WO2020125692A1 - 确定扰动源位置的方法及装置、存储介质和电子装置 - Google Patents

确定扰动源位置的方法及装置、存储介质和电子装置 Download PDF

Info

Publication number
WO2020125692A1
WO2020125692A1 PCT/CN2019/126419 CN2019126419W WO2020125692A1 WO 2020125692 A1 WO2020125692 A1 WO 2020125692A1 CN 2019126419 W CN2019126419 W CN 2019126419W WO 2020125692 A1 WO2020125692 A1 WO 2020125692A1
Authority
WO
WIPO (PCT)
Prior art keywords
disturbance
spatial
fiber
optical fiber
detection
Prior art date
Application number
PCT/CN2019/126419
Other languages
English (en)
French (fr)
Inventor
鲍忠超
谢云鹏
姜云
朱松林
孙畅
魏玉莲
杨国威
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020125692A1 publication Critical patent/WO2020125692A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/002Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means for representing acoustic field distribution

Definitions

  • the present disclosure relates to the field of communications, for example, to a method and device for determining the location of a disturbance source, a storage medium, and an electronic device.
  • the vibration of the concrete In the process of concrete pouring, there are standard requirements for the vibration of the concrete.
  • the requirements include: the displacement distance of the inserted vibrator does not exceed 1.5 times the radius of action of the vibrator, and maintains 50-100 mm with the side mold ( mm) distance, the depth inserted into the lower concrete should be 50-100mm; the vibration time of each vibration point is preferably 20-30s, assuming that the concrete stops sinking, no bubbles appear, and scumming appears on the surface.
  • the above requirements cannot be completed by effective detection technology. In the actual operation process, it is completed by manual observation, and manual observation has many subjective and objective problems, such as: the radius of displacement, the insertion depth, etc., which cannot meet the specifications.
  • Embodiments of the present invention provide a method and device for determining the location of a disturbance source, a storage medium, and an electronic device.
  • a method for determining a location of a disturbance source including:
  • the spatial position of the disturbance source in the object to be measured is determined according to the spatial geometric relationship between the disturbance intensity and the multiple optical fiber segments included in the detection fiber.
  • an apparatus for determining a location of a disturbance source including:
  • the first determining module is configured to determine the intensity of the disturbance received by the detection fiber from the source of the disturbance in the object to be tested, the detection fiber is distributed around the object to be tested, and the detection fiber includes multiple fiber segments;
  • the second determining module is configured to determine the spatial position of the disturbance source in the object to be measured according to the spatial geometric relationship between the disturbance intensity and the plurality of optical fiber segments included in the detection fiber.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the above method embodiments during runtime.
  • an electronic device including a memory and a processor, the memory stores a computer program, the processor is configured to run the computer program to perform any of the above The steps in the method embodiment.
  • the detection fiber is distributed around the object to be tested by determining the intensity of the disturbance received by the detection fiber from the source of the object under test, and the detection fiber includes multiple fiber segments; and according to the intensity of the disturbance and the detection fiber
  • the spatial geometric relationship of the included multiple optical fiber segments determines the spatial position of the disturbance source in the object to be measured, thereby solving the problem that the process of concrete pouring in the related art can only be determined by manual observation, which leads to errors, which improves To improve the efficiency of concrete pouring.
  • FIG. 1 is a flowchart of a method for determining a location of a disturbance source according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an optical fiber disturbance system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of establishing a coordinate system in a transverse fiber distribution mode according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a mirror structure of a disturbance source according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of establishing a coordinate system in a longitudinal cloth fiber manner according to an alternative embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for determining a location of a disturbance source according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another apparatus for determining a location of a disturbance source according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for determining a location of a disturbance source according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps.
  • Step S102 Determine the intensity of the disturbance from the source of the disturbance in the object to be detected that the detection fiber is subjected to.
  • the detection optical fiber is distributed around the object to be measured, and the detection optical fiber includes multiple optical fiber segments.
  • Step S104 Determine the spatial position of the disturbance source in the object to be measured according to the spatial geometric relationship between the disturbance intensity and the multiple optical fiber segments included in the detection fiber.
  • the detection fiber includes multiple fiber segments; and according to the intensity of the disturbance and the detection fiber
  • the spatial geometric relationship of the optical fiber segments determines the spatial position of the disturbance source in the object to be measured, thereby solving the problem that the process of concrete pouring in the related art can only be determined by manual observation and causing errors, which improves the concrete pouring. s efficiency
  • the optical fiber segment may be a straight line segment composed of optical fibers
  • the detection optical fiber may be a polyline structure formed by connecting multiple optical fiber segments end to end, or a polygonal structure formed by connecting multiple optical fiber segments end to end, or a polyline
  • the combination formed by at least one of the structure and the polygonal structure may be, for example, a three-dimensional space network structure.
  • the three-dimensional model of the spatial structure involved in this embodiment includes at least one of the following: cuboid, cube, cylinder, and ellipse cylinder.
  • step S102 of this embodiment to determine the intensity of the disturbance originating from the disturbance source suffered by the detection optical fiber may be implemented by the following method steps.
  • Step S102-11 Determine the three-dimensional model of the detection fiber and the relative spatial coordinate values of the endpoints of the multiple edges corresponding to the multiple fiber segments included in the three-dimensional model.
  • the three-dimensional model characterizes the spatial structure of the detection fiber.
  • Step S102-12 Acquire the first coordinate value of the point with the largest disturbance intensity on each edge of the plurality of edges and the point with the largest disturbance intensity.
  • step S102-11 the method of determining the relative spatial coordinate values of the endpoints of the multiple edges corresponding to the multiple optical fiber segments included in the detection fiber in the three-dimensional model can be implemented in the following manner in this embodiment:
  • the first spatial rectangular coordinate system is established based on the three-dimensional model.
  • the detection fiber is composed of multiple fiber layers, the planes of the multiple fiber layers are parallel to each other, and each fiber layer in the multiple fiber layers includes rules composed of multiple fiber segments Plane geometry fiber; determine the relative spatial coordinate values of the end points of multiple edges according to the first spatial rectangular coordinate system.
  • the step S104 involved in this embodiment determines the spatial position of the disturbance source in the object to be measured according to the spatial geometric relationship between the disturbance intensity and the multiple optical fiber segments included in the detection fiber
  • the way can be achieved as follows.
  • Step S104-11 determining a plurality of points of the first coordinate value and an end point of any mirror point of the plurality of edges based on the disturbance source.
  • a point with a second coordinate value and four end points that are mirror-symmetrical to an arbitrary end point of an edge constitute a plane geometric figure.
  • Step S104-12 acquiring a plurality of first differences between energy characterizing values of any two connected ends in a plurality of plane geometric figures forming mirror symmetry, and energy loss values between the end points of any two connected ends and the disturbance source Multiple second differences.
  • Step S104-13 determining a plurality of second coordinates of the disturbance source according to the plurality of first difference values, the plurality of second difference values, and the lengths of the connected two ends in the first spatial rectangular coordinate system of the plane geometric figure forming mirror symmetry value.
  • one second coordinate value is selected from the plurality of second coordinate values as the spatial position of the disturbance source.
  • the method of selecting one second coordinate value as the spatial position of the disturbance source from the plurality of second coordinate values may be selected by the method of least squares, that is, the step S104-14 may be multiple second coordinate values Do space distance calculation, take a space point so that the space point satisfies the coordinate value such as least square method as the final disturbance source position point.
  • the space formed by the optical fiber can be divided into multiple subspaces, so that a rectangular coordinate system is established according to the multiple subspaces respectively, and then multiple coordinate values (the first coordinate value and Multiple second coordinate values), so as to select the most suitable coordinate value from them as the final coordinate value of the disturbance source.
  • the method steps of this embodiment may further include the following steps.
  • Step S106 After determining the spatial position of the disturbance source in the object to be measured according to the spatial geometric relationship between the disturbance intensity and the multiple optical fiber segments included in the detection fiber, obtain the point closest to the spatial position of the disturbance source in the detection fiber.
  • Step S108 Extract the phase of the disturbance source and perform spectrum analysis according to the point closest to the spatial position of the disturbance source.
  • this specific implementation takes distributed optical fiber vibration detection technology as the technical foundation, adopts a special fiber laying method and a side mold input module to assist in the accurate tracking of the displacement of the vibrator;
  • the setting of the ideal disturbance monitoring point completes the signal redrawing so that it can characterize the concrete after vibration; the real-time monitoring of the completion of the concrete layering vibration specification is completed, and the clear and marked areas are reached and the overall compliance is given.
  • the situation makes a conclusive judgment.
  • FIG. 2 is a schematic structural diagram of an optical fiber disturbance system according to an embodiment of the present invention.
  • the system includes: a concrete pouring model modeling input module, a disturbance source spatial position recognition and optimization unit, a vibration source signal phase and a real-time spectrum Analysis unit, vibration source spatial displacement and vibration source signal characteristics simulation unit (this unit can analyze the current spatial position of the disturbance source, vibration source energy characteristics, vibration source vibration signal characteristics in real time to characterize the concrete pouring vibration characteristics).
  • the horizontal position is shown in FIG. 3 at the detection point (in some embodiments, the longitudinal fiber distribution method shown in FIG. 5 can be used), and the concrete pouring side mold is used as the spatial structure (as shown in FIG. 3).
  • the cuboid structure is shown, but not limited to the cuboid structure (cylinder, elliptical cylinder, etc.). In this method, the length of the cuboid side, width, and height are determined, and the fiber optic cloth Fiber, the number of layers is determined.
  • the method of fabric distribution and the establishment of the coordinate system can model the calculation geometry of the disturbance space position to rectangular coordinates System (or polar coordinate system), the intensity ratio of the detected signal is the side length ratio of the geometric figure, so as to solve the problem of accurate calculation of the spatial location of the disturbance source.
  • the detection fiber is laid according to a specific method, such as cylindrical, square column and other modeled methods.
  • the advantage of the modeled method is that the coordinate points of each area (point) can be completely from the test system A port to the coil
  • the first vertex B (x 1 , y 1 , z 1 , A 1 (t), ⁇ 1 (t)) is determined.
  • a rectangular coordinate system is established with the edges of the cuboid, and the origin of the coordinate is determined to be vertically above
  • the distance L1 is the B point and L1 is used as the layer spacing when the fiber is laid.
  • the length and width of the cuboid are L2 and L3 respectively. Then the midpoint of each edge of the cuboid and the vertex of each layer can be relative to the original coordinates. confirm.
  • any point (x, y, z) in the space is a vibration source
  • its energy modulus is represented by A(t)
  • the phase of the signal generated by the vibration source is represented by ⁇ (t)
  • Ie the phase is a function of time t.
  • the vibration source will act on the sensing fiber after being transmitted through the medium in the form of a disturbance field.
  • the signal of the disturbance source is an acoustic wave signal
  • the transmission loss of the acoustic wave signal in a uniform medium is ⁇ .
  • the vibration source O and B, C, D, E, F, and G on the detection fiber respectively form a right triangle ⁇ OGD, ⁇ OFC, and ⁇ OEB.
  • the line segment DH, the vertices D and H of the fiber layer where it is located are the points of the fixed probe signal, where point G is the point to be fixed, and the O point vibration signal reaches the DH line segment, any point of the fiber DH can be
  • the strongest point is the G point (because the OG is perpendicular to the DH).
  • the fixed point in the model in the system is a fixed detection point, and the G point is a non-deterministic detection point.
  • the DH fiber segment is used as For example, the system must sort the signal capabilities collected by the distributed sampling points of the DH segment, and take the largest point for recording. This point is the equivalent point of the G point, and the other points are discarded.
  • the disturbance attenuation is proportional to the distance, so there is the following equation:
  • a G ⁇ -A G ⁇ d OG ⁇ - ⁇ d OG (3)
  • a G, A G ⁇ , A E , A E ⁇ represents G, G ⁇ , E, E ⁇ points characterizing the detected disturbance energy value, d OG, d OE, d OE ⁇ , d OG ⁇ represents OG, OE , OE ⁇ , OG ⁇ line segment length.
  • G ⁇ , E ⁇ , E and G points have the same X coordinate on their respective edges, where G point is queried by the system on the GH edge in distributed traversal query and its energy radians are compared The coordinates of each distribution point are confirmed when traversing on the edge where it is located. When the strongest received disturbance energy is queried, the point is confirmed, and the four points are connected into a rectangle, as shown in Figure 3 GEE ⁇ G ⁇ rectangle .
  • the X coordinate of the disturbance point O should be the same as the X coordinate of the G point;
  • the strongest point of the disturbance energy intensity is also checked on the HI edge.
  • the energy point J can be obtained. Its spatial coordinates are known, and the Y coordinate of the J point is consistent with the Y coordinate of the O point of the disturbance source.
  • the coordinates of the disturbance source O(x, y, z) are relative to the origin, and x and y are measured when measuring the strongest disturbance energy point in the DH line segment and the HI line segment.
  • x and y are measured when measuring the strongest disturbance energy point in the DH line segment and the HI line segment.
  • OEE ⁇ are:
  • the O point of the disturbance source is not an ideal particle but an object with a certain volume
  • the disturbance generated by the measured point is affected by the entire object.
  • the cuboid can be further layered by layering the fiber Several small cuboids can not only complete the layered vibration monitoring during the concrete pouring process, but also can optimize the location of the O point of the disturbance source point.
  • the specific plan is: after each small cuboid has completed the positioning of the O point, the The output result is used for spatial distance calculation, and a spatial point is selected so that the spatial point satisfies the coordinate value of the least square method, that is, the point is regarded as the final disturbance source position point.
  • a device for determining the location of the disturbance source is also provided.
  • the device is used to implement the above-mentioned embodiments and optional implementations, and descriptions that have already been described will not be repeated.
  • the term “module” may realize a combination of at least one of software and hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 6 is a schematic structural diagram of an apparatus for determining a location of a disturbance source according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes: a first determining module 62 and a second determining module 64.
  • the first determination module 62 is configured to determine the intensity of the disturbance from the source of the disturbance in the object to be tested, which is received by the detection fiber.
  • the detection optical fiber is distributed around the object to be measured, and the detection optical fiber includes multiple optical fiber segments.
  • the second determination module 64 is coupled to the first determination module 62 and is configured to determine the spatial position of the disturbance source in the object to be measured according to the spatial geometric relationship between the disturbance intensity and the multiple optical fiber segments included in the detection fiber.
  • the first determination module 62 may further include: a first determination unit and a first acquisition unit.
  • the first determining unit is configured to determine the three-dimensional model of the detection fiber and the relative spatial coordinate values of the endpoints of the multiple edges corresponding to the multiple fiber segments included in the detection fiber in the three-dimensional model.
  • the three-dimensional model characterizes the spatial structure of the detection fiber.
  • the first acquiring unit is configured to acquire the first coordinate value of the point with the largest disturbance intensity on each edge of the plurality of edges and the point with the largest disturbance intensity.
  • the first determining unit includes: establishing a subunit, which is configured to establish a first spatial rectangular coordinate system based on the three-dimensional model of the detection fiber.
  • the detection optical fiber is composed of multiple optical fiber layers, and the planes where the multiple optical fiber layers are located are parallel to each other.
  • Each optical fiber layer in the multiple optical fiber layers includes a regular planar geometric fiber composed of multiple optical fiber segments.
  • the second determination module includes: a second determination unit, a second acquisition unit, a third determination unit, and a selection unit.
  • the second determining unit is configured to determine a plurality of points of the first coordinate value and an end point of any mirror edge of the plurality of edges based on the disturbance source.
  • a point with a second coordinate value and four end points that are mirror-symmetrical to an arbitrary end point of an edge constitute a plane geometric figure.
  • the second obtaining unit is configured to obtain a plurality of first differences between the energy characterizing values of any two connected ends in a plurality of plane geometric figures forming mirror symmetry, and the energy between the endpoints of any two connected ends and the disturbance source Multiple second differences of loss values.
  • the third determining unit is configured to determine a plurality of first sources of the disturbance source according to a plurality of first difference values, a plurality of second difference values, and lengths of the connected two ends in the first spatial rectangular coordinate system in the plane geometric figure forming mirror symmetry Two coordinate values.
  • the selection unit is configured to select one second coordinate value from the plurality of second coordinate values as the spatial position of the disturbance source.
  • FIG. 7 is a schematic structural diagram of another apparatus for determining a location of a disturbance source according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes: a first determination module 62, a second determination module 64, an acquisition module 72, and a processing module 74.
  • the acquisition module 72 is coupled to the second determination module 64, and is configured to acquire the detection fiber after determining the spatial position of the disturbance source in the object under test according to the spatial geometric relationship between the disturbance intensity and the multiple optical fiber segments included in the detection fiber The point closest to the spatial location of the disturbance source.
  • the processing module 74 is coupled to the acquisition module 72, and is configured to extract the phase of the disturbance source and perform spectrum analysis according to the point closest to the spatial position of the disturbance source.
  • modules can be implemented by software or hardware. For the latter, they can be implemented by the following methods, but not limited to this: the above modules are all located in the same processor; or Any combination of forms is located in different processors.
  • An embodiment of the present application further provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute any of the steps in the above method embodiments during runtime.
  • the above storage medium may be set to store a computer program for performing the following steps.
  • the detection optical fiber is distributed around the object to be measured, and the detection optical fiber includes multiple optical fiber segments.
  • the foregoing storage medium may include, but is not limited to, a variety of media that can store computer programs, such as a USB flash drive, ROM, RAM, mobile hard disk, magnetic disk, or optical disk.
  • An embodiment of the present application further provides an electronic device, including a memory and a processor, where the computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any one of the foregoing method embodiments.
  • the electronic device may further include a transmission device and an input-output device, the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the above-mentioned processor may be configured to perform the following steps through a computer program.
  • the detection fiber is distributed around the object to be measured, and the detection fiber includes multiple fiber segments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种确定扰动源位置的方法,包括:确定检测光纤所受到的源自待测对象中的扰动源的扰动强度,其中,检测光纤绕待测对象分布,以及检测光纤包括多条光纤段;根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置。还公开一种确定扰动源位置的装置、一种存储介质和一种电子装置。

Description

确定扰动源位置的方法及装置、存储介质和电子装置
本申请要求在2018年12月18日提交中国专利局、申请号为201811550189.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如涉及一种确定扰动源位置的方法及装置、存储介质和电子装置。
背景技术
在砼浇筑的过程中,对于砼的振捣是有规范性要求,该要求包括:插入式振动器的移位间距不超过振动器的作用半径的1.5倍,与侧模保持50-100毫米(mm)的距离,插入下层砼中的深度宜为50-100mm;每一个振点的振捣时间以20-30s为宜,以砼停止下沉、不出现气泡、表面出现浮浆为度。但是,上述要求在现有技术中是无法通过有效的检测技术完成规范性的检测的。在实际的操作过程中是通过人工观察来完成的,而人工观察存在着众多主客观的问题,如:位移的作用半径、插入深度等,无法满足规范要求。
发明内容
本发明实施例提供了一种确定扰动源位置的方法及装置、存储介质和电子装置。
根据本公开的一个实施例,提供了一种确定扰动源位置的方法,包括:
确定检测光纤所受到的源自待测对象中的扰动源的扰动强度,所述检测光纤绕所述待测对象分布,以及所述检测光纤包括多条光纤段;
根据所述扰动强度与所述检测光纤所包括的多条光纤段的空间几何关系确定所述待测对象中的所述扰动源的空间位置。
根据本发明实施例的再一个实施例,提供了一种确定扰动源位置的装置,包括:
第一确定模块,设置为确定检测光纤所受到的源自待测对象中的扰动源的扰动强度,所述检测光纤绕所述待测对象分布,以及所述检测光纤包括多条光纤段;
第二确定模块,设置为根据所述扰动强度与所述检测光纤所包括的多条光 纤段的空间几何关系确定所述待测对象中的所述扰动源的空间位置。
根据本申请的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
在本发明实施例中,通过确定检测光纤所受到的源自待测对象中的扰动源的扰动强度,检测光纤绕待测对象分布,检测光纤包括多条光纤段;并根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置,从而解决了相关技术中砼浇筑的过程只能通过人工观察来确定作业而导致容易出现失误的问题,提高了在砼浇筑的效率。
附图说明
图1是根据本发明实施例的确定扰动源位置的方法的流程图;
图2是根据本发明实施例的光纤扰动系统的结构示意图;
图3是根据本发明实施例的横向布纤方式建立坐标系的示意图;
图4是根据本发明实施例以扰动源的镜像结构示意图;
图5是根据本发明可选实施例的纵向布纤方式建立坐标系的示意图;
图6是根据本发明实施例的一种确定扰动源位置的装置的结构示意图;
图7是根据本发明实施例的另一种确定扰动源位置的装置的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种确定扰动源位置的方法,图1是根据本发明实施例的确定扰动源位置的方法的流程图,如图1所示,该流程包括如下步骤。
步骤S102,确定检测光纤所受到的源自待测对象中的扰动源的扰动强度。 检测光纤绕待测对象分布,检测光纤包括多条光纤段。
步骤S104,根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置。
基于上述步骤S102和步骤S104,通过确定检测光纤所受到的源自扰动源的扰动强度,检测光纤绕待测对象分布,检测光纤包括多条光纤段;并根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置,从而解决了相关技术中砼浇筑的过程只能通过人工观察来确定作业而导致容易出现失误的问题,提高了在砼浇筑的效率
需要说明的是,光纤段可以是光纤构成的平直的线段,检测光纤可以是由多条光纤段首尾连接所构成的折线结构,或者多条光纤段首尾连接所构成的多边形结构,或者是折线结构和多边形结构中至少之一所形成的组合,例如可以是立体空间网状结构。
需要说明的是,本实施例中涉及到的空间结构的立体模型至少包括但不限于以下之一:长方体、正方体、圆柱体、椭圆柱体。
在本实施例的可选实施方式中,对于本实施例步骤S102中涉及到的确定检测光纤所受到的源自扰动源的扰动强度的方式,可以通过如下方法步骤来实现。
步骤S102-11,确定检测光纤的立体模型,以及立体模型中与检测光纤所包括的多条光纤段所对应的多个棱边的端点的相对空间坐标值。立体模型表征检测光纤的空间结构。
步骤S102-12,获取多个棱边中的每个棱边上扰动强度最大的点,以及扰动强度最大的点的第一坐标值。
其中,对于步骤S102-11中确定立体模型中与检测光纤所包括的多条光纤段所对应的多个棱边的端点的相对空间坐标值的方式,在本实施例中可以通过如下方式实现:基于立体模型建立第一空间直角坐标系,检测光纤由多个光纤层构成,多个光纤层所在的平面相互平行,多个光纤层中的每个光纤层包括由多个光纤段所构成的规则平面几何图形光纤;根据第一空间直角坐标系确定多个棱边的端点的相对空间坐标值。
基于上述步骤S102-11和步骤S102-12,本实施例步骤S104中涉及到的根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置的方式,可以通过如下方式来实现。
步骤S104-11,基于扰动源确定多个第一坐标值的点以及多个棱边的任一端 点镜像对称的端点。一个第二坐标值的点与一个棱边的任意端点的镜像对称的四个端点构成一个平面几何图形。
步骤S104-12,获取构成镜像对称的多个平面几何图形中任一相连两端的能量表征值之间的多个第一差值,以及任一相连两端的端点与扰动源之间的能量损耗值的多个第二差值。
步骤S104-13,根据多个第一差值、多个第二差值以及构成镜像对称的平面几何图形中相连两端在第一空间直角坐标系中的长度确定扰动源的多个第二坐标值。
步骤S104-14,从多个第二坐标值中选择一个第二坐标值作为扰动源的空间位置。
其中,从多个第二坐标值中选择一个第二坐标值作为扰动源的空间位置的方式可以是通过最小二乘法的方式来进行选择,即该步骤S104-14可以是多个第二坐标值做空间距离运算,取一个空间点使得该空间点满足如最小二乘法的坐标值作为最终的扰动源位置点。
通过上述步骤S104-11至步骤S104-14,可以将光纤所构成的空间划分为多个子空间,从而根据多个子空间来分别建立直角坐标系,进而可以得到多个坐标值(第一坐标值和多个第二坐标值),从而从中选择最合适的坐标值作为最终的扰动源的坐标值。
在本实施例的再一个可选实施方式中,本实施例的方法步骤还可以包括如下步骤。
步骤S106,在根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置之后,获取检测光纤中距离扰动源的空间位置最近的点。
步骤S108,根据距离扰动源的空间位置最近的点对扰动源的相位进行提取并进行频谱分析。
下面结合本实施例的具体实施方式对本申请进行举例说明。
基于现有砼浇筑振捣监测领域的空白,本具体实施方式以分布式光纤振动检测技术为技术基础,采用特殊的铺设光纤方式以及侧模输入模块辅助完成振动器位移的精确跟踪;采用对最理想扰动监控点的设置完成信号的重绘以至能够对砼经过振捣后的特征表征;完成砼浇筑分层振动规范完成情况实时监控,对于达标区域和不达标区域明确的标示,并给予整体符合情况做出结论性判定。
图2是根据本发明实施例的光纤扰动系统的结构示意图,如图2所示,该系统包括:砼浇筑模型建模输入模块,扰动源空间位置识别与优化单元,振动源信号相位与实时频谱分析单元,振动源空间位移情况与振动源信号特征模拟单元(该单元可以实时分析扰动源当前的空间位置、振动源能量特征、振动源振动信号特征,以表征砼浇筑振捣情况特征)。
本具体实施方式在铺设光纤时在检测点位置采用如图3中所示横向(一些实施例中可以采用如图5所示纵向布纤方式)以砼浇筑侧模为空间结构(如图3所示的长方体结构)的布纤方式,但不限于长方体结构(还可以是圆柱体、椭圆柱体等),在该布纤方式中,长方体边、宽、高的长度是确定的,以及光纤布纤,分层的层数是确定的。以长方体的一个顶点,如图3中B点为参考点,以相交的三个棱边作为坐标系,该布纤的方式和坐标系的建立能够将扰动空间位置的计算几何模型化到直角坐标系(或者极坐标系),以检测信号的强度比值为几何图形的边长比,从而解决扰动源空间位置精确计算的问题。
其中,(x,y,z,A(t),θ(t)),这是一个坐标为(x,y,z)的空间点,位置位于光纤绕圈内。
检测光纤的铺设根据特定的方式铺设,例如圆柱形、方柱形等模型化的方式铺设,模型化的铺设的好处在于每个区域(点)的坐标点可以完全由测试系统A端口到绕圈的第一个顶点B(x 1,y 1,z 1,A 1(t),θ 1(t))所确定,在检测系统中以长方体的棱边建立直角坐标系,确定坐标原点垂直上方距离L1处为B点并在布纤时以L1为层间距,长方体的长和宽分别为L2、L3,则长方体每个棱边的中点、每层的顶点相对于原定的坐标即可确认。
假设空间任意一点(x,y,z)是一个振动源,其能量模值用A(t)表示,即其是一个关于时间t的函数,该振动源产生的信号相位用θ(t)表示,即相位是关于时间t的函数。该振动源会以扰动场的形式通过介质传输后作用于传感光纤。扰动源信号为声波信号,声波信号在均匀介质中传输的损耗为δ。振动源O和检测光纤上的B、C、D、E、F、G分别构成直角三角形ΔOGD、ΔOFC、ΔOEB。
如图3所示,线段DH,其所在光纤层的顶点D、H两点为固定探查信号的点,其中G点是待定点,O点振动信号到达DH线段上,光纤的DH任意一点都可以检查到扰动信号,强度最强点是G点(因为OG垂直于DH),在系统中模型中的定点为固定探测点、而G点是非确定的探测点,在检测系统中以DH光纤段为例,系统要将DH段的分布采样点采集到的信号能力进行排序,取最 大的点做记录,该点为G点的等价点,其他点丢弃。扰动衰减和距离成正比,因此有如下方程:
A G-A E=δd OG-δd OE                  (1)
A E-A E`=δd OE-δd OE`                 (2)
A G`-A G=δd OG`-δd OG                 (3)
A E`-A G`=δd OE`-δd OG`                (4)
其中A G、A G`、A E、A E`表示G、G`、E、E`点检测到的扰动能量表征值,d OG、d OE、d OE`、d OG`表示OG、OE、OE`、OG`线段的长度。
如图2所示,令G`、E`、E和G点在各自棱边上的X坐标相同,其中G点是系统在GH棱边上分布式遍历查询并对比其能量弧度而查询到的,其所在棱边上遍历时每个分布点的坐标是确认的,当查询到接收扰动能量最强时该点被确认,将四点连成长方形,如图3所示的GEE`G`长方形。
d OE=d OE`(sinβ/sinα)                   (5)
d EE`=d OE`(sin(π-α-β)/sinα)              (6)
由于G、E、E`、G`坐标是经过分布式检测确定的,而G点是DH线段上能量最强点则扰动点O点的X坐标应该与G点的X坐标相同;
另在HI棱边上同样进行扰动能量强度最强点检查,如图3可得到能量点J,其空间坐标是已知的,J点的Y坐标是和扰动源O点的Y坐标一致的。
如图4所示,扰动源O(x,y,z)相对于原点其坐标,x、y在测量DH线段、HI线段中扰动能量最强点时被测量。在三角形OEE`里有:
z=sinα*d OE                       (7)
y=cosα*d OE                       (8)
z=sinβ*d OE`                       (9)
d EE`-y=cosβ*d OE`                     (10)
其中d EE`、y、A G、A G`、A E、A E`已知;8个未知数,10个方程式,其中方程(5)、(6)可以用方程(7)、(8)、(9)转换得到,因此10个方程式 实际构成的矩阵秩为8,即8个未知数、8个一次方程式,可以求出唯一一组解。因此可以解出O点的坐标。综上,该检测装置完成扰动点位置的定位。
需要说明的是,上述可选实施方式是以所铺设的光纤为长方体为例进行说明的,其他空间结构也是可以根据上述步骤S102至步骤S112的方式来实现的。
此外,由于扰动源O点并非理想的质点而是一个有一定体积的物体,那么其产生的扰动在被测量点上是接收整个物体影响的,进一步可以将光纤分层布设的方式将长方体分层若干个小的长方体,不仅可以完成砼浇筑过程中分层振捣的监测,同时可以做扰动源点O点的位置优化,具体方案为:每一个小的长方体完成O点的位置定位后,将输出的结果做空间距离运算,取一个空间点使得该空间点满足最小二乘法的坐标值,即认为该点为最终的扰动源位置点。
需要说明的是,在完成最优的空间位移点后,在铺设的光纤段中回归查找一个点使得该点和扰动源位置最近,利用该点做扰动源的相位提取其频谱进行分析,如果扰动源的驱动信号特征是稳定的,那么恢复信号理想情况应趋向稳定且与扰动元信号特征相似。由于砼浇筑振捣效果上没有到达不消沉、不均匀、有气泡等动态的变化会直接导致恢复信号的不稳定。从而逆推出砼浇筑振捣的效果特征是否符合规范要求。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请每个实施例的方法。
实施例2
在本实施例中还提供了一种确定扰动源位置的装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少之一的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的一种确定扰动源位置的装置的结构示意图,如图6所示,该装置包括:第一确定模块62和第二确定模块64。
第一确定模块62,设置为确定检测光纤所受到的源自待测对象中的扰动源的扰动强度。检测光纤绕待测对象分布,以及检测光纤包括多条光纤段。
第二确定模块64,与第一确定模块62耦合连接,设置为根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置。
一实施例中,该第一确定模块62还可以包括:第一确定单元和第一获取单元。
第一确定单元,设置为确定检测光纤的立体模型,以及立体模型中与检测光纤所包括的多条光纤段所对应的多个棱边的端点的相对空间坐标值。立体模型表征检测光纤的空间结构。
第一获取单元,设置为获取所述多个棱边中的每个棱边上扰动强度最大的点,以及所述扰动强度最大的点的第一坐标值。
该第一确定单元包括:建立子单元,设置为基于检测光纤的立体模型建立第一空间直角坐标系。检测光纤由多个光纤层构成,多个光纤层所在的平面相互平行,多个光纤层中的每个光纤层包括由多个光纤段所构成的规则平面几何图形光纤。
一实施例中,第二确定模块包括:第二确定单元、第二获取单元、第三确定单元和选择单元。
第二确定单元,设置为基于扰动源确定多个第一坐标值的点以及多个棱边的任一端点镜像对称的端点。一个第二坐标值的点与一个棱边的任意端点的镜像对称的四个端点构成一个平面几何图形。
第二获取单元,设置为获取构成镜像对称的多个平面几何图形中任一相连两端的能量表征值之间的多个第一差值,以及任一相连两端的端点与扰动源之间的能量损耗值的多个第二差值。
第三确定单元,设置为根据多个第一差值、多个第二差值以及构成镜像对称的平面几何图形中相连两端在第一空间直角坐标系中的长度确定扰动源的多个第二坐标值。
选择单元,设置为从多个第二坐标值中选择一个第二坐标值作为扰动源的空间位置。
图7是根据本发明实施例的另一种确定扰动源位置的装置的结构示意图,如图7所示,该装置包括:第一确定模块62、第二确定模块64、获取模块72和处理模块74。
获取模块72,与第二确定模块64耦合连接,设置为在根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置之后,获取检测光纤中距离扰动源的空间位置最近的点。
处理模块74,与获取模块72耦合连接,设置为根据距离扰动源的空间位置最近的点对扰动源的相位进行提取并进行频谱分析。
需要说明的是,上述多个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序。
S1,确定检测光纤所受到的扰动强度。检测光纤绕待测对象分布,以及检测光纤包括多条光纤段。
S2,根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等多种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤。
S1,确定检测光纤所受到的源自待测对象中的扰动源的扰动强度。检测光 纤绕待测对象分布,以及检测光纤包括多条光纤段。
S2,根据扰动强度与检测光纤所包括的多条光纤段的空间几何关系确定待测对象中的扰动源的空间位置。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的可选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有多种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种确定扰动源位置的方法,包括:
    确定检测光纤所受到的源自待测对象中的扰动源的扰动强度,其中,所述检测光纤绕所述待测对象分布,以及所述检测光纤包括多条光纤段;
    根据所述扰动强度与所述检测光纤所包括的多条光纤段的空间几何关系确定所述待测对象中的所述扰动源的空间位置。
  2. 根据权利要求1所述的方法,其中,所述确定检测光纤所受到的源自待测对象中的扰动源的扰动强度,包括:
    确定所述检测光纤的立体模型,以及所述立体模型中与所述检测光纤所包括的多条光纤段所对应的多个棱边的端点的相对空间坐标值,其中,所述立体模型表征所述检测光纤的空间结构;
    获取所述多个棱边中的每个棱边上扰动强度最大的点,以及所述扰动强度最大的点的第一坐标值。
  3. 根据权利要求2所述的方法,其中,所述确定所述立体模型中与所述检测光纤所包括的多条光纤段所对应的多个棱边的端点的相对空间坐标值,包括:
    基于所述立体模型建立第一空间直角坐标系,其中,所述检测光纤由多个光纤层构成,所述多个光纤层所在的平面相互平行,所述多个光纤层中的每个光纤层包括由多个光纤段所构成的规则平面几何图形光纤;
    根据所述第一空间直角坐标系确定所述多个棱边的端点的相对空间坐标值。
  4. 根据权利要求3所述的方法,其中,所述根据所述扰动强度与所述检测光纤所包括的多条光纤段的空间几何关系确定所述待测对象中的所述扰动源的空间位置,包括:
    基于所述扰动源确定多个所述第一坐标值的点以及所述多个棱边的任一端点镜像对称的端点,其中,一个第二坐标值的点与一个棱边的任意端点的镜像对称的四个端点构成一个平面几何图形;
    获取构成镜像对称的多个平面几何图形中任一相连两端的能量表征值之间的多个第一差值,以及任一相连两端的端点与所述扰动源之间的能量损耗值的多个第二差值;
    根据所述多个第一差值、所述多个第二差值以及构成镜像对称的平面几何图形中相连两端在所述第一空间直角坐标系中的长度确定所述扰动源的多个第二坐标值;
    从所述多个第二坐标值中选择一个第二坐标值作为所述扰动源的空间位置。
  5. 根据权利要求2至4任一项所述的方法,其中,所述在根据所述扰动强度与所述检测光纤所包括的多条光纤段的空间几何关系确定所述待测对象中的所述扰动源的空间位置之后,所述方法还包括:
    获取所述检测光纤中距离所述扰动源的空间位置最近的点;
    根据所述距离所述扰动源的空间位置最近的点对所述扰动源的相位进行提取并进行频谱分析。
  6. 一种确定扰动源位置的装置,包括:
    第一确定模块,设置为确定检测光纤所受到的源自待测对象中的扰动源的扰动强度,其中,所述检测光纤绕所述待测对象分布,以及所述检测光纤包括多条光纤段;
    第二确定模块,设置为根据所述扰动强度与所述检测光纤所包括的多条光纤段的空间几何关系确定所述待测对象中的所述扰动源的空间位置。
  7. 根据权利要求6所述的装置,其中,所述第一确定模块包括:
    第一确定单元,设置为确定所述检测光纤的立体模型,以及所述立体模型中与所述检测光纤所包括的多条光纤段所对应的多个棱边的端点的相对空间坐标值,其中,所述立体模型表征所述检测光纤的空间结构;
    第一获取单元,设置为获取所述多个棱边中的每个棱边上扰动强度最大的点,以及所述扰动强度最大的点的第一坐标值。
  8. 根据权利要求7所述的装置,其中,所述第一确定单元包括:
    建立子单元,设置为基于所述立体模型建立第一空间直角坐标系,其中,所述检测光纤由多个光纤层构成,所述多个光纤层所在的平面相互平行,所述多个光纤层中的每个光纤层包括由多个光纤段所构成的规则平面几何图形光纤;
    确定子单元,设置为根据所述第一空间直角坐标系确定所述多个棱边的端点的相对空间坐标值。
  9. 根据权利要求8所述的装置,其中,所述第二确定模块包括:
    第二确定单元,设置为基于所述扰动源确定多个所述第一坐标值的点以及所述多个棱边的任一端点镜像对称的端点,其中,一个第二坐标值的点与一个棱边的任意端点的镜像对称的四个端点构成一个平面几何图形;
    第二获取单元,设置为获取构成镜像对称的多个平面几何图形中任一相连两端的能量表征值之间的多个第一差值,以及任一相连两端的端点与所述扰动源之间的能量损耗值的多个第二差值;
    第三确定单元,设置为根据所述多个第一差值、所述多个第二差值以及构成镜像对称的平面几何图形中相连两端在所述第一空间直角坐标系中的长度确定所述扰动源的多个第二坐标值;
    选择单元,设置为从所述多个第二坐标值中选择一个第二坐标值作为所述扰动源的空间位置。
  10. 根据权利要求7至9任一项所述的装置,其中,所述装置还包括:
    获取模块,设置为在根据所述扰动强度与所述检测光纤所包括的多条光纤段的空间几何关系确定所述待测对象中的扰动源的空间位置之后,获取所述检测光纤中距离所述扰动源的空间位置最近的点;
    处理模块,设置为根据所述距离所述扰动源的空间位置最近的点对所述扰动源的相位进行提取并进行频谱分析。
  11. 一种存储介质,其中,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至5任一项所述的方法。
  12. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至5任一项所述的方法。
PCT/CN2019/126419 2018-12-18 2019-12-18 确定扰动源位置的方法及装置、存储介质和电子装置 WO2020125692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811550189.6A CN111337116B (zh) 2018-12-18 2018-12-18 确定扰动源位置的方法及装置、存储介质和电子装置
CN201811550189.6 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020125692A1 true WO2020125692A1 (zh) 2020-06-25

Family

ID=71100630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126419 WO2020125692A1 (zh) 2018-12-18 2019-12-18 确定扰动源位置的方法及装置、存储介质和电子装置

Country Status (2)

Country Link
CN (1) CN111337116B (zh)
WO (1) WO2020125692A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361960B (zh) * 2020-11-17 2022-03-22 苏交科集团检测认证有限公司 基于智能光纤传感的混凝土振捣器具精确定位方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198471A (ja) * 1993-12-29 1995-08-01 Anritsu Corp 振動源位置検出器及び振動源位置検出装置
CN201522765U (zh) * 2009-09-10 2010-07-07 上海八运水科技发展有限公司 光纤式入侵报警系统
CN201611277U (zh) * 2009-10-30 2010-10-20 中国电子科技集团公司第三十四研究所 基于双马赫-泽德干涉仪的光纤振动传感系统
CN101968161A (zh) * 2010-11-10 2011-02-09 于晋龙 基于分布式光纤偏振传感器的智能管道自动预警系统
CN102226703A (zh) * 2011-03-29 2011-10-26 宁波诺驰光电科技发展有限公司 一种分布式光纤多参量传感器及多参量测量方法
CN104568122A (zh) * 2015-01-21 2015-04-29 东南大学 一种分布式光纤振动传感系统扰动事件识别及定位方法
CN205607417U (zh) * 2016-05-17 2016-09-28 李儒佳 一种分布式光纤m-z干涉仪的扰动信号测量装置
JP2017026503A (ja) * 2015-07-24 2017-02-02 日本電信電話株式会社 振動分布測定方法及び振動分布測定装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355208A (en) * 1992-06-24 1994-10-11 Mason & Hanger National, Inc. Distributed fiber optic sensor for locating and identifying remote disturbances
US6144790A (en) * 1997-02-07 2000-11-07 Bledin; Anthony G Contact fiber optic impact sensor
US6186628B1 (en) * 1999-05-23 2001-02-13 Jozek F. Van de Velde Scanning laser ophthalmoscope for selective therapeutic laser
US6945663B2 (en) * 2002-06-14 2005-09-20 Tseng-Lu Chien Tubular electro-luminescent light incorporated with device(s)
CN1944020A (zh) * 2005-10-08 2007-04-11 胡白 富生态自组装砼
CN101488805B (zh) * 2008-01-15 2012-08-29 电子科技大学 光纤扰动探测方法及装置
CN101324446B (zh) * 2008-07-24 2010-08-18 北京航空航天大学 一种扰动传感定位方法
CN101566497B (zh) * 2009-04-29 2012-06-13 上海华魏光纤传感技术有限公司 一种基于相位检测和光时域反射的分布式光纤振动传感系统
CN101561465A (zh) * 2009-05-14 2009-10-21 复旦大学 基于对往返波二次调制的扰动源定位方法
CN101922946A (zh) * 2009-06-17 2010-12-22 复旦大学 一种全光纤定位监测系统
GB0919904D0 (en) * 2009-11-13 2009-12-30 Qinetiq Ltd Determining lateral offset in distributed fibre optic acoustic sensing
CN102562158A (zh) * 2010-12-24 2012-07-11 上海杰蜀光电科技有限公司 一种本质安全的分布式全光纤井下监测系统
GB201103479D0 (en) * 2011-03-01 2011-04-13 Qinetiq Ltd Conduit monitoring
GB201201727D0 (en) * 2012-02-01 2012-03-14 Qinetiq Ltd Indicating locations
CN102628698B (zh) * 2012-04-06 2015-02-18 中国科学院上海光学精密机械研究所 分布式光纤传感器及信息解调方法
WO2014108874A1 (en) * 2013-01-11 2014-07-17 Council Of Scientific & Industrial Research An optical fiber-based force transducer for microscale samples
CN103090961B (zh) * 2013-02-01 2014-11-26 华中科技大学 一种分布式光纤传感系统的扰动源定位方法
JP6211440B2 (ja) * 2013-03-15 2017-10-11 鹿島建設株式会社 締固め状況管理システム、締固め状況管理方法
CN104565826B (zh) * 2013-10-29 2017-07-14 中国石油天然气股份有限公司 管道光纤安全监测预警方法和系统
CN103954308B (zh) * 2014-05-09 2016-05-25 南京发艾博光电科技有限公司 光纤扰动探测方法及装置
CN104077267A (zh) * 2014-06-27 2014-10-01 复旦大学 一种双重傅立叶变换扰动定位方法
CN104215271B (zh) * 2014-07-30 2017-02-15 复旦大学 一种分布式光纤扰动监测系统中扰动位置的定位方法
CN104359498A (zh) * 2014-10-23 2015-02-18 深圳艾瑞斯通技术有限公司 一种光纤振动位置定位方法、装置及系统
CN104964699B (zh) * 2015-05-22 2017-09-08 北京交通大学 基于φ‑OTDR光纤分布式扰动传感器的扰动判断方法和装置
CN204753658U (zh) * 2015-07-03 2015-11-11 山西省交通科学研究院 一种基于botdr的抗滑桩变形监测系统
GB2544727A (en) * 2015-11-16 2017-05-31 Optonor As Optical interferometry
CN107101658B (zh) * 2017-05-24 2019-10-11 上海大学 相位敏感光时域反射分布式光纤传感系统快速定位方法
CN107167168B (zh) * 2017-05-24 2019-07-23 上海大学 相位敏感光时域反射分布式光纤传感系统精确定位方法
CN107402027A (zh) * 2017-06-28 2017-11-28 宋章启 基于强度调制型光纤传感器的物理量测量方法
CN108168767A (zh) * 2018-01-02 2018-06-15 河北大学 一种液压光纤传感系统及其内传感基带的制作方法
CN108709633B (zh) * 2018-08-29 2020-05-05 中国科学院上海光学精密机械研究所 基于深度学习的分布式光纤振动传感智能安全监测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198471A (ja) * 1993-12-29 1995-08-01 Anritsu Corp 振動源位置検出器及び振動源位置検出装置
CN201522765U (zh) * 2009-09-10 2010-07-07 上海八运水科技发展有限公司 光纤式入侵报警系统
CN201611277U (zh) * 2009-10-30 2010-10-20 中国电子科技集团公司第三十四研究所 基于双马赫-泽德干涉仪的光纤振动传感系统
CN101968161A (zh) * 2010-11-10 2011-02-09 于晋龙 基于分布式光纤偏振传感器的智能管道自动预警系统
CN102226703A (zh) * 2011-03-29 2011-10-26 宁波诺驰光电科技发展有限公司 一种分布式光纤多参量传感器及多参量测量方法
CN104568122A (zh) * 2015-01-21 2015-04-29 东南大学 一种分布式光纤振动传感系统扰动事件识别及定位方法
JP2017026503A (ja) * 2015-07-24 2017-02-02 日本電信電話株式会社 振動分布測定方法及び振動分布測定装置
CN205607417U (zh) * 2016-05-17 2016-09-28 李儒佳 一种分布式光纤m-z干涉仪的扰动信号测量装置

Also Published As

Publication number Publication date
CN111337116B (zh) 2024-06-07
CN111337116A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
US10783368B2 (en) Method and apparatus for identifying intersection in electronic map
CN105359163B (zh) 用于将基元形状拟合到3d点的集合的方法
WO2021119947A1 (zh) 一种桥梁损伤快速检测方法及相关装置
CN107452062B (zh) 三维模型构建方法、装置、移动终端、存储介质及设备
US20140270476A1 (en) Method for 3d object identification and pose detection using phase congruency and fractal analysis
CN109341626B (zh) 直线度计算方法、截面最大直径与最小直径之差计算方法
Guldur Laser-based structural sensing and surface damage detection
CN105928675B (zh) 用于对结构执行模态分析的系统和方法
WO2020125692A1 (zh) 确定扰动源位置的方法及装置、存储介质和电子装置
JP2016090547A (ja) ひび割れ情報収集装置及びひび割れ情報を収集するためのサーバ装置
CN109520612A (zh) 水浸式聚焦超声换能器实际声场的快速测焦系统及方法
Rao et al. Point cloud-based elastic reverse time migration for ultrasonic imaging of components with vertical surfaces
Fadakar Alghalandis et al. The RANSAC method for generating fracture networks from micro-seismic event data
CN109828302A (zh) 一种基于多振动传感器的震源定位方法及装置
TW201344633A (zh) 曲面量測系統及方法
CN102081045B (zh) 一种基于激光电视全息技术的结构损伤识别方法
CN104952086A (zh) 用于管理结构数据的设备及方法
JP2018179968A (ja) 超音波スキャン・データを使った欠陥検出
Palma et al. Detection of geometric temporal changes in point clouds
CN111307669B (zh) 一种稀疏两相流中颗粒局部结构的测量方法
TW201349171A (zh) 曲面座標系建立系統及方法
CN116007504A (zh) 基于图像技术的裂缝检测模块、装置和计算机设备
CN111813775B (zh) 一种隧道点云数据处理方法、装置及存储介质
CN104854450A (zh) 用于检测焊接部的主体的缺陷的超声波方法和装置
Morita et al. 3D imaging system for the digitization of the Argentine museums collections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19899782

Country of ref document: EP

Kind code of ref document: A1