WO2020124188A1 - Polypeptide with asparaginase activity, polynucleotide, expression cassette, expression vector, host cell, pharmaceutical composition, methods for producing a polypeptide with asparaginase activity and for preventing or treating neoplasms, and use of a polypeptide - Google Patents

Polypeptide with asparaginase activity, polynucleotide, expression cassette, expression vector, host cell, pharmaceutical composition, methods for producing a polypeptide with asparaginase activity and for preventing or treating neoplasms, and use of a polypeptide Download PDF

Info

Publication number
WO2020124188A1
WO2020124188A1 PCT/BR2019/050552 BR2019050552W WO2020124188A1 WO 2020124188 A1 WO2020124188 A1 WO 2020124188A1 BR 2019050552 W BR2019050552 W BR 2019050552W WO 2020124188 A1 WO2020124188 A1 WO 2020124188A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
amino acid
expression
seq
asparaginase
Prior art date
Application number
PCT/BR2019/050552
Other languages
French (fr)
Portuguese (pt)
Inventor
Tatiana de Arruda Campos Brasil DE SOUZA
Nilson Ivo Tonin ZANCHIN
Marcele FARET
Original Assignee
Fundação Oswaldo Cruz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundação Oswaldo Cruz filed Critical Fundação Oswaldo Cruz
Publication of WO2020124188A1 publication Critical patent/WO2020124188A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/50Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • C12N9/82Asparaginase (3.5.1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • POLYNUCLEOTIDE EXPRESSION CASSETTE, EXPRESSION VECTOR, HOST CELL, PHARMACEUTICAL COMPOSITION, METHODS TO PRODUCE A POLYPEPTIDE WITH ASPARAGINASE ACTIVITY AND TO PREVENT OR TREAT NEOPLASMS, AND,
  • the present invention relates to the field of oncology and biotechnology. More specifically, the present invention relates to polypeptides with asparaginase activity useful in the prevention and treatment of neoplasms.
  • Leukemia is a disease that affects the hematopoietic organs
  • blasts immature lymphoid or myeloid precursors
  • Blasts undergo a neoplastic transformation, which makes these cells highly replicative, but without going into a differentiation process.
  • neoplastic clones are independent of the action of stimulating and inhibiting factors for normal hematopoiesis and remain crystallized in a maturation phase. As a result of this overproduction, there is a spread through the body of abnormal white blood cells, which causes an interference with the vital functions of the body.
  • leukemias can be divided into acute myeloid leukemia (AML - myeloid cells) or acute lymphoid leukemia (ALL - lymphoid cells) (LORENZI et al., 2006). Acute leukemias are more rapid to progress and chronic leukemias to progress more slowly.
  • AML - myeloid cells acute myeloid leukemia
  • ALL - lymphoid cells acute lymphoid leukemia
  • the bone marrow instead of producing cells that would differentiate into lymphocytes, produces abnormal cells that cannot fight infections (PUI & EVANS, 2006).
  • the symptoms of the disease are mainly due to the accumulation of abnormal cells in the bone marrow (ZANICHELLI et al, 2010).
  • Other clinical manifestations are secondary to the proliferation of leukemic cells, which invade other tissues of the body, such as tonsils, lymph nodes, skin, spleen, kidneys, central nervous system and testicles.
  • the most frequent signs and symptoms of the disease are fever, adenomegaly, hemorrhagic manifestations, pallor, hepatomegaly, splenomegaly, fatigue and bone pain (NEHMY et al, 2011).
  • the incidence of ALL corresponds to about 3 ⁇ 4 of all newly diagnosed cases of childhood leukemia and approximately 1 ⁇ 4 of all cases of childhood malignancy (United States Environmental Protection Agency, 2015). In addition, there is a second peak of incidence at age 50, which corresponds to 1 ⁇ 2 of the incidence in children. (PUI & EVANS, 2006). It is estimated that, in the United States alone, about 6,000 new cases of ALL appear in both adults and children (out of 10 cases, 6 are diagnosed in children), and approximately 1,500 die from the disease (out of 5 deaths, 4 are from adults) (North American Cancer Society, 2015).
  • the most common treatment for leukemia is chemotherapy, consisting of the following phases: induction of remission, consolidation and maintenance phase, comprising polychemotherapy schemes, in order to prevent the development of resistance.
  • the different stages of treatment have varying intensities, depending on the patient's risk group, with more intense regimes in high-risk cases.
  • the chemotherapeutics most used in the treatment phase are glucocorticoids, anthracyclines, vincristine and L-asparaginase (L-ASNase).
  • L-ASNase is the enzyme responsible for the hydrolysis of asparagine to aspartate and ammonia.
  • Asparagine is a critical amino acid for the synthesis protein in leukemic cells, since they do not have the ability to synthesize asparagine again due to the low level or absence of expression of the enzyme asparagine synthetase (enzyme that synthesizes asparagine from aspartate) (LEE et al., 1989).
  • tumor cells require a high and unusual level of asparagine, and because they have low levels of asparagine synthase, they are dependent on serum levels of the amino acid for their proliferation and survival (KIRIYAMA et al., 1989).
  • L-ASNase normal cells, on the other hand, are able to synthesize asparagine from aspartate, using the enzyme asparagine synthetase (RICHARDS & SCHUSTER, 1998), therefore, the antineoplastic activity of L-ASNase is selective (UREN et al., 1977).
  • the antitumor effect of L-ASNase is due to the depletion of asparagine in the bloodstream, which causes inhibition of DNA and protein synthesis in leukemic cells, consequently preventing tumor growth (PIETERS et al., 2011).
  • the level of L-asparagine in the medium must be reduced to at least 10 5 M so that the protein synthesis of tumor cells is impaired (CEDAR & SCHWARTZ, 1967) .
  • E. coli native L-ASNase E. coli native L-ASNase (Ec-A) was approved by the US regulatory agency Food and Drug Administration (FDA) for ALL treatment in 1978 and was the only commercial product available for several years.
  • FDA Food and Drug Administration
  • PEG-Ec-A PEG-asparaginase
  • L-ASNases The successful use of L-ASNases in the treatment against ALL has its harmful side, making its use limited and constantly reassessed due to the serious side effects generated mainly by its toxicity. Immediate reactions to the use of L-ASNase occur in 71% of cases, including nausea, vomiting and fever. Due to the decrease in the protein synthesis of cells, due to the depletion of the level of asparagine in the blood, hyperglycemia, thrombosis and hemorrhages occur. In 1 ⁇ 2 of the cases, the organs suffer dysfunctions, as in the central nervous system, resulting in headache, disorientation, coma, convulsions and depression.
  • pancreatitis Approximately 97% of cases affect the liver, 68% affect the kidneys and 15% affect the pancreas, causing pancreatitis (GUILLERME et al, 2013; HENRIKSEN et al., 2015). Usually, children are more tolerant of the side effects induced by L-ASNase, while adolescents and adults are more sensitive and can often develop significant morbidity (ALBERTSEN et al., 2002; ALVAREZ & ZIMMERMANN, 2000; KEARNEY et al., 2009 ; BARRY et al., 2007).
  • E. carotovora L-ASNase (ECAR-LANS) is much more specific to asparagine than to glutamine and such reduced glutaminase activity would be advantageous in the use of these enzymes for the treatment of neoplasms.
  • this enzyme has a shorter half-life in the bloodstream (KRASOTKINA et al, 2004), a characteristic that prevents the ECAR-LANS enzyme from being efficient as a biopharmaceutical.
  • Ec-A and Ew-A are still the commercially available enzymes. However, developments are still necessary for the construction of L-ASNases that cause fewer side effects when administered to treat neoplasms.
  • L-ASNase are found in the prior art. However, all available studies refer to specific amino acid substitutions and in none of them has a portion of more than 5 residues been replaced.
  • W02014170811 discloses E. coli mutant L-ASNases in which the mutation induces less immunogenicity and greater stability of the enzyme, which comprises less than five amino acid substitutions.
  • W02017151707 reveals mutant L-ASNases of E. chrysanthemi with substitutions in only one or more of positions 31, 63 and 254 in order to reduce L-glutaminase activity and increase enzymatic stability.
  • WO2013055699 refers to mutant L-ASNases of W. succinogenes with little or no glutaminase activity, which have only one mutation at position 121.
  • the present invention aims to provide a polypeptide with asparaginase activity that solves the main problems of the prior art listed above.
  • the present invention provides a polypeptide with asparaginase activity that comprises substitutions in the region of the amino acid sequence of the peptide with Escherichia coli asparaginase activity (EC-A) by corresponding amino acid residues in the sequence amino acids of the peptide with asparaginase activity of Erwinia carotovora (ECAR-LANS), in which the polypeptide of The present invention (EC-A_mut) has less affinity for different amino acids than asparagine when compared to the peptide with parental E. coli asparaginase activity.
  • EC-A polypeptide with asparaginase activity
  • the present invention provides a polynucleotide that encodes a polypeptide with asparaginase activity as defined above.
  • the present invention provides an expression cassette comprising a polynucleotide as defined above operatively linked to a promoter and a transcription terminator.
  • an expression vector comprising a polynucleotide or an expression cassette as defined above is also provided.
  • the present invention provides a host cell comprising an expression cassette or an expression vector as defined above.
  • a pharmaceutical composition which comprises a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient.
  • polypeptide of the invention in the manufacture of a drug for the prevention or treatment of neoplasms is provided.
  • the present invention provides a method for producing a polypeptide with asparaginase activity, comprising the steps of: (a) providing a transformed host cell; (b) cultivating said cell under conditions conducive to the production of the polypeptide; and (c) isolating said polypeptide from said cell or culture medium surrounding said cell.
  • a method for preventing or treating neoplasms comprising administering a therapeutically effective amount of the polypeptide with asparaginase activity to an individual in need for said prevention or treatment.
  • Figure 1 shows the structural analysis for the generation of Ec-A_mut.
  • Figure 2 shows chromatogram of Ac-A filtration gel
  • Figure 3A shows a chromatogram of the filtration gel column calibration curve. Peak elution volume: 1 (Ferritin, 440 kDa) - 45.99 mF; 2 (Aldolase, 158 kDa) - 51.22 ml; 3 (Conalbumin, 75 kDa) - 86.47 mF; 4 (Ovalbumin, 44 kDa) - 102.98 mL.
  • Figure 3B shows a related graph relating the Kav value and log MW of the column calibration curve used for the gel filtration tests.
  • Figure 4 shows the result of the gel filtration chromatography of Ec-A_mut.
  • Figure 5 shows a double reciprocal graph of the activity of
  • Figure 6 shows the spectrum of circular dichroism of Ec-A and
  • Figure 7 shows the circular dichroism spectrum of enzymes
  • Figure 8 shows a structural analysis of Ec-A_mut.
  • Figure 9 shows the circular dichroism spectrum observed at 222 nm wavelength during temperature gradient, varying between 20 ° and 90 ° of the native and mutated enzymes of E. coli and native of E. carotovora.
  • nucleic acid and polynucleotide “are used interchangeably, and refer to RNA and DNA.
  • Polynucleotides can be single or double stranded.
  • Non-limiting examples of polynucleotides include genes, gene fragments, exons, introns, messenger RNA, siRNA, miRNA, complementary DNA, genomic DNA, synthetic DNA, recombinant DNA, cassettes, vectors, probes and primers.
  • recombinant DNA refers to any artificial nucleotide sequence that results from the combination of DNA sequences from different sources.
  • degenerate nucleotide sequence denotes a nucleotide sequence that includes one or more degenerate codons when compared to a reference nucleic acid molecule that encodes a given polypeptide.
  • Degenerate codons contain different nucleotide triplets, but they encode the same amino acid residue (eg, GAU and GAC both encode Asp).
  • terapéuticaally effective amount refers to an amount of proteins or polypeptides that provides activity against cancer, when administered according to the dose and appropriate route of administration.
  • pharmaceutically acceptable carriers or excipients refers to ingredients compatible with other ingredients contained in pharmaceutical preparations and which have no therapeutic effect and are not harmful to humans or animals.
  • the individual is a human being.
  • identity is defined as the degree of equality between DNA or amino acid sequences when compared nucleotide by nucleotide or amino acid by amino acid with a reference sequence.
  • the term "percentage of sequence identity” refers to comparisons between polynucleotides or polypeptides and is determined by two sequences ideally aligned, under certain comparison parameters. This alignment can comprise gaps (spaces), generating intervals when compared to the reference sequence, which facilitate an adequate comparison of them. In general, the identity percentage calculation considers the number of positions where the same nucleotide or amino acid occurs in the sequences compared to the reference sequence, being carried out through several sequence comparison algorithms and programs known in the art. Such algorithms and programs include, but are not limited to, TBLASTN, BLASTP, FASTA, TFASTA, CLUSTALW, FASTDB.
  • PCR Polymerase Chain Reaction
  • a nucleic acid fragment is amplified as described in US patent 4,683,195.
  • the information contained at the 5 'and 3' ends of the sequence of interest is used for the design of the primers or primers that they span, around 8 synthetic nucleotides. These primers have sequences complementary to the sequence to be amplified.
  • PCR can be used to amplify RNA, DNA or cDNA sequences.
  • an "expression cassette” refers to a nucleic acid construct comprising a coding region and a regulatory region, operably linked that, when introduced into a host cell, results in the transcription and / or translation of an RNA or polypeptide, respectively.
  • an expression cassette is constituted or comprised of a promoter that allows the initiation of transcription, a nucleic acid according to the invention, and a transcription terminator.
  • the expression "operably linked” indicates that the elements are combined so that the expression of the coding sequence is under the control of the transcriptional promoter and / or signal peptide.
  • the promoter sequence is placed upstream of the gene of interest, at a distance compatible with expression control.
  • the signal peptide sequence is generally fused upstream of the gene sequence of interest, and in phase with it, and downstream of any promoter. Spacing sequences may be present between regulatory elements and the gene, as they do not prevent expression and / or screening.
  • said expression cassette comprises at least one "enhancer" activator sequence operably linked to the promoter.
  • vector refers to nucleic acid molecules designed to transport, transfer and / or store genetic material, as well as to express and / or integrate the genetic material into the host cell's chromosomal DNA, such as, for example, plasmids, cosmids, artificial chromosomes, bacteriophages and other viruses.
  • the vector is usually composed of at least three basic units, the origin of replication, a selection marker and the multiple cloning site.
  • the vectors used in this invention preferably present at least one "selection marker", which is a genetic element that allows the selection of genetically modified organisms / cells.
  • selection marker is a genetic element that allows the selection of genetically modified organisms / cells.
  • markers include antibiotic resistance genes such as such as, but not limited to, ampicillin, chloramphenicol, tetracycline, kanamycin, hygromycin, bleomycin, phleomycin, puromycin and / or phenotype complementing genes, such as, but not limited to methotrexate, dihydrofolate reductase, ampicillin, neomycin, mycophamine, glutamine synthetase.
  • expression vector refers to any vector that is capable of transporting, transferring and / or storing genetic material, and that, once in the host cell, is used as a source of genetic information for the production of a or more gene products (gene expression).
  • the expression vectors of this invention may include one or more regulatory nucleotide sequences to control gene replication, transfer, transport, storage and expression of genetic material, such as origin of replication, selection marker, site multiple cloning, promoter (for example, T7 pol, pL and pR lambda phage, SV40, CMV, HSV tk, pgk, T4 pol, or EF-1 alpha and its derivatives), ribosome binding site, splice site RNA, polyadenylation site, signal peptide for secretion and gene transcription termination sequence.
  • promoter for example, T7 pol, pL and pR lambda phage, SV40, CMV, HSV tk, pgk, T4 pol, or EF-1 alpha and its derivatives
  • ribosome binding site for example, T7 pol, pL and pR lambda phage, SV40, CMV, HSV tk, pgk,
  • the expression vector used in this invention may also have "enhancer” sequences, also called “cis” elements that can positively or negatively influence the promoter-dependent gene expression.
  • a "coding sequence” refers to a nucleotide sequence that is transcribed into mRNA (messenger RNA) and translated into a polypeptide when it is under the control of appropriate regulatory sequences.
  • the limits of the coding sequence are determined by a translation initiation codon at the 5 'end of the DNA sense strand and a translation termination codon at the 3' end of the DNA sense strand.
  • different DNA sequences can encode the same polypeptide sequence. Therefore, it is considered that such degenerate substitutions in the coding region are inserted in the sequences described in this invention.
  • promoter is a minimum DNA sequence sufficient to direct gene transcription, that is, a sequence that directs the binding of the RNA polymerase enzyme thus promoting the synthesis of messenger RNA. Promoters can be specific to the cell type, tissue type and species, in addition to being modulated, in certain cases, by regulatory elements in response to some external physical or chemical agent called an inducer.
  • transformation and “transfection” refer to the act of inserting a vector or other carrier vehicle of exogenous genetic material in a host cell, prokaryotic or eukaryotic, for transport, transfer, storage and / or gene expression of the genetic material of interest.
  • recombinant expression refers to the expression of the recombinant polypeptide in host cells.
  • host cell refers to the cell that will receive genetic material through a vector and / or cells that have already received genetic material through a vector (transformed or transfected cells). These host cells can be either of prokaryotic origin (prokaryotic microorganisms) or eukaryotic (cells or eukaryotic microorganisms).
  • Protein can be used interchangeably, and refer to a polymer of amino acids connected by peptide bonds, regardless of the number of amino acid residues that make up this chain.
  • Polypeptides include “variants” or “derivatives” thereof, which refer to a polypeptide that includes variations or modifications, for example, substitution, deletion, addition or chemical modifications in its amino acid sequence in relation to the reference polypeptide, provided that the derived polypeptide has immunosuppressive activity, stability, half-life, pharmacokinetic characteristics and / or physicochemical characteristics equal to or greater than initially observed for the original polypeptide.
  • polypeptides of the invention can belong to the L or D series.
  • the polypeptide can be artificially produced from cloned nucleotide sequences using the recombinant DNA technique ("recombinant polypeptide") or it can be prepared by a known chemical synthesis reaction (“synthetic polypeptide").
  • amino acid substitutions refers to the replacement of at least one amino acid residue of polypeptides for the production of derivatives with asparaginase activity. Substituting amino acids can be natural, modified or unusual.
  • the term "conservative amino acid substitution” refers to the replacement of amino acids in a polypeptide by those with similar side chains and, therefore, with very close physicochemical properties.
  • the exchange of an alanine for a valine or leucine or isoleucine is considered conservative, since the amino acids involved have a common characteristic of an aliphatic side chain.
  • the group that features a basic side chain is composed of lysine, arginine and histidine.
  • the sulfur-containing group in the side chain comprises the amino acids cysteine and methionine.
  • the amino acids phenylalanine, tyrosine and tryptophan contain an aromatic side chain.
  • Asparagine and glutamine are part of the amino acids with side chain containing amide, while serine and threonine contain a hydroxyl linked to its aliphatic side chain.
  • Other examples of conservative substitution include substitution of an amino acid support or hydrophobic like isoleucine, valine, leucine or methionine on the other also support.
  • the invention described herein contemplates the replacement of polar or hydrophilic amino acids such as arginine with lysine, glutamine with asparagine and threonine with serine.
  • substitution between basic amino acids such as lysine, arginine or histidine or substitution between acidic amino acids such as aspartic acid or glutamic acid is also contemplated. Examples of conservative substitution of amino acids are as follows: valine for leucine or isoleucine, phenylalanine for tyrosine, lysine for arginine, alanine for valine and asparagine for glutamine.
  • modified or unusual amino acids include 2-aminoadipic acid, 3-aminoadipic acid, beta-alanine, 2-aminobutyric acid, 4-aminobutyric acid, 6-aminocaproic acid, 2-aminoheptanoic acid, 2 -aminoisobutyric acid, 3-aminoisobutyric acid, 2-aminoheptanoic acid, 2-aminopimelic acid, 2,4-diaminobutyric acid, desmosine, 2,2'-diaminopimelic acid, 2,3-diaminopropionic acid, N-ethylglycine, N-ethylparagine, hydroxylysine, allohydroxylysine, 3-hydroxyproline, 4-hydroxyproline, isodesmosine, aloisoleucine, N-methyl glycine, N-methyl isoleucine, 6-N-methyl-lysine, N-methyl valine, nor
  • the present inventors have solved the problem of the state of the art by providing polypeptides with asparaginase activity that have reduced affinity for amino acids other than asparagine, particularly glutamine.
  • the polypeptides of the present invention with reduced glutaminase activity were obtained by replacing amino acid residues located in the region of the E. coli L-asparaginase (EC-A) active site by corresponding amino acid residues in E. carotovora L-asparaginase ( ECAR-LANS).
  • Residues responsible for bonding to the substrate form the rigid part of the active site.
  • the flexible part of the active site controls access to the binding site. This region is often disordered in the crystals of L-ASNases, indicating high mobility of this loop.
  • the state of the art further demonstrates that the bonding of the substrate induces rapid closure of the flexible part, while in the absence of binders, the flexible part of the active site remains in the predominantly open conformation.
  • the mutated E. coli L-ASNase sequence is the amino acid sequence of SEQ ID NO: 1 with substitutions for corresponding residues of E. carotovora L-ASNase of SEQ ID NO: 2.
  • modifications made to the amino acid sequence of E. coli L-ASNase comprise substitutions at residues 53-75 of SEQ ID NO: l.
  • substitutions are made on amino acid residues in at least one of positions 54, 55, 59, 60, 62, 63, 64, 66, 68, 70, 72, 73 and 75 of the amino acid sequence of SEQ ID NO: l.
  • substitutions comprise at least one of the following substitutions in the amino acid sequence of SEQ ID NO: 1: V54A, N55S, Q59E, D60N, N62T, D63S, N64D, W66L, T68K, A70S, K72R, 173 V and T75E.
  • polypeptide with asparaginase activity claimed herein comprises the amino acid sequence of SEQ ID NO: 3.
  • polypeptide with asparaginase activity claimed herein consists of the amino acid sequence of SEQ ID NO: 3.
  • FIG. 1 The structural analysis of the asparaginase of the present invention is shown in Figure 1.
  • Figure IA the conserved active site of L-ASNases is identified, mainly residues T89, D90 and K162.
  • Figure 1B the modified region in the enzyme of the present invention is identified, where the amino acid residues of the E. coli enzyme (blue regions) have been replaced by the corresponding ones in E. carotovora (green region).
  • E. coli ASNase is more stable than E. corotovora. This difference in stability is already described by other studies, where the incubation was carried out for 3 minutes at 35 ° C, which led to a 60% irreversible decrease in the activity of ECAR-LANS, while Ec-A maintained a large part of its activity after incubation under the same conditions. ECAR-LANS also showed low stability in solution with urea and the catalytic activity was totally lost after one hour of incubation with 2 M urea. In contrast, there was no observation of activity in Ec-A with up to 4 M urea (PAPAGEORGIOU et al, 2008).
  • the L-ASNase of the present invention was not as specific to asparagine when the L-ASNase of parental E. carotovora, which, according to the state of the art, is 12,000 times more specific for L-asparagine than for L -glutamine.
  • the proposed substitutions increased the specificity of the enzyme of the present invention in relation to parental E. coli L-ASNase.
  • the inventors surprisingly obtained a modified E. coli enzyme, correctly folded, with conserved secondary and quaternary structures.
  • the kinetic and enzymatic activity values shown by the recombinant L-ASNase of the present invention increased the specificity of the enzyme compared to the parental E. coli L-ASNase.
  • ASNases include a high enzyme activity, low specificity for glutamine and a long half-life in the bloodstream, the enzyme of the present invention proves to be an excellent alternative to the state-of-the-art L-ASNase that present all the problems already discussed here .
  • the polypeptide of the invention is for use in preventing or treating neoplasms.
  • the neoplasm is leukemia, being particularly selected from acute myeloid leukemia or acute lymphoid leukemia.
  • the present invention provides polynucleotides that encode the polypeptides described herein.
  • the polynucleotides according to the invention comprise the nucleic acid sequence of SEQ ID NO: 4 and its degenerations.
  • degenerations are fully supported based on the information provided in the application and common knowledge of the state of the art. For example, the degeneration of the genetic code (that is, different codons being able to encode the same amino acids) is common knowledge in the art and the identity of the amino acid encoded by each codon is well established.
  • nucleotide substitutions that do not alter the resulting amino acid sequence. For example, if a nucleotide sequence contains the CTA codon that encodes a leucine, a person skilled in the art would understand that replacing “A” with any other nucleotide (i.e., T, C or G) would still result in a codon that encodes for leucine. Thus, when in possession of both the nucleotide sequence of a gene and the amino acid sequence of the encoded protein, the person skilled in the art will easily identify the degenerations that encode the same protein, with the same amino acid sequence.
  • telomeres are a term used in the art referring to codons that are most often used in cells of certain species.
  • the amino acid threonine (Thr) can be encoded by ACA, ACC, ACG, or ACT, but in mammalian cells, ACC is the most commonly used codon.
  • Thr codons may be preferred.
  • Preferred codons for a particular species can be introduced into the polynucleotides of the present invention by a variety of methods known in the art. The introduction of preferred codon sequences in recombinant DNA can, for example, increase the production of the polypeptide by making translation more efficient in a given cell type. Thus, the polynucleotide sequences of the invention can be optimized for different species.
  • polynucleotides of this invention are obtained by methods already known in the art. For example, additional strings can be identified and functionally annotated by comparing strings. Therefore, a person skilled in the art can readily identify a sequence functionally equivalent to the polynucleotides of the present invention in a suitable database, for example, GenBank, using publicly available sequence analysis programs and parameters.
  • polynucleotides of the invention can be obtained through a reverse transcription reaction followed by PCR amplification. Both oligo-dT and random primers can be used in the reverse transcription reaction to prepare single-stranded cDNAs, from the isolated RNA of the snake L. muta, which contain the sequences of interest.
  • the RNA can be isolated by methods known as the use of the Trizol reagent (GIBCO-BRL / Life Technologies, Gaithersburg, Maryland).
  • “Restriction-site PCR” as a direct method that uses universal primers to obtain unknown sequences adjacent to a known locus.
  • genomic DNA is amplified in the presence of an adapter-primer, which is homologous to an adapter sequence linked to the ends of the genomic DNA fragments, and in the presence of a specific primer for a known region.
  • the amplified sequences are subjected to a second round of PCR with the same adapter-initiator and another specific primer, internal to the first.
  • the products from each round of PCR are transcribed with a suitable RNA polymerase and sequenced using a reverse transcriptase.
  • the inverse PCR allows obtaining unknown sequences starting with primers based on a known region.
  • the method uses several restriction enzymes to generate a fragment in the known region of the gene.
  • the fragment is then circularized by intramolecular ligation and used as a template for PCR.
  • Divergent initiators are drawn from the known region.
  • sequences with reduced degrees of identity can also be obtained with the aid of degenerate primers and PCR-based methodologies.
  • the nucleic acid sequence of a primer useful for amplifying nucleic acid molecules by PCR can be based on the amino acid sequences of the polypeptides of the invention.
  • the primers used for the amplification of the genes encoding E. coli mutated L-asparaginase, and E. coli and E. carotovora wild-type are represented by SEQ ID NOs: 7-12.
  • the present invention provides an expression cassette comprising a polynucleotide according to the invention operably linked to the sequences necessary for its expression.
  • the coding and regulatory regions are heterologous to each other.
  • the present invention provides an expression vector comprising a polynucleotide or an expression cassette according to the invention.
  • This expression vector can be used to transform a host cell and allow expression of the nucleic acid according to the invention in said cell.
  • the expression vector comprises regulatory elements that allow the expression of the nucleic acid and elements that allow its selection in the host cell according to the invention.
  • the methods for selecting these elements depending on the host cell in which the expression is desired, are well known to the person skilled in the art and widely described in the literature.
  • Vectors can be constructed by classical molecular biology techniques, well known to those skilled in the art.
  • Non-limiting examples of expression vectors suitable for expression in host cells are plasmids and viral or bacterial vectors.
  • the present invention provides a polynucleotide, expression cassette or an expression vector according to the invention for transforming or transfecting a cell.
  • the host cell can be transformed / transfected in a transient or stable manner and the nucleic acid, cassette or vector can be contained in the cell in the form of an episome or in a chromosomal form.
  • the polynucleotide, expression cassette or vector is inserted into competent prokaryotic or eukaryotic host cells.
  • the recombinant clones are selected and then subjected to analysis by restriction enzymes and DNA sequencing, enabling the confirmation of the cloned sequence, using methods, kits and equipment widely known by a technician in the subject.
  • the polypeptides of the invention can be prepared using recombinant DNA technology, wherein a cassette or expression vector comprising a polynucleotide sequence of the invention, for example example, which encodes the polypeptide comprising or consisting of SEQ ID No: 4 or its degenerations, is operably linked to a promoter.
  • Host cells are grown under appropriate conditions and the polypeptide is expressed.
  • the host cell can be a bacterial, fungal, plant or animal cell.
  • the polypeptide is recovered from the culture, where the recovery may include a polypeptide purification step.
  • the obtained recombinant polypeptide is analyzed and treated in order to solubilize it, when pertinent.
  • the solubilized polypeptide is then purified and characterized biochemically, using, for example, methods common to the field of biochemistry, such as HPLC, SDS-PAGE, Western Blotting, isoelectric focusing with pH gradient, circular dichroism.
  • methods common to the field of biochemistry such as HPLC, SDS-PAGE, Western Blotting, isoelectric focusing with pH gradient, circular dichroism.
  • Polypeptides can be expressed "fused" to a tag.
  • tag or the English term “tog” refers to coding sequences incorporated near the multiple cloning site of an expression vector, enabling its translation concurrently and adjacent to the sequence of the cloned recombinant polypeptide. Thus, the tag is expressed fused to the recombinant polypeptide.
  • Such tags are well known in the art and include compounds and peptides such as polyhistidine, polyarginine, FLAG, glutathione-S-transferase, maltose-binding protein (MBP), cellulose-binding domain (CBD), Beta-Gal , OMNI, thioredoxin, NusA, mistin, chitin-binding domain, cutinase, fluorescent compounds (such as GFP, YFP, FITC, rhodamine, lanthanides), enzymes (such as peroxidase, luciferase, alkaline phosphatase), chemiluminescent compounds, biotinyl groups, recognized epitopes by antibodies such as leucine zipper, c-myc, metal-binding domains and binding sites for secondary antibodies.
  • compounds and peptides such as polyhistidine, polyarginine, FLAG, glutathione-S-transferase, maltose-binding protein (
  • Polypeptides can also be obtained synthetically using methods known in the art.
  • Direct synthesis of the polypeptides of the invention can be carried out using solid phase synthesis, solution synthesis or other conventional means, generally using a-aminogroup, a-carboxyl and / or functional groups of amino acid side chains.
  • solid phase synthesis a suitably protected amino acid residue is attached through its carboxyl group to an insoluble polymeric support, such as a cross-linked polystyrene or polyamide resin.
  • Solid-phase synthesis methods include both BOC and FMOC methods, which use tert-butyloxycarbonyl, and 9-fluorenylmethyloxycarbonyl as ⁇ -amino protecting groups, respectively, both well known to those skilled in the art (Sambrook et al., 1995).
  • the following protecting groups can be examples used for the synthesis of the polypeptides of the invention: 9-fluorenylmethyloxycarboyl (Fmoc), tert-butyloxycarbonyl (Boc), carbobenzyloxy (Cbz), 2-chloro-3-indenylmethoxycarbonyl (Climoc), benz (f) indene-3-yl-methoxycarbonyl (Bimoc), 1,1-dioxobenzo [b] thiophene-2-yl-methoxycarbonyl (Bsmoc), 2,2,2-trichloroethoxycarbonyl (Troe), 2- (trimethylsilyl) ethoxycarbonyl (Teoc), homobenzyloxycarbonyl (hZ), 1,1-dimethyl-2,2,2-trichloroetoxycarbonyl (TCBoc), 1-methyl-1 (4-biphenyl) ethoxycarbonyl (Bpoc),
  • the polypeptides can be separated and purified by a known purification method.
  • An example of such purification methods may include a combination of solvent extraction, distillation, column chromatography, liquid chromatography, recrystallization and the like.
  • the purification of the polypeptide of the present invention has three stages: affinity, ion exchange and filtration gel, the latter being responsible for separating from the total extract those forms of the enzyme that are not in the active tetrameric form.
  • composition comprising a polypeptide with asparaginase activity according to the invention and at least one pharmaceutically acceptable carrier or excipient.
  • compositions of the present invention which can be in the form of capsules, tablets or solution for injection for intramuscular or intravenous administration.
  • compositions, carriers or stabilizers do not present toxicity to the recipient organism at the dosages and concentrations used and include buffers such as phosphate, citrate and other organic acids; antioxidants such as ascorbic acid and methionine; preservatives such as octadecyldimethylbenzyl ammonium chloride, hexamethonium chloride, benzalkonium chloride, benzethonium chloride, phenol, butyl alcohol, benzyl alcohol, alkyl parabens such as methyl- and propylparaben, catechol, resorcinol, cyclohexanol, 3-pentanol and m-cresol; proteins such as albumin, gelatin or immunoglobulins; amino acids, monosaccharides, disaccharides and other carbohydrates such as glucose, mannose, sucrose, mannitol or sorbitol; polymeric excipients like polyvinylpyrrolidone
  • compositions may comprise additives in order to increase the ease of administration, the capacity to be stored, resistance to degradation, bioavailability, half-life, providing isotonic preparations, etc.
  • additives for the preparation of pharmaceutical compositions are well known in the art.
  • composition according to the present invention can comprise at least one additional chemotherapeutic agent selected from alkylating agents, antimetabolites, kinase inhibitors, antifuse poison plant alkaloids, cytotoxic / antitumor antibiotics, topoisomerase inhibitors, photosensitizers, antiestrogens and selective estrogen receptor modulators (SERMs), antiprogesterones, downstream estrogen receptor regulators (ERDs), estrogen receptor antagonists, luteinizing hormone-releasing hormone agonists, antiandrogens, aromatase inhibitors, EGFR inhibitors, VEGF inhibitors , antisense oligonucleotides that inhibit the expression of genes involved in abnormal cell proliferation or tumor growth.
  • chemotherapeutic agents useful in the treatment methods of the present invention include cytostatic and / or cytotoxic agents.
  • compositions of the present invention must comprise a therapeutically effective amount of the polypeptide.
  • the therapeutically effective dose can be estimated initially, either in cell culture assays, for example, cells neoplastic, either in animal models, usually mice, rabbits, dogs or pigs.
  • the animal model can also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • the pharmaceutical composition according to the present invention comprises from 0.1% to 99% w / w, preferably 1% to 60% w / w, particularly 10% to 50% w / w of the polypeptides of the present invention.
  • the pharmaceutical composition according to the present invention comprises 10,000 IU of the polypeptides of the present invention.
  • the administration of said pharmaceutical compositions can be carried out by intravenous and intramuscular administration routes.
  • the composition of the present invention is for intravenous administration.
  • the present invention provides for the use of the polypeptides of the invention in the manufacture of a medicament for the prevention or treatment of neoplasms.
  • the neoplasm is leukemia.
  • leukemia is acute myeloid leukemia or acute lymphoid leukemia.
  • the present invention further relates to a method for producing polypeptide according to the invention with asparaginase activity comprising inserting a polynucleotide, cassette or expression vector according to the invention into an in vivo expression system and the collection of the polypeptide produced by said system.
  • a polynucleotide, cassette or expression vector according to the invention into an in vivo expression system and the collection of the polypeptide produced by said system.
  • Numerous in vivo expression systems, including the use of suitable host cells, are commercially available and the use of these systems is well known to those skilled in the art.
  • Particularly suitable expression systems include microorganisms, such as bacteria transformed with expression vectors of Recombinant bacteriophage, plasmid or cosmid DNA; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (eg, baculovirus); plant cell systems transformed with virus expression vectors (eg, cauliflower mosaic virus, CaMV [cauliflower mosaic virus]; tobacco mosaic virus, TMV [tobacco mosaic virus]) or with bacterial expression vectors (for example, Ti or pBR322 plasmids); or animal cell systems. It is also possible to employ cell-free translation systems to produce the polypeptides of the invention.
  • polynucleotides that encode a polypeptide of the present invention into host cells can be performed using methods described in many standard laboratory manuals, such as Davis et al., 1986) and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY (1989).
  • the transformed or transfected host cell described above is then cultured in a suitable nutrient medium under conditions conducive to the expression of the immunosuppressive polypeptides of the invention.
  • the medium used to grow the cells can be any conventional medium suitable for developing the host cells, such as minimal or complex medium containing appropriate supplements. Suitable media are available from commercial suppliers or can be prepared according to published recipes (for example, in the catalogs of the American Type Culture Collection).
  • the polypeptides of the invention produced by the cells can then be recovered from the cell or the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, precipitating the aqueous protein components from the supernatant or filtered through a salt, for example.
  • ammonium sulfate purification by a variety of chromatographic procedures, for example ion exchange chromatography, exclusion chromatography, chromatography hydrophobic interaction, gel filtration chromatography, affinity chromatography or similar, depending on the type of polypeptide in question.
  • chromatographic procedures for example ion exchange chromatography, exclusion chromatography, chromatography hydrophobic interaction, gel filtration chromatography, affinity chromatography or similar, depending on the type of polypeptide in question.
  • the host cell is a prokaryotic microorganism or a eukaryotic cell or microorganism.
  • said polypeptide is provided with a "tog”.
  • the host cell is a bacterium.
  • the bacterium is of the genus Escherichia.
  • the host cell is E. coli.
  • a method of preventing or treating neoplasms comprises administering to a subject in need of said prevention or treatment, a therapeutically effective amount of a polypeptide according to the invention .
  • the effective amount needed for a human individual will depend on the severity of the disease state, the general health of the individual, the age, weight, and sex of the subject, diet, time and frequency of administration, drug combination / combinations, reaction sensitivities, and tolerance / response to therapy. Thus, doses to be delivered depend on a number of factors that cannot be measured before clinical trial studies are done. The technician in the subject, however, knows how to reach adequate doses for different treatments.
  • the enzyme constructs derived from E. coli were amplified by polymerase chain reaction (PCR), using E. coli strain C43 genomic DNA (amplification region: 430-1044pb - fragment 3) and DNA synthetic with the modifications inserted produced by the company IDT (amplification region: 66-429pb - fragment 2).
  • PCR polymerase chain reaction
  • the amplification products were cloned into pGEM T-easy vector (Promega) and analyzed by sequencing.
  • E. carotovora constructions were synthesized and commercially acquired from the company GenScript (New Jersey, United States) in vector pUC57. In the optimization stage, restriction sites for Nde I and Xhol enzymes were inserted at the ends of the E. carotovora genes.
  • the ECAR-LANS-pUC57 vector was synthesized containing the signal peptide sequence for periplasmic secretion, so that primer oligonucleotides were designed for amplification of ECAR-LANS without signal peptide (Table 3) and subcloning in pET28a-TEV.
  • Table 1 Oligonucleotides used for cloning L-ASNases derived from E. coli. The restriction enzyme sites are underlined.
  • Ec-A_frag2 R - 5'-CATGC ⁇ ATGGGTAATCACAAACCATC-3 'SEQ ID NO: 8
  • Ec-A_frag3 R - 5'-CT ⁇ GAGTCAGTATTGATTGAAGATTTG-3 'SEQ ID NO: 10
  • Table 2 Oligonucleotides used for cloning L-ASNases derived from E. carotovora. The restriction enzyme sites are underlined.
  • the enzyme Taq DNA Polymerase (Invitrogen) was used.
  • the annealing temperature was 55 ° C to amplify Ec-A_fragl and Ec-A_frag2, 58 ° C for ECAR-LANS and 64 ° C for Ec- A_frag3.
  • the amplification was performed in 30 cycles, with 30 seconds of extension for Ec-A_fragl and Ec-A_frag2 and one minute of extension for Ec-A_frag3 and ECAR-LANS.
  • the transformation was carried out by adding approximately 100 ng of the plasmid. After 30 minutes of incubation at 4 ° C, thermal shock was performed by incubating the cells for 2 minutes at 42 ° C, followed by 2 minutes at 4 ° C. 1 ml of LB medium was added to the cells. After 60 minutes, at 37 ° C and 200 rpm, the cells were centrifuged for 2 minutes at 5000 geo pellet resuspended in approximately 70 pL of LB medium. 2 were then plated in solid LB medium containing the appropriate antibiotic. The plates were incubated for 16 hours in an oven at 37 ° C.
  • the selected plasmids were sequenced by the sequencing service of the Carlos Chagas Institute - FIOCRUZ / PR.
  • the sequencing used is the Single Extension.
  • sample preparation carried out by the company Macrogen (Korea)
  • the sample is precipitated with ethanol and sequenced using Automatic Sequencer 3730x1.
  • the extraction step was performed using the QIAprep Spin Miniprep Kit (QIAGEN), where the DNA present in the bacterial lysate adsorbes on the silica membrane available in the kit. After washing steps to separate DNA from contaminants in bacterial culture, the DNA adsorbed on silica is eluted in water or buffer.
  • QIAGEN QIAprep Spin Miniprep Kit
  • plasmid DNA purified was used for subcloning in the expression vector pET28a (Qiagen).
  • the insert of the plasmid pGEM-T easy was cleaved with the enzymes Nde I and Xhol.
  • 2 U of T4 DNA ligase (Fermentas), and plasmid: insert in a 1: 3 ratio were used.
  • the final volume was 10 pL and the reaction incubated for 16 hours at 16 ° C.
  • the pET28a vector had previously been digested with the same enzymes. After the insertion of the insert in the vector, transformation into the DH5a strain was performed, following the transformation protocol by thermal shock.
  • nucleotide sequence of wild ECAR-LANS is as shown in SEQ ID NO: 6.
  • E. coli L-ASNase The sequence encoding E. coli L-ASNase was cloned in pGEM T-easy into two separate parts: nucleotide sequence 1-267 without (Ec-A_fragl) or with modifications (Ec-A_frag2) and the sequence of nucleotides 268-978 (Ec-A_frag3).
  • Ec-A_frag3 was digested with the enzymes Ncol and Xhol and linked to the vector pET28a previously digested with the same enzymes. After selection of positive clones, new digestion was performed with Ndel NcoI enzymes. Then, Ec- A_frag2, previously selected and digested with the enzymes Ncol and Nde ⁇ , was linked to the vector pET28a-TEV + Ec-A_frag3. The combination of Ec-A_fragl and Ec-A_frag3 in pET28a-TEV resulted in the Ec-A vector (gene without changes - SEQ ID NO: 5). The combination Ec-A_frag2 and Ec-A_frag3 in pET28a-TEV resulted in the vector Ec-A_mut (gene with the modifications - SEQ ID NO: 4).
  • the molecular weight markers used were Unstained / Prestained Protein Molecular Weight Marker (Ferments) or BenchMark TM Protein Ladder (Thermo Fisher Scientific).
  • the gel was stained with Coomassie blue R-250 or G-250, depending on the case, and decolorized with an appropriate solution (45% methanol and 10% acetic acid).
  • the expression vector pET28a-TEV allows the recombinant protein to be expressed fused to a histidine tail, enabling the use of chromatographic columns containing nickel immobilized in solid phase. Therefore, the soluble fractions obtained from each of the enzymes were purified by a first stage of affinity chromatography with the HisTrap HP 1 mL column (GE Healthcare).
  • the buffers used were buffer A (20 mM sodium phosphate, 500 mM NaCl, pH 7.5) and buffer B (20 mM sodium phosphate, 500 mM NaCl, 1 M imidazole, pH 7.5).
  • the purification column and ⁇ kta system (models ⁇ kta Pure M25 or ⁇ kta Purifier UPC 100) were washed first with 5 column volumes (CV) of milliQ water and then with 5 CV of buffer A. Then, the sample was injected with flow varying between 0.3 - 1 mL / min, depending on the system pressure. After sample injection, the column was washed with 2 CV of buffer A to remove proteins not bound to the column and then elution started with a segmented gradient of 0 - 100% buffer B in 20 CV.
  • Affinity chromatography fractions that contained the protein of interest were dialyzed against buffer C (20 mM Tris-HCl pH 8) to remove the salt.
  • the column used in this purification step was HiTrap Q 1 mL (GE Healthcare). The elution occurred by a segmented gradient of 0 - 100% buffer D (20 mM Tris-HCl, 1 M NaCl, pH 8). After the end of the chromatographic run, the purity of the fractions obtained was analyzed by polyacrylamide gel electrophoresis.
  • Fractions from chromatography were analyzed using polyacrylamide gel electrophoresis. With this assay, it is possible to separate the proteins contained in the sample according to the molecular size.
  • the column used in the chromatography is composed of a matrix with pores of different diameters, therefore, the smaller the particle, the greater the path traveled and the greater the elution volume.
  • the technique also allows estimating the size of the eluted molecules, based on the hydrodynamic radius and elution volume, compared to a standard curve made with samples of known sizes.
  • Centrifugation was performed for 2 minutes at 5,000 rpm and 0.2 mL of the supernatant was collected and added to tubes with 4.3 mL of milliQ water. Then, 500 ⁇ L of Nessler's reagent (Sigma) was added. The volume of 200 pL from each tube was transferred to 96-well ELISA plates for reading at a wavelength of 436 nm.
  • Table 5 Data from the kinetic analysis of enzymes incubated with the substrate asparagine.
  • the circular dichroism spectrum was collected using the Jasco J-815 spectropolarimeter (Jasco Corporation, Japan). Data were collected in quartz cuvettes, with variations in the optical path (0.2 - 1 mm), depending on the need for each protein and the buffer components.
  • the molar ellipsity in degrees was measured in the distant UV region, in the wavelength range of 190 - 260 nm, and this value can be limited depending on the voltage in the equipment detector, which should not exceed 800 V.
  • the reading speed was 100 nm / min, with 10 readings for proteins and 6 readings for buffers, with 1-second scan response to be continued.
  • the values obtained in milligrams were converted to molar ellipsity per residue ([0] MRW), in milligrams.cm 2 / dmol, which is defined by the equation (ADLER et al., 1974):
  • MRW is the average molecular weight of the protein residues
  • d is the optical path of the cuvette in centimeters
  • c is the protein concentration in mg / mL. The MRW was calculated by dividing the molecular weight of the protein by the number of residues.
  • Ec-A_mut The main change in Ec-A_mut is observed by the decrease in signal at wavelengths smaller than 215 nm, this reflects changes mainly in a-helices (208 nm) and b-tapes (deviation of the spectrum to the right in wavelengths less than 208 nm).
  • the structural model shows that the interactions that stabilize the helix formed by residues 64-76 (Ec-A_mut numbering) are maintained with the changes in that region. There are still interactions with residues K79, T95, A81, T26-N35, D208-L215 of the same molecule and with the region formed by G245-K251 of the adjacent molecule. Structural changes in these regions must be responsible for the differences in the circular dichroism spectra between Ec-A_mut, Ec-A and ECAR-LANS.
  • Figure 8 shows the region that differs from Ec-A in dark blue.
  • the modified region can interact either with regions of the same monomer (intra chain) or with regions of the monomer of another chain (inter chain). Regions of the same monomer (in red) or the adjacent monomer (in orange) that interact with the modified part of Ec-A_mut are colored red and orange, respectively. The interactions between these regions are shown as dashed lines.
  • ADLER A. J., ROSS, D. G., CHEN, K. et al. Interaction of deoxyribonucleic acid with histone f2b and its half-molecules Circular dichroism studies. Biochem. 1974; 13: 616-622.
  • Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study Leukemia 1999; 13 (3): 335-42.
  • GUILLERME C. M., DELGADO, R. F., NAVARRO, J. S. et al. Uptade on L-asparaginase treatment in pediatrics An Pediatr (Barc). 2013; 79 (5): 329-40.
  • HAAS J. PARK
  • EC SEED
  • IKEMURA T. Correlation between the abundance of yeast transfer RNAs and the occurrance of the respective codond in protein genes. J. Mol. Biol. 1982; 158: 573.
  • KANE J.F Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995; 6: 494.
  • KRASOTKINA J., et al. One-step purification and kinetic properties of the recombinant L-asparaginase from Erwinia carotovora Biotechnol Appl Biochem. 2004; 39 (2): 215-21.
  • NARTA U.K., KANWAR, S.S., AZMI, W., Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia Crit Rev Oncol Hematol. 2007; 61 (3): 208-21.
  • PIETERS R., HUNGER, S.P., BOOS, J., et al. L-Asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011; 117: 238-49.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to an E. coli L-asparaginase that has been modified to reduce interaction thereof with amino acids other than asparagine, most preferably glutamine. Polynucleotides encoding the polypeptides of the invention, expression cassettes comprising said polynucleotides, expression vectors, host cells, pharmaceutical compositions, uses of the polypeptide of the invention in manufacturing a medication for preventing or treating cancer, and methods for producing the polypeptide of the invention and for preventing or treating neoplasms are also described herein.

Description

POLIPEPTÍDEO COM ATIVIDADE ASPARAGINASE, POLYPEPTIDE WITH ASPARAGINASE ACTIVITY,
POLINUCLEOTÍDEO, CASSETE DE EXPRESSÃO, VETOR DE EXPRESSÃO, CÉLULA HOSPEDEIRA, COMPOSIÇÃO FARMACÊUTICA, MÉTODOS PARA PRODUZIR UM POLIPEPTÍDEO COM ATIVIDADE ASPARAGINASE E PARA PREVENIR OU TRATAR NEOPLASIAS, E, POLYNUCLEOTIDE, EXPRESSION CASSETTE, EXPRESSION VECTOR, HOST CELL, PHARMACEUTICAL COMPOSITION, METHODS TO PRODUCE A POLYPEPTIDE WITH ASPARAGINASE ACTIVITY AND TO PREVENT OR TREAT NEOPLASMS, AND,
USO DE UM POLIPEPTÍDEO CAMPO DA INVENÇÃO USE OF A POLYPEPTIDE FIELD OF THE INVENTION
[001] A presente invenção refere-se ao campo da oncologia e da biotecnologia. Mais especificamente, a presente invenção refere-se a polipeptídeos com atividade asparaginase úteis na prevenção e tratamento de neoplasias. [001] The present invention relates to the field of oncology and biotechnology. More specifically, the present invention relates to polypeptides with asparaginase activity useful in the prevention and treatment of neoplasms.
FUNDAMENTOS DA INVENÇÃO BACKGROUND OF THE INVENTION
[002] A leucemia é uma doença que afeta os órgãos hematopoiéticos [002] Leukemia is a disease that affects the hematopoietic organs
(medula óssea, linfonodos, baço e fígado) e é caracterizada por uma predominância de precursores linfoides ou mieloides imaturos, chamados blastos. Essas células imaturas substituem a medula óssea normal e migram para outros tecidos. Os blastos sofrem uma transformação neoplásica, que toma essas células altamente replicativas, porém sem entrar em processo de diferenciação. Esses clones neoplásicos são independentes da ação de fatores estimuladores e inibidores da hematopoiese normal e permanecem cristalizadas numa fase de maturação. Como resultado dessa superprodução, ocorre uma disseminação através do organismo de glóbulos brancos anormais, o que ocasiona uma interferência nas funções vitais do corpo. (bone marrow, lymph nodes, spleen and liver) and is characterized by a predominance of immature lymphoid or myeloid precursors, called blasts. These immature cells replace the normal bone marrow and migrate to other tissues. Blasts undergo a neoplastic transformation, which makes these cells highly replicative, but without going into a differentiation process. These neoplastic clones are independent of the action of stimulating and inhibiting factors for normal hematopoiesis and remain crystallized in a maturation phase. As a result of this overproduction, there is a spread through the body of abnormal white blood cells, which causes an interference with the vital functions of the body.
[003] Dependendo da origem da célula neoplásica, as leucemias podem ser divididas em leucemia mieloide aguda (LMA - células mieloides) ou leucemia linfoide aguda (LLA - células linfoides) (LORENZI et al., 2006). As leucemias ditas agudas são de progressão mais rápida e as leucemias crónicas com progressão mais lenta. [003] Depending on the origin of the neoplastic cell, leukemias can be divided into acute myeloid leukemia (AML - myeloid cells) or acute lymphoid leukemia (ALL - lymphoid cells) (LORENZI et al., 2006). Acute leukemias are more rapid to progress and chronic leukemias to progress more slowly.
[004] No caso da LLA, a medula óssea, ao invés de produzir células que iriam diferenciar-se em linfócitos, produz células anormais que não podem combater infecções (PUI & EVANS, 2006). Os sintomas da doença são decorrentes principalmente do acúmulo das células anormais na medula óssea (ZANICHELLI et al, 2010). Outras manifestações clínicas são secundárias à proliferação de células leucêmicas, que invadem outros tecidos do organismo, como amídalas, linfonodos, pele, baço, rins, sistema nervoso central e testículos. Os sinais e sintomas mais frequentes da doença são febre, adenomegalias, manifestações hemorrágicas, palidez, hepatomegalia, esplenomegalia, fadiga e dor óssea (NEHMY et al, 2011). [004] In the case of ALL, the bone marrow, instead of producing cells that would differentiate into lymphocytes, produces abnormal cells that cannot fight infections (PUI & EVANS, 2006). The symptoms of the disease are mainly due to the accumulation of abnormal cells in the bone marrow (ZANICHELLI et al, 2010). Other clinical manifestations are secondary to the proliferation of leukemic cells, which invade other tissues of the body, such as tonsils, lymph nodes, skin, spleen, kidneys, central nervous system and testicles. The most frequent signs and symptoms of the disease are fever, adenomegaly, hemorrhagic manifestations, pallor, hepatomegaly, splenomegaly, fatigue and bone pain (NEHMY et al, 2011).
[005] A incidência de LLA corresponde à cerca de ¾ de todos os casos recém-diagnosticados de leucemia na infância e aproximadamente ¼ de todos os casos de neoplasia maligna da infância (Agência de Proteção Ambiental dos Estados Unidos, 2015). Além disso, existe um segundo pico de incidência aos 50 anos de idade, que corresponde à ½ da incidência em crianças. (PUI & EVANS, 2006). Estima-se que, apenas nos Estados Unidos, surjam cerca de 6000 novos casos de LLA, tanto em adultos quanto em crianças (a cada 10 casos, 6 são diagnosticados em crianças), e aproximadamente 1500 morrem por conta da doença (de cada 5 mortes, 4 são de adultos) (Sociedade Norte- Americana de Câncer, 2015). [005] The incidence of ALL corresponds to about ¾ of all newly diagnosed cases of childhood leukemia and approximately ¼ of all cases of childhood malignancy (United States Environmental Protection Agency, 2015). In addition, there is a second peak of incidence at age 50, which corresponds to ½ of the incidence in children. (PUI & EVANS, 2006). It is estimated that, in the United States alone, about 6,000 new cases of ALL appear in both adults and children (out of 10 cases, 6 are diagnosed in children), and approximately 1,500 die from the disease (out of 5 deaths, 4 are from adults) (North American Cancer Society, 2015).
[006] O tratamento mais comum para a leucemia é a quimioterapia, consistindo das seguintes fases: indução da remissão, consolidação e fase de manutenção, compreendendo esquemas poliquimioterápicos, a fim de evitar o desenvolvimento de resistência. As diferentes etapas do tratamento têm intensidades variáveis, dependendo do grupo de risco do paciente, com regimes mais intensos nos casos de alto risco. Os quimioterápicos mais utilizados na fase de tratamento são os glucocorticóides, antraciclinas, vincristina e a L- asparaginase (L-ASNase). [006] The most common treatment for leukemia is chemotherapy, consisting of the following phases: induction of remission, consolidation and maintenance phase, comprising polychemotherapy schemes, in order to prevent the development of resistance. The different stages of treatment have varying intensities, depending on the patient's risk group, with more intense regimes in high-risk cases. The chemotherapeutics most used in the treatment phase are glucocorticoids, anthracyclines, vincristine and L-asparaginase (L-ASNase).
[007] A L-ASNase é a enzima responsável pela hidrólise de asparagina em aspartato e amónia. A asparagina é um aminoácido crítico para a síntese proteica em células leucêmicas, visto que essas não possuem a capacidade de sintetizar asparagina de novo devido ao baixo nível ou ausência de expressão da enzima asparagina sintetase (enzima que sintetiza asparagina a partir de aspartato) (LEE et al., 1989). Dessa forma, as células tumorais requerem um nível alto e não usual de asparagina, e por possuírem baixos níveis de asparagina sintetase, são dependentes de níveis séricos do aminoácido para sua proliferação e sobrevivência (KIRIYAMA et al., 1989). Já as células normais são capazes de sintetizar asparagina a partir do aspartato, através da enzima asparagina sintetase (RICHARDS & SCHUSTER, 1998), portanto, a atividade antineoplásica da L- ASNase é seletiva (UREN et al., 1977). O efeito antitumoral da L-ASNase é decorrente do esgotamento de asparagina da corrente sanguínea, o que acarreta na inibição da síntese de DNA e proteínas em células leucêmicas, consequentemente impedindo o crescimento do tumor (PIETERS et al., 2011). Para que a L-ASNase seja eficiente no tratamento contra a LLA, o nível de L- asparagina no meio deve ser reduzido a, pelo menos, 10 5 M para que a síntese proteica de células tumorais seja prejudicada (CEDAR & SCHWARTZ, 1967). [007] L-ASNase is the enzyme responsible for the hydrolysis of asparagine to aspartate and ammonia. Asparagine is a critical amino acid for the synthesis protein in leukemic cells, since they do not have the ability to synthesize asparagine again due to the low level or absence of expression of the enzyme asparagine synthetase (enzyme that synthesizes asparagine from aspartate) (LEE et al., 1989). Thus, tumor cells require a high and unusual level of asparagine, and because they have low levels of asparagine synthase, they are dependent on serum levels of the amino acid for their proliferation and survival (KIRIYAMA et al., 1989). Normal cells, on the other hand, are able to synthesize asparagine from aspartate, using the enzyme asparagine synthetase (RICHARDS & SCHUSTER, 1998), therefore, the antineoplastic activity of L-ASNase is selective (UREN et al., 1977). The antitumor effect of L-ASNase is due to the depletion of asparagine in the bloodstream, which causes inhibition of DNA and protein synthesis in leukemic cells, consequently preventing tumor growth (PIETERS et al., 2011). For L-ASNase to be efficient in the treatment against ALL, the level of L-asparagine in the medium must be reduced to at least 10 5 M so that the protein synthesis of tumor cells is impaired (CEDAR & SCHWARTZ, 1967) .
[008] Estudos clínicos indicam que o uso da L-ASNase em fases de indução da remissão e de consolidação são críticos para o tratamento da LLA infantil. O uso prolongado de altas doses da enzima vem sendo relatado como crucial para a redução da recaída e remissão completa, inclusive em pacientes de alto risco (SILVERMAN et al., 2001 ; AMYLON et al., 1999). Além disso, combinações entre L-ASNase e outros medicamentos (corticosteroide ou outros agentes quimioterápicos) podem potencializar a atividade da L-ASNase e, consequentemente, melhorar o prognóstico do paciente (ASSELIN et al., 1999; ABSHIRE et al., 2000). Durante o tratamento de pacientes classificados em grupos de risco básico, médio ou alto, é possível observar a presença da L- ASNase também nas etapas de indução da remissão e de consolidação, com variações na dosagem, dependendo da fase de tratamento e do grupo de risco do paciente (INCA, 2001 ; INCA, 2002). [009] Atualmente, existem quatro L-ASNase licenciadas para terapia, sendo três delas amplamente comercializadas. A L-ASNase nativa de E. coli (Ec- A) teve aprovação pela agência reguladora norte-americana Food and Drug Administration (FDA) para tratamento de LLA em 1978 e foi o único produto comercial disponível por diversos anos. Em 1994, o FDA aprovou a PEG- asparaginase (PEG-Ec-A), um conjugado de uma porção de polietilenoglicol (PEG) com L-ASNase de E. coli. Em 2011, o FDA aprovou o uso da L-ASNase de Erwinia chrysanthemi (Ew-A) e em 2012, a Alizé Pharma licencia a Asparec®, derivado peguilado da asparaginase de E. chrysanthemi para o tratamento de LLA para EUSA Pharma. [008] Clinical studies indicate that the use of L-ASNase in phases of induction of remission and consolidation are critical for the treatment of childhood ALL. Prolonged use of high doses of the enzyme has been reported to be crucial for reducing relapse and complete remission, even in high-risk patients (SILVERMAN et al., 2001; AMYLON et al., 1999). In addition, combinations between L-ASNase and other drugs (corticosteroids or other chemotherapeutic agents) can enhance the activity of L-ASNase and, consequently, improve the patient's prognosis (ASSELIN et al., 1999; ABSHIRE et al., 2000) . During the treatment of patients classified into basic, medium or high risk groups, it is possible to observe the presence of L-ASNase also in the stages of induction of remission and consolidation, with variations in dosage, depending on the treatment phase and the group of patient risk (INCA, 2001; INCA, 2002). [009] Currently, there are four L-ASNase licensed for therapy, three of which are widely marketed. E. coli native L-ASNase (Ec-A) was approved by the US regulatory agency Food and Drug Administration (FDA) for ALL treatment in 1978 and was the only commercial product available for several years. In 1994, the FDA approved PEG-asparaginase (PEG-Ec-A), a conjugate of a portion of polyethylene glycol (PEG) with E. coli L-ASNase. In 2011, the FDA approved the use of L-ASNase from Erwinia chrysanthemi (Ew-A) and in 2012, Alizé Pharma licenses Asparec ® , a pegylated derivative of E. chrysanthemi asparaginase for the treatment of ALL for EUSA Pharma.
[0010] O uso bem-sucedido das L-ASNases no tratamento contra a LLA possui seu lado prejudicial, tomando seu uso limitado e constantemente reavaliado por conta dos efeitos colaterais graves gerados principalmente pela sua toxicidade. Reações imediatas ao uso da L-ASNase acontecem em 71% dos casos, incluindo náusea, vómito e febre. Por conta da diminuição da síntese proteica das células, decorrente da depleção do nível de asparagina no sangue, ocorre hiperglicemia, trombose e hemorragias. Em ½ dos casos, os órgãos sofrem disfunções, como no sistema nervoso central, resultando em cefaleia, desorientação, coma, convulsões e depressão. Aproximadamente 97% dos casos afetam o fígado, 68% afetam os rins e 15% afetam o pâncreas, causando pancreatite (GUILLERME et al, 2013; HENRIKSEN et al., 2015). Normalmente, crianças são mais tolerantes aos efeitos colaterais induzidos pela L-ASNase, enquanto adolescentes e adultos são mais sensíveis e muitas vezes podem desenvolver uma morbidade significativa (ALBERTSEN et al., 2002; ALVAREZ & ZIMMERMANN, 2000; KEARNEY et al., 2009; BARRY et al., 2007). [0010] The successful use of L-ASNases in the treatment against ALL has its harmful side, making its use limited and constantly reassessed due to the serious side effects generated mainly by its toxicity. Immediate reactions to the use of L-ASNase occur in 71% of cases, including nausea, vomiting and fever. Due to the decrease in the protein synthesis of cells, due to the depletion of the level of asparagine in the blood, hyperglycemia, thrombosis and hemorrhages occur. In ½ of the cases, the organs suffer dysfunctions, as in the central nervous system, resulting in headache, disorientation, coma, convulsions and depression. Approximately 97% of cases affect the liver, 68% affect the kidneys and 15% affect the pancreas, causing pancreatitis (GUILLERME et al, 2013; HENRIKSEN et al., 2015). Usually, children are more tolerant of the side effects induced by L-ASNase, while adolescents and adults are more sensitive and can often develop significant morbidity (ALBERTSEN et al., 2002; ALVAREZ & ZIMMERMANN, 2000; KEARNEY et al., 2009 ; BARRY et al., 2007).
[0011] Os efeitos colaterais estão associados principalmente à uma segunda especificidade da L-ASNase, que pode levar ao esgotamento do aminoácido glutamina, por conta da sua semelhança estrutural com a asparagina e a produção de glutamato que é tóxico às células em concentrações maiores que 140 mM/L (MULLER & BOSS, 1998; NARTA et al, 2007). Os efeitos colaterais provocados pela atividade glutaminase de L-ASNase são pancreatite, anormalidades da hemostasia, trombose e complicações neurológicas. Ademais, são também observadas reações de hipersensibilidade clínica e inativação por anticorpos contra Ec-A, que ocorre em cerca de 60% dos casos, quase exclusivamente em regimes pós-indução. [0011] Side effects are mainly associated with a second specificity of L-ASNase, which can lead to the depletion of the amino acid glutamine, due to its structural similarity to asparagine and the production of glutamate that is toxic to cells in concentrations greater than 140 mM / L (MULLER & BOSS, 1998; NARTA et al, 2007). Side effects caused by the glutaminase activity of L-ASNase are pancreatitis, hemostasis abnormalities, thrombosis and neurological complications. In addition, clinical hypersensitivity reactions and inactivation by antibodies against Ec-A are also observed, which occurs in about 60% of cases, almost exclusively in post-induction regimens.
[0012] A L-ASNase de E. carotovora (ECAR-LANS) é muito mais específica à asparagina que à glutamina e tal atividade glutaminase reduzida seria vantajosa no uso dessas enzimas para tratamento de neoplasias. Entretanto, essa enzima possui um tempo mais curto de meia-vida na corrente sanguínea (KRASOTKINA et al, 2004), característica que impede que a enzima ECAR- LANS seja eficiente como um biofármaco. [0012] E. carotovora L-ASNase (ECAR-LANS) is much more specific to asparagine than to glutamine and such reduced glutaminase activity would be advantageous in the use of these enzymes for the treatment of neoplasms. However, this enzyme has a shorter half-life in the bloodstream (KRASOTKINA et al, 2004), a characteristic that prevents the ECAR-LANS enzyme from being efficient as a biopharmaceutical.
[0013] Assim, apesar dos efeitos secundários conhecidos de Ec-A, PEG- [0013] Thus, despite the known side effects of Ec-A, PEG-
Ec-A e Ew-A, essas ainda são as enzimas comercialmente disponíveis. Entretanto, desenvolvimentos são ainda necessários para a construção de L- ASNases que causem menos efeitos colaterais quando administradas para tratamento de neoplasias. Ec-A and Ew-A, these are still the commercially available enzymes. However, developments are still necessary for the construction of L-ASNases that cause fewer side effects when administered to treat neoplasms.
[0014] Algumas tentativas de reduzir a atividade glutaminase da enzima [0014] Some attempts to reduce the enzyme's glutaminase activity
L-ASNase são encontradas no estado da técnica. Contudo, todos os estudos disponíveis fazem referência a substituições de aminoácidos específicos e em nenhum deles uma porção de mais de 5 resíduos foi substituída. L-ASNase are found in the prior art. However, all available studies refer to specific amino acid substitutions and in none of them has a portion of more than 5 residues been replaced.
[0015] E sabido no estado da técnica que a substituição de apenas um resíduo de aminoácido na estrutura primária de uma enzima pode levar a completa inativação da mesma. Não só o número de resíduos substituídos, como suas posições na estmtura primária do polipeptídeo e a natureza dos resíduos substitutos influenciam diretamente na atividade catalítica da enzima. [0015] It is known in the state of the art that the substitution of just one amino acid residue in the primary structure of an enzyme can lead to its complete inactivation. Not only the number of residues replaced, but their positions in the primary structure of the polypeptide and the nature of the substitute residues directly influence the catalytic activity of the enzyme.
[0016] DERST et al. (2000), por exemplo, testa o efeito na especificidade da enzima à glutamina da substituição dos resíduos de aminoácido nas posições 11, 27, 57 e 88 por aminoácidos apoiares. O trabalho mostra que a substituição de uma glicina na posição 11 e 88 praticamente aboliu completamente a catálise, enquanto na posição 57 apresentou pouco efeito na especificidade ao substrato. [0016] DERST et al. (2000), for example, tests the effect on glutamine enzyme specificity of amino acid at positions 11, 27, 57 and 88 by supporting amino acids. The work shows that the substitution of a glycine in position 11 and 88 practically completely abolished the catalysis, while in position 57 it had little effect on substrate specificity.
[0017] No WO2015038639, é citada uma substituição na posição 58 ou [0017] In WO2015038639, a substitution in position 58 is cited or
59, enquanto em CN103060299 as mutações são especificamente nas posições 48, 49, 152 e/ou 283. 59, while in CN103060299 mutations are specifically in positions 48, 49, 152 and / or 283.
[0018] O W02014170811 revela L-ASNases mutantes de E. coli em que a mutação induz uma menor imunogenicidade e maior estabilidade da enzima, que compreende menos do que cinco substituições de aminoácidos. [0018] W02014170811 discloses E. coli mutant L-ASNases in which the mutation induces less immunogenicity and greater stability of the enzyme, which comprises less than five amino acid substitutions.
[0019] O W02017151707 revela L-ASNases mutantes de E. chrysanthemi com substituições em apenas uma ou mais das posições 31, 63 e 254 visando redução da atividade L-glutaminase e aumento de estabilidade enzimática. [0019] W02017151707 reveals mutant L-ASNases of E. chrysanthemi with substitutions in only one or more of positions 31, 63 and 254 in order to reduce L-glutaminase activity and increase enzymatic stability.
[0020] O WO2013055699 se refere a L-ASNases mutantes de W. succinogenes com pouca ou nenhuma atividade glutaminase, as quais apresentam apenas uma mutação na posição 121. [0020] WO2013055699 refers to mutant L-ASNases of W. succinogenes with little or no glutaminase activity, which have only one mutation at position 121.
[0021] As vantagens da invenção serão evidentes na descrição da invenção fornecida neste documento. [0021] The advantages of the invention will be evident in the description of the invention provided in this document.
SUMÁRIO DA INVENÇÃO SUMMARY OF THE INVENTION
[0022] A presente invenção tem por objetivo prover um polipeptídeo com atividade asparaginase que solucione os principais problemas do estado da técnica listados anteriormente. [0022] The present invention aims to provide a polypeptide with asparaginase activity that solves the main problems of the prior art listed above.
[0023] Em um primeiro aspecto, a presente invenção provê um polipeptídeo com atividade asparaginase que compreende substituições na região do sítio ativo da sequência de aminoácidos do peptídeo com atividade asparaginase de Escherichia coli (EC-A) por resíduos de aminoácidos correspondentes na sequência de aminoácidos do peptídeo com atividade asparaginase de Erwinia carotovora (ECAR-LANS), em que o polipeptídeo da presente invenção (EC-A_mut) apresenta menor afinidade por diferentes aminoácidos que não asparagina quando comparada com o peptídeo com atividade asparaginase de E. coli parental. [0023] In a first aspect, the present invention provides a polypeptide with asparaginase activity that comprises substitutions in the region of the amino acid sequence of the peptide with Escherichia coli asparaginase activity (EC-A) by corresponding amino acid residues in the sequence amino acids of the peptide with asparaginase activity of Erwinia carotovora (ECAR-LANS), in which the polypeptide of The present invention (EC-A_mut) has less affinity for different amino acids than asparagine when compared to the peptide with parental E. coli asparaginase activity.
[0024] Em um segundo aspecto, a presente invenção provê um polinucleotídeo que codifica um polipeptídeo com atividade asparaginase como acima definido. [0024] In a second aspect, the present invention provides a polynucleotide that encodes a polypeptide with asparaginase activity as defined above.
[0025] Em um terceiro aspecto, a presente invenção provê um cassete de expressão que compreende um polinucleotídeo como acima definido operacionalmente ligado a um promotor e a um terminador de transcrição. [0025] In a third aspect, the present invention provides an expression cassette comprising a polynucleotide as defined above operatively linked to a promoter and a transcription terminator.
[0026] Em um quarto aspecto, também é provido um vetor de expressão compreendendo um polinucleotídeo ou um cassete de expressão como acima definidos. [0026] In a fourth aspect, an expression vector comprising a polynucleotide or an expression cassette as defined above is also provided.
[0027] Em um quinto aspecto, a presente invenção provê uma célula hospedeira compreendendo um cassete de expressão ou um vetor de expressão como acima definidos. [0027] In a fifth aspect, the present invention provides a host cell comprising an expression cassette or an expression vector as defined above.
[0028] Em um sexto aspecto, é provida uma composição farmacêutica que compreende um polipeptídeo da invenção e um carreador ou excipiente farmaceuticamente aceitável. [0028] In a sixth aspect, a pharmaceutical composition is provided which comprises a polypeptide of the invention and a pharmaceutically acceptable carrier or excipient.
[0029] Em um sétimo aspecto, é provido o uso do polipeptídeo da invenção na manufatura de um medicamento para prevenção ou tratamento de neoplasias. [0029] In a seventh aspect, the use of the polypeptide of the invention in the manufacture of a drug for the prevention or treatment of neoplasms is provided.
[0030] Em um oitavo aspecto, a presente invenção provê um método para produzir um polipeptídeo com atividade asparaginase, compreendendo as etapas de: (a) fornecer uma célula hospedeira transformada; (b) cultivar dita célula em condições conducentes para a produção do polipeptídeo; e (c) isolar dito polipeptídeo de dita célula ou do meio de cultura circundando dita célula. [0030] In an eighth aspect, the present invention provides a method for producing a polypeptide with asparaginase activity, comprising the steps of: (a) providing a transformed host cell; (b) cultivating said cell under conditions conducive to the production of the polypeptide; and (c) isolating said polypeptide from said cell or culture medium surrounding said cell.
[0031] Em um nono aspecto, é provido um método para prevenir ou tratar neoplasias, compreendendo administrar uma quantidade terapeuticamente eficaz do polipeptídeo com atividade asparaginase a um indivíduo em necessidade da dita prevenção ou tratamento. [0031] In a ninth aspect, a method for preventing or treating neoplasms is provided, comprising administering a therapeutically effective amount of the polypeptide with asparaginase activity to an individual in need for said prevention or treatment.
BREVE DESCRIÇÃO DAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
[0032] A Figura 1 mostra a análise estrutural para geração de Ec-A_mut. [0032] Figure 1 shows the structural analysis for the generation of Ec-A_mut.
[0033] A Figura 2 mostra cromatograma de gel filtração de Ac- A [0033] Figure 2 shows chromatogram of Ac-A filtration gel
(Figura 2A) e ECAR-FANS (Figura 2B). (Figure 2A) and ECAR-FANS (Figure 2B).
A Figura 3A mostra um cromatograma de curva de calibração de coluna de gel filtração. Volume de eluição dos picos: 1 (Ferritina, 440 kDa) - 45,99 mF; 2 (Aldolase, 158 kDa) - 51,22 mL; 3 (Conalbumina, 75 kDa) - 86,47 mF; 4 (Ovalbumina, 44 kDa) - 102,98 mL. A Figura 3B mostra um gráfico relacionado relacionando o valor Kav e log MW da curva de calibração da coluna utilizada para os ensaios de gel filtração. Figure 3A shows a chromatogram of the filtration gel column calibration curve. Peak elution volume: 1 (Ferritin, 440 kDa) - 45.99 mF; 2 (Aldolase, 158 kDa) - 51.22 ml; 3 (Conalbumin, 75 kDa) - 86.47 mF; 4 (Ovalbumin, 44 kDa) - 102.98 mL. Figure 3B shows a related graph relating the Kav value and log MW of the column calibration curve used for the gel filtration tests.
[0034] A Figura 4 mostra o resultado da cromatografia de gel filtração de Ec-A_mut. [0034] Figure 4 shows the result of the gel filtration chromatography of Ec-A_mut.
[0035] A Figura 5 mostra um gráfico duplo recíproco da atividade de [0035] Figure 5 shows a double reciprocal graph of the activity of
ECAR-LANS (Figura 5A) e Ec-A (Figura 5B). ECAR-LANS (Figure 5A) and Ec-A (Figure 5B).
[0036] A Figura 6 mostra o espectro de dicroísmo circular de Ec-A e [0036] Figure 6 shows the spectrum of circular dichroism of Ec-A and
ECAR-LANS, sendo a análise do enovelamento de Ec-A (vermelho) e ECAR- LANS (preto). ECAR-LANS, with the analysis of the folding of Ec-A (red) and ECAR-LANS (black).
[0037] A Figura 7 mostra o espectro de dicroísmo circular das enzimas [0037] Figure 7 shows the circular dichroism spectrum of enzymes
Ec-A, ECAR-LANS e Ec-A_mut. Ec-A, ECAR-LANS and Ec-A_mut.
[0038] A Figura 8 mostra uma análise estrutural de Ec-A_mut. [0038] Figure 8 shows a structural analysis of Ec-A_mut.
[0039] A Figura 9 mostra o espectro de dicroísmo circular observado no comprimento de onda 222 nm durante gradiente de temperatura, variando entre 20° e 90° das enzimas nativa e mutada de E. coli e nativa de E. carotovora. DEFINIÇÕES [0039] Figure 9 shows the circular dichroism spectrum observed at 222 nm wavelength during temperature gradient, varying between 20 ° and 90 ° of the native and mutated enzymes of E. coli and native of E. carotovora. DEFINITIONS
[0040] Para garantir um melhor entendimento do escopo da invenção, sem que seja um fator limitante, os termos técnicos das áreas de tecnologia relacionadas, como usados na presente invenção, são definidos a seguir. [0040] To ensure a better understanding of the scope of the invention, without being a limiting factor, the technical terms of the related technology areas, as used in the present invention, are defined below.
[0041] “Que compreende” ou variações tais como “compreendem”, “compreende” ou“compreendido de” são usados por todo o relatório descritivo e reivindicações em um sentido inclusivo, isto é, para especificar a presença dos recursos determinados, mas não para excluir a presença ou adição de recursos adicionais que podem aprimorar materialmente a operação ou a utilidade de qualquer uma das modalidades da invenção, a não ser que o contexto exija de outro modo devido à linguagem de expressão ou implicação necessária. [0041] "Who understands" or variations such as "understand", “Understands” or “comprised of” are used throughout the specification and claims in an inclusive sense, that is, to specify the presence of determined resources, but not to exclude the presence or addition of additional resources that can materially improve the operation or the usefulness of any of the modalities of the invention, unless the context requires otherwise due to the necessary language of expression or implication.
[0042] “Consiste essencialmente em” e variações tais como“consistem essencialmente em” ou“que consiste essencialmente em”, conforme usado por todo o relatório descritivo e reivindicações, indicam a inclusão de quaisquer elementos ou grupo de elementos citado e a inclusão opcional de outros elementos, de natureza similar ou diferente dos elementos citados, que não alteram materialmente as propriedades básicas ou inovadoras da matéria reivindicada. [0042] "Consists essentially of" and variations such as "consist essentially of" or "consisting essentially of", as used throughout the specification and claims, indicate the inclusion of any mentioned elements or group of elements and the optional inclusion other elements, of a similar or different nature to the mentioned elements, which do not materially alter the basic or innovative properties of the claimed material.
[0043] Os termos“ácido nucleico” e polinucleotídeo” são usados de forma intercambiável, e referem-se a RNA e DNA. Os polinucleotídeos podem ser simples ou dupla fita. Exemplos não limitantes de polinucleotídeos incluem genes, fragmentos de genes, éxons, íntrons, RNA mensageiro, siRNA, miRNA, DNA complementar, DNA genômico, DNA sintético, DNA recombinante, cassetes, vetores, sondas e iniciadores. O termo“DNA recombinante” refere-se a qualquer sequência nucleotídica artificial que resulta da combinação de sequências de DNA de diferentes origens. [0043] The terms "nucleic acid" and polynucleotide "are used interchangeably, and refer to RNA and DNA. Polynucleotides can be single or double stranded. Non-limiting examples of polynucleotides include genes, gene fragments, exons, introns, messenger RNA, siRNA, miRNA, complementary DNA, genomic DNA, synthetic DNA, recombinant DNA, cassettes, vectors, probes and primers. The term "recombinant DNA" refers to any artificial nucleotide sequence that results from the combination of DNA sequences from different sources.
[0044] O termo“sequência de nucleotídeos degenerada” denota uma sequência de nucleotídeos que inclui um ou mais códons degenerados quando comparada com uma molécula de ácido nucleico de referência que codifica um dado polipeptídeo. Códons degenerados contêm diferentes tripletes de nucleotídeos, mas codificam o mesmo resíduo de aminoácido (p.ex., GAU e GAC ambos codificam Asp). [0044] The term "degenerate nucleotide sequence" denotes a nucleotide sequence that includes one or more degenerate codons when compared to a reference nucleic acid molecule that encodes a given polypeptide. Degenerate codons contain different nucleotide triplets, but they encode the same amino acid residue (eg, GAU and GAC both encode Asp).
[0045] O termo“quantidade terapeuticamente eficaz” refere-se a uma quantidade de proteínas ou polipeptídeos que fornece atividade contra câncer, quando administrada de acordo com a dose e via de administração apropriada. [0045] The term "therapeutically effective amount" refers to an amount of proteins or polypeptides that provides activity against cancer, when administered according to the dose and appropriate route of administration.
[0046] O termo “carreadores ou excipientes farmaceuticamente aceitáveis” refere-se a ingredientes compatíveis com outros ingredientes contidos em preparações farmacêuticas e que não apresentam efeito terapêutico e não são prejudiciais a seres humanos ou animais. [0046] The term "pharmaceutically acceptable carriers or excipients" refers to ingredients compatible with other ingredients contained in pharmaceutical preparations and which have no therapeutic effect and are not harmful to humans or animals.
[0047] O termo “indivíduo” refere-se a seres humanos e animais. [0047] The term "individual" refers to humans and animals.
Preferencialmente o indivíduo é um ser humano. Preferably the individual is a human being.
[0048] O termo“identidade” é definido como o grau de igualdade entre sequências de DNA ou de aminoácidos quando comparados nucleotídeo por nucleotídeo ou aminoácido por aminoácido com uma sequência de referência. [0048] The term "identity" is defined as the degree of equality between DNA or amino acid sequences when compared nucleotide by nucleotide or amino acid by amino acid with a reference sequence.
[0049] O termo“porcentagem de identidade de sequências” refere-se a comparações entre polinucleotídeos ou polipeptídeos e é determinado por duas sequências idealmente alinhadas, sob determinados parâmetros de comparação. Este alinhamento pode compreender gaps (espaços), gerando intervalos quando comparadas à sequência de referência, que facilitam uma comparação adequada das mesmas. De maneira geral, o cálculo da porcentagem de identidade considera o número de posições onde o mesmo nucleotídeo ou aminoácido ocorre nas sequências comparadas à sequência referência, sendo realizado através de diversos algoritmos de comparação de sequências e programas conhecidos no estado da arte. Tais algoritmos e programas incluem, mas não são limitados a, TBLASTN, BLASTP, FASTA, TFASTA, CLUSTALW, FASTDB. [0049] The term "percentage of sequence identity" refers to comparisons between polynucleotides or polypeptides and is determined by two sequences ideally aligned, under certain comparison parameters. This alignment can comprise gaps (spaces), generating intervals when compared to the reference sequence, which facilitate an adequate comparison of them. In general, the identity percentage calculation considers the number of positions where the same nucleotide or amino acid occurs in the sequences compared to the reference sequence, being carried out through several sequence comparison algorithms and programs known in the art. Such algorithms and programs include, but are not limited to, TBLASTN, BLASTP, FASTA, TFASTA, CLUSTALW, FASTDB.
[0050] O termo“Reação em Cadeia da Polimerase” ou da sigla em inglês, PCR, refere-se a um método no qual um fragmento de ácido nucleico é amplificado como descrito na patente US 4.683.195. Geralmente, a informação contida nas extremidades 5’ e 3’ da sequência de interesse é utilizada para o desenho dos oligonucleotídeos iniciadores ou iniciadores que abrangem, em tomo de 8 nucleotídeos sintéticos. Estes iniciadores apresentam sequências complementares à sequência a ser amplificada. A PCR pode ser utilizada para amplificar sequências de RNA, DNA ou cDNA. [0051] Um“cassete de expressão” refere-se a uma construção de ácido nucleico compreendendo uma região codificante e uma região reguladora, ligadas de modo operacional que, quando introduzida em uma célula hospedeira, resulta na transcrição e/ou tradução de um RNA ou polipeptídeo, respectivamente. Geralmente, um cassete de expressão é constituído ou compreendido por um promotor que permite iniciar a transcrição, um ácido nucleico de acordo com a invenção, e terminador de transcrição. A expressão “ligada de maneira operacional” indica que os elementos são combinados de modo que a expressão da sequência codificante esteja sob controle do promotor transcricional e/ou peptídeo sinal. Tipicamente, a sequência do promotor é colocada a montante do gene de interesse, a uma distância deste compatível com o controle da expressão. Do mesmo modo, a sequência de peptídeo sinal é fusionada geralmente a montante da sequência do gene de interesse, e em fase com este, e a jusante de qualquer promotor. Sequências de espaçamento podem estar presentes, entre os elementos reguladores e o gene, dado que não impedem a expressão e/ou a triagem. Em um modo de realização, o referido cassete de expressão compreende pelo menos uma sequência ativadora“ enhancer” ligada de maneira operacional ao promotor. [0050] The term "Polymerase Chain Reaction" or the acronym in English, PCR, refers to a method in which a nucleic acid fragment is amplified as described in US patent 4,683,195. Generally, the information contained at the 5 'and 3' ends of the sequence of interest is used for the design of the primers or primers that they span, around 8 synthetic nucleotides. These primers have sequences complementary to the sequence to be amplified. PCR can be used to amplify RNA, DNA or cDNA sequences. [0051] An "expression cassette" refers to a nucleic acid construct comprising a coding region and a regulatory region, operably linked that, when introduced into a host cell, results in the transcription and / or translation of an RNA or polypeptide, respectively. Generally, an expression cassette is constituted or comprised of a promoter that allows the initiation of transcription, a nucleic acid according to the invention, and a transcription terminator. The expression "operably linked" indicates that the elements are combined so that the expression of the coding sequence is under the control of the transcriptional promoter and / or signal peptide. Typically, the promoter sequence is placed upstream of the gene of interest, at a distance compatible with expression control. Likewise, the signal peptide sequence is generally fused upstream of the gene sequence of interest, and in phase with it, and downstream of any promoter. Spacing sequences may be present between regulatory elements and the gene, as they do not prevent expression and / or screening. In one embodiment, said expression cassette comprises at least one "enhancer" activator sequence operably linked to the promoter.
[0052] O termo “vetor” refere-se a moléculas de ácidos nucléicos projetadas para transportar, transferir e/ou armazenar material genético, bem como expressar e/ou integrar o material genético ao DNA cromossomal da célula hospedeira, como por exemplo, os plasmídeos, cosmídeos, cromossomos artificias, bacteriófagos e outros vírus. O vetor geralmente é composto por, no mínimo, três unidades básicas, a origem de replicação, um marcador de seleção e o sítio múltiplo de clonagem. [0052] The term "vector" refers to nucleic acid molecules designed to transport, transfer and / or store genetic material, as well as to express and / or integrate the genetic material into the host cell's chromosomal DNA, such as, for example, plasmids, cosmids, artificial chromosomes, bacteriophages and other viruses. The vector is usually composed of at least three basic units, the origin of replication, a selection marker and the multiple cloning site.
[0053] Os vetores utilizados nesta invenção apresentam preferencialmente pelo menos um“marcador de seleção”, que é elemento genético que permite a seleção dos organismos/células geneticamente modificados. Esses marcadores incluem genes de resistência a antibióticos tais como, mas não limitados a ampicilina, cloranfenicol, tetraciclina, kanamicina, higromicina, bleomicina, fleomicina, puromicina e/ou genes de complementação de fenótipo, tais como, mas não limitados a metotrexato, dihidrofolato redutase, ampicilina, neomicina, ácido micofenólico, glutamina sintetase. [0053] The vectors used in this invention preferably present at least one "selection marker", which is a genetic element that allows the selection of genetically modified organisms / cells. These markers include antibiotic resistance genes such as such as, but not limited to, ampicillin, chloramphenicol, tetracycline, kanamycin, hygromycin, bleomycin, phleomycin, puromycin and / or phenotype complementing genes, such as, but not limited to methotrexate, dihydrofolate reductase, ampicillin, neomycin, mycophamine, glutamine synthetase.
[0054] O termo“vetor de expressão” refere-se a qualquer vetor que seja capaz de transportar, transferir e/ou armazenar material genético, e que, uma vez na célula hospedeira, seja utilizado como fonte de informação genética para produção de um ou mais produtos gênicos (expressão gênica). [0054] The term "expression vector" refers to any vector that is capable of transporting, transferring and / or storing genetic material, and that, once in the host cell, is used as a source of genetic information for the production of a or more gene products (gene expression).
[0055] Além disso, os vetores de expressão desta invenção podem incluir uma ou mais sequências nucleotídicas regulatórias para controle da replicação gênica, transferência, transporte, armazenamento e expressão do material genético, como por exemplo, origem de replicação, marcador de seleção, sítio múltiplo de clonagem, promotor (por exemplo, T7 pol, pL e pR fago lambda, SV40, CMV, HSV tk, pgk, T4 pol, ou EF-1 alfa e seus derivados), sítio de ligação ao ribossomo, sítio para splice de RNA, sítio de poliadenilação, peptídeo sinal para secreção e sequência de terminação de transcrição gênica. No entanto, os vetores de expressão dessa invenção não estão limitados a elas. A técnica de incorporação das sequências controle num vetor encontra-se bem caracterizada no estado da técnica. [0055] In addition, the expression vectors of this invention may include one or more regulatory nucleotide sequences to control gene replication, transfer, transport, storage and expression of genetic material, such as origin of replication, selection marker, site multiple cloning, promoter (for example, T7 pol, pL and pR lambda phage, SV40, CMV, HSV tk, pgk, T4 pol, or EF-1 alpha and its derivatives), ribosome binding site, splice site RNA, polyadenylation site, signal peptide for secretion and gene transcription termination sequence. However, the expression vectors of this invention are not limited to them. The technique of incorporating control sequences into a vector is well characterized in the prior art.
[0056] O vetor de expressão utilizado nesta invenção também poderá ter sequências “ enhancer”, também denominados elementos “cis” que podem influenciar positiva ou negativamente a expressão gênica dependente do promotor. [0056] The expression vector used in this invention may also have "enhancer" sequences, also called "cis" elements that can positively or negatively influence the promoter-dependent gene expression.
[0057] Uma “sequência codificadora” refere-se a uma sequência nucleotídica que é transcrita em mRNA (RNA mensageiro) e traduzida em um polipeptídeo quando estiver sob o controle de sequências regulatórias adequadas. Os limites da sequência codificadora são determinados por um códon de iniciação de tradução na extremidade 5’ da fita senso de DNA e por um códon de terminação de tradução na extremidade 3’ da fita senso de DNA. Como resultado da degeneração do código genético, diferentes sequências de DNA podem codificar uma mesma sequência polipeptídica. Por isso, considera-se que tais substituições degeneradas na região codificante estejam inseridas nas sequências descritas nesta invenção. [0057] A "coding sequence" refers to a nucleotide sequence that is transcribed into mRNA (messenger RNA) and translated into a polypeptide when it is under the control of appropriate regulatory sequences. The limits of the coding sequence are determined by a translation initiation codon at the 5 'end of the DNA sense strand and a translation termination codon at the 3' end of the DNA sense strand. As a result from the degeneration of the genetic code, different DNA sequences can encode the same polypeptide sequence. Therefore, it is considered that such degenerate substitutions in the coding region are inserted in the sequences described in this invention.
[0058] O termo“promotor” é uma sequência mínima de DNA suficiente para direcionar a transcrição gênica, isto é, uma sequência que direciona a ligação da enzima RNA polimerase promovendo assim a síntese do RNA mensageiro. Promotores podem ser específicos para o tipo de célula, tipo de tecido e espécie, além de serem modulados, em determinados casos, por elementos regulatórios em resposta a algum agente externo físico ou químico denominado indutor. [0058] The term "promoter" is a minimum DNA sequence sufficient to direct gene transcription, that is, a sequence that directs the binding of the RNA polymerase enzyme thus promoting the synthesis of messenger RNA. Promoters can be specific to the cell type, tissue type and species, in addition to being modulated, in certain cases, by regulatory elements in response to some external physical or chemical agent called an inducer.
[0059] Os termos“transformação” e“transfecção” referem-se ao ato de se inserir um vetor ou outro veículo carreador de material genético exógeno em uma célula hospedeira, procariótica ou eucariótica, para transporte, transferência, armazenamento e/ou expressão gênica do material genético de interesse. [0059] The terms "transformation" and "transfection" refer to the act of inserting a vector or other carrier vehicle of exogenous genetic material in a host cell, prokaryotic or eukaryotic, for transport, transfer, storage and / or gene expression of the genetic material of interest.
[0060] O termo “expressão recombinante” refere-se à expressão do polipeptídeo recombinante em células hospedeiras. [0060] The term "recombinant expression" refers to the expression of the recombinant polypeptide in host cells.
[0061] O termo“célula hospedeira” refere-se à célula que irá receber o material genético através de um vetor e/ou células que já receberam o material genético através de um vetor (células transformadas ou transfectadas). Essas células hospedeiras podem ser tanto de origem procariótica (microrganismos procarióticos) como eucariótica (células ou microrganismos eucarióticos). [0061] The term "host cell" refers to the cell that will receive genetic material through a vector and / or cells that have already received genetic material through a vector (transformed or transfected cells). These host cells can be either of prokaryotic origin (prokaryotic microorganisms) or eukaryotic (cells or eukaryotic microorganisms).
[0062] No presente pedido, os termos“peptídeo”, “polipeptídeo” ou[0062] In this application, the terms "peptide", "polypeptide" or
“proteína” podem ser utilizados intercambiavelmente, e fazem referência a um polímero de aminoácidos conectado por ligações peptídicas, independentemente do número de resíduos de aminoácido que constituem esta cadeia. Os polipeptídeos, como aqui usados, incluem “variantes” ou “derivados” dos mesmos, que se referem a um polipeptídeo que inclui variações ou modificações, por exemplo, substituição, deleção, adição ou modificações químicas em sua sequência de aminoácido em relação ao polipeptídeo de referência, desde que o polipeptídeo derivado apresente atividade imunossupressora, estabilidade, meia vida, características farmacocinéticas e/ou características físico-químicas iguais ou superiores à inicialmente observada para o polipeptídeo original. Exemplos de modificações químicas são glicosilação, PEGlação, PEG alquilação, alquilação, fosforilação, acetilação, amidação, etc. Os aminoácidos dos polipeptídeos da invenção, dependendo da orientação do grupo amino do átomo de carbono alfa pode pertencer à série L ou D. O polipeptídeo pode ser produzido artificialmente a partir de sequências nucleotídicas clonadas através da técnica de DNA recombinante (“polipeptídeo recombinante”) ou pode ser preparado através de uma reação de síntese química conhecida (“polipeptídeo sintético”). "Protein" can be used interchangeably, and refer to a polymer of amino acids connected by peptide bonds, regardless of the number of amino acid residues that make up this chain. Polypeptides, as used herein, include "variants" or "derivatives" thereof, which refer to a polypeptide that includes variations or modifications, for example, substitution, deletion, addition or chemical modifications in its amino acid sequence in relation to the reference polypeptide, provided that the derived polypeptide has immunosuppressive activity, stability, half-life, pharmacokinetic characteristics and / or physicochemical characteristics equal to or greater than initially observed for the original polypeptide. Examples of chemical modifications are glycosylation, PEGylation, PEG alkylation, alkylation, phosphorylation, acetylation, amidation, etc. The amino acids of the polypeptides of the invention, depending on the orientation of the alpha group of the alpha carbon atom can belong to the L or D series. The polypeptide can be artificially produced from cloned nucleotide sequences using the recombinant DNA technique ("recombinant polypeptide") or it can be prepared by a known chemical synthesis reaction ("synthetic polypeptide").
[0063] O termo“substituições de aminoácidos” refere-se à substituição de pelo menos um resíduo de aminoácido de polipeptídeos visando à produção de derivados com atividade asparaginase. Os aminoácidos substituintes podem ser naturais, modificados ou incomuns. [0063] The term "amino acid substitutions" refers to the replacement of at least one amino acid residue of polypeptides for the production of derivatives with asparaginase activity. Substituting amino acids can be natural, modified or unusual.
[0064] A este respeito, o termo “substituição conservativa de aminoácidos” refere-se à substituição de aminoácidos em um polipeptídeo por aqueles com cadeias laterais similares e, portanto, com propriedades físico- químicas muito próximas. Por exemplo, a troca de uma alanina por uma valina ou leucina ou isoleucina é considerada conservativa, já que os aminoácidos envolvidos possuem como característica comum uma cadeia lateral alifática. O grupo que contém como característica uma cadeia lateral básica é composto por lisina, arginina e histidina. O grupo que contém enxofre na cadeia lateral abrange os aminoácidos cisteína e metionina. Os aminoácidos fenilalanina, tirosina e triptofano contêm uma cadeia lateral aromática. A asparagina e a glutamina fazem parte dos aminoácidos com cadeia lateral contendo amida, já a serina e a treonina contém uma hidroxila ligada a sua cadeia lateral alifática. Outros exemplos de substituição conservativa incluem a substituição de um aminoácido apoiar ou hidrofóbico como isoleucina, valina, leucina ou metionina por outro também apoiar. Da mesma forma, a invenção aqui descrita contempla a substituição de aminoácidos polares ou hidrofílicos como arginina por lisina, glutamina por asparagina e treonina por serina. Adicionalmente, a substituição entre aminoácidos de caráter básico como lisina, arginina ou histidina ou a substituição entre aminoácidos de caráter ácido como ácido aspártico ou ácido glutâmico também é contemplada. Exemplos de substituição conservativa de aminoácidos são as seguintes: valina por leucina ou por isoleucina, fenilalanina por tirosina, lisina por arginina, alanina por valina e asparagina por glutamina. [0064] In this respect, the term "conservative amino acid substitution" refers to the replacement of amino acids in a polypeptide by those with similar side chains and, therefore, with very close physicochemical properties. For example, the exchange of an alanine for a valine or leucine or isoleucine is considered conservative, since the amino acids involved have a common characteristic of an aliphatic side chain. The group that features a basic side chain is composed of lysine, arginine and histidine. The sulfur-containing group in the side chain comprises the amino acids cysteine and methionine. The amino acids phenylalanine, tyrosine and tryptophan contain an aromatic side chain. Asparagine and glutamine are part of the amino acids with side chain containing amide, while serine and threonine contain a hydroxyl linked to its aliphatic side chain. Other examples of conservative substitution include substitution of an amino acid support or hydrophobic like isoleucine, valine, leucine or methionine on the other also support. Likewise, the invention described herein contemplates the replacement of polar or hydrophilic amino acids such as arginine with lysine, glutamine with asparagine and threonine with serine. Additionally, substitution between basic amino acids such as lysine, arginine or histidine or substitution between acidic amino acids such as aspartic acid or glutamic acid is also contemplated. Examples of conservative substitution of amino acids are as follows: valine for leucine or isoleucine, phenylalanine for tyrosine, lysine for arginine, alanine for valine and asparagine for glutamine.
[0065] Além disso, exemplos ilustrativos de aminoácidos modificados ou incomuns incluem ácido 2-aminoadípico, ácido 3-aminoadípico, beta- alanina, ácido 2-aminobutírico, ácido 4-aminobutírico, ácido 6-aminocaproico, ácido 2-aminoheptanoico, ácido 2-aminoisobutírico, ácido 3-aminoisobutírico, ácido 2-aminoheptanoico, ácido 2-aminopimélico, ácido 2,4-diaminobutírico, desmosina, ácido 2,2’-diaminopimélico, ácido 2,3-diaminopropiônico, N- etilglicina, N-etilasparagina, hidroxilisina, alo-hidroxilisina, 3-hidroxiprolina, 4- hidroxiprolina, isodesmosina, aloisoleucina, N-metil glicina, N-metil isoleucina, 6-N-metil-lisina, N-metil valina, norvalina, norleucina, omitina, etc. [0065] In addition, illustrative examples of modified or unusual amino acids include 2-aminoadipic acid, 3-aminoadipic acid, beta-alanine, 2-aminobutyric acid, 4-aminobutyric acid, 6-aminocaproic acid, 2-aminoheptanoic acid, 2 -aminoisobutyric acid, 3-aminoisobutyric acid, 2-aminoheptanoic acid, 2-aminopimelic acid, 2,4-diaminobutyric acid, desmosine, 2,2'-diaminopimelic acid, 2,3-diaminopropionic acid, N-ethylglycine, N-ethylparagine, hydroxylysine, allohydroxylysine, 3-hydroxyproline, 4-hydroxyproline, isodesmosine, aloisoleucine, N-methyl glycine, N-methyl isoleucine, 6-N-methyl-lysine, N-methyl valine, norvaline, norleucine, omitine, etc.
[0066] Os objetos da presente invenção serão melhor compreendidos a partir da descrição detalhada da invenção e das reivindicações anexas. [0066] The objects of the present invention will be better understood from the detailed description of the invention and the attached claims.
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
[0067] A não ser que sejam definidos de maneira diferente, todos os termos técnicos e científicos aqui utilizados têm o mesmo significado entendido por um técnico no assunto ao qual a invenção pertence. A terminologia utilizada na descrição da invenção tem finalidade de descrever concretizações particulares somente, e não tem a intenção de limitar o escopo dos ensinamentos. A não ser que seja indicado de forma diferente, todos os números expressando quantidades, porcentagens e proporções, e outros valores numéricos usados no relatório descritivo e nas reivindicações, devem ser entendidos como sendo modificados, em todos os casos, pelo termo“cerca de”. Assim, a não ser que seja indicado o contrário, os parâmetros numéricos mostrados no relatório descritivo e nas reivindicações são aproximações que podem variar, dependendo das propriedades a serem obtidas. [0067] Unless they are defined differently, all technical and scientific terms used here have the same meaning understood by a technician in the subject to which the invention belongs. The terminology used in describing the invention is intended to describe particular embodiments only, and is not intended to limit the scope of the teachings. Unless otherwise indicated, all numbers expressing quantities, percentages and proportions, and other numerical values used in the specification and in the claims, must be understood to be modified, in all cases, by the term “about”. Thus, unless otherwise indicated, the numerical parameters shown in the specification and in the claims are approximations that may vary, depending on the properties to be obtained.
[0068] Os presentes inventores solucionaram o problema do estado da técnica provendo polipeptídeos com atividade asparaginase que apresentam reduzida afinidade por outros aminoácidos que não asparagina, particularmente glutamina. Os polipeptídeos da presente invenção com atividade glutaminase reduzida foram obtidos pela substituição de resíduos de aminoácidos localizados na região do sítio ativo da L-asparaginase de E. coli (EC-A) por resíduos de aminoácido correspondentes na L-asparaginase de E. carotovora (ECAR-LANS). [0068] The present inventors have solved the problem of the state of the art by providing polypeptides with asparaginase activity that have reduced affinity for amino acids other than asparagine, particularly glutamine. The polypeptides of the present invention with reduced glutaminase activity were obtained by replacing amino acid residues located in the region of the E. coli L-asparaginase (EC-A) active site by corresponding amino acid residues in E. carotovora L-asparaginase ( ECAR-LANS).
[0069] O mecanismo preciso da ação de L-asparaginase é ainda desconhecido, embora seja sabido que a hidrólise acontece em duas etapas através de um intermediário beta-acil-enzima. No primeiro passo, a treonina nucleofílica ataca o radical carbonil do substrato para gerar um intermediário acil-enzima. Uma molécula de amónia é liberada. No segundo passo, uma molécula de água ataca o intermediário acil-enzima para produzir L-aspartato. Resultados disponíveis no estado da técnica propõe uma tríade catalítica conservada envolvendo resíduos T (posição 89 da L-ASNase de E. coli), K (posição 162 L-ASNase de E. coli) e D (posição 90 da L-ASNase de E. coli). A treonina atua como nucleófilo primário que ataca o substrato e o resíduo de lisina proximal, estabilizada por aspartato, atua como uma base para aumentar a nucleofilicidade do resíduo de treonina catalítico. [0069] The precise mechanism of the action of L-asparaginase is still unknown, although it is known that hydrolysis occurs in two stages through a beta-acyl-enzyme intermediate. In the first step, the nucleophilic threonine attacks the carbonyl radical of the substrate to generate an acyl-enzyme intermediate. An ammonia molecule is released. In the second step, a water molecule attacks the acyl-enzyme intermediate to produce L-aspartate. Results available in the state of the art proposes a conserved catalytic triad involving residues T (position 89 of E. coli L-ASNase), K (position 162 L-ASNase of E. coli) and D (position 90 of E-L-ASNase coli). Threonine acts as a primary nucleophile that attacks the substrate and the proximal lysine residue, stabilized by aspartate, acts as a base to increase the nucleophilicity of the catalytic threonine residue.
[0070] Resíduos responsáveis pela ligação ao substrato formam a parte rígida do sítio ativo. A parte flexível do sítio ativo (resíduos 14-33, de E. coli) controla o acesso ao sítio de ligação. Esta região é muitas vezes desordenada nos cristais das L-ASNases, indicando elevada mobilidade desta alça. O estado da técnica demonstra ainda que a ligação do substrato induz o rápido fechamento da parte flexível, enquanto que na ausência de ligantes, a parte flexível do sítio ativo permanece na conformação aberta predominantemente. [0070] Residues responsible for bonding to the substrate form the rigid part of the active site. The flexible part of the active site (residues 14-33, from E. coli) controls access to the binding site. This region is often disordered in the crystals of L-ASNases, indicating high mobility of this loop. The state of the art further demonstrates that the bonding of the substrate induces rapid closure of the flexible part, while in the absence of binders, the flexible part of the active site remains in the predominantly open conformation.
[0071] Avaliação de contatos na estrutura da asparaginase de E. carotovora mostra que alterações conformacionais ou diferente flexibilidade na alça formada pelos resíduos G61-E63 pode afetar a atividade glutaminase de uma L-ASNase, assim como um resíduo mais volumoso pode reduzir ainda mais a área do sítio ativo, possivelmente levando a uma redução adicional da atividade de glutaminase. [0071] Evaluation of contacts in the structure of E. carotovora asparaginase shows that conformational changes or different flexibility in the loop formed by residues G61-E63 can affect the glutaminase activity of an L-ASNase, as well as a more bulky residue can further reduce the area of the active site, possibly leading to a further reduction in glutaminase activity.
[0072] Para diminuir a atividade glutaminase tóxica da L-ASNase de [0072] To decrease the toxic glutaminase activity of L-ASNase from
E. coli, os inventores propuseram substituir resíduos da região do sítio ativo da L-ASNase desse organismo pelos resíduos correspondentes na L-ASNase de E. carotovora , os quais englobam a alça sugerida como possível alvo da especificidade dessa enzima. E. coli, the inventors proposed to replace residues from the region of the active site of L-ASNase of that organism with corresponding residues in the L-ASNase of E. carotovora, which include the suggested loop as a possible target of the specificity of this enzyme.
[0073] Em uma concretização, a sequência mutada da L-ASNase de E. coli é a sequência de aminoácidos de SEQ ID NO: l com substituições por resíduos correspondentes da L-ASNase de E. carotovora de SEQ ID NO:2. [0073] In one embodiment, the mutated E. coli L-ASNase sequence is the amino acid sequence of SEQ ID NO: 1 with substitutions for corresponding residues of E. carotovora L-ASNase of SEQ ID NO: 2.
[0074] Em uma concretização, as modificações feitas na sequência de aminoácidos da L-ASNase de E. coli compreendem substituições nos resíduos 53-75 da SEQ ID NO: l . [0074] In one embodiment, modifications made to the amino acid sequence of E. coli L-ASNase comprise substitutions at residues 53-75 of SEQ ID NO: l.
[0075] Em uma concretização, as substituições são realizadas em resíduos de aminoácidos em pelo menos uma das posições 54, 55, 59, 60, 62, 63, 64, 66, 68, 70, 72, 73 e 75 da sequência de aminoácidos de SEQ ID NO: l . [0075] In one embodiment, substitutions are made on amino acid residues in at least one of positions 54, 55, 59, 60, 62, 63, 64, 66, 68, 70, 72, 73 and 75 of the amino acid sequence of SEQ ID NO: l.
[0076] Particularmente, as substituições compreenderem pelo menos uma das seguintes substituições na sequência de aminoácidos de SEQ ID NO: 1 : V54A, N55S, Q59E, D60N, N62T, D63S, N64D, W66L, T68K, A70S, K72R, 173 V e T75E. [0076] In particular, the substitutions comprise at least one of the following substitutions in the amino acid sequence of SEQ ID NO: 1: V54A, N55S, Q59E, D60N, N62T, D63S, N64D, W66L, T68K, A70S, K72R, 173 V and T75E.
[0077] Em uma concretização particular, o polipeptídeo com atividade asparaginase aqui pleiteada compreende a sequência de aminoácidos da SEQ ID NO: 3. [0078] Em uma concretização particular, o polipeptídeo com atividade asparaginase aqui pleiteada consiste da sequência de aminoácidos da SEQ ID NO:3. [0077] In a particular embodiment, the polypeptide with asparaginase activity claimed herein comprises the amino acid sequence of SEQ ID NO: 3. [0078] In a particular embodiment, the polypeptide with asparaginase activity claimed herein consists of the amino acid sequence of SEQ ID NO: 3.
[0079] São ainda incluídas no escopo de proteção da presente invenção sequências de aminoácidos contendo as modificações conforme estabelecidas na SEQ ID NO:3 e outras substituições conservativas em diferentes resíduos de aminoácidos. [0079] Amino acid sequences containing the modifications as set out in SEQ ID NO: 3 and other conservative substitutions in different amino acid residues are also included in the protection scope of the present invention.
[0080] A análise estrutural da asparaginase da presente invenção é mostrada na Figura 1. Na Figura IA, é identificado o sítio ativo conservado das L-ASNases, principalmente, os resíduos T89, D90 e K162. Na Figura 1B, é identificada a região modificada na enzima da presente invenção, onde os resíduos de aminoácidos da enzima de E. coli (regiões em azul) foram substituídos pelos correspondentes em E. carotovora (região em verde). [0080] The structural analysis of the asparaginase of the present invention is shown in Figure 1. In Figure IA, the conserved active site of L-ASNases is identified, mainly residues T89, D90 and K162. In Figure 1B, the modified region in the enzyme of the present invention is identified, where the amino acid residues of the E. coli enzyme (blue regions) have been replaced by the corresponding ones in E. carotovora (green region).
[0081] Em ensaios de desnaturação térmica, observou-se que a L- [0081] In thermal denaturation tests, it was observed that L-
ASNase de E. coli é mais estável que as de E. corotovora. Essa diferença de estabilidade já é descrita por outros trabalhos, onde foi feita a incubação por 3 minutos a 35°C, o que levou a 60% de diminuição irreversível da atividade de ECAR-LANS, enquanto Ec-A manteve grande parte da sua atividade inicial após incubação nas mesmas condições. ECAR-LANS também apresentou uma baixa estabilidade em solução com ureia e a atividade catalítica foi totalmente perdida após uma hora de incubação com 2 M de ureia. Em contraste, não houve observação de atividade em Ec-A com até 4 M de ureia (PAPAGEORGIOU et al, 2008). E. coli ASNase is more stable than E. corotovora. This difference in stability is already described by other studies, where the incubation was carried out for 3 minutes at 35 ° C, which led to a 60% irreversible decrease in the activity of ECAR-LANS, while Ec-A maintained a large part of its activity after incubation under the same conditions. ECAR-LANS also showed low stability in solution with urea and the catalytic activity was totally lost after one hour of incubation with 2 M urea. In contrast, there was no observation of activity in Ec-A with up to 4 M urea (PAPAGEORGIOU et al, 2008).
[0082] A análise de desnaturação térmica também mostrou que as substituições de aminoácidos que diferem Ec-A de Ec-A mut não afetam a estabilidade térmica das enzimas de E. coli. Ambas possuem Tm (temperatura onde 50% da amostra está desnovelada) de 60°C. [0082] The thermal denaturation analysis also showed that amino acid substitutions that differ Ec-A from Ec-A mut do not affect the thermal stability of E. coli enzymes. Both have Tm (temperature where 50% of the sample is unfolded) of 60 ° C.
[0083] Esses dados permitem concluir que o motivo b-loop-a, formado pela região 53-75, não está envolvida na estabilidade térmica de Ec-A, pois sua ausência não modifica o perfil de desnaturação da enzima. A substituição de aminoácidos entre os resíduos 53-75, embora altere o conteúdo de estrutura secundária em relação à enzima sem modificações, produz uma enzima com enovelamento e com estrutura quaternária similar as demais L-ASNses. [0083] These data allow us to conclude that the motif b-loop-a, formed by the region 53-75, is not involved in the thermal stability of Ec-A, because its absence does not modify the denaturation profile of the enzyme. The substitution of amino acids between residues 53-75, although altering the content of secondary structure in relation to the enzyme without modifications, produces an enzyme with folding and with a quaternary structure similar to the other L-ASNses.
[0084] A L-ASNase da presente invenção não se mostrou tão especifica à asparagina quando a L-ASNase de E. carotovora parental, a qual, segundo o estado da técnica, é 12.000 vezes mais específica para L-asparagina do que para L-glutamina. Entretanto, as substituições propostas aumentaram a especificidade da enzima da presente invenção em relação a L-ASNase de E. coli parental. [0084] The L-ASNase of the present invention was not as specific to asparagine when the L-ASNase of parental E. carotovora, which, according to the state of the art, is 12,000 times more specific for L-asparagine than for L -glutamine. However, the proposed substitutions increased the specificity of the enzyme of the present invention in relation to parental E. coli L-ASNase.
[0085] Assim, os inventores surpreendentemente obtiveram uma enzima de E. coli modificada, corretamente enoveladas, com estruturas secundária e quaternária conservadas. Além disso, os valores cinéticos e de atividade enzimática apresentados pela L-ASNase recombinante da presente invenção aumentaram a especificidade da enzima em comparação com a L- ASNase de E. coli parental. [0085] Thus, the inventors surprisingly obtained a modified E. coli enzyme, correctly folded, with conserved secondary and quaternary structures. In addition, the kinetic and enzymatic activity values shown by the recombinant L-ASNase of the present invention increased the specificity of the enzyme compared to the parental E. coli L-ASNase.
[0086] Esses dados indicam ainda que a L-ASNase da presente invenção tem meia vida na corrente sanguínea similar a L-ASNase de E. coli parental. [0086] These data further indicate that the L-ASNase of the present invention has a half-life in the bloodstream similar to the parental E. coli L-ASNase.
[0087] Tendo em vista que as propriedades desejadas para as L- [0087] Bearing in mind that the desired properties for L-
ASNases terapêuticas incluem uma alta atividade enzimática, baixa especificidade para glutamina e um tempo longo de meia vida na corrente sanguínea, a enzima da presente invenção se mostra uma excelente alternativa para as L-ASNase do estado da técnica que apresentam todos os problemas já discorridos aqui. Therapeutic ASNases include a high enzyme activity, low specificity for glutamine and a long half-life in the bloodstream, the enzyme of the present invention proves to be an excellent alternative to the state-of-the-art L-ASNase that present all the problems already discussed here .
[0088] Em uma concretização, o polipeptídeo da invenção é para uso na prevenção ou tratamento de neoplasias. Em uma concretização preferida, a neoplasia é leucemia, sendo particularmente selecionada de leucemia mieloide aguda ou leucemia linfoide aguda. [0089] Em um outro aspecto, a presente invenção provê polinucleotídeos que codificam os polipeptídeos aqui descritos. [0088] In one embodiment, the polypeptide of the invention is for use in preventing or treating neoplasms. In a preferred embodiment, the neoplasm is leukemia, being particularly selected from acute myeloid leukemia or acute lymphoid leukemia. [0089] In another aspect, the present invention provides polynucleotides that encode the polypeptides described herein.
[0090] Em uma concretização, os polinucleotídeos de acordo com a invenção compreendem a sequência de ácidos nucleicos da SEQ ID NO:4 e suas degenerações. [0090] In one embodiment, the polynucleotides according to the invention comprise the nucleic acid sequence of SEQ ID NO: 4 and its degenerations.
[0091] Um técnico no assunto reconheceria que as degenerações são integralmente suportadas com base nas informações fornecidas no pedido e no conhecimento comum do estado da técnica. Por exemplo, a degeneração do código genético (isto é, diferentes códons podendo codificar os mesmos aminoácidos) é um conhecimento comum na técnica e a identidade do aminoácido codificado por cada códon é bem estabelecida. [0091] A person skilled in the art would recognize that degenerations are fully supported based on the information provided in the application and common knowledge of the state of the art. For example, the degeneration of the genetic code (that is, different codons being able to encode the same amino acids) is common knowledge in the art and the identity of the amino acid encoded by each codon is well established.
[0092] Com base nas informações bem conhecidas e estabelecidas no estado da técnica, o técnico no assunto é capaz de identificar as substituições de nucleotídeos que não alteram a sequência de aminoácidos resultante. Por exemplo, se uma sequência de nucleotídeos contiver o códon CTA que codifica para uma leucina, um técnico no assunto entenderia que substituir o“A” por qualquer outro nucleotídeo (ou seja, T, C ou G) ainda resultaria em um códon que codifica para leucina. Assim, quando em posse tanto da sequência de nucleotídeos de um gene quanto da sequência de aminoácidos da proteína codificada, o técnico no assunto identificará facilmente as degenerações que codificam a mesma proteína, com a mesma sequência de aminoácidos. [0092] Based on information well known and established in the state of the art, the person skilled in the art is able to identify nucleotide substitutions that do not alter the resulting amino acid sequence. For example, if a nucleotide sequence contains the CTA codon that encodes a leucine, a person skilled in the art would understand that replacing “A” with any other nucleotide (i.e., T, C or G) would still result in a codon that encodes for leucine. Thus, when in possession of both the nucleotide sequence of a gene and the amino acid sequence of the encoded protein, the person skilled in the art will easily identify the degenerations that encode the same protein, with the same amino acid sequence.
[0093] O uso dos códons preferidos pode ser adaptado de acordo com a célula hospedeira na qual o ácido nucleico deve ser transcrito. Estas etapas podem ser realizadas de acordo com métodos bem conhecidos do versado na técnica e dos quais alguns são descritos no manual de referência Sambrook et al, 2001. [0093] The use of the preferred codons can be adapted according to the host cell in which the nucleic acid is to be transcribed. These steps can be performed according to methods well known to those skilled in the art and some of which are described in the reference manual Sambrook et al, 2001.
[0094] Neste sentido, diferentes espécies podem exibir um “códon usage” preferencial. Vide Grantham et al., 1980, Haas et al., 1996, Wain-Hobson et al., 1981, Grosjean and Fiers, 1982, Holm, 1986, Ikemura, 1982, Sharp and Matassi, 1994, Kane, 1995 e Makrides 1996. Como usado aqui, o termo“códon usage preferencial”, ou “códons preferenciais” é um termo usado na arte referindo-se a códons que são mais frequentemente utilizados em células de certas espécies. Por exemplo, o aminoácido treonina (Thr) pode ser codificado por ACA, ACC, ACG, ou ACT, mas em células de mamífero, o ACC é o códon mais comumente utilizado. Em outras espécies, por exemplo, diferentes códons Thr podem ser preferenciais. Códons preferenciais para uma espécie em particular podem ser introduzidos nos polinucleotídeos da presente invenção por uma variedade de métodos conhecidos na arte. A introdução de sequências de códons preferenciais em um DNA recombinante pode, por exemplo, aumentar a produção do polipeptídeo ao tomar a tradução mais eficiente em um determinado tipo de célula. Assim, as sequências de polinucleotídeo da invenção podem ser otimizadas para diferentes espécies. [0094] In this sense, different species may exhibit a preferential “codon usage”. See Grantham et al., 1980, Haas et al., 1996, Wain-Hobson et al., 1981, Grosjean and Fiers, 1982, Holm, 1986, Ikemura, 1982, Sharp and Matassi, 1994, Kane, 1995 and Makrides 1996. As used here, the term "preferred codon usage", or "preferred codons" is a term used in the art referring to codons that are most often used in cells of certain species. For example, the amino acid threonine (Thr) can be encoded by ACA, ACC, ACG, or ACT, but in mammalian cells, ACC is the most commonly used codon. In other species, for example, different Thr codons may be preferred. Preferred codons for a particular species can be introduced into the polynucleotides of the present invention by a variety of methods known in the art. The introduction of preferred codon sequences in recombinant DNA can, for example, increase the production of the polypeptide by making translation more efficient in a given cell type. Thus, the polynucleotide sequences of the invention can be optimized for different species.
[0095] Os polinucleotídeos desta invenção são obtidos por métodos já conhecidos no estado da técnica. Por exemplo, sequências adicionais podem ser identificadas e funcionalmente anotadas por comparação de sequências. Portanto, um técnico no assunto pode prontamente identificar uma sequência funcionalmente equivalente aos polinucleotídeos da presente invenção em um banco de dados adequado como, por exemplo, GenBank, usando programas de análise de sequências e parâmetros publicamente disponíveis. [0095] The polynucleotides of this invention are obtained by methods already known in the art. For example, additional strings can be identified and functionally annotated by comparing strings. Therefore, a person skilled in the art can readily identify a sequence functionally equivalent to the polynucleotides of the present invention in a suitable database, for example, GenBank, using publicly available sequence analysis programs and parameters.
[0096] Em outro exemplo, polinucleotídeos da invenção podem ser obtidos através de uma reação de transcrição-reversa seguida por uma amplificação por PCR. Tanto iniciadores oligo-dT como randômicos podem ser empregados na reação de transcrição reversa para preparar cDNAs de fita simples, a partir do RNA isolado da serpente L. muta, que contêm as sequências de interesse. O RNA pode ser isolado por métodos conhecidos como o uso do reagente Trizol (GIBCO-BRL/Life Technologies, Gaithersburg, Maryland). [0096] In another example, polynucleotides of the invention can be obtained through a reverse transcription reaction followed by PCR amplification. Both oligo-dT and random primers can be used in the reverse transcription reaction to prepare single-stranded cDNAs, from the isolated RNA of the snake L. muta, which contain the sequences of interest. The RNA can be isolated by methods known as the use of the Trizol reagent (GIBCO-BRL / Life Technologies, Gaithersburg, Maryland).
[0097] Gobinda et al. (PCR Methods Applic. 2:318-22, 1993), descreve[0097] Gobinda et al. (PCR Methods Applic. 2: 318-22, 1993), describes
“PCR de sítio de restrição (“restriction-site PCR”) como um método direto que utiliza iniciadores universais para obter sequências desconhecidas adjacentes a um locus conhecido. Primeiramente, o DNA genômico é amplificado na presença de um adaptador- iniciador, que é homólogo a uma sequência adaptadora ligada às extremidades dos fragmentos de DNA genômico, e na presença de um iniciador específico para uma região conhecida. As sequências amplificadas são submetidas a uma segunda rodada de PCR com o mesmo adaptador -iniciador e outro iniciador específico, interno ao primeiro. Os produtos de cada rodada de PCR são transcritos com uma RNA polimerase adequada e sequenciada usando uma transcriptase reversa. “Restriction-site PCR” as a direct method that uses universal primers to obtain unknown sequences adjacent to a known locus. First, genomic DNA is amplified in the presence of an adapter-primer, which is homologous to an adapter sequence linked to the ends of the genomic DNA fragments, and in the presence of a specific primer for a known region. The amplified sequences are subjected to a second round of PCR with the same adapter-initiator and another specific primer, internal to the first. The products from each round of PCR are transcribed with a suitable RNA polymerase and sequenced using a reverse transcriptase.
[0098] Ainda de forma ilustrativa, o PCR inverso permite a obtenção de sequências desconhecidas começando com iniciadores baseados em uma região conhecida. O método utiliza várias enzimas de restrição para gerar um fragmento na região conhecida do gene. O fragmento é então circularizado por ligação intramolecular e usado como molde para PCR. Iniciadores divergentes são desenhados a partir da região conhecida. [0098] Still illustratively, the inverse PCR allows obtaining unknown sequences starting with primers based on a known region. The method uses several restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR. Divergent initiators are drawn from the known region.
[0099] Além disto, é conhecido que sequências com graus reduzidos de identidade também podem ser obtidos com o auxílio de iniciadores degenerados e metodologias baseadas em PCR. [0099] Furthermore, it is known that sequences with reduced degrees of identity can also be obtained with the aid of degenerate primers and PCR-based methodologies.
[00100] Tipicamente, a sequência de ácido nucleico de um iniciador útil para amplificar moléculas de ácido nucleico por PCR pode ser baseada nas sequências de aminoácidos dos polipeptídeos da invenção. Na presente invenção, os oligonucleotídeos iniciadores utilizados para as amplificações dos genes codificantes para L-asparaginase mutada de E. coli, e selvagem de E. coli e E. carotovora estão representados pelas SEQ ID NOs:7-12. [00100] Typically, the nucleic acid sequence of a primer useful for amplifying nucleic acid molecules by PCR can be based on the amino acid sequences of the polypeptides of the invention. In the present invention, the primers used for the amplification of the genes encoding E. coli mutated L-asparaginase, and E. coli and E. carotovora wild-type are represented by SEQ ID NOs: 7-12.
[00101] Em um outro aspecto, a presente invenção provê um cassete de expressão compreendendo um polinucleotídeo de acordo com a invenção operacionalmente ligado às sequências necessárias à sua expressão. Tipicamente, as regiões codificantes e reguladoras são heterólogas entre si. [00101] In another aspect, the present invention provides an expression cassette comprising a polynucleotide according to the invention operably linked to the sequences necessary for its expression. Typically, the coding and regulatory regions are heterologous to each other.
[00102] Em um outro aspecto da presente invenção, a presente invenção provê um vetor de expressão compreendendo um polinucleotídeo ou um cassete de expressão de acordo com a invenção. Este vetor de expressão pode ser utilizado para transformar uma célula hospedeira e permitir a expressão do ácido nucleico de acordo com a invenção na referida célula. [00102] In another aspect of the present invention, the present invention provides an expression vector comprising a polynucleotide or an expression cassette according to the invention. This expression vector can be used to transform a host cell and allow expression of the nucleic acid according to the invention in said cell.
[00103] Com vantagem, o vetor de expressão compreende elementos reguladores que permitem a expressão do ácido nucleico e elementos que permitem a sua seleção na célula hospedeira de acordo com a invenção. Os métodos para selecionar estes elementos em função da célula hospedeira na qual a expressão é desejada, são bem conhecidos do versado na técnica e amplamente descritos na literatura. [00103] Advantageously, the expression vector comprises regulatory elements that allow the expression of the nucleic acid and elements that allow its selection in the host cell according to the invention. The methods for selecting these elements depending on the host cell in which the expression is desired, are well known to the person skilled in the art and widely described in the literature.
[00104] Os vetores podem ser construídos por técnicas clássicas de biologia molecular, bem conhecidas do versado na técnica. Exemplos não limitantes de vetores de expressão adequados para expressão em células hospedeiras são plasmídeos e vetores virais ou bacterianos. [00104] Vectors can be constructed by classical molecular biology techniques, well known to those skilled in the art. Non-limiting examples of expression vectors suitable for expression in host cells are plasmids and viral or bacterial vectors.
[00105] Em um outro aspecto da presente invenção, a presente invenção provê um polinucleotídeo, cassete de expressão ou um vetor de expressão de acordo com a invenção para transformar ou transfectar uma célula. A célula hospedeira pode ser transformada/transfectada de maneira transitória ou estável e o ácido nucleico, o cassete ou o vetor pode estar contido na célula sob a forma de epissoma ou sob forma cromossômica. [00105] In another aspect of the present invention, the present invention provides a polynucleotide, expression cassette or an expression vector according to the invention for transforming or transfecting a cell. The host cell can be transformed / transfected in a transient or stable manner and the nucleic acid, cassette or vector can be contained in the cell in the form of an episome or in a chromosomal form.
[00106] O polinucleotídeo, cassete de expressão ou o vetor é inserido em células hospedeiras procarióticas ou eucarióticas competentes. Os clones recombinantes são selecionados e então, submetidos à análise por enzimas de restrição e sequenciamento de DNA, possibilitando a confirmação da sequência clonada, utilizando-se para isso métodos, kits e equipamentos amplamente conhecidos por um técnico no assunto. [00106] The polynucleotide, expression cassette or vector is inserted into competent prokaryotic or eukaryotic host cells. The recombinant clones are selected and then subjected to analysis by restriction enzymes and DNA sequencing, enabling the confirmation of the cloned sequence, using methods, kits and equipment widely known by a technician in the subject.
[00107] Assim, os polipeptídeos da invenção podem ser preparados usando tecnologia de DNA recombinante, em que um cassete ou vetor de expressão compreendendo uma sequência de polinucleotídeo da invenção, por exemplo, que codifica o polipeptídeo compreendendo ou consistindo da SEQ ID No:4 ou suas degenerações, é operacionalmente ligada a um promotor. As células hospedeiras são cultivadas em condições apropriadas e o polipeptídeo é expresso. A célula hospedeira pode ser uma célula de bactéria, fungo, planta ou animal. O polipeptídeo é recuperado a partir da cultura, em que a recuperação pode incluir uma etapa de purificação do polipeptídeo. O polipeptídeo recombinante obtido é analisado e tratado de modo a solubilizá-lo, quando pertinente. O polipeptídeo solubilizado é, então, purificado e caracterizado bioquimicamente, utilizando-se, por exemplo, métodos comuns ao campo da bioquímica, como HPLC, SDS-PAGE, Western Blotting, focalização isoelétrica com gradiente de pH, dicroísmo circular. Por meio desses métodos, é possível determinar características como, por exemplo, o rendimento da expressão do polipeptídeo recombinante; a determinação das características das estruturas secundárias, além de outras características cuja determinação é importante para o desenvolvimento de um fármaco biotecnológico. [00107] Thus, the polypeptides of the invention can be prepared using recombinant DNA technology, wherein a cassette or expression vector comprising a polynucleotide sequence of the invention, for example example, which encodes the polypeptide comprising or consisting of SEQ ID No: 4 or its degenerations, is operably linked to a promoter. Host cells are grown under appropriate conditions and the polypeptide is expressed. The host cell can be a bacterial, fungal, plant or animal cell. The polypeptide is recovered from the culture, where the recovery may include a polypeptide purification step. The obtained recombinant polypeptide is analyzed and treated in order to solubilize it, when pertinent. The solubilized polypeptide is then purified and characterized biochemically, using, for example, methods common to the field of biochemistry, such as HPLC, SDS-PAGE, Western Blotting, isoelectric focusing with pH gradient, circular dichroism. Through these methods, it is possible to determine characteristics such as, for example, the expression yield of the recombinant polypeptide; the determination of the characteristics of secondary structures, in addition to other characteristics whose determination is important for the development of a biotechnological drug.
[00108] Os polipeptídeos podem ser expressos “fusionados” à uma etiqueta. O termo“etiqueta” ou o termo em inglês“tog” refere-se a sequências codificadoras incorporadas próximas ao sítio múltiplo de clonagem de um vetor de expressão, possibilitando a sua tradução concomitante e adjacente à sequência do polipeptídeo recombinante clonada. Assim, a etiqueta é expressa fusionada ao polipeptídeo recombinante. Tais etiquetas são bem conhecidas no estado da técnica e incluem compostos e peptídeos como poli-histidina, poli-arginina, FLAG, glutationa-S-transferase, proteína ligante a maltose (MBP), domínio ligante a celulose (CBD), Beta-Gal, OMNI, tioredoxina, NusA, mistina, domínio ligante a quitina, cutinase, compostos fluorescentes (como GFP, YFP, FITC, rodamina, lantanídeos), enzimas (como peroxidase, luciferase, fosfatase alcalina), compostos quimioluminescentes, grupos biotinila, epítopos reconhecidos por anticorpos como zíper de leucina, c-myc, domínios ligantes a metais e sítios de ligação para anticorpos secundários. [00109] Os polipeptídeos também podem ser obtidos sinteticamente usando métodos conhecidos na arte. Síntese direta dos polipeptídeos da invenção pode ser realizada usando síntese em fase sólida, síntese em solução ou outros meios convencionais, utilizando geralmente grupos de proteção do a- aminogrupo, da a-carboxila e/ou dos grupos funcionais das cadeias laterais dos aminoácidos. Por exemplo, na síntese em fase sólida, um resíduo de aminoácido adequadamente protegido é ligado através do seu grupo carboxila a um suporte polimérico insolúvel, tais como uma resina reticulada de poliestireno ou poliamida. Métodos de síntese em fase sólida incluem tanto métodos BOC e FMOC, que utilizam tert-butiloxicarbonil, e 9-fluorenilmetiloxicarbonila como grupos protetores a-amino, respectivamente, ambos bem conhecidos pelos técnicos no assunto (Sambrook et al., 1995). [00108] Polypeptides can be expressed "fused" to a tag. The term "tag" or the English term "tog" refers to coding sequences incorporated near the multiple cloning site of an expression vector, enabling its translation concurrently and adjacent to the sequence of the cloned recombinant polypeptide. Thus, the tag is expressed fused to the recombinant polypeptide. Such tags are well known in the art and include compounds and peptides such as polyhistidine, polyarginine, FLAG, glutathione-S-transferase, maltose-binding protein (MBP), cellulose-binding domain (CBD), Beta-Gal , OMNI, thioredoxin, NusA, mistin, chitin-binding domain, cutinase, fluorescent compounds (such as GFP, YFP, FITC, rhodamine, lanthanides), enzymes (such as peroxidase, luciferase, alkaline phosphatase), chemiluminescent compounds, biotinyl groups, recognized epitopes by antibodies such as leucine zipper, c-myc, metal-binding domains and binding sites for secondary antibodies. [00109] Polypeptides can also be obtained synthetically using methods known in the art. Direct synthesis of the polypeptides of the invention can be carried out using solid phase synthesis, solution synthesis or other conventional means, generally using a-aminogroup, a-carboxyl and / or functional groups of amino acid side chains. For example, in solid phase synthesis, a suitably protected amino acid residue is attached through its carboxyl group to an insoluble polymeric support, such as a cross-linked polystyrene or polyamide resin. Solid-phase synthesis methods include both BOC and FMOC methods, which use tert-butyloxycarbonyl, and 9-fluorenylmethyloxycarbonyl as α-amino protecting groups, respectively, both well known to those skilled in the art (Sambrook et al., 1995).
[00110] Os seguintes grupos protetores podem ser exemplos utilizados para a síntese dos polipeptídeos da invenção: 9-fluorenilmetiloxicarboil (Fmoc), tert-butiloxicarbonil (Boc), carbobenziloxi (Cbz), 2-cloro-3- indenilmetoxicarbonil (Climoc), benz(f)indeno-3-il-metóxicarbonil (Bimoc), l, l-dioxobenzo[b]tiofeno-2-il-metoxicarbonil (Bsmoc), 2,2,2- tricloroetóxicarbonil (Troe), 2-(trimetilsilil)etoxicarbonil (Teoc), homobenziloxicarbonil (hZ), l, l-dimetil-2,2,2-tricloroetóxicarbonil (TCBoc), 1-metil-l (4-bifenil)etoxicarbonil (Bpoc), l-(3,5-di-t-butilfenil)-l- metiletoxicarbonil (t-Bumeoc), 2-(2’- or 4’-piridil)etoxicarbonil (Pyoc), viniloxicarbonil (Voc),l-isopropilaliloxicarbonil (Ipaoc), 3-(piridil)alil- oxicarbonil (Paloc), p-metoxibenziloxicarbonil (Moz), p-nitrocarbamato (PNZ), 4-azidobenzyloxycarbonyl (AZBZ), Benzil (Bn) MeO, BnO, Metoximetil (Mom), metiltiometil (MTM), fenildimetilsililmetoximetil (SMOM), t- butildimetilsilil (TBDMS), benziloximetil (BOM), p-metoxibenziloximetil (PMBM), nitrobenziloximetil (NBOM), p-anisiloxymetil (p-AOM), pBuOCH20-, 4-penteniloximetil (POM), 2-metoxietóximetil (MEM), 2- (trimetilsilil)etoximetil (SEM), mentoximetil (MM), tetrahidropiranil (THP), - OCOCOph, Acetil, C1CH2C02-, -C02CH2CC13, 2-(Trimetilsilil)etil (TMSE), 2(p-toluenosulfonil)etil (Tse). (Greene T.W. Wuts P.G.M., 1999). [00110] The following protecting groups can be examples used for the synthesis of the polypeptides of the invention: 9-fluorenylmethyloxycarboyl (Fmoc), tert-butyloxycarbonyl (Boc), carbobenzyloxy (Cbz), 2-chloro-3-indenylmethoxycarbonyl (Climoc), benz (f) indene-3-yl-methoxycarbonyl (Bimoc), 1,1-dioxobenzo [b] thiophene-2-yl-methoxycarbonyl (Bsmoc), 2,2,2-trichloroethoxycarbonyl (Troe), 2- (trimethylsilyl) ethoxycarbonyl (Teoc), homobenzyloxycarbonyl (hZ), 1,1-dimethyl-2,2,2-trichloroetoxycarbonyl (TCBoc), 1-methyl-1 (4-biphenyl) ethoxycarbonyl (Bpoc), l- (3,5-di- t-butylphenyl) -1-methylethoxycarbonyl (t-Bumeoc), 2- (2'- or 4'-pyridyl) ethoxycarbonyl (Pyoc), vinyloxycarbonyl (Voc), l-isopropylalyloxycarbonyl (Ipaoc), 3- (pyridyl) allyl- oxycarbonyl (Paloc), p-methoxybenzyloxycarbonyl (Moz), p-nitrocarbamate (PNZ), 4-azidobenzyloxycarbonyl (AZBZ), Benzyl (Bn) MeO, BnO, Methoxymethyl (Mom), methylthiomethyl (MTM), phenyldimethylsilmethoxy - butyldimethylsilyl (TBDMS), benzyloxymethyl (BOM), p-methoxybenzyloxymethyl (PMBM), nitrobenzyloxymethyl (NBOM), p-anisiloxymethyl (p-AOM), pBuOCH20-, 4-pentenyloxymethyl (POM), 2-methoxymethoxymethyl (MEM), 2- (trimethylsilyl) ethoxymethyl (SEM), menthoxymethyl (MM), tetrahydropyranyl (THP), - OCOCOph, Acetyl, C1CH2C02-, -C02CH2CC13, 2- (Trimethylsilyl) ethyl (TMSE), 2 (p-toluenesulfonyl) ethyl (Tse). (Greene TW Wuts PGM, 1999).
[00111] Após a reação química, os polipeptídeos podem ser separados e purificados por um método de purificação conhecido. Um exemplo de tais métodos de purificação pode incluir uma combinação de extração por solvente, destilação, cromatografia por coluna, cromatografia líquida, recristalização e similares. [00111] After the chemical reaction, the polypeptides can be separated and purified by a known purification method. An example of such purification methods may include a combination of solvent extraction, distillation, column chromatography, liquid chromatography, recrystallization and the like.
[00112] Em uma concretização, a purificação do polipeptídeo da presente invenção possui três etapas: afinidade, troca iônica e gel filtração, sendo essa última a responsável por separar do extrato total aquelas formas da enzima que não estão na forma ativa tetramérica. [00112] In one embodiment, the purification of the polypeptide of the present invention has three stages: affinity, ion exchange and filtration gel, the latter being responsible for separating from the total extract those forms of the enzyme that are not in the active tetrameric form.
[00113] Em um outro aspecto, é aqui fornecida uma composição farmacêutica que compreende um polipeptídeo com atividade asparaginase de acordo a invenção e pelo menos um carreador ou um excipiente farmaceuticamente aceitáveis. [00113] In another aspect, a pharmaceutical composition is provided herein comprising a polypeptide with asparaginase activity according to the invention and at least one pharmaceutically acceptable carrier or excipient.
[00114] Os carreadores ou excipientes farmaceuticamente aceitáveis são selecionados em função da apresentação final da composição da presente invenção que pode ser na forma de cápsulas, comprimidos ou solução para a administração injetável para administração intramuscular ou intravenosa. [00114] Pharmaceutically acceptable carriers or excipients are selected depending on the final presentation of the composition of the present invention which can be in the form of capsules, tablets or solution for injection for intramuscular or intravenous administration.
[00115] Excipientes, carreadores ou estabilizadores farmaceuticamente aceitáveis não apresentam toxicidade ao organismo receptor nas dosagens e concentrações empregadas e incluem tampões como fosfato, citrato e outros ácidos orgânicos; antioxidantes como ácido ascórbico e metionina; conservantes como cloreto de octadecildimetilbenzil amónio, cloreto de hexametônio, cloreto de benzalcônio, cloreto de benzetônio, fenol, álcool butílico, álcool benzílico, alquil parabenos como metil- e propilparabeno, catecol, resorcinol, ciclohexanol, 3-pentanol e m-cresol; proteínas como albumina, gelatina ou imunoglobulinas; aminoácidos, monossacarídeos, dissacarídeos e outros carboidratos como glicose, manose, sucrose, manitol ou sorbitol; excipientes poliméricos como polivinilpirrolidonas, Ficoll®, dextrinas e polietileno glicóis; agentes de sabor; adoçantes; agentes anti-estáticos; agentes quelantes como EDTA ou EGTA; sais liberadores de íons como sódio; complexos metálicos; surfactantes não-iônicos como polissorbatos 20 e 80; lipídeos como fosfolipídeos, ácidos graxos e esteroides como colesterol. Métodos para preparação de várias composições farmacêuticas são bem conhecidos, ou serão aparentes à luz da presente invenção, pelo especialista da arte em tecnologia farmacêutica. [00115] Pharmaceutically acceptable excipients, carriers or stabilizers do not present toxicity to the recipient organism at the dosages and concentrations used and include buffers such as phosphate, citrate and other organic acids; antioxidants such as ascorbic acid and methionine; preservatives such as octadecyldimethylbenzyl ammonium chloride, hexamethonium chloride, benzalkonium chloride, benzethonium chloride, phenol, butyl alcohol, benzyl alcohol, alkyl parabens such as methyl- and propylparaben, catechol, resorcinol, cyclohexanol, 3-pentanol and m-cresol; proteins such as albumin, gelatin or immunoglobulins; amino acids, monosaccharides, disaccharides and other carbohydrates such as glucose, mannose, sucrose, mannitol or sorbitol; polymeric excipients like polyvinylpyrrolidones, Ficoll®, dextrins and polyethylene glycols; flavoring agents; sweeteners; anti-static agents; chelating agents such as EDTA or EGTA; ion-releasing salts such as sodium; metal complexes; nonionic surfactants such as polysorbates 20 and 80; lipids like phospholipids, fatty acids and steroids like cholesterol. Methods for preparing various pharmaceutical compositions are well known, or will be apparent in light of the present invention, by the skilled artisan in pharmaceutical technology.
[00116] Além disto, as composições podem compreender aditivos com o objetivo de aumentar a facilidade de administração, a capacidade de serem estocadas, a resistência à degradação, a biodisponibilidade, a meia vida, prover preparações isotônicas, etc. Aditivos usais para a preparação de composições farmacêuticas são bem conhecidas na arte. [00116] In addition, the compositions may comprise additives in order to increase the ease of administration, the capacity to be stored, resistance to degradation, bioavailability, half-life, providing isotonic preparations, etc. Usual additives for the preparation of pharmaceutical compositions are well known in the art.
[00117] A composição de acordo com a presente invenção pode compreender pelo menos um agente quimioterápico adicional selecionado dentre agentes alquilantes, antimetabólitos, inibidores da quinase, alcaloides de planta de veneno antifuso, antibióticos citóxicos/antitumorais, inibidores de topoisomerase, fotossensibilizadores, antiestrogênios e moduladores de receptor de estrogênio seletivos (SERMs), antiprogesteronas, reguladores descendentes de receptor de estrogênio (ERDs), antagonistas de receptor de estrogênio, agonistas de hormônio de liberação de hormônio luteinizante, antiandrógenos, inibidores de aromatase, inibidores de EGFR, inibidores de VEGF, oligonucleotídeos antissenso que inibem a expressão de genes implicados na proliferação celular anormal ou crescimento do tumor. Os agentes quimioterápicos úteis nos métodos de tratamento da presente invenção incluem agentes citostáticos e/ou citotóxicos. [00117] The composition according to the present invention can comprise at least one additional chemotherapeutic agent selected from alkylating agents, antimetabolites, kinase inhibitors, antifuse poison plant alkaloids, cytotoxic / antitumor antibiotics, topoisomerase inhibitors, photosensitizers, antiestrogens and selective estrogen receptor modulators (SERMs), antiprogesterones, downstream estrogen receptor regulators (ERDs), estrogen receptor antagonists, luteinizing hormone-releasing hormone agonists, antiandrogens, aromatase inhibitors, EGFR inhibitors, VEGF inhibitors , antisense oligonucleotides that inhibit the expression of genes involved in abnormal cell proliferation or tumor growth. Chemotherapeutic agents useful in the treatment methods of the present invention include cytostatic and / or cytotoxic agents.
[00118] As composições farmacêuticas da presente invenção devem compreender uma quantidade terapeuticamente efetiva do polipeptídeo. Para qualquer composto, a dose terapeuticamente efetiva pode ser estimada inicialmente, quer em ensaios de cultura de células, por exemplo, de células neoplásicas, quer em modelos animais, usualmente camundongos, coelhos, cães ou porcos. O modelo animal também pode ser usado para se determinar a faixa de concentração apropriada e a via de administração. Informação desse tipo pode então ser usada para se determinar doses úteis e vias para administração em humanos. [00118] The pharmaceutical compositions of the present invention must comprise a therapeutically effective amount of the polypeptide. For any compound, the therapeutically effective dose can be estimated initially, either in cell culture assays, for example, cells neoplastic, either in animal models, usually mice, rabbits, dogs or pigs. The animal model can also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
[00119] A composição farmacêutica de acordo com a presente invenção compreende de 0,1 % a 99% p/p, preferivelmente 1% a 60% p/p, particularmente 10% a 50% p/p dos polipeptídeos da presente invenção. Em uma concretização particular, a composição farmacêutica de acordo com a presente invenção compreende 10000UI dos polipeptídeos da presente invenção. [00119] The pharmaceutical composition according to the present invention comprises from 0.1% to 99% w / w, preferably 1% to 60% w / w, particularly 10% to 50% w / w of the polypeptides of the present invention. In a particular embodiment, the pharmaceutical composition according to the present invention comprises 10,000 IU of the polypeptides of the present invention.
[00120] Conforme a presente invenção, a administração das ditas composições farmacêuticas pode ser realizada pelas vias de administração intravenosa e intramuscular. Em uma concretização preferida, a composição da presente invenção é para administração intravenosa. [00120] According to the present invention, the administration of said pharmaceutical compositions can be carried out by intravenous and intramuscular administration routes. In a preferred embodiment, the composition of the present invention is for intravenous administration.
[00121] Em um outro aspecto, a presente invenção provê o uso dos polipeptídeos da invenção na manufatura de um medicamento para prevenção ou tratamento de neoplasias. Em uma concretização preferida, a neoplasia é uma leucemia. Particularmente, a leucemia é leucemia mieloide aguda ou leucemia linfoide aguda. [00121] In another aspect, the present invention provides for the use of the polypeptides of the invention in the manufacture of a medicament for the prevention or treatment of neoplasms. In a preferred embodiment, the neoplasm is leukemia. In particular, leukemia is acute myeloid leukemia or acute lymphoid leukemia.
[00122] A presente invenção refere-se ainda a um método para produzir polipeptídeo de acordo com a invenção com atividade asparaginase compreendendo a inserção de um polinucleotídeo, um cassete ou um vetor de expressão de acordo com a invenção em um sistema de expressão in vivo e a coleta do polipeptídeo produzido pelo referido sistema. Numerosos sistemas de expressão in vivo, compreendendo o uso de células hospedeiras adequadas, estão disponíveis no comércio e a utilização destes sistemas é bem conhecida do versado na técnica. [00122] The present invention further relates to a method for producing polypeptide according to the invention with asparaginase activity comprising inserting a polynucleotide, cassette or expression vector according to the invention into an in vivo expression system and the collection of the polypeptide produced by said system. Numerous in vivo expression systems, including the use of suitable host cells, are commercially available and the use of these systems is well known to those skilled in the art.
[00123] Sistemas de expressão particularmente adequados incluem microrganismos, como bactérias transformadas com vetores de expressão de DNA recombinante de bacteriófago, plasmídeo ou cosmídeo; levedura transformada com vetores de expressão de levedura; sistemas de células de insetos infectadas com vetores de expressão de vírus (por exemplo, baculovírus); sistemas de células de plantas transformados com vetores de expressão de vírus (por exemplo, vírus do mosaico da couve-flor, CaMV [ cauliflower mosaic virus ]; vírus do mosaico do tabaco, TMV [ tobacco mosaic virus ]) ou com vetores de expressão bacterianos (por exemplo, plasmídeos Ti ou pBR322); ou sistemas de células animais. Também é possível empregar sistemas de tradução isentos de células para produzir os polipeptídeos da invenção. [00123] Particularly suitable expression systems include microorganisms, such as bacteria transformed with expression vectors of Recombinant bacteriophage, plasmid or cosmid DNA; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (eg, baculovirus); plant cell systems transformed with virus expression vectors (eg, cauliflower mosaic virus, CaMV [cauliflower mosaic virus]; tobacco mosaic virus, TMV [tobacco mosaic virus]) or with bacterial expression vectors (for example, Ti or pBR322 plasmids); or animal cell systems. It is also possible to employ cell-free translation systems to produce the polypeptides of the invention.
[00124] A introdução de polinucleotídeos que codificam um polipeptídeo da presente invenção em células hospedeiras pode ser realizada por meio de métodos descritos em muitos manuais de laboratório padrão, como Davis et al., 1986) e Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY (1989). [00124] The introduction of polynucleotides that encode a polypeptide of the present invention into host cells can be performed using methods described in many standard laboratory manuals, such as Davis et al., 1986) and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY (1989).
[00125] A célula hospedeira transformada ou transfectada descrita acima é depois cultivada em um meio nutriente adequado sob condições conducentes que permitam a expressão dos polipeptídeos imunossupressores da invenção. O meio usado para cultivar as células pode ser qualquer meio convencional adequado para desenvolver as células hospedeiras, tal como meio mínimo ou complexo contendo suplementos apropriados. Os meios adequados estão disponíveis a partir de fornecedores comerciais ou podem ser preparados de acordo com receitas publicadas (por exemplo, nos catálogos da American Type Culture Collection). Os polipeptídeos da invenção produzidos pelas células podem ser depois recuperados da célula ou do meio de cultura por procedimentos convencionais incluindo separar as células hospedeiras do meio pela centrifugação ou filtração, precipitando os componentes aquosos de proteína do sobrenadante ou filtrado por meio de um sal, por exemplo, sulfato de amónio, purificação por uma variedade de procedimentos cromatográficos, por exemplo cromatografia por troca iônica, cromatografia por exclusão, cromatografia de interação hidrofóbica, cromatografia por filtração em gel, cromatografia por afinidade ou similares, dependente do tipo de polipeptídeo em questão. The transformed or transfected host cell described above is then cultured in a suitable nutrient medium under conditions conducive to the expression of the immunosuppressive polypeptides of the invention. The medium used to grow the cells can be any conventional medium suitable for developing the host cells, such as minimal or complex medium containing appropriate supplements. Suitable media are available from commercial suppliers or can be prepared according to published recipes (for example, in the catalogs of the American Type Culture Collection). The polypeptides of the invention produced by the cells can then be recovered from the cell or the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, precipitating the aqueous protein components from the supernatant or filtered through a salt, for example. example, ammonium sulfate, purification by a variety of chromatographic procedures, for example ion exchange chromatography, exclusion chromatography, chromatography hydrophobic interaction, gel filtration chromatography, affinity chromatography or similar, depending on the type of polypeptide in question.
[00126] De acordo com um outro aspecto da invenção é fornecido um método para produzir um polipeptídeo com atividade asparaginase de acordo com a invenção compreendendo: [00126] In accordance with another aspect of the invention there is provided a method for producing a polypeptide with asparaginase activity according to the invention comprising:
(a) fornecer uma célula hospedeira compreendendo um cassete de expressão ou vetor de expressão compreendendo um polinucleotídeo que codifica um polipeptídeo com atividade asparaginase de acordo com a presente invenção; (a) providing a host cell comprising an expression cassette or expression vector comprising a polynucleotide that encodes a polypeptide with asparaginase activity according to the present invention;
(b) cultivar a célula hospedeira transformada ou transfectada para obter uma cultura de células; (b) culturing the transformed or transfected host cell to obtain a cell culture;
(c) expressar o polinucletídeo da presente invenção em uma célula hospedeira transformada ou transfectada para produzir um polipeptídeo; e (c) expressing the polynucleotide of the present invention in a host cell transformed or transfected to produce a polypeptide; and
(e) isolar o polipeptídeo da presente invenção da célula ou da cultura de célula. (e) isolating the polypeptide of the present invention from the cell or cell culture.
[00127] Em um aspecto particular da invenção, a célula hospedeira é um microrganismo procariótico ou uma célula ou microrganismo eucariótico. Em um aspecto adicional da invenção, dito polipeptídeo é fornecido com uma“tog”. [00127] In a particular aspect of the invention, the host cell is a prokaryotic microorganism or a eukaryotic cell or microorganism. In a further aspect of the invention, said polypeptide is provided with a "tog".
[00128] Em um aspecto particular da invenção, a célula hospedeira é uma bactéria. Em um aspecto particular da invenção, a bactéria é do gênero Escherichia. Em um aspecto particular da invenção, a célula hospedeira é E. coli. [00128] In a particular aspect of the invention, the host cell is a bacterium. In a particular aspect of the invention, the bacterium is of the genus Escherichia. In a particular aspect of the invention, the host cell is E. coli.
[00129] Em um outro aspecto da invenção, é fornecido um método de prevenção ou tratamento de neoplasias, caracterizado por compreender a administração a um indivíduo em necessidade da dita prevenção ou tratamento, de uma quantidade terapeuticamente efetiva de um polipeptídeo de acordo com a invenção. [00129] In another aspect of the invention, a method of preventing or treating neoplasms is provided, characterized in that it comprises administering to a subject in need of said prevention or treatment, a therapeutically effective amount of a polypeptide according to the invention .
[00130] A quantidade efetiva precisa para um indivíduo humano dependerá da gravidade do estado de doença, da saúde geral do indivíduo, da idade, do peso, e do sexo do sujeito, da dieta, do tempo e da frequência de administração, da combinação/combinações de drogas, das sensibilidades de reação, e da tolerância/resposta à terapia. Assim, doses a serem fornecidas dependem de um número de fatores que não podem ser mensuradas antes que os estudos de testes clínicos sejam feitos. O técnico no assunto, no entanto, sabe como chegar a doses adequadas para diferentes tratamentos. [00130] The effective amount needed for a human individual will depend on the severity of the disease state, the general health of the individual, the age, weight, and sex of the subject, diet, time and frequency of administration, drug combination / combinations, reaction sensitivities, and tolerance / response to therapy. Thus, doses to be delivered depend on a number of factors that cannot be measured before clinical trial studies are done. The technician in the subject, however, knows how to reach adequate doses for different treatments.
[00131] Os exemplos citados a seguir são meramente ilustrativos, devendo ser empregados somente para uma melhor compreensão dos desenvolvimentos constantes na presente invenção, não devendo, contudo, serem utilizados com o intuito de limitar os objetos descritos. [00131] The examples cited below are merely illustrative, and should be used only for a better understanding of the developments contained in the present invention, however, they should not be used in order to limit the objects described.
EXEMPLOS EXAMPLES
EXEMPLO 1: Clonagem das L-ASNases selvagem e com modificações EXAMPLE 1: Cloning of wild and modified L-ASNases
[00132] As construções das enzimas derivadas de E. coli foram amplificadas por reação em cadeia da polimerase (PCR), utilizando-se de DNA genômico de E. coli cepa C43 (região de amplificação: 430-1044pb - fragmento 3) e DNA sintético com as modificações inseridas produzido pela empresa IDT (região de amplificação: 66-429pb - fragmento 2). Os produtos das amplificações foram clonados em vetor pGEM T-easy (Promega) e analisados por sequenciamento. [00132] The enzyme constructs derived from E. coli were amplified by polymerase chain reaction (PCR), using E. coli strain C43 genomic DNA (amplification region: 430-1044pb - fragment 3) and DNA synthetic with the modifications inserted produced by the company IDT (amplification region: 66-429pb - fragment 2). The amplification products were cloned into pGEM T-easy vector (Promega) and analyzed by sequencing.
[00133] O resultado do sequenciamento foi comparado à sequência depositada no banco de dados utilizada como sequência molde. Na sequência nucleotídica de E. coli utilizada na presente invenção há uma substituição (C321T). Esta é uma mutação silenciosa para a criação de um sítio de restrição Ncol que será utilizada para junção de Ec-A_fragl e Ec-A_frag2 ao vetor. [00133] The sequencing result was compared to the sequence deposited in the database used as a template sequence. In the E. coli nucleotide sequence used in the present invention there is a substitution (C321T). This is a silent mutation to create an Ncol restriction site that will be used to join Ec-A_fragl and Ec-A_frag2 to the vector.
[00134] Após a confirmação da sequência correta, foram subclonadas em vetores de expressão pET28a-TEV (CARNEIRO et al., 2006) para transformar bactérias E. coli de diferentes linhagens para os testes de expressão. [00134] After confirming the correct sequence, they were subcloned into expression vectors pET28a-TEV (CARNEIRO et al., 2006) to transform E. coli bacteria from different strains for expression tests.
[00135] Já as sequências codificadoras das construções derivadas de E. carotovora foram otimizadas para expressão em E. coli, utilizando o algoritmo OptimumGene, quanto a utilização de códons, remoção de sítios de restrição indesejados, adequação do conteúdo CG, remoção de ORFs ( Open Reading Frames, em inglês) secundárias e estruturas secundárias do mRNA que possam interferir com a eficiência da tradução. O processo de otimização consistiu na modificação de 80 nucleotídeos, as quais não alteraram a sequência de aminoácidos nativa. [00135] The coding sequences of the constructs derived from E. carotovora were optimized for expression in E. coli, using the algorithm OptimumGene , regarding the use of codons, removal of unwanted restriction sites, adequacy of CG content, removal of secondary ORFs (Open English Frames) and secondary mRNA structures that may interfere with the efficiency of translation. The optimization process consisted of modifying 80 nucleotides, which did not alter the native amino acid sequence.
[00136] As construções de E. carotovora foram sintetizadas e adquiridas comercialmente da empresa GenScript (Nova Jersey, Estados Unidos) no vetor pUC57. Na etapa de otimização, foram inseridos sítios de restrição para enzimas Nde I e Xhol nas extremidades dos genes de E. carotovora. O vetor ECAR- LANS-pUC57 foi sintetizado contendo a sequência do peptídeo sinal para secreção periplasmática, de forma que oligonucleotídeos iniciadores foram desenhados para amplificação de ECAR-LANS sem peptídeo sinal (Tabela 3) e subclonagem em pET28a-TEV. [00136] The E. carotovora constructions were synthesized and commercially acquired from the company GenScript (New Jersey, United States) in vector pUC57. In the optimization stage, restriction sites for Nde I and Xhol enzymes were inserted at the ends of the E. carotovora genes. The ECAR-LANS-pUC57 vector was synthesized containing the signal peptide sequence for periplasmic secretion, so that primer oligonucleotides were designed for amplification of ECAR-LANS without signal peptide (Table 3) and subcloning in pET28a-TEV.
[00137] A metodologia empregada para a obtenção dos clones seguiu a seguinte ordem: [00137] The methodology used to obtain the clones followed the following order:
Desenho dos oligonucleotídeos; Oligonucleotide design;
Amplificação dos genes por PCR; Gene amplification by PCR;
Eletroforese em gel de agarose; Agarose gel electrophoresis;
Extração de DNA do gel de agarose; DNA extraction from agarose gel;
Ligação dos genes de interesse em pGEM T-easy; Linking the genes of interest in pGEM T-easy;
Transformação em E. coli Dh5a; Transformation into E. coli Dh5a;
Seleção dos transformantes e sequenciamento; Selection of transformants and sequencing;
Extração de DNA plasmidial; Plasmid DNA extraction;
Digestão de DNA plasmidial; Plasmid DNA digestion;
Digestão e ligação em vetor pET28a_TEV ; Digestion and binding in vector pET28a_TEV;
Transformação em E. coli Dh5a; Transformation into E. coli Dh5a;
Seleção dos transformantes e sequenciamento; Selection of transformants and sequencing;
Extração de DNA plasmidial; e Transformação em cepa da expressão. Plasmid DNA extraction; and Transformation into expression strain.
1.1. Desenho dos oligonucleotídeos iniciadores 1.1. Design of primer oligonucleotides
[00138] Para a clonagem da construção de Ec-A, foram desenhados os oligonucleotídeos iniciadores (Tabela 1) com base na sequência gênica depositada no banco de dados (www.nbci.nlm.nih.gov). Sítio para enzima de restrição Ndel (BioLabs) foi adicionado na região 5' de cada oligonucleotídeo, permitindo a subclonagem em vetor pET28a-TEV. [00138] For the cloning of the Ec-A construct, primers were designed (Table 1) based on the gene sequence deposited in the database (www.nbci.nlm.nih.gov). Site for restriction enzyme Ndel (BioLabs) was added in the 5 'region of each oligonucleotide, allowing subcloning in vector pET28a-TEV.
[00139] O mesmo par de oligonucleotídeos iniciadores foi utilizado para amplificação do gene que codifica para ECAR-LANS com e sem modificações (Tabela 2), o que diferiu na reação de amplificação foi o DNA molde, que se tratava de ECAR-LANS_pUC57 sem modificações para amplificação do gene selvagem e ECAR-LANS_pUC57 com modificações para amplificação do gene com modificações. [00139] The same pair of primer oligonucleotides was used to amplify the gene encoding ECAR-LANS with and without modifications (Table 2), which differed in the amplification reaction was the template DNA, which was ECAR-LANS_pUC57 without modifications for amplification of the wild-type gene and ECAR-LANS_pUC57 with modifications for amplification of the gene with modifications.
Tabela 1: Oligonucleotídeos utilizados para clonagem de L-ASNases derivadas de E. coli. Os sítios para enzimas de restrição estão sublinhados. Table 1: Oligonucleotides used for cloning L-ASNases derived from E. coli. The restriction enzyme sites are underlined.
CONSTRUÇÃO OUIGONUCUEOTIDEOS SEQ ID NO: CONSTRUCTION OUIGONUCUEOTIDEOS SEQ ID NO:
F - 5 "-C AT ATGTT ACCC A AT ATC ACC ATTTT AGC A-3 ' SEQ ID NO:7 F - 5 "-C AT ATGTT ACCC A AT ATC ACC ATTTT AGC A-3 'SEQ ID NO: 7
Ec-A_fragl R - 5'-CATGCÇATGGGTAATCACAAACCATC-3' SEQ ID NO:8 Ec-A_fragl R - 5'-CATGCÇATGGGTAATCACAAACCATC-3 'SEQ ID NO: 8
F - 5 "-C AT ATGTT ACCC A AT ATC ACC ATTTT AGC A-3 ' SEQ ID NO:7 F - 5 "-C AT ATGTT ACCC A AT ATC ACC ATTTT AGC A-3 'SEQ ID NO: 7
Ec-A_frag2 R - 5'-CATGCÇATGGGTAATCACAAACCATC-3' SEQ ID NO:8 Ec-A_frag2 R - 5'-CATGCÇATGGGTAATCACAAACCATC-3 'SEQ ID NO: 8
F - 5 '-ÇATGÇCATGGCACCGACACGATGGAAGA-3' SEQ ID NO:9 F - 5 '-ÇATGÇCATGGCACCGACACGATGGAAGA-3' SEQ ID NO: 9
Ec-A_frag3 R - 5'-CTÇGAGTCAGTATTGATTGAAGATTTG-3' SEQ ID NO: 10Ec-A_frag3 R - 5'-CTÇGAGTCAGTATTGATTGAAGATTTG-3 'SEQ ID NO: 10
Tabela 2: Oligonucleotídeos utilizados para clonagem de L-ASNases derivadas de E. carotovora. Os sítios para enzimas de restrição estão sublinhados. Table 2: Oligonucleotides used for cloning L-ASNases derived from E. carotovora. The restriction enzyme sites are underlined.
CONSTRUÇÃO OUIGONUCUEOTIDEOS SEQ ID NO: CONSTRUCTION OUIGONUCUEOTIDEOS SEQ ID NO:
F - 5 '-ÇATATGAACCTGCCGAACATTGTGATT-3' SEQ ID NO: 11 F - 5 '-ÇATATGAACCTGCCGAACATTGTGATT-3' SEQ ID NO: 11
ECAR-UANS R - 5 '-ÇTGGAGTTAGTAAGCGTGGAAGTAGTCTTG-3' SEQ ID NQ: 12ECAR-UANS R - 5 '-ÇTGGAGTTAGTAAGCGTGGAAGTAGTCTTG-3' SEQ ID NO: 12
1.2. Amplificação gênica por PCR 1.2. Gene amplification by PCR
[00140] Para amplificação, utilizou-se a enzima Taq DNA Polimerase (Invitrogen). A concentração final dos iniciadores, específicos para cada sequência, foi de 5 pmol. A temperatura de anelamento foi de 55 °C para amplificar Ec-A_fragl e Ec-A_frag2, 58°C para ECAR-LANS e 64°C para Ec- A_frag3. A amplificação foi feita em 30 ciclos, com 30 segundos de extensão para Ec-A_fragl e Ec-A_frag2 e um minuto de extensão para Ec-A_frag3 e ECAR-LANS. [00140] For amplification, the enzyme Taq DNA Polymerase (Invitrogen) was used. The final concentration of the primers, specific for each sequence, was 5 pmol. The annealing temperature was 55 ° C to amplify Ec-A_fragl and Ec-A_frag2, 58 ° C for ECAR-LANS and 64 ° C for Ec- A_frag3. The amplification was performed in 30 cycles, with 30 seconds of extension for Ec-A_fragl and Ec-A_frag2 and one minute of extension for Ec-A_frag3 and ECAR-LANS.
1.3. Extração de DNA em gel de agarose 1.3. DNA extraction in agarose gel
[00141] Os produtos da amplificação foram submetidos à eletroforese em gel de agarose 1%. 1 kb Plus DNA Ladder (Invitrogen) foi utilizado como marcador de massa molecular e MassRuler Loading Dye Solution 6X (Fermentas) suplementado com de GelRed™ (Biotium) 1 :500 como tampão de amostra. A eletroforese foi realizada a 100 V por 35 minutos. [00141] The amplification products were submitted to electrophoresis on 1% agarose gel. 1 kb Plus DNA Ladder (Invitrogen) was used as a molecular weight marker and MassRuler Loading Dye Solution 6X (Fermentas) supplemented with GelRed ™ (Biotium) 1: 500 as sample buffer. Electrophoresis was performed at 100 V for 35 minutes.
[00142] Após a eletroforese em gel de agarose, as bandas referentes às sequências nucleotídicas desejadas foram extraídas e purificadas utilizando QIAquick Gel Extraction Kit Protocol (QIAGEN). [00142] After agarose gel electrophoresis, the bands referring to the desired nucleotide sequences were extracted and purified using QIAquick Gel Extraction Kit Protocol (QIAGEN).
1.4. Ligação em vetor de clonagem 1.4. Cloning vector link
[00143] A ligação do inserto em vetor pGEM T-easy (Promega) foi feita utilizando 25 ng da amostra purificada do gel, 50 ng de vetor e 3 U de enzima T4 DNA ligase (Promega). A reação foi mantida à 16°C por 18 horas e em seguida transformada em célula competente de Escherichia coli Dh5a, como descrito abaixo. [00143] The insertion of the pGEM T-easy vector insert (Promega) was done using 25 ng of purified gel sample, 50 ng of vector and 3 U of T4 DNA ligase enzyme (Promega). The reaction was maintained at 16 ° C for 18 hours and then transformed into a competent Escherichia coli Dh5a cell, as described below.
1.5. Preparo de bactérias e transformação por choque térmico 1.5. Preparation of bacteria and transformation by thermal shock
[00144] Uma colónia isolada de E. coli Dh5a foi inoculada em meio de cultura Luria-Bertani (LB) sob agitação de 200 rpm por aproximadamente 16 horas a 37°C. Após esse período, foi realizada uma diluição 1 : 100 em meio LB. A cultura foi incubada a 37°C até OD6oo de 0,6 - 0,8. Após 10 minutos à 4°C, as células foram coletadas por centrifugação a 4000 g por 10 minutos a 4°C. O pellet foi ressuspenso em 10 mL de solução 0, 1 M CaCL e 10% de glicerol. Após 15 minutos a 4°C, as células foram centrifugadas a 4000 g por 15 minutos a 4°C. Alíquotas em 1 mL de solução 0,1 M CaCL e 10% de glicerol foram conservadas a -80°C. [00144] An isolated colony of E. coli Dh5a was inoculated in Luria-Bertani (LB) culture medium under agitation of 200 rpm for approximately 16 hours at 37 ° C. After this period, a 1: 100 dilution was performed in LB medium. The culture was incubated at 37 ° C until OD 6 oo of 0.6 - 0.8. After 10 minutes at 4 ° C, cells were collected by centrifugation at 4000 g for 10 minutes at 4 ° C. The pellet was resuspended in 10 mL of 0.1 M CaCL solution and 10% glycerol. After 15 minutes at 4 ° C, the cells were centrifuged at 4000 g for 15 minutes at 4 ° C. Aliquots in 1 mL of 0.1 M CaCL solution and 10% glycerol were stored at -80 ° C.
[00145] A transformação foi realizada adicionando aproximadamente 100 ng do plasmídeo. Após 30 minutos de incubação a 4°C, o choque térmico foi realizado incubando as células por 2 minutos a 42°C, seguido de 2 minutos a 4°C. 1 mL de meio LB foi adicionado às células. Após 60 minutos, a 37°C e 200 rpm, as células foram centrifugadas por 2 minutos a 5000 g e o pellet ressuspenso em aproximadamente 70 pL de meio LB. Foram então plaqueados 2 em meio LB sólido contendo antibiótico apropriado. As placas foram incubadas por 16 horas em estufa a 37°C. [00145] The transformation was carried out by adding approximately 100 ng of the plasmid. After 30 minutes of incubation at 4 ° C, thermal shock was performed by incubating the cells for 2 minutes at 42 ° C, followed by 2 minutes at 4 ° C. 1 ml of LB medium was added to the cells. After 60 minutes, at 37 ° C and 200 rpm, the cells were centrifuged for 2 minutes at 5000 geo pellet resuspended in approximately 70 pL of LB medium. 2 were then plated in solid LB medium containing the appropriate antibiotic. The plates were incubated for 16 hours in an oven at 37 ° C.
1.6. Seleção dos transformantes 1.6. Selection of transformants
[00146] A seleção de transformantes foi realizada por amplificação gênica por PCR ou digestão plasmidial. Para amplificação, 1 colónia bacteriana isolada foi diluída em 30 pL de água e aquecida a 94° C por 10 minutos. 2 pL dessa suspensão foi utilizado como molde de DNA. [00146] The selection of transformants was performed by gene amplification by PCR or plasmid digestion. For amplification, 1 isolated bacterial colony was diluted in 30 pL of water and heated to 94 ° C for 10 minutes. 2 pL of this suspension was used as a DNA template.
[00147] Para a seleção digestão plasmidial, os vetores purificados foram incubados por 1 hora a 37°C com as enzimas de restrição flanqueando a região de interesse (Tabela 2) e a liberação do fragmento avaliada por eletroforese em gel de agarose. [00147] For plasmid digestion selection, the purified vectors were incubated for 1 hour at 37 ° C with the restriction enzymes flanking the region of interest (Table 2) and the fragment release evaluated by agarose gel electrophoresis.
[00148] Os plasmídeos selecionados foram sequenciados pelo serviço de sequenciamento do Instituto Carlos Chagas - FIOCRUZ/PR. O sequenciamento usado é o Single Extension. Após preparação da amostra realizada pela empresa Macrogen (Coreia), a amostra é precipitada com etanol e sequenciada utilizando Automatic Sequencer 3730x1. [00148] The selected plasmids were sequenced by the sequencing service of the Carlos Chagas Institute - FIOCRUZ / PR. The sequencing used is the Single Extension. After sample preparation carried out by the company Macrogen (Korea), the sample is precipitated with ethanol and sequenced using Automatic Sequencer 3730x1.
1.7. Extração de DNA plasmidial em pequena escala 1.7. Small scale plasmid DNA extraction
[00149] A etapa de extração foi realizada através do uso do kit QIAprep Spin Miniprep Kit (QIAGEN), onde o DNA presente no lisado bacteriano adsorve na membrana de sílica disponível no kit. Após etapas de lavagens para separação do DNA dos contaminantes do cultivo bacteriano, há eluição do DNA adsorvido na sílica em água ou tampão. [00149] The extraction step was performed using the QIAprep Spin Miniprep Kit (QIAGEN), where the DNA present in the bacterial lysate adsorbes on the silica membrane available in the kit. After washing steps to separate DNA from contaminants in bacterial culture, the DNA adsorbed on silica is eluted in water or buffer.
1.8. Subclonagem em vetor de expressão 1.8. Subcloning in expression vector
[00150] Para expressão das enzimas de E. carotovora, o DNA plasmidial purificado foi utilizado para a subclonagem no vetor de expressão pET28a (Qiagen). Para isso, o inserto do plasmídeo pGEM-T easy foi clivado com as enzimas Nde I e Xhol. Utilizou-se 2 U de T4 DNA ligase (Fermentas), e plasmídeo: inserto na proporção 1:3. O volume final foi de 10 pL e a reação incubada por 16 horas a 16°C. O vetor pET28a havia sido previamente digerido com as mesmas enzimas. Após a ligação do inserto no vetor, fez-se a transformação na cepa DH5a, seguindo o protocolo de transformação por choque térmico. [00150] For the expression of E. carotovora enzymes, plasmid DNA purified was used for subcloning in the expression vector pET28a (Qiagen). For this, the insert of the plasmid pGEM-T easy was cleaved with the enzymes Nde I and Xhol. 2 U of T4 DNA ligase (Fermentas), and plasmid: insert in a 1: 3 ratio were used. The final volume was 10 pL and the reaction incubated for 16 hours at 16 ° C. The pET28a vector had previously been digested with the same enzymes. After the insertion of the insert in the vector, transformation into the DH5a strain was performed, following the transformation protocol by thermal shock.
[00151] A sequência de nucleotídeos de ECAR-LANS selvagem é conforme mostrada na SEQ ID NO:6. [00151] The nucleotide sequence of wild ECAR-LANS is as shown in SEQ ID NO: 6.
[00152] A sequência que codifica a L-ASNase de E. coli foi clonada em pGEM T-easy em duas partes separadas: sequência de nucleotídeos 1-267 sem (Ec-A_fragl) ou com modificações (Ec-A_frag2) e a sequência de nucleotídeos 268-978 (Ec-A_frag3). The sequence encoding E. coli L-ASNase was cloned in pGEM T-easy into two separate parts: nucleotide sequence 1-267 without (Ec-A_fragl) or with modifications (Ec-A_frag2) and the sequence of nucleotides 268-978 (Ec-A_frag3).
[00153] Ec-A_frag3 foi digerido com as enzimas Ncol e Xhol e ligado ao vetor pET28a previamente digerido com as mesmas enzimas. Após seleção dos clones positivos, foi feita nova digestão com as enzimas Ndel NcoI. Então, Ec- A_frag2, previamente selecionado e digerido com as enzimas Ncol e Ndeí, foi ligado ao vetor pET28a-TEV + Ec-A_frag3. A combinação de Ec-A_fragl e Ec- A_frag3 em pET28a-TEV resultou no vetor Ec-A (gene sem modificações - SEQ ID NO:5). Já a combinação Ec-A_frag2 e Ec-A_frag3 em pET28a-TEV resultou no vetor Ec-A_mut (gene com as modificações - SEQ ID NO:4). [00153] Ec-A_frag3 was digested with the enzymes Ncol and Xhol and linked to the vector pET28a previously digested with the same enzymes. After selection of positive clones, new digestion was performed with Ndel NcoI enzymes. Then, Ec- A_frag2, previously selected and digested with the enzymes Ncol and Ndeí, was linked to the vector pET28a-TEV + Ec-A_frag3. The combination of Ec-A_fragl and Ec-A_frag3 in pET28a-TEV resulted in the Ec-A vector (gene without changes - SEQ ID NO: 5). The combination Ec-A_frag2 and Ec-A_frag3 in pET28a-TEV resulted in the vector Ec-A_mut (gene with the modifications - SEQ ID NO: 4).
[00154] Os DNA sintéticos utilizados como moldes na presente invenção foram sintetizados pela Genscript. [00154] The synthetic DNAs used as templates in the present invention were synthesized by Genscript.
EXEMPLO 2: Teste de expressão das L-ASNases EXAMPLE 2: L-ASNases expression test
[00155] A expressão das enzimas Ec-A, Ec-A_mut, ECAR-LANS foi avaliada em diferentes temperaturas de indução nas seguintes cepas de E.coli : BL21(DE3)-Star, Rosetta-Gami 2, Tuner e pLysS. Para indução, colónias isoladas foram inoculadas em 5 mL de meio LB com antibiótico apropriado e incubadas por 16 horas, a 37°C e 200 rpm. Em seguida, uma diluição 1 :40 foi realizada e as células cultivadas a 37°C até ODôoonm de 0.6. Para indução da expressão, 0,1 mM de IPTG foi adicionado aos inóculos, exceto nas culturas controle, e a incubação foi continuada em 20°C por 16 horas, 30°C e 37°C por 4 horas. [00155] The expression of the enzymes Ec-A, Ec-A_mut, ECAR-LANS was evaluated at different induction temperatures in the following strains of E.coli: BL21 (DE3) -Star, Rosetta-Gami 2, Tuner and pLysS. For induction, isolated colonies were inoculated in 5 mL of LB medium with appropriate antibiotic and incubated for 16 hours at 37 ° C and 200 rpm. Then a dilution of 1: 40 was performed and the cells grown at 37 ° C until OD oo nm of 0.6. For expression induction, 0.1 mM of IPTG was added to the inoculants, except in control cultures, and the incubation was continued at 20 ° C for 16 hours, 30 ° C and 37 ° C for 4 hours.
[00156] Após o período de indução, as culturas foram centrifugadas por 15 minutos, a 5000 g e 4°C. O precipitado foi ressuspendido em 1 mL de tampão A (20 mM fosfato, 500 mM NaCl, pH 7.5) suplementado com 1 mM PMSF e 5 mM benzamidina. Após incubação de 30 minutos com lisozima (10 pg/mL), a lise celular foi feita por sonicação (8 pulsos, 20% de potência). As amostras foram centrifugadas a 20.000 g durante 15 minutos. Os sobrenadantes foram separados (fração solúvel) e os pellets res suspendidos em 1 mL de tampão A (fração insolúvel). [00156] After the induction period, the cultures were centrifuged for 15 minutes, at 5000 g and 4 ° C. The precipitate was resuspended in 1 ml of buffer A (20 mM phosphate, 500 mM NaCl, pH 7.5) supplemented with 1 mM PMSF and 5 mM benzamidine. After a 30-minute incubation with lysozyme (10 pg / mL), cell lysis was performed by sonication (8 pulses, 20% potency). The samples were centrifuged at 20,000 g for 15 minutes. The supernatants were separated (soluble fraction) and the pellets were suspended in 1 mL of buffer A (insoluble fraction).
[00157] A análise da solubilidade foi realizada por eletroforese em gel de poliacrilamida. Foram preparados géis de separação 13% e de empilhamento 5% de acordo com protocolo pré-estabelecido (LAEMMLI, 1970). Em 15 pL de alíquota retirada em cada passagem (pellet e sobrenadante), foram adicionados 5 pL de tampão de amostra (240 mM Tris-HCl, 6% SDS, 30% glicerol, 16% b- mercaptoetanol, 0,6 mg/mL azul de bromofenol, pH 6.8), e foram incubados a 95 °C por 5 minutos para posterior aplicação nos géis. Foram aplicados 10 pL de amostra preparada em cada poço do gel. Os marcadores de peso molecular utilizados foram Unstained/Prestained Protein Molecular Weight Marker (Fermentas) ou BenchMark Protein Ladder (Thermo Fisher Scientific). A coloração do gel foi feita com azul de Coomassie R-250 ou G-250, dependendo do caso, e descoloração com solução apropriada (45% metanol e 10% ácido acético). [00157] The analysis of the solubility was performed by electrophoresis in polyacrylamide gel. Separation gels 13% and stacking 5% were prepared according to a pre-established protocol (LAEMMLI, 1970). In 15 pL of aliquot taken at each pass (pellet and supernatant), 5 pL of sample buffer (240 mM Tris-HCl, 6% SDS, 30% glycerol, 16% b-mercaptoethanol, 0.6 mg / mL were added bromophenol blue, pH 6.8), and were incubated at 95 ° C for 5 minutes for later application to the gels. 10 pL of prepared sample were applied to each well of the gel. The molecular weight markers used were Unstained / Prestained Protein Molecular Weight Marker (Ferments) or BenchMark Protein Ladder (Thermo Fisher Scientific). The gel was stained with Coomassie blue R-250 or G-250, depending on the case, and decolorized with an appropriate solution (45% methanol and 10% acetic acid).
[00158] Após a análise da melhor condição de expressão para cada proteína (Tabela 4), realizou-se a expressão das proteínas em maior escala, mantendo as proporções de volume e condições de indução. Dessa forma, foram obtidas frações solúveis de cada uma das proteínas para posterior purificação. Tabela 4: Condição de expressão das L-ASNases. Cepas de E. coli usadas na expressão de cada uma das enzimas em estudo, com a melhor temperatura de indução e tempo de crescimento para as L-ASNases de E. coli e Erwinia carotovora. [00158] After analyzing the best expression condition for each protein (Table 4), the protein expression was performed on a larger scale, maintaining the volume proportions and induction conditions. In this way, soluble fractions of each protein were obtained for further purification. Table 4: Condition of expression of L-ASNases. E. coli strains used in the expression of each of the enzymes under study, with the best induction temperature and growth time for the E. coli and Erwinia carotovora L-ASNases.
Figure imgf000040_0001
Figure imgf000040_0001
EXEMPLO 3: Purificação das proteínas recombinantes EXAMPLE 3: Purification of recombinant proteins
3.1. Cromatografia de afinidade 3.1. Affinity chromatography
[00159] O vetor de expressão pET28a-TEV permite que a proteína recombinante seja expressa fusionada a uma cauda de histidina, viabilizando o uso de colunas cromatográficas contendo níquel imobilizado em fase sólida. Portanto, as frações solúveis obtidas de cada uma das enzimas foram purificadas por uma primeira etapa de cromatografia de afinidade com a coluna HisTrap HP 1 mL (GE Healthcare). Os tampões utilizados foram tampão A (20 mM fosfato de sódio, 500 mM NaCl, pH 7.5) e tampão B (20 mM fosfato de sódio, 500 mM NaCl, 1 M imidazol, pH 7.5). A coluna e o sistema Àkta (modelos Àkta Pure M25 ou Àkta Purifier UPC 100) de purificação foram lavados primeiramente com 5 volumes de coluna (CV) de água milliQ e depois com 5 CV de tampão A. Em seguida, a amostra foi injetada com fluxo variando entre 0,3 - 1 mL/min, dependendo da pressão do sistema. Após injeção da amostra, a coluna foi lavada com 2 CV de tampão A para remoção das proteínas não ligadas à coluna e em seguida, deu-se início à eluição com gradiente segmentado de 0 - 100% de tampão B em 20 CV. [00159] The expression vector pET28a-TEV allows the recombinant protein to be expressed fused to a histidine tail, enabling the use of chromatographic columns containing nickel immobilized in solid phase. Therefore, the soluble fractions obtained from each of the enzymes were purified by a first stage of affinity chromatography with the HisTrap HP 1 mL column (GE Healthcare). The buffers used were buffer A (20 mM sodium phosphate, 500 mM NaCl, pH 7.5) and buffer B (20 mM sodium phosphate, 500 mM NaCl, 1 M imidazole, pH 7.5). The purification column and Àkta system (models Àkta Pure M25 or Àkta Purifier UPC 100) were washed first with 5 column volumes (CV) of milliQ water and then with 5 CV of buffer A. Then, the sample was injected with flow varying between 0.3 - 1 mL / min, depending on the system pressure. After sample injection, the column was washed with 2 CV of buffer A to remove proteins not bound to the column and then elution started with a segmented gradient of 0 - 100% buffer B in 20 CV.
[00160] A eluição de Ec-A, ECAR-LANS e Ec-A_mut foi realizada com 160 mM, 220 mM e 180 mM de imidazol, respectivamente. A eluição foi coletada em frações de 1 ,5 mL. Após o final da corrida cromatográfica, a pureza das frações obtidas foi analisada por eletroforese em gel de poliacrilamida. As asparaginases de E. coli e E. carotovora, bem como da asparaginase mutada conforme descrito na presente invenção foram purificadas na presença de contaminantes e, portanto, uma segunda cromatografia foi realizada. [00160] The elution of Ec-A, ECAR-LANS and Ec-A_mut was performed with 160 mM, 220 mM and 180 mM imidazole, respectively. The elution was collected in 1.5 ml fractions. After the end of the chromatographic run, the purity of the fractions obtained was analyzed by polyacrylamide gel electrophoresis. The asparaginases of E. coli and E. carotovora, as well as of the mutated asparaginase as described in the present invention were purified in the presence of contaminants and, therefore, a second chromatography was performed.
3.1. Cromatografia de troca iônica 3.1. Ion exchange chromatography
[00161] As frações da cromatografia de afinidade que continham a proteína de interesse foram dialisadas contra tampão C (20 mM Tris-HCl pH 8) para remoção do sal. A coluna utilizada nessa etapa de purificação foi a HiTrap Q 1 mL (GE Healthcare). A eluição ocorreu por gradiente segmentado de 0 - 100% tampão D (20 mM Tris-HCl, 1 M NaCl, pH 8). Após o final da corrida cromatográfica, a pureza das frações obtidas foi analisada por eletroforese em gel de poliacrilamida. [00161] Affinity chromatography fractions that contained the protein of interest were dialyzed against buffer C (20 mM Tris-HCl pH 8) to remove the salt. The column used in this purification step was HiTrap Q 1 mL (GE Healthcare). The elution occurred by a segmented gradient of 0 - 100% buffer D (20 mM Tris-HCl, 1 M NaCl, pH 8). After the end of the chromatographic run, the purity of the fractions obtained was analyzed by polyacrylamide gel electrophoresis.
[00162] No caso da proteína Ec-A_mut, o balanço de cargas da proteína é negativo (pi Ec-A_mut = 4.95). A coluna foi então equilibrada com tampão C. A amostra foi injetada na coluna e a eluição ocorreu devido ao aumento gradativo da concentração de NaCl, chegando a 1M. A eluição foi realizada em 300 mM. [00162] In the case of Ec-A_mut protein, the charge balance of the protein is negative (pi Ec-A_mut = 4.95). The column was then equilibrated with buffer C. The sample was injected into the column and the elution occurred due to the gradual increase in NaCl concentration, reaching 1M. Elution was performed at 300 mM.
3.2. Cromatografia de gel filtração 3.2. Gel chromatography filtration
[00163] As amostras provenientes da cromatografia de troca iônica que continham a proteína de interesse foram concentradas através de filtração. A solução foi colocada em filtro Amicon Ultra MWCO 10.000 (Milipore) e centrifugada a 4.000 rpm a 4°C até o volume de amostra ser igual a 500 pL. [00163] Samples from ion exchange chromatography that contained the protein of interest were concentrated through filtration. The solution was placed in an Amicon Ultra MWCO 10,000 filter (Milipore) and centrifuged at 4,000 rpm at 4 ° C until the sample volume was equal to 500 pL.
[00164] O experimento foi realizado em sistema Àkta Pure M25 (GE Healthcare), usando-se coluna HiLoad 16/60 Superdex 200 pg (GE Healthcare), em tampão 20 mM Tris-HCl pH 8, 150 mM NaCl. [00164] The experiment was carried out in an Àkta Pure M25 system (GE Healthcare), using HiLoad 16/60 Superdex 200 pg column (GE Healthcare), in 20 mM Tris-HCl pH 8, 150 mM NaCl buffer.
[00165] As frações provenientes da cromatografia foram analisadas através de eletroforese em gel de poliacrilamida. Com esse ensaio, é possível separar as proteínas contidas na amostra de acordo com o tamanho molecular. A coluna utilizada na cromatografia é composta de uma matriz com poros de diferentes diâmetros, portanto, quanto menor a partícula, maior será o caminho percorrido e maior o volume de eluição. Além disso, a técnica também permite estimar o tamanho das moléculas eluídas, baseando-se no raio hidrodinâmico e no volume de eluição, comparados com curva padrão feita com amostras de tamanhos já conhecidos. [00165] Fractions from chromatography were analyzed using polyacrylamide gel electrophoresis. With this assay, it is possible to separate the proteins contained in the sample according to the molecular size. The column used in the chromatography is composed of a matrix with pores of different diameters, therefore, the smaller the particle, the greater the path traveled and the greater the elution volume. In addition, the technique also allows estimating the size of the eluted molecules, based on the hydrodynamic radius and elution volume, compared to a standard curve made with samples of known sizes.
[00166] O grau de pureza das amostras necessário para posterior caracterização enzimática e estrutural foi alcançado após a cromatografia de gel filtração. O rendimento de cada uma das proteínas foi de 15 mg e 8 mg por litro de cultura de E. coli BL21(DE3)-Star produzindo as L-ASNase de E. coli e E. carotovora nativas, respectivamente. [00166] The degree of purity of the samples necessary for further enzymatic and structural characterization was achieved after gel chromatography filtration. The yield of each of the proteins was 15 mg and 8 mg per liter of culture of E. coli BL21 (DE3) -Star producing the native E. coli and E. carotovora L-ASNase, respectively.
[00167] A título comparativo, A L-ASNase comercial Ew-A é expressa por 16 horas, a 23 °C com indução feita por IPTG. A purificação dessa enzima é feita por uma cromatografia de troca catiônica e gel filtração em coluna Superdex 200 pg (Alize Pharma II, 2011). Já a expressão de Ec-A comercial é feita em vetor pET27b em cepa de E. coli EN538, para permitir o controle da produção de proteína. A cultura em meio LB em 37 °C até atingir OD6 o nm igual a 0.8 é induzida com 1 mM de IPTG e mantida a 37°C por mais 4 horas. A purificação é feita por etapa de cromatografia por troca catiônica e em seguida por uma purificação por troca aniônica. [00167] By way of comparison, commercial L-ASNase Ew-A is expressed for 16 hours, at 23 ° C with induction by IPTG. The purification of this enzyme is performed by cation exchange chromatography and gel filtration on a Superdex 200 pg column (Alize Pharma II, 2011). The expression of commercial Ec-A is done in vector pET27b in a strain of E. coli EN538, to allow control of protein production. The culture in LB medium at 37 ° C until OD 6 o nm equal to 0.8 is induced with 1 mM IPTG and maintained at 37 ° C for another 4 hours. Purification is done by a cation exchange chromatography step and then by anion exchange purification.
[00168] O volume de eluição de Ec-A, e ECAR-LANS foi de 68,95 e 70,29 mL, respectivamente (Figura 2). Através de uma curva de calibração (Figura 3) que relaciona o volume de eluição e massa molecular de proteínas padrão, é possível constatar que a estrutura quaternária das proteínas recombinantes E. coli e E. carotovora é composta por 4 monômeros. [00168] The elution volume of Ec-A, and ECAR-LANS was 68.95 and 70.29 mL, respectively (Figure 2). Through a calibration curve (Figure 3) that relates the elution volume and molecular mass of standard proteins, it is possible to verify that the quaternary structure of the recombinant proteins E. coli and E. carotovora is composed of 4 monomers.
[00169] Pelo resultado da cromatografia de gel filtração (Figura 4), com volume de eluição de aproximadamente 79 ml, é possível confirmar que as enzimas Ec-A-mut foi produzida na forma tetramérica em solução, assim como Ec-A e ECAR-LANS. [00169] By the result of gel filtration chromatography (Figure 4), with an elution volume of approximately 79 ml, it is possible to confirm that the enzymes Ec-A-mut was produced in tetrameric form in solution, as well as Ec-A and ECAR -LANS.
EXEMPLO 4: Ensaios enzimáticos e análise cinética EXAMPLE 4: Enzymatic assays and kinetic analysis
[00170] Os ensaios de atividade enzimática foram realizados através da detecção de amónia pelo reagente de Nessler. Sendo que primeiramente, foi necessário realizar uma curva padrão para relacionar OD436 nm e concentração de amónia gerado na reação. Para tal, diferentes concentrações de solução de sulfato de amónio (0,03 - 0,075 - 0,15 - 0,3 - 0,45 - 0,6 - 1,05 - 1,5 mM) em 50 mM Tris-HCl pH 8.6 foram incubadas por 30 minutos à 37°C. Foi então adicionado 60 mM TC A em cada um dos tubos. Foi feita centrifugação por 2 minutos a 5.000 rpm e 0,2 mL do sobrenadante foi coletado e adicionado em tubos com 4,3 mL de água miliQ. Em seguida, foi adicionado 500 pL de reagente de Nessler (Sigma). Foi transferido o volume de 200 pL de cada tubo para placas de ELISA de 96 poços para realização da leitura no comprimento de onda de 436 nm. [00170] The enzyme activity tests were carried out through the detection of ammonia by Nessler's reagent. Firstly, it was necessary to perform a standard curve to relate OD436 nm and ammonia concentration generated in the reaction. For this, different concentrations of ammonium sulfate solution (0.03 - 0.075 - 0.15 - 0.3 - 0.45 - 0.6 - 1.05 - 1.5 mM) in 50 mM Tris-HCl pH 8.6 were incubated for 30 minutes at 37 ° C. 60 mM TC A was then added to each of the tubes. Centrifugation was performed for 2 minutes at 5,000 rpm and 0.2 mL of the supernatant was collected and added to tubes with 4.3 mL of milliQ water. Then, 500 µL of Nessler's reagent (Sigma) was added. The volume of 200 pL from each tube was transferred to 96-well ELISA plates for reading at a wavelength of 436 nm.
[00171] Para avaliar a cinética enzimática com o cálculo da velocidade máxima (Vmáx) e do coeficiente de Michaelis-Menten (Km), os ensaios de atividade asparaginase foram realizados incubando 1.5 pM de cada uma das proteínas com diferentes concentrações (0,1 ; 0,25; 0,5; 1 e 2 mM) de asparagina ou glutamina em 50 mM Tris-HCl pH 8.6. As medidas de atividade foram mensuradas por 30 minutos a cada 2 minutos. [00171] To evaluate the enzymatic kinetics with the calculation of the maximum speed (Vmax) and the Michaelis-Menten coefficient (Km), the asparaginase activity assays were performed by incubating 1.5 pM of each of the proteins with different concentrations (0.1 ; 0.25; 0.5; 1 and 2 mM) of asparagine or glutamine in 50 mM Tris-HCl pH 8.6. Activity measures were measured for 30 minutes every 2 minutes.
[00172] Os dados obtidos na leitura foram processados para determinação dos valores de atividade enzimática em IU/mg de proteína, Km e Vmax. Foi utilizado como controle negativo uma mistura de todos os componentes da reação sem a presença da enzima. Todos os experimentos foram realizados em triplicata. [00172] The data obtained in the reading were processed to determine the values of enzymatic activity in IU / mg of protein, Km and Vmax. A mixture of all components of the reaction without the presence of the enzyme was used as a negative control. All experiments were carried out in triplicate.
[00173] As equações utilizadas para determinação da atividade enzimática foram as seguintes: [00173] The equations used to determine the enzymatic activity were as follows:
U (mM NH3 liberado) (vol. de reação 1) U (mM NH 3 released) (reaction volume 1)
— de prot. = - prot. =
mL (vol. da reação 1 usada no passo 2)(tempo de reação)(vol. de enzima) mL (volume of reaction 1 used in step 2) (reaction time) (volume of enzyme)
IU U/mL UI U / mL
- de proteína = - of protein =
mg concentração de proteína mg protein concentration
volume de enzima onde o volume (vol.) é apresentado em mL, massa em mg e tempo de reação em minutos. [00174] A velocidade máxima (Vmax) da asparaginase de E. coli é 25,1 mM/min e o coeficiente de dissociação (Km), 26,5 mM (Figura 5B). A atividade enzimática apresentada foi de 149,3 IU/mg. Esses dados estão de acordo com o valor descrito por PHILIPS et al., 2013. enzyme volume where the volume (vol.) is presented in mL, mass in mg and reaction time in minutes. [00174] The maximum speed (Vmax) of E. coli asparaginase is 25.1 mM / min and the dissociation coefficient (Km), 26.5 mM (Figure 5B). The enzyme activity presented was 149.3 IU / mg. These data are in accordance with the value described by PHILIPS et al., 2013.
[00175] A velocidade máxima (Vmax) da asparaginase de E. carotovora é 27,4 mM/min e o coeficiente de dissociação (Km), 75 mM (Figura 5A). A atividade enzimática apresentada foi de 340 IU/mg. Esses resultados estão de acordo com o já descrito por WARANGKAR & KHOBRAGADE, 2010. [00175] The maximum speed (Vmax) of E. carotovora asparaginase is 27.4 mM / min and the dissociation coefficient (Km), 75 mM (Figure 5A). The enzyme activity presented was 340 IU / mg. These results are in accordance with the one already described by WARANGKAR & KHOBRAGADE, 2010.
[00176] A verificação da atividade L-glutaminase de Ec-A_mut em comparação com Ec-A e ECAR-LANS foi realizada. Os dados de análise cinética das enzimas quando incubadas com asparagina e glutamina são mostrados nas Tabelas 5 e 6 a seguir: [00176] The verification of the L-glutaminase activity of Ec-A_mut in comparison with Ec-A and ECAR-LANS was carried out. The kinetic analysis data of the enzymes when incubated with asparagine and glutamine are shown in Tables 5 and 6 below:
Tabela 5: Dados da análise cinética das enzimas incubadas com o substrato asparagina.
Figure imgf000044_0001
Table 5: Data from the kinetic analysis of enzymes incubated with the substrate asparagine.
Figure imgf000044_0001
Tabela 6: Dados da análise cinética das enzimas incubadas com o substrato glutamina.
Figure imgf000044_0002
Table 6: Data from the kinetic analysis of enzymes incubated with the substrate glutamine.
Figure imgf000044_0002
EXEMPLO 5: Espectroscopia de dicroísmo circular EXAMPLE 5: Circular dichroism spectroscopy
[00177] O espectro de dicroísmo circular foi coletado usando o espectropolarímetro Jasco J-815 (Jasco Corporation, Japão). Os dados foram coletados em cubetas de quartzo, com variações no caminho ótico (0,2 - 1 mm), dependendo da necessidade de cada proteína e dos componentes do tampão. A elipsidade molar em graus foi medida na região UV distante, no intervalo do comprimento de onda de 190 - 260 nm, podendo esse valor ser limitado dependendo da voltagem no detector do equipamento, que não deve ultrapassar de 800 V. A velocidade de leitura foi de 100 nm/min, com 10 leituras para as proteínas e 6 leituras para os tampões, com resposta de 1 segundo em varredura contínua. Os valores obtidos em miligraus foram convertidos para elipsidade molar por resíduo ([0]MRW), em miligraus.cm2/dmol, que é definida pela equação (ADLER et al., 1974): [00177] The circular dichroism spectrum was collected using the Jasco J-815 spectropolarimeter (Jasco Corporation, Japan). Data were collected in quartz cuvettes, with variations in the optical path (0.2 - 1 mm), depending on the need for each protein and the buffer components. The molar ellipsity in degrees was measured in the distant UV region, in the wavelength range of 190 - 260 nm, and this value can be limited depending on the voltage in the equipment detector, which should not exceed 800 V. The reading speed was 100 nm / min, with 10 readings for proteins and 6 readings for buffers, with 1-second scan response to be continued. The values obtained in milligrams were converted to molar ellipsity per residue ([0] MRW), in milligrams.cm 2 / dmol, which is defined by the equation (ADLER et al., 1974):
90bs. MRW 9 0bs . MRW
[q] [q]
10 . d . c 10. d. ç
onde Q0bs é a elipsidade molar observada em graus, MRW é o peso molecular médio dos resíduos da proteína, d é o caminho óptico da cubeta em centímetros e c é a concentração da proteína em mg/mL. O MRW foi calculado dividindo- se o peso molecular da proteína pelo número de resíduos. where Q 0bs is the molar ellipsity observed in degrees, MRW is the average molecular weight of the protein residues, d is the optical path of the cuvette in centimeters and c is the protein concentration in mg / mL. The MRW was calculated by dividing the molecular weight of the protein by the number of residues.
[00178] Os espectros de dicroísmo circular das asparaginases de E. coli e E. carotovora indicam a presença de fitas-b e de a-hélices (Figura 6). Isso pode ser observado pelos valores mínimos nos comprimentos de onda 208 e 222 nm, além de valores positivos em 190 nm, padrão decorrente da presença de a-hélices na estrutura. Além disso, valores negativos em 218 nm e valores positivos em 196 nm são verificados devido à contribuição de fitas-b. A presença de fitas- b também é evidenciada pelo valor em 208 nm ser menor que em 222 nm. No caso de amostras desestruturadas, seria possível identificar uma banda positiva em 212 nm e negativa em 195 nm. Esses dados são fortes indícios de que as proteínas recombinantes estão corretamente enoveladas. [00178] The circular dichroism spectra of E. coli and E. carotovora asparaginases indicate the presence of b-tapes and a-helices (Figure 6). This can be seen by the minimum values at wavelengths 208 and 222 nm, in addition to positive values at 190 nm, a pattern resulting from the presence of a-helices in the structure. In addition, negative values at 218 nm and positive values at 196 nm are verified due to the contribution of b-tapes. The presence of b-tapes is also evidenced by the value at 208 nm being less than at 222 nm. In the case of unstructured samples, it would be possible to identify a positive band at 212 nm and a negative band at 195 nm. These data are strong indications that the recombinant proteins are correctly folded.
[00179] O espectro de dicroísmo circular de Ec-A_mut indica a presença de estruturas secundárias na proteína, forte indicio que está enovelada (Figura 7). No entanto, a sobreposição dos espectros de Ec-A, ECAR-LANS e Ec-A_mut indica que a substituição da região 53-75 de Ec-A pela região conservada em ECAR-LANS resultou em alterações estruturais em comparação com as enzimas Ec-A e ECAR-LANS. [00179] The circular dichroism spectrum of Ec-A_mut indicates the presence of secondary structures in the protein, a strong indication that it is folded (Figure 7). However, the overlapping of the Ec-A, ECAR-LANS and Ec-A_mut spectra indicates that the replacement of the 53-75 region of Ec-A by the region conserved in ECAR-LANS resulted in structural changes in comparison with the Ec- A and ECAR-LANS.
[00180] A principal alteração em Ec-A_mut é observada pela diminuição de sinal em comprimentos de onda menores 215 nm, isso reflete alterações principalmente em a-helices (208 nm) e fitas-b (desvio do espectro para direita em comprimentos de onda menores que 208 nm). O modelo estrutural mostra que as interações que estabilizam a hélice formada pelos resíduos 64-76 (numeração de Ec-A_mut) são mantidas ainda com as modificações nessa região. Ainda existem interações com os resíduos K79, T95, A81, T26-N35, D208-L215 da mesma molécula e com a região formada por G245-K251 da molécula adjacente. Modificações estruturais nessas regiões devem ser responsáveis pelas diferenças nos espectros de dicroísmo circular entre Ec- A_mut, Ec-A e ECAR-LANS. [00180] The main change in Ec-A_mut is observed by the decrease in signal at wavelengths smaller than 215 nm, this reflects changes mainly in a-helices (208 nm) and b-tapes (deviation of the spectrum to the right in wavelengths less than 208 nm). The structural model shows that the interactions that stabilize the helix formed by residues 64-76 (Ec-A_mut numbering) are maintained with the changes in that region. There are still interactions with residues K79, T95, A81, T26-N35, D208-L215 of the same molecule and with the region formed by G245-K251 of the adjacent molecule. Structural changes in these regions must be responsible for the differences in the circular dichroism spectra between Ec-A_mut, Ec-A and ECAR-LANS.
[00181] A Figura 8 mostra a região que difere de Ec-A em azul escuro. A região modificada pode interagir tanto com regiões do mesmo monômero (intra cadeia) ou com regiões do monômero de outra cadeia (inter cadeia). Regiões do mesmo monômero (em vermelho) ou do monômero adjacente (em laranja) que interagem com a parte modificada de Ec-A_mut estão coloridas de vermelho e laranja, respectivamente. As interações entre essas regiões estão evidenciadas como linhas tracejadas. [00181] Figure 8 shows the region that differs from Ec-A in dark blue. The modified region can interact either with regions of the same monomer (intra chain) or with regions of the monomer of another chain (inter chain). Regions of the same monomer (in red) or the adjacent monomer (in orange) that interact with the modified part of Ec-A_mut are colored red and orange, respectively. The interactions between these regions are shown as dashed lines.
EXEMPLO 6: Desnaturação térmica por espectroscopia de dicroísmo circular EXAMPLE 6: Thermal denaturation by circular dichroism spectroscopy
[00182] Para os ensaios de desnaturação térmica, foi feita uma variação de temperatura de 20 a 90°C, e os dados foram adquiridos em espectropolarímetro Jasco J-815 (Jasco Corporation, Japão) em comprimento de onda de 222 nm. [00182] For the thermal denaturation tests, a temperature variation of 20 to 90 ° C was made, and the data were acquired in a Jasco J-815 spectropolarimeter (Jasco Corporation, Japan) at a wavelength of 222 nm.
[00183] De acordo com o valor de dicroísmo circular em 222nm foi inferida a porcentagem de proteína enovelada nas temperaturas analisadas, que resultou em um gráfico que descreve a % de fração enovelada presente na amostra em função da temperatura (Figura 9). Para análise comparativa dos efeitos das substituições encontradas em Ec-A_mut, o mesmo experimento foi realizado com as enzimas Ec-A e ECAR-LANS. [00183] According to the circular dichroism value at 222nm, the percentage of folded protein at the analyzed temperatures was inferred, which resulted in a graph describing the% of folded fraction present in the sample as a function of temperature (Figure 9). For comparative analysis of the effects of the substitutions found in Ec-A_mut, the same experiment was carried out with the enzymes Ec-A and ECAR-LANS.
[00184] Os resultados obtidos no ensaio de desnaturação térmica ilustram bem que a L-ASNase de E. coli é mais estável que as de Erwinia. Em 40°C, aproximadamente 50% da amostra de ECAR-LANS está desenovelada, enquanto apenas 3.2% de Ec-A perderam estrutura. Estudos de farmacocinética das L-ASNases comerciais Ec-A e Ew-A mostram que a meia vida de Ec-A (24- 30 horas) é aproximadamente o dobro da meia vida de Ew-A (16 horas), o que resulta em menor número de doses ao longo do tratamento (HemOnc Today, 2012). [00184] The results obtained in the thermal denaturation test illustrate well that the E. coli L-ASNase is more stable than those of Erwinia. At 40 ° C, approximately 50% of the ECAR-LANS sample is unfolded, while only 3.2% of Ec-A has lost structure. Pharmacokinetic studies the commercial L-ASNases Ec-A and Ew-A show that the half-life of Ec-A (24-30 hours) is approximately double the half life of Ew-A (16 hours), which results in fewer doses throughout treatment (HemOnc Today, 2012).
REFERÊNCIAS REFERENCES
ABSHIRE, T.C., POLLOCK, B.H., BILLETT, A.L., BRADLEY, P., BUCHANAN, G.R. Weekly polyethylene glycol conjugated 1-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukaemia: a Pediatric Oncology Group Study. Blood. 2000;96: 1709-15. ABSHIRE, T.C., POLLOCK, B.H., BILLETT, A.L., BRADLEY, P., BUCHANAN, G.R. Weekly polyethylene glycol conjugated 1-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukaemia: a Pediatric Oncology Group Study. Blood. 2000; 96: 1709-15.
ADLER, A. J., ROSS, D. G., CHEN, K. et al. Interaction of deoxyribonucleic acid with histone f2b and its half-molecules Circular dichroism studies. Biochem. 1974;13:616-622. ADLER, A. J., ROSS, D. G., CHEN, K. et al. Interaction of deoxyribonucleic acid with histone f2b and its half-molecules Circular dichroism studies. Biochem. 1974; 13: 616-622.
Agência de Proteção Ambiental dos Estados Unidos [EPA - United United States Environmental Protection Agency [EPA - United
States Environmental Protection Agency em inglês] (www.epa.gov), acessado em outubro de 2015. States Environmental Protection Agency in English] (www.epa.gov), accessed in October 2015.
ALBERTSEN, B. K., SCHRODER, H., INGERSLEV, J. et al. ALBERTSEN, B.K., SCHRODER, H., INGERSLEV, J. et al.
Comparison of intramuscular therapy with Erwinia asparaginase and asparaginase-Medac: pharmacokinetics, pharmacodynamics, formation of antibodies and influence on the coagulation system Br J Haematol. 2001 ;115:983-90. Comparison of intramuscular therapy with Erwinia asparaginase and asparaginase-Medac: pharmacokinetics, pharmacodynamics, formation of antibodies and influence on the coagulation system Br J Haematol. 2001; 115: 983-90.
ALVAREZ, O.A., ZIMMERMAN, G. Pegaspargase-induced pancreatitis. Med Pediatr Oncol. 2000;34:200-5. ALVAREZ, O.A., ZIMMERMAN, G. Pegaspargase-induced pancreatitis. Med Pediatr Oncol. 2000; 34: 200-5.
AMYLON, M.D., SHUSTER, J., PULLEN ., et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study Leukemia 1999; 13(3):335- 42. AMYLON, M.D., SHUSTER, J., PULLEN., Et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study Leukemia 1999; 13 (3): 335-42.
ASSELIN, B.L., KREISSMAN, S., COPPOLA, D.J., et al., Prognostic significance of early response to a single dose of asparaginase in childhood acute lymphoblastic leukemia J Pediatr Hematol Oncol. 1999;21 :6-12. ASSELIN, BL, KREISSMAN, S., COPPOLA, DJ, et al., Prognostic significance of early response to a single dose of asparaginase in childhood acute lymphoblastic leukemia J Pediatr Hematol Oncol. 1999; 21: 6-12.
BARRY, E., DE ANGELO, D.J., NEUBERG, D., et al. Favourable outcome for adolescents with acute lymphoblastic leukemia treated on Dana-Farber câncer institute acute lymphoblastic leukemia consortium protocols. J Clin Oncol. 2007;25:813-9. BARRY, E., DE ANGELO, D.J., NEUBERG, D., et al. Favorable outcome for adolescents with acute lymphoblastic leukemia treated on Dana-Farber cancer institute acute lymphoblastic leukemia consortium protocols. J Clin Oncol. 2007; 25: 813-9.
CARNEIRO, F. R., SILVA, T. C., ALVEZ, A. C., et al. Spectroscopic characterization of the tumor antigen NY-REN-21 and identification of heterodimer formation with SCAND1 Biochem Biophys Res Commun. 2006;1 :241-54. CARNEIRO, F. R., SILVA, T. C., ALVEZ, A. C., et al. Spectroscopic characterization of the tumor antigen NY-REN-21 and identification of heterodimer formation with SCAND1 Biochem Biophys Res Commun. 2006; 1: 241-54.
CEDAR, H., SCHWARTZ, J. H. Localization of the two L- asparaginases in anaerobically grown Escherichia coli J Biol Chem. 1967;242:3753-4. CEDAR, H., SCHWARTZ, J. H. Localization of the two L-asparaginases in anaerobically grown Escherichia coli J Biol Chem. 1967; 242: 3753-4.
DAVIS, L. G., DIBNER, M. D., BATTEY, J. F. Basic methods in molecular biology. New York: Elsevier. 1986. DAVIS, L. G., DIBNER, M. D., BATTEY, J. F. Basic methods in molecular biology. New York: Elsevier. 1986.
GREENE T.W. WUTS P.G.M., Protective groups in organic synthesis, 3rd ed., John Wiley & Sons, INC, Nova York, EUA, 1999. GREENE T.W. WUTS P.G.M., Protective groups in organic synthesis, 3rd ed., John Wiley & Sons, INC, New York, USA, 1999.
GUILLERME, C. M., DELGADO, R. F., NAVARRO, J. S. et al. Uptade on L-asparaginase treatment in pediatrics An Pediatr (Barc). 2013;79(5):329-40. GUILLERME, C. M., DELGADO, R. F., NAVARRO, J. S. et al. Uptade on L-asparaginase treatment in pediatrics An Pediatr (Barc). 2013; 79 (5): 329-40.
GRANTHAM, R., GAUTIER, C. AND GUOY, M. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res. 1980; 8: 1893-1912. GRANTHAM, R., GAUTIER, C. AND GUOY, M. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res. 1980; 8: 1893-1912.
T. W. GREENE AND P. G. M. WUTS, Protective Groups in Organic Synthesis, 3rd Edition, John Wiley & Sons Ltd., New York, 1999. T. W. GREENE AND P. G. M. WUTS, Protective Groups in Organic Synthesis, 3rd Edition, John Wiley & Sons Ltd., New York, 1999.
GROSJEAN, H., FIERS, W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon energy hypothesis. Gene. 1982; 18: 199. GROSJEAN, H., FIERS, W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon energy hypothesis. Gene. 1982; 18: 199.
HAAS, J. PARK, E.C., SEED, B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 1996; 6:315-324 HENRIKSEN, L. T., HARILA-SAARI, A., RUUD, E. et al. PEG- asparaginase allergy in children with acute lymphoblastic leukemia in the NOPHO ALL 2008 protocol Pediatr Blood Cancer. 2015;62(3):427-33. HAAS, J. PARK, EC, SEED, B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 1996; 6: 315-324 HENRIKSEN, LT, HARILA-SAARI, A., RUUD, E. et al. PEG- asparaginase allergy in children with acute lymphoblastic leukemia in the NOPHO ALL 2008 protocol Pediatr Blood Cancer. 2015; 62 (3): 427-33.
HOLM L. Codon usage and gene expression. Nucleic Acids Res. 1986; 14:3075-3087. HOLM L. Codon usage and gene expression. Nucleic Acids Res. 1986; 14: 3075-3087.
IKEMURA, T. Correlation between the abundance of yeast transfer RNAs and the occurrance of the respective codond in protein genes. J. Mol. Biol. 1982; 158:573. IKEMURA, T. Correlation between the abundance of yeast transfer RNAs and the occurrance of the respective codond in protein genes. J. Mol. Biol. 1982; 158: 573.
Instituto Nacional do Câncer (INC A) - Ministério da Saúde -Leucemia linfoide aguda em adulto Rev Bras Cancer. 2002;48(3):309-12. National Cancer Institute (INC A) - Ministry of Health - Acute lymphoid leukemia in an adult Rev Bras Cancer. 2002; 48 (3): 309-12.
Instituto Nacional do Câncer (INCA) - Ministério da Saúde -Leucemias agudas na infâncias e adolescência Rev Bras Cancer. 2001 ;47(3):245-57. National Cancer Institute (INCA) - Ministry of Health - Acute leukemias in childhood and adolescence Rev Bras Cancer. 2001; 47 (3): 245-57.
KANE J.F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995;6:494. KANE J.F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995; 6: 494.
KEARNEY, S.L., DAHLBERG, S.E., LEVY, D.E., VOSS, S.D., SALLAN, S.E., SILVERMAN, L.B. Clinicai course and outcome in children with acute lymphoblastic leukemia and asparaginase-associated pancreatitis. Pediatr Blood Cancer. 2009;53: 162-7. KEARNEY, S.L., DAHLBERG, S.E., LEVY, D.E., VOSS, S.D., SALLAN, S.E., SILVERMAN, L.B. Clinicai course and outcome in children with acute lymphoblastic leukemia and asparaginase-associated pancreatitis. Pediatr Blood Cancer. 2009; 53: 162-7.
KIRIYAMA, Y., et al. Biochemical characterization of U937 cells resistant to L-asparaginase: the role of asparagine synthetase Leukemia. 1989;3(4):294-7. KIRIYAMA, Y., et al. Biochemical characterization of U937 cells resistant to L-asparaginase: the role of asparagine synthetase Leukemia. 1989; 3 (4): 294-7.
KRASOTKINA, J., et al. One-step purification and kinetic properties of the recombinant L-asparaginase from Erwinia carotovora Biotechnol Appl Biochem. 2004;39(2):215-21. KRASOTKINA, J., et al. One-step purification and kinetic properties of the recombinant L-asparaginase from Erwinia carotovora Biotechnol Appl Biochem. 2004; 39 (2): 215-21.
LEE, S.M., WROBLE, M.H., ROSS, J.T., L-asparaginase from Erwinia carotovora. An improved recovery and purification process using affinity chromatography Appl Biochem Biotechnol. 1989;22(1): 1-11. LEE, S.M., WROBLE, M.H., ROSS, J.T., L-asparaginase from Erwinia carotovora. An improved recovery and purification process using affinity chromatography Appl Biochem Biotechnol. 1989; 22 (1): 1-11.
LORENZI, P.L., et al. Asparagine synthetase as a casual, predictive biomarker for L-asparaginase activity in ovarian cancer cells Mol Cancer Ther. 2006;5(l l):2613-23. LORENZI, PL, et al. Asparagine synthetase as a casual, predictive biomarker for L-asparaginase activity in ovarian cancer cells Mol Cancer Ther. 2006; 5 (ll): 2613-23.
MAKRIDES, S.C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev; 1996; 60:512-538. MAKRIDES, S.C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev; 1996; 60: 512-538.
MULLER, H.J., BOOS, J. Use of l-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998;282:97-113. MULLER, H.J., BOOS, J. Use of l-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998; 282: 97-113.
NARTA, U.K., KANWAR, S.S., AZMI, W., Pharmacological and clinicai evaluation of L-asparaginase in the treatment of leukemia Crit Rev Oncol Hematol. 2007;61(3):208-21. NARTA, U.K., KANWAR, S.S., AZMI, W., Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia Crit Rev Oncol Hematol. 2007; 61 (3): 208-21.
NEHMY, R.M.Q. et al, A perspectiva dos pais sobre a obtenção do diagnóstico de leucemia linfoide aguda em crianças e adolescentes: uma experiência no Brasil Revista Brasileira de Saúde Materno Infantil. 2011 ; 11 (3):293-9. NEHMY, R.M.Q. et al, The parents' perspective on obtaining the diagnosis of acute lymphoid leukemia in children and adolescents: an experience in Brazil Revista Brasileira de Saúde Materno Infantil. 2011; 11 (3): 293-9.
PAPAGEORGIOU, A.C., et al. Structural and functional insights into Erwinia carotovora L-asparaginase FEBS Journal. 2008;275(17):4306-16. PAPAGEORGIOU, A.C., et al. Structural and functional insights into Erwinia carotovora L-asparaginase FEBS Journal. 2008; 275 (17): 4306-16.
PHILLIPS, R. M., SALEEM, M. U., WILLIAMS, A., et al. Abstract C154: Kinetic analysis of the glutaminase activity of L-asparaginases derived from Erwinia chrysanthemi (Erwinase®) and Escherichia coli (Kidrolase). Mol Cancer Ther. 2013;12:C154. PHILLIPS, RM, SALEEM, MU, WILLIAMS, A., et al. Abstract C154: Kinetic analysis of the glutaminase activity of L-asparaginases derived from Erwinia chrysanthemi (Erwinase ® ) and Escherichia coli (Kidrolase). Mol Cancer Ther. 2013; 12: C154.
PIETERS, R., HUNGER, S.P., BOOS, J., et al. L-Asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011;117:238-49. PIETERS, R., HUNGER, S.P., BOOS, J., et al. L-Asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011; 117: 238-49.
PUI, C.H., EVANS, W.E., Treatment of acute lymphoblastic leukemia N Engl J Med. 2006;354: 166-78. PUI, C.H., EVANS, W.E., Treatment of acute lymphoblastic leukemia N Engl J Med. 2006; 354: 166-78.
RICHARDS, N.G., SCHUSTER, S.M., Mechanistic issues in asparagine synthetase catalysis Adv Enzymol Relat Areas Mol Biol. 1998;72: 145-98. RICHARDS, N.G., SCHUSTER, S.M., Mechanistic issues in asparagine synthetase catalysis Adv Enzymol Relat Areas Mol Biol. 1998; 72: 145-98.
SAMBROOK et al., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.; Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, New York, 1995. SAMBROOK et al., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Press, Cold Spring Harbor, NY; Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, New York, 1995.
SAMBROOK et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989. SAMBROOK et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989.
SHARP PM, MATASSI G. Codon usage and genome evolution. Curr Opin Genet Dev. 1994; 4:851-860. SHARP PM, MATASSI G. Codon usage and genome evolution. Curr Opin Genet Dev. 1994; 4: 851-860.
SILVERMAN, L.B., GELBER, R.D., DALTON, V.K., et al., Improved outcome for children with acute lymphoblastic leukemia: results of Dana- Farber Consortium Protocol 191-01 Blood. 2001 ;97: 1211-8. SILVERMAN, L.B., GELBER, R.D., DALTON, V.K., et al., Improved outcome for children with acute lymphoblastic leukemia: results of Dana- Farber Consortium Protocol 191-01 Blood. 2001; 97: 1211-8.
Sociedade Norte- Americana do Câncer [ACS - American Câncer Society em inglês] (www.cancer.org), acessado em novembro de 2015. North American Cancer Society [ACS - American Cancer Society in English] (www.cancer.org), accessed in November 2015.
UREN, J.R., CHANG, P.K., H ANDS CHUM ACHER, R.E., Effects of asparagine synthetase inhibitors on asparaginase resistant tumors Biochem Pharmacol. 1977;26(15): 1405-10. UREN, J.R., CHANG, P.K., H ANDS CHUM ACHER, R.E., Effects of asparagine synthetase inhibitors on asparaginase resistant tumors Biochem Pharmacol. 1977; 26 (15): 1405-10.
WAIN-HOB S ON S, NUSSINOV R, BROWN RJ, SUSSMAN JL. Preferential codon usage in genes. Gene. 1981 ; 13(4):355— 364. WAIN-HOB S ON S, NUSSINOV R, BROWN RJ, SUSSMAN JL. Preferential codon usage in genes. Gene. 1981; 13 (4): 355— 364.
WARANGKAR, S. C., KHOBRAGADE, C. N. Purification, characterization, and effect of thiol compounds on activity of the Erwinia carotovora L-asparaginase. Enzyme Res. 2010: 165878. WARANGKAR, S. C., KHOBRAGADE, C. N. Purification, characterization, and effect of thiol compounds on activity of the Erwinia carotovora L-asparaginase. Enzyme Res. 2010: 165878.
ZANICHELLI, M.A., COUTURATO, V.R., SOBRINHO, J., Indications for hematopoietic stem cell transplantation in adults with acute lymphoblastic leukemia Revista Brasileira de Hematologia e Hemoterapia. 2010;32(l):54-60. ZANICHELLI, M.A., COUTURATO, V.R., SOBRINHO, J., Indications for hematopoietic stem cell transplantation in adults with acute lymphoblastic leukemia Revista Brasileira de Hematologia e Hemoterapia. 2010; 32 (1): 54-60.

Claims

REIVINDICAÇÕES
1. Polipeptídeo com atividade asparaginase, caracterizado pelo fato de compreender substituições na região do sítio ativo da sequência de aminoácidos de SEQ ID NO: 1 por resíduos de aminoácidos correspondentes na sequência de aminoácidos de SEQ ID NO:2, em que o referido polipeptídeo apresenta menor afinidade por diferentes aminoácidos que não asparagina quando comparada com o peptídeo com atividade asparaginase parental. 1. Polypeptide with asparaginase activity, characterized by the fact that it comprises substitutions in the region of the active site of the amino acid sequence of SEQ ID NO: 1 by corresponding amino acid residues in the amino acid sequence of SEQ ID NO: 2, in which said polypeptide presents lower affinity for different amino acids other than asparagine when compared to the peptide with parental asparaginase activity.
2. Polipeptídeo de acordo com a reivindicação 1, caracterizado pelo fato de a referida região do sítio ativo compreender os resíduos de aminoácido nas posições 53 a 75 da sequência de aminoácidos de SEQ ID NO: l. 2. Polypeptide according to claim 1, characterized in that said region of the active site comprises amino acid residues at positions 53 to 75 of the amino acid sequence of SEQ ID NO: 1.
3. Polipeptídeo de acordo com a reivindicação 1, caracterizado pelo fato de as substituições serem realizadas em resíduos de aminoácidos em pelo menos uma das posições 54, 55, 59, 60, 62, 63, 64, 66, 70, 72, 73 e 75 da sequência de aminoácidos de SEQ ID NO: l. 3. Polypeptide according to claim 1, characterized in that the substitutions are made in amino acid residues in at least one of the positions 54, 55, 59, 60, 62, 63, 64, 66, 70, 72, 73 and 75 of the amino acid sequence of SEQ ID NO: l.
4. Polipeptídeo de acordo com a reivindicação 3, caracterizado pelo fato de as substituições compreenderem pelo menos uma das seguintes substituições na sequência de aminoácidos de SEQ ID NO: l : V54A, N55S, Q59E, D60M, N62T, D63S, N64D, W66L, A70S, K72R, I73V e T75E. 4. Polypeptide according to claim 3, characterized in that the substitutions comprise at least one of the following substitutions in the amino acid sequence of SEQ ID NO: 1: V54A, N55S, Q59E, D60M, N62T, D63S, N64D, W66L, A70S, K72R, I73V and T75E.
5. Polipeptídeo de acordo com qualquer uma das reivindicações 1 a 4, caracterizado pelo fato de compreender a sequência de aminoácidos da SEQ ID NO:3. Polypeptide according to any one of claims 1 to 4, characterized in that it comprises the amino acid sequence of SEQ ID NO: 3.
6. Polipeptídeo de acordo com qualquer uma das reivindicações 1 a 5, caracterizado pelo fato de ser adicionalmente conjugado co valentemente a polietilenoglicol (PEG). Polypeptide according to any one of claims 1 to 5, characterized in that it is additionally covalently conjugated to polyethylene glycol (PEG).
7. Polipeptídeo de acordo com qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de ser para uso na prevenção ou tratamento de neoplasias. 7. Polypeptide according to any one of claims 1 to 6, characterized in that it is for use in the prevention or treatment of neoplasms.
8. Polipeptídeo de acordo com a reivindicação 7, caracterizado pelo fato de que a neoplasia é leucemia mieloide aguda ou leucemia linfoide aguda. Polypeptide according to claim 7, characterized due to the fact that the neoplasm is acute myeloid leukemia or acute lymphoid leukemia.
9. Polinucleotídeo, caracterizado pelo fato de que codifica o polipeptídeo como definido em qualquer uma das reivindicações 1 a 6. 9. Polynucleotide, characterized by the fact that it encodes the polypeptide as defined in any one of claims 1 to 6.
10. Polinucleotídeo de acordo com a reivindicação 9, caracterizado por compreender a sequência de ácidos nucleicos da SEQ ID NO: 4 e suas degenerações. Polynucleotide according to claim 9, characterized in that it comprises the nucleic acid sequence of SEQ ID NO: 4 and its degenerations.
11. Cassete de expressão, caracterizado pelo fato de compreender um polinucleotídeo como definido na reivindicação 9 ou 10, operacionalmente ligado a um promotor e a um terminador de transcrição. 11. Expression cassette, characterized in that it comprises a polynucleotide as defined in claim 9 or 10, operably linked to a promoter and a transcription terminator.
12. Vetor de expressão, caracterizado pelo fato de compreender um polinucleotídeo como definido na reivindicação 9 ou 10 ou um cassete de expressão como definido na reivindicação 11. 12. Expression vector, characterized in that it comprises a polynucleotide as defined in claim 9 or 10 or an expression cassette as defined in claim 11.
13. Célula hospedeira, caracterizada pelo fato de compreender um cassete de expressão como definido na reivindicação 11, ou um vetor de expressão como definido na reivindicação 12. 13. Host cell, characterized by the fact that it comprises an expression cassette as defined in claim 11, or an expression vector as defined in claim 12.
14. Composição farmacêutica, caracterizada pelo fato de que compreende um polipeptídeo como definido em qualquer uma das reivindicações 1 a 6. 14. Pharmaceutical composition, characterized in that it comprises a polypeptide as defined in any one of claims 1 to 6.
15. Uso de um polipeptídeo como definido em qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de ser na manufatura de um medicamento para prevenção ou tratamento de neoplasias. 15. Use of a polypeptide as defined in any of claims 1 to 6, characterized by the fact that it is in the manufacture of a medicament for the prevention or treatment of neoplasms.
16. Uso de acordo com a reivindicação 15, caracterizado pelo fato de que a neoplasia é leucemia mieloide aguda ou leucemia linfoide aguda. 16. Use according to claim 15, characterized by the fact that the neoplasm is acute myeloid leukemia or acute lymphoid leukemia.
17. Método para produzir um polipeptídeo com atividade asparaginase, caracterizado pelo fato de que compreende: 17. Method for producing a polypeptide with asparaginase activity, characterized by the fact that it comprises:
(a) fornecer uma célula hospedeira como definida na reivindicação 13; (a) providing a host cell as defined in claim 13;
(b) cultivar dita célula em condições conducentes para a produção do polipeptídeo; e (b) cultivating said cell in conditions conducive to the polypeptide production; and
(c) isolar dito polipeptídeo de dita célula ou do meio de cultura circundando dita célula. (c) isolating said polypeptide from said cell or culture medium surrounding said cell.
18. Método de acordo com a reivindicação 17, caracterizado pelo fato de que dito polipeptídeo é covalentemente conjugado a polietilenoglicol (PEG). 18. Method according to claim 17, characterized in that said polypeptide is covalently conjugated to polyethylene glycol (PEG).
19. Método para prevenir ou tratar neoplasias, caracterizado pelo fato de compreender administrar uma quantidade terapeuticamente eficaz do polipeptídeo como definido em qualquer uma das reivindicações 1 a 6 a um indivíduo em necessidade da dita prevenção ou tratamento. 19. Method for preventing or treating neoplasms, characterized in that it comprises administering a therapeutically effective amount of the polypeptide as defined in any one of claims 1 to 6 to an individual in need of said prevention or treatment.
PCT/BR2019/050552 2018-12-19 2019-12-19 Polypeptide with asparaginase activity, polynucleotide, expression cassette, expression vector, host cell, pharmaceutical composition, methods for producing a polypeptide with asparaginase activity and for preventing or treating neoplasms, and use of a polypeptide WO2020124188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102018076595-7A BR102018076595A2 (en) 2018-12-19 2018-12-19 polypeptide with asparaginase activity, polynucleotide, expression cassette, expression vector, host cell, pharmaceutical composition, methods for producing a polypeptide with asparaginase activity and for preventing or treating neoplasms, and, use of a polypeptide
BRBR1020180765957 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020124188A1 true WO2020124188A1 (en) 2020-06-25

Family

ID=71102394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050552 WO2020124188A1 (en) 2018-12-19 2019-12-19 Polypeptide with asparaginase activity, polynucleotide, expression cassette, expression vector, host cell, pharmaceutical composition, methods for producing a polypeptide with asparaginase activity and for preventing or treating neoplasms, and use of a polypeptide

Country Status (2)

Country Link
BR (1) BR102018076595A2 (en)
WO (1) WO2020124188A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015038639A1 (en) * 2013-09-10 2015-03-19 Sandia Corporation Therapeutic asparaginases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015038639A1 (en) * 2013-09-10 2015-03-19 Sandia Corporation Therapeutic asparaginases

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ALI, U. ET AL.: "L-asparaginase as a critical component to combat Acute Lymphoblastic Leukaemia (ALL): A novel approach to target ALL", EUR J PHARMACOL., vol. 771, 2016, pages 199 - 210, XP029384084, DOI: 10.1016/j.ejphar.2015.12.023 *
DATABASE PROTEIN [online] February 2015 (2015-02-01), "periplasmic L- asparaginase II [Escherichia coli UMN026", XP055719668, retrieved from NCBI Database accession no. CAR14475 *
DERST, C. ET AL.: "Engineering the substrate specificity of Escherichia coli asparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248", PROTEIN SCI, vol. 9, no. 10, 2000, pages 2009 - 2017, XP002674602, Retrieved from the Internet <URL:https://doi.org/10.1110/ps.9.10.2009> DOI: 10.1110/ps.9.10.2009 *
FARET, M. ET AL.: "1-Asparaginase from Erwinia carotovora: insights about its stability and activity", MOL BIOL REP., vol. 46, no. 1, 2019, pages 1313 - 1316, XP036735672, DOI: 10.1007/s11033-018-4459-2 *
MOLINEUX, G. ET AL.: "Pegylation: engineering improved pharmaceuticals for enhanced therapy", CANCER TREAT REV., vol. 28, no. A, 2002, pages 13 - 16, XP026518515, DOI: 10.1016/S0305-7372(02)80004-4 *
NOEMAN ARDALAN, MIRZAIE SAKO, SEPAHI ABBAS AKHAVAN, KHAVARI-NEJAD RAMAZAN ALI: "Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM- MM studies", MED HYPOTHESES, vol. 112, January 2018 (2018-01-01), pages 7 - 17, XP055719670 *

Also Published As

Publication number Publication date
BR102018076595A2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
CN111315878B (en) Modified L-asparaginase
ES2914093T3 (en) Homogeneous conjugates of antibody and drug by enzymatic methods
US11802279B2 (en) Modified L-asparaginase
ES2574139T3 (en) Compositions of human arginase modified by engineering and methods to treat cancer
EP3418383A1 (en) Modified l-asparaginase
JP2012531893A (en) Arginase formulation and method
JP6612316B2 (en) Engineered chimeric PEGylated ADI and methods of use
Horenkamp et al. Conformation of the Dileucine‐Based Sorting Motif in HIV‐1 Nef Revealed by Intermolecular Domain Assembly
US11773146B2 (en) Disruption of the WAVE3 protein complex for suppression of invasion and metastasis
WO2020124188A1 (en) Polypeptide with asparaginase activity, polynucleotide, expression cassette, expression vector, host cell, pharmaceutical composition, methods for producing a polypeptide with asparaginase activity and for preventing or treating neoplasms, and use of a polypeptide
CN111050784B (en) Truncated guinea pig L-asparaginase variants and methods of use thereof
US20210121544A1 (en) Polypeptide with Asparaginase Activity, Expression Cassette, Expression Vector, Host Cell, Pharmaceutical Composition, Methods for Producing a Polypeptide with Asparaginase Activity and for Preventing or Treating Cancer, and Use of a Polypeptide
US20210309984A1 (en) ChiA Enzyme
CN105968211B (en) Recombinant antiviral protein and preparation method and application thereof
CN110520144B (en) Peptide kinase inhibitors and methods of use thereof
Yong Structure and Functional Characterization of ERG and SPOP
CN117384273A (en) Polyethylene glycol modified IL-2 derivative and application thereof
ES2753962T3 (en) Isolated polypeptides of Brevibacterium aurantiacum and their use for the treatment of cancer
WO2012120176A2 (en) Recombinant proteins having antitumor effects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898333

Country of ref document: EP

Kind code of ref document: A1