 214.
- the AC/DC converter 20 converts an AC voltage into a DC voltage, and the converted DC voltage is stepped down by the DC/DC converter and output.
- the power factor control is performed by the boost converter (AC/DC converter 20 in this example) in order to suppress harmonic distortion.
- the boost converter AC/DC converter 20 in this example
- the DC/DC converter 200 can reduce the voltage applied to the insulating transformer 49, and can suppress an increase in iron loss.
- the third power conversion circuit 6A shown in FIG. 8 includes an insulation type DC/DC converter 600 in addition to the DC/DC converter 60 of FIGS. 2 and 3.
- the insulation type DC/DC converter 600 includes an insulation transformer 610, switching elements 611 to 618, and a capacitor 619.
- the DC voltage is converted into the DC voltage by the DC/DC converter 60, and the converted DC voltage is transformed by the insulating DC/DC converter 60 and output.
- the switching elements 212 and 213 of the DC/DC converter 200 and the switching elements 611 to 618 of the insulation type DC/DC converter 600 are on/off controlled by the control unit 8.
- the operation of the AC/DC converter 20 and the operation of the DC/DC converter 200 may be started at the same time, and the operation of the DC/DC converter 200 may be started after a lapse of time after the operation of the AC/DC converter 20 is started.
- the operation may be started.
- the operation of the DC/DC converter 60 and the operation of the insulation type DC/DC converter 600 may be started simultaneously, and the insulation type DC/DC may be started after a lapse of time from the start of the operation of the DC/DC converter 60.
- the operation of converter 600 may be started.
- the voltage source load 72 is used as the load 7
- the operation of the DC/DC converter 60 may be started after a lapse of time after the operation of the insulating DC/DC converter 600 is started.
- the power conversion device 100 may further include other power conversion circuits in addition to the first to third power conversion circuits 2 (2A), 4, 6 (6A).
- FIG. 9: is a figure which shows the other modification of the power converter device 100 which concerns on Embodiment 1. As shown in FIG. In the power conversion device 100 shown in FIG. 9, the fourth power conversion circuit 91 and the fifth power conversion circuit are arranged in parallel with the first power conversion circuit 2, the first DC capacitor 3, and the second power conversion circuit 4. The circuit 92 is connected.
- the fourth power conversion circuit 91 includes switching elements 911 to 914, a capacitor 915, and a non-contact power receiving coil 916.
- the switching elements 911 to 914 are connected in a full bridge type.
- One end of the non-contact power receiving coil 916 is connected to a connection point where the switching element 911 and the switching element 912 are connected in series, and non-contact power reception is performed at a connection point where the switching element 913 and the switching element 914 are connected in series.
- the other end of the coil 916 is connected.
- the fourth power conversion circuit 91 is connected to the pair of second DC buses 51 via the pair of third DC buses 917, respectively.
- the fifth power conversion circuit 92 includes switching elements 921 to 928, a DC link capacitor 929, AC reactors 931 and 932, and a non-contact power transmission coil 933.
- the switching elements 921 to 924 and the switching elements 925 to 928 are connected in a full bridge type.
- One ends of the AC reactors 931 and 932 are connected to the AC power supply 11.
- the other end of AC reactor 931 is connected to a connection point between switching element 921 and switching element 922 that are connected in series, and the other end of AC reactor 932 is a connection point between switching element 923 and switching element 924 that are connected in series. It is connected to the.
- the DC link capacitor 929 is connected to the positive and negative electrodes of the DC bus connecting the switching elements 921 to 924 and the switching elements 925 to 928.
- One end of the non-contact power transmission coil 933 is connected to a connection point between the switching element 925 and the switching element 926 connected in series, and the non-contact power transmission coil 933 is connected to a connection point between the switching element 927 and the switching element 928 connected in series. The ends are connected.
- the non-contact power reception coil 916 of the fourth power conversion circuit 91 and the non-contact power transmission coil 933 of the fifth power conversion circuit 92 are magnetically coupled to each other, so that the fifth power conversion circuit 92 outputs the fourth power. Electric power is transmitted to the conversion circuit 91 in a contactless manner. A DC voltage is applied from the fourth power conversion circuit 91 to the second DC capacitor 5 via the third DC bus 917.
- a power conversion device according to Embodiment 2 of the present invention will be described focusing on differences from the power conversion device 100 according to Embodiment 1 above.
- the configuration of the power conversion device according to the second embodiment is substantially the same as the case shown in the first embodiment, and therefore detailed description of the configuration will not be repeated.
- FIG. 10 is a diagram showing a specific circuit configuration example of the power conversion device 100 according to the second embodiment.
- the power conversion device 100 according to the second embodiment includes a first power conversion circuit 2B in place of the first power conversion circuit 2 and a third power conversion circuit 6B in place of the third power conversion circuit 6.
- the first power conversion circuit 2B includes a DC/DC converter 20B including switching elements 221, 222 and a smoothing DC reactor 223.
- the DC/DC converter 20B has a circuit configuration of a step-down chopper.
- the DC power supply 12 as the input power supply 1 is connected to the input terminal of the first power conversion circuit 2B.
- the DC/DC converter 20B shown in FIG. 10 has a step-down chopper circuit configuration, it may have a step-up type or step-up/down type circuit configuration, and also has an interleave configuration or a parallel connection configuration. It goes without saying that it is good.
- the third power conversion circuit 6B includes switching elements 621 to 624 and AC reactors 625 and 626, and includes an inverter 60B that converts a DC voltage into an AC voltage.
- the switching elements 621 to 624 are connected in a full bridge type.
- One end of the AC reactor 625 is connected to a connection point between the switching element 621 and the switching element 622.
- One end of the AC reactor 626 is connected to a connection point between the switching element 623 and the switching element 624.
- a resistive load 71 is connected as the load 7 to the other ends of the AC reactors 625 and 626.
- the AC reactors 625 and 626 are connected to both sides of the AC power supply, but may be connected to only one side. That is, only one of AC reactors 625 and 626 may be used.
- the DC/DC converter 20B of the first power conversion circuit 2B shown in FIG. 10 has a configuration in which the input/output is opposite to that of the DC/DC converter 60 of the third power conversion circuit 6 shown in FIGS. 2 and 3.
- the inverter 60B of the third power conversion circuit 6B shown in FIG. 10 has a configuration in which the input and output are opposite to those of the AC/DC converter 20 of the first power conversion circuit 2 shown in FIGS. 2 and 3. Therefore, when the power transmission direction in the first embodiment is defined as the forward direction and the opposite direction is defined as the reverse direction, the power conversion device 100 according to the second embodiment transmits the power in the reverse direction.
- the power conversion device 100 is configured to be capable of bidirectionally transmitting power, it is possible to realize both the first embodiment and the second embodiment by the common power conversion device 100.
- the current detector D1 detects the DC input current Idc flowing from the DC power supply 12 to the first power conversion circuit 2B.
- the current detector D2 detects the AC output current iout flowing from the third power conversion circuit 6B to the resistance load 71.
- the voltage detector D3 detects the DC input voltage Vdc supplied from the DC power supply 12 to the first power conversion circuit 2.
- the voltage detector D4 detects the voltage Vint of the first DC capacitor 3.
- the voltage detector D5 detects the voltage Vlink of the second DC capacitor 5.
- the voltage detector D6 detects the AC output voltage vout given to the resistive load 71 from the third power conversion circuit 6.
- the control unit 8 performs feedback calculation based on a part or all of the detection values given from the detectors D1 to D6, and controls on/off of each switching element.
- the control unit 8 calculates a voltage difference between a predetermined target DC voltage Vint* and a detected value of the DC voltage Vint of the first DC capacitor 3, and uses the calculated voltage difference as a feedback amount for proportional control or proportional-integral control.
- the output value is calculated by.
- control unit 8 calculates a voltage difference between a predetermined target DC voltage Vlink* and a detected value of the DC voltage Vlink of the second DC capacitor 5, and performs proportional control or proportional control using the calculated voltage difference as a feedback amount. Output value is calculated by integral control.
- control unit 8 sets a target obtained by multiplying the effective value Vout, rms* of the target AC output voltage, which is predetermined so that the output voltage to the resistive load 71 is a sine wave AC, by the sine wave voltage having an amplitude of ⁇ 2.
- the voltage difference between the AC output voltage vout* and the AC output voltage vout is calculated, and the calculated voltage difference is used as a feedback amount to calculate the output by proportional control or proportional integral control.
- the voltage Vint of the first DC capacitor 3 is controlled so as to follow the target DC voltage Vint*, and the voltage Vlink of the second DC capacitor 5 follows the target DC voltage Vlink*. It is controlled so that the AC output voltage vout follows the target AC output voltage vout*.
- FIG. 11 is a diagram for explaining the initial operation in the second embodiment.
- FIG. 11 shows the detected values of the DC input voltage Vdc, the voltage Vint of the first DC capacitor 3, the voltage Vlink of the second DC capacitor 5, and the AC output voltage vout.
- the control unit 8 controls the voltage Vint of the first DC capacitor 3, the voltage Vlink of the second DC capacitor 5, and the AC output voltage vout to change as follows based on the detection results of the detectors D1 to D6. , And controls the first to third power conversion circuits 2B, 4, 6B.
- the DC input voltage Vdc is applied to the input terminal of the first power conversion circuit 2B.
- the first DC capacitor 3 is passively charged via the built-in diode or the external diode of each switching element of the first power conversion circuit 2B.
- the voltage Vint of the first DC capacitor 3 rises to the initial charging voltage Vint0. It should be noted that time t1d and time t2d may substantially coincide with each other by instantaneously charging the voltage Vint of the first DC capacitor 3.
- the switching operation of the first power conversion circuit 2B is started.
- the effective duty ratio of the first power conversion circuit 2B is gradually increased, so that the voltage Vint of the first DC capacitor 3 is gradually increased.
- the voltage Vint of the first DC capacitor 3 reaches the predetermined first threshold voltage Vint,th.
- the switching operation of the second power conversion circuit 4 is started.
- the first threshold voltage Vint,th satisfies the condition of Expression (4).
- the first power conversion circuit 2B continues the normal operation (boosting operation). Can't do it. Specifically, the current path between the DC power supply 12 and the first DC capacitor 3 is fixed regardless of whether the switching elements 21 to 24 are turned on or off. Therefore, the voltage Vint of the first DC capacitor 3 needs to be maintained higher than the DC input voltage Vdc.
- the switching operation of the second power conversion circuit 4 is started after the voltage Vint of the first DC capacitor 3 is raised to the first threshold voltage Vint,th by the first power conversion circuit 2B. It As a result, the switching operation of the second power conversion circuit 4 can be started in a state in which a certain margin is provided between the voltage Vint of the first DC capacitor 3 and the DC input voltage Vdc. Further, in the present embodiment, the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0, and the current flowing from the first DC capacitor 3 to the second DC capacitor 5 is gradually increased from 0. .. As a result, a sharp drop in the voltage Vint of the first DC capacitor 3 due to the start of operation of the second power conversion circuit 4 is suppressed.
- the voltage Vint of the first DC capacitor 3 is prevented from becoming lower than the DC input voltage Vdc, and the first power conversion circuit 2 can stably continue normal operation.
- the first threshold voltage Vint,th is set to a value smaller than the target DC voltage Vint*, the voltage Vint of the first DC capacitor 3 is prevented from becoming an overvoltage, and the second power The time until the operation of the conversion circuit 4 starts can be shortened.
- the voltage Vint of the first DC capacitor is controlled so as to follow the target DC voltage Vint*.
- the second threshold voltage Vlink,th satisfies the condition of Expression (5). Note that “ ⁇ 2Vout*,rms” in the equation (5) corresponds to the maximum value of the target AC output voltage vout*.
- the voltage Vlink of the second DC capacitor is controlled so as to follow the target DC voltage Vlink*.
- the operations of the first to third power conversion circuits 2B, 4, 6B are started stepwise, whereby the first to third power conversion circuits 2B, 4, 4 are started.
- the voltages of the first and second DC capacitors 3 and 5 can be individually controlled. Thereby, the voltage of the first and second DC capacitors 3 and 5 can be stably increased.
- the voltage source load 72 may be used as the load 7, and similarly to the example of FIG. 8, the first power conversion circuit 2B and the third power conversion circuit 6B may be different from each other.
- a circuit may be added, and as in the example of FIG. 9, another power conversion circuit may be connected to the first to third power conversion circuits 2B, 4, 6B.
- FIG. 12 is a diagram illustrating an example in which at least a part of the functions of the control unit 8 is realized by software.
- the control unit 8 includes a processing device (processor) 501 and a storage device (memory) 502.
- the processing device 501 is, for example, a CPU (central processing unit), and realizes at least a part of the functions of the control unit 8 in the above-described embodiment by reading and executing a program stored in the storage device 502. You can
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
A first power conversion circuit converts a voltage from an input power supply into a DC voltage and outputs the DC voltage after the conversion. A second power conversion circuit is connected to the first power conversion circuit via a first DC bus line, transforms the DC voltage output from the first power conversion circuit, and outputs a DC voltage after the transformation. A third power conversion circuit is connected to the second power conversion circuit via a second DC bus line, converts the DC voltage output from the second power conversion circuit, and outputs a DC voltage after the conversion to a load. A first DC capacitor is connected to the first DC bus line, and a second DC capacitor is connected to the second DC bus line. A control unit controls the first, second, and third power conversion circuits so that power is output from the third power conversion circuit to the load after the first, second, and third power conversion circuits have started operation in stages, the voltage of the first DC capacitor has reached a first threshold voltage, and the voltage of the second DC capacitor has reached a second threshold voltage.
Description
この発明は、少なくとも3つの電力変換回路を有する電力変換装置に関する。
The present invention relates to a power conversion device having at least three power conversion circuits.
従来、交流電源から供給された電力を絶縁しつつ直流電力に変換して負荷に供給する電力変換装置が用いられる。このような電力変換装置は、一般的に、交流電力を直流電力に変換する電力変換回路(AC/DCコンバータ)と、その直流電力を絶縁トランスを用いて所望の大きさの直流電力に変換して出力する電力変換回路(絶縁型DC/DCコンバータ)とを備える。また、直流電源から供給された電力を任意の直流電力に変換する電力変換装置においても、絶縁を必要とする場合であってかつ入出力電圧範囲を広く設定する場合には、直流電源からの供給電力をある一定の直流電力に変換する電力変換回路(DC/DCコンバータ)と、絶縁型DC/DCコンバータとの2つの電力変換回路により電力変換装置が構成される場合がある。
Conventionally, a power converter is used that insulates the power supplied from the AC power supply, converts it to DC power, and supplies it to the load. Such a power converter is generally a power conversion circuit (AC/DC converter) that converts AC power into DC power, and converts the DC power into DC power of a desired size using an insulating transformer. And a power conversion circuit (isolated DC/DC converter) that outputs the power. In addition, even in a power converter that converts the power supplied from the DC power supply to any DC power, if insulation is required and the input/output voltage range is set wide, the power supply from the DC power supply is used. A power conversion device may be configured by two power conversion circuits, that is, a power conversion circuit (DC/DC converter) that converts electric power into a certain DC power and an insulating DC/DC converter.
このように2つの電力変換回路で電力変換装置を構成する場合、出力電圧を広範囲に制御すると絶縁型DC/DCコンバータの損失が増加する問題がある。そこで、絶縁型コンバータの出力側に電力変換回路を追加することで、直列接続された3つの電力変換回路により電力変換装置を構成することが検討されている(例えば、特許文献1参照)。
When configuring a power conversion device with two power conversion circuits in this way, if the output voltage is controlled over a wide range, there is a problem that the loss of the insulation type DC/DC converter increases. Therefore, it is considered that a power conversion device is configured by three power conversion circuits connected in series by adding a power conversion circuit to the output side of the insulating converter (see, for example, Patent Document 1).
特許文献1記載の電源装置は、互いに直列に接続されたAC/DCコンバータ、絶縁型DC/DCコンバータおよび双方向DC/DCコンバータを備える。AC/DCコンバータは、交流電源からの交流電圧を変換して直流電圧を出力する。絶縁型DC/DCコンバータは、AC/DCコンバータから出力された直流電圧を変換してリンク電圧を出力する。双方向DC/DCコンバータは、絶縁型DC/DCコンバータから出力されたリンク電圧の値を調整し、調整後のリンク電圧をバッテリに与える。AC/DCコンバータと絶縁型DC/DCコンバータとの間、および絶縁型DC/DCコンバータと双方向DC/DCコンバータとの間には、それぞれ平滑コンデンサが接続されている。
The power supply device described in Patent Document 1 includes an AC/DC converter, an insulating DC/DC converter, and a bidirectional DC/DC converter that are connected in series. The AC/DC converter converts an AC voltage from an AC power source and outputs a DC voltage. The insulation type DC/DC converter converts the DC voltage output from the AC/DC converter and outputs a link voltage. The bidirectional DC/DC converter adjusts the value of the link voltage output from the isolated DC/DC converter, and gives the adjusted link voltage to the battery. Smoothing capacitors are respectively connected between the AC/DC converter and the isolated DC/DC converter, and between the isolated DC/DC converter and the bidirectional DC/DC converter.
上記特許文献1の電源装置においては、AC/DCコンバータ、絶縁型DC/DCコンバータおよび双方向DC/DCコンバータの動作が開始されると、2つの平滑コンデンサに同時に電流が流れ込む。そのため、これらの回路間で過電流が発生するといった問題がある。
In the power supply device of the above Patent Document 1, when the operations of the AC/DC converter, the insulating DC/DC converter, and the bidirectional DC/DC converter are started, current flows into the two smoothing capacitors at the same time. Therefore, there is a problem that an overcurrent is generated between these circuits.
本発明は、上記の問題点を解決するためになされたものであり、動作開始時における過電流の発生を防止することが可能な電力変換装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a power conversion device capable of preventing the occurrence of overcurrent at the start of operation.
本発明に係る電力変換装置は、入力電源からの電圧を直流電圧に変換し、変換後の直流電圧を出力する第1の電力変換回路と、第1の直流母線を介して第1の電力変換回路に接続され、第1の電力変換回路から出力された直流電圧を変圧し、変圧後の直流電圧を出力する第2の電力変換回路と、第2の直流母線を介して第2の電力変換回路に接続され、第2の電力変換回路から出力された直流電圧を変換し、変換後の直流電圧を負荷に出力する第3の電力変換回路と、第1の直流母線に接続された第1の直流コンデンサと、第2の直流母線に接続された第2の直流コンデンサと、第1、第2および第3の電力変換回路が段階的に動作を開始し、第1の直流コンデンサの電圧が第1の閾値電圧に達しかつ第2の直流コンデンサの電圧が第2の閾値電圧に達した後に、第3の電力変換回路から負荷に電力が出力されるように、第1、第2および第3の電力変換回路を制御する制御部と、を備える。
A power conversion device according to the present invention converts a voltage from an input power source into a DC voltage and outputs a converted DC voltage, and a first power conversion circuit via a first DC bus. A second power conversion circuit that is connected to the circuit, transforms the DC voltage output from the first power conversion circuit, and outputs the transformed DC voltage; and second power conversion via a second DC bus bar. A third power conversion circuit connected to the circuit for converting the DC voltage output from the second power conversion circuit and outputting the converted DC voltage to the load; and a first power conversion circuit connected to the first DC bus. Of the DC capacitor, the second DC capacitor connected to the second DC bus, and the first, second, and third power conversion circuits start to operate in stages, and the voltage of the first DC capacitor becomes After the first threshold voltage is reached and the voltage of the second DC capacitor reaches the second threshold voltage, the first power conversion circuit outputs power to the load so that the first power conversion circuit outputs the power to the load. The control part which controls the power converter circuit of 3 is provided.
本発明に係る電力変換装置によれば、第1、第2および第3の電力変換回路の動作が段階的に開始されるため、第1および第2の直流コンデンサの電圧を個別に制御することができ、過電流の発生を防止することが可能である。
According to the power conversion device of the present invention, the operations of the first, second, and third power conversion circuits are started in stages, so that the voltages of the first and second DC capacitors can be individually controlled. Therefore, it is possible to prevent the occurrence of overcurrent.
<実施の形態1>
本発明の実施の形態1に係る電力変換装置について図面を参照して説明する。図1は、本発明の実施の形態1に係る電力変換装置を含む電源システムの概略構成を示す模式図である。図面および以下の説明において、同一または同様の構成要素を示す場合には同一の符号を付すものとする。 <Embodiment 1>
A power conversion device according to Embodiment 1 of the present invention will be described with reference to the drawings. 1 is a schematic diagram showing a schematic configuration of a power supply system including a power conversion device according to a first embodiment of the present invention. In the drawings and the following description, the same or similar components are designated by the same reference numerals.
本発明の実施の形態1に係る電力変換装置について図面を参照して説明する。図1は、本発明の実施の形態1に係る電力変換装置を含む電源システムの概略構成を示す模式図である。図面および以下の説明において、同一または同様の構成要素を示す場合には同一の符号を付すものとする。 <Embodiment 1>
A power conversion device according to Embodiment 1 of the present invention will be described with reference to the drawings. 1 is a schematic diagram showing a schematic configuration of a power supply system including a power conversion device according to a first embodiment of the present invention. In the drawings and the following description, the same or similar components are designated by the same reference numerals.
本発明の実施の形態1に示す電源システムは、電力変換装置100、入力電源1および負荷7を備える。電力変換装置100は、第1の電力変換回路2、第1の直流コンデンサ3、第2の電力変換回路4、第2の直流コンデンサ5、第3の電力変換回路6および制御部8を含む。第1の電力変換回路2の一端(入力端子)は、入力電源1に接続されている。第2の電力変換回路4の一端(入力端子)は、第1の電力変換回路2の他端(出力端子)に接続されている。第3の電力変換回路6の一端(入力端子)は、第2の電力変換回路4の他端(出力端子)に接続されている。第3の電力変換回路6の他端(出力端子)は、負荷7に接続されている。第1の電力変換回路2は、入力電源からの電圧を直流電圧へ変換する。第2の電力変換回路4は、第1の電力変換回路2からの直流電圧を絶縁トランスを介して変圧する。第3の電力変換回路6は、第2の電力変換回路4からの直流電圧を変換して負荷7に出力する。
The power supply system according to the first embodiment of the present invention includes a power conversion device 100, an input power supply 1 and a load 7. The power conversion device 100 includes a first power conversion circuit 2, a first DC capacitor 3, a second power conversion circuit 4, a second DC capacitor 5, a third power conversion circuit 6 and a control unit 8. One end (input terminal) of the first power conversion circuit 2 is connected to the input power supply 1. One end (input terminal) of the second power conversion circuit 4 is connected to the other end (output terminal) of the first power conversion circuit 2. One end (input terminal) of the third power conversion circuit 6 is connected to the other end (output terminal) of the second power conversion circuit 4. The other end (output terminal) of the third power conversion circuit 6 is connected to the load 7. The first power conversion circuit 2 converts the voltage from the input power supply into a DC voltage. The second power conversion circuit 4 transforms the DC voltage from the first power conversion circuit 2 through an insulation transformer. The third power conversion circuit 6 converts the DC voltage from the second power conversion circuit 4 and outputs it to the load 7.
第1の直流コンデンサ3は、第1の電力変換回路2と第2の電力変換回路4とを接続する一対の第1の直流母線31間に接続されており、第2の直流コンデンサ5は、第2の電力変換回路4と第3の電力変換回路6とを接続する一対の第2の直流母線51間に接続されている。
The first DC capacitor 3 is connected between a pair of first DC buses 31 that connect the first power conversion circuit 2 and the second power conversion circuit 4, and the second DC capacitor 5 is It is connected between a pair of second DC buses 51 that connect the second power conversion circuit 4 and the third power conversion circuit 6.
制御部8は、第1~第3の電力変換回路2,4,6の全てを制御可能であり、各電力変換回路が備える各スイッチング素子の制御を行う。この場合、制御部8は、後述の電流検出器および電圧検出器から得られる検出結果の一部または全部に基づいて、すべての電力変換回路が有する各スイッチング素子に対して駆動信号を送信し、スイッチング素子のオンオフを制御することにより所望の動作を実現する。
The control unit 8 can control all of the first to third power conversion circuits 2, 4, and 6, and controls each switching element included in each power conversion circuit. In this case, the control unit 8 transmits a drive signal to each switching element included in all power conversion circuits, based on a part or all of detection results obtained from a current detector and a voltage detector described later, A desired operation is realized by controlling ON/OFF of the switching element.
本電源システムは、例えば、電動車両の充電器を中心とした電源システムに適用されるもので、入力電源1は商用交流系統もしくは自家発電機などの交流電源、またはバッテリなどの直流電源である。また、負荷7は、抵抗負荷または電圧源負荷である。抵抗負荷は、自発的に電圧を発生しない負荷であり、例えば照明機器や温調機器である。電圧源負荷は、自発的に電圧を発生する負荷であり、例えば車両走行用の高圧バッテリもしくは車両電装品の鉛バッテリなどである。なお、入力電源1や負荷7がこれらの例に限定されるものでないということはいうまでもない。
This power supply system is applied to, for example, a power supply system centering on a charger of an electric vehicle, and the input power supply 1 is an AC power supply such as a commercial AC system or a private generator, or a DC power supply such as a battery. The load 7 is a resistance load or a voltage source load. The resistive load is a load that does not spontaneously generate a voltage, and is, for example, a lighting device or a temperature control device. The voltage source load is a load that spontaneously generates a voltage, and is, for example, a high-voltage battery for vehicle running or a lead battery of vehicle electrical equipment. It goes without saying that the input power supply 1 and the load 7 are not limited to these examples.
図2および図3は、実施の形態1に係る電力変換装置100の具体的な回路構成例を示す図である。図2および図3の例では、入力電源1として交流電源が用いられる。また、図2の例では、負荷7として抵抗負荷が用いられ、図3の例では、負荷7として電圧源負荷が用いられる。電力変換装置100の構成は、図2の例と図3の例とで同じである。
2 and 3 are diagrams showing a specific circuit configuration example of the power conversion apparatus 100 according to the first embodiment. In the example of FIGS. 2 and 3, an AC power supply is used as the input power supply 1. Further, in the example of FIG. 2, a resistive load is used as the load 7, and in the example of FIG. 3, a voltage source load is used as the load 7. The configuration of the power conversion device 100 is the same in the example of FIG. 2 and the example of FIG. 3.
実施の形態1に係る電力変換装置100は、第1の電力変換回路2として、入力電流を高力率に制御するAC/DCコンバータ20を含み、第2の電力変換回路4として、直流電圧を変圧する絶縁型DC/DCコンバータ40を含み、第3の電力変換回路6として、直流電圧を変圧する非絶縁型のDC/DCコンバータ60を含む。本例では、AC/DCコンバータ20が力率を改善するPFC(Power Factor Correction)に相当する。
The power conversion device 100 according to the first embodiment includes an AC/DC converter 20 that controls an input current to a high power factor as the first power conversion circuit 2, and a DC voltage as the second power conversion circuit 4. An insulating DC/DC converter 40 that transforms is included, and a non-insulating DC/DC converter 60 that transforms a DC voltage is included as the third power conversion circuit 6. In this example, the AC/DC converter 20 corresponds to a PFC (Power Factor Correction) that improves the power factor.
図2および図3に示す第1の電力変換回路2(AC/DCコンバータ20)は、スイッチング素子21~24および力率改善用の交流リアクトル215、216を備える。スイッチング素子21~24はフルブリッジ型に接続されている。交流リアクトル215の一端は交流電源11と接続されており、他端はスイッチング素子21とスイッチング素子22との接続点に接続されている。また、交流リアクトル216の一端は交流電源11と接続されており、他端はスイッチング素子23とスイッチング素子24との接続点に接続されている。
The first power conversion circuit 2 (AC/DC converter 20) shown in FIGS. 2 and 3 includes switching elements 21 to 24 and power factor improving AC reactors 215 and 216. The switching elements 21 to 24 are connected in a full bridge type. One end of the AC reactor 215 is connected to the AC power supply 11, and the other end is connected to a connection point between the switching element 21 and the switching element 22. Further, one end of the AC reactor 216 is connected to the AC power supply 11, and the other end is connected to a connection point between the switching element 23 and the switching element 24.
なお、図2および図3に示す第1の電力変換回路2では、交流リアクトル215、216が交流電源11の両極側にそれぞれ接続されるが、片極側のみに接続されもよい。すなわち、交流リアクトル215,216のいずれか一方のみが用いられてもよい。
Note that in the first power conversion circuit 2 shown in FIGS. 2 and 3, the AC reactors 215 and 216 are connected to both sides of the AC power supply 11, respectively, but may be connected to only one side. That is, only one of AC reactors 215 and 216 may be used.
また、図2および図3に示す第1の電力変換回路2は、全ての半導体素子にスイッチング素子を用いた構成であるが、ダイオードなどの受動半導体素子を用いたセミブリッジレス型、またはトーテムポール型の構成であってもよいことは言うまでもない。
The first power conversion circuit 2 shown in FIGS. 2 and 3 has a configuration in which switching elements are used for all semiconductor elements, but is a semi-bridgeless type or totem pole using passive semiconductor elements such as diodes. It goes without saying that it may be a mold configuration.
図2および図3に示す第2の電力変換回路4(絶縁型DC/DCコンバータ40)は、絶縁トランス49、1次側変換回路4Aおよび2次側変換回路4Bを含む。絶縁トランス49は、互いに磁気的に結合する2つの巻線を含む。絶縁トランス49の一方の巻線は1次側変換回路4Aの端子に接続され、他方の巻線は2次側変換回路4Bの端子に接続される。以下、1次側変換回路4Aの端子に接続される巻線を1次側巻線と称し、2次側変換回路4Bの端子に接続される巻線を2次側巻線と称する。
The second power conversion circuit 4 (insulation type DC/DC converter 40) shown in FIGS. 2 and 3 includes an insulation transformer 49, a primary side conversion circuit 4A and a secondary side conversion circuit 4B. Isolation transformer 49 includes two windings that are magnetically coupled to each other. One winding of the isolation transformer 49 is connected to the terminal of the primary side conversion circuit 4A, and the other winding is connected to the terminal of the secondary side conversion circuit 4B. Hereinafter, the winding connected to the terminal of the primary side conversion circuit 4A is referred to as a primary side winding, and the winding connected to the terminal of the secondary side conversion circuit 4B is referred to as a secondary side winding.
1次側変換回路4Aは、スイッチング素子41~44を含む。スイッチング素子41~44はフルブリッジ型に接続されている。また、1次側変換回路4Aの直流側の端子は、一対の第1の直流母線31を介して第1の電力変換回路2および第1の直流コンデンサ3と接続されており、交流側の端子は絶縁トランス49の1次側巻線と接続されている。この場合、直列接続されるスイッチング素子41とスイッチング素子42との接続点に絶縁トランス49の1次側巻線の一端が接続され、直列接続されるスイッチング素子43とスイッチング素子44との接続点に絶縁トランス49の1次側巻線の他端が接続される。
The primary side conversion circuit 4A includes switching elements 41 to 44. The switching elements 41 to 44 are connected in a full bridge type. Further, the DC side terminal of the primary side conversion circuit 4A is connected to the first power conversion circuit 2 and the first DC capacitor 3 via the pair of first DC bus lines 31, and the AC side terminal. Is connected to the primary winding of the insulating transformer 49. In this case, one end of the primary winding of the insulating transformer 49 is connected to the connection point between the switching elements 41 and 42 connected in series, and the connection point between the switching element 43 and switching element 44 connected in series is connected. The other end of the primary winding of the insulating transformer 49 is connected.
絶縁トランス49の2次側変換回路4Bは、スイッチング素子45~48を含む。スイッチング素子45~48はフルブリッジ型に接続されている。また、2次側変換回路4Bの直流側の端子は、一対の第2の直流母線51を介して第2の直流コンデンサ5および第3の電力変換回路6と接続されており、交流側の端子は絶縁トランス49の2次側巻線と接続されている。この場合、直列接続されるスイッチング素子45とスイッチング素子46との接続点に絶縁トランス49の2次側巻線の一端が接続され、直列接続されるスイッチング素子47とスイッチング素子48との接続点に絶縁トランス49の2次側巻線の他端が接続される。
The secondary side conversion circuit 4B of the isolation transformer 49 includes switching elements 45 to 48. The switching elements 45 to 48 are connected in a full bridge type. Further, the DC side terminal of the secondary side conversion circuit 4B is connected to the second DC capacitor 5 and the third power conversion circuit 6 via the pair of second DC bus lines 51, and the AC side terminal. Is connected to the secondary winding of the insulating transformer 49. In this case, one end of the secondary winding of the insulating transformer 49 is connected to the connection point between the switching elements 45 and 46 connected in series, and the connection point between the switching elements 47 and 48 connected in series is connected. The other end of the secondary winding of the insulating transformer 49 is connected.
なお、第2の電力変換回路4が、絶縁トランス49の1次側巻線もしくは2次側巻線に対して直列もしくは並列に接続されたリアクトル、コンデンサなどを含んでもよい。リアクトル、コンデンサなどを用いることにより、低損失なソフトスイッチング動作が可能となる。この場合、別個に用意されたリアクトルが絶縁トランス49に外付けされてもよく、絶縁トランス49の漏洩インダクタンスまたは励磁インダクタンスが、損失低減のためのリアクトルとして利用されてもよい。さらに、2次側変換回路4Bは、ダイオードを用いたダイオード整流回路で構成されてもよいし、コンデンサを用いた倍電圧整流回路で構成されてもよい。
Note that the second power conversion circuit 4 may include a reactor, a capacitor, etc. connected in series or in parallel with the primary winding or the secondary winding of the insulating transformer 49. By using a reactor and a capacitor, low-loss soft switching operation becomes possible. In this case, a separately prepared reactor may be externally attached to the insulating transformer 49, and the leakage inductance or the exciting inductance of the insulating transformer 49 may be used as a reactor for reducing loss. Further, the secondary side conversion circuit 4B may be configured by a diode rectifier circuit using a diode or a voltage doubler rectifier circuit using a capacitor.
図2および図3に示す第3の電力変換回路6(DC/DCコンバータ60)は、スイッチング素子61、62、平滑用直流リアクトル63および平滑用コンデンサ64を含む。第3の電力変換回路6は、降圧チョッパの回路構成を有する。図2の例では、第3の電力変換回路6の出力端子に抵抗負荷71が接続される。図3の例では、第3の電力変換回路6の出力端子に電圧源負荷72が接続される。
The third power conversion circuit 6 (DC/DC converter 60) shown in FIGS. 2 and 3 includes switching elements 61 and 62, a smoothing DC reactor 63, and a smoothing capacitor 64. The third power conversion circuit 6 has a circuit configuration of a step-down chopper. In the example of FIG. 2, the resistive load 71 is connected to the output terminal of the third power conversion circuit 6. In the example of FIG. 3, the voltage source load 72 is connected to the output terminal of the third power conversion circuit 6.
なお、図2および図3に示す第3の電力変換回路6は、降圧チョッパの回路構成を有するが、昇圧型や昇降圧型の回路構成を有してもよく、また、インターリーブの構成や並列接続構成を有してもよいことは言うまでもない。
Although the third power conversion circuit 6 shown in FIGS. 2 and 3 has a step-down chopper circuit configuration, it may have a step-up or step-up/step-down circuit configuration, and also has an interleave configuration or parallel connection. It goes without saying that it may have a configuration.
第1の電力変換回路2のスイッチング素子21~24、第2の電力変換回路4のスイッチング素子41~48、および第3の電力変換回路6のスイッチング素子61,62としては、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、SiC(Silicon Carbide)-MOSFET、GaN(Gallium Nitride)-FET(Field Effect Transistor)、またはGaN-HEMT(High Electron Mobility Transistor)などを用いることができる。
As the switching elements 21 to 24 of the first power conversion circuit 2, the switching elements 41 to 48 of the second power conversion circuit 4, and the switching elements 61 and 62 of the third power conversion circuit 6, IGBTs (Insulated Gate Bipolar) are used. Transistor), MOSFET (Metal Oxide Semiconductor Field Effect Transistor), SiC (Silicon Carbide) (MOSFET), GaN (Galium Nitride Emitter) or FET (Field Effect Transistor), or GaN (Galium Nitride Emitter) (FET). ..
電力変換装置100は、電流検出器D1,D2および電圧検出器D3~D6をさらに備える。電流検出器D1は、交流電源11から第1の電力変換回路2に流れる交流入力電流iacを検出する。電流検出器D2は、第3の電力変換回路6から負荷7に流れる直流出力電流Ioutを検出する。電圧検出器D3は、交流電源11から第1の電力変換回路2に与えられる交流入力電圧vacを検出する。電圧検出器D4は、第1の直流コンデンサ3の電圧Vlinkを検出する。電圧検出器D5は、第2の直流コンデンサ5の電圧Vintを検出する。電圧検出器D6は、第3の電力変換回路6から負荷7に与えられる直流出力電圧Voutとして、第3の電力変換回路6の平滑用コンデンサ64の電圧を検出する。検出器D1~D6は、検出結果を制御部8に与える。制御部8は、与えられた検出値の一部または全部に基づいてフィードバック演算を行い、各スイッチング素子のオンオフを制御する。
The power conversion device 100 further includes current detectors D1 and D2 and voltage detectors D3 to D6. The current detector D1 detects an AC input current iac flowing from the AC power supply 11 to the first power conversion circuit 2. The current detector D2 detects the DC output current Iout flowing from the third power conversion circuit 6 to the load 7. The voltage detector D3 detects the AC input voltage vac applied to the first power conversion circuit 2 from the AC power supply 11. The voltage detector D4 detects the voltage Vlink of the first DC capacitor 3. The voltage detector D5 detects the voltage Vint of the second DC capacitor 5. The voltage detector D6 detects the voltage of the smoothing capacitor 64 of the third power conversion circuit 6 as the DC output voltage Vout given to the load 7 from the third power conversion circuit 6. The detectors D1 to D6 provide the detection result to the control unit 8. The control unit 8 performs feedback calculation based on a part or all of the given detection value to control ON/OFF of each switching element.
電力変換装置100の動作開始時には、制御部8は、初期動作として第1~第3の電力変換回路2,4,6が段階的に動作を開始するように、第1~第3の電力変換回路2,4,6を制御する。第1~第3の電力変換回路2,4,6の全てが動作を開始した後、制御部8は、定常動作を行うように第1~第3の電力変換回路2,4,6を制御する。ここで、動作の開始とは、該当の回路に含まれる少なくとも1つのスイッチング素子のスイッチング動作(オンオフ動作)が開始されることをいう。また、第1~第3の電力変換回路2,4,6が段階的に動作を開始するとは、少なくとも2つの電力変換回路が異なる時刻に動作を開始することをいう。
At the start of the operation of the power converter 100, the control unit 8 controls the first to third power converters so that the first to third power converter circuits 2, 4 and 6 start the operation stepwise as an initial operation. Control the circuits 2, 4, and 6. After all the first to third power conversion circuits 2, 4 and 6 start operating, the control unit 8 controls the first to third power conversion circuits 2, 4 and 6 so as to perform steady operation. To do. Here, the start of the operation means that the switching operation (ON/OFF operation) of at least one switching element included in the corresponding circuit is started. The fact that the first to third power conversion circuits 2, 4 and 6 start operating stepwise means that at least two power conversion circuits start operating at different times.
まず、定常動作時における制御部8の役割について説明する。制御部8は、検出器D1~D6の検出結果に基づいて種々の出力値を演算し、その出力値に基づいて第1~第3の電力変換回路2,4,6を制御する。本例では、交流入力電流iacが予め定められた目標正弦波電流iac*に追従するように制御され、第1の直流コンデンサ3の電圧Vlinkが予め定められた目標直流電圧Vlink*に追従するように制御され、第2の直流コンデンサ5の電圧Vintが予め定められた目標直流電圧Vint*に追従するように制御される。また、負荷7として抵抗負荷71が適用される場合に、直流出力電圧Voutが予め定められた目標直流出力電圧Vout*に追従するように制御され、負荷7として電圧源負荷72が適用される場合に、直流出力電流Ioutが予め定められた目標直流出力電流Iout*に追従するように制御される。
First, the role of the control unit 8 during steady operation will be described. The control unit 8 calculates various output values based on the detection results of the detectors D1 to D6, and controls the first to third power conversion circuits 2, 4, 6 based on the output values. In this example, the AC input current iac is controlled so as to follow a predetermined target sine wave current iac*, and the voltage Vlink of the first DC capacitor 3 follows the predetermined target DC voltage Vlink*. The voltage Vint of the second DC capacitor 5 is controlled so as to follow the predetermined target DC voltage Vint*. When the resistance load 71 is applied as the load 7, the DC output voltage Vout is controlled so as to follow a predetermined target DC output voltage Vout*, and the voltage source load 72 is applied as the load 7. In addition, the DC output current Iout is controlled so as to follow the predetermined target DC output current Iout*.
具体的には、制御部8は、交流電圧vacの検出値と同期する正弦波状の電流指令(目標正弦波電流)iac*と、交流入力電流iacの検出値との電流差を算出する。制御部8は、算出した電流差をフィードバック量として比例制御または比例積分制御により出力値を演算する。
Specifically, the control unit 8 calculates the current difference between the sinusoidal current command (target sine wave current) iac* synchronized with the detected value of the AC voltage vac and the detected value of the AC input current iac. The control unit 8 calculates the output value by proportional control or proportional integral control with the calculated current difference as the feedback amount.
また、制御部8は、目標直流電圧Vlink*と第1の直流コンデンサ3の直流電圧Vlinkの検出値との電圧差を算出し、算出した電圧差をフィードバック量として比例制御または比例積分制御により出力値を演算する。
The control unit 8 also calculates the voltage difference between the target DC voltage Vlink* and the detected value of the DC voltage Vlink of the first DC capacitor 3, and outputs the calculated voltage difference as a feedback amount by proportional control or proportional-integral control. Calculate the value.
また、制御部8は、目標直流電圧Vint*と第2の直流コンデンサ5の直流電圧Vintの検出値との電圧差を算出し、算出した電圧差をフィードバック量として比例制御または比例積分制御により出力値を演算する。
The control unit 8 also calculates the voltage difference between the target DC voltage Vint* and the detected value of the DC voltage Vint of the second DC capacitor 5, and outputs the calculated voltage difference as a feedback amount by proportional control or proportional-integral control. Calculate the value.
また、負荷7として抵抗負荷71が適用される場合に、制御部8は、目標直流出力電圧Vout*と直流出力電圧Voutの検出値との電圧差を算出し、算出した電圧差をフィードバック量として比例制御または比例積分制御により出力値を演算する。一方、負荷7として電圧源負荷72が適用される場合に、制御部8は、目標直流出力電流Iout*と直流出力電流Ioutの検出値との電圧差を算出し、算出した電圧差をフィードバック量として比例制御もしくは比例積分制御により出力値を演算する。
When the resistive load 71 is applied as the load 7, the control unit 8 calculates the voltage difference between the target DC output voltage Vout* and the detected value of the DC output voltage Vout, and uses the calculated voltage difference as the feedback amount. Output value is calculated by proportional control or proportional integral control. On the other hand, when the voltage source load 72 is applied as the load 7, the control unit 8 calculates the voltage difference between the target DC output current Iout* and the detected value of the DC output current Iout, and calculates the calculated voltage difference as the feedback amount. The output value is calculated by proportional control or proportional integral control.
制御部8は、これらの出力値に基づいて、交流入力電流iac、第1および第2の直流コンデンサ3,5の電圧Vlink,Vintならびに直流出力電圧Vout(または直流出力電流Iout)が上記目標値に追従するように、第1~第3の電力変換回路2,4,6を制御する。
Based on these output values, the control unit 8 determines that the AC input current iac, the voltages Vlink and Vint of the first and second DC capacitors 3 and 5 and the DC output voltage Vout (or the DC output current Iout) are the target values. The first to third power conversion circuits 2, 4 and 6 are controlled so as to follow.
次に、電力変換装置100の初期動作時における制御部8の役割について説明する。図4は、負荷7として抵抗負荷71が用いられた場合の電力変換装置100の初期動作についての説明するための図である。図4には、第1の直流コンデンサ3の電圧Vlink、交流入力電圧vac、交流入力電流iac、第2の直流コンデンサ5の電圧Vint、および直流出力電圧Voutの各々の検出値が示される。横軸は時間を表し、縦軸は電流または電圧を表す。また、下段に示される“1st”は、第1の電力変換回路2の動作開始時刻を表し、“2nd”は、第2の電力変換回路4の動作開始時刻を表し、“3rd”は、第3の電力変換回路6の動作開始時刻を表す。
Next, the role of the control unit 8 during the initial operation of the power conversion device 100 will be described. FIG. 4 is a diagram for explaining the initial operation of the power conversion device 100 when the resistive load 71 is used as the load 7. FIG. 4 shows detected values of the voltage Vlink of the first DC capacitor 3, the AC input voltage vac, the AC input current iac, the voltage Vint of the second DC capacitor 5, and the DC output voltage Vout. The horizontal axis represents time, and the vertical axis represents current or voltage. Further, "1st" shown in the lower stage represents the operation start time of the first power conversion circuit 2, "2nd" represents the operation start time of the second power conversion circuit 4, and "3rd" represents the operation start time. 3 represents the operation start time of the power conversion circuit 6 of No. 3.
図4の例において、電力変換装置100が非動作状態である時刻を初期時刻t0と定義する。すなわち、時刻t0にて、第1の電力変換回路2、第2の電力変換回路4および第3の電力変換回路6のスイッチング動作はいずれも停止されている。また、時刻t0にて、第1の直流コンデンサ3の電圧Vlinkおよび第2の直流コンデンサ5の電圧Vintはそれぞれ0である。
In the example of FIG. 4, the time when the power conversion device 100 is in the non-operating state is defined as the initial time t0. That is, at time t0, the switching operations of the first power conversion circuit 2, the second power conversion circuit 4, and the third power conversion circuit 6 are all stopped. At time t0, the voltage Vlink of the first DC capacitor 3 and the voltage Vint of the second DC capacitor 5 are 0, respectively.
制御部8は、検出器D1~D6による検出結果に基づいて、第1の直流コンデンサ3の電圧Vlink、第2の直流コンデンサ5の電圧Vintおよび直流出力電圧Voutが以下のように変化するように、第1~第3の電力変換回路2,4,6を制御する。
The controller 8 controls the voltage Vlink of the first DC capacitor 3, the voltage Vint of the second DC capacitor 5, and the DC output voltage Vout to change as follows based on the detection results of the detectors D1 to D6. , And controls the first to third power conversion circuits 2, 4, and 6.
時刻t1にて、交流入力電圧vacが第1の電力変換回路2の入力端子に印加される。このとき、第1の電力変換回路2の各スイッチング素子の内蔵ダイオードまたは外付けのダイオードを介して第1の直流コンデンサ3が受動的に充電される。それにより、第1の直流コンデンサ3の電圧Vlinkが初期充電電圧Vlink0に上昇する。なお、初期充電電圧Vlink0は、交流入力電圧vacの実効値Vac,rmsに対して式(1)を満たす。なお、式(1)における「√2Vac,rms」は、交流入力電圧vacの最大値に相当する。
At time t1, the AC input voltage vac is applied to the input terminal of the firstpower conversion circuit 2. At this time, the first DC capacitor 3 is passively charged via the built-in diode of each switching element of the first power conversion circuit 2 or the external diode. As a result, the voltage Vlink of the first DC capacitor 3 rises to the initial charging voltage Vlink0. The initial charging voltage Vlink0 satisfies the equation (1) with respect to the effective values Vac and rms of the AC input voltage vac. Note that “√2Vac,rms” in the equation (1) corresponds to the maximum value of the AC input voltage vac.
At time t1, the AC input voltage vac is applied to the input terminal of the first
時刻t2にて、第1の電力変換回路2のスイッチング動作が開始される。この場合、第1の電力変換回路2の実効デューティ比が徐々に上昇されることにより、第1の直流コンデンサ3の電圧Vlinkが徐々に上昇する。それにより、急激な電圧変化が防止される。この時点では、第2の電力変換回路4および第3の電力変換回路6のスイッチング動作は停止されている。
At time t2, the switching operation of the first power conversion circuit 2 is started. In this case, the effective duty ratio of the first power conversion circuit 2 is gradually increased, so that the voltage Vlink of the first DC capacitor 3 is gradually increased. Thereby, abrupt voltage change is prevented. At this point, the switching operations of the second power conversion circuit 4 and the third power conversion circuit 6 are stopped.
時刻t3にて、第1の直流コンデンサ3の電圧Vlinkが、予め定められた第1の閾値電圧Vlink,thに達する。このとき、第1の電力変換回路2による交流入力電流iacの力率制御が開始されるとともに、第2の電力変換回路4のスイッチング動作が開始される。これにより、第1の直流コンデンサ3から第2の電力変換回路4を介して第2の直流コンデンサ5に電流が流れ、第2の直流コンデンサ5の充電が開始される。
At time t3, the voltage Vlink of the first DC capacitor 3 reaches the predetermined first threshold voltage Vlink,th. At this time, the power factor control of the AC input current iac by the first power conversion circuit 2 is started, and the switching operation of the second power conversion circuit 4 is started. As a result, current flows from the first DC capacitor 3 to the second DC capacitor 5 via the second power conversion circuit 4, and charging of the second DC capacitor 5 is started.
第1の閾値電圧Vlink,thは、式(2)の条件を満たす。
The first threshold voltage Vlink,th satisfies the condition of Expression (2).
The first threshold voltage Vlink,th satisfies the condition of Expression (2).
ここで、第1の電力変換回路2の動作中に、第1の直流コンデンサ3の電圧Vlinkが交流入力電圧vacより低くなると、第1の電力変換回路2が正常動作(昇圧動作)を継続することができなくなる。具体的には、スイッチング素子21~24のオンオフに関係なく、交流電源11と第1の直流コンデンサ3との間の電流経路が固定される。そのため、第1の直流コンデンサ3の電圧Vlinkは、交流入力電圧vacの最大値以上に維持される必要がある。
Here, when the voltage Vlink of the first DC capacitor 3 becomes lower than the AC input voltage vac during the operation of the first power conversion circuit 2, the first power conversion circuit 2 continues the normal operation (boosting operation). Can't do it. Specifically, the current path between the AC power supply 11 and the first DC capacitor 3 is fixed regardless of whether the switching elements 21 to 24 are turned on or off. Therefore, the voltage Vlink of the first DC capacitor 3 needs to be maintained at or above the maximum value of the AC input voltage vac.
上記のように、第1の直流コンデンサ3の初期充電電圧Vlink0は交流入力電圧vacの最大値(√2Vac,rms)以上であり、第2の電力変換回路4の動作開始前には、第1の直流コンデンサ3の電圧Vlinkは交流入力電圧vac以上に維持される。しかしながら、第2の電力変換回路4の動作が開始されると、第1の直流コンデンサ3から第2の直流コンデンサ5に電流が流れることによって第1の直流コンデンサ3の電圧Vlinkが低下し、第1の直流コンデンサ3の電圧Vlinkが交流入力電圧vacの最大値よりも低くなる可能性がある。
As described above, the initial charging voltage Vlink0 of the first DC capacitor 3 is equal to or higher than the maximum value (√2Vac, rms) of the AC input voltage vac, and before the operation of the second power conversion circuit 4 starts, The voltage Vlink of the DC capacitor 3 is maintained above the AC input voltage vac. However, when the operation of the second power conversion circuit 4 is started, a current flows from the first DC capacitor 3 to the second DC capacitor 5, so that the voltage Vlink of the first DC capacitor 3 decreases, and The voltage Vlink of the DC capacitor 3 of No. 1 may be lower than the maximum value of the AC input voltage vac.
そこで、本実施の形態では、第1の電力変換回路2によって第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thまで上昇されてから第2の電力変換回路4のスイッチング動作が開始される。これにより、第1の直流コンデンサ3の電圧Vlinkと交流入力電圧vacとの間に一定のマージン(余裕)を確保した状態で、第2の電力変換回路4のスイッチング動作を開始させることができる。また、本実施の形態では、第2の電力変換回路4の実効デューティ比は0から徐々に増加され、第1の直流コンデンサ3から第2の直流コンデンサ5に流れる電流は0から徐々に増加する。それにより、第2の電力変換回路4の動作開始に伴う第1の直流コンデンサ3の電圧Vlinkの急峻な低下が抑制される。
Therefore, in the present embodiment, the switching operation of the second power conversion circuit 4 is performed after the voltage Vlink of the first DC capacitor 3 is raised to the first threshold voltage Vlink,th by the first power conversion circuit 2. Be started. As a result, the switching operation of the second power conversion circuit 4 can be started in a state where a certain margin is secured between the voltage Vlink of the first DC capacitor 3 and the AC input voltage vac. Further, in the present embodiment, the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0, and the current flowing from the first DC capacitor 3 to the second DC capacitor 5 is gradually increased from 0. .. As a result, a sharp decrease in the voltage Vlink of the first DC capacitor 3 due to the start of the operation of the second power conversion circuit 4 is suppressed.
なお、「デューティ比が徐々に上昇する」とは、図4の例のようにデューティ比が一定の変化率で直線的かつ連続的に上昇する場合に限らず、デューティ比が曲線的かつ連続的に上昇する場合、およびデューティ比が複数ステップを介して段階的に上昇する場合を含む。ただし、デューティ比が段階的に上昇される場合には、ステップ数が十分に多く設定され、1ステップでの変化幅が極力小さいことが好ましい。
Note that "the duty ratio gradually increases" is not limited to the case where the duty ratio linearly and continuously increases at a constant rate of change as in the example of Fig. 4, and the duty ratio is curvilinear and continuous. And the case where the duty ratio increases stepwise through a plurality of steps. However, when the duty ratio is increased stepwise, it is preferable that the number of steps is set sufficiently large and the change width in one step is as small as possible.
これらにより、第1の直流コンデンサ3の電圧Vlinkが交流入力電圧vacの最大値より低くなることが防止され、第1の電力変換回路2が安定的に正常動作を継続することができる。
With these, the voltage Vlink of the first DC capacitor 3 is prevented from becoming lower than the maximum value of the AC input voltage vac, and the first power conversion circuit 2 can stably continue normal operation.
また、第1の閾値電圧Vlink,thが目標直流電圧Vlink*より小さい値に設定されているため、第1の直流コンデンサ3の電圧Vlinkが過電圧となることが防止されるとともに、第2の電力変換回路4の動作開始までの時間を短くすることができる。
Further, since the first threshold voltage Vlink,th is set to a value smaller than the target DC voltage Vlink*, the voltage Vlink of the first DC capacitor 3 is prevented from becoming an overvoltage, and the second power is reduced. The time until the operation of the conversion circuit 4 starts can be shortened.
さらに、時刻t3にて、第2の電力変換回路4のスイッチング動作が開始されると同時に、第1の電力変換回路2による力率制御が開始される。これにより、交流入力電流iacの大きさ(振幅)を0から最大値まで徐々に増加させることができる。したがって、第1および第2の直流コンデンサ3,5を安定的に充電することができる。
Further, at time t3, the switching operation of the second power conversion circuit 4 is started, and at the same time, the power factor control by the first power conversion circuit 2 is started. Thereby, the magnitude (amplitude) of the AC input current iac can be gradually increased from 0 to the maximum value. Therefore, the first and second DC capacitors 3 and 5 can be stably charged.
その後、第1の直流コンデンサ3の電圧Vlinkが目標直流電圧Vlink*に達すると、目標直流電圧Vlink*に追従するように電圧Vlinkが制御される。なお、時刻t3にて第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達した時点から第1の直流コンデンサ3の電圧Vlinkが目標直流電圧Vlink*に追従するように制御されてもよい。
After that, when the voltage Vlink of the first DC capacitor 3 reaches the target DC voltage Vlink*, the voltage Vlink is controlled so as to follow the target DC voltage Vlink*. Control is performed such that the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th at time t3, and the voltage Vlink of the first DC capacitor 3 follows the target DC voltage Vlink*. May be done.
時刻t4にて、第2の直流コンデンサ5の電圧Vintが、予め定められた第2の閾値電圧Vint,thに達すると、第1の電力変換回路2および第2の電力変換回路4に加えて、第3の電力変換回路6のスイッチング動作が開始される。これにより、第2の直流コンデンサ5から第3の電力変換回路6を介して抵抗負荷71に電流が流れ、抵抗負荷71に電力が供給される。
At time t4, when the voltage Vint of the second DC capacitor 5 reaches the predetermined second threshold voltage Vint,th, in addition to the first power conversion circuit 2 and the second power conversion circuit 4, , The switching operation of the third power conversion circuit 6 is started. As a result, current flows from the second DC capacitor 5 to the resistance load 71 via the third power conversion circuit 6, and power is supplied to the resistance load 71.
ここで、第2の閾値電圧Vint,thは、式(3)の条件を満たす。
Here, the second threshold voltage Vint,th satisfies the condition of Expression (3).
Here, the second threshold voltage Vint,th satisfies the condition of Expression (3).
ここで、第3の電力変換回路6の動作中に、第2の直流コンデンサ5の電圧Vintが抵抗負荷71に出力される直流出力電圧Voutよりも低くなると、第3の電力変換回路6が正常動作(降圧動作)を継続することができなくなる。具体的には、第3の電力変換回路6のディーティー比が0に設定されることにより、スイッチング素子61が常時オフされ、抵抗負荷71への電力供給が不可能な状態となる。したがって、第2の直流コンデンサ5の電圧Vintは、直流出力電圧Voutよりも高く維持される必要がある。
Here, when the voltage Vint of the second DC capacitor 5 becomes lower than the DC output voltage Vout output to the resistive load 71 during the operation of the third power conversion circuit 6, the third power conversion circuit 6 operates normally. It becomes impossible to continue the operation (step-down operation). Specifically, by setting the duty ratio of the third power conversion circuit 6 to 0, the switching element 61 is constantly turned off, and power cannot be supplied to the resistive load 71. Therefore, the voltage Vint of the second DC capacitor 5 needs to be maintained higher than the DC output voltage Vout.
本実施の形態では、第2の電力変換回路4によって第2の直流コンデンサ5の電圧Vintが第2の閾値電圧Vint,thまで上昇されてから第3の電力変換回路6の動作が開始される。これにより、第2の直流コンデンサ5の電圧Vintと直流出力電圧Voutとの間に一定のマージンを確保した状態で、第3の電力変換回路6のスイッチング動作を開始させることができる。また、第3の電力変換回路6の実効デューティ比は0から徐々に増加され、第2の直流コンデンサ5から抵抗負荷71に流れる電流は0から徐々に増加する。それにより、第3の電力変換回路6の動作開始に伴う第2の直流コンデンサ5の電圧Vintの急峻な低下が抑制される。その結果、第2の直流コンデンサ5の電圧Vintが直流出力電圧Voutより低くなることが防止され、第3の電力変換回路6が安定的に正常動作を継続することができる。
In the present embodiment, the operation of the third power conversion circuit 6 is started after the voltage Vint of the second DC capacitor 5 is raised to the second threshold voltage Vint,th by the second power conversion circuit 4. .. As a result, the switching operation of the third power conversion circuit 6 can be started with a certain margin secured between the voltage Vint of the second DC capacitor 5 and the DC output voltage Vout. Further, the effective duty ratio of the third power conversion circuit 6 is gradually increased from 0, and the current flowing from the second DC capacitor 5 to the resistive load 71 is gradually increased from 0. As a result, a sharp drop in the voltage Vint of the second DC capacitor 5 due to the start of the operation of the third power conversion circuit 6 is suppressed. As a result, the voltage Vint of the second DC capacitor 5 is prevented from becoming lower than the DC output voltage Vout, and the third power conversion circuit 6 can stably continue normal operation.
その後、第2の直流コンデンサ5の電圧Vintが目標直流電圧Vint*に達すると、目標直流電圧Vint*に追従するように電圧Vintが制御される。なお、時刻t4にて第2の直流コンデンサ5の電圧Vintが第2の閾値電圧Vint,thに達した時点から第2の直流コンデンサ5の電圧Vintが目標直流電圧Vint*に追従するように制御されてもよい。
After that, when the voltage Vint of the second DC capacitor 5 reaches the target DC voltage Vint*, the voltage Vint is controlled so as to follow the target DC voltage Vint*. Control is performed such that the voltage Vint of the second DC capacitor 5 follows the target DC voltage Vint* from the time when the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th at time t4. May be done.
なお、図4には、抵抗負荷71に供給される電力の変化として直流出力電圧Voutの変化のみが示されるが、直流出力電流Ioutも直流出力電圧Voutの上昇に伴って増加する。上記のように、負荷7として抵抗負荷71が用いられる場合には、直流出力電流Ioutの検出値ではなく直流出力電圧Voutの検出値が用いてスイッチング素子のオンオフ制御が行われるので、図4では直流出力電流Ioutの図示を省略している。
Although FIG. 4 shows only the change in the DC output voltage Vout as the change in the power supplied to the resistive load 71, the DC output current Iout also increases as the DC output voltage Vout increases. As described above, when the resistive load 71 is used as the load 7, the on/off control of the switching element is performed using the detected value of the DC output voltage Vout instead of the detected value of the DC output current Iout. Illustration of the DC output current Iout is omitted.
時刻t5で電圧Voutが目標直流出力電圧Vout*に達すると、第1の電力変換回路2、第2の電力変換回路4および第3の電力変換回路6の全てが上記の定常動作に移行する。
When the voltage Vout reaches the target DC output voltage Vout* at time t5, all of the first power conversion circuit 2, the second power conversion circuit 4, and the third power conversion circuit 6 shift to the above-mentioned steady operation.
このように、負荷7として抵抗負荷71が用いられた図4の例では、第1~第3の電力変換回路2,4,6の動作が順に開始されることにより、第1および第2の直流コンデンサ3,5が順に充電される。これにより、第1~第3の電力変換回路2,4,6の動作が同時に開始される場合と異なり、第1~第3の電力変換回路2,4,6内における過電流ならびに第1および第2の直流コンデンサ3,5の過電圧を発生させることなく、負荷7への電力供給を安定的に開始することができる。
As described above, in the example of FIG. 4 in which the resistive load 71 is used as the load 7, the operations of the first to third power conversion circuits 2, 4, and 6 are sequentially started, so that the first and second power conversion circuits are started. The DC capacitors 3 and 5 are sequentially charged. As a result, unlike the case where the operations of the first to third power conversion circuits 2, 4, and 6 are simultaneously started, the overcurrent in the first to third power conversion circuits 2, 4, and 6 The power supply to the load 7 can be stably started without generating the overvoltage of the second DC capacitors 3 and 5.
仮に、第1~第3の電力変換回路2,4,6の動作が同時に開始されると、第1および第2の直流コンデンサ3,5、ならびに負荷7に同時に電圧が印加される。この場合、第1および第2の直流コンデンサ3,5の電圧を個別に制御することは困難であり、第1および第2の直流コンデンサ3,5の少なくも1つに対して瞬間的に大きな電流が流れ込む。それにより、第1~第3の電力変換回路2,4,6内で過電流が発生するとともに第1および第2の直流コンデンサ3,5が過電圧となる可能性がある。
If the operations of the first to third power conversion circuits 2, 4 and 6 are started at the same time, the voltage is applied to the first and second DC capacitors 3 and 5 and the load 7 at the same time. In this case, it is difficult to individually control the voltages of the first and second DC capacitors 3 and 5, and the voltage is instantaneously larger than at least one of the first and second DC capacitors 3 and 5. The current flows in. As a result, an overcurrent may occur in the first to third power conversion circuits 2, 4, 6 and the first and second DC capacitors 3, 5 may become overvoltage.
それに対して、第1~第3の電力変換回路2,4,6の動作が順に開始される場合には、第1および第2の直流コンデンサ3,5の電圧を個別に制御することができる。具体的には、第2の電力変換回路4の動作が停止された状態で第1の電力変換回路2のデューティ比を調整することにより、第1の直流コンデンサ3の電圧Vlinkを制御することができる。また、第3の電力変換回路6の動作が停止された状態で第2の電力変換回路4のデューティ比を調整することにより、第2の直流コンデンサ5の電圧Vintを制御することができる。したがって、第1および第2の直流コンデンサ3,5の電圧を安定的に上昇させることができる。
On the other hand, when the operations of the first to third power conversion circuits 2, 4, and 6 are sequentially started, the voltages of the first and second DC capacitors 3 and 5 can be individually controlled. .. Specifically, the voltage Vlink of the first DC capacitor 3 can be controlled by adjusting the duty ratio of the first power conversion circuit 2 while the operation of the second power conversion circuit 4 is stopped. it can. Further, the voltage Vint of the second DC capacitor 5 can be controlled by adjusting the duty ratio of the second power conversion circuit 4 while the operation of the third power conversion circuit 6 is stopped. Therefore, the voltage of the first and second DC capacitors 3 and 5 can be stably increased.
その後、第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達しかつ第2の直流コンデンサ5の電圧Vintが第2の閾値電圧Vint,thに達した状態で、第3の電力変換回路6の動作が開始されることにより、第1~第3の電力変換回路2,4,6内における過電流ならびに第1および第2の直流コンデンサ3,5の過電圧を発生させることなく、電力変換装置100から負荷7への電力供給を安定的に開始させることができる。
After that, in a state where the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th and the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th, Since the operation of the power conversion circuit 6 is started, overcurrent in the first to third power conversion circuits 2, 4 and 6 and overvoltage of the first and second DC capacitors 3 and 5 are not generated. The power supply from the power converter 100 to the load 7 can be stably started.
なお、図4の例では、電圧Vlinkが0から第1の閾値電圧Vlink,thに至るまでの期間と、電圧Vlinkが第1の閾値電圧Vlink,thから目標直流電圧Vlink*に至るまでの期間とで、電圧Vlinkの変化率(傾き)が異なるが、電圧Vlinkが0から目標直流電圧Vlink*に至るまで、電圧Vlinkの変化率が一定であってもよい。同様に、電圧Vintが0から第2の閾値電圧Vint,thに至るまでの期間と、電圧Vintが第2の閾値電圧Vint,thから目標直流電圧Vint*に至るまでの期間とで、電圧Vintの変化率が異なるが、電圧Vintが0から目標直流電圧Vint*に至るまで、電圧Vintの変化率が一定であってもよい。また、電圧Vlinkおよび電圧Vintがそれぞれ連続的に変化するのではなく、複数ステップを介して段階的に変化してもよい。ただし、過電流および過電圧の発生を効果的に防止するためには、ステップ数が十分に多く設定され、1ステップでの電圧変化幅が極力小さいことが好ましい。
In the example of FIG. 4, the period from when the voltage Vlink reaches 0 to the first threshold voltage Vlink,th and the period from when the voltage Vlink reaches the target DC voltage Vlink* from the first threshold voltage Vlink,th. Although the rate of change (gradient) of the voltage Vlink is different, the rate of change of the voltage Vlink may be constant from the voltage Vlink of 0 to the target DC voltage Vlink*. Similarly, the voltage Vint is divided into a period from the voltage Vint reaching 0 to the second threshold voltage Vint,th and a period from the voltage Vint reaching the second threshold voltage Vint,th to the target DC voltage Vint*. However, the rate of change of the voltage Vint may be constant from the voltage Vint of 0 to the target DC voltage Vint*. Further, the voltage Vlink and the voltage Vint may not change continuously, but may change stepwise through a plurality of steps. However, in order to effectively prevent the occurrence of overcurrent and overvoltage, it is preferable that the number of steps is set sufficiently large and the voltage change width in one step is as small as possible.
図5は、負荷7に電圧源負荷72が適用された場合における電力変換装置100の初期動作の第1の例について説明するための図である。図5には、図4の例と同様に、電圧Vlink,vac,Vint,Voutおよび電流iacの検出値が示されるとともに、直流出力電流Ioutの検出値が示される。上記のように、負荷7として電圧源負荷72が用いられる場合には、直流出力電流Ioutの検出値を用いてスイッチング素子のオンオフ制御が行われる。
FIG. 5 is a diagram for explaining a first example of the initial operation of the power conversion device 100 when the voltage source load 72 is applied to the load 7. Similar to the example of FIG. 4, FIG. 5 shows the detected values of the voltages Vlink, vac, Vint, Vout and the current iac, as well as the detected values of the DC output current Iout. As described above, when the voltage source load 72 is used as the load 7, the on/off control of the switching element is performed using the detected value of the DC output current Iout.
図5の例では、電圧源負荷72が一定の直流電圧を発生させる。そのため、電力変換装置100が非動作状態である時刻t0において、電圧源負荷72による直流電圧が第3の電力変換回路6の出力端子に印加されている。この電圧は電圧Voutとして検出される。この場合、第3の電力変換回路6のスイッチング素子の内蔵ダイオードもしくは外付けのダイオードを介して第2の直流コンデンサ5が受動的に充電される。それにより、第2の直流コンデンサ5の電圧Vintが初期充電電圧Vint0に維持されている。
In the example of FIG. 5, the voltage source load 72 generates a constant DC voltage. Therefore, at time t0 when the power conversion device 100 is in the non-operating state, the DC voltage from the voltage source load 72 is applied to the output terminal of the third power conversion circuit 6. This voltage is detected as the voltage Vout. In this case, the second DC capacitor 5 is passively charged through the built-in diode of the switching element of the third power conversion circuit 6 or the external diode. As a result, the voltage Vint of the second DC capacitor 5 is maintained at the initial charging voltage Vint0.
図4の例と同様に、時刻t1にて、交流入力電圧vacが第1の電力変換回路2の入力端子に印加される。それにより、第1の直流コンデンサ3の電圧Vlinkが初期充電電圧Vlink0に上昇する。時刻t2にて、第1の電力変換回路2のスイッチング動作が開始される。この場合、第1の電力変換回路2の実効デューティ比が徐々に上昇されることにより、第1の直流コンデンサ3の電圧Vlinkが徐々に上昇する。
Similar to the example of FIG. 4, the AC input voltage vac is applied to the input terminal of the first power conversion circuit 2 at time t1. As a result, the voltage Vlink of the first DC capacitor 3 rises to the initial charging voltage Vlink0. At time t2, the switching operation of the first power conversion circuit 2 is started. In this case, the effective duty ratio of the first power conversion circuit 2 is gradually increased, so that the voltage Vlink of the first DC capacitor 3 is gradually increased.
時刻t3にて、第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達すると、第1の電力変換回路2による交流電流iacの力率制御が開始されるとともに、第2の電力変換回路4のスイッチング動作が開始される。これにより、第1の直流コンデンサ3から第2の電力変換回路4を介して第2の直流コンデンサ5に電流が流れ、第2の直流コンデンサ5の充電が開始される。この場合、第2の電力変換回路4の実効デューティ比は、0から徐々に増加される。それにより、電圧Vintが初期充電電圧Vint0から徐々に上昇する。
At time t3, when the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th, the power factor control of the alternating current iac by the first power conversion circuit 2 is started, and the second The switching operation of the power conversion circuit 4 is started. As a result, current flows from the first DC capacitor 3 to the second DC capacitor 5 via the second power conversion circuit 4, and charging of the second DC capacitor 5 is started. In this case, the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0. As a result, the voltage Vint gradually rises from the initial charging voltage Vint0.
なお、本例では、電圧源負荷72によって第2の直流コンデンサ5の電圧Vintが初期充電電圧Vint0に充電されているので、第2の直流コンデンサ5の電圧Vintが0である場合と比べて、第1の直流コンデンサ3から第2の直流コンデンサ5に流れる電流が抑制される。そこで、第1の電力変換回路2が正常動作を継続することができる範囲内(第1の直流コンデンサ3の電圧linkが交流入力電圧vacよりも低くならない範囲内)で、第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達する前に第2の電力変換回路4のスイッチング動作が開始されてもよい。
In this example, since the voltage Vint of the second DC capacitor 5 is charged to the initial charging voltage Vint0 by the voltage source load 72, compared to the case where the voltage Vint of the second DC capacitor 5 is 0, The current flowing from the first DC capacitor 3 to the second DC capacitor 5 is suppressed. Therefore, within the range in which the first power conversion circuit 2 can continue normal operation (within the range in which the voltage link of the first DC capacitor 3 does not become lower than the AC input voltage vac), the first DC capacitor 3 The switching operation of the second power conversion circuit 4 may be started before the voltage Vlink reaches the first threshold voltage Vlink,th.
時刻t4aにて、第2の直流コンデンサ5の電圧Vintが第2の閾値電圧Vint,thに達すると、第1の電力変換回路2および第2の電力変換回路4に加えて、第3の電力変換回路6のスイッチング動作が開始され、第3の電力変換回路6から抵抗負荷71に電力が供給される。この場合、第3の電力変換回路6の実効デューティ比が0から徐々に増加されることにより、電圧源負荷72に与えられる直流電流Ioutが0から徐々に上昇する。すなわち、電圧源負荷72に与えられる電力が0から徐々に上昇する。
At time t4a, when the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th, the third power is added to the first power conversion circuit 2 and the second power conversion circuit 4. The switching operation of the conversion circuit 6 is started, and power is supplied from the third power conversion circuit 6 to the resistance load 71. In this case, the effective duty ratio of the third power conversion circuit 6 is gradually increased from 0, so that the DC current Iout given to the voltage source load 72 is gradually increased from 0. That is, the electric power applied to the voltage source load 72 gradually increases from zero.
直流出力電流Ioutが目標直流出力電流Iout*まで達した時刻t5aにて、第1の電力変換回路2、第2の電力変換回路4、および第3の電力変換回路6の全てが定常動作に移行する。
At time t5a when the DC output current Iout reaches the target DC output current Iout*, all of the first power conversion circuit 2, the second power conversion circuit 4, and the third power conversion circuit 6 shift to steady operation. To do.
このように、負荷7として電圧源負荷72が用いられた図5の例においても、第1~第3の電力変換回路2,4,6の動作が順に開始されることにより、第1および第2の直流コンデンサ3,5の電圧Vlink,Vintを個別に精度良く制御することができる。その結果、第1~第3の電力変換回路2,4,6内における過電流ならびに第1および第2の直流コンデンサ3,5の過電圧を発生させることなく、電力変換装置100から負荷7への電力供給を安定的に開始することができる。
As described above, also in the example of FIG. 5 in which the voltage source load 72 is used as the load 7, the first to third power conversion circuits 2, 4, and 6 are started in order, so that the first and the second power conversion circuits are started. The voltages Vlink and Vint of the two DC capacitors 3 and 5 can be individually and accurately controlled. As a result, the power converter 100 transfers the load 7 to the load 7 without generating an overcurrent in the first to third power conversion circuits 2, 4 and 6 and an overvoltage in the first and second DC capacitors 3 and 5. The power supply can be stably started.
また、図4の例と同様に、第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達したときに第2の電力変換回路4のスイッチング動作が開始され、かつ第2の電力変換回路4の実効デューティ比が0から徐々に上昇される。それにより、第1の直流コンデンサ3の電圧linkが交流入力電圧vacの最大値より低くなることが防止され、第1の電力変換回路2が安定的に正常動作を継続することができる。
Further, similar to the example of FIG. 4, when the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th, the switching operation of the second power conversion circuit 4 is started, and The effective duty ratio of the power conversion circuit 4 is gradually increased from 0. This prevents the voltage link of the first DC capacitor 3 from becoming lower than the maximum value of the AC input voltage vac, and the first power conversion circuit 2 can stably continue normal operation.
さらに、図4の例と同様に、第2の直流コンデンサ5の電圧Vintが第2の閾値電圧Vint,thに達したときに第3の電力変換回路6のスイッチング動作が開始され、かつ第3の電力変換回路6の実効デューティ比が0から徐々に上昇される。それにより、第2の直流コンデンサ5の電圧Vintが直流出力電圧Voutより低くなることが防止され、第3の電力変換回路6が安定的に正常動作を継続することができる。
Further, similarly to the example of FIG. 4, when the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th, the switching operation of the third power conversion circuit 6 is started, and The effective duty ratio of the power conversion circuit 6 is gradually increased from 0. This prevents the voltage Vint of the second DC capacitor 5 from becoming lower than the DC output voltage Vout, and the third power conversion circuit 6 can stably continue normal operation.
なお、負荷7として電圧源負荷72が用いられる場合には、第2の電力変換回路4の動作開始のタイミングおよび第3の電力変換回路6の動作開始のタイミングを比較的柔軟に設定することができる。以下、その具体例を説明する。
When the voltage source load 72 is used as the load 7, the operation start timing of the second power conversion circuit 4 and the operation start timing of the third power conversion circuit 6 can be set relatively flexibly. it can. A specific example will be described below.
図6は、負荷7に電圧源負荷72が適用された場合における電力変換装置100の初期動作の第2の例について説明するための図である。図6の例について、図5の例と異なる点を中心に説明する。
FIG. 6 is a diagram for explaining a second example of the initial operation of the power conversion device 100 when the voltage source load 72 is applied to the load 7. The example of FIG. 6 will be described focusing on the points different from the example of FIG.
図6の例では、時刻t3にて、第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達しても、第2の電力変換回路4の動作は停止されたままである。その後の時刻t4bにて、第3の電力変換回路6のスイッチング動作が開始され、電圧源負荷72から第3の電力変換回路6を介して第2の直流コンデンサ5に電流が供給される。それにより、第2の直流コンデンサ5の充電が開始される。この場合、第2の電力変換回路4の実効デューティ比が0から徐々に増加されることにより、電圧Vintが初期充電電圧Vint0から徐々に上昇する。
In the example of FIG. 6, even if the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th at time t3, the operation of the second power conversion circuit 4 remains stopped. At time t4b thereafter, the switching operation of the third power conversion circuit 6 is started, and current is supplied from the voltage source load 72 to the second DC capacitor 5 via the third power conversion circuit 6. As a result, the charging of the second DC capacitor 5 is started. In this case, the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0, so that the voltage Vint gradually increases from the initial charging voltage Vint0.
時刻t3,t4bでは、第2の電力変換回路4の動作が開始されていないので、第1の直流コンデンサ3と第2の直流コンデンサ5との間で電流は流れない。そのため、第1の電力変換回路2の動作は、第2の直流コンデンサ5の電圧Vintに影響せず、第3の電力変換回路6の動作は、第1の直流コンデンサ3の電圧Vlinkに影響しない。したがって、第1および第3の電力変換回路2,6のデューティ比を個別に調整することにより、第1および第2の直流コンデンサ3の電圧Vlink,Vintを個別に制御することができる。なお、第3の電力変換回路6の動作が開始される時刻は、第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達する時刻と一致していてもよく、第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達する前であってもよい。
At times t3 and t4b, the operation of the second power conversion circuit 4 has not started, so no current flows between the first DC capacitor 3 and the second DC capacitor 5. Therefore, the operation of the first power conversion circuit 2 does not affect the voltage Vint of the second DC capacitor 5, and the operation of the third power conversion circuit 6 does not affect the voltage Vlink of the first DC capacitor 3. .. Therefore, by individually adjusting the duty ratios of the first and third power conversion circuits 2 and 6, the voltages Vlink and Vint of the first and second DC capacitors 3 can be individually controlled. The time when the operation of the third power conversion circuit 6 is started may coincide with the time when the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th. It may be before the voltage Vlink of the DC capacitor 3 reaches the first threshold voltage Vlink,th.
時刻5bにて、第2の直流コンデンサ5の電圧Vintが第2の閾値電圧Vint,thに達する。この時刻5bにて、第1の電力変換回路2による力率制御が開始されるとともに、第2の電力変換回路4のスイッチング動作が開始される。これにより、電力変換装置100から電圧源負荷72に電流が流れ、電圧源負荷72に電力が供給される。この場合、第2の電力変換回路4の実効デューティ比が0から徐々に増加されることにより、電圧源負荷72に与えられる直流電流Ioutが0から徐々に上昇する。
At time 5b, the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th. At this time 5b, the power factor control by the first power conversion circuit 2 is started, and the switching operation of the second power conversion circuit 4 is started. As a result, current flows from the power conversion device 100 to the voltage source load 72, and power is supplied to the voltage source load 72. In this case, the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0, so that the DC current Iout given to the voltage source load 72 is gradually increased from 0.
直流出力電流Ioutが目標直流出力電流Iout*に達した時刻t6bにて、第1の電力変換回路2、第2の電力変換回路4、および第3の電力変換回路6のすべてが定常動作に移行する。
At time t6b when the DC output current Iout reaches the target DC output current Iout*, all of the first power conversion circuit 2, the second power conversion circuit 4, and the third power conversion circuit 6 shift to steady operation. To do.
このように、負荷7として電圧源負荷72が用いられる場合には、電圧源負荷72からの電力により第2の直流コンデンサ5を充電することができる。また、第2の電力変換回路4の動作が開始されていないでは、第1の電力変換回路2の動作と第3の電力変換回路6の動作とが互いに影響しない。そのため、図6の例のように、第1の電力変換回路2の次に第3の電力変換回路6の動作を開始し、第3の電力変換回路6の次に第2の電力変換回路4の動作を開始することができる。
As described above, when the voltage source load 72 is used as the load 7, the second DC capacitor 5 can be charged with the electric power from the voltage source load 72. If the operation of the second power conversion circuit 4 is not started, the operation of the first power conversion circuit 2 and the operation of the third power conversion circuit 6 do not affect each other. Therefore, as in the example of FIG. 6, the operation of the third power conversion circuit 6 is started after the first power conversion circuit 2, and the operation of the third power conversion circuit 6 is followed by the second power conversion circuit 4. The operation of can be started.
図7は、負荷7に電圧源負荷72が適用された場合における電力変換装置100の初期動作の第3の例について説明するための図である。図7の例について、図5の例と異なる点を中心に説明する。
FIG. 7 is a diagram for explaining a third example of the initial operation of the power conversion device 100 when the voltage source load 72 is applied to the load 7. The example of FIG. 7 will be described focusing on the points different from the example of FIG.
図7の例では、時刻t0において、電圧源負荷72が第3の電力変換回路6の出力端子と電気的に接続されていない。そのため、時刻t0では、電圧源負荷72から第3の電力変換回路6の出力端子に電圧が印加されておらず、第2の直流コンデンサ5の電圧Vintは0である。時刻t1にて、交流入力電圧vacが第1の電力変換回路2の入力端子に印加された後、時刻t2cにて、電圧源負荷72が第3の電力変換回路6の出力端子と電気的に接続される。これにより、電圧源負荷72の電圧が第3の電力変換回路6の出力端子に印加され、電圧Voutとして検出される。このとき、第3の電力変換回路6のスイッチング素子の内蔵ダイオードもしくは外付けのダイオードを介して、第2の直流コンデンサ5が受動的に充電され、時刻t3cにて、第2の直流コンデンサ5の電圧Vintが初期充電電圧Vint0に達する。なお、時刻t1において、交流入力電圧vacが第1の電力変換回路2の入力端子に印加されると同時に、電圧源負荷72の電圧が第3の電力変換回路6の出力端子に印加されてもよい。
In the example of FIG. 7, the voltage source load 72 is not electrically connected to the output terminal of the third power conversion circuit 6 at time t0. Therefore, at time t0, no voltage is applied from the voltage source load 72 to the output terminal of the third power conversion circuit 6, and the voltage Vint of the second DC capacitor 5 is zero. After the AC input voltage vac is applied to the input terminal of the first power conversion circuit 2 at time t1, the voltage source load 72 is electrically connected to the output terminal of the third power conversion circuit 6 at time t2c. Connected. As a result, the voltage of the voltage source load 72 is applied to the output terminal of the third power conversion circuit 6 and detected as the voltage Vout. At this time, the second DC capacitor 5 is passively charged via the built-in diode of the switching element of the third power conversion circuit 6 or the external diode, and at time t3c, the second DC capacitor 5 is charged. The voltage Vint reaches the initial charging voltage Vint0. At time t1, even if the AC input voltage vac is applied to the input terminal of the first power conversion circuit 2 and the voltage of the voltage source load 72 is applied to the output terminal of the third power conversion circuit 6 at the same time. Good.
時刻t4cにて、第3の電力変換回路6のスイッチング動作が開始される。この場合、第3の電力変換回路6の実効デューティ比が徐々に上昇されることにより、第2の直流コンデンサ5の電圧Vintが徐々に上昇する。時刻t5cにて、第2の直流コンデンサ5の電圧Vintが第2の閾値電圧Vint,thに達する。
At time t4c, the switching operation of the third power conversion circuit 6 is started. In this case, the effective duty ratio of the third power conversion circuit 6 is gradually increased, so that the voltage Vint of the second DC capacitor 5 is gradually increased. At time t5c, the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th.
時刻t6cにて、第1の電力変換回路2のスイッチング動作が開始される。この場合、第1の電力変換回路2の実効デューティ比が徐々に上昇されることにより、第1の直流コンデンサ3の電圧Vlinkが徐々に上昇する。時刻t7cにて、第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達すると、第1の電力変換回路2の力率制御が開始されるとともに、第2の電力変換回路4のスイッチング動作が開始される。これにより、電力変換装置100から電圧源負荷72に電流が流れ、電圧源負荷72に電力が供給される。この場合、第2の電力変換回路4の実効デューティ比が0から徐々に増加されることにより、電圧源負荷72に与えられる直流電流Ioutが0から徐々に上昇する。
At time t6c, the switching operation of the first power conversion circuit 2 is started. In this case, the effective duty ratio of the first power conversion circuit 2 is gradually increased, so that the voltage Vlink of the first DC capacitor 3 is gradually increased. At time t7c, when the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th, the power factor control of the first power conversion circuit 2 is started and the second power conversion circuit is started. The switching operation of No. 4 is started. As a result, current flows from the power conversion device 100 to the voltage source load 72, and power is supplied to the voltage source load 72. In this case, the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0, so that the DC current Iout given to the voltage source load 72 is gradually increased from 0.
直流出力電流Ioutが目標直流出力電流Iout*まで達した時刻t8cにて、第1の電力変換回路2、第2の電力変換回路4、および第3の電力変換回路6のすべてが定常動作に移行する。
At time t8c when the DC output current Iout reaches the target DC output current Iout*, all of the first power conversion circuit 2, the second power conversion circuit 4, and the third power conversion circuit 6 shift to the normal operation. To do.
図6の例と同様に、負荷7として電圧源負荷72が用いられる場合には、電圧源負荷72からの電力により第2の直流コンデンサ5を充電することができる。また、第2の電力変換回路4の動作が開始されていない状態では、第1の電力変換回路2の動作と第3の電力変換回路6の動作とが互いに影響しない。そのため、図7の例のように、第1の電力変換回路2の次に第3の電力変換回路6の動作を開始し、第3の電力変換回路6の次に第2の電力変換回路4の動作を開始することができる。
Similarly to the example of FIG. 6, when the voltage source load 72 is used as the load 7, the second DC capacitor 5 can be charged by the electric power from the voltage source load 72. Further, in a state where the operation of the second power conversion circuit 4 is not started, the operation of the first power conversion circuit 2 and the operation of the third power conversion circuit 6 do not influence each other. Therefore, as in the example of FIG. 7, the operation of the third power conversion circuit 6 is started after the first power conversion circuit 2, and the operation of the second power conversion circuit 4 is started after the third power conversion circuit 6. The operation of can be started.
なお、図6および図7の例では、第1の電力変換回路2と第3の電力変換回路6とが異なる時刻に動作を開始するが、第1の電力変換回路2と第3の電力変換回路6とが同時に動作を開始してもよい。
Note that in the examples of FIGS. 6 and 7, the first power conversion circuit 2 and the third power conversion circuit 6 start operating at different times, but the first power conversion circuit 2 and the third power conversion circuit The circuit 6 and the circuit 6 may start operating at the same time.
以上のように、実施の形態1に係る電力変換装置100においては、第1~第3の電力変換回路2,4,6の動作が段階的に開始されることにより、第1~第3の電力変換回路2,4,6の動作が同時に開始される場合と異なり、第1および第2の直流コンデンサ3,5の電圧を個別に制御することができる。それにより、第1および第2の直流コンデンサ3の電圧を安定的に上昇させることができる。その後、第1の直流コンデンサ3の電圧Vlinkが第1の閾値電圧Vlink,thに達しかつ第2の直流コンデンサ5の電圧Vintが第2の閾値電圧Vint,thに達した状態で、第3の電力変換回路6の動作が開始されることにより、第1~第3の電力変換回路2,4,6内における過電流ならびに第1および第2の直流コンデンサ3,5の過電圧を発生させることなく、電力変換装置100から負荷7への電力供給を安定的に開始させることができる。
As described above, in the power conversion device 100 according to the first embodiment, the operations of the first to third power conversion circuits 2, 4, and 6 are started stepwise, so that the first to third power conversion circuits are started. Unlike the case where the operations of the power conversion circuits 2, 4, 6 are started simultaneously, the voltages of the first and second DC capacitors 3, 5 can be individually controlled. Thereby, the voltage of the first and second DC capacitors 3 can be stably increased. After that, in a state where the voltage Vlink of the first DC capacitor 3 reaches the first threshold voltage Vlink,th and the voltage Vint of the second DC capacitor 5 reaches the second threshold voltage Vint,th, Since the operation of the power conversion circuit 6 is started, overcurrent in the first to third power conversion circuits 2, 4 and 6 and overvoltage of the first and second DC capacitors 3 and 5 are not generated. The power supply from the power converter 100 to the load 7 can be stably started.
上記実施の形態1では、第1の電力変換回路2がAC/DCコンバータ20のみにより構成され、第3の電力変換回路6がDC/DCコンバータ60のみにより構成されるが、第1および第3の電力変換回路2,6の構成は、これに限定されない。図8は、実施の形態1に係る電力変換装置100の変形例を示す図である。
In the first embodiment, the first power conversion circuit 2 is composed only of the AC/DC converter 20, and the third power conversion circuit 6 is composed only of the DC/DC converter 60. The configurations of the power conversion circuits 2 and 6 are not limited to this. FIG. 8: is a figure which shows the modification of the power converter device 100 which concerns on Embodiment 1. As shown in FIG.
図8に示す電力変換装置100は、第1の電力変換回路2に代えて第1の電力変換回路2Aを備え、第3の電力変換回路6に代えて第3の電力変換回路6Aを備える。第1の電力変換回路2Aは、図2および図3のAC/DCコンバータ20に加えて、降圧型のDC/DCコンバータ200を含む。DC/DCコンバータ200は、コンデンサ211、スイッチング素子212,213およびリアクトル214を含む。この第1の電力変換回路2Aにおいては、AC/DCコンバータ20により交流電圧が直流電圧に変換され、変換後の直流電圧がDC/DCコンバータにより降圧されて出力される。
The power conversion device 100 shown in FIG. 8 includes a first power conversion circuit 2A in place of the first power conversion circuit 2 and a third power conversion circuit 6A in place of the third power conversion circuit 6. The first power conversion circuit 2A includes a step-down DC/DC converter 200 in addition to the AC/DC converter 20 of FIGS. 2 and 3. DC/DC converter 200 includes a capacitor 211, switching elements 212 and 213, and a reactor 214. In the first power conversion circuit 2A, the AC/DC converter 20 converts an AC voltage into a DC voltage, and the converted DC voltage is stepped down by the DC/DC converter and output.
一般的に、負荷7の要求電力が比較的大きい場合には、高調波歪みを抑制するために、昇圧型のコンバータ(本例では、AC/DCコンバータ20)によって力率制御が行われる。しかしながら、そのような昇圧型のコンバータが用いられると、第2の電力変換回路4の絶縁トランス49に印加される電圧が大きくなり、鉄損が増加するという問題がある。そこで、図8の例では、DC/DCコンバータ200によって絶縁トランス49への印加電圧を低減することができ、鉄損の増加を抑制することができる。
Generally, when the required power of the load 7 is relatively large, the power factor control is performed by the boost converter (AC/DC converter 20 in this example) in order to suppress harmonic distortion. However, when such a boost converter is used, there is a problem that the voltage applied to the insulating transformer 49 of the second power conversion circuit 4 increases and the iron loss increases. Therefore, in the example of FIG. 8, the DC/DC converter 200 can reduce the voltage applied to the insulating transformer 49, and can suppress an increase in iron loss.
図8に示す第3の電力変換回路6Aは、図2および図3のDC/DCコンバータ60に加えて、絶縁型DC/DCコンバータ600を含む。絶縁型DC/DCコンバータ600は、絶縁トランス610、スイッチング素子611~618およびコンデンサ619を含む。この第3の電力変換回路6Aにおいては、DC/DCコンバータ60により直流電圧が直流電圧に変換され、変換後の直流電圧が絶縁型DC/DCコンバータ60により変圧されて出力される。
The third power conversion circuit 6A shown in FIG. 8 includes an insulation type DC/DC converter 600 in addition to the DC/DC converter 60 of FIGS. 2 and 3. The insulation type DC/DC converter 600 includes an insulation transformer 610, switching elements 611 to 618, and a capacitor 619. In the third power conversion circuit 6A, the DC voltage is converted into the DC voltage by the DC/DC converter 60, and the converted DC voltage is transformed by the insulating DC/DC converter 60 and output.
DC/DCコンバータ200のスイッチング素子212,213および絶縁型DC/DCコンバータ600のスイッチング素子611~618は、制御部8によりオンオフ制御される。この場合、AC/DCコンバータ20の動作とDC/DCコンバータ200の動作とが同時に開始されてもよく、AC/DCコンバータ20の動作が開始されてから時間が経過した後にDC/DCコンバータ200の動作が開始されてもよい。また、DC/DCコンバータ60の動作と絶縁型DC/DCコンバータ600の動作とが同時に開始されてもよく、DC/DCコンバータ60の動作が開始されてから時間が経過した後に絶縁型DC/DCコンバータ600の動作が開始されてもよい。また、負荷7として電圧源負荷72が用いられる場合には、絶縁型DC/DCコンバータ600の動作が開始されてから時間が経過した後にDC/DCコンバータ60の動作が開始されてもよい。
The switching elements 212 and 213 of the DC/DC converter 200 and the switching elements 611 to 618 of the insulation type DC/DC converter 600 are on/off controlled by the control unit 8. In this case, the operation of the AC/DC converter 20 and the operation of the DC/DC converter 200 may be started at the same time, and the operation of the DC/DC converter 200 may be started after a lapse of time after the operation of the AC/DC converter 20 is started. The operation may be started. Further, the operation of the DC/DC converter 60 and the operation of the insulation type DC/DC converter 600 may be started simultaneously, and the insulation type DC/DC may be started after a lapse of time from the start of the operation of the DC/DC converter 60. The operation of converter 600 may be started. When the voltage source load 72 is used as the load 7, the operation of the DC/DC converter 60 may be started after a lapse of time after the operation of the insulating DC/DC converter 600 is started.
電力変換装置100は、第1~3の電力変換回路2(2A),4,6(6A)に加えて、さらに他の電力変換回路を備えてもよい。図9は、実施の形態1に係る電力変換装置100の他の変形例を示す図である。図9に示す電力変換装置100においては、第1の電力変換回路2、第1の直流コンデンサ3および第2の電力変換回路4と並列に、第4の電力変換回路91および第5の電力変換回路92が接続される。
The power conversion device 100 may further include other power conversion circuits in addition to the first to third power conversion circuits 2 (2A), 4, 6 (6A). FIG. 9: is a figure which shows the other modification of the power converter device 100 which concerns on Embodiment 1. As shown in FIG. In the power conversion device 100 shown in FIG. 9, the fourth power conversion circuit 91 and the fifth power conversion circuit are arranged in parallel with the first power conversion circuit 2, the first DC capacitor 3, and the second power conversion circuit 4. The circuit 92 is connected.
第4の電力変換回路91は、スイッチング素子911~914、コンデンサ915、および非接触受電コイル916を含む。スイッチング素子911~914は、フルブリッジ型に接続される。スイッチング素子911と、スイッチング素子912と、が直列接続される接続点に非接触受電コイル916の一端が接続され、スイッチング素子913と、スイッチング素子914と、が直列接続される接続点に非接触受電コイル916の他端が接続される。第4の電力変換回路91は、一対の第3の直流母線917を介して一対の第2の直流母線51にそれぞれ接続される。
The fourth power conversion circuit 91 includes switching elements 911 to 914, a capacitor 915, and a non-contact power receiving coil 916. The switching elements 911 to 914 are connected in a full bridge type. One end of the non-contact power receiving coil 916 is connected to a connection point where the switching element 911 and the switching element 912 are connected in series, and non-contact power reception is performed at a connection point where the switching element 913 and the switching element 914 are connected in series. The other end of the coil 916 is connected. The fourth power conversion circuit 91 is connected to the pair of second DC buses 51 via the pair of third DC buses 917, respectively.
第5の電力変換回路92は、スイッチング素子921~928、直流リンクコンデンサ929、交流リアクトル931,932、および非接触送電コイル933を含む。スイッチング素子921~924およびスイッチング素子925~928は、それぞれフルブリッジ型に接続されている。交流リアクトル931,932の一端は、交流電源11と接続されている。交流リアクトル931の他端は、直列接続されたスイッチング素子921とスイッチング素子922との接続点に接続され、交流リアクトル932の他端は、直列接続されたスイッチング素子923とスイッチング素子924との接続点に接続されている。直流リンクコンデンサ929は、スイッチング素子921~924とスイッチング素子925~928とを接続する直流母線の正極および負極に接続されている。直列接続されたスイッチング素子925とスイッチング素子926との接続点に非接触送電コイル933の一端が接続され、直列接続されたスイッチング素子927とスイッチング素子928との接続点に非接触送電コイル933の他端が接続される。
The fifth power conversion circuit 92 includes switching elements 921 to 928, a DC link capacitor 929, AC reactors 931 and 932, and a non-contact power transmission coil 933. The switching elements 921 to 924 and the switching elements 925 to 928 are connected in a full bridge type. One ends of the AC reactors 931 and 932 are connected to the AC power supply 11. The other end of AC reactor 931 is connected to a connection point between switching element 921 and switching element 922 that are connected in series, and the other end of AC reactor 932 is a connection point between switching element 923 and switching element 924 that are connected in series. It is connected to the. The DC link capacitor 929 is connected to the positive and negative electrodes of the DC bus connecting the switching elements 921 to 924 and the switching elements 925 to 928. One end of the non-contact power transmission coil 933 is connected to a connection point between the switching element 925 and the switching element 926 connected in series, and the non-contact power transmission coil 933 is connected to a connection point between the switching element 927 and the switching element 928 connected in series. The ends are connected.
第4の電力変換回路91の非接触受電コイル916と第5の電力変換回路92の非接触送電コイル933とが磁気的に結合されることにより、第5の電力変換回路92から第4の電力変換回路91に非接触で電力が伝送される。第4の電力変換回路91から第3の直流母線917を介して第2の直流コンデンサ5に直流電圧が与えられる。
The non-contact power reception coil 916 of the fourth power conversion circuit 91 and the non-contact power transmission coil 933 of the fifth power conversion circuit 92 are magnetically coupled to each other, so that the fifth power conversion circuit 92 outputs the fourth power. Electric power is transmitted to the conversion circuit 91 in a contactless manner. A DC voltage is applied from the fourth power conversion circuit 91 to the second DC capacitor 5 via the third DC bus 917.
<実施の形態2>
本発明の実施の形態2に係る電力変換装置について、上記実施形態1に係る電力変換装置100と異なる点を中心に説明する。実施の形態2に係る電力変換装置の構成は、実施の形態1に示す場合と概ね同様であるため、構成の詳細な説明は繰り返さない。 <Second Embodiment>
A power conversion device according toEmbodiment 2 of the present invention will be described focusing on differences from the power conversion device 100 according to Embodiment 1 above. The configuration of the power conversion device according to the second embodiment is substantially the same as the case shown in the first embodiment, and therefore detailed description of the configuration will not be repeated.
本発明の実施の形態2に係る電力変換装置について、上記実施形態1に係る電力変換装置100と異なる点を中心に説明する。実施の形態2に係る電力変換装置の構成は、実施の形態1に示す場合と概ね同様であるため、構成の詳細な説明は繰り返さない。 <Second Embodiment>
A power conversion device according to
図10は、実施の形態2に係る電力変換装置100の具体的な回路構成例を示す図である。実施の形態2に係る電力変換装置100は、第1の電力変換回路2に代えて第1の電力変換回路2Bを備え、第3の電力変換回路6に代えて第3の電力変換回路6Bを備える。
FIG. 10 is a diagram showing a specific circuit configuration example of the power conversion device 100 according to the second embodiment. The power conversion device 100 according to the second embodiment includes a first power conversion circuit 2B in place of the first power conversion circuit 2 and a third power conversion circuit 6B in place of the third power conversion circuit 6. Prepare
第1の電力変換回路2Bは、スイッチング素子221、222および平滑用直流リアクトル223からなるDC/DCコンバータ20Bを含む。DC/DCコンバータ20Bは、降圧チョッパの回路構成を有する。第1の電力変換回路2Bの入力端子には、入力電源1として直流電源12が接続される。なお、図10に示すDC/DCコンバータ20Bは、降圧チョッパの回路構成を有するが、昇圧型や昇降圧型の回路構成を有してもよく、また、インターリーブの構成や並列接続構成を有してもよいことは言うまでもない。
The first power conversion circuit 2B includes a DC/DC converter 20B including switching elements 221, 222 and a smoothing DC reactor 223. The DC/DC converter 20B has a circuit configuration of a step-down chopper. The DC power supply 12 as the input power supply 1 is connected to the input terminal of the first power conversion circuit 2B. Although the DC/DC converter 20B shown in FIG. 10 has a step-down chopper circuit configuration, it may have a step-up type or step-up/down type circuit configuration, and also has an interleave configuration or a parallel connection configuration. It goes without saying that it is good.
第3の電力変換回路6Bは、スイッチング素子621~624および交流リアクトル625、626からなり、直流電圧を交流電圧に変換するインバータ60Bを含む。スイッチング素子621~624はフルブリッジ型に接続されている。交流リアクトル625の一端はスイッチング素子621とスイッチング素子622との接続点に接続されている。交流リアクトル626の一端はスイッチング素子623とスイッチング素子624との接続点に接続されている。交流リアクトル625,626の他端に、負荷7として抵抗負荷71が接続されている。
The third power conversion circuit 6B includes switching elements 621 to 624 and AC reactors 625 and 626, and includes an inverter 60B that converts a DC voltage into an AC voltage. The switching elements 621 to 624 are connected in a full bridge type. One end of the AC reactor 625 is connected to a connection point between the switching element 621 and the switching element 622. One end of the AC reactor 626 is connected to a connection point between the switching element 623 and the switching element 624. A resistive load 71 is connected as the load 7 to the other ends of the AC reactors 625 and 626.
なお、図10に示す第3の電力変換回路6では、交流リアクトル625,626が交流電源の両極側にそれぞれ接続されるが、片極側のみに接続されもよい。すなわち、交流リアクトル625,626のいずれか一方のみが用いられてもよい。
Note that, in the third power conversion circuit 6 shown in FIG. 10, the AC reactors 625 and 626 are connected to both sides of the AC power supply, but may be connected to only one side. That is, only one of AC reactors 625 and 626 may be used.
図10に示す第1の電力変換回路2BのDC/DCコンバータ20Bは、図2および図3に示す第3の電力変換回路6のDC/DCコンバータ60と入出力が逆の構成を有し、図10に示す第3の電力変換回路6Bのインバータ60Bは、図2および図3に示す第1の電力変換回路2のAC/DCコンバータ20と入出力が逆の構成を有する。そのため、実施の形態1における電力の伝送方向を正方向と定義し、その反対の方向を逆方向と定義した場合、実施の形態2に係る電力変換装置100は、逆方向に電力を伝送する。なお、電力変換装置100が双方向に電力を伝送可能に構成されている場合、共通の電力変換装置100により実施の形態1と実施の形態2の両方を実現することが可能である。
The DC/DC converter 20B of the first power conversion circuit 2B shown in FIG. 10 has a configuration in which the input/output is opposite to that of the DC/DC converter 60 of the third power conversion circuit 6 shown in FIGS. 2 and 3. The inverter 60B of the third power conversion circuit 6B shown in FIG. 10 has a configuration in which the input and output are opposite to those of the AC/DC converter 20 of the first power conversion circuit 2 shown in FIGS. 2 and 3. Therefore, when the power transmission direction in the first embodiment is defined as the forward direction and the opposite direction is defined as the reverse direction, the power conversion device 100 according to the second embodiment transmits the power in the reverse direction. When the power conversion device 100 is configured to be capable of bidirectionally transmitting power, it is possible to realize both the first embodiment and the second embodiment by the common power conversion device 100.
電流検出器D1は、直流電源12から第1の電力変換回路2Bに流れる直流入力電流Idcを検出する。電流検出器D2は、第3の電力変換回路6Bから抵抗負荷71に流れる交流出力電流ioutを検出する。電圧検出器D3は、直流電源12から第1の電力変換回路2に与えられる直流入力電圧Vdcを検出する。電圧検出器D4は、第1の直流コンデンサ3の電圧Vintを検出する。電圧検出器D5は、第2の直流コンデンサ5の電圧Vlinkを検出する。電圧検出器D6は、第3の電力変換回路6から抵抗負荷71に与えられる交流出力電圧voutを検出する。制御部8は、検出器D1~D6から与えられた検出値の一部または全部に基づいてフィードバック演算を行い、各スイッチング素子のオンオフを制御する。
The current detector D1 detects the DC input current Idc flowing from the DC power supply 12 to the first power conversion circuit 2B. The current detector D2 detects the AC output current iout flowing from the third power conversion circuit 6B to the resistance load 71. The voltage detector D3 detects the DC input voltage Vdc supplied from the DC power supply 12 to the first power conversion circuit 2. The voltage detector D4 detects the voltage Vint of the first DC capacitor 3. The voltage detector D5 detects the voltage Vlink of the second DC capacitor 5. The voltage detector D6 detects the AC output voltage vout given to the resistive load 71 from the third power conversion circuit 6. The control unit 8 performs feedback calculation based on a part or all of the detection values given from the detectors D1 to D6, and controls on/off of each switching element.
定常時における制御部8の役割について、上記実施の形態1と異なる主な点は、次の点である。制御部8は、予め定められた目標直流電圧Vint*と第1の直流コンデンサ3の直流電圧Vintの検出値との電圧差を算出し、算出した電圧差をフィードバック量として比例制御または比例積分制御により出力値を演算する。
Regarding the role of the control unit 8 in the steady state, the main points different from those in the first embodiment are as follows. The control unit 8 calculates a voltage difference between a predetermined target DC voltage Vint* and a detected value of the DC voltage Vint of the first DC capacitor 3, and uses the calculated voltage difference as a feedback amount for proportional control or proportional-integral control. The output value is calculated by.
また、制御部8は、予め定められた目標直流電圧Vlink*と第2の直流コンデンサ5の直流電圧Vlinkの検出値との電圧差を算出し、算出した電圧差をフィードバック量として比例制御または比例積分制御により出力値を演算する。
Further, the control unit 8 calculates a voltage difference between a predetermined target DC voltage Vlink* and a detected value of the DC voltage Vlink of the second DC capacitor 5, and performs proportional control or proportional control using the calculated voltage difference as a feedback amount. Output value is calculated by integral control.
また、制御部8は、抵抗負荷71への出力電圧が正弦波交流になるように予め定められた目標交流出力電圧の実効値Vout,rms*に振幅が√2の正弦波電圧を乗じた目標交流出力電圧vout*と交流出力電圧voutとの電圧差を算出し、算出した電圧差をフィードバック量として比例制御もしくは比例積分制御により出力を演算する。
Further, the control unit 8 sets a target obtained by multiplying the effective value Vout, rms* of the target AC output voltage, which is predetermined so that the output voltage to the resistive load 71 is a sine wave AC, by the sine wave voltage having an amplitude of √2. The voltage difference between the AC output voltage vout* and the AC output voltage vout is calculated, and the calculated voltage difference is used as a feedback amount to calculate the output by proportional control or proportional integral control.
各出力値に基づいて、第1の直流コンデンサ3の電圧Vintが目標直流電圧Vint*に追従するように制御され、第2の直流コンデンサ5の電圧Vlinkが目標直流電圧Vlink*に追従するように制御され、交流出力電圧voutが目標交流出力電圧vout*に追従するように制御される。
Based on each output value, the voltage Vint of the first DC capacitor 3 is controlled so as to follow the target DC voltage Vint*, and the voltage Vlink of the second DC capacitor 5 follows the target DC voltage Vlink*. It is controlled so that the AC output voltage vout follows the target AC output voltage vout*.
次に、実施の形態2における初期動作時の制御部8の役割について、上記実施の形態1における初期動作時の制御部8の役割と異なる点を中心に説明する。図11は、実施の形態2における初期動作について説明するための図である。図11には、直流入力電圧Vdc、第1の直流コンデンサ3の電圧Vint,第2の直流コンデンサ5の電圧Vlinkおよび交流出力電圧voutの検出値が示される。
Next, the role of the control unit 8 at the time of the initial operation in the second embodiment will be described focusing on the points different from the role of the control unit 8 at the time of the initial operation in the first embodiment. FIG. 11 is a diagram for explaining the initial operation in the second embodiment. FIG. 11 shows the detected values of the DC input voltage Vdc, the voltage Vint of the first DC capacitor 3, the voltage Vlink of the second DC capacitor 5, and the AC output voltage vout.
図11の例においては、時刻t0にて、第1の電力変換回路2B、第2の電力変換回路4および第3の電力変換回路6Bのスイッチング動作はいずれも停止されている。また、時刻t0にて、第1の直流コンデンサ3の電圧Vintおよび第2の直流コンデンサ5の電圧Vlinkはそれぞれ0である。
In the example of FIG. 11, at time t0, the switching operations of the first power conversion circuit 2B, the second power conversion circuit 4 and the third power conversion circuit 6B are all stopped. At time t0, the voltage Vint of the first DC capacitor 3 and the voltage Vlink of the second DC capacitor 5 are 0, respectively.
制御部8は、検出器D1~D6による検出結果に基づいて、第1の直流コンデンサ3の電圧Vint、第2の直流コンデンサ5の電圧Vlinkおよび交流出力電圧voutが以下のように変化するように、第1~第3の電力変換回路2B,4,6Bを制御する。
The control unit 8 controls the voltage Vint of the first DC capacitor 3, the voltage Vlink of the second DC capacitor 5, and the AC output voltage vout to change as follows based on the detection results of the detectors D1 to D6. , And controls the first to third power conversion circuits 2B, 4, 6B.
時刻t1dにて、直流入力電圧Vdcが第1の電力変換回路2Bの入力端子に印加される。このとき、第1の電力変換回路2Bの各スイッチング素子の内蔵ダイオードまたは外付けのダイオードを介して第1の直流コンデンサ3が受動的に充電される。それにより、時刻t2dにて、第1の直流コンデンサ3の電圧Vintが初期充電電圧Vint0に上昇する。なお、第1の直流コンデンサ3の電圧Vintが瞬時に充電されることによって時刻t1dと時刻t2dがほぼ一致していてもよい。
At time t1d, the DC input voltage Vdc is applied to the input terminal of the first power conversion circuit 2B. At this time, the first DC capacitor 3 is passively charged via the built-in diode or the external diode of each switching element of the first power conversion circuit 2B. As a result, at time t2d, the voltage Vint of the first DC capacitor 3 rises to the initial charging voltage Vint0. It should be noted that time t1d and time t2d may substantially coincide with each other by instantaneously charging the voltage Vint of the first DC capacitor 3.
時刻t3dにて、第1の電力変換回路2Bのスイッチング動作が開始される。この場合、第1の電力変換回路2Bの実効デューティ比が徐々に上昇されることにより、第1の直流コンデンサ3の電圧Vintが徐々に上昇する。
At time t3d, the switching operation of the first power conversion circuit 2B is started. In this case, the effective duty ratio of the first power conversion circuit 2B is gradually increased, so that the voltage Vint of the first DC capacitor 3 is gradually increased.
時刻t4dにて、第1の直流コンデンサ3の電圧Vintが予め定められた第1の閾値電圧Vint,thに達する。このとき、第2の電力変換回路4のスイッチング動作が開始される。これにより、第1の直流コンデンサ3から第2の電力変換回路4を介して第2の直流コンデンサ5に電流が流れ、第2の直流コンデンサ5の充電が開始される。
At time t4d, the voltage Vint of the first DC capacitor 3 reaches the predetermined first threshold voltage Vint,th. At this time, the switching operation of the second power conversion circuit 4 is started. As a result, current flows from the first DC capacitor 3 to the second DC capacitor 5 via the second power conversion circuit 4, and charging of the second DC capacitor 5 is started.
第1の閾値電圧Vint,thは、式(4)の条件を満たす。
The first threshold voltage Vint,th satisfies the condition of Expression (4).
The first threshold voltage Vint,th satisfies the condition of Expression (4).
ここで、第1の電力変換回路2Bの動作中に、第1の直流コンデンサ3の電圧Vintが直流入力電圧Vdcより低くなると、第1の電力変換回路2Bが正常動作(昇圧動作)を継続することができなくなる。具体的には、スイッチング素子21~24のオンオフに関係なく、直流電源12と第1の直流コンデンサ3との間の電流経路が固定される。そのため、第1の直流コンデンサ3の電圧Vintは、直流入力電圧Vdcよりも高く維持される必要がある。
Here, when the voltage Vint of the first DC capacitor 3 becomes lower than the DC input voltage Vdc during the operation of the first power conversion circuit 2B, the first power conversion circuit 2B continues the normal operation (boosting operation). Can't do it. Specifically, the current path between the DC power supply 12 and the first DC capacitor 3 is fixed regardless of whether the switching elements 21 to 24 are turned on or off. Therefore, the voltage Vint of the first DC capacitor 3 needs to be maintained higher than the DC input voltage Vdc.
本実施の形態では、第1の電力変換回路2Bによって第1の直流コンデンサ3の電圧Vintが第1の閾値電圧Vint,thまで上昇されてから第2の電力変換回路4のスイッチング動作が開始される。これにより、第1の直流コンデンサ3の電圧Vintと直流入力電圧Vdcとの間に一定のマージン(余裕)を確保した状態で、第2の電力変換回路4のスイッチング動作を開始させることができる。また、本実施の形態では、第2の電力変換回路4の実効デューティ比は0から徐々に増加され、第1の直流コンデンサ3から第2の直流コンデンサ5に流れる電流は0から徐々に増加する。それにより、第2の電力変換回路4の動作開始に伴う第1の直流コンデンサ3の電圧Vintの急峻な低下が抑制される。
In the present embodiment, the switching operation of the second power conversion circuit 4 is started after the voltage Vint of the first DC capacitor 3 is raised to the first threshold voltage Vint,th by the first power conversion circuit 2B. It As a result, the switching operation of the second power conversion circuit 4 can be started in a state in which a certain margin is provided between the voltage Vint of the first DC capacitor 3 and the DC input voltage Vdc. Further, in the present embodiment, the effective duty ratio of the second power conversion circuit 4 is gradually increased from 0, and the current flowing from the first DC capacitor 3 to the second DC capacitor 5 is gradually increased from 0. .. As a result, a sharp drop in the voltage Vint of the first DC capacitor 3 due to the start of operation of the second power conversion circuit 4 is suppressed.
これらにより、第1の直流コンデンサ3の電圧Vintが直流入力電圧Vdcより低くなることが防止され、第1の電力変換回路2が安定的に正常動作を継続することができる。
With these, the voltage Vint of the first DC capacitor 3 is prevented from becoming lower than the DC input voltage Vdc, and the first power conversion circuit 2 can stably continue normal operation.
また、第1の閾値電圧Vint,thが目標直流電圧Vint*より小さい値に設定されているため、第1の直流コンデンサ3の電圧Vintが過電圧となることが防止されるとともに、第2の電力変換回路4の動作開始までの時間を短くすることができる。
Moreover, since the first threshold voltage Vint,th is set to a value smaller than the target DC voltage Vint*, the voltage Vint of the first DC capacitor 3 is prevented from becoming an overvoltage, and the second power The time until the operation of the conversion circuit 4 starts can be shortened.
その後、第1の直流コンデンサの電圧Vintは、目標直流電圧Vint*に追従するように制御される。
After that, the voltage Vint of the first DC capacitor is controlled so as to follow the target DC voltage Vint*.
時刻t5dにて、第2の直流コンデンサ5の電圧Vlinkが、予め定められた第2の閾値電圧Vlink,thに達すると、第1の電力変換回路2Bおよび第2の電力変換回路4に加えて、第3の電力変換回路6Bのスイッチング動作が開始される。この場合、第3の電力変換回路6Bの実効デューティ比は0から徐々に増加され、かつ抵抗負荷71への交流出力電圧voutが、目標交流出力電圧vout*へと追従するように、第3の電力変換回路6Bが制御される。それにより、第2の直流コンデンサ5から抵抗負荷71に流れる交流出力電圧voutの実効値は、0から徐々に増加される。
At time t5d, when the voltage Vlink of the second DC capacitor 5 reaches the predetermined second threshold voltage Vlink,th, in addition to the first power conversion circuit 2B and the second power conversion circuit 4, The switching operation of the third power conversion circuit 6B is started. In this case, the effective duty ratio of the third power conversion circuit 6B is gradually increased from 0, and the AC output voltage vout to the resistance load 71 follows the target AC output voltage vout*. The power conversion circuit 6B is controlled. As a result, the effective value of the AC output voltage vout flowing from the second DC capacitor 5 to the resistance load 71 is gradually increased from 0.
第2の閾値電圧Vlink,thは、式(5)の条件を満たす。なお、式(5)における「√2Vout*,rms」は、目標交流出力電圧vout*の最大値に相当する。
The second threshold voltage Vlink,th satisfies the condition of Expression (5). Note that “√2Vout*,rms” in the equation (5) corresponds to the maximum value of the target AC output voltage vout*.
The second threshold voltage Vlink,th satisfies the condition of Expression (5). Note that “√2Vout*,rms” in the equation (5) corresponds to the maximum value of the target AC output voltage vout*.
これにより、第2の直流コンデンサ5の電圧Vlinkが目標交流出力電圧vout*の最大値より低くなることが防止される。その結果、第2の直流コンデンサ5が安定的に正常動作を継続することができる。
This prevents the voltage Vlink of the second DC capacitor 5 from becoming lower than the maximum value of the target AC output voltage vout*. As a result, the second DC capacitor 5 can stably continue normal operation.
その後、第2の直流コンデンサの電圧Vlinkは、目標直流電圧Vlink*に追従するように制御される。
After that, the voltage Vlink of the second DC capacitor is controlled so as to follow the target DC voltage Vlink*.
時刻t6dにて、交流出力電圧voutが目標交流出力電圧の実効値Vout,rms*に振幅が√2の正弦波電圧を乗じた目標交流出力電圧vout*まで達すると、第1の電力変換回路2B、第2の電力変換回路4および第3の電力変換回路6Bの全てが上記の定常動作に移行する。
At time t6d, when the AC output voltage vout reaches the target AC output voltage vout* obtained by multiplying the effective value Vout, rms* of the target AC output voltage by the sine wave voltage having the amplitude of √2, the first power conversion circuit 2B. , The second power conversion circuit 4 and the third power conversion circuit 6B all shift to the above-described steady operation.
このように、実施の形態2においても、第1~第3の電力変換回路2B,4,6Bの動作が段階的に開始されることにより、第1~第3の電力変換回路2B,4,6Bの動作が同時に開始される場合と異なり、第1および第2の直流コンデンサ3,5の電圧を個別に制御することができる。それにより、第1および第2の直流コンデンサ3,5の電圧を安定的に上昇させることができる。その後、第1の直流コンデンサ3の電圧Vintが第1の閾値電圧Vint,thに達しかつ第2の直流コンデンサ5の電圧Vlinkが第2の閾値電圧Vlink,thに達した状態で、第3の電力変換回路6の動作が開始されることにより、第1~第3の電力変換回路2B,4,6B内における過電流ならびに第1および第2の直流コンデンサ3,5の過電圧を発生させることなく、電力変換装置100から負荷7への電力供給を安定的に開始させることができる。
As described above, also in the second embodiment, the operations of the first to third power conversion circuits 2B, 4, 6B are started stepwise, whereby the first to third power conversion circuits 2B, 4, 4 are started. Unlike the case where the operations of 6B are simultaneously started, the voltages of the first and second DC capacitors 3 and 5 can be individually controlled. Thereby, the voltage of the first and second DC capacitors 3 and 5 can be stably increased. After that, in a state where the voltage Vint of the first DC capacitor 3 reaches the first threshold voltage Vint,th and the voltage Vlink of the second DC capacitor 5 reaches the second threshold voltage Vlink,th, By starting the operation of the power conversion circuit 6, without generating an overcurrent in the first to third power conversion circuits 2B, 4, 6B and an overvoltage of the first and second DC capacitors 3, 5. The power supply from the power converter 100 to the load 7 can be stably started.
なお、実施の形態2においても、実施の形態1と同様に種々の変更が可能である。例えば、図3の例と同様に、負荷7として電圧源負荷72が用いられてもよく、図8の例と同様に、第1の電力変換回路2Bおよび第3の電力変換回路6Bに他の回路が追加されてもよく、図9の例と同様に、第1~第3の電力変換回路2B,4,6Bにさらに他の電力変換回路が接続されてもよい。
Incidentally, also in the second embodiment, various changes can be made as in the first embodiment. For example, as in the example of FIG. 3, the voltage source load 72 may be used as the load 7, and similarly to the example of FIG. 8, the first power conversion circuit 2B and the third power conversion circuit 6B may be different from each other. A circuit may be added, and as in the example of FIG. 9, another power conversion circuit may be connected to the first to third power conversion circuits 2B, 4, 6B.
制御部8の機能は、電子回路などのハードウェアで実現されてもよく、ソフトウェアで実現されてもよい。図12は、制御部8の少なくとも一部の機能がソフトウェアで実現される例を示す図である。図12の例では、制御部8が、処理装置(プロセッサ)501および記憶装置(メモリ)502を備える。処理装置501は、例えばCPU(中央演算処理装置)であり、記憶装置502に記憶されたプログラムを読み出して実行することにより、上記実施の形態における制御部8の少なくとも一部の機能を実現することができる。
The function of the control unit 8 may be realized by hardware such as an electronic circuit or software. FIG. 12 is a diagram illustrating an example in which at least a part of the functions of the control unit 8 is realized by software. In the example of FIG. 12, the control unit 8 includes a processing device (processor) 501 and a storage device (memory) 502. The processing device 501 is, for example, a CPU (central processing unit), and realizes at least a part of the functions of the control unit 8 in the above-described embodiment by reading and executing a program stored in the storage device 502. You can
1 入力電源
2,2A,2B 第1の電力変換回路
3 第1の直流コンデンサ
4 第2の電力変換回路
5 第2の直流コンデンサ
6,6A,6B 第3の電力変換回路
7 負荷
8 制御部
20 AC/DCコンバータ
31 第1の直流母線
40,600 絶縁型DC/DCコンバータ
51 第2の直流母線
60,200,20B DC/DCコンバータ
60B インバータ
71 抵抗負荷
72 電圧源負荷
91 第4の電力変換回路
92 第5の電力変換回路
100 電力変換装置 1 Input Power Source 2, 2A, 2B First Power Conversion Circuit 3 First DC Capacitor 4 Second Power Conversion Circuit 5 Second DC Capacitor 6, 6A, 6B Third Power Conversion Circuit 7 Load 8 Controller 20 AC/DC converter 31 First direct current bus 40,600 Insulation type DC/DC converter 51 Second direct current bus 60,200,20B DC/DC converter 60B Inverter 71 Resistive load 72 Voltage source load 91 Fourth power conversion circuit 92 fifth power converter circuit 100 power converter
2,2A,2B 第1の電力変換回路
3 第1の直流コンデンサ
4 第2の電力変換回路
5 第2の直流コンデンサ
6,6A,6B 第3の電力変換回路
7 負荷
8 制御部
20 AC/DCコンバータ
31 第1の直流母線
40,600 絶縁型DC/DCコンバータ
51 第2の直流母線
60,200,20B DC/DCコンバータ
60B インバータ
71 抵抗負荷
72 電圧源負荷
91 第4の電力変換回路
92 第5の電力変換回路
100 電力変換装置 1
Claims (13)
- 入力電源からの電圧を直流電圧に変換し、変換後の直流電圧を出力する第1の電力変換回路と、
第1の直流母線を介して前記第1の電力変換回路に接続され、前記第1の電力変換回路から出力された直流電圧を変圧し、変圧後の直流電圧を出力する第2の電力変換回路と、
第2の直流母線を介して前記第2の電力変換回路に接続され、前記第2の電力変換回路から出力された直流電圧を変換し、変換後の直流電圧を負荷に出力する第3の電力変換回路と、
前記第1の直流母線に接続された第1の直流コンデンサと、
前記第2の直流母線に接続された第2の直流コンデンサと、
前記第1、第2および第3の電力変換回路が段階的に動作を開始し、前記第1の直流コンデンサの電圧が第1の閾値電圧に達しかつ前記第2の直流コンデンサの電圧が第2の閾値電圧に達した後に、前記第3の電力変換回路から前記負荷に電力が出力されるように、前記第1、第2および第3の電力変換回路を制御する制御部と、を備える、電力変換装置。 A first power conversion circuit that converts a voltage from an input power source into a DC voltage and outputs the converted DC voltage;
A second power conversion circuit that is connected to the first power conversion circuit via a first DC bus, transforms the DC voltage output from the first power conversion circuit, and outputs the transformed DC voltage. When,
Third power connected to the second power conversion circuit via a second DC bus, converting the DC voltage output from the second power conversion circuit, and outputting the converted DC voltage to a load. A conversion circuit,
A first DC capacitor connected to the first DC bus,
A second DC capacitor connected to the second DC bus,
The first, second, and third power conversion circuits start operating stepwise, the voltage of the first DC capacitor reaches the first threshold voltage, and the voltage of the second DC capacitor is changed to the second voltage. A control unit that controls the first, second, and third power conversion circuits so that electric power is output from the third power conversion circuit to the load after the threshold voltage is reached. Power converter. - 前記制御部は、
前記入力電源から前記第1の電力変換回路に電圧が与えられた状態で前記第1、第2および第3の電力変換回路が順に動作を開始することによって前記第1および第2の直流コンデンサが順に充電されるように、前記第1、第2および第3の電力変換回路を制御する、請求項1に記載の電力変換装置。 The control unit is
The first, second, and third power conversion circuits sequentially start operating in a state in which a voltage is applied to the first power conversion circuit from the input power source, whereby the first and second DC capacitors are The power conversion device according to claim 1, wherein the first, second, and third power conversion circuits are controlled so as to be sequentially charged. - 前記制御部は、
前記第1の直流コンデンサの電圧が前記第1の閾値電圧に達すると、前記第2の電力変換回路の動作を開始させる、請求項2に記載の電力変換装置。 The control unit is
The power conversion device according to claim 2, wherein when the voltage of the first DC capacitor reaches the first threshold voltage, the operation of the second power conversion circuit is started. - 前記制御部は、前記第2の電力変換回路の動作開始時に前記第2の電力変換回路のデューティ比を徐々に上昇させる、請求項2または3に記載の電力変換装置。 The power conversion device according to claim 2 or 3, wherein the control unit gradually increases the duty ratio of the second power conversion circuit when the operation of the second power conversion circuit is started.
- 前記制御部は、
前記第2の直流コンデンサの電圧が前記第2の閾値電圧に達すると、前記第3の電力変換回路の動作を開始させる、請求項2~4のいずれか一項に記載の電力変換装置。 The control unit is
The power conversion device according to any one of claims 2 to 4, wherein when the voltage of the second DC capacitor reaches the second threshold voltage, the operation of the third power conversion circuit is started. - 前記制御部は、前記第3の電力変換回路の動作開始時に前記第2の電力変換回路のデューティ比を徐々に上昇させる、請求項2~5のいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 2 to 5, wherein the control unit gradually increases the duty ratio of the second power conversion circuit when the operation of the third power conversion circuit is started.
- 前記負荷は、自発的に電圧を発生する電圧源負荷であり、
前記制御部は、
前記入力電源から前記第1の電力変換回路に電圧が与えられた状態で前記第1の電力変換回路が動作を開始し、前記電圧源負荷から前記第3の電力変換回路に電圧が与えられた状態で前記第3の電力変換回路の動作を開始し、前記第1の直流コンデンサの電圧が前記第1の閾値電圧に達しかつ前記第2の直流コンデンサの電圧が前記第2の閾値電圧に達すると、前記第2の電力変換回路の動作を開始させる、請求項1に記載の電力変換装置。 The load is a voltage source load that spontaneously generates a voltage,
The control unit is
The first power conversion circuit starts operating in a state in which a voltage is applied to the first power conversion circuit from the input power source, and a voltage is applied to the third power conversion circuit from the voltage source load. In this state, the operation of the third power conversion circuit is started, the voltage of the first DC capacitor reaches the first threshold voltage, and the voltage of the second DC capacitor reaches the second threshold voltage. Then, the power conversion device according to claim 1, which starts the operation of the second power conversion circuit. - 前記制御部は、前記第2の電力変換回路の動作開始時に前記第2の電力変換回路のデューティ比を徐々に上昇させる、請求項7に記載の電力変換装置。 The power conversion device according to claim 7, wherein the control unit gradually increases the duty ratio of the second power conversion circuit when the operation of the second power conversion circuit is started.
- 前記制御部は、前記第1、第2および第3の電力変換回路の全てが動作を開始した後に、前記第1の直流コンデンサの電圧が第1の目標電圧に追従しかつ前記第2の直流コンデンサの電圧が第2の目標電圧に追従するように前記第1、第2および第3の電力変換回路を制御し、
前記第1の閾値電圧は前記第1の目標電圧よりも低く、前記第2の閾値電圧は前記第2の目標電圧よりも低い、請求項1~8のいずれか一項に記載の電力変換装置。 The control unit controls the voltage of the first DC capacitor to follow a first target voltage and the second DC voltage after all of the first, second and third power conversion circuits start operating. Controlling the first, second and third power conversion circuits so that the voltage of the capacitor follows the second target voltage,
The power conversion device according to claim 1, wherein the first threshold voltage is lower than the first target voltage, and the second threshold voltage is lower than the second target voltage. .. - 前記第1の電力変換回路は昇圧回路であり、前記第1の閾値電圧は、前記入力電源から前記第1の電力変換回路に与えられる電圧よりも高い、請求項1~9のいずれか一項に記載の電力変換装置。 10. The first power conversion circuit is a booster circuit, and the first threshold voltage is higher than a voltage applied from the input power supply to the first power conversion circuit. The power converter according to.
- 前記第3の電力変換回路は降圧回路であり、前記第2の閾値電圧は、前記第3の電力変換回路から前記負荷に与えられる電圧よりも高い、請求項1~10のいずれか一項に記載の電力変換装置。 The third power conversion circuit is a step-down circuit, and the second threshold voltage is higher than a voltage applied to the load from the third power conversion circuit. The power converter described.
- 前記入力電源は交流電源であり、
前記第1の電力変換回路は、前記入力電源からの交流電圧を直流電圧へ変換するAC/DCコンバータを含み、
前記第3の電力変換回路は、前記第2の電力変換回路から出力された直流電圧を変圧するDC/DCコンバータを含む、請求項1~11のいずれか一項に記載の電力変換装置。 The input power source is an AC power source,
The first power conversion circuit includes an AC/DC converter that converts an AC voltage from the input power supply into a DC voltage,
The power conversion device according to any one of claims 1 to 11, wherein the third power conversion circuit includes a DC/DC converter that transforms the DC voltage output from the second power conversion circuit. - 前記入力電源は直流電源であり、
前記第1の電力変換回路は、前記入力電源からの直流電圧を変圧するDC/DCコンバータを含み、
前記第3の電力変換回路は、前記第2の電力変換回路から出力された直流電圧を交流電圧へ変換するインバータを含む、請求項1~12のいずれか一項に記載の電力変換装置。 The input power source is a DC power source,
The first power conversion circuit includes a DC/DC converter that transforms a DC voltage from the input power source,
The power conversion device according to any one of claims 1 to 12, wherein the third power conversion circuit includes an inverter that converts the DC voltage output from the second power conversion circuit into an AC voltage.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019512015A JP6523592B1 (en) | 2018-12-18 | 2018-12-18 | Power converter |
PCT/JP2018/046577 WO2020129157A1 (en) | 2018-12-18 | 2018-12-18 | Power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/046577 WO2020129157A1 (en) | 2018-12-18 | 2018-12-18 | Power conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020129157A1 true WO2020129157A1 (en) | 2020-06-25 |
Family
ID=66730711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/046577 WO2020129157A1 (en) | 2018-12-18 | 2018-12-18 | Power conversion device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6523592B1 (en) |
WO (1) | WO2020129157A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110429837A (en) * | 2019-08-02 | 2019-11-08 | 矽力杰半导体技术(杭州)有限公司 | Wide scope input and output AC-DC converter |
JP7297972B1 (en) | 2022-04-26 | 2023-06-26 | 日本航空電子工業株式会社 | power supply |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010226917A (en) * | 2009-03-25 | 2010-10-07 | Honda Motor Co Ltd | Switching power supply unit |
JP2017084716A (en) * | 2015-10-30 | 2017-05-18 | 三菱電機株式会社 | Lighting device and luminaire |
JP2018067985A (en) * | 2016-10-17 | 2018-04-26 | コーセル株式会社 | Switching power supply device and control method therefor |
JP2018074876A (en) * | 2016-11-04 | 2018-05-10 | コーセル株式会社 | Switching power supply device and control method thereof |
-
2018
- 2018-12-18 JP JP2019512015A patent/JP6523592B1/en active Active
- 2018-12-18 WO PCT/JP2018/046577 patent/WO2020129157A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010226917A (en) * | 2009-03-25 | 2010-10-07 | Honda Motor Co Ltd | Switching power supply unit |
JP2017084716A (en) * | 2015-10-30 | 2017-05-18 | 三菱電機株式会社 | Lighting device and luminaire |
JP2018067985A (en) * | 2016-10-17 | 2018-04-26 | コーセル株式会社 | Switching power supply device and control method therefor |
JP2018074876A (en) * | 2016-11-04 | 2018-05-10 | コーセル株式会社 | Switching power supply device and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6523592B1 (en) | 2019-06-05 |
JPWO2020129157A1 (en) | 2021-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10211719B2 (en) | Power converter | |
US9667153B2 (en) | Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices | |
US10763754B2 (en) | Power supply device | |
JP6150018B2 (en) | DC-DC converter, power converter, power generation system, and DC-DC conversion method | |
US10044278B2 (en) | Power conversion device | |
US8929106B2 (en) | Monotonic pre-bias start-up of a DC-DC converter | |
US11664737B2 (en) | DC transformation system | |
EP2571154A2 (en) | PV inverter with input parallel output series connected flyback converters feeding a fullbridge grid converter | |
US20160233777A1 (en) | Power conversion device | |
CN111542999A (en) | Power conversion device | |
US20210249963A1 (en) | Power conversion device | |
US10193464B2 (en) | DC-DC converter | |
TW201919319A (en) | DC-DC converter and power conditioner | |
KR20190115364A (en) | Single and three phase combined charger | |
EP2975753A1 (en) | A three-level converter | |
US11689112B2 (en) | DC-DC converter and vehicle | |
JP6523592B1 (en) | Power converter | |
US20220393472A9 (en) | Vehicle-grid-home power interface | |
JP2016158353A (en) | Power conversion device | |
JPWO2015052743A1 (en) | Power converter | |
Wei et al. | Efficiency-oriented optimized design and control of hybrid FSBB-CLLC converters with partial power processing capability | |
JP6270753B2 (en) | Power converter | |
EP2421134A1 (en) | Current-fed quadratic buck converter | |
KR102703873B1 (en) | Fast charger for electric vehicles operable in high-efficiency and method of operating the same | |
US20220173666A1 (en) | Voltage conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019512015 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18944054 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18944054 Country of ref document: EP Kind code of ref document: A1 |