WO2020122286A1 - 자동 분류저장 기술을 이용한 dbms-ai 프레임 워크 및 이를 이용한 자동분류저장 방법 - Google Patents

자동 분류저장 기술을 이용한 dbms-ai 프레임 워크 및 이를 이용한 자동분류저장 방법 Download PDF

Info

Publication number
WO2020122286A1
WO2020122286A1 PCT/KR2018/015872 KR2018015872W WO2020122286A1 WO 2020122286 A1 WO2020122286 A1 WO 2020122286A1 KR 2018015872 W KR2018015872 W KR 2018015872W WO 2020122286 A1 WO2020122286 A1 WO 2020122286A1
Authority
WO
WIPO (PCT)
Prior art keywords
dbms
framework
automatic classification
inference
automatic
Prior art date
Application number
PCT/KR2018/015872
Other languages
English (en)
French (fr)
Inventor
이준혁
Original Assignee
(주)한국플랫폼서비스기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)한국플랫폼서비스기술 filed Critical (주)한국플랫폼서비스기술
Publication of WO2020122286A1 publication Critical patent/WO2020122286A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/906Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/211Schema design and management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a DBMS-AI (Data Base Management System-Artificial Intelligence) framework using automatic classification storage technology and an automatic classification storage method using the same, an object included in the raw data by applying a learning model to the acquired raw data Is a technology that can classify, transmit it to the DBMS, and even perform normalization to be applicable to various OS.
  • DBMS-AI Data Base Management System-Artificial Intelligence
  • DBMS database management system
  • Such a DBMS Data Base Management System
  • DBMS Data Base Management System
  • DBMS is performed through a store processor, which is applied to an application and used.
  • the method collects data, normalizes the collected data, stores it in various file types through a store process, learns through a machine learning engine, creates an inference model and uses it through application applications.
  • the present invention does not provide a separate process such as format normalization by a user regardless of the type of learning engine, and a DBMS using an automatic classification storage technology that can easily use data provided by DB.
  • -It aims to provide an AI framework and an automatic classification storage method using the same.
  • the DBMS-AI framework using automatic classification storage technology includes an input unit 10 for receiving raw data; An inference unit 20 for inferring an object from the input raw data; A determining unit 30 for determining the type of the inferred object; Store process 40 for delivering the object processed by the determination unit 30 to the auto classifier 50; An automatic classifier (50) that automatically classifies according to the transmitted object and automatically generates a storage category for each classified object; And it provides a DBMS-AI framework using an automatic classification and storage technology, characterized in that consisting of DBMS (60).
  • the reasoning unit 20 and the determining unit 30 determine an object's reasoning and type through a learning model, and the learning model applies a deep learning model.
  • the automatic classifier further includes a learning engine and an inference model, and the storage category for each object is automatically generated according to the cumulative number of recognized objects classified by the determination unit 30. It provides DBMS-AI framework using.
  • the automatic classification storage method using the DBMS-AI framework using the automatic classification storage technology includes an input step of inputting raw data (S10); An inference step of inferring the type of the object by applying an inference model to the input raw data (S20); A determination step (S30) of classifying and determining the type of each object by applying a learning model to information according to the type of the object deduced in the reasoning step (S20); A store processing step (S40) of classifying object information for which the type is determined in the determination step (S30); An automatic classification step (S50) of automatically classifying the information transmitted in the store processing step (S40) and automatically generating a category for each object, and storing the classified object according to the generated category; And by providing an automatic classification storage method using the DBMS-AI framework using an automatic classification storage technology characterized in that it consists of a DBMS transmission step (S60) to transmit to the DBMS can achieve the object of the present invention better. .
  • 1 and 2 are schematic diagrams of a conventional DBMS.
  • FIG. 3 is a block diagram of the framework of the present invention.
  • FIG. 4 is a block diagram showing an embodiment of the present invention.
  • FIG. 5 is a block diagram showing another embodiment of the present invention.
  • FIG. 6 is a flow chart for an automatic classification storage method according to the present invention.
  • FIG. 3 is a block diagram showing a framework of the present invention
  • FIG. 4 is a block diagram showing an embodiment of the present invention
  • FIG. 5 is a block diagram showing another embodiment of the present invention.
  • the DBMS-AI framework using the automatic classification and storage technology includes an input unit 10 for receiving raw data and an inference unit for inferring objects from the input raw data. (20), the determination unit 30 for determining the type of the inferred object, the store process 40 for delivering the object processed by the determination unit 30 to the auto classifier 50, automatically according to the transmitted object It is composed of an auto classifier (50) and a DBMS (60) that classifies and automatically generates storage categories for each classified object.
  • the input unit 10 is to receive raw data in various forms, such as audio, video, or photo, and any means that can receive data can be used.
  • the reasoning unit 20 classifies the types of raw data input from the input unit 10 and analyzes each data according to the classified types.
  • an object included in the data is inferred, and an object included in the input raw data through deep learning is deduced.
  • an object included in an image is inferred.
  • the feature for each object is extracted, and the object is determined based on the extracted feature.
  • the object may be a variety of information such as people, animals, objects, plants, sound areas, places, weather, emotions, number of objects, and quantity.
  • the determination unit 30 for determining the object inferred by the inference unit 20 determines the type of the object.
  • the object as described above refers to the person, animal, object, plant, sound area, place, weather, emotion, number of objects, quantity, etc. described above.
  • the inference unit 20 determines the object information inferred by the deep learning more accurately through the deep learning.
  • the store process 40 is transmitted to the auto classifier 50.
  • the Store process 40 also performs normalization processing.
  • the normalization referred to here is an inference unit 20 to the auto classifier 50 through a compatible operation according to various types of S/W such as OS, Oracle, Informix, and access.
  • S/W such as OS, Oracle, Informix, and access.
  • the object information processed by the determination unit 30 are transmitted to the auto classifier 50.
  • Objects (persons, animals, objects, plants, sound areas, places, weather emotions, number of objects, quantity, etc.) classified by the determination unit 30 transmitted to the auto classifier 50 through the Store process 40 as described above. ) Automatically forms a category and automatically stores objects in the formed category.
  • the category is automatically generated according to the cumulative number of classified objects, and is for filtering objects recognized as one-time use.
  • an automatically generated method when an object classified by the user's specified number of exposures or more is recognized, a category in which the object is to be stored is generated and stored in the generated category.
  • information on an object stored by category that is, the type of the object and the information of the stored category, is indexed, and the indexed information is stored, then DB is generated and a table is generated accordingly.
  • the DB-formed and generated table information is transmitted to the DBMS 60 as described above.
  • the DBMS 60 may further include a learning engine and an inference model to increase the reliability of data processing (see FIG. 5).
  • the learning engine is illustrated as an example of a HYBRID engine, a machine learning engine, etc., but is not limited thereto, and anything that can perform tasks such as analyzing an object through learning is possible.
  • a deep learning model applied by the preceding inference unit 20 and the determination unit 30 may be applied, and various inference models may also be applied, not only limited to the deep learning model.
  • SQL Structured Query Language
  • SAQL Structured Query AI Language
  • SAQL as described above includes'DML, UML, VIEW', etc., and AI can be defined in a language including'Train, Running' functions.
  • the information processed by the DBMS 60 is provided to an application application and can be applied to various business processes, that is, presentations.
  • the operation method according to the present invention is an input step (S10) for inputting raw data, an inference step (S20) for inferring the type of object by applying an inference model to the input raw data, and an object deduced in the reasoning step (S20).
  • the automatic classification step (S50) for automatically classifying the information transmitted in the processing step (S40) and automatically generating a category for each object according to the generated category, and a DBMS transmission step for transmitting to the DBMS ( S60).
  • the learning model applied in the inference step S20 is to infer an object from the input raw data by applying a deep learning model, thereby inferring the type of the object through repeated learning.
  • the type of the object is determined through deep learning, which is a learning model, using the information of the object inferred in the inference step (S20), and determines the object information inferred by the inference unit 20 It is sent to (30) to go through the work.
  • the type of the object determined in the determination step (S30) is subjected to a store processing step (S40).
  • the store processing operation classifies the object after transmitting the information processed by the determination unit 30 to the store process (40). Is done.
  • the type of the object determined by the determination unit is classified, and normalization processing is also performed.
  • the normalization referred to herein is compatible with various types of S/W such as OS, Oracle, Informix, and Access.
  • the classified object information transmitted in the store processing step (S40) is automatically classified by the auto classifier 50, and a category for storing each object is automatically generated according to the type of the classified object, and the generated category It goes through an automatic classification step (S50) for automatically storing the objects classified in the.
  • a DBMS transmission step (S60) is performed.
  • the DBMS step information that is automatically stored and classified in the DBMS 60 is transmitted.
  • the information transmitted to the DBMS as described above can be used for presentations, which are business processes, through various application applications.
  • the present invention can be completed by the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

본 발명은 자동 분류저장 기술을 이용한 DBMS-AI(Data Base Management System-Artificial Intelligence) 프레임 워크 및 이를 이용한 자동분류 저장 방법에 대한 것으로, 획득되는 원시데이터를 학습모델을 적용하여 원시데이터에 포함되는 객체를 분류 하고, 이를 DBMS에 전송하며, 다양한 OS에 적용가능하도록 정규화 작업까지 수행할 수 있는 기술이다. 이를 위해, 원시데이터를 입력받는 입력부(10); 입력된 원시데이터로부터 객체를 추론하는 추론부(20); 추론된 객체의 종류를 판단하는 판단부(30); 판단부(30)에서 처리된 객체를 오토분류기(50)에 전달하기 위한 Store process(40); 전송된 객체에 따라 자동으로 분류해주고, 분류된 객체별 저장카테고리를 자동으로 생성해주는 오토분류기(50); 및 DBMS(60)로 구성되는 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크를 제공한다.

Description

자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크 및 이를 이용한 자동분류저장 방법
본 발명은 자동 분류저장 기술을 이용한 DBMS-AI(Data Base Management System-Artificial Intelligence) 프레임 워크 및 이를 이용한 자동분류 저장 방법에 대한 것으로, 획득되는 원시데이터를 학습모델을 적용하여 원시데이터에 포함되는 객체를 분류 하고, 이를 DBMS에 전송하며, 다양한 OS에 적용가능하도록 정규화 작업까지 수행할 수 있는 기술이다.
양한 정보가 생성되고, 이를 이용하는 응용소프트웨어가 발달함에 따라, 대용량의 정보를 처리할 수 있는 빅데이터 또한 발전하고 있다.
그러나, 이러한 빅데이터 기술이 발전함에 따라, 이를 처리하기 위한 시스템 및 하드웨어 또한 이에 따라 점점더 고성능으로 발전하고 있으나, 처리해야 하는데이터의 양이 방대해짐에 따라 기기 또는 소프트웨어 간에 속도 차이 등으로 인한 버퍼링이 발생하거나, 대용량의 저장장치가 더욱더 요구되고 있다.
이에 따라 다양한 형태의 원시데이터를 관리할 수 있는 데이터베이스 관리시스템(이하, DBMS라 함)이 개발되고 있다.
이와 같은 DBMS(Data Base Management System)는 데이터베이스를 관리하며 응용프로그램들이 데이터베이스를 공유하며 사용할 수 있는 환경을 제공하는 소프트웨어로서, 이에 대하여 구체적으로 설명하면, 데이터베이스를 구축하는 틀을 제공하고, 효율적으로 데이터를 검색하고 저장하는 기능을 제공한다.
또한, 응용 프로그램들이 데이터베이스에 접근할 수 있는 인터페이스를 제공하고, 장애에 대한 복구 기능, 사용자 권한에 따른 보안성 유지 기능 등을 제공하고 있으며, 대표적으로는 오라클, 인포믹스, 엑세스 등이 이용되고 있다.
그러나, 이와 같은 종래의 기술들은 대부분 도 1에서와 같이 원시 형태의 DB저장소 사용방법이 이용된다.
그 방법으로는 데이터를 수집하고, 수집된 데이터를 정규화한 후 스토어프로세서를 거쳐 DBMS 하게 되고, 이를 응용어플리케이션에 적용하여 사용하게 된다.
이와 같은 종래의 방법은 대용량 및 클라우드 형식의 사용가능한 데이터가 많이 있으나, 단순히 데이터를 저장하고 이를 제공하는 정도의 기술만을 제안하고 있는 정도로, 사용자가 이를 사용하기 위하여 데이터 인출 후 별도의 2차 가공을 해야 하는 문제점이 있었다.
또한, 이를 극복하기 위하여 도 2와 같은 기계학습 방법을 적용한 기술이 제안된다.
그 방법으로는 데이터를 수집하고, 수집된 데이터를 정규화한 후 스토어프로세스를 통하여 다양한 파일형태로 저장한 후, 기계학습엔진을 통하여 학습한 후 추론모델을 생성하고 이를 응용어플리케이션을 통하여 이용하게 된다.
여기서, 기계학습엔진으로는 텐서플로우, 카페, 케라스 등 다양한 종류가 존재하며, 이와 같은 기계학습 엔진은 각각 사용하는 포맷이 상이하여 개발자들은 데이터의 수집, 태킹, 어노테이션 포멧 정규화 등의 학습을 위하여 별도의 프로세스들을 제공해야 하고, 이로 인하여 관리가 어려운 문제점이 있었다.
본 발명은 상기와 같은 문제점을 극복하기 위해, 학습엔진의 종류에 상관없이 사용자가 포멧 정규화와 같은 별도의 프로세스를 제공하지 않고, DB에서 제공하는 데이터를 손쉽게 이용할 수 있는 자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크 및 이를 이용한 자동분류저장 방법을 제공하는 것을 목적으로 한다.
본 발명의 과제해결을 위하여, 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크는 원시데이터를 입력받는 입력부(10); 입력된 원시데이터로부터 객체를 추론하는 추론부(20); 추론된 객체의 종류를 판단하는 판단부(30); 판단부(30)에서 처리된 객체를 오토분류기(50)에 전달하기 위한 Store process(40); 전송된 객체에 따라 자동으로 분류해주고, 분류된 객체별 저장카테고리를 자동으로 생성해주는 오토분류기(50); 및 DBMS(60)로 구성되는 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크를 제공하게 된다.
상기 추론부(20) 및 판단부(30)에서는 학습모델을 통하여 객체의 추론 및 종류를 판단하게 되고, 상기 학습모델은 딥러닝 모델을 적용하게 된다.
또한, 상기 오토분류기에는 학습엔진 및 추론모델이 더 내장되고, 상기 객체별 저장카테고리는 판단부(30)에서 분류된 객체가 인식되는 누적수에 따라 자동으로 생성되는 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크를 제공하게 된다.
또한, 자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크를 이용한 자동분류저장 방법은 원시데이터를 입력하는 입력단계(S10); 입력된 원시데이터를 추론모델을 적용하여 객체의 종류를 추론하는 추론단계(S20); 상기 추론단계(S20)에서 추론된 객체의 종류에 따른 정보를 학습모델을 적용하여 객체별 종류를 분류하여 판단하는 판단단계(S30); 상기 판단단계(S30)에서 종류가 판단된 객체 정보를 분류하는 스토어 프로세싱단계(S40); 상기 스토어프로세싱 단계(S40)에서 전송된 정보를 자동으로 분류하고 이에 따른 객체별 카테고리를 자동으로 생성한 후 생성된 카테고리별로 분류된 객체를 저장하는 자동분류단계(S50); 및 DBMS로 전송하는 DBMS전송단계(S60)로 구성되는 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크를 이용한 자동분류저장 방법을 제공함으로써 본 발명의 목적을 보다 잘 달성할 수 있는 것이다.
본 발명의 자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크 및 이를 이용한 자동분류저장 방법을 제공함으로써, 학습엔진의 종류에 상관없이 사용자가 포멧 정규화와 같은 별도의 프로세스를 제공하지 않고, 손쉽게 데이터를 활용할 수 있어, 사용자의 편의성을 높일 수 있는 효과가 있다.
도 1 및 도 2는 종래의 DBMS에 대한 개요도이다.
도 3은 본 발명의 프레임워크에 대한 구성도이다.
도 4는 본 발명의 실시예를 도시한 블럭도이다.
도 5는 본 발명의 또다른 실시예를 도시한 블록도이다.
도 6은 본 발명에 따른 자동분류저장 방법에 대한 순서도이다.
이하에서 본 발명의 자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크 및 이를 이용한 자동분류 저장방법에 대하여 도면을 참조하여 상세하게 설명하도록 한다.
도 3은 본 발명의 프레임워크에 대한 구성도이고, 도 4는 본 발명의 실시예를 도시한 블록이며, 도 5는 본 발명의 또다른 실시예를 도시한 블록도이다.
도 3 내지 도 5를 참조하여 상세하게 설명하면, 본 발명에 따른 자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크는 원시데이터를 입력받는 입력부(10), 입력된 원시데이터로부터 객체를 추론하는 추론부(20), 추론된 객체의 종류를 판단하는 판단부(30), 판단부(30)에서 처리된 객체를 오토분류기(50)에 전달하기 위한 Store process(40), 전송된 객체에 따라 자동으로 분류해주고, 분류된 객체별 저장카테고리를 자동으로 생성해주는 오토분류기(50) 및 DBMS(60)로 구성된다.
여기서 상기 입력부(10)는 오디오, 비디오 또는 사진과 같은 다양한 형태의 원시데이터를 입력받는 것으로, 데이터를 입력받을 수 있는 수단이면 무엇이든 가능하다.
상기 추론부(20)는 입력부(10)에서 입력되는 원시데이터의 종류를 구분하고, 구분된 종류에 따라 각각의 데이터를 분석하는 것이다.
보다 상세하게 설명하면, 각각의 데이터를 분석하여 데이터에 포함되는 객체를 추론하게 되는 것으로, 입력된 원시데이터를 딥러닝을 통하여 포함되는 객체를 추론하게 된다.
예를 들어, 영상 정보인 비디오의 경우 영상에 포함된 객체를 추론하게 되는데, 반복된 딥러닝을 통하여 객체별 특징을 추출하고, 추출된 특징을 근거로 객체를 판단하게 된다.
상기 객체는 사람, 동물, 사물, 식물, 소리 영역, 장소, 날씨, 감정, 객체 수, 분량 등의 다양한 정보가 될 수 있다.
상기와 같이 추론부(20)에서 추론된 객체를 판단하는 판단부(30)에서 객체의 종류를 판단하게 된다.
상기와 같은 객체는 앞서 설명한 사람, 동물, 사물, 식물, 소리 영역, 장소, 날씨, 감정, 객체수, 분량 등을 말하는 것이다.
상기와 같은 객체의 종류를 판단부(30)에서 판단하는 과정에서도 딥러닝을 통하여 추론부(20)에서 딥러닝에 의해 추론된 객체정보를 보다 정확하게 판단하도록 한다.
상기 판단부(30)에서 판단된 객체의 종류에 따라 분류한 후 오토분류기(50)로 전송하기 위한 상기 Store process(40)를 거치게 된다.
이때, Store process(40)는 정규화 처리도 하게 되는데, 여기서 말하는 정규화는 OS와 같은 다양한 S/W인 오라클, 인포믹스, 엑세스 등의 종류에 따라 호환작업을 통하여 오토분류기(50)에 추론부(20) 및 판단부(30)에서 처리된 객체 정보를 오토분류기(50)에 전송 한다.
상기와 같이 상기 Store process(40)를 거쳐 오토분류기(50)에 전송된 판단부(30)에서 분류된 객체(사람, 동물, 사물, 식물, 소리영역, 장소, 날씨 감정, 객체 수, 분량 등)에 따라 자동으로 카테고리를 형성하고 형성된 카테고리에 자동으로 객체를 저장하게 된다.
이때, 카테고리는 분류된 객체의 누적수에 따라 자동으로 생성되는데, 1회성으로 인식되는 객체를 필터링하기 위한 것이다.
이는 오토분류기에 전송되는 객체 정보 등이 많아질 경우 이에 따른 카테고리의 수가 많아지고, 사용빈도가 적은 정보 또한 저장되어야 하는 문제점을 극복하기 위한 것이다.
여기서, 상기 누적수에 따라 자동으로 생성되는 방법으로는 사용자가 지정한 노출횟수 이상 판단부(30)에서 분류된 객체가 인식될 경우 객체가 저장될 카테고리를 생성하고, 생성된 카테고리에 저장하게 된다.
상기와 같이 카테고리별로 저장된 객체에 대한 정보 즉, 객체의 종류 및 저장되어 있는 카테고리의 정보를 인덱스처리하여, 인덱스 처리된 정보를 저장한 후, DB화시키고 이에 따른 테이블을 생성하게 된다.
상기와 같이 DB화 및 생성된 테이블 정보를 DBMS(60)로 전송하게 된다.
이와 같은 DBMS(60)에는 데이터 처리의 신뢰성을 높일 수 있도록 학습엔진과 추론모델을 더 내장할 수 있다.(도 5 참조)
여기서, 학습엔진은 HYBRID엔진, 기계학습엔진 등을 예로 들어 도시하였으나, 이를 한정하는 것은 아니며, 학습을 통하여 객체를 분석 하는 등의 작업을 수행할 수 있는 것은 무엇이든 가능하다.
상기 추론모델로는 앞선 추론부(20) 및 판단부(30)에서 적용된 딥러닝 모델을 적용할 수 있으며, 이 또한 딥러닝 모델로만 한정하는 것이 아니라 다양한 추론 모델이 적용될 수 있다.
이때, 상기 DBMS(60)에서는 인공지능기능이 포함되는 SQL(Structured Query Language)가 적용되는데, 본 발명에서는 인공지능 기능을 포함하는 SAQL(Structured Query AI Language)라 칭하고 이를 적용하게 된다.
상기와 같은 SAQL은 'DML, UML, VIEW' 등이 포함되고, AI는 'Train, Running' 기능을 포함하는 언어로 정의할 수 있다.
이와 같은 DBMS(60)에서 처리가 된 정보는 응용어플리케이션에 제공되어 다양한 업무처리 즉, 프리젠테이션에 적용될 수 있는 것이다.
본 발명의 또다른 기술군인 자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크를 이용한 자동분류저장 방법에 대하여 도 6을 참조하여 상세하게 설명하도록 한다.
본 발명에 따른 운영방법은 원시데이터를 입력하는 입력단계(S10), 입력된 원시데이터를 추론모델을 적용하여 객체의 종류를 추론하는 추론단계(S20), 상기 추론단계(S20)에서 추론된 객체의 종류에 따른 정보를 학습모델을 적용하여 객체별 종류를 분류하여 판단하는 판단단계(S30), 상기 판단단계(S30)에서 종류가 판단된 객체 정보를 분류하는 스토어 프로세싱단계(S40), 상기 스토어프로세싱 단계(S40)에서 전송된 정보를 자동으로 분류하고 이에 따른 객체별 카테고리를 자동으로 생성한 후 생성된 카테고리별로 분류된 객체를 저장하는 자동분류단계(S50) 및 DBMS로 전송하는 DBMS전송단계(S60)로 구성된다.
상기 원시데이터 입력단계(S10)는 다양한 형태의 원시데이터를 입력부(10)에 입력하게 되는 것이다.
또한, 상기 추론단계(S20)에서 적용하는 학습모델은 딥러닝 모델을 적용하여 입력된 원시데이터에서 객체를 추론하는 것으로, 반복된 학습을 통하여 객체의 종류를 추론하게 된다.
이는 상기 입력부(10)에서 입력된 데이터를 추론부(20)로 전송한 다음 추론작업을 거치게 된다.
상기 판단단계(S30)에서는 추론단계(S20)에서 추론된 객체의 정보를 이용하여 학습모델인 딥러닝을 통하여 객체의 종류를 판단하게 되는 것으로, 추론부(20)에서 추론된 객체정보를 판단부(30)로 전송하여 작업을 거치게 된다.
상기 판단단계(S30)에서 판단된 객체의 종류는 스토어 프로세싱단계(S40)을 거치게 되는데, 상기 스토어 프로세싱 작업은 Store process(40)에 판단부(30)에서 처리된 정보를 전송한 후 객체를 분류하게 된다.
이때, 상기 스토어 프로세싱단계(S40)에서 판단부에서 판단된 객체의 종류 분류하고, 정규화 처리도 하게 되는데, 여기서 말하는 정규화는 OS와 같은 다양한 S/W인 오라클, 인포믹스, 엑세스 등의 종류에 따라 호환작업을 통하여 오토분류기(50)에 추론부(20) 및 판단부(30)에서 처리된 객체 정보를 오토분류기(50)에 전송 한다.
상기 스토어 프로세싱단계(S40)에서 전송된 분류된 객체정보를 오토분류기(50)에서 자동으로 분류하며, 분류된 객체의 종류에 따라 각각의 객체를 저장하기 위한 카테고리를 자동으로 생성하고, 생성된 카테고리에 분류된 객체를 자동으로 저장하게 되는 자동분류단계(S50)를 거치게 된다.
이때, 객체의 종류에 따라 카테고리를 생성할 때, 객체가 인식되는 노출횟수에 따라 카테고리의 생성여부를 결정하게 된다.
상기 자동분류단계(S50) 후 DBMS전송단계(S60)를 거치게 되는데, 상기 DBMS단계에서는 DBMS(60)에 자동으로 저장되고 분류된 정보를 전송하게 되는 것이다.
상기와 같이 DBMS에 전송된 정보는 다양한 응용 어플리케이션을 통하여 업무처리인 프리젠테이션 등에 활용될 수 있는 것이다.
상기와 같은 방법에 의해 본 발명을 완성할 수 있는 것이다.
10 : 입력부 20 : 추론부
30 : 판단부 40 : Store process
50 : 오토분류기 60 : DBMS

Claims (6)

  1. 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크는
    원시데이터를 입력받는 입력부(10);
    입력된 원시데이터로부터 객체를 추론하는 추론부(20);
    추론된 객체의 종류를 판단하는 판단부(30);
    판단부(30)에서 처리된 객체를 오토분류기(50)에 전달하기 위한 Store process(40);
    전송된 객체에 따라 자동으로 분류해주고, 분류된 객체별 저장카테고리를 자동으로 생성해주는 오토분류기(50); 및
    DBMS(60)로 구성되는 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크.
  2. 제 1항에 있어서,
    상기 추론부(20) 및 판단부(30)에서는 학습모델을 통하여 객체의 추론 및 종류를 판단하는 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크.
  3. 제 2항에 있어서,
    상기 학습모델은 딥러닝 모델인 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크.
  4. 제 1항에 있어서,
    상기 오토분류기에는 학습엔진 및 추론모델이 더 내장되는 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크.
  5. 제 1항 내지 제4항 중 어느 한항에 있어서,
    상기 객체별 저장카테고리는 판단부(30)에서 분류된 객체가 인식되는 누적수에 따라 자동으로 생성되는 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임워크.
  6. 자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크를 이용한 자동분류저장 방법은 원시데이터를 입력하는 입력단계(S10);
    입력된 원시데이터를 추론모델을 적용하여 객체의 종류를 추론하는 추론단계(S20);
    상기 추론단계(S20)에서 추론된 객체의 종류에 따른 정보를 학습모델을 적용하여 객체별 종류를 분류하여 판단하는 판단단계(S30);
    상기 판단단계(S30)에서 종류가 판단된 객체 정보를 분류하는 스토어 프로세싱단계(S40);
    상기 스토어프로세싱 단계(S40)에서 전송된 정보를 자동으로 분류하고 이에 따른 객체별 카테고리를 자동으로 생성한 후 생성된 카테고리별로 분류된 객체를 저장하는 자동분류단계(S50); 및
    DBMS로 전송하는 DBMS전송단계(S60)로 구성되는 것을 특징으로 하는 자동 분류저장 기술을 이용한 DBMS-AI 프레임 워크를 이용한 자동분류저장 방법.
PCT/KR2018/015872 2018-12-13 2018-12-13 자동 분류저장 기술을 이용한 dbms-ai 프레임 워크 및 이를 이용한 자동분류저장 방법 WO2020122286A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0160721 2018-12-13
KR1020180160721A KR20200075147A (ko) 2018-12-13 2018-12-13 자동 분류저장 기술을 이용한 dbms-ai 프레임 워크 및 이를 이용한 자동분류저장 방법

Publications (1)

Publication Number Publication Date
WO2020122286A1 true WO2020122286A1 (ko) 2020-06-18

Family

ID=71075692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015872 WO2020122286A1 (ko) 2018-12-13 2018-12-13 자동 분류저장 기술을 이용한 dbms-ai 프레임 워크 및 이를 이용한 자동분류저장 방법

Country Status (2)

Country Link
KR (1) KR20200075147A (ko)
WO (1) WO2020122286A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115204158B (zh) * 2022-07-20 2023-05-26 平安科技(深圳)有限公司 数据隔离应用方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355183A (ja) * 2003-05-28 2004-12-16 Nippon Telegr & Teleph Corp <Ntt> オブジェクト学習装置と方法、オブジェクト識別装置と方法、およびこれらのプログラムとこれらのプログラムを記録した記録媒体
JP2009259250A (ja) * 2008-04-18 2009-11-05 Nec (China) Co Ltd 文書の分類器を生成する方法とそのシステム
JP2010170529A (ja) * 2008-10-30 2010-08-05 Nec (China) Co Ltd オブジェクト分類方法およびオブジェクト分類システム
KR101854853B1 (ko) * 2016-12-26 2018-05-04 숭실대학교 산학협력단 온톨로지를 이용한 영상 미디어의 분류 장치 및 방법
KR101869895B1 (ko) * 2018-01-19 2018-06-25 주식회사 리싸이클파크 딥 러닝 기반의 오브젝트 인식 서버, 오브젝트 인식 시스템 및 오브젝트 인식 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355183A (ja) * 2003-05-28 2004-12-16 Nippon Telegr & Teleph Corp <Ntt> オブジェクト学習装置と方法、オブジェクト識別装置と方法、およびこれらのプログラムとこれらのプログラムを記録した記録媒体
JP2009259250A (ja) * 2008-04-18 2009-11-05 Nec (China) Co Ltd 文書の分類器を生成する方法とそのシステム
JP2010170529A (ja) * 2008-10-30 2010-08-05 Nec (China) Co Ltd オブジェクト分類方法およびオブジェクト分類システム
KR101854853B1 (ko) * 2016-12-26 2018-05-04 숭실대학교 산학협력단 온톨로지를 이용한 영상 미디어의 분류 장치 및 방법
KR101869895B1 (ko) * 2018-01-19 2018-06-25 주식회사 리싸이클파크 딥 러닝 기반의 오브젝트 인식 서버, 오브젝트 인식 시스템 및 오브젝트 인식 방법

Also Published As

Publication number Publication date
KR20200075147A (ko) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2024075911A1 (ko) Ai에 의한 재난안전지식 통합관리시스템
US8218828B2 (en) Systems and methods for biometric information automation
CN110688495A (zh) 一种事件信息的知识图谱模型构建方法、装置、存储介质
WO2022039318A1 (ko) 비식별화 영상 데이터를 이용한 인공지능 학습 방법 및 시스템
CN101950296B (zh) 云数据审计的方法及系统
WO2012108623A1 (ko) 이미지 데이터베이스에 신규 이미지 및 이에 대한 정보를 추가하기 위한 방법, 시스템 및 컴퓨터 판독 가능한 기록 매체
CN106326482A (zh) 一种大数据可视化采集分析及文件转换系统和方法
WO2023068795A1 (ko) 이미지 분석을 이용한 메타버스 생성 장치 및 방법
WO2021215551A1 (ko) 블록체인 기반의 전자 연구노트 검증 방법 및 이를 이용한 전자 연구노트 관리 장치
WO2020111314A1 (ko) 개념 그래프 기반 질의응답 장치 및 방법
KR102580835B1 (ko) 보안정책 자동화 관리시스템
WO2023101368A1 (ko) 로봇에 작업을 할당하는 다중 로봇 작업의 처리 방법 및 장치
CN107391932A (zh) 模拟临床门诊病例学习考试管理系统
CN111736983B (zh) 一种面向任务和资源感知的微服务部署方法
WO2020122286A1 (ko) 자동 분류저장 기술을 이용한 dbms-ai 프레임 워크 및 이를 이용한 자동분류저장 방법
WO2020101196A1 (ko) 인공지능 기반의 모듈 식별 및 어시스턴트 시스템
WO2022004978A1 (ko) 건축 장식재 디자인 업무 시스템 및 방법
CN110929032A (zh) 一种软件系统的用户需求处理系统及处理方法
WO2021091096A1 (ko) 공정성 분류 네트워크를 이용한 시각 질의 응답 방법 및 장치
WO2020111333A1 (ko) 영상 화질 개선 시스템 및 그 방법
CN111814026A (zh) 一种基于微信小程序的垃圾分类系统
WO2020101121A1 (ko) 딥러닝 기반의 영상분석 방법, 시스템 및 휴대 단말
WO2024101466A1 (ko) 속성 기반 실종자 추적 장치 및 방법
WO2022092497A1 (ko) 유사 사건 정보제공시스템 및 그 방법
WO2020138747A1 (ko) 초소형의 일회용 IoT 서비스 인프라 운용 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943282

Country of ref document: EP

Kind code of ref document: A1