WO2020128362A1 - Extenseur perfectionne et ensemble roulant comportant un tel extenseur - Google Patents

Extenseur perfectionne et ensemble roulant comportant un tel extenseur Download PDF

Info

Publication number
WO2020128362A1
WO2020128362A1 PCT/FR2019/053200 FR2019053200W WO2020128362A1 WO 2020128362 A1 WO2020128362 A1 WO 2020128362A1 FR 2019053200 W FR2019053200 W FR 2019053200W WO 2020128362 A1 WO2020128362 A1 WO 2020128362A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
windings
axially
inertia
rim
Prior art date
Application number
PCT/FR2019/053200
Other languages
English (en)
Inventor
Daniel Walser
Bertrand Vedy
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1873494A external-priority patent/FR3090487A3/fr
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to CA3121666A priority Critical patent/CA3121666A1/fr
Priority to EP19848931.2A priority patent/EP3898288A1/fr
Priority to US17/415,805 priority patent/US20220144020A1/en
Priority to CN201980082991.3A priority patent/CN113195264A/zh
Publication of WO2020128362A1 publication Critical patent/WO2020128362A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/0209Supplementary means for securing the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • B60B21/10Rims characterised by the form of tyre-seat or flange, e.g. corrugated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B25/00Rims built-up of several main parts ; Locking means for the rim parts
    • B60B25/04Rims with dismountable flange rings, seat rings, or lock rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B25/00Rims built-up of several main parts ; Locking means for the rim parts
    • B60B25/04Rims with dismountable flange rings, seat rings, or lock rings
    • B60B25/10Seat rings for the tyre bead part, e.g. split
    • B60B25/12Seat rings for the tyre bead part, e.g. split with integral flange part

Definitions

  • the subject of the invention is an expander for a rolling assembly constituted by a tire and a rigid rim connected together by an expander capable of offering a certain elastic flexibility during an impact sustained during rolling, as well as a rolling assembly comprising it.
  • a tire comprises, as is known, two beads intended to be mounted on the seats of a rim.
  • the present invention relates to rolling assemblies in which a tire bead is not mounted directly on a rigid rim, but is mounted on a flexible expander, which expander is itself mounted on a rigid rim.
  • a tire, a rim, as well as a stent which is involved in the present invention are usually described by a representation in a meridian plane, that is to say a plane containing the axis of rotation of the tire. All these products (the tire, the rim, the expander) are objects having a geometry of revolution relative to the axis of rotation of the tire.
  • the radial and axial directions respectively designate the directions, the first, perpendicular to the axis of rotation of the tire, and the second, parallel to the axis of rotation of the tire.
  • the expressions “radially” and “axially” mean respectively “in a radial direction” and “in the axial direction”.
  • radially interior, respectively radially exterior mean “closer, respectively farther, from the axis of rotation of the tire, in a radial direction”.
  • a median plane is a plane perpendicular to the axis of rotation of the tire, positioned axially so as to cut the surface of the tread approximately halfway between the beads of a tire.
  • axially interior, respectively axially exterior mean “closer, respectively farther, from the median plane of the tire, in the axial direction”.
  • radial section or “radial section” means a section or section along a plane which contains the axis of rotation of the tire.
  • WO2016 / 046197 proposes to arrange a flexible expander between a bead of tire and a rim.
  • the rolling assembly according to this document comprises a tire, a rim and two identical expanders.
  • a stent comprises, axially from the inside to the outside, an axially inner end called a bead of expander and intended to ensure the attachment of the expander to the rim.
  • Such a stent also includes an axially outer end intended to receive and immobilize axially a bead of tire.
  • a body connects the two ends respectively axially inner and axially exterior.
  • the expanders are mounted on a rim which is mostly an aluminum part.
  • the rim has on each side a rim hook intended in particular to immobilize in the axial direction of the expander.
  • a flexible expander must, on the one hand, have a certain elastic flexibility, for example during an impact against a sidewalk or when passing through a "pothole” and, on the other hand, it must have sufficient rigidity when driving in order to give correct behavior to the vehicle and to allow a wheel comprising it to pass the various validation tests, such as the high-pressure inflation test or the biaxial endurance test (generally known as ZWARP test).
  • the ends of the expander are provided with reinforcing elements connected by at least one reinforcing ply, and more particularly the axially outer end of the expander is provided with an annular rod of section generally circular in shape generally made of a plurality of strands of steel wire.
  • a flexible expander comprising an annular rod of globally polygonal section produced on the basis of a unitary metallic wire wound in contiguous fashion around a support at least three times in an axial direction and at minus twice in a radial direction.
  • the bead wire is surrounded by sheets of rubber and forms therewith the axially outer end of the stent which supports the bead of the tire and is located axially outside of the latter.
  • the expanders are mounted on a metal rim which is mostly an aluminum part.
  • the rim has on each side a rim hook intended in particular to immobilize in the axial direction of the expander.
  • type “J” hooks with a width of between 11 and 15 mm are most frequently encountered.
  • the ETRTO standard for European Tire and Rim Technical Organization
  • J-N type hooks for an aluminum rim whose width is between 8 and 15 mm. Such a hook is less wide than a “J” type hook, which allows to gain mass but also to better protect the central part of the rim against sidewalk rasping.
  • the object of the invention is to remedy the aforementioned drawbacks and to propose an expander for a rolling assembly produced so as to guarantee sufficient mechanical stability in rolling and to absorb shocks without being permanently deformed, while making it possible to protect its axially outer end during sidewalk grating.
  • the subject of the invention is therefore a stent for a rolling assembly with an axis of rotation XX ′ comprising a tire, having two beads and a rim, the stent being intended to ensure the junction between one of the beads and the rim, said stent comprising an axially inner end, an axially outer end and a body oriented mainly axially and disposed between said axially outer end and said axially inner end so that, when mounted within the assembly, said axially inner end is intended to be immobilized on said rim, said axially external end comprising an external reinforcement element is intended to receive a bead of tire, in which said external reinforcement is a structure substantially of revolution around the axis XX 'comprising several windings d '' at least one wire arranged axially next to each other on several radially s layers superimposed on each other, characterized in that the section of the external reinforcement has a ratio of the moments of inertia Ix / ly greater
  • the expander In the operating position, when mounted within the rolling assembly, the expander is immobilized with its axially inner end on the rim while the other end forms a bearing surface or seat for the bead of the tire, the reinforcing element of the axially outer end being located axially outside the seat of the bead of tire.
  • the reinforcing element of the axially outer end is designed so as to oppose a lot of flexural strength along an axis parallel to the axis of rotation of the rolling assembly in order to give it mechanical stability in rolling, but also to resist buckling stresses in compression and / or when the rolling assembly is under high inflation pressure.
  • the external reinforcing element of the expander of the invention is produced so that it has a greater moment of inertia Ix along a first axis substantially parallel to the axis of rotation of the rolling assembly and a lower moment of inertia ly along a second axis which is perpendicular to the first. Furthermore, for a limited axial width of the reinforcing element, width between 6 and 9 mm, it has been found that the ratio between Ix and ly is greater than 1.3.
  • the geometry of the external reinforcing element of the expander makes it possible to limit the stresses seen by the windings of the reinforcement which have a purely elastic behavior in operation.
  • the ratio between Ix and ly is greater than 1.3, preferably greater than 1.30 and more preferably greater than or equal to 1.35 and even more preferably greater than or equal to 1.38.
  • the stent of the invention therefore has sufficient bending stiffness, which makes it possible to impart sufficient rigidity under normal rolling conditions to the rolling assembly which it equips, while having sufficient radial elastic flexibility to allow it to absorb the shocks undergone by rolling while being elastically deformed, and while limiting the axial width of its axially outer end which is intended to support the bead of a tire of the rolling assembly.
  • the section of the external reinforcement of the stent of the invention has an axial width I and a radial height h and can have a form factor h / l greater than 1.3 and preferably between 1.3 and 2.
  • the section of the external reinforcement of the stent of the invention has main moments of inertia of concurrent axes 11 and 12 which can make a non-zero angle with Ix, respectively ly.
  • main moments of inertia of a section we understand, in a manner known in the resistance of materials, the moments of inertia having the greatest value for 11 and respectively the smallest value for 12.
  • the main axes of inertia are always perpendicular to each other.
  • the ratio between the main moments of inertia 11 and 12 can be greater than 2.
  • the windings of at least one strand of the stent of the invention form a radially innermost alignment and at least a second adjacent alignment superimposed on the first called lines in which the axis passing through the centers of the lines are parallel to each other and the wires of the most axially inward alignments form a first column and the axially adjacent axially outward alignments form at least a second column where the axes passing through the centers of the wires of the columns are parallel to each other and where the axis passing through the center of the windings of a line makes an angle b with the axis passing through the center of the windings of a column of wire, angle b which can be different from 90 °.
  • the windings of the external reinforcement of the stent of the invention may comprise at least two windings arranged axially next to each other on at least three layers radially superposed on each other.
  • the windings of the external reinforcement of the expander can be produced on the basis of a metallic unitary wire with a diameter between 2 and 5 mm and preferably between 2.15 and 3 mm.
  • the windings of the external reinforcement of the stent can be produced on the basis of a metallic unitary wire coated with a polymeric composition, preferably an elastomeric composition.
  • the external reinforcement of the expander can be arranged so that the main axis of its section is inclined with respect to an axis perpendicular to the axis XX '.
  • the invention also relates to a rolling assembly with an axis of rotation X-X 'comprising a tire having two beads, a rim and a stent of the invention.
  • FIG. 1b is an enlargement of the external reinforcement element of the expander of FIG. 1a
  • FIG. 2a is a partial meridian section of a rolling assembly with a stent according to a first embodiment of the invention
  • FIG. 2b is an enlargement of the external reinforcement element of the expander of FIG. 2a
  • FIG. 2c is an enlargement of an outer reinforcing element according to a variant of realization of the assembly of FIG. 2a,
  • FIG. 3a is a partial meridian section of a rolling assembly with a stent produced according to a second embodiment of the invention
  • FIG. 3b is an enlargement of the external reinforcing element of the expander of Figure 3a.
  • the figure shows a partial view of a rolling assembly 1 according to the prior art.
  • This assembly has an axis of rotation X-X ', an axis YY' perpendicular to the first and included in a median plane, it comprises two identical expanders 100 (only one being illustrated in the figure), a tire 2 and a rim 3.
  • the tire 2 has two beads 21.
  • the rim 3 has two seats on the rim 31, each extended by a rim flange 32.
  • the rim flange 32 has a radially outer support face 33 intended to serve as a support for the body of the expander.
  • the bearing face 33 of the rim flange 32 is in contact with the stent 100 when the tire is mounted on the stents and when these are mounted on the rim, the tire being inflated to nominal pressure.
  • the expander 100 has an axially inner end 10 intended to be mounted on one of said seats on a rim 3. It has an axially outer end 11 as well as a body 12 oriented substantially axially and disposed between said axially outer end 11 and said axially inner end 10.
  • the axially inner end 10 of the expander has an axial positioning face substantially perpendicular to the axis of rotation XX ", and is immobilized by being pressed axially against the rim flange 32, under the effect the inflation pressure of the tire 2 and a particular geometry of the rim flange.
  • the axially outer end 11 has a shoulder 16 forming a face substantially perpendicular to the axis of rotation XX ′.
  • Said expander 100 comprises a seat on stent 14 for the tire bead 21.
  • the bead 21 is immobilized by being pressed axially on said seat 14 against said shoulder 16 of the ext axially outer remnant 11 of the expander, under the effect of the inflation pressure of the tire.
  • the expander thus produced has a shape of revolution around a central axis.
  • the expander When in the unassembled state on the rolling assembly, the expander has a generally annular shape. After its assembly within the rolling assembly, its central axis becomes identical to the axis XX 'of the rolling assembly.
  • the axially inner end 10 of the stent includes an inner reinforcing element 17 connected to the outer reinforcing element 15 by a reinforcing ply 19 made from reinforcing threads embedded in an elastomeric composition.
  • the reinforcing ply 19 forms with the elements of reinforcement 15, 17 an internal structure of the stent.
  • Other external elastomeric layers surround the internal structure of the stent.
  • the assembly of the assembly is done by arranging each expander 100 on the rim 3 and then mounting the tire 2 on the expander 100. Once the assembly has been carried out, the bead of the tire imposes a circumferential contraction of the expander 100.
  • the attached figures illustrate the rolling assembly with the elements assembled.
  • Figure lb illustrates the reinforcing element 15 of the expander of Figure la on an enlarged scale.
  • the width of the axially outer end 11 is 18.7 mm, it is obtained with an annular reinforcement or rod produced by several windings of a metal wire 4 having a diameter of 2 , 15mm. More particularly, such a rod is obtained by winding the metal wire on six radially superposed layers, the first most radially inner layer has 4 windings, it is followed by a second having 5
  • the windings of two adjacent layers are offset axially with respect to each other, and they form parallel lines between them corresponding to the axial windings and the windings of the radially superposed layers form columns parallel to each other.
  • the windings are produced in a known manner, so that the axis passing through the center of the windings of a line is perpendicular to the axis of the windings of a column.
  • the section of the rod thus obtained has a width "I" equal to 10.8 mm and a height "h” equal to 11.5 mm.
  • the calculated moments of inertia of the section of the rod in particular the moment Ix calculated according to a first axis xx 'which is parallel to the axis of rotation XX' of the assembly and passing through the center of gravity of the section is equal to 854 mm4 and the moment of inertia ly along a second axis perpendicular to the first and passing through the center of gravity of the section is equal to 647 mm4.
  • the main moments of inertia 11 and 12 are equal to Ix respectively ly.
  • the invention provides a solution according to the examples illustrated in Figures 2a to 3b.
  • Figure 2a shows in partial meridian section an embodiment of a stent 100 according to a first embodiment of the invention.
  • This expander differs from that illustrated in FIG. 1a by an axial end 11 having a reduced axial width, of the order of 16.9 mm, while having an excellent ability to deform elastically during an impact, such as the impact of the wheel against the pavement, for example.
  • This reduced axial width is obtained using a rod or external reinforcing element 15 whose section has an advantageous geometry.
  • an external reinforcement element 15 has been produced which is a structure substantially of revolution around the axis XX 'comprising several windings of a wire 4 arranged axially next to each other on several layers radially superimposed on each other and whose section geometry is such that the ratio of the moments of inertia Ix / ly is greater than 1.3. More particularly, the external reinforcement 15 was obtained on the basis of a metal wire 4 of round section, the diameter of the wire being equal to 2.4 mm and by making four windings arranged axially next to each other on three radially layers superimposed on each other and comprising a fourth radially outer layer with three windings.
  • windings thus form four lines 41 of wire parallel to each other and four columns 4c of wire parallel to each other.
  • the axis passing through the centers of the wires of a line 41 forms an angle b with the axis passing through the centers of the wires of a column 4c, an angle which is different from 90 °. More particularly, the angle b is equal to 60 °.
  • the section of the external reinforcement element 15 of FIG. 2b thus obtained has an axial width "I" equal to 8.9 mm and a radial height "h” equal to 11.8 mm.
  • the moments of inertia calculated from the section of the reinforcing element, in particular the moment Ix calculated along a first axis xx 'which is parallel to the axis of rotation XX' of the assembly and passing through the center of gravity of the section is equal to 525 mm4 and the moment of inertia ly along a second axis perpendicular to the first and passing through the center of gravity of the section is equal to 379 mm4.
  • the main moments of inertia of concurrent axes 11 and 12 make an angle cp equal to 30 ° with the axes of the moments of inertia Ix, respectively ly and their values calculated for the section of Figure 2b are 619 mm4 for Il and 285 mm 4 for 12.
  • main moments of inertia of a section we understand, in a manner known in the resistance of materials, the moments of inertia having the largest value for 11 and respectively the smallest value for 12.
  • the main axes of inertia associated 1-1 and 2-2 are always perpendicular to each other.
  • Such an external reinforcing element 15 is produced on the basis of a metal wire, such as a steel wire, preferably comprising a steel core preferably covered with brass, the wire being coated with a polymeric composition, preferably a elastomeric composition to ensure cohesion between the threads.
  • the winding is done by slicing, layer by layer on a support in inclined plane shape.
  • FIG. 2c A variant of this embodiment is shown in Figure 2c. More particularly, the external reinforcement 15 was obtained on the basis of a metallic wire 4 of round section, the diameter of the wire being equal to 2.3 mm and by producing a first radially inner layer of three
  • windings arranged axially next to each other, followed by three other radially superimposed layers each having four windings arranged axially against each other out of three and which ends with a fifth layer radially superimposed on the preceding ones and three windings arranged axially against each other other.
  • These windings thus form five lines 41 of wire parallel to each other and four columns 4c of wire parallel to each other.
  • the axis passing through the centers of the wires of a line 41 forms an angle b with the axis passing through the centers of the wires of a column 4c, an angle which is different from 90 °. More particularly, the angle b is equal to 60 °.
  • the section of the external reinforcement element 15 of FIG. 2c thus obtained has an axial width "I" equal to 8.6 mm and a radial height "h” equal to 12.6 mm.
  • the moments of inertia calculated from the section of the reinforcing element in particular the moment Ix calculated along a first axis xx 'which is parallel to the axis of rotation XX' of the assembly and passing through the center of gravity of the section is equal to 703 mm4 and the moment of inertia ly along a second axis perpendicular to the first and passing through the center of gravity of the section is equal to 369 mm4.
  • the main moments of inertia of concurrent axes 11 and 12 make an angle cp equal to 14 ° with the axes of the moments of inertia Ix, respectively ly and their values calculated for the section of Figure 2b are 727 mm4 for Il and 345 mm4 for 12.
  • Such an external reinforcement element 15 of FIG. 2c is produced in the same manner as that described with reference to the reinforcement element of FIG. 2b, by slicing in one direction, then in the other, on a support inclined at starting from the end with the smallest diameter to get five radially superimposed layers, the first having three windings, the following three each having four windings and the last three axial windings.
  • Figures 3a and 3b illustrate a second embodiment of a stent according to the invention.
  • the particular geometry of the section of the external reinforcing element 15 makes it possible to obtain a stent 100 with a very reduced axial width, being equal to 14.3 mm, which ensures good protection of the stent during sidewalk rasping, while giving it excellent capacity to deform elastically during an impact, such as the impact of the wheel against the sidewalk for example, and mechanical stability in rolling.
  • an external reinforcing element 15 which is a structure substantially of revolution around the axis XX ′ and comprises several windings of a metallic wire 4 of round section and of a diameter equal to 3 mm, the structure comprising two windings arranged axially next to each other on four layers radially superposed on each other. These windings thus form four lines 41 of wire parallel to each other and two columns 4c of wire parallel to each other.
  • the axis passing through the centers of the wires of a line 41 forms an angle b with the axis passing through the centers of the wires of a column 4c, an angle which is different from 90 °. More particularly, the angle b is equal to 60 °.
  • the section of the external reinforcing element 15 of FIG. 3b thus obtained has an axial width "I" equal to 8.2 mm and a radial height "h" equal to 12.5 mm.
  • the moments of inertia calculated from the section of the reinforcing element in particular the moment Ix calculated along a first axis xx 'which is parallel to the axis of rotation XX' of the assembly and passing through the center of gravity of the section is equal to 634 mm4 and the moment of inertia ly along a second axis perpendicular to the first and passing through the center of gravity of the section is equal to 193 mm4.
  • the main moments of inertia of concurrent axes 11 and 12 make an angle cp equal to 20.4 ° with Ix, respectively ly and their values calculated for the section of Figure 3b are 705 mm4 for 11 and 122 mm4 for 12.
  • Such an external reinforcing element 15 of FIG. 3b is produced in a similar manner to that previously described, by making windings of metal wire coated with elastomeric composition side by side on a support inclined at an angle 90 ° -b, by slicing in one direction, then in the other, on an inclined support starting from the end having the smallest diameter to obtain four radially superposed layers, each having two axial windings.
  • the reinforcing element of FIG. 3b is modified.
  • the last radially outer layer superimposed on the previous three comprises only one winding, the last winding axially outside being omitted, while the other layers below each include two windings, as in Figure 3b. This makes it possible to have a reinforcing element with a smaller radial size, while retaining the required mechanical properties.
  • the moment of inertia along the axis Ix is different from the moment of inertia along the main axis 11 and the moment of inertia along the axis ly is different from the moment of inertia along the main axis 12. More particularly, the main axes 1-1 and 2-2 of the main moments 11 and 12 make an angle cp with the axes xx 'respectively yy' of the moments Ix, respectively ly.
  • This angle of inclination cp is present from the completion of the windings of the external reinforcement and is such that the intersection between the extension of the axis 2-2 with the axis XX 'of the wheel is on the inner side of the wheel or in other words, it makes it possible to arrange the external reinforcement so that the longitudinal direction of the windings of the external reinforcement 15 is oriented towards the outside when the expander is in place within the rolling assembly in order to anticipate the movement of rotation which takes the section of the external reinforcement in the event of a violent shock suffered by the assembly.
  • longitudinal direction of the windings is understood a direction parallel to the largest dimension of the section of the reinforcement.
  • the external reinforcement 15 is arranged so that the direction
  • longitudinal of the windings is inclined outwards with respect to an axis perpendicular to the axis of rotation XX 'of the rolling assembly when the expander is in the mounted position within the assembly.
  • Such an outward inclination makes it possible to anticipate the rotational movement undergone by the external reinforcement element during an impact and therefore to help the external reinforcement element to initiate the rotational movement when it undergoes a violent shock.
  • the shape of the section of the external reinforcing element according to the invention has a radial height "h" markedly greater than its axial width "I", for a form factor h / l greater than 1.3.
  • the ratio of moments of inertia Ix / ly is also greater than 1.3.
  • Sufficient rigidity is thus obtained during ovalization and therefore mechanical stability in normal operation of the rolling assembly (characterized by the moment of inertia about an axis parallel to that of rotation of the rolling assembly).
  • the rolling assembly equipped with the expander of the invention leads to an elastic deformation of the latter which is a progressive pouring of the section of the external reinforcement in the plane of the impact.
  • the greater the deformation the more this reinforcement rotates around itself and the more the inertia around the axis x-x 'decreases, thus making it possible to limit the stress seen by the wires which enter into the constitution of the reinforcement.
  • the external reinforcement thus produced allows gains in mass and size.
  • Other variants and embodiments of the invention can be envisaged without departing from the scope of its claims.
  • the external reinforcement whose section has a general shape of
  • a metal wire not covered with a polymer composition is used.
  • metallic wires of different diameters are used to make the windings constituting the external reinforcement of the expander of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ropes Or Cables (AREA)

Abstract

Extenseur pour un ensemble roulant d'axe de rotation X-X' comprenant un pneumatique (2), une jante (3), et un extenseur (100), ledit extenseur comprenant une extrémité axialement intérieure (10), une extrémité axialement extérieure (11) et un corps (12), dans lequel ladite extrémité axialement extérieure comprend un élément de renfort extérieur (15) qui est une structure sensiblement de révolution autour de l'axe X-X' comprenant plusieurs enroulements d'au moins un fil agencés axialement les uns à côté des autres sur plusieurs couches radialement superposéesles unes sur les autres. Selon l'invention, la section du renfort extérieur (15) présente un rapport des moments d'inertie Ix/Iy supérieur à 1,3 pour une largeur axiale comprise entre 6 et 9 mm, où Ix est le moment d'inertie autour d'un premier axe passant par son centre de gravité et parallèle à l'axe de rotation X-X' et Iy est le moment d'inertie autour d'un deuxième axe passant par son centre de gravité et perpendiculaire au premier axe.

Description

Description
EXTENSEUR PERFECTIONNE ET ENSEMBLE ROULANT COMPORTANT UN TEL EXTENSEUR
L'invention a pour objet un extenseur pour un ensemble roulant constitué par un pneumatique et une jante rigide reliés ensemble par un extenseur apte à offrir une certaine flexibilité élastique lors d'un choc subi pendant le roulement, ainsi qu'un ensemble roulant le comportant. Un pneumatique comprend, comme on le sait, deux bourrelets destinés à être montés sur les sièges d'une jante. La présente invention concerne les ensembles roulants dans lesquels un bourrelet de pneumatique n'est pas monté directement sur une jante rigide, mais est monté sur un extenseur flexible, extenseur qui, lui, est monté sur une jante rigide.
Un pneumatique, une jante, ainsi qu'un extenseur dont il est question dans la présente invention sont usuellement décrits par une représentation dans un plan méridien, c'est-à-dire un plan contenant l'axe de rotation du pneumatique. Tous ces produits (le pneumatique, la jante, l'extenseur) sont des objets ayant une géométrie de révolution par rapport à l'axe de rotation du pneumatique. Les directions radiale et axiale désignent respectivement les directions, la première, perpendiculaire à l'axe de rotation du pneumatique, et la seconde, parallèle à l'axe de rotation du pneumatique. Dans ce qui suit, les expressions « radialement » et « axialement » signifient respectivement « selon une direction radiale » et « selon la direction axiale ». Les expressions « radialement intérieur, respectivement radialement extérieur » signifient « plus proche, respectivement plus éloigné, de l'axe de rotation du pneumatique, selon une direction radiale ». Un plan médian est un plan perpendiculaire à l'axe de rotation du pneumatique, positionné axialement de façon à couper la surface de la bande de roulement sensiblement à mi-distance des bourrelets d'un pneumatique. Les expressions « axialement intérieur, respectivement axialement extérieur » signifient « plus proche, respectivement plus éloigné, du plan médian du pneumatique, selon la direction axiale ». Par ailleurs, par « coupe radiale » ou « section radiale », on entend une coupe ou une section selon un plan qui contient l'axe de rotation du pneumatique.
Le document WO2016/046197 propose d'agencer un extenseur flexible entre un bourrelet de pneumatique et une jante. L'ensemble roulant selon ce document comprend un pneumatique, une jante et deux extenseurs identiques. En considérant les conventions de langage rappelées ci-dessus, et en se reportant à la façon dont on monte un extenseur sur une jante, un tel extenseur comprend, axialement de l'intérieur vers l'extérieur, une extrémité axialement intérieure appelée bourrelet d'extenseur et destinée à assurer l'accrochage de l'extenseur sur la jante. Un tel extenseur comprend aussi une extrémité axialement extérieure destinée à recevoir et immobiliser axialement un bourrelet de pneumatique. Un corps relie les deux extrémités respectivement axialement intérieure et axialement extérieure. Les extenseurs sont montés sur une jante qui est la plupart du temps une pièce en aluminium. La jante présente de chaque côté un crochet de jante destiné à assurer en particulier l'immobilisation en direction axiale de l'extenseur.
Un extenseur flexible doit, d'une part, présenter une certaine flexibilité élastique par exemple lors d'un choc contre un trottoir ou lors du passage dans un « nid-de-poule » et, d'autre part, il doit présenter suffisamment de rigidité en roulage afin de conférer un comportement correct au véhicule et de permettre au préalable à une roue le comportant de passer les différents tests de validation, tel le test de gonflage à haute pression ou le test d'endurance biaxial (généralement connu sous le nom de test ZWARP). Afin de satisfaire à toutes ces conditions, on munit les extrémités de l'extenseur des éléments de renforts reliés par au moins une nappe de renfort, et plus particulièrement on munit l'extrémité axialement extérieure de l'extenseur d'une tringle annulaire de section de forme générale circulaire faite généralement d'une pluralité de brins en fil d'acier.
Dans le document WO2017/191389, il est proposé un tel extenseur flexible comportant une tringle annulaire de section globalement polygonale réalisée à base d'un fil métallique unitaire enroulé de manière jointive autour d'un support au moins trois fois selon une direction axiale et au moins deux fois selon une direction radiale. La tringle est entourée de nappes de caoutchouc et forme avec celle- ci l'extrémité axialement extérieure de l'extenseur qui supporte le bourrelet du pneumatique et se situe axialement à l'extérieur de celui-ci.
Les extenseurs sont montés sur une jante métallique qui est la plupart du temps une pièce en aluminium. La jante présente de chaque côté un crochet de jante destiné à assurer en particulier l'immobilisation en direction axiale de l'extenseur. Sur une jante métallique sans extenseur pour roues de véhicule de tourisme, on rencontre le plus fréquemment des crochets de type « J » de largeur comprise entre 11 et 15 mm. Toutefois, la norme ETRTO (pour European Tyre and Rim Technical Organisation) définit également des crochets de type « J-N » pour une jante en aluminium dont la largeur est comprise entre 8 et 15 mm. Un tel crochet est moins large qu'un crochet de type « J », ce qui permet de gagner en masse mais aussi de mieux protéger la partie centrale de la jante contre les râpages trottoir.
Or, dans le cas d'un ensemble roulant comportant une jante et un pneu reliés par un extenseur flexible, il a été constaté que l'extrémité axialement extérieure de l'extenseur fait saillie par rapport au crochet de jante d'une largeur axiale assez importante, ce qui a pour conséquence qu'elle est plus exposée aux râpages trottoir. Il est donc nécessaire de réduire la largeur axiale de l'extrémité axialement extérieure de l'extenseur. Ainsi, pour résoudre ce problème, en partant de la solution décrite dans le document WO2017/191389, on aurait certes essayé d'augmenter la section du fil unitaire de l'enroulement constituant le renfort extérieur, tout en diminuant le nombre d'enroulements pour une section de forme donnée, telle que décrite dans ce document. Comme le moment d'inertie en flexion d'une section circulaire varie avec la puissance quatre du diamètre du fil alors que sa section ne varie qu'avec le carré de celui-ci, on pourrait diminuer la section globale du renfort tout en conservant son moment d'inertie en flexion. Dans une telle configuration, chaque fil serait donc plus gros et présenterait un moment d'inertie en flexion plus grand. Ceci aurait néanmoins pour inconvénient de rendre le fil moins apte à retrouver sa forme d'origine après une déformation imposée. Autrement dit, un tel renfort plastifierait plus facilement lors d'un choc contre un trottoir ce qui aurait pour conséquence de se déformer et donc de ne plus pouvoir assurer la flexibilité élastique nécessaire lors d'un tel choc.
Le but de l'invention est de remédier aux inconvénients précités et de proposer un extenseur pour un ensemble roulant réalisé de manière à garantir suffisamment de stabilité mécanique en roulement et d'encaisser des chocs sans se déformer de manière permanente, tout en permettant de protéger son extrémité axialement extérieure lors des râpages trottoir.
L'invention a donc pour objet un extenseur pour un ensemble roulant d'axe de rotation X-X' comprenant un pneumatique, ayant deux bourrelets et une jante, l'extenseur étant destiné à assurer la jonction entre l'un des bourrelets et la jante, ledit extenseur comprenant une extrémité axialement intérieure, une extrémité axialement extérieure et un corps orienté principalement axialement et disposé entre ladite extrémité axialement extérieure et ladite extrémité axialement intérieure de sorte que, lorsqu'il est monté au sein de l'ensemble, ladite extrémité axialement intérieure est destinée à être immobilisée sur ladite jante, ladite extrémité axialement extérieure comprenant un élément de renfort extérieur est destinée à recevoir un bourrelet de pneumatique, dans lequel ledit renfort extérieur est une structure sensiblement de révolution autour de l'axe X-X' comprenant plusieurs enroulements d'au moins un fil agencés axialement les uns à côté des autres sur plusieurs couches radialement superposées les unes sur les autres, caractérisé en ce que la section du renfort extérieur présente un rapport des moments d'inertie Ix/ly supérieur à 1,3 pour une largeur axiale comprise entre 6 et 9 mm, où Ix est le moment d'inertie autour d'un premier axe passant par son centre de gravité et parallèle à l'axe de rotation X-X' et ly est le moment d'inertie autour d'un deuxième axe passant par son centre de gravité et perpendiculaire au premier axe.
En position de fonctionnement, lorsqu'il est monté au sein de l'ensemble roulant, l'extenseur est immobilisé avec son extrémité axialement intérieure sur la jante alors que l'autre extrémité forme une surface d'appui ou siège pour le bourrelet du pneumatique, l'élément de renfort de l'extrémité axialement extérieure étant situé axialement à l'extérieur du siège de bourrelet de pneumatique. L'élément de renfort de l'extrémité axialement extérieure est conçu de manière à opposer beaucoup de résistance en flexion selon un axe parallèle à l'axe de rotation de l'ensemble roulant afin de lui conférer de la stabilité mécanique en roulement, mais aussi pour résister aux sollicitations de flambage en compression et/ou lorsque l'ensemble roulant est sous forte pression de gonflage. Lorsqu'il subit un choc violent, tel un choc contre un trottoir par exemple, il a été constaté que l'extrémité axialement extérieure de l'extenseur subit un mouvement de rotation par rapport au point d'ancrage au niveau de la jante. En tournant, l'extrémité axialement extérieure fait également tourner l'élément de renfort extérieur autour de lui-même, élément de renfort selon l'invention qui peut alors se déformer en flexion selon un axe présentant un moment d'inertie moindre, donc opposant moins de résistance à la déformation. Autrement dit, l'élément de renfort extérieur de l'extenseur de l'invention est réalisé de manière à ce qu'il présente un moment d'inertie Ix plus grand selon un premier axe sensiblement parallèle à l'axe de rotation de l'ensemble roulant et un moment d'inertie ly plus faible selon un deuxième axe qui est perpendiculaire au premier. De surcroît, pour une largeur axiale restreinte de l'élément de renfort, largeur comprise entre 6 et 9 mm, il a été constaté que le rapport entre Ix et ly est supérieur à 1,3. Ainsi, la géométrie de l'élément de renfort extérieur de l'extenseur permet de limiter les contraintes vues par les enroulements du renfort qui ont un comportement purement élastique en fonctionnement.
Selon l'invention, le rapport entre Ix et ly est supérieur à 1,3, de préférence supérieur à 1,30 et plus préférentiellement supérieur ou égal à 1,35 et encore plus préférentiellement supérieur ou égal à 1,38.
L'extenseur de l'invention présente donc une raideur en flexion suffisante, ce qui permet de conférer suffisamment de rigidité dans des conditions normales de roulement à l'ensemble roulant qu'il équipe, tout en ayant suffisamment de flexibilité élastique radiale pour lui permettre d'absorber les chocs subis en roulement en se déformant de manière élastique, et tout en limitant la largeur axiale de son extrémité axialement extérieure qui est destinée à supporter le bourrelet d'un pneumatique de l'ensemble roulant.
La section du renfort extérieur de l'extenseur de l'invention a une largeur axiale I et une hauteur radiale h et peut présenter un facteur de forme h/l supérieur à 1,3 et de préférence compris entre 1,3 et 2.
La section du renfort extérieur de l'extenseur de l'invention présente des moments d'inertie principaux d'axes concourants 11 et 12 qui peuvent faire un angle non nul avec Ix, respectivement ly. Par moments d'inertie principaux d'une section on comprend, de manière connue dans la résistance des matériaux, les moments d'inertie ayant la plus grande valeur pour 11 et respectivement la plus petite valeur pour 12. Les axes principaux d'inertie sont toujours perpendiculaires entre eux.
Le rapport entre les moments d'inertie principaux 11 et 12 peut être supérieur à 2.
Les enroulements d'au moins un fil de l'extenseur de l'invention forment un alignement radialement le plus à l'intérieur et au moins un deuxième alignement adjacent superposé au premier appelés lignes dans lesquels l'axe passant par les centres des lignes sont parallèles entre eux et les fils des alignements les plus axialement à l'intérieur forment une première colonne et les alignements adjacents axialement à l'extérieur forment au moins une deuxième colonne où les axes passant par les centres des fils des colonnes sont parallèles entre eux et où l'axe passant par le centre des enroulements d'une ligne fait un angle b avec l'axe passant par le centre des enroulements d'une colonne de fil, angle b qui peut être différent de 90°.
Les enroulements du renfort extérieur de l'extenseur de l'invention peuvent comprendre au moins deux enroulements agencés axialement les uns à côté des autres sur au moins trois couches radialement superposées les unes sur les autres. Les enroulements du renfort extérieur de l'extenseur peuvent être réalisés à base d'un fil unitaire métallique de diamètre compris entre 2 et 5mm et de préférence compris entre 2,15 et 3 mm.
Les enroulements du renfort extérieur de l'extenseur peuvent être réalisés à base d'un fil unitaire métallique enrobé d'une composition polymérique, de préférence une composition élastomérique.
Le renfort extérieur de l'extenseur peut être disposé de manière à ce l'axe principal de sa section soit incliné par rapport à un axe perpendiculaire à l'axe X-X'.
L'invention a également pour objet un ensemble roulant d'axe de rotation X-X' comprenant un pneumatique ayant deux bourrelets, une jante et un extenseur de l'invention.
L'invention est décrite ci-après à l'aide des figures la à 3b, données uniquement à titre d'illustration :
- la figure la est une coupe méridienne partielle d'un ensemble roulant avec un extenseur selon l'état de la technique,
- la figure lb est un agrandissement de l'élément de renfort extérieur de l'extenseur de la figure la,
- la figure 2a est une coupe méridienne partielle d'un ensemble roulant avec un extenseur selon un premier mode de réalisation de l'invention,
- la figure 2b est un agrandissement de l'élément de renfort extérieur de l'extenseur de la figure 2a,
- la figure 2c est un agrandissement d'un l'élément de renfort extérieur selon une variante de réalisation de l'ensemble de la figure 2a,
- la figure 3a est une coupe méridienne partielle d'un ensemble roulant avec un extenseur réalisé selon un deuxième mode de réalisation de l'invention,
- la figure 3b est un agrandissement de l'élément de renfort extérieur de l'extenseur de la figure 3a.
Sur les différentes figures, les éléments identiques ou similaires portent la même référence. Leur description n'est donc pas systématiquement reprise.
La figure la montre par une vue partielle un ensemble roulant 1 selon l'état de la technique. Cet ensemble présente un axe de rotation X-X', un axe Y-Y' perpendiculaire au premier et compris dans un plan médian, il comprend deux extenseurs 100 identiques (un seul étant illustré dans la figure), un pneumatique 2 et une jante 3. Le pneumatique 2 comporte deux bourrelets 21. La jante 3 comporte deux sièges sur jante 31, chacun prolongé par un rebord 32 de jante. Le rebord 32 de jante comporte une face d'appui 33 radialement extérieure destinée à servir de support au corps de l'extenseur. La face d'appui 33 du rebord de jante 32 est en contact avec l'extenseur 100 lorsque le pneumatique est monté sur les extenseurs et que ceux-ci sont montés sur la jante, le pneumatique étant gonflé à la pression nominale.
L'extenseur 100 comporte une extrémité axialement intérieure 10 destinée à être montée sur l'un desdits sièges sur jante 3. Il comporte une extrémité axialement extérieure 11 ainsi qu'un corps 12 orienté sensiblement axialement et disposé entre ladite extrémité axialement extérieure 11 et ladite extrémité axialement intérieure 10. L'extrémité axialement intérieure 10 de l'extenseur a une face de positionnement axial sensiblement perpendiculaire à l'axe de rotation X-X", et est immobilisée en étant plaquée axialement contre le rebord 32 de jante, sous l'effet de la pression de gonflage du pneumatique 2 et d'une géométrie particulière du rebord de jante. L'extrémité axialement extérieure 11 présente un épaulement 16 formant une face sensiblement perpendiculaire à l'axe de rotation X-X'. Ledit extenseur 100 comporte un siège sur extenseur 14 pour le bourrelet 21 du pneumatique. Le bourrelet 21 est immobilisé en étant plaqué axialement sur ledit siège 14 contre ledit épaulement 16 de l'extrémité axialement extérieure 11 de l'extenseur, sous l'effet de la pression de gonflage du pneumatique. L'extenseur ainsi réalisé a une forme de révolution autour d'un axe central. Lorsqu'il est à l'état non monté sur l'ensemble roulant, l'extenseur a une forme générale annulaire. Après son montage au sein de l'ensemble roulant, son axe central devient identique à l'axe X-X' de l'ensemble roulant.
L'extrémité axialement intérieure 10 de l'extenseur comprend un élément de renfort intérieur 17 relié à l'élément de renfort extérieur 15 par une nappe de renfort 19 réalisée à base de fils de renfort noyés dans une composition élastomérique. La nappe de renfort 19 forme avec les éléments de renfort 15, 17 une structure interne de l'extenseur. D'autres nappes élastomériques externes entourent la structure interne de l'extenseur.
Le montage de l'ensemble se fait en agençant chaque extenseur 100 sur la jante 3 et ensuite en montant le pneumatique 2 sur l'extenseur 100. Une fois le montage effectué, le bourrelet du pneumatique impose une contraction circonférentielle de l'extenseur 100. Les figures annexées illustrent l'ensemble roulant avec les éléments montés.
La figure lb illustre l'élément de renfort 15 de l'extenseur de la figure la à échelle agrandie. Dans l'exemple illustré à la figure 1, la largeur de l'extrémité axialement extérieure 11 est de 18,7 mm, elle est obtenue avec un renfort annulaire ou tringle réalisée par plusieurs enroulements d'un fil métallique 4 ayant un diamètre de 2,15mm. Plus particulièrement, on obtient une telle tringle en enroulant le fil métallique sur six couches radialement superposées, la première couche la plus radialement intérieure présente 4 enroulements, elle est suivie d'une deuxième ayant 5
enroulements, une troisième ayant 4 enroulements, une quatrième ayant cinq enroulements, une cinquième qui a 4 enroulements et enfin la dernière couche qui a trois enroulements. Les enroulements de deux couches adjacentes sont décalés axialement les uns par rapport aux autres, et ils forment des lignes parallèles entre elles correspondant aux enroulements axiaux et les enroulements des couches radialement superposées forment des colonnes parallèles entre elles. Les enroulements sont réalisés de manière connue, de sorte que l'axe passant par le centre des enroulements d'une ligne est perpendiculaire sur l'axe des enroulements d'une colonne. La section de la tringle ainsi obtenue est présente une largeur « I » égale à 10,8 mm et de hauteur « h » égale à 11,5 mm. Les moments d'inertie calculés de la section de la tringle, notamment le moment Ix calculé selon un premier axe x-x' qui est parallèle à l'axe de rotation X-X' de l'ensemble et passant par le centre de gravité de la section est égal à 854 mm4 et le moment d'inertie ly selon un deuxième axe perpendiculaire au premier et passant par le centre de gravité de la section est égal à 647 mm4. Les moments d'inertie principaux 11 et 12 sont égaux à Ix respectivement ly. L'ensemble roulant de la figure la fonctionnant à satisfaction, il a toutefois été constaté que l'extrémité axialement extérieure 11 de l'extenseur étant trop protubérante (elle présente une largeur axiale de 18,7 mm dans l'exemple de la figure la), elle était exposée aux râpages trottoir et risquait d'être abîmée en roulage.
L'invention propose une solution selon les exemples illustrés aux figures 2a à 3b.
La figure 2a présente en coupe méridienne partielle un mode de réalisation d'un extenseur 100 selon un premier mode de réalisation de l'invention. Cet extenseur se différencie de celui illustré à la figure la par une extrémité axiale 11 présentant une largeur axiale réduite, de l'ordre de 16,9 mm, tout en ayant une excellente capacité de se déformer élastiquement lors d'un choc, tel le choc de la roue contre le trottoir, par exemple. Cette largeur axiale réduite est obtenue à l'aide d'une tringle ou élément de renfort extérieur 15 dont la section présente une géométrie avantageuse.
Ainsi, tel que mieux visible à la figure 2b, on a réalisé un élément de renfort extérieur 15 qui est une structure sensiblement de révolution autour de l'axe X-X' comprenant plusieurs enroulements d'un fil 4 agencés axialement les uns à côté des autres sur plusieurs couches radialement superposées les unes sur les autres et dont la géométrie de la section est telle que le rapport des moments d'inertie Ix/ly est supérieur à 1,3. Plus particulièrement, le renfort extérieur 15 a été obtenu à base d'un fil métallique 4 de section ronde, le diamètre du fil étant égal à 2,4 mm et en réalisant quatre enroulements agencés axialement les uns à côté des autres sur trois couches radialement superposées les unes sur les autres et comprenant une quatrième couche radialement extérieure à trois enroulements. Ces enroulements forment ainsi quatre lignes 41 de fil parallèles entre elles et quatre colonnes 4c de fil parallèles entre elles. Selon l'invention, l'axe passant par les centres des fils d'une ligne 41 fait un angle b avec l'axe passant par les centres des fils d'une colonne 4c, angle qui est différent de 90°. Plus particulièrement, l'angle b est égal à 60°.
La section de l'élément de renfort extérieur 15 de la figure 2b ainsi obtenue est présente une largeur axiale « I » égale à 8,9 mm et une hauteur radiale « h » égale à 11,8 mm. Les moments d'inertie calculés de la section de l'élément de renfort, notamment le moment Ix calculé selon un premier axe x-x' qui est parallèle à l'axe de rotation X-X' de l'ensemble et passant par le centre de gravité de la section est égal à 525 mm4 et le moment d'inertie ly selon un deuxième axe perpendiculaire au premier et passant par le centre de gravité de la section est égal à 379 mm4. Les moments d'inertie principaux d'axes concourants 11 et 12 font un angle cp égal à 30° avec les axes des moments d'inertie Ix, respectivement ly et leurs valeurs calculées pour la section de la figure 2b sont de 619 mm4 pour Il et de 285 mm4 pour 12. Par moments d'inertie principaux d'une section on comprend, de manière connue dans la résistance des matériaux, les moments d'inertie ayant la plus grande valeur pour 11 et respectivement la plus petite valeur pour 12. Les axes principaux d'inertie associés 1-1 et 2-2 sont toujours perpendiculaires entre eux.
On réalise un tel élément de renfort extérieur 15 à base d'un fil métallique, tel un fil d'acier, comportant de préférence une âme en acier de préférence recouverte de laiton, le fil étant enrobé d'une composition polymérique, de préférence une composition élastomérique pour assurer une cohésion entre les fils. L'enroulement se fait par trancannage, couche par couche sur un support en forme de plan incliné. Plus précisément, on choisit un support incliné d'un angle 90°-b=30° dans ce cas et on commence par réaliser une première couche radialement intérieure 41 sur en partant de l'extrémité ayant le plus petit diamètre, on continue ensuite par réaliser la deuxième couche radialement superposée à la première en enroulant le même fil à partir de l'extrémité correspondant à celle du dernier enroulement de la première couche, par trancannage dans le sens contraire au premier. On continue ainsi à réaliser des enroulements de fil par trancannage dans un sens, puis dans l'autre pour réaliser quatre couches radialement superposées dont les trois premières comportent quatre enroulements et la dernière seulement trois enroulements de manière à obtenir la section représentée à la figure 2b.
Une variante de ce mode de réalisation est représentée à la figure 2c. Plus particulièrement, le renfort extérieur 15 a été obtenu à base d'un fil métallique 4 de section ronde, le diamètre du fil étant égal à 2,3 mm et en réalisant une première couche radialement intérieure de trois
enroulements agencés axialement les uns à côté des autres, suivie de trois autres couches radialement superposées ayant chacune quatre enroulements agencés axialement les uns contre les autres sur trois et qui finit par une cinquième couche radialement superposée aux précédentes et trois enroulements agencés axialement les uns contre les autres. Ces enroulements forment ainsi cinq lignes 41 de fil parallèles entre elles et quatre colonnes 4c de fil parallèles entre elles. Selon l'invention, l'axe passant par les centres des fils d'une ligne 41 fait un angle b avec l'axe passant par les centres des fils d'une colonne 4c, angle qui est différent de 90°. Plus particulièrement, l'angle b est égal à 60°.
La section de l'élément de renfort extérieur 15 de la figure 2c ainsi obtenue est présente une largeur axiale « I » égale à 8,6 mm et une hauteur radiale « h » égale à 12,6 mm. Les moments d'inertie calculés de la section de l'élément de renfort, notamment le moment Ix calculé selon un premier axe x-x' qui est parallèle à l'axe de rotation X-X' de l'ensemble et passant par le centre de gravité de la section est égal à 703 mm4 et le moment d'inertie ly selon un deuxième axe perpendiculaire au premier et passant par le centre de gravité de la section est égal à 369 mm4. Les moments d'inertie principaux d'axes concourants 11 et 12 font un angle cp égal à 14° avec les axes des moments d'inertie Ix, respectivement ly et leurs valeurs calculées pour la section de la figure 2b sont de 727 mm4 pour Il et de 345 mm4 pour 12.
On réalise un tel élément de renfort extérieur 15 de la figure 2c de la même manière que celle décrite en référence à l'élément de renfort de la figure 2b, par trancannage dans un sens, puis dans l'autre, sur un support incliné en partant de l'extrémité ayant le plus petit diamètre pour obtenir cinq couches radialement superposées, la première ayant trois enroulements, les trois suivantes ayant chacune quatre enroulements et la dernière trois enroulements axiaux.
Les figures 3a et 3b illustrent un deuxième mode de réalisation d'un extenseur selon l'invention. En effet, la géométrie particulière de la section de l'élément de renfort extérieur 15 permet d'obtenir un extenseur 100 avec une largeur axiale très réduite, en étant égale à 14,3 mm, ce qui assure une bonne protection de l'extenseur lors des râpages trottoir, tout en lui conférant d'excellentes capacités à se déformer élastiquement lors d'un choc, tel le choc de la roue contre le trottoir par exemple, et de stabilité mécanique en roulement.
Ainsi, tel que mieux visible à la figure 3b, on a réalisé un élément de renfort extérieur 15 qui est une structure sensiblement de révolution autour de l'axe X-X' et comprend plusieurs enroulements d'un fil 4 métallique de section ronde et d'un diamètre égal à 3 mm, la structure comprenant deux enroulements agencés axialement les uns à côté des autres sur quatre couches radialement superposées les unes sur les autres. Ces enroulements forment ainsi quatre lignes 41 de fil parallèles entre elles et deux colonnes 4c de fil parallèles entre elles. Selon l'invention, l'axe passant par les centres des fils d'une ligne 41 fait un angle b avec l'axe passant par les centres des fils d'une colonne 4c, angle qui est différent de 90°. Plus particulièrement, l'angle b est égal à 60°.
La section de l'élément de renfort extérieur 15 de la figure 3b ainsi obtenue est présente une largeur axiale « I » égale à 8,2 mm et une hauteur radiale « h » égale à 12,5 mm. Les moments d'inertie calculés de la section de l'élément de renfort, notamment le moment Ix calculé selon un premier axe x-x' qui est parallèle à l'axe de rotation X-X' de l'ensemble et passant par le centre de gravité de la section est égal à 634 mm4 et le moment d'inertie ly selon un deuxième axe perpendiculaire au premier et passant par le centre de gravité de la section est égal à 193 mm4. Les moments d'inertie principaux d'axes concourants 11 et 12 font un angle cp égal à 20,4° avec Ix, respectivement ly et leurs valeurs calculées pour la section de la figure 3b sont de 705 mm4 pour 11 et de 122 mm4 pour 12.
On réalise un tel élément de renfort extérieur 15 de la figure 3b de manière similaire à celle précédemment décrite en en réalisant des enroulements de fil métallique enrobé de composition élastomérique côte à côte sur un support incliné d'un angle 90°-b, par trancannage dans un sens, puis dans l'autre, sur un support incliné en partant de l'extrémité ayant le plus petit diamètre pour obtenir quatre couches radialement superposées, ayant chacune deux enroulements axiaux.
Dans une variante, non illustrée dans les figures, l'élément de renfort de la figure 3b est modifié. Ainsi, la dernière couche radialement extérieure superposée aux trois précédentes ne comprend qu'un seul enroulement, le dernier enroulement axialement à l'extérieur étant omis, alors que les autres couches en-dessous comprennent chacune deux enroulements, comme dans la figure 3b. Ceci permet d'avoir un élément de renfort de plus faible encombrement radial, tout en gardant les propriétés mécaniques requises.
Tel qu'illustré aux figures 2a, 2b, 2c, 3a et 3b, le moment d'inertie selon l'axe Ix est différent du moment d'inertie selon l'axe principal 11 et le moment d'inertie selon l'axe ly est différent du moment d'inertie selon l'axe principal 12. Plus particulièrement, les axes principaux 1-1 et 2-2 des moments principaux 11 et 12 font un angle cp avec les axes x-x' respectivement y-y' des moments Ix, respectivement ly. Cet angle d'inclinaison cp est présent dès la réalisation des enroulements du renfort extérieur et est tel que l'intersection entre la prolongation de l'axe 2-2 avec l'axe X-X' de la roue soit du côté intérieure de la roue ou autrement dit qu'il permet d'agencer le renfort extérieur de sorte que la direction longitudinale des enroulements du renfort extérieur 15 soit orientée vers l'extérieur lorsque l'extenseur est en place au sein de l'ensemble roulant afin d'anticiper le mouvement de rotation qui prend la section du renfort extérieur en cas de choc violent subi par l'ensemble. Par direction longitudinale des enroulements on comprend une direction parallèle à la plus grande dimension de la section du renfort.
Plus particulièrement, le renfort extérieur 15 est agencé de manière à ce que la direction
longitudinale des enroulements soit inclinée vers l'extérieur par rapport à un axe perpendiculaire à l'axe de rotation X-X' de l'ensemble roulant lorsque l'extenseur est en position montée au sein de l'ensemble. Une telle inclinaison vers l'extérieur permet d'anticiper le mouvement de rotation subi par l'élément de renfort extérieur lors d'un choc et donc d'aider l'élément de renfort extérieur à entamer le mouvement de rotation lors qu'il subit un choc violent.
La forme de la section de l'élément de renfort extérieur selon l'invention présente une hauteur radiale « h » nettement supérieure à sa largeur axiale « I », pour un facteur de forme h/l supérieur à 1,3. Le rapport des moments d'inertie Ix/ly est également supérieur à 1,3. On obtient ainsi une rigidité suffisante à l'ovalisation et donc une stabilité mécanique en fonctionnement normal de l'ensemble roulant (caractérisée par le moment d'inertie autour d'un axe parallèle à celui de rotation de l'ensemble roulant). Lors d'un choc contre un trottoir par exemple, l'ensemble roulant équipé de l'extenseur de l'invention conduit à une déformation élastique de ce dernier qui est un déversement progressif de la section du renfort extérieur dans le plan du choc. Ainsi, plus la déformation est grande, plus ce renfort tourne autour de lui-même et plus l'inertie autour de l'axe x-x' diminue, permettant ainsi de limiter la contrainte vue par les fils qui entrent dans la constitution du renfort.
De surcroît, le renfort extérieur ainsi réalisé permet des gains de masse et d'encombrement. D'autres variantes et modes de réalisation de l'invention peuvent être envisagés sans sortir du cadre de ses revendications. Ainsi, le renfort extérieur dont la section a une forme générale de
parallélogramme de la figure 3b peut présenter une section de forme générale rectangulaire dont les moments d'inertie sont ll=lx et I2=ly. Dans une variante, on utilise un fil métallique non recouvert de composition polymérique. Dans encore une autre variante on utilise des fils métalliques de diamètres différents pour réaliser les enroulements constituant le renfort extérieur de l'extenseur de l'invention.

Claims

Revendications
1. Extenseur pour un ensemble roulant d'axe de rotation X-X' comprenant un pneumatique (2), ayant deux bourrelets (21) et une jante (3), l'extenseur (100) étant destiné à assurer la jonction entre l'un des bourrelets (21) et la jante (3), ledit extenseur (100) comprenant une extrémité axialement intérieure (10), une extrémité axialement extérieure (11) et un corps (12) orienté principalement axialement et disposé entre ladite extrémité axialement extérieure (11) et ladite extrémité axialement intérieure (10), de sorte que, lorsqu'il est monté au sein de l'ensemble, ladite extrémité axialement intérieure (10) est destinée à être immobilisée sur ladite jante, ladite extrémité axialement extérieure comprenant un élément de renfort extérieur (15) est destinée à recevoir un bourrelet (21) de pneumatique (2), dans lequel ledit renfort extérieur (15) est une structure sensiblement de révolution autour de l'axe X-X' comprenant plusieurs enroulements d'au moins un fil agencés axialement les uns à côté des autres sur plusieurs couches radialement superposées les unes sur les autres, caractérisé en ce que la section du renfort extérieur (15) présente un rapport des moments d'inertie Ix/ly supérieur à 1,3 pour une largeur axiale comprise entre 6 et 9 mm, où Ix est le moment d'inertie autour d'un premier axe passant par son centre de gravité et parallèle à l'axe de rotation X-X' et ly est le moment d'inertie autour d'un deuxième axe passant par son centre de gravité et perpendiculaire au premier axe.
2. Extenseur selon la revendication 1, dans lequel la section du renfort extérieur (15) ayant une largeur axiale I et une hauteur radiale h présente un facteur de forme h/l supérieur à 1,3.
3. Extenseur selon l'une des revendications précédentes, caractérisé en ce que la section du renfort extérieur (15) présente des moments d'inertie principaux d'axes concourants 11 et 12 qui font un angle non nul avec Ix, respectivement ly.
4. Extenseur selon la revendication 3, dans lequel le rapport entre les moments d'inertie
principaux 11 et 12 est supérieur à 2.
5. Extenseur selon l'une des revendications précédentes, dans lequel les enroulements de fil forment un alignement radialement le plus à l'intérieur et au moins un deuxième alignement adjacent superposé au premier appelés lignes (41) dans lesquels l'axe passant par les centres des lignes (41) sont parallèles entre eux et les fils des alignements les plus axialement à l'intérieur forment une première colonne (4c) et les alignements adjacents axialement à l'extérieur forment au moins une deuxième colonne (4c) où les axes passant par les centres des fils des colonnes (4c) sont parallèles entre eux et où l'axe passant par le centre des enroulements d'une ligne (41) fait un angle b avec l'axe passant par le centre des enroulements d'une colonne (4c) de fil et dans lequel l'angle b est différent de 90°.
6. Extenseur selon l'une quelconque des revendications précédentes, dans lequel lesdits
enroulements du renfort extérieur (15) comprennent au moins deux enroulements agencés axialement les uns à côté des autres sur au moins trois couches radialement superposées les unes sur les autres.
7. Extenseur selon l'une des revendications précédentes, dans lequel lesdits enroulements du renfort extérieur (15) sont réalisés à base d'un fil unitaire métallique de diamètre compris entre 2 et 5mm.
8. Extenseur selon l'une des revendications précédentes, dans lequel lesdits enroulements du renfort extérieur sont réalisés à base d'un fil unitaire métallique enrobé d'une composition polymérique.
9. Extenseur selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit renfort extérieur (15) est disposé de manière à ce que l'axe principal de sa section soit incliné par rapport à un axe perpendiculaire à l'axe X-X'.
10. Ensemble roulant d'axe de rotation X-X' comprenant un pneumatique (2), ayant deux
bourrelets (21) une jante (3) et un extenseur (100) selon l'une des revendications précédentes destiné à assurer la jonction entre l'un des bourrelets (21) et la jante (3).
PCT/FR2019/053200 2018-12-20 2019-12-19 Extenseur perfectionne et ensemble roulant comportant un tel extenseur WO2020128362A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3121666A CA3121666A1 (fr) 2018-12-20 2019-12-19 Extenseur perfectionne et ensemble roulant comportant un tel extenseur
EP19848931.2A EP3898288A1 (fr) 2018-12-20 2019-12-19 Extenseur perfectionne et ensemble roulant comportant un tel extenseur
US17/415,805 US20220144020A1 (en) 2018-12-20 2019-12-19 Improved adapter and rolling assembly comprising such an adapter
CN201980082991.3A CN113195264A (zh) 2018-12-20 2019-12-19 改进的适配器和包括这种适配器的滚动组件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1873494A FR3090487A3 (fr) 2018-12-20 2018-12-20 Extenseur perfectionne et ensemble roulant comportant un tel extenseur
FRFR1873494 2018-12-20
FR1900984A FR3090486B1 (fr) 2018-12-20 2019-02-01 Extenseur perfectionne et ensemble roulant comportant un tel extenseur
FRFR1900984 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020128362A1 true WO2020128362A1 (fr) 2020-06-25

Family

ID=69500777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/053200 WO2020128362A1 (fr) 2018-12-20 2019-12-19 Extenseur perfectionne et ensemble roulant comportant un tel extenseur

Country Status (1)

Country Link
WO (1) WO2020128362A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046197A1 (fr) 2014-09-24 2016-03-31 Compagnie Generale Des Etablissements Michelin Adaptateur pour ensemble roulant et ensemble roulant le comprenant
WO2016180668A1 (fr) * 2015-05-12 2016-11-17 Compagnie Generale Des Etablissements Michelin Adaptateur pour ensemble roulant et ensemble roulant le comprenant
FR3050688A1 (fr) * 2016-05-02 2017-11-03 Michelin & Cie Adaptateur pour ensemble roulant et ensemble roulant le comprenant
FR3050689A3 (fr) * 2016-05-02 2017-11-03 Michelin & Cie Adaptateur pour ensemble roulant et ensemble roulant le comprenant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046197A1 (fr) 2014-09-24 2016-03-31 Compagnie Generale Des Etablissements Michelin Adaptateur pour ensemble roulant et ensemble roulant le comprenant
WO2016180668A1 (fr) * 2015-05-12 2016-11-17 Compagnie Generale Des Etablissements Michelin Adaptateur pour ensemble roulant et ensemble roulant le comprenant
FR3050688A1 (fr) * 2016-05-02 2017-11-03 Michelin & Cie Adaptateur pour ensemble roulant et ensemble roulant le comprenant
FR3050689A3 (fr) * 2016-05-02 2017-11-03 Michelin & Cie Adaptateur pour ensemble roulant et ensemble roulant le comprenant
WO2017191389A1 (fr) 2016-05-02 2017-11-09 Compagnie Generale Des Etablissements Michelin Adaptateur pour ensemble roulant et ensemble roulant le comprenant

Similar Documents

Publication Publication Date Title
EP1097823B1 (fr) Jante destinée à recevoir un anneau de soutien
EP2499007B1 (fr) Bourrelet de pneu pour véhicule petit poids lourd
EP1868823B1 (fr) Anneau de verrouillage dans un ensemble de montage d'un pneumatique sur un moyeu de vehicule
EP3452307A1 (fr) Adaptateur pour ensemble roulant et ensemble roulant le comprenant
EP3645306A1 (fr) Jante a crochet de forme optimisee
EP3898288A1 (fr) Extenseur perfectionne et ensemble roulant comportant un tel extenseur
WO2020128362A1 (fr) Extenseur perfectionne et ensemble roulant comportant un tel extenseur
EP1838540B1 (fr) Pneumatique dont au moins un siege de bourrelet comporte une nervure
EP2731807B1 (fr) Pneumatique pliable, procede de pliage et utilisation
EP1233874B1 (fr) Appui de securite et ensemble appui et jante pour pneumatique comportant des moyens de centrage et a montage facilite
EP1831035B1 (fr) Bourrelet de pneumatique facilitant le montage et methode de construction d'un tel bourrelet
EP1551648B1 (fr) Jante de roue constituee de deux structures assemblees
EP3802151B1 (fr) Ensemble jante et extenseur flexible pour ensemble roulant
EP4351891A1 (fr) Extenseur a stylisme perfectionne et ensemble roulant comportant un tel extenseur
WO2005044599A2 (fr) Appui de securite allege pour pneumatique
FR3130199A1 (fr) Extenseur a stylisme ameliore et ensemble roulant comportant un tel extenseur
WO2005047027A1 (fr) Pneumatique a mobilite etendue a double renfort et bourrelets asymetrique
WO2002094585A1 (fr) Pneumatique comportant un protege jante renforce
FR2804374A3 (fr) Appui de securite et ensemble appui et jante pour pneumatique comportant des moyens de centrage et a montage facilite
BE492428A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3121666

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848931

Country of ref document: EP

Effective date: 20210720