WO2020125384A1 - 一种高精度六边形空间双层反射面天线背架 - Google Patents

一种高精度六边形空间双层反射面天线背架 Download PDF

Info

Publication number
WO2020125384A1
WO2020125384A1 PCT/CN2019/122308 CN2019122308W WO2020125384A1 WO 2020125384 A1 WO2020125384 A1 WO 2020125384A1 CN 2019122308 W CN2019122308 W CN 2019122308W WO 2020125384 A1 WO2020125384 A1 WO 2020125384A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
back frame
space
chord
antenna back
Prior art date
Application number
PCT/CN2019/122308
Other languages
English (en)
French (fr)
Inventor
刘国玺
杜彪
郑元鹏
赵均红
杨晋蓉
陈隆
Original Assignee
中国电子科技集团公司第五十四研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第五十四研究所 filed Critical 中国电子科技集团公司第五十四研究所
Publication of WO2020125384A1 publication Critical patent/WO2020125384A1/zh
Priority to ZA2021/05019A priority Critical patent/ZA202105019B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal

Definitions

  • the invention relates to a high-precision reflective surface antenna in the fields of communication, measurement and control, radio astronomy, and more specifically, to a back frame structure of a high-precision circularly symmetric reflective surface antenna or an offset reflective surface antenna, which is particularly suitable for mass production and rapid Production and manufacturing of installed medium-diameter reflector antennas.
  • the backplane of the reflector antenna is an important part of the reflector antenna.
  • the upper part is connected to the antenna panel, and the lower part is connected to the base frame.
  • the antenna back frame is used to support the panel and provide rigidity. The surface accuracy and main performance of the antenna are directly determined by the back frame. Therefore, the reflective antenna back frame structure is the core component of the entire antenna system.
  • the traditional reflector antenna back frame is generally composed of a central body, a radiation beam, and a ring rod.
  • the radiation beams are evenly distributed along the circumference of the center body, and are connected by a ring rod to form an antenna back frame.
  • the center body is in the form of a cylinder, and the interior is lined with reinforcing ribs, which are formed by welding; the radiating beam is formed by welding several profiles to form a plane truss structure.
  • center body is formed by solid plates, there are annular and radial reinforcing rib plates inside, and many flanges connected to the radiating beams are provided outside, resulting in an increase in the weight of the antenna back frame.
  • the main parts of the traditional antenna back frame are formed by welding, and stress concentration is likely to occur during the manufacturing process, which causes the reflective antenna after installation to be easily deformed, which reduces the performance of the antenna.
  • the traditional antenna back frame composed of the center body, the radiating beam and the ring tie rod has a very high stiffness of the center body position, while the position beam of the radiating beam is weak, resulting in a discontinuous rigidity of the back frame at the joint position, which deteriorates the antenna surface accuracy.
  • the antenna back frame in this invention consists of a three-layer structure: the upper chord surface, the lower chord surface and the surface where the apex of the quadrangular pyramid is located. This results in a large distribution density of the antenna back frame rods, complicated manufacturing and heavy weight.
  • chord surface of the antenna back frame in this invention is composed of quadrilateral elements. It is well known that the quadrilateral structure has instability. Therefore, this method can easily cause the local deformation of the reflective antenna during pitching motion, which affects the surface accuracy of the antenna.
  • the invention only relates to a circularly symmetrical reflector antenna.
  • this method is not applicable.
  • the unit shape given in this invention is triangular, and the shape of the reflective antenna is generally circular, elliptical or polygonal, so this invention is not applicable to the general backplane structure of reflective antennas.
  • the support points of the reflective surface unit in this invention are located at the three outer vertex positions of the triangle. For a reflective antenna, this type of support will cause a huge support structure.
  • the reflective panel in this invention uses a perforated panel or an aluminum alloy mesh panel. Panels of this type of structure are not suitable for high frequency reflective antennas.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a high-precision hexagonal space double-layer reflective antenna back frame, which has high precision, light weight and high rigidity compared with the existing reflective antenna back frame And the features of quick installation.
  • the backplane of the reflective antenna of the invention adopts a hexagonal space double-layer bolt ball structure form, and the upper chord surface is composed of triangular units.
  • the bolt ball adopts a hollow structure and is formed by numerical control processing, which can effectively improve the surface accuracy and installation efficiency of the antenna. Can reduce manufacturing costs and installation and transportation costs.
  • the present invention is implemented by the following technical solutions.
  • a high-precision hexagonal space double-reflection antenna back frame is characterized by comprising a mirror space symmetrical left space frame and a right space frame.
  • the left space frame includes an upper chord surface 1 for fixed connection with the antenna reflection surface and
  • the lower chord surface 2 is used to provide a stable support structure.
  • the upper chord surface 1 and the lower chord surface 2 are oppositely arranged in front and back, and an equally spaced cavity area is formed between the upper chord surface 1 and the lower chord surface 2;
  • the winding surface 1 includes a plurality of groups of winding members, each group of winding members is connected by three winding members end to end to form a closed triangle, and each winding member is arranged in a curved structure with reflection valleys, each winding member group
  • the common side intersecting adjacent upper chord groups share one upper chord, which is composed of multiple upper chord groups to form a mesh structure with multiple triangular empty areas;
  • the lower chord surface 2 includes multiple groups of lower chord parts, each group of lower chord parts is connected by three lower chords end to end into a closed triangle, and each lower chord is arranged in a curved structure with a reflective valley, each lower chord group is connected to the phase
  • the common side intersecting adjacent lower chord groups share an upper chord, which is composed of multiple lower chord groups to form a mesh structure with multiple triangular empty areas;
  • each upper chord is offset from the center of each lower chord.
  • the apex of each upper chord coincides with the vertical line of the center of the three lower chords that are connected in sequence.
  • the apex of each lower chord is connected by the spatial diagonal rod 3
  • the left space frame and the right space frame are connected by a plurality of equally spaced horizontal bars, and the plurality of equally spaced horizontal bars isolate a plurality of linearly arranged rectangles.
  • winding surface 1 is a hexagon with each edge line being a polyline.
  • the support frame 7 also includes a support frame 7, and an opening area for accommodating the support frame 7 is opened at the central lower portion of the lower chord surface 2.
  • the support frame 7 is disposed in the opening area and fixedly connected to the upper chord surface 1.
  • the support frame 7 is trapezoidal.
  • a door frame 5 which is composed of a left door frame and a right door frame that are symmetrically mirrored left and right.
  • the left door frame and the right door frame are connected by a flange, and the left door frame Both the right door frame and the right door frame are connected to the corresponding vertex of the support frame 7 through two V-shaped frames.
  • the upper chord bar, the lower chord bar, the space slant bar 3, and the side slant bar 4 are all fastened to the round pipe taper head with high-strength bolts protruding from the ends and nuts.
  • a middle reinforcing supporting rod connected from the upper bottom edge to the lower bottom edge, the upper bottom edge and the lower bottom edge of the supporting frame 7 are steel square tubes, and the waist edges on both sides are steel
  • the rectangular tube is made of steel
  • the middle reinforced support rod is a rectangular tube made of steel.
  • the support frame 7 includes a left lug 7-1 and a right lug 7-2, and the left lug 7-1 and the right lug 7-2 are connected to the long bottom edge of the support frame 7 through a flange
  • the support frame 7 further includes a support flange 7-3, and the support flange 7-3 is connected to the extended portion of the support frame 7 that reinforces the support rod.
  • the present invention has the following beneficial effects:
  • the invention adopts a hexagonal structure for the antenna back frame, which overcomes the defect that the edges of the traditional round or elliptical structure are not easy to handle, and simplifies the design of the antenna back frame and the panel;
  • the upper chord surface of the back frame adopts The triangular unit is composed of stable mechanical properties and can improve the surface accuracy of the antenna.
  • the upper and lower chord surfaces are connected by a triangular cone structure, so that the distribution of the rods is evenly distributed in space, which overcomes the shortcomings of the traditional back frame radiating beam with a planar structure, greatly improves the rigidity of the antenna back frame, and enhances the antenna system Dynamic characteristics.
  • connection between the upper chord surface, the lower chord surface, the space diagonal rod and the side diagonal rod of the antenna back frame of the invention adopts CNC-processed bolt balls. Therefore, the assembled antenna back frame has high precision and good interchangeability, especially Suitable for mass production.
  • the antenna back frame of the present invention is composed of a rod structure, without the central body part of the traditional reflective surface antenna, which not only reduces the processing difficulty but also reduces the weight of the antenna back frame.
  • All rods and structural parts of the antenna back frame are connected by bolt balls and flanges.
  • the disassembled transportable units are suitable for road transport and standard containers.
  • the upper chord surface of the antenna back frame structure of the present invention is composed of triangular units, which is very suitable for a three-point support panel. Since the three-point support panel has no unnecessary constraints, it is mostly used for high-frequency, high-precision telescope antennas, so the present invention is more suitable for large-scale High-precision reflective antenna back frame.
  • the present invention is ingenious, clear, and easy to implement. It not only solves the problems of low precision and heavy structure of the traditional reflector antenna back frame, but also improves the rigidity and installation accuracy of the antenna back frame. An important improvement.
  • Figure 1 is an overall structural diagram of an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of the upper chord surface of the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the lower chord surface of an embodiment of the present invention.
  • FIG. 4 is a schematic view of the structure of the space diagonal rod and the side diagonal rod of the embodiment of the present invention.
  • FIG. 5 is a structural diagram of a door frame according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a connecting bracket according to an embodiment of the present invention.
  • Figure 7 is a structural diagram of the three-sided gold structure of the space
  • Figure 8 is a structural diagram of the supporting frame
  • upper chord surface 1 upper chord 1a
  • lower chord surface 2 space diagonal bar 3
  • space three-sided gold structure 4 door frame 5
  • support frame 7 left ear 7-1
  • right ear 7-2 support flange 7-3.
  • a high-precision hexagonal space double-reflective antenna back frame which includes a mirror-symmetric left space frame and a right space frame, and the left space frame includes a fixed connection with the antenna reflection surface
  • the upper chord surface 1 and the lower chord surface 2 used to provide a stable support structure.
  • the upper chord surface 1 and the lower chord surface 2 are arranged back and forth or up and down, and an equally spaced cavity area is formed between the upper chord surface 1 and the lower chord surface 2.
  • the winding surface 1 includes a plurality of groups of winding members, each group of winding members is connected by three winding members end to end into a closed triangle, and each winding member 1 a is arranged in a curved structure with a reflective valley, The common side where each upper chord group intersects with the adjacent upper chord group shares a common upper chord, which is composed of multiple upper chord groups to form a mesh structure with multiple triangular empty areas;
  • the lower chord surface 2 includes multiple groups of lower chord parts, each group of lower chord parts is connected by three lower chords end to end into a closed triangle, and each lower chord is arranged in a curved structure with a reflective valley, each The lower chord group and the adjacent common side of the adjacent lower chord group share an upper chord, and a plurality of lower chord groups form a mesh structure with a plurality of triangular empty areas, the upper chord, the lower chord, the space diagonal 3.
  • the side diagonal rods 4 are fastened to the round tube cone head with high-strength bolts protruding from the ends and nuts;
  • each upper chord part is offset from the center of each lower chord part, the apex of each upper chord part coincides with the vertical line of the center of the three lower chord parts connected in sequence, and each lower chord part
  • the vertices of are connected to the upper chord portion on the center vertical line by space slant bars 3 to form a space three-sided gold structure 4, each space slant bar 3 is located in the cavity area and is connected to form an integrated antenna body structure.
  • the left space frame and the right space frame are connected by a plurality of equally spaced horizontal bars, the plurality of equally spaced horizontal bars isolate a plurality of linearly arranged rectangles, and the upper chord surface 1 is each edge line It is a hexagon of polylines.
  • the support frame 7 is also included.
  • An opening area for accommodating the support frame 7 is opened at the central lower portion of the lower chord surface 2.
  • the support frame 7 is disposed in the opening area and fixedly connected to the upper chord surface 1.
  • the support frame 7 is trapezoidal.
  • the door frame 5 is located at the back of the antenna body.
  • the door frame 5 is composed of a left door frame and a right door frame that are symmetrically mirrored to the left and right.
  • the left door frame and the right door frame Through the flange connection, the left door frame and the right door frame are connected to the corresponding vertices of the support frame 7 through two V-shaped frames, and the upper bottom edge is connected to the lower bottom edge along the center line of the support frame 7
  • the middle reinforced support rods, the upper and lower bottom edges of the support frame 7 are steel square tubes, the waist sides on both sides are steel rectangular tubes, and the middle reinforced support rods are steel rectangular tubes.
  • the support frame 7 includes a left lug 7-1 and a right lug 7-2, and the left lug 7-1 and the right lug 7-2 are connected to the long bottom edge of the support frame 7 through a flange;
  • the supporting frame 7 further includes a supporting flange 7-3, which is connected to the extension part of the reinforcing support rod in the middle of the supporting frame 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种高精度六边形空间双层反射面天线背架,它涉及通信、测控以及射电天文等领域中的高精度反射面天线背架结构设计技术。旨在提供一种高精度、轻量化、易安装且适合批量生产的天线背架。它包括上弦面、下弦面、空间斜杆、侧斜杆、门型框架、连接支架、支撑框架、定位支柱和螺栓球等。背架外形呈六边形,包括上、下两层,上弦面由三角形单元组成,下弦面由三角形和四边形单元组成,上下两层之间通过三角锥结合,形成稳定的空间结构,背架的各个杆件通过螺栓球相互连接。本发明具有结构刚度好、重量轻和精度高的特点,特别适用于大中型反射面天线中的天线背架结构。

Description

一种高精度六边形空间双层反射面天线背架 技术领域
本发明涉及通信、测控以及射电天文等领域中的高精度反射面天线,更具体地讲,涉及高精度圆对称反射面天线或偏置反射面天线的背架结构,尤其适用于大批量、快速安装的中等口径反射面天线的生产和制造。
背景技术
反射面天线背架是反射面天线的重要组成部分,上部与天线面板相连接,下部与座架相连接。天线背架用于支撑面板并为其提供刚度,天线的表面精度和主要性能直接由背架决定。因此,反射面天线背架结构是整个天线系统中的核心部件。
传统的反射面天线背架一般是由中心体、辐射梁和环拉杆等组成,辐射梁沿中心体圆周均匀分布,并由环拉杆连接形成天线背架。中心体采用圆筒形式,内部衬有加强筋板,经焊接成型;辐射梁是由若干型材经焊接后形成平面桁架结构。这种背架结构形式虽然可以满足天线电气性能指标,但存在以下缺陷:
1重量重。由于中心体采用实板成型,在内部设置有环向和径向的加强筋板,在外部设置有众多与辐射梁连接的法兰,导致天线背架重量升高。
2易产生变形。传统的天线背架其主要部件采用焊接成型,在制造过程中易产生应力集中,致使安装后的反射面天线易产生变形,使天线性能降低。
3表面精度差。由中心体和辐射梁以及环拉杆组成的传统天线背架,其中心体位置刚度非常高,而辐射梁位置刚度偏弱,造成背架在结合位置的刚度不连续,使得天线表面精度变差。
中国专利公开号CN101527384A,名称为《均衡稳定空间网格式反射面天线背架的制造方法》中公开了一种反射面天线背架的设计方法。该方法虽然能够提高一些天线背架的整体刚度,但在结构方面存在以下不足:
1该发明中的天线背架由三层结构组成:上弦面、下弦面和四角锥顶点所在面。这就造成了天线背架杆件分布密度大,加工制造复杂,重量重。
2该发明中的天线背架上弦面由四边形单元组成,众所周知,四边形结构具 有不稳定性,因此,这种方法易使反射面天线在做俯仰运动中产生局部变形,影响天线的表面精度。
3该发明仅涉及圆对称反射面天线,对于非圆对称反射面天线或外形为多边形的反射面天线,该方法则不适用。
中国专利公开号CN104638381A,名称为《FAST射电望远镜空间五等分反射面单元》中公开了一种双层结构的三角形反射面单元,该方法虽然适合于FAST射电望远镜这样的特定工程,但对于通用的反射面天线的应用,存在以下缺陷:
1该发明中给出的单元形状为三角形,而反射面天线的形状一般为圆形、椭圆形或多边形,因此该发明不适用于一般的反射面天线背架结构。
2该发明中的反射面单元支撑点位于三角形的外部三个顶点位置。该种支撑方式对于反射面天线来说,会导致支撑结构体积庞大。
3该发明中的反射面面板采用穿孔面板或铝合金网面面板,这类结构的面板不适用工作于高频率的反射面天线。
发明的内容
本发明的目的在于克服现有技术的不足,提供一种高精度六边形空间双层反射面天线背架,与现有的反射面天线背架相比,具有精度高、重量轻、刚度大以及能够快速安装的特点。本发明反射面天线背架采用六边形空间双层螺栓球结构形式,上弦面均由三角形单元组成,螺栓球采用中空结构且经数控加工成型,能够有效提高天线的表面精度和安装效率,同时能够降低制造成本和安装、运输成本。
为解决上述技术问题,本发明是通过以下技术方案予以实现。
一种高精度六边形空间双层反射面天线背架,其特征在于:包括成镜像对称的左空间架和右空间架,左空间架包括用于与天线反射面固连的上弦面1和用于提供稳固支撑结构的下弦面2,上弦面1与下弦面2前后相对设置,上弦面1与下弦面2之间形成等间距的空腔区;
上弦面1包括多组上弦杆部,每组上弦杆部由三个上弦杆首尾相接成闭合三角形,各个上弦杆相接排布成具有反射凹谷的曲面结构,每个上弦杆组与相邻上弦杆组相交的公共边共用一根上弦杆,由多个上弦杆组组成具有多个三角形空区 的网面结构;
下弦面2包括多组下弦杆部,每组下弦杆部由三个下弦杆首尾相接成闭合三角形,各个下弦杆相接排布成具有反射凹谷的曲面结构,每个下弦杆组与相邻下弦杆组相交的公共边共用一根上弦杆,由多个下弦杆组组成具有多个三角形空区的网面结构;
各个上弦杆部与各个下弦杆部的中心错开,每个上弦杆部的顶点与三个相依次相接的下弦杆部中心垂线重合,每个下弦杆部的顶点都通过空间斜杆3连接至位于中心垂线上的上弦杆部定点处形成空间三面金字结构,每个空间斜杆3都位于空腔区中;
所述的左空间架与右空间架之间通过多个等间距的横杆连接,多个等间距的横杆隔绝出多个线性依次排列的矩形。
进一步的,所述的上弦面1为每个边沿线为折线的六边形。
进一步的,还包括支撑框架7,下弦面2的中心下部开有供容纳支撑框架7的开口区域,支撑框架7设置在开口区域中并与上弦面1固定连接。
进一步的,所述的支撑框架7为梯形。
进一步的,还包括门型框架5,门型框架5由左右对称成镜像的左门型框架和右门型框架组成,左门型框架与右门型框架通过法兰盘连接,左门型框架和右门型框架都通过两个V型架连接至支撑框架7的对应顶点处。
进一步的,所述的上弦杆、下弦杆、空间斜杆3、侧斜杆4都通过端部突出的高强度螺栓搭配螺母紧固至圆管锥头上。
进一步的,沿着支撑框架7的中线固定有由上底边连接至下底边的中间加强支撑杆,支撑框架7的上底边和下底边为钢制方管,两侧腰边为钢制矩形管,中间加强支撑杆为钢制矩形管。
进一步的,所述的支撑框架7包括左支耳7-1和右支耳7-2,左支耳7-1和右支耳7-2通过法兰盘与支撑框架7长底边相连接;所述的支撑框架7还包括支撑法兰盘7-3,支撑法兰盘7-3与支撑框架7中间加强支撑杆延长部分相连接。
本发明与背景技术相比具有如下有益效果:
1本发明与现有技术相比,天线背架采用六边形结构,克服了传统的圆形或 椭圆形结构边缘不易处理的缺陷,简化了天线背架和面板的设计;背架上弦面采用三角形单元组成,具有稳定的力学性能,能够提升天线的表面精度。
2上、下弦面之间通过三角锥结构相连接,使杆件分布呈空间均匀分布,克服了传统的背架辐射梁为平面结构的不足,大幅提高了天线背架的刚度,增强了天线系统的动态特性。
3本发明天线背架的上弦面、下弦面、空间斜杆和侧斜杆之间的连接均采用数控加工的螺栓球,因此,经组装后的天线背架精度高、互换性好,特别适用于大批量生产制造。
4本发明天线背架均由杆件结构组成,没有了传统的反射面天线的中心体部分,这样既降低了加工难度又减轻了天线背架的重量。
5天线背架所有杆件和结构件均通过螺栓球和法兰盘进行连接,分解后的可运输单元均适合于公路运输和标准集装箱。
6本发明天线背架结构上弦面由三角形单元组成,非常适合于三点支撑的面板,由于三点支撑面板没有多余约束,多用于高频率、高精度望远镜天线上,因此本发明更适合于大型高精度反射面天线背架。
总之,本发明构思巧妙,思路清晰,易于实现,既解决了传统的反射面天线背架结构精度低、重量重的问题,又提高了天线背架的刚度和安装精度,是对现有技术的一种重要改进。
附图说明
图1是本发明实施例的总体结构图;
图2是本发明实施例的上弦面结构示意图;
图3是本发明实施例的下弦面结构示意图;
图4是本发明实施例的空间斜杆和侧斜杆结构示意图;
图5是本发明实施例的门型框架结构图;
图6是本发明实施例的连接支架结构图;
图7是空间三面金字结构结构图;
图8是支撑框架结构图;
图中各标号的含义如下:上弦面1,上弦杆1a,下弦面2,空间斜杆3,空 间三面金字结构4,门型框架5,支撑框架7,左支耳7-1,右支耳7-2,支撑法兰盘7-3。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步的描述。
如图1-3所示,提供了一种高精度六边形空间双层反射面天线背架包括成镜像对称的左空间架和右空间架,左空间架包括用于与天线反射面固连的上弦面1和用于提供稳固支撑结构的下弦面2,上弦面1与下弦面2前后或者上下相对设置,上弦面1与下弦面2之间形成等间距的空腔区,空腔区中用于置入联结二者的连接结构
如图2所示,上弦面1包括多组上弦杆部,每组上弦杆部由三个上弦杆首尾相接成闭合三角形,各个上弦杆1a相接排布成具有反射凹谷的曲面结构,每个上弦杆组与相邻上弦杆组相交的公共边共用一根上弦杆,由多个上弦杆组组成具有多个三角形空区的网面结构;
如图3所示,下弦面2包括多组下弦杆部,每组下弦杆部由三个下弦杆首尾相接成闭合三角形,各个下弦杆相接排布成具有反射凹谷的曲面结构,每个下弦杆组与相邻下弦杆组相交的公共边共用一根上弦杆,由多个下弦杆组组成具有多个三角形空区的网面结构,所述的上弦杆、下弦杆、空间斜杆3、侧斜杆4都通过端部突出的高强度螺栓搭配螺母紧固至圆管锥头上;
如图1和图3所示,各个上弦杆部与各个下弦杆部的中心错开,每个上弦杆部的顶点与三个相依次相接的下弦杆部中心垂线重合,每个下弦杆部的顶点都通过空间斜杆3连接至位于中心垂线上的上弦杆部定点处形成空间三面金字结构4,每个空间斜杆3都位于空腔区中,联结形成一体天线体结构。
所述的左空间架与右空间架之间通过多个等间距的横杆连接,多个等间距的横杆隔绝出多个线性依次排列的矩形,所述的上弦面1为每个边沿线为折线的六边形。
还包括支撑框架7,下弦面2的中心下部开有供容纳支撑框架7的开口区域,支撑框架7设置在开口区域中并与上弦面1固定连接,所述的支撑框架7为梯形。
如图5至图7所示,位于天线体背部设有门型框架5,门型框架5由左右对称成镜像的左门型框架和右门型框架组成,左门型框架与右门型框架通过法兰盘连接,左门型框架和右门型框架都通过两个V型架连接至支撑框架7的对应顶点处,沿着支撑框架7的中线固定有由上底边连接至下底边的中间加强支撑杆,支撑框架7的上底边和下底边为钢制方管,两侧腰边为钢制矩形管,中间加强支撑杆为钢制矩形管。
所述的支撑框架7包括左支耳7-1和右支耳7-2,左支耳7-1和右支耳7-2通过法兰盘与支撑框架7长底边相连接;所述的支撑框架7还包括支撑法兰盘7-3,支撑法兰盘7-3与支撑框架7中间加强支撑杆延长部分相连接。
以上所述,仅是本发明的最佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构改变,均仍属于本发明技术方案的保护范围内。

Claims (8)

  1. 一种高精度六边形空间双层反射面天线背架,其特征在于:包括成镜像对称的左空间架和右空间架,左空间架包括用于与天线反射面固连的上弦面(1)和用于提供稳固支撑结构的下弦面(2),上弦面(1)与下弦面(2)前后相对设置,上弦面(1)与下弦面(2)之间形成等间距的空腔区;
    上弦面(1)包括多组上弦杆部,每组上弦杆部由三个上弦杆首尾相接成闭合三角形,各个上弦杆相接排布成具有反射凹谷的曲面结构,每个上弦杆组与相邻上弦杆组相交的公共边共用一根上弦杆,由多个上弦杆组组成具有多个三角形空区的网面结构;
    下弦面(2)包括多组下弦杆部,每组下弦杆部由三个下弦杆首尾相接成闭合三角形,各个下弦杆相接排布成具有反射凹谷的曲面结构,每个下弦杆组与相邻下弦杆组相交的公共边共用一根上弦杆,由多个下弦杆组组成具有多个三角形空区的网面结构;
    各个上弦杆部与各个下弦杆部的中心错开,每个上弦杆部的顶点与三个相依次相接的下弦杆部中心垂线重合,每个下弦杆部的顶点都通过空间斜杆(3)连接至位于中心垂线上的上弦杆部定点处形成空间三面金字结构,每个空间斜杆(3)都位于空腔区中;
    所述的左空间架与右空间架之间通过多个等间距的横杆连接,多个等间距的横杆隔绝出多个线性依次排列的矩形。
  2. 根据权利要求1所述的一种高精度六边形空间双层反射面天线背架,其特征在于:所述的上弦面(1)为每个边沿线为折线的六边形。
  3. 根据权利要求1所述的一种高精度六边形空间双层反射面天线背架,其特征在于:还包括支撑框架(7),下弦面(2)的中心下部开有供容纳支撑框架(7)的开口区域,支撑框架(7)设置在开口区域中并与上弦面(1)固定连接。
  4. 根据权利要求1所述的一种高精度六边形空间双层反射面天线背架,其特征在于:所述的支撑框架(7)为梯形。
  5. 根据权利要求3所述的高精度六边形空间双层反射面天线背架,其特征在于:还包括门型框架(5),门型框架(5)由左右对称成镜像的左门型框架和右门型框架组成,左门型框架与右门型框架通过法兰盘连接,左门型框架和右门型框架都通过两个V型架连接至支撑框架(7)的对应顶点处。
  6. 根据权利要求5所述的高精度六边形空间双层反射面天线背架,其特征在于:所述的上弦杆、下弦杆、空间斜杆(3)、侧斜杆(4)都通过端部突出的高强度螺栓搭配螺母紧固至圆管锥头上。
  7. 根据权利要求1所述的高精度六边形空间双层反射面天线背架,其特征在于:沿着支撑框架(7)的中线固定有由上底边连接至下底边的中间加强支撑杆,支撑框架(7)的上底边和下底边为钢制方管,两侧腰边为钢制矩形管,中间加强支撑杆为钢制矩形管。
  8. 根据权利要求1或7所述的高精度六边形空间双层反射面天线背架,其特征在于:所述的支撑框架(7)包括左支耳(7-1)和右支耳(7-2),左支耳(7-1)和右支耳(7-2)通过法兰盘与支撑框架(7)长底边相连接;所述的支撑框架(7)还包括支撑法兰盘(7-3),支撑法兰盘(7-3)与支撑框架(7)中间加强支撑杆延长部分相连接。
PCT/CN2019/122308 2018-12-18 2019-12-02 一种高精度六边形空间双层反射面天线背架 WO2020125384A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/05019A ZA202105019B (en) 2018-12-18 2021-07-16 High-precision hexagonal space double-layer reflector antenna backup structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811552047.3 2018-12-18
CN201811552047.3A CN109449604B (zh) 2018-12-18 2018-12-18 一种高精度六边形空间双层反射面天线背架

Publications (1)

Publication Number Publication Date
WO2020125384A1 true WO2020125384A1 (zh) 2020-06-25

Family

ID=65559579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122308 WO2020125384A1 (zh) 2018-12-18 2019-12-02 一种高精度六边形空间双层反射面天线背架

Country Status (3)

Country Link
CN (1) CN109449604B (zh)
WO (1) WO2020125384A1 (zh)
ZA (1) ZA202105019B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097620A (zh) * 2021-03-29 2021-07-09 苏州五源寰宇科技有限公司 轻量化设计的运载火箭锂离子电池组
CN114256604A (zh) * 2021-12-09 2022-03-29 上海宇航系统工程研究所 基于三棱柱可折展单元的抛物柱面天线

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449604B (zh) * 2018-12-18 2024-03-26 中国电子科技集团公司第五十四研究所 一种高精度六边形空间双层反射面天线背架
CN110289477B (zh) * 2019-07-26 2024-05-24 中国电子科技集团公司第五十四研究所 一种内外边数为1比2的单层空间结构的天线副面背架及制造方法
CN110299599B (zh) * 2019-07-26 2024-02-13 中国电子科技集团公司第五十四研究所 一种用于反射面天线的空间结构平衡重装置
CN110289476B (zh) * 2019-07-26 2023-09-26 中国电子科技集团公司第五十四研究所 反射面天线面板的高精度位姿连续调整装置及其制造方法
CN110289478B (zh) * 2019-07-26 2023-10-27 中国电子科技集团公司第五十四研究所 一种基于空间混合结构的双偏置天线副面支臂及制造方法
CN112436291B (zh) * 2020-10-30 2022-08-12 北京卫星制造厂有限公司 一种高精度固面天线反射器复材连接结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221897A (ja) * 2003-01-14 2004-08-05 Nippon Telegr & Teleph Corp <Ntt> インフレータブル支持反射鏡アンテナ
CN201345409Y (zh) * 2009-02-13 2009-11-11 中国电子科技集团公司第五十四研究所 均衡稳定空间网格型反射面天线背架装置
CN102173312A (zh) * 2011-03-10 2011-09-07 西安空间无线电技术研究所 大型空间组装式天线反射器模块单元及其组装方法
CN104638381A (zh) * 2014-11-27 2015-05-20 中国科学院国家天文台 Fast射电望远镜空间五等分反射面单元
US20150244081A1 (en) * 2014-02-26 2015-08-27 Northrop Grumman Systems Corporation Mesh reflector with truss structure
CN109449604A (zh) * 2018-12-18 2019-03-08 中国电子科技集团公司第五十四研究所 一种高精度六边形空间双层反射面天线背架
CN209526211U (zh) * 2018-12-18 2019-10-22 中国电子科技集团公司第五十四研究所 一种高精度六边形空间双层反射面天线背架

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3281961B2 (ja) * 1993-04-02 2002-05-13 清水建設株式会社 大空間トラス架構
GB0101745D0 (en) * 2001-01-23 2001-03-07 Harrison John Reflector dish
GEP20053604B (en) * 2001-06-12 2005-08-25 Space Deployable Antenna Reflector
US7143550B1 (en) * 2002-09-19 2006-12-05 Conservatek Industries, Inc. Double network reticulated frame structure
CN108155482B (zh) * 2017-12-25 2023-08-15 中国电子科技集团公司第五十四研究所 一种高精度反射面天线组合面板的结构及其调整方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221897A (ja) * 2003-01-14 2004-08-05 Nippon Telegr & Teleph Corp <Ntt> インフレータブル支持反射鏡アンテナ
CN201345409Y (zh) * 2009-02-13 2009-11-11 中国电子科技集团公司第五十四研究所 均衡稳定空间网格型反射面天线背架装置
CN102173312A (zh) * 2011-03-10 2011-09-07 西安空间无线电技术研究所 大型空间组装式天线反射器模块单元及其组装方法
US20150244081A1 (en) * 2014-02-26 2015-08-27 Northrop Grumman Systems Corporation Mesh reflector with truss structure
CN104638381A (zh) * 2014-11-27 2015-05-20 中国科学院国家天文台 Fast射电望远镜空间五等分反射面单元
CN109449604A (zh) * 2018-12-18 2019-03-08 中国电子科技集团公司第五十四研究所 一种高精度六边形空间双层反射面天线背架
CN209526211U (zh) * 2018-12-18 2019-10-22 中国电子科技集团公司第五十四研究所 一种高精度六边形空间双层反射面天线背架

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097620A (zh) * 2021-03-29 2021-07-09 苏州五源寰宇科技有限公司 轻量化设计的运载火箭锂离子电池组
CN114256604A (zh) * 2021-12-09 2022-03-29 上海宇航系统工程研究所 基于三棱柱可折展单元的抛物柱面天线
CN114256604B (zh) * 2021-12-09 2024-04-16 上海宇航系统工程研究所 基于三棱柱可折展单元的抛物柱面天线

Also Published As

Publication number Publication date
CN109449604B (zh) 2024-03-26
ZA202105019B (en) 2022-07-27
CN109449604A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020125384A1 (zh) 一种高精度六边形空间双层反射面天线背架
CN101187724B (zh) 一种定日镜支撑装置
CN112436292B (zh) 基于三伸缩杆驱动和准测地线网格结构的反射面天线
CN113653334B (zh) 一种单层金属网壳穹顶结构安装方法
EP4007071A1 (en) Uniformly-partitioned high-precision sub-reflector device with two-stage pose adjustment function
CN109869280A (zh) 风机塔筒用连杆法兰和风机塔筒
CN209526211U (zh) 一种高精度六边形空间双层反射面天线背架
CN101635390B (zh) 桁架式空间结构的总装模具
CN104638381A (zh) Fast射电望远镜空间五等分反射面单元
CN205046920U (zh) 一种钢管格构式构架避雷针
CN205335409U (zh) 一种空间受力均匀的射电望远镜
CN209913012U (zh) 一种用于反射面天线的空间结构平衡重装置
CN108110432A (zh) 一种反射面天线面板分块方法及反射面天线
US3725946A (en) Radio antenna structure
CN102790257A (zh) 大型高精度抛物面偏馈天线
CN209913021U (zh) 一种内外边数为1比2的单层空间结构的天线副面背架
CN110289477B (zh) 一种内外边数为1比2的单层空间结构的天线副面背架及制造方法
CN106207484A (zh) 单伸缩杆转台驱动的环框型索网反射系统
CN209913022U (zh) 一种基于空间混合结构的双偏置天线副面支臂
CN206174583U (zh) 一体化快装式集成通讯塔
CN210738108U (zh) 管桁架梁和管桁架柱法兰盘安装模具
CN114824824B (zh) 一种基于介质筒自支撑的轻量化高精度天线反射器
CN110299599B (zh) 一种用于反射面天线的空间结构平衡重装置
US6964488B2 (en) Reflector dish
CN205335408U (zh) 一种射电望远镜的支承背架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899016

Country of ref document: EP

Kind code of ref document: A1