WO2020122048A1 - Animal cells, animal cell production method, and target protein production method - Google Patents

Animal cells, animal cell production method, and target protein production method Download PDF

Info

Publication number
WO2020122048A1
WO2020122048A1 PCT/JP2019/048215 JP2019048215W WO2020122048A1 WO 2020122048 A1 WO2020122048 A1 WO 2020122048A1 JP 2019048215 W JP2019048215 W JP 2019048215W WO 2020122048 A1 WO2020122048 A1 WO 2020122048A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cells
mzb1
cell
perp1
Prior art date
Application number
PCT/JP2019/048215
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 渡辺
達也 松浦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020122048A1 publication Critical patent/WO2020122048A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to an animal cell that expresses a target protein.
  • the present invention relates to a method for producing the above animal cell and a method for producing a target protein using the above animal cell.
  • fed-batch culture in which nutrients are added to the culture medium to improve the cell condition.
  • the culture solution is continuously filtered and discharged, while a fresh medium containing nutrient components is continuously supplied to the culture tank.
  • the perfusion culture method is often used.
  • Patent Document 1 as a method capable of producing a protein in a high production amount, cells that strongly express alanine aminotransferase and into which a DNA encoding a desired polypeptide is introduced are cultured to obtain a desired polypeptide. Methods for producing the polypeptides have been described, including producing.
  • the present invention has an object to provide an animal cell capable of producing a target protein with high productivity. Another object of the present invention is to provide a method for producing the above-mentioned animal cell and a method for producing a target protein using the above-mentioned animal cell.
  • the present inventors have conducted extensive studies in order to solve the above-mentioned problems, and as a result, forcibly expressed the MZB1/pERp1 gene (MZB1 indicates Marginal zone B-and B1-cell-specific protein) in CHO cells, thereby producing a protein. It was possible to improve the antibody productivity (Qp) and the antibody production amount as a result.
  • the present invention has been completed based on the above findings.
  • ⁇ 1> An animal cell having a gene encoding a target protein and an exogenous gene encoding MZB1/pERp1 which is linked to a promoter, and which overexpresses MZB1/pERp1.
  • ⁇ 2> The animal cell according to ⁇ 1>, in which overexpression is constitutive.
  • ⁇ 3> The animal cell according to ⁇ 1> or ⁇ 2>, wherein the foreign gene encoding MZB1/pERp1 has a base sequence having 90% or more sequence identity with the base sequence shown in SEQ ID NO: 1.
  • ⁇ 4> The animal cell according to any one of ⁇ 1> to ⁇ 3>, in which the foreign gene encoding MZB1/pERp1 contains the base sequence shown in SEQ ID NO: 1.
  • ⁇ 5> The animal cell according to any one of ⁇ 1> to ⁇ 4>, wherein the animal cell is a CHO cell.
  • ⁇ 6> ⁇ 1> to ⁇ 5> including a step of introducing a gene encoding a target protein and a foreign gene encoding MZB1/pERp1 which is linked to a promoter into an animal cell The method for producing animal cells according to any one of 1.
  • ⁇ 7> The method according to ⁇ 6>, wherein the step of introducing a foreign gene encoding MZB1/pERp1 and linked to a promoter is performed by electroporation.
  • a method for producing a target protein which comprises culturing the animal cell according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 9> The method according to ⁇ 8>, wherein the culture is fed-batch culture.
  • the seeding cell density of the cell culture is 0.2 ⁇ 10 6 cells/mL or more and 5 ⁇ 10 6 cells/mL or less.
  • the viable cell rate during the culture period is 60% or more over the entire period.
  • ⁇ 12> The method according to ⁇ 8>, wherein the culture is perfusion culture.
  • the seeding cell density of the cell culture is 0.2 ⁇ 10 6 cells/mL or more and 1 ⁇ 10 7 cells/mL or less.
  • the viable cell rate during the culture period is 90% or more over the entire period.
  • the target protein can be produced with high productivity.
  • FIG. 1 shows the results of measuring the antibody concentration in the culture supernatant of cells after gene transfer.
  • FIG. 2 shows the results of measuring the antibody productivity (Qp) per cell in the culture supernatant of cells after gene transfer.
  • FIG. 3 shows the results of measuring the cumulative number of viable cells during the culture period.
  • the numerical range indicated by using “to” means a range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
  • the animal cell of the present invention has a gene encoding a protein of interest and a foreign gene encoding MZB1/pERp1 which is linked to a promoter, wherein the MZB1/pERp1 is overexpressed. Is a cell.
  • MZB1/pERp1 is expressed in the endoplasmic reticulum and promotes the formation of protein disulfide bonds in the mechanism by which cells secrete the useful product of antibodies.
  • MZB1/pERp1 was overexpressed in CHO cells, it was expressed when B cells were differentiated into plasma cells and is required for the proper production of IgG heavy chain under endoplasmic reticulum stress. It has been reported (Genes & development 28:2014 1165-1178). Further, it has been reported that B cells introduced with pERp1 are important for IgM accumulation and secretion, and increase the IgM production (Immunity. 2010, 24; 33(5):723-735). However, the relationship between MZB1/pERp1 gene expression and recombinant protein production is unknown.
  • Patent Document 1 the decrease in the survival rate was moderated by the effect of the introduction of alanine aminotransferase, but the period of 60% or less is long, and there is concern about the effect on antibody quality. Moreover, since the antibody productivity (Qp) per cell is lowered by the introduction of the taurine transporter, there is a problem that the production amount is not linked to the increase in cell density. On the other hand, in the present invention, the antibody productivity (Qp) per cell is improved by enhancing the expression of MZB1/pERp1 in the protein secretory pathway.
  • the type of the target protein is not particularly limited, and examples thereof include recombinant polypeptide chain, recombinant secretory polypeptide chain, antigen-binding protein, human antibody, humanized antibody, chimeric antibody, mouse antibody, bispecific antibody, and Fc fusion. Proteins, fragmented immunoglobulins, single chain antibodies (scFv).
  • the target protein is preferably a human antibody, a humanized antibody, a chimeric antibody, or a mouse antibody.
  • the fragmented immunoimmunoglobulin include Fab, F(ab′) 2 and Fv.
  • the class of the antibody is not particularly limited, and may be any class such as IgG1, IgG2, IgG3, IgG4 and the like, IgG, IgA, IgD, IgE, IgM, etc., but IgG and IgM are preferable when used as a medicine.
  • Human antibodies include all antibodies that have one or more variable and constant regions derived from human immunoglobulin sequences.
  • all variable and constant domains are derived from human immunoglobulin sequences (fully human antibodies).
  • Humanized antibodies are less likely to elicit an immune response and/or elicit a severe immune response when administered to a human subject, as compared to a non-human species antibody.
  • certain amino acids within the heavy and/or light chain framework and constant domains of the non-human species antibody are mutated to produce a humanized antibody.
  • the constant domain from the human antibody is fused to the variable domain of a non-human species.
  • a chimeric antibody is an antibody in which variable regions and constant regions that are different from each other are linked.
  • an antibody consisting of the heavy and light chain variable regions of a mouse antibody and the heavy and light chain constant regions of a human antibody is a mouse-human heterologous chimeric antibody.
  • a recombinant vector expressing a chimeric antibody can be prepared by ligating a DNA encoding the variable region of a mouse antibody with a DNA encoding the constant region of a human antibody and incorporating this into an expression vector. By culturing a recombinant cell transformed with the above vector and expressing the incorporated DNA, a chimeric antibody produced in the culture can be obtained.
  • Bispecific antibodies are antibodies produced by chemical methods or cell fusion that recognize two different antigenic specificities.
  • Bispecific antibodies can be prepared by combining two immunoglobulin molecules using a cross-linking agent such as N-succinimidyl 3-(2-pyridyldithiol) propionate or S-acetylmercaptosuccinic acid anhydride. Methods, methods of binding Fab fragments of immunoglobulin molecules to each other, and the like have been reported.
  • the Fc fusion protein refers to a protein having an Fc region and includes an antibody.
  • Fab is a monovalent fragment with V L , V H , C L and C H 1 domains.
  • F(ab′) 2 is a bivalent fragment that has two Fab fragments joined by a disulfide bridge in the hinge region.
  • the Fv fragment has the single arm VL and VH domains of the antibody.
  • Single chain antibodies are antibodies in which the V L and V H regions are joined via a linker (eg, a synthetic sequence of amino acid residues) to form a continuous protein chain, wherein the linker is It is long enough to fold the protein chain onto itself, forming a monovalent antigen binding site.
  • the gene encoding the target protein can be obtained by a method known to those skilled in the art.
  • the target protein is an antibody
  • a DNA encoding the L chain and a DNA encoding the H chain of the antibody can be used.
  • the DNA encoding the L chain and the DNA encoding the H chain of the antibody can be prepared as follows. MRNA is extracted from hybridomas, cells, phages, ribosomes, etc., which carry a gene expressing an antibody. From this mRNA, cDNA is prepared by a reverse transcription reaction using a reverse transcriptase. Each gene is obtained by amplifying the L chain gene or the H chain gene by PCR using a primer having a complementary nucleotide sequence with the L chain gene or the H chain gene and cDNA, and ligating with a cloning plasmid.
  • the DNA encoding the L chain fragment and the DNA encoding the H chain fragment of the antibody can be prepared as follows. MRNA is extracted from hybridomas, cells, phages, ribosomes, etc., which carry a gene expressing an antibody. From this mRNA, cDNA is prepared by a reverse transcription reaction using a reverse transcriptase. Each gene fragment is obtained by amplifying the L chain gene fragment or the H chain gene fragment by PCR using a primer and cDNA having a complementary nucleotide sequence to the L chain gene fragment or the H chain gene fragment, and ligating with a cloning plasmid.
  • MZB1/pERp1 and MZB1/pERp1 genes are not particularly limited, and a foreign gene encoding MZB1/pERp1 derived from mammals such as human, monkey, mouse, rat and hamster can be used.
  • a foreign gene refers to a gene introduced into an animal cell from the outside. In addition, even when an endogenous gene is amplified and introduced into a gene, it is regarded as a foreign gene.
  • nucleotide sequence and amino acid sequence of human MZB1/pERp1 are shown in SEQ ID NOs: 1 and 2 in the sequence listing.
  • Amino acid sequence of human MZB1/pERp1 gene (SEQ ID NO: 2) MRLSLPLLLLLLGAWAIPGGLGDRAPLTATAPQLDDEEMYSAHMPAHLRCDACRAVAYQMWQNLAKAETK LHTSNSGGRRELSELVYTDVLDRSCSRNWQDYGVREVDQVKRLTGPGLSEGPEPSISVMVTGGPWPTRLS RTCLHYLGEFGEDQIYEAHQQGRGALEALLCGGPQGACSEKVSATREEL
  • MZB1/pERp1 As a foreign gene encoding MZB1/pERp1, (1) a gene encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 2; (2) A gene encoding a protein having an MZB1/pERp1 function, which consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 2; or (3) SEQ ID NO: A protein comprising an amino acid sequence having a sequence identity of 85% or more (more preferably 90% or more, particularly preferably 95% or more, most preferably 98% or more) with the amino acid sequence described in 2, and having a MZB1/pERp1 function.
  • the MZB1/pERp1 function means a function of being expressed in the endoplasmic reticulum and promoting the formation of protein disulfide bonds.
  • a gene comprising the nucleotide sequence set forth in SEQ ID NO: 1; (5) A gene encoding a protein having the MZB1/pERp1 function, which is composed of the nucleotide sequence of SEQ ID NO: 1 with one or several nucleotides deleted, substituted or added.
  • a gene encoding a protein having a MZB1/pERp1 function which comprises a base sequence that hybridizes to the complementary sequence of the base sequence of SEQ ID NO: 1 under stringent conditions; or (7) SEQ ID NO: 1
  • the "1 or several" in the "amino acid sequence in which one or several amino acids are deleted, substituted or added” is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5. Mean, particularly preferably 1 to 3.
  • the “longer alignment length” of the denominator means that when the two alignments are compared, the longer alignment length is used as the denominator.
  • “1 or several” in the "base sequence in which one or several bases are deleted, substituted or added” is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5. Mean, particularly preferably 1 to 3.
  • “Stringent conditions” in “hybridize under stringent conditions” means hybridize under moderate or high stringent conditions, and these are recognized by those skilled in the art. be able to.
  • moderately stringent conditions include Sambrook et al., Molecular Cloning: A Laboratory Manual, Third Edition, Vol. The conditions described in 1, 7.42-7.45 Cold Spring Harbor Laboratory Press, 2001 can be mentioned.
  • Moderately stringent conditions are, for example, 5 ⁇ SSC, 0.5% SDS, 1.0 mmol/L EDTA (pH 8.0) pre-wash solution in a nitrocellulose filter, about 50 at about 40-50° C.
  • % Formamide, 2 ⁇ SSC to 6 ⁇ SSC (or other similar hybridization solution such as Stark's solution in about 50% formamide at about 42° C.), and about 60 C., 0.5.times.SSC, 0.1% SDS washing conditions can be mentioned.
  • Highly stringent conditions can also be readily determined by those of ordinary skill in the art, for example, by hybridization and/or washing at higher temperatures and/or lower salt concentrations than the moderately stringent conditions described above. Including.
  • the hybridization conditions as described above and washing with 68° C., 0.2 ⁇ SSC, 0.1% SDS can be mentioned.
  • the composition of 1 ⁇ SSC is 150 mmol/L NaCl, 15 mmol/L sodium citrate, pH 7.4.
  • SDS is sodium dodecyl sulfate and EDTA is ethylenediaminetetraacetic acid.
  • non-human MZB1/pERp1 as in the case of human MZB1/pERp1, (2A) a gene encoding a protein having an MZB1/pERp1 function, which consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added in a predetermined amino acid sequence; (3A) An amino acid sequence having a sequence identity of 85% or more (more preferably 90% or more, particularly preferably 95% or more, most preferably 98% or more) with a predetermined amino acid sequence, and has an MZB1/pERp1 function.
  • Gene encoding a protein (A) a gene comprising a base sequence in which one or several bases have been deleted, substituted or added in a predetermined base sequence, and which encodes a protein having an MZB1/pERp1 function; (6A) a gene encoding a protein having a MZB1/pERp1 function, which consists of a base sequence that hybridizes to a complementary sequence of the predetermined base sequence under stringent conditions; or (7A) a predetermined base sequence and 90% A gene encoding a protein having a MZB1/pERp1 function having a nucleotide sequence having the above sequence identity (more preferably 95% or more, particularly preferably 98% or more): May be used.
  • the foreign gene encoding MZB1/pERp1 is linked to the promoter.
  • the promoter is not particularly limited as long as it can function in host animal cells and express MZB1/pERp1.
  • the promoters include CMV promoter (cytomegalovirus promoter), EF1 ⁇ promoter (human polypeptide chain elongation factor gene promoter), SV40 promoter (cyamine virus 40 promoter), ⁇ -actin promoter, MMLV-LTR promoter (Molony mouse leukemia). Viral long terminal repeat promoters) or the mouse ⁇ -globin promoter are preferred, and the CMV promoter is more preferred.
  • MZB1/pERp1 is overexpressed.
  • Overexpression means that the expression of a gene exceeds the normal expression level in a host.
  • the expression level of MZB1/pERp1 in the animal cell of the present invention is preferably 3 times or more, and preferably 3.5 times or more, that of the animal cell having no foreign gene encoding MZB1/pERp1. It is more preferably 4 times or more, still more preferably 4.5 times or more, still more preferably 5 times or more, and particularly preferably 5.5 times or more. Although there is no upper limit, it may be 30,000 times or less, or 10,000 times or less.
  • the expression level of MZB1/pERp1 can be examined by RT-PCR method (reverse transcription-polymerase chain reaction).
  • the expression level of MZB1/pERp1 is preferably determined by reverse transcription of mRNA and real-time PCR.
  • the expression level of MZB1/pERp1 is preferably a relative expression level calculated by normalization. Normalization can be performed by, for example, comparative quantification using the expression levels of housekeeping genes such as ⁇ -actin and HPRT1 as an endogenous control.
  • Animal cells include Chinese hamster ovary (CHO) cells, BHK cells, 293 cells, myeloma cells (NS0 cells and the like), PerC6 cells, SP2/0 cells, hybridoma cells, COS cells, 3T3 cells, HeLa cells, Vero cells, MDCK cells, PC12 cells, WI38 cells and the like can be mentioned.
  • CHO cells, BHK cells, 293 cells, myeloma cells (NS0 cells and the like), PerC6 cells, SP2/0 cells and hybridoma cells are particularly preferable, and CHO cells are more preferable.
  • CHO cells are widely used for the production of recombinant proteins such as cytokines, coagulation factors, and antibodies. It is preferable to use CHO cells deficient in dihydrofolate reductase (DHFR). As the DHFR deficient CHO cells, for example, CHO-DG44 can be used.
  • DHFR dihydrofolate reductase
  • the animal of the present invention which comprises the step of introducing a gene encoding a protein of interest and a foreign gene encoding MZB1/pERp1 which is linked to a promoter into an animal cell.
  • a method for producing cells is provided.
  • the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 are introduced into the host animal cell in the form of being incorporated into the vector.
  • a mammalian-derived expression vector can be used, and examples thereof include pCMV6-Entry (manufactured by OriGene), pcDNA3 (manufactured by Invitrogen), pEGF-BOS. (Nucleic Acids. Res. 1990, 18(17), p5322), pEF, pCDM8 (manufactured by Funakoshi), INPEP4 (manufactured by Biogen-IDEC) and the like, but not particularly limited thereto.
  • the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 are polyA signals necessary for adding polyA to the gene, for example, mouse ⁇ globin polyA signal, bovine growth hormone polyA signal, SV40 polyA. It may have signals etc.
  • the method for introducing the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 into animal cells is not particularly limited, and can be performed by a method known to those skilled in the art.
  • electroporation, lipofection, a calcium phosphate method, a DEAE dextran method, a method using a cationic liposome DOTAP (manufactured by Roche Life Science), or a method using a viral vector can be performed.
  • electroporation is preferred.
  • a gene When a gene is introduced into an animal cell, the gene is introduced into only some of the cells provided for gene introduction, depending on the type of expression vector used and the gene introduction method.
  • a gene encoding a selectable marker for resistance to antibiotics may be introduced into the host cell along with the gene of interest.
  • selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate.
  • the gene encoding the target protein may be expressed in a transient expression system or may be expressed in a constitutive expression system, but is expressed in a constitutive expression system. Those that are present are preferable.
  • the foreign gene encoding MZB1/pERp1 may be expressed in a transient expression system or may be expressed in a constitutive expression system, but is expressed in a constitutive expression system. What has been done is preferable.
  • the transient expression system is a method in which a circular plasmid is incorporated into cells and expressed by the calcium phosphate method, electroporation method, lipofection method, or the like.
  • the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 are often located extrachromosomally.
  • a circular plasmid or a linear plasmid prepared by treatment with a restriction enzyme is incorporated into cells by the calcium phosphate method, electroporation method, lipofection method, etc., and a part is inserted into the genome of the cell. It is a method of expressing a target protein by doing so. It is possible to maintain the expression of the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 for a long period of time.
  • a drug resistance gene is introduced into a plasmid, drug selection becomes possible, and it is possible to efficiently select cells in which the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 are maintained on the chromosome. it can.
  • Method for producing target protein which comprises culturing the animal cell of the present invention.
  • the target protein can be produced by culturing the animal cell of the present invention.
  • the culture can be performed according to a known method.
  • a medium used for culturing the animal cells of the present invention a medium used for culturing ordinary animal cells can be used.
  • OptiCHO Lifetechnologies, 12681011) medium, Dulbecco's modified Eagle medium (DMEM), Eagle minimal essential medium (MEM), RPMI-1640 medium, RPMI-1641 medium, F-12K medium, Ham's F12 medium, Iscove modified method Dulbecco's medium (IMDM), McCoy's 5A medium, Leibovitz L-15 medium, and EX-CELLTM 300 series (JRH Biosciences), CHO-S-SFMII (Invitrogen), CHO-SF (Sigma-Aldrich). , CD-CHO (Invitrogen), IS CHO-V (Irvine Scientific), PF-ACF-CHO (Sigma-Aldrich), and the like can be used.
  • Serum such as fetal calf serum (FCS) may be added to the medium, more preferably serum-free medium, and most preferably completely synthetic medium.
  • the medium may be supplemented with additional components such as amino acids, salts, sugars, vitamins, hormones, growth factors, buffers, antibiotics, lipids, trace elements, plant protein hydrolysates.
  • the pH of the medium varies depending on the cells to be cultured, it is generally pH 6.0 to 8.0, preferably pH 6.8 to 7.6, and more preferably pH 7.0 to 7.4.
  • the culture temperature is generally 30°C to 40°C, preferably 32°C to 37°C, more preferably 36°C to 37°C, and the culture temperature may be changed during the culture.
  • Cultivation is preferably performed in an atmosphere having a CO 2 concentration of 0 to 40%, preferably 2 to 10%.
  • the culture time is not particularly limited, but is generally 12 hours to 90 days, preferably 24 hours to 60 days, and more preferably 24 hours to 30 days. In the culturing, medium exchange, aeration and stirring can be added as necessary.
  • the culturing of the animal cells of the present invention can be carried out in a culturing device (also called a bioreactor) or another suitable container.
  • a culturing device also called a bioreactor
  • the culture device a fermenter type tank culture device, an air lift type culture device, a culture flask type culture device, a spinner flask type culture device, a microcarrier type culture device, a fluidized bed type culture device, a hollow fiber type culture device, a roller bottle. It can be performed by using a type culture device, a filled-tank type culture device, or the like.
  • the culture scale is generally 1 L to 20000 L, preferably 1 L to 10000 L, more preferably 200 L to 2000 L, and further preferably 500 L to 2000 L.
  • any method such as batch culture, fed-batch culture (also referred to as fed-batch culture), and perfusion culture may be used, but fed-batch culture or perfusion culture is preferable. ..
  • Batch culture is a discontinuous method in which cells are grown in a fixed volume of culture medium for a short period of time and then completely recovered. Cultures grown using the batch method experience an increase in cell density until they reach maximal cell density, then survive as media components are consumed and levels of metabolic byproducts (such as lactate and ammonia) accumulate. Cell density declines. Harvesting is typically performed when maximum cell density (typically 5-10 x 10 6 cells/mL) is reached.
  • maximum cell density typically 5-10 x 10 6 cells/mL
  • the batch process is the simplest culturing method, however, the viable cell density is limited by nutrient availability and once the cells reach maximum density, the culture declines and the production of the protein of interest is reduced. It is not possible to prolong the production period of the protein of interest, as waste product accumulation and nutrient depletion quickly lead to culture decline (typically about 3-7 days).
  • Fed-batch culture is a culture method that improves the batch process by supplying a medium in a bolus or continuously to supplement the consumed medium components.
  • the culture form is a suspension culture, providing additional components to the culture at one or more points after the start of the culture process. Additional components include nutritional supplements for cells that are depleted during the culturing process, and may include other supplements (eg, cell cycle inhibiting compounds).
  • fed-batch culture In fed-batch culture, additional nutrients are added throughout the culture period, so there is a possibility that higher cell density and higher production of target protein can be achieved compared to batch culture.
  • the feeding schedule and medium are used to distinguish the period of cell growth (growth phase) to achieve the desired cell density from the period of aborted or slow cell growth (production phase). By manipulating the components, biphasic cultures can be made and maintained. As a result, the fed-batch culture may be able to achieve a higher production amount of the target protein as compared with the batch culture.
  • the seeding cell density of the cell culture is generally 0.2 ⁇ 10 6 cells/mL or more and 1 ⁇ 10 7 cells/mL or less, preferably 0.2 ⁇ 10 6 cells/mL or more 5. ⁇ 10 6 cells/mL or less, more preferably 0.5 ⁇ 10 6 cells/mL or more and 2.5 ⁇ 10 6 cells/mL or less, and still more preferably 0.5 ⁇ 10 6 cells/mL or more 1. It is less than or equal to 5 ⁇ 10 6 cells/mL.
  • the viable cell rate during the culture period is preferably 60% or more and 100% or less, more preferably 70% or more and 100% or less, and further preferably 75% or more and 100% or less in the entire period. ..
  • Perfusion culture is a culture method in which fresh medium is added and used medium is removed at the same time, and there is a possibility that batch culture and fed-batch culture can be further improved.
  • Perfusion culture can be performed using, for example, an ATF (Alternating Tangential Flow Filtration) pump or a TFF (Tangential Flow Filtration) pump.
  • ATF Alternating Tangential Flow Filtration
  • TFF Torqueential Flow Filtration
  • perfusion culture is that the culture in which the target protein is produced is maintained longer than the batch culture method or the fed-batch culture.
  • maintenance of long-term perfusion cultures, especially perfusion cultures at high cell densities, requires media preparation, use, storage and disposal.
  • the perfusion culture requires a large amount of nutrients and tends to increase the production cost of the target protein as compared with batch culture and fed-batch culture.
  • by selecting the membrane pore size it is possible to continue culturing while recovering the antibody outside the system.Therefore, the retention time of the antibody in the culture solution is shortened and the chemical changes are reduced to improve antibody quality. Can be kept high. ..
  • a fed-batch culture with a bolus feed can be used to maintain a culture of cells in the growing phase, and then a perfusion culture can be used to produce the protein of interest.
  • the perfusion may be continuous, stepwise, intermittent, or a combination thereof.
  • Animal cells are maintained in culture and the spent media that is removed may be substantially free of cells or have much less cells than culture.
  • the target protein expressed by cell culture can be retained or recovered in the culture by selecting the membrane pore size.
  • a part of the culture medium may be extracted together with the cells, and the same amount of fresh medium may be added to reduce the cell density (cell bleeding).
  • the seeding cell density of the cell culture is generally 0.2 ⁇ 10 6 cells/mL or more and 3 ⁇ 10 7 cells/mL or less, preferably 0.2 ⁇ 10 6 cells/mL or more 1. ⁇ 10 7 cells/mL or less, more preferably 0.5 ⁇ 10 6 cells/mL or more and 1 ⁇ 10 7 cells/mL or less.
  • the viable cell rate during the culture period is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more in the entire period.
  • the highest cell density reached is preferably 2 ⁇ 10 8 cells/mL or less, more preferably 1.5 ⁇ 10 8 cells/mL or less, and further preferably 1.0 ⁇ 10 8 cells/mL. It is less than or equal to mL.
  • the perfusion ratio in the perfusion culture is preferably 0.3 vvd or more and 5.0 vvd or less, more preferably 0.3 vvd or more and 1.5 vvd or less.
  • the seeded cell density in cell culture and the highest cell density reached in culture can be determined by measuring the number of cells by a conventional method and dividing the number of cells by the amount of culture solution.
  • the viable cell rate (viability) during the culture period is obtained by dividing the viable cell number by (viable cell number+dead cell number).
  • the number of cells can be measured using Vi-CELL XR (Beckman Coulter).
  • the target protein produced by the above culture can be purified. Separation and purification of the target protein may be performed by using the separation and purification methods used for ordinary proteins. For example, a target protein can be obtained by appropriately selecting and combining a chromatography column such as affinity chromatography, a filter, ultrafiltration, salting out, dialysis, sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, and isoelectric focusing. Can be isolated and purified, but is not limited thereto. The concentration of the target protein obtained as described above can be measured by absorbance measurement, enzyme-linked immunosorbent assay (Enzyme-linked immunosorbent assay; ELISA), or the like.
  • Examples of columns used for affinity chromatography include protein A columns and protein G columns.
  • Examples of the chromatography other than the affinity chromatography include ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography and the like. These chromatographys can be performed using liquid phase chromatography such as HPLC (high performance liquid chromatography) or FPLC (fast protein liquid chromatography).
  • the target protein can be modified or partially removed by treating it with an appropriate polypeptide-modifying enzyme before or after purification.
  • polypeptide-modifying enzyme examples include trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, glucosidase and the like.
  • target protein When the target protein produced by the method of the present invention has a biologically useful biological activity, the target protein is mixed with a pharmaceutically acceptable carrier or additive to prepare a formulation, Can manufacture pharmaceutical products.
  • Examples of pharmaceutically acceptable carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethyl cellulose, sodium polyacrylate, sodium alginate, water-soluble. Dextran, sodium carboxymethyl starch, pectin, methyl cellulose, ethyl cellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin (HSA) , Mannitol, sorbitol, lactose, pharmaceutically acceptable surfactants and the like.
  • water pharmaceutically acceptable organic solvents
  • collagen collagen
  • polyvinyl alcohol polyvinylpyrrolidone
  • carboxyvinyl polymer sodium carboxymethyl cellulose
  • sodium polyacrylate sodium alginate
  • water-soluble water-soluble.
  • the purified target protein when used as an injectable preparation, is dissolved in a solvent such as physiological saline, a buffer solution, a glucose solution, etc., and an adsorption inhibitor such as Tween 80, Tween 20, gelatin, human serum albumin, etc. Can be used.
  • a solvent such as physiological saline, a buffer solution, a glucose solution, etc.
  • an adsorption inhibitor such as Tween 80, Tween 20, gelatin, human serum albumin, etc.
  • the target protein may be freeze-dried to obtain a dosage form that is reconstituted before use, and examples of the excipient for freeze-drying include sugar alcohols such as mannitol and glucose, and Sugars can be used.
  • the method of administering the target protein may be either oral administration or parenteral administration, but parenteral administration is preferred.
  • parenteral administration e.g, injection (eg, systemic or local administration by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, etc.), nasal administration, pulmonary administration, transdermal administration and the like can be mentioned.
  • the dose of the target protein is appropriately selected according to the type of target protein, the type of disease to be treated or prevented, the age of the patient, the severity of the disease, etc. Generally, it is in the range of 0.001 mg to 1000 mg per 1 kg of body weight per one time, but is not particularly limited.
  • Example 1 Preparation of animal cells A vector encoding the human MZB1/pERp1 gene (OriGene, Cat# RC205659) was purchased, and an expression cassette (promoter, open reading frame, terminator) of the MZB1/pERp1 gene was used as a primer 1 ( It was amplified by polymerase chain reaction (PCR) using SEQ ID NO:3) and primer 2 (SEQ ID NO:4).
  • PCR polymerase chain reaction
  • Antibody 1 (denosumab, https://www.drugbank.ca/drugs/DB06643) or antibody 2 (brosozumab, https://www.drugbank.ca/drugs/DB12560) or antibody 3 (anti-MUC16 antibody, anti-MUC16 antibody).
  • the amplified MZB1/pERp1 expression cassette was inserted into a vector that co-expresses the L chain and H chain of each antibody. Construction of the L-chain and H-chain co-expression vector and introduction into cells were carried out according to Example 2 of JP-T-2016-517691.
  • All host CHO-DG44 cells before the introduction of the antibody and MZB1/pERp1 gene were cultured in an incubator at 37° C. in a 5% CO 2 atmosphere.
  • 20 mL of HT Supplement (x100) (Lifetechnologies, 11067-030) diluted with 100 times the above vector was introduced into host cells 5 ⁇ 10 6 cells by electroporation (Lonza, 4D-Nucleofector) and diluted 100-fold. After suspending in OptiCHO (Lifetechnologies, 12681011) medium, it was seeded in a T75 flask.
  • T75 flask was started from 3 weeks after gene introduction, and the culture volume was expanded to 20 mL sequentially from the flask in which cell growth was observed, seeded in a 125 mL shaking flask (Corning), and shaken at 140 rpm. Cultured.
  • antibody 1-MZB1 cells, antibody 2-MZB1 cells, antibody 3-MZB1 cells that forcibly express the human MZB1/pERp1 gene and antibody 1 or antibody 2 or antibody 3 were established.
  • gene transfer was carried out in the same manner using a vector expressing the antibody L chain and H chain to construct a control group of antibody 1 cell, antibody 2 cell, and antibody 3 cell.
  • Primer-1 CCGCGGTCATAGCTGTTTCCTGAAC (SEQ ID NO: 3)
  • Primer-2 CAGCTATGACCGCGGTTAGAGCTCTTCTCTTGTGGCTGACACC (SEQ ID NO: 4)
  • Example 2 Culture experiment A fed-batch culture experiment was carried out using 8 levels of each of antibody 1-MZB1 cells, antibody 2-MZB1 cells, antibody 3-MZB1 cells and antibody 1 cells, antibody 2 cells, and antibody 3 cells. .
  • the cells were suspended in 15 mL of OptiCHO (Lifetechnologies, 12681011) medium at a cell density of 5 ⁇ 10 5 cells/mL, and automatic culturing was performed using an AMBR15 culture device (Sartorius Stedim). From the second day to the 13th day from the start of the culture, a feed medium (Cellboost 7a, 7b, GE healthcare) was added every 2% at the initial culture volume ratio every day.
  • the integrated viable cell density (IVCD) was measured by the following method. Viable cell density (VCD) was measured by Vi-CELL XR (Beckman Coulter, Inc.) on days 0, 3, 7, 10 and 14, and the respective values were designated as V0, V3, V7, V10 and V14.
  • the integrated viable cell density (IVCD) is calculated by the following formula.
  • IVCD Integrated viable cell density
  • the antibody productivity Qp [pg/cell/day] per cell was calculated by the following formula.
  • Pti [g/L] concentration of purified product on culture day ti
  • Xti [cell/day] viable cell density on culture day ti
  • the approximate value of the integral was calculated by obtaining the area under the growth curve from time t1 to time t2 as the trapezoidal area.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of providing animal cells capable of producing a target protein with a high yield, a production method for the animal cells, and a target protein production method using the animal cells. The present invention provides: animal cells in which MZB1/pERp1 is overexpressed, said animal cells including a gene that codes for a target protein and a transgene that codes for MZB1/pERp1 and is linked to a promoter; a production method for the mammalian cells; and a target protein production method using the mammalian cells.

Description

動物細胞、動物細胞の製造方法および目的タンパク質の製造方法Animal cell, method for producing animal cell and method for producing target protein
 本発明は、目的タンパク質を発現する動物細胞に関する。本発明は、上記動物細胞の製造方法、および上記動物細胞を使用した目的タンパク質の製造方法に関する。 The present invention relates to an animal cell that expresses a target protein. The present invention relates to a method for producing the above animal cell and a method for producing a target protein using the above animal cell.
 抗体などのバイオ医薬品の製造においては、抗体の生産性を向上するため、培養液に栄養を追添加することで細胞の状態を良化させるフェドバッチ培養がよく用いられている。また、抗体などのバイオ医薬品の製造においては、抗体の生産性を向上するため、培養液を連続的に濾過および排出し、一方で栄養成分を含むフレッシュな培地を連続的に培養槽に供給する、灌流培養法がよく用いられている。 In the production of biopharmaceuticals such as antibodies, in order to improve antibody productivity, fed-batch culture is often used in which nutrients are added to the culture medium to improve the cell condition. Further, in the production of biopharmaceuticals such as antibodies, in order to improve the productivity of antibodies, the culture solution is continuously filtered and discharged, while a fresh medium containing nutrient components is continuously supplied to the culture tank. The perfusion culture method is often used.
 特許文献1には、タンパク質を高い生産量で製造することができる方法として、アラニンアミノトランスフェラーゼを強発現し、かつ所望のポリペプチドをコードするDNAを導入した細胞を培養し、所望のポリペプチドを産生させることを含む、ポリペプチドの製造方法が記載されている。 In Patent Document 1, as a method capable of producing a protein in a high production amount, cells that strongly express alanine aminotransferase and into which a DNA encoding a desired polypeptide is introduced are cultured to obtain a desired polypeptide. Methods for producing the polypeptides have been described, including producing.
国際公開WO2009/020144号公報International publication WO2009/020144
 フェドバッチ培養においては、栄養を追添加しない場合に比べ、より高密度の細胞密度で長期間の細胞培養が可能になるが、細胞から分泌される老廃物の蓄積の影響で培養後半の細胞生存率が低下するため、培養期間延長によって産物が増やせないという問題がある。
 また、灌流培養法において細胞を高密度で培養するためには、栄養の供給および老廃物を系外に排出する目的で、1日当たり、培養体積の1~3倍量の培地の回収および供給が必要であるため、培養コストが高くなることが問題である。
In fed-batch culture, higher cell density enables long-term cell culture compared to the case where no nutrient is added, but the cell viability in the latter half of the culture is affected by the accumulation of waste products secreted from cells. However, there is a problem that the product cannot be increased by extending the culture period.
In order to cultivate cells at a high density in the perfusion culture method, it is necessary to collect and supply 1 to 3 times the culture volume of the culture medium per day for the purpose of supplying nutrients and discharging waste products to the outside of the system. Since it is necessary, the problem is that the culture cost becomes high.
 本発明は、目的タンパク質を高い生産性で製造することができる動物細胞を提供することを解決すべき課題とする。本発明はさらに、上記動物細胞の製造方法、および上記動物細胞を使用した目的タンパク質の製造方法を提供することを解決すべき課題とする。 The present invention has an object to provide an animal cell capable of producing a target protein with high productivity. Another object of the present invention is to provide a method for producing the above-mentioned animal cell and a method for producing a target protein using the above-mentioned animal cell.
 本発明者は上記課題を解決するために鋭意検討した結果、MZB1/pERp1遺伝子(MZB1はMarginal zone B- and B1-cell-specific proteinを示す)をCHO細胞に強制発現させることによりタンパク質の生産量に影響し、その結果として、抗体生産性(Qp)の向上及び抗体生産量の向上を達成することができた。本発明は、上記の知見に基づいて完成したものである。 The present inventors have conducted extensive studies in order to solve the above-mentioned problems, and as a result, forcibly expressed the MZB1/pERp1 gene (MZB1 indicates Marginal zone B-and B1-cell-specific protein) in CHO cells, thereby producing a protein. It was possible to improve the antibody productivity (Qp) and the antibody production amount as a result. The present invention has been completed based on the above findings.
 即ち、本発明によれば、以下の発明が提供される。
<1> 目的タンパク質をコードする遺伝子と、MZB1/pERp1をコードする外来遺伝子であってプロモーターに連結された外来遺伝子とを有し、上記MZB1/pERp1が過剰発現している、動物細胞。
<2> 過剰発現が恒常的である、<1>に記載の動物細胞。
<3> MZB1/pERp1をコードする外来遺伝子が、配列番号1に記載の塩基配列と90%以上の配列同一性を有する塩基配列を有する、<1>または<2>に記載の動物細胞。
<4> MZB1/pERp1をコードする外来遺伝子が、配列番号1に記載の塩基配列を含む、<1>から<3>の何れか一に記載の動物細胞。
<5> 動物細胞がCHO細胞である、<1>から<4>の何れか一に記載の動物細胞。
<6> 動物細胞に対して、目的タンパク質をコードする遺伝子と、MZB1/pERp1をコードする外来遺伝子であってプロモーターに連結された外来遺伝子とを導入する工程を含む、<1>から<5>の何れか一に記載の動物細胞の製造方法。
<7> MZB1/pERp1をコードする外来遺伝子であってプロモーターに連結された外来遺伝子を導入する工程が、エレクトロポレーションにより行われる、<6>に記載の方法。
<8> <1>から<5>の何れか一に記載の動物細胞を培養することを含む、目的タンパク質の製造方法。
<9> 培養が、フェドバッチ培養である、<8>に記載の方法。
<10> 細胞培養の播種細胞密度が0.2×10cells/mL以上5×10cells/mL以下である、<9>に記載の方法。
<11> 培養期間中の生細胞率が全期間において60%以上である、<10>に記載の方法。
<12> 培養が、灌流培養である、<8>に記載の方法。
<13> 細胞培養の播種細胞密度が0.2×10cells/mL以上1×10cells/mL以下である、<12>に記載の方法。
<14> 培養期間中の生細胞率が全期間において90%以上である、<13>に記載の方法。
That is, according to the present invention, the following inventions are provided.
<1> An animal cell having a gene encoding a target protein and an exogenous gene encoding MZB1/pERp1 which is linked to a promoter, and which overexpresses MZB1/pERp1.
<2> The animal cell according to <1>, in which overexpression is constitutive.
<3> The animal cell according to <1> or <2>, wherein the foreign gene encoding MZB1/pERp1 has a base sequence having 90% or more sequence identity with the base sequence shown in SEQ ID NO: 1.
<4> The animal cell according to any one of <1> to <3>, in which the foreign gene encoding MZB1/pERp1 contains the base sequence shown in SEQ ID NO: 1.
<5> The animal cell according to any one of <1> to <4>, wherein the animal cell is a CHO cell.
<6><1> to <5> including a step of introducing a gene encoding a target protein and a foreign gene encoding MZB1/pERp1 which is linked to a promoter into an animal cell The method for producing animal cells according to any one of 1.
<7> The method according to <6>, wherein the step of introducing a foreign gene encoding MZB1/pERp1 and linked to a promoter is performed by electroporation.
<8> A method for producing a target protein, which comprises culturing the animal cell according to any one of <1> to <5>.
<9> The method according to <8>, wherein the culture is fed-batch culture.
<10> The method according to <9>, wherein the seeding cell density of the cell culture is 0.2×10 6 cells/mL or more and 5×10 6 cells/mL or less.
<11> The method according to <10>, wherein the viable cell rate during the culture period is 60% or more over the entire period.
<12> The method according to <8>, wherein the culture is perfusion culture.
<13> The method according to <12>, wherein the seeding cell density of the cell culture is 0.2×10 6 cells/mL or more and 1×10 7 cells/mL or less.
<14> The method according to <13>, wherein the viable cell rate during the culture period is 90% or more over the entire period.
 本発明の動物細胞によれば、目的タンパク質を高い生産性で製造することができる。 According to the animal cell of the present invention, the target protein can be produced with high productivity.
図1は、遺伝子導入後の細胞の培養上清における抗体濃度を測定した結果を示す。FIG. 1 shows the results of measuring the antibody concentration in the culture supernatant of cells after gene transfer. 図2は、遺伝子導入後の細胞の培養上清における細胞あたりの抗体生産性(Qp)を測定した結果を示す。FIG. 2 shows the results of measuring the antibody productivity (Qp) per cell in the culture supernatant of cells after gene transfer. 図3は、培養期間の積算生細胞数を測定した結果を示す。FIG. 3 shows the results of measuring the cumulative number of viable cells during the culture period.
 以下、本発明を実施するための形態を、詳細に説明する。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を意味する。
Hereinafter, modes for carrying out the present invention will be described in detail.
In the present specification, the numerical range indicated by using “to” means a range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
[動物細胞]
 本発明の動物細胞は、目的タンパク質をコードする遺伝子と、MZB1/pERp1をコードする外来遺伝子であってプロモーターに連結された外来遺伝子とを有し、上記MZB1/pERp1が過剰発現している、動物細胞である。
[Animal cell]
The animal cell of the present invention has a gene encoding a protein of interest and a foreign gene encoding MZB1/pERp1 which is linked to a promoter, wherein the MZB1/pERp1 is overexpressed. Is a cell.
 細胞が有用産物である抗体を分泌する機構において、MZB1/pERp1は小胞体に発現し、タンパク質のジスルフィド結合の生成を促進すると考えられている。CHO細胞でMZB1/pERp1を過剰発現した知見は存在しないが、B細胞がプラズマ細胞に分化する際に発現し、小胞体ストレスの下でIgGのH鎖が適切に生産されるのに必要であることが報告されている(Genes & development 28:2014 1165-1178)。また、IgMの蓄積及び分泌に重要であり、pERp1を導入したB細胞がIgMの生産量を増加することが報告されている(Immunity.2010,24;33(5):723-735)。しかしながら、MZB1/pERp1遺伝子発現と組み換えタンパク質の生産量との関係は不明である。 It is thought that MZB1/pERp1 is expressed in the endoplasmic reticulum and promotes the formation of protein disulfide bonds in the mechanism by which cells secrete the useful product of antibodies. Although there is no knowledge that MZB1/pERp1 was overexpressed in CHO cells, it was expressed when B cells were differentiated into plasma cells and is required for the proper production of IgG heavy chain under endoplasmic reticulum stress. It has been reported (Genes & development 28:2014 1165-1178). Further, it has been reported that B cells introduced with pERp1 are important for IgM accumulation and secretion, and increase the IgM production (Immunity. 2010, 24; 33(5):723-735). However, the relationship between MZB1/pERp1 gene expression and recombinant protein production is unknown.
 特許文献1においては、アラニンアミノトランスフェラーゼの導入の効果により生存率の低下が緩やかになったが、60%以下の期間が長いため、抗体品質への影響が懸念される。また、タウリントランスポーターの導入により、細胞あたりの抗体生産性(Qp)が低下しているために、細胞密度が上昇しても生産量に結びつかないという問題がある。これに対し、本発明においては、タンパク質分泌経路のMZB1/pERp1の発現を増強することにより、細胞あたりの抗体生産性(Qp)を向上させている。 In Patent Document 1, the decrease in the survival rate was moderated by the effect of the introduction of alanine aminotransferase, but the period of 60% or less is long, and there is concern about the effect on antibody quality. Moreover, since the antibody productivity (Qp) per cell is lowered by the introduction of the taurine transporter, there is a problem that the production amount is not linked to the increase in cell density. On the other hand, in the present invention, the antibody productivity (Qp) per cell is improved by enhancing the expression of MZB1/pERp1 in the protein secretory pathway.
<目的タンパク質>
 本発明において、目的タンパク質の種類は特に限定されず、例えば、組み換えポリペプチド鎖、組み換え分泌ポリペプチド鎖、抗原結合タンパク質、ヒト抗体、ヒト化抗体、キメラ抗体、マウス抗体、バイスペシフィック抗体、Fc融合タンパク質、断片化免疫イムノグロブリン、一本鎖抗体(scFv)である。目的タンパク質は、好ましくはヒト抗体、ヒト化抗体、キメラ抗体、またはマウス抗体である。断片化免疫イムノグロブリンとしては、Fab、F(ab’)、Fvなどが挙げられる。抗体のクラスも特に限定されるものではなく、IgG1、IgG2、IgG3、IgG4などのIgG、IgA、IgD、IgE、IgMなどいずれのクラスでもよいが、医薬として用いる場合はIgGおよびIgMが好ましい。
<Target protein>
In the present invention, the type of the target protein is not particularly limited, and examples thereof include recombinant polypeptide chain, recombinant secretory polypeptide chain, antigen-binding protein, human antibody, humanized antibody, chimeric antibody, mouse antibody, bispecific antibody, and Fc fusion. Proteins, fragmented immunoglobulins, single chain antibodies (scFv). The target protein is preferably a human antibody, a humanized antibody, a chimeric antibody, or a mouse antibody. Examples of the fragmented immunoimmunoglobulin include Fab, F(ab′) 2 and Fv. The class of the antibody is not particularly limited, and may be any class such as IgG1, IgG2, IgG3, IgG4 and the like, IgG, IgA, IgD, IgE, IgM, etc., but IgG and IgM are preferable when used as a medicine.
 ヒト抗体は、ヒト免疫グロブリン配列から誘導される1つまたは複数の可変および定常領域を有する全ての抗体を含む。一実施形態では、可変および定常ドメインの全てが、ヒト免疫グロブリン配列から誘導される(完全ヒト抗体)。
 ヒト化抗体は、ヒト対象に投与されたときに、非ヒト種抗体と比較して、ヒト化抗体が免疫反応を誘発する可能性が低くなるように、および/または重篤な免疫反応の誘発がより少なくなるように、1つまたは複数のアミノ酸置換、欠失、および/または付加により非ヒト種から誘導された抗体の配列と異なる配列を有する。一実施形態では、非ヒト種抗体の重鎖および/または軽鎖のフレームワークおよび定常ドメイン内のある特定のアミノ酸は、ヒト化抗体を産生するように変異している。別の実施形態では、ヒト抗体からの定常ドメインは、非ヒト種の可変ドメインに融合される。
Human antibodies include all antibodies that have one or more variable and constant regions derived from human immunoglobulin sequences. In one embodiment, all variable and constant domains are derived from human immunoglobulin sequences (fully human antibodies).
Humanized antibodies are less likely to elicit an immune response and/or elicit a severe immune response when administered to a human subject, as compared to a non-human species antibody. Has a sequence that differs from that of an antibody derived from a non-human species by one or more amino acid substitutions, deletions, and/or additions. In one embodiment, certain amino acids within the heavy and/or light chain framework and constant domains of the non-human species antibody are mutated to produce a humanized antibody. In another embodiment, the constant domain from the human antibody is fused to the variable domain of a non-human species.
 キメラ抗体とは、互いに由来の異なる可変領域と定常領域を連結した抗体である。例えば、マウス抗体の重鎖および軽鎖の可変領域と、ヒト抗体の重鎖および軽鎖の定常領域からなる抗体は、マウス・ヒト異種キメラ抗体である。マウス抗体の可変領域をコードするDNAをヒト抗体の定常領域をコードするDNAと連結させ、これを発現ベクターに組み込むことによって、キメラ抗体を発現する組換えベクターが作製できる。上記ベクターにより形質転換された組換え細胞を培養し、組み込まれたDNAを発現させることによって、培養中に生産されるキメラ抗体を取得できる。 A chimeric antibody is an antibody in which variable regions and constant regions that are different from each other are linked. For example, an antibody consisting of the heavy and light chain variable regions of a mouse antibody and the heavy and light chain constant regions of a human antibody is a mouse-human heterologous chimeric antibody. A recombinant vector expressing a chimeric antibody can be prepared by ligating a DNA encoding the variable region of a mouse antibody with a DNA encoding the constant region of a human antibody and incorporating this into an expression vector. By culturing a recombinant cell transformed with the above vector and expressing the incorporated DNA, a chimeric antibody produced in the culture can be obtained.
 バイスペシフィック抗体とは、2つの異なる抗原特異性を認識する、化学的方法または細胞融合によって作製された抗体である。バイスペシフィック抗体を作製する方法としては、2つのイムノグロブリン分子をN-サクシンイミジル 3-(2-ピリジルジチオール) プロピオネートまたはS-アセチルメルカプトサクシニックアシッドアンハイドライドなどの架橋剤を用いて結合して作製する方法、イムノグロブリン分子のFabフラグメントどうしを結合して作製する方法などが報告されている。 Bispecific antibodies are antibodies produced by chemical methods or cell fusion that recognize two different antigenic specificities. Bispecific antibodies can be prepared by combining two immunoglobulin molecules using a cross-linking agent such as N-succinimidyl 3-(2-pyridyldithiol) propionate or S-acetylmercaptosuccinic acid anhydride. Methods, methods of binding Fab fragments of immunoglobulin molecules to each other, and the like have been reported.
 Fc融合タンパク質とは、Fc領域を有するタンパク質を示し、抗体を含む。
 Fabは、V、V、CおよびC1ドメインを有する一価断片である。
 F(ab’)は、ヒンジ領域でジスルフィド架橋により結合された2つのFab断片を有する二価断片である。
 Fv断片は、抗体のシングルアームのVおよびVドメインを有する。
 一本鎖抗体(scFv)は、VおよびV領域がリンカー(例えば、アミノ酸残基の合成配列)を介して接合して、連続したタンパク質鎖を形成する抗体であり、ここでリンカーは、タンパク質鎖をそれ自身に折り重ね、一価抗原結合部位を形成させるのに十分な長さである。
The Fc fusion protein refers to a protein having an Fc region and includes an antibody.
Fab is a monovalent fragment with V L , V H , C L and C H 1 domains.
F(ab′) 2 is a bivalent fragment that has two Fab fragments joined by a disulfide bridge in the hinge region.
The Fv fragment has the single arm VL and VH domains of the antibody.
Single chain antibodies (scFv) are antibodies in which the V L and V H regions are joined via a linker (eg, a synthetic sequence of amino acid residues) to form a continuous protein chain, wherein the linker is It is long enough to fold the protein chain onto itself, forming a monovalent antigen binding site.
 目的タンパク質をコードする遺伝子は、当業者に公知の方法により入手することができる。目的タンパク質が抗体である場合には、抗体のL鎖をコードするDNAおよびH鎖をコードするDNAを使用することができる。 The gene encoding the target protein can be obtained by a method known to those skilled in the art. When the target protein is an antibody, a DNA encoding the L chain and a DNA encoding the H chain of the antibody can be used.
 抗体のL鎖をコードするDNAおよびH鎖をコードするDNAは、以下のようにして調製することができる。抗体を発現する遺伝子を持つハイブリドーマ、細胞、ファージ、リボソームなどからmRNAを抽出する。このmRNAより逆転写酵素を用いる逆転写反応によりcDNAを作製する。L鎖遺伝子またはH鎖遺伝子と相補塩基配列を持つプライマーとcDNAを用いるPCRによりL鎖遺伝子またはH鎖遺伝子を増幅し、クローニング用プラスミドと結合することにより各遺伝子を取得する。 The DNA encoding the L chain and the DNA encoding the H chain of the antibody can be prepared as follows. MRNA is extracted from hybridomas, cells, phages, ribosomes, etc., which carry a gene expressing an antibody. From this mRNA, cDNA is prepared by a reverse transcription reaction using a reverse transcriptase. Each gene is obtained by amplifying the L chain gene or the H chain gene by PCR using a primer having a complementary nucleotide sequence with the L chain gene or the H chain gene and cDNA, and ligating with a cloning plasmid.
 抗体のL鎖の断片をコードするDNAおよびH鎖の断片をコードするDNAは、以下のようにして調製することができる。抗体を発現する遺伝子を持つハイブリドーマ、細胞、ファージ、リボソームなどからmRNAを抽出する。このmRNAより逆転写酵素を用いる逆転写反応によりcDNAを作製する。L鎖遺伝子断片またはH鎖遺伝子断片と相補塩基配列を持つプライマーとcDNAを用いるPCRによりL鎖遺伝子断片またはH鎖遺伝子断片を増幅し、クローニング用プラスミドと結合することにより各遺伝子断片を取得する。 The DNA encoding the L chain fragment and the DNA encoding the H chain fragment of the antibody can be prepared as follows. MRNA is extracted from hybridomas, cells, phages, ribosomes, etc., which carry a gene expressing an antibody. From this mRNA, cDNA is prepared by a reverse transcription reaction using a reverse transcriptase. Each gene fragment is obtained by amplifying the L chain gene fragment or the H chain gene fragment by PCR using a primer and cDNA having a complementary nucleotide sequence to the L chain gene fragment or the H chain gene fragment, and ligating with a cloning plasmid.
<MZB1/pERp1およびMZB1/pERp1遺伝子>
 本発明において、MZB1/pERp1の由来は特に限定されず、ヒト、サル、マウス、ラット、ハムスターなどの哺乳動物由来のMZB1/pERp1をコードする外来遺伝子を使用することができる。本発明において、外来遺伝子とは、動物細胞に外から導入された遺伝子のことを言う。また、内在遺伝子を増幅させて遺伝子導入した場合でも外来遺伝子とみなす。
<MZB1/pERp1 and MZB1/pERp1 genes>
In the present invention, the origin of MZB1/pERp1 is not particularly limited, and a foreign gene encoding MZB1/pERp1 derived from mammals such as human, monkey, mouse, rat and hamster can be used. In the present invention, a foreign gene refers to a gene introduced into an animal cell from the outside. In addition, even when an endogenous gene is amplified and introduced into a gene, it is regarded as a foreign gene.
 ヒトMZB1/pERp1の塩基配列とアミノ酸配列を配列表の配列番号1および2に示す。 The nucleotide sequence and amino acid sequence of human MZB1/pERp1 are shown in SEQ ID NOs: 1 and 2 in the sequence listing.
ヒトMZB1/pERp1遺伝子の塩基配列(配列番号1)
ATGAGGCTGTCACTGCCACTGCTGCTGCTGCTGCTGGGAGCCTGGGCCATCCCAGGGGGCCTCGGGGACA
GGGCGCCACTCACAGCCACAGCCCCACAACTGGATGATGAGGAGATGTACTCAGCCCACATGCCCGCTCA
CCTGCGCTGTGATGCCTGCAGAGCTGTGGCTTACCAGATGTGGCAAAATCTGGCAAAGGCAGAGACCAAA
CTTCATACCTCAAACTCTGGGGGGCGGCGGGAGCTGAGCGAGTTGGTCTACACGGATGTCCTGGACCGGA
GCTGCTCCCGGAACTGGCAGGACTACGGAGTTCGAGAAGTGGACCAAGTGAAACGTCTCACAGGCCCAGG
ACTTAGCGAGGGGCCAGAGCCAAGCATCAGCGTGATGGTCACAGGGGGCCCCTGGCCTACCAGGCTCTCC
AGGACATGTTTGCACTACTTGGGGGAGTTTGGAGAAGACCAGATCTATGAAGCCCACCAACAAGGCCGAG
GGGCTCTGGAGGCATTGCTATGTGGGGGACCCCAGGGGGCCTGCTCAGAGAAGGTGTCAGCCACAAGAGA
AGAGCTC
Base sequence of human MZB1/pERp1 gene (SEQ ID NO: 1)
ATGAGGCTGTCACTGCCACTGCTGCTGCTGCTGCTGGGAGCCTGGGCCATCCCAGGGGGCCTCGGGGACA
GGGCGCCACTCACAGCCACAGCCCCACAACTGGATGATGAGGAGATGTACTCAGCCCACATGCCCGCTCA
CCTGCGCTGTGATGCCTGCAGAGCTGTGGCTTACCAGATGTGGCAAAATCTGGCAAAGGCAGAGACCAAA
CTTCATACCTCAAACTCTGGGGGGCGGCGGGAGCTGAGCGAGTTGGTCTACACGGATGTCCTGGACCGGA
GCTGCTCCCGGAACTGGCAGGACTACGGAGTTCGAGAAGTGGACCAAGTGAAACGTCTCACAGGCCCAGG
ACTTAGCGAGGGGCCAGAGCCAAGCATCAGCGTGATGGTCACAGGGGGCCCCTGGCCTACCAGGCTCTCC
AGGACATGTTTGCACTACTTGGGGGAGTTTGGAGAAGACCAGATCTATGAAGCCCACCAACAAGGCCGAG
GGGCTCTGGAGGCATTGCTATGTGGGGGACCCCAGGGGGCCTGCTCAGAGAAGGTGTCAGCCACAAGAGA
AGAGCTC
ヒトMZB1/pERp1遺伝子のアミノ酸配列(配列番号2)
MRLSLPLLLLLLGAWAIPGGLGDRAPLTATAPQLDDEEMYSAHMPAHLRCDACRAVAYQMWQNLAKAETK
LHTSNSGGRRELSELVYTDVLDRSCSRNWQDYGVREVDQVKRLTGPGLSEGPEPSISVMVTGGPWPTRLS
RTCLHYLGEFGEDQIYEAHQQGRGALEALLCGGPQGACSEKVSATREEL
Amino acid sequence of human MZB1/pERp1 gene (SEQ ID NO: 2)
MRLSLPLLLLLLGAWAIPGGLGDRAPLTATAPQLDDEEMYSAHMPAHLRCDACRAVAYQMWQNLAKAETK
LHTSNSGGRRELSELVYTDVLDRSCSRNWQDYGVREVDQVKRLTGPGLSEGPEPSISVMVTGGPWPTRLS
RTCLHYLGEFGEDQIYEAHQQGRGALEALLCGGPQGACSEKVSATREEL
 MZB1/pERp1をコードする外来遺伝子としては、
(1)配列番号2に記載のアミノ酸配列からなるタンパク質をコードする遺伝子;
(2)配列番号2に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、MZB1/pERp1機能を有するタンパク質をコードする遺伝子;または
(3)配列番号2に記載のアミノ酸配列と85%以上(さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは98%以上)の配列同一性を有するアミノ酸配列からなり、MZB1/pERp1機能を有するタンパク質をコードする遺伝子;
を使用することができる。
As a foreign gene encoding MZB1/pERp1,
(1) a gene encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 2;
(2) A gene encoding a protein having an MZB1/pERp1 function, which consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 2; or (3) SEQ ID NO: A protein comprising an amino acid sequence having a sequence identity of 85% or more (more preferably 90% or more, particularly preferably 95% or more, most preferably 98% or more) with the amino acid sequence described in 2, and having a MZB1/pERp1 function. A gene encoding
Can be used.
 MZB1/pERp1機能とは、小胞体に発現し、タンパク質のジスルフィド結合の生成を促進する機能を意味する。 The MZB1/pERp1 function means a function of being expressed in the endoplasmic reticulum and promoting the formation of protein disulfide bonds.
 MZB1/pERp1をコードする外来遺伝子としてはさらに、
(4)配列番号1に記載の塩基配列からなる遺伝子;
(5)配列番号1に記載の塩基配列において1若しくは数個の塩基が欠失、置換若しくは付加された塩基配列からなり、MZB1/pERp1機能を有するタンパク質をコードする遺伝子;
(6)配列番号1に記載の塩基配列の相補配列に対してストリンジェントな条件下でハイブリダイズする塩基配列からなり、MZB1/pERp1機能を有するタンパク質をコードする遺伝子;または
(7)配列番号1に記載の塩基配列と90%以上(さらに好ましくは95%以上、特に好ましくは98%以上)の配列同一性を有する塩基配列を有し、MZB1/pERp1機能を有するタンパク質をコードする遺伝子: 
を使用することもできる。
Further as a foreign gene encoding MZB1/pERp1,
(4) a gene comprising the nucleotide sequence set forth in SEQ ID NO: 1;
(5) A gene encoding a protein having the MZB1/pERp1 function, which is composed of the nucleotide sequence of SEQ ID NO: 1 with one or several nucleotides deleted, substituted or added.
(6) A gene encoding a protein having a MZB1/pERp1 function, which comprises a base sequence that hybridizes to the complementary sequence of the base sequence of SEQ ID NO: 1 under stringent conditions; or (7) SEQ ID NO: 1 A gene having a nucleotide sequence having 90% or more (more preferably 95% or more, particularly preferably 98% or more) sequence identity with the nucleotide sequence described in 1. and encoding a protein having MZB1/pERp1 function:
Can also be used.
 「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列」における「1若しくは数個」とは、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。 The "1 or several" in the "amino acid sequence in which one or several amino acids are deleted, substituted or added" is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5. Mean, particularly preferably 1 to 3.
 本発明における配列同一性は、以下の式で計算される値を指す。
%配列同一性=[(同一残基数)/(長い方のアラインメント長)]×100
 2つのアミノ酸配列における配列同一性は当業者に公知の任意の方法で決定することができ、BLAST((Basic Local Alignment Search Tool))プログラム(J.Mol.Biol.215:403-410,1990)等を使用して決定することができる。分母の「長い方のアラインメント長」とは、二つのアラインメントを比較した場合に、分母には長い方のアラインメント長を用いることを意味する。
Sequence identity in the present invention refers to a value calculated by the following formula.
% Sequence identity=[(number of identical residues)/(longer alignment length)]×100
Sequence identity in two amino acid sequences can be determined by any method known to those skilled in the art, and the BLAST ((Basic Local Alignment Search Tool)) program (J. Mol. Biol. 215:403-410, 1990). Etc. can be used to determine. The “longer alignment length” of the denominator means that when the two alignments are compared, the longer alignment length is used as the denominator.
 「1若しくは数個の塩基が欠失、置換若しくは付加された塩基配列」における「1若しくは数個」とは、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。 "1 or several" in the "base sequence in which one or several bases are deleted, substituted or added" is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5. Mean, particularly preferably 1 to 3.
 「ストリンジェントな条件下でハイブリダイズする」における「ストリンジェントな条件下」とは、中程度または高程度のストリンジェント条件下でハイブリダイズすることを意味し、これらは当業者であれば認識することができる。中程度のストリンジェントな条件としては、Sambrookら、Molecular Cloning: A Laboratory Manual、第3版、Vol.1、7.42-7.45 Cold Spring Harbor Laboratory Press, 2001に記載されている条件を挙げることができる。中程度のストリンジェントな条件は、例えば、ニトロセルロースフィルターにおいて5×SSC、0.5%SDS、1.0mmol/L EDTA(pH8.0)の前洗浄溶液、約40~50℃での約50%ホルムアミド、2×SSC~6×SSC(または約42℃での約50%ホルムアミド中の、スターク溶液(Stark’s solution)などの他の同様のハイブリダイゼーション溶液)のハイブリダイゼーション条件、および約60℃、0.5×SSC、0.1%SDSの洗浄条件を挙げることができる。高程度のストリンジェントな条件もまた当業者により容易に決定することができ、例えば、上記した中程度にストリンジェントな条件よりも高い温度および/または低い塩濃度でのハイブリダイゼーションおよび/または洗浄を含む。例えば、上記のようなハイブリダイゼーション条件、および68℃、0.2×SSC、0.1%SDSでの洗浄を挙げることができる。ここで、1×SSCの組成は、150mmol/L NaCl、15mmol/Lクエン酸ナトリウム、pH7.4である。SDSはドデシル硫酸ナトリウムであり、EDTAはエチレンジアミン四酢酸である。 "Stringent conditions" in "hybridize under stringent conditions" means hybridize under moderate or high stringent conditions, and these are recognized by those skilled in the art. be able to. Examples of moderately stringent conditions include Sambrook et al., Molecular Cloning: A Laboratory Manual, Third Edition, Vol. The conditions described in 1, 7.42-7.45 Cold Spring Harbor Laboratory Press, 2001 can be mentioned. Moderately stringent conditions are, for example, 5×SSC, 0.5% SDS, 1.0 mmol/L EDTA (pH 8.0) pre-wash solution in a nitrocellulose filter, about 50 at about 40-50° C. % Formamide, 2×SSC to 6×SSC (or other similar hybridization solution such as Stark's solution in about 50% formamide at about 42° C.), and about 60 C., 0.5.times.SSC, 0.1% SDS washing conditions can be mentioned. Highly stringent conditions can also be readily determined by those of ordinary skill in the art, for example, by hybridization and/or washing at higher temperatures and/or lower salt concentrations than the moderately stringent conditions described above. Including. For example, the hybridization conditions as described above and washing with 68° C., 0.2×SSC, 0.1% SDS can be mentioned. Here, the composition of 1×SSC is 150 mmol/L NaCl, 15 mmol/L sodium citrate, pH 7.4. SDS is sodium dodecyl sulfate and EDTA is ethylenediaminetetraacetic acid.
 ヒト以外のMZB1/pERp1のアミノ酸配列と塩基配列の情報を以下に示す。以下の番号はNCBI(National Center for Biotechnology Information)のGene No.を示す。
ID: 291675 ラット(Rattus norvegicus)
ID: 69816   マウス(Mus musculus)
ID: 510480 ウシ(Bos taurus)
ID: 100859189  ニワトリ(Gallus gallus)
ID: 693572 アカゲサル(Macaca mulatta)
ID: 101091341  ネコ(Felis catus)
ID: 100522482  ブタ(Sus scrofa)
ID: 100756072  チャイニーズハムスター(Cricetulus griseus)
ID: 101130009  ゴリラ(Gorilla gorilla)
Information on the amino acid sequence and nucleotide sequence of MZB1/pERp1 other than human is shown below. The following numbers are Gene No. of NCBI (National Center for Biotechnology Information). Indicates.
ID: 291675 Rat (Rattus norvegicus)
ID: 69816 mouse (Mus musculus)
ID: 510480 cow (Bos taurus)
ID: 100859189 Chicken (Gallus gallus)
ID: 693572 Rhesus monkey (Macaca mulatta)
ID: 101091341 Cat (Felis catus)
ID: 100522482 Pig (Sus scrofa)
ID: 100756072 Chinese Hamster (Cricetulus griseus)
ID: 101130009 Gorilla gorilla
 ヒト以外のMZB1/pERp1についても、ヒトMZB1/pERp1の場合と同様に、
(2A)所定のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、MZB1/pERp1機能を有するタンパク質をコードする遺伝子;
(3A)所定のアミノ酸配列と85%以上(さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは98%以上)の配列同一性を有するアミノ酸配列からなり、MZB1/pERp1機能を有するタンパク質をコードする遺伝子;
(5A)所定の塩基配列において1若しくは数個の塩基が欠失、置換若しくは付加された塩基配列からなり、MZB1/pERp1機能を有するタンパク質をコードする遺伝子;
(6A)所定の塩基配列の相補配列に対してストリンジェントな条件下でハイブリダイズする塩基配列からなり、MZB1/pERp1機能を有するタンパク質をコードする遺伝子;または
(7A)所定の塩基配列と90%以上(さらに好ましくは95%以上、特に好ましくは98%以上)の配列同一性を有する塩基配列を有し、MZB1/pERp1機能を有するタンパク質をコードする遺伝子: 
を使用してもよい。
Regarding non-human MZB1/pERp1, as in the case of human MZB1/pERp1,
(2A) a gene encoding a protein having an MZB1/pERp1 function, which consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added in a predetermined amino acid sequence;
(3A) An amino acid sequence having a sequence identity of 85% or more (more preferably 90% or more, particularly preferably 95% or more, most preferably 98% or more) with a predetermined amino acid sequence, and has an MZB1/pERp1 function. Gene encoding a protein;
(5A) a gene comprising a base sequence in which one or several bases have been deleted, substituted or added in a predetermined base sequence, and which encodes a protein having an MZB1/pERp1 function;
(6A) a gene encoding a protein having a MZB1/pERp1 function, which consists of a base sequence that hybridizes to a complementary sequence of the predetermined base sequence under stringent conditions; or (7A) a predetermined base sequence and 90% A gene encoding a protein having a MZB1/pERp1 function having a nucleotide sequence having the above sequence identity (more preferably 95% or more, particularly preferably 98% or more):
May be used.
 MZB1/pERp1をコードする外来遺伝子はプロモーターに連結されている。
 プロモーターとしては宿主の動物細胞において機能してMZB1/pERp1を発現させることができるものであれば特に限定されない。プロモーターとしては、CMVプロモーター(サイトメガロウィルスプロモーター)、EF1αプロモーター(ヒトポリペプチド鎖伸長因子遺伝子のプロモーター)、SV40プロモーター(シアミンウイルス40プロモーター)、β-actinプロモーター、MMLV-LTRプロモーター(モロニーマウス白血病ウイルスの長い末端反復のプロモーター)、またはマウスβグロビンプロモーターが好ましく、CMVプロモーターがより好ましい。
The foreign gene encoding MZB1/pERp1 is linked to the promoter.
The promoter is not particularly limited as long as it can function in host animal cells and express MZB1/pERp1. The promoters include CMV promoter (cytomegalovirus promoter), EF1α promoter (human polypeptide chain elongation factor gene promoter), SV40 promoter (cyamine virus 40 promoter), β-actin promoter, MMLV-LTR promoter (Molony mouse leukemia). Viral long terminal repeat promoters) or the mouse β-globin promoter are preferred, and the CMV promoter is more preferred.
 本発明の動物細胞においては、MZB1/pERp1が過剰発現している。過剰発現とは、ある遺伝子の発現が、宿主における通常の発現量を超えていることを意味する。MZB1/pERp1をコードする外来遺伝子を宿主に導入し、上記外来遺伝子を宿主において発現させることにより、MZB1/pERp1を過剰発現している動物細胞を得ることができる。 In the animal cell of the present invention, MZB1/pERp1 is overexpressed. Overexpression means that the expression of a gene exceeds the normal expression level in a host. By introducing a foreign gene encoding MZB1/pERp1 into a host and expressing the foreign gene in the host, an animal cell overexpressing MZB1/pERp1 can be obtained.
 本発明の動物細胞におけるMZB1/pERp1の発現量は、MZB1/pERp1をコードする外来遺伝子を有さない動物細胞に対して、3倍以上であることが好ましく、3.5倍以上であることがより好ましく、4倍以上であることがより一層好ましく、4.5倍以上であることがさらに好ましく、5倍以上であることがさらに一層好ましく、5.5倍以上であることが特に好ましい。上限はなくてもよいが、30000倍以下でもよく、10000倍以下でもよい。 The expression level of MZB1/pERp1 in the animal cell of the present invention is preferably 3 times or more, and preferably 3.5 times or more, that of the animal cell having no foreign gene encoding MZB1/pERp1. It is more preferably 4 times or more, still more preferably 4.5 times or more, still more preferably 5 times or more, and particularly preferably 5.5 times or more. Although there is no upper limit, it may be 30,000 times or less, or 10,000 times or less.
 MZB1/pERp1の発現量は、RT-PCR法(逆転写-ポリメラーゼ連鎖反応)などによって調べることができる。MZB1/pERp1の発現量は、mRNAの逆転写とリアルタイムPCRにより実施することが好ましい。MZB1/pERp1の発現量は、ノーマライゼーションによって算出される相対的発現量であることが好ましい。ノーマライゼーションは、たとえば、β―アクチンやHPRT1などのハウスキーピング遺伝子の発現量を内在性コントロールとした比較定量によって行える。 The expression level of MZB1/pERp1 can be examined by RT-PCR method (reverse transcription-polymerase chain reaction). The expression level of MZB1/pERp1 is preferably determined by reverse transcription of mRNA and real-time PCR. The expression level of MZB1/pERp1 is preferably a relative expression level calculated by normalization. Normalization can be performed by, for example, comparative quantification using the expression levels of housekeeping genes such as β-actin and HPRT1 as an endogenous control.
<動物細胞>
 本発明における細胞は、動物細胞であれば特に限定されない。動物細胞としては、チャイニーズハムスター卵巣(CHO)細胞、BHK細胞、293細胞、ミエローマ細胞(NS0細胞など)、PerC6細胞、SP2/0細胞、ハイブリドーマ細胞、COS細胞、3T3細胞、HeLa細胞、Vero細胞、MDCK細胞、PC12細胞、WI38細胞などを挙げることができる。上記の中でも、特にCHO細胞、BHK細胞、293細胞、ミエローマ細胞(NS0細胞など)、PerC6細胞、SP2/0細胞、ハイブリドーマ細胞が好ましく、さらにCHO細胞が好ましい。CHO細胞は、組換えタンパク質、例えば、サイトカイン、凝固因子、および抗体の産生に広く使用されている。ジヒドロ葉酸還元酵素(DHFR)を欠損したCHO細胞を使用することが好ましく、DHFR欠損CHO細胞としては、例えば、CHO-DG44を使用することができる。
<Animal cells>
The cells in the present invention are not particularly limited as long as they are animal cells. Animal cells include Chinese hamster ovary (CHO) cells, BHK cells, 293 cells, myeloma cells (NS0 cells and the like), PerC6 cells, SP2/0 cells, hybridoma cells, COS cells, 3T3 cells, HeLa cells, Vero cells, MDCK cells, PC12 cells, WI38 cells and the like can be mentioned. Among the above, CHO cells, BHK cells, 293 cells, myeloma cells (NS0 cells and the like), PerC6 cells, SP2/0 cells and hybridoma cells are particularly preferable, and CHO cells are more preferable. CHO cells are widely used for the production of recombinant proteins such as cytokines, coagulation factors, and antibodies. It is preferable to use CHO cells deficient in dihydrofolate reductase (DHFR). As the DHFR deficient CHO cells, for example, CHO-DG44 can be used.
[動物細胞の製造方法]
 本発明によれば、動物細胞に対して、目的タンパク質をコードする遺伝子と、MZB1/pERp1をコードする外来遺伝子であってプロモーターに連結された外来遺伝子とを導入する工程を含む、本発明の動物細胞の製造方法が提供される。
[Method for producing animal cell]
According to the present invention, the animal of the present invention, which comprises the step of introducing a gene encoding a protein of interest and a foreign gene encoding MZB1/pERp1 which is linked to a promoter into an animal cell. A method for producing cells is provided.
 目的タンパク質をコードする遺伝子、およびMZB1/pERp1をコードする外来遺伝子はそれぞれベクターに組み込まれた形で、宿主である動物細胞に導入されることが好ましい。 It is preferable that the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 are introduced into the host animal cell in the form of being incorporated into the vector.
 遺伝子を宿主に導入するために使用できるベクターとしては、例えば、哺乳動物由来の発現ベクターを使用することができ、例えば、pCMV6-Entry(OriGene社製)、pcDNA3(Invitrogen社製)、pEGF-BOS(Nucleic Acids.Res.1990,18(17),p5322)、pEF、pCDM8(フナコシ社製)、INPEP4(Biogen-IDEC社製)などが挙げられるが、特に限定されない。 As a vector that can be used for introducing the gene into a host, for example, a mammalian-derived expression vector can be used, and examples thereof include pCMV6-Entry (manufactured by OriGene), pcDNA3 (manufactured by Invitrogen), pEGF-BOS. (Nucleic Acids. Res. 1990, 18(17), p5322), pEF, pCDM8 (manufactured by Funakoshi), INPEP4 (manufactured by Biogen-IDEC) and the like, but not particularly limited thereto.
 また、ポリAを持つmRNAは細胞内で安定することが知られている。目的タンパク質をコードする遺伝子、およびMZB1/pERp1をコードする外来遺伝子は、ポリAを遺伝子に付加させるために必要なポリAシグナル、例えばマウスβグロビンポリAシグナル、ウシ成長ホルモンポリAシグナル、SV40ポリAシグナルなどを持っていてもよい。 Also, it is known that mRNA having poly A is stable in cells. The gene encoding the target protein and the foreign gene encoding MZB1/pERp1 are polyA signals necessary for adding polyA to the gene, for example, mouse β globin polyA signal, bovine growth hormone polyA signal, SV40 polyA. It may have signals etc.
 動物細胞への、目的タンパク質をコードする遺伝子、およびMZB1/pERp1をコードする外来遺伝子の導入方法は特に限定されず、当業者に公知の方法により行うことができる。例えば、エレクトロポレーション、リポフェクション、リン酸カルシウム法、DEAEデキストラン法、カチオニックリポソームDOTAP(ロシュ・ライフサイエンス社製)を用いた方法、またはウイルスベクターを用いた方法で行うことが可能である。上記の中でも好ましくは、エレクトロポレーションである。 The method for introducing the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 into animal cells is not particularly limited, and can be performed by a method known to those skilled in the art. For example, electroporation, lipofection, a calcium phosphate method, a DEAE dextran method, a method using a cationic liposome DOTAP (manufactured by Roche Life Science), or a method using a viral vector can be performed. Of the above, electroporation is preferred.
 動物細胞に遺伝子を導入する場合、使用する発現ベクターの種類および遺伝子導入法に応じて、遺伝子は、遺伝子導入に供された細胞のうちの一部の細胞のみに導入される。遺伝子を導入した細胞を同定および選択するために、例えば抗生物質に対する耐性について選択可能なマーカーをコードする遺伝子を、目的の遺伝子とともに宿主細胞内に導入してもよい。好ましい選択可能マーカーには、G418、ハイグロマイシンおよびメトトレキサートなどの、薬物に耐性を与えるものが含まれる。 When a gene is introduced into an animal cell, the gene is introduced into only some of the cells provided for gene introduction, depending on the type of expression vector used and the gene introduction method. To identify and select cells into which the gene has been introduced, for example, a gene encoding a selectable marker for resistance to antibiotics may be introduced into the host cell along with the gene of interest. Preferred selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate.
 本発明の細胞においては、目的タンパク質をコードする遺伝子は、一過性発現系で発現していてもよいし、恒常的発現系で発現していてもよいが、恒常的発現系で発現しているものが好ましい。 In the cell of the present invention, the gene encoding the target protein may be expressed in a transient expression system or may be expressed in a constitutive expression system, but is expressed in a constitutive expression system. Those that are present are preferable.
 本発明の細胞においては、MZB1/pERp1をコードする外来遺伝子は、一過性発現系で発現していてもよいし、恒常的発現系で発現していてもよいが、恒常的発現系で発現しているものが好ましい。 In the cells of the present invention, the foreign gene encoding MZB1/pERp1 may be expressed in a transient expression system or may be expressed in a constitutive expression system, but is expressed in a constitutive expression system. What has been done is preferable.
 一過性発現系とは、環状プラスミドをリン酸カルシウム法、エレクトロポレーション法、リポフェクション法などにより細胞内に取り込ませ発現させる方法である。目的タンパク質をコードする遺伝子、およびMZB1/pERp1をコードする外来遺伝子は染色体外に存在することが多い。 The transient expression system is a method in which a circular plasmid is incorporated into cells and expressed by the calcium phosphate method, electroporation method, lipofection method, or the like. The gene encoding the target protein and the foreign gene encoding MZB1/pERp1 are often located extrachromosomally.
 恒常的発現系とは、環状プラスミドまたは制限酵素処理などにより作成した直鎖上プラスミドをリン酸カルシウム法、エレクトロポレーション法、リポフェクション法などにより細胞内に取り込ませ、一部が細胞のゲノム中に挿入されることで目的タンパク質を発現させる方法である。目的タンパク質をコードする遺伝子、およびMZB1/pERp1をコードする外来遺伝子の発現を長期間維持することが可能である。またプラスミドへの薬剤耐性遺伝子の導入を行えば薬剤選抜が可能となり、目的タンパク質をコードする遺伝子、およびMZB1/pERp1をコードする外来遺伝子が染色体上に維持された細胞を効率的に選択することができる。 In the constitutive expression system, a circular plasmid or a linear plasmid prepared by treatment with a restriction enzyme is incorporated into cells by the calcium phosphate method, electroporation method, lipofection method, etc., and a part is inserted into the genome of the cell. It is a method of expressing a target protein by doing so. It is possible to maintain the expression of the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 for a long period of time. In addition, if a drug resistance gene is introduced into a plasmid, drug selection becomes possible, and it is possible to efficiently select cells in which the gene encoding the target protein and the foreign gene encoding MZB1/pERp1 are maintained on the chromosome. it can.
[目的タンパク質の製造方法]
 本発明によれば、本発明の動物細胞を培養することを含む、目的タンパク質の製造方法が提供される。
[Method for producing target protein]
According to the present invention, there is provided a method for producing a target protein, which comprises culturing the animal cell of the present invention.
 本発明の動物細胞を培養することにより、目的タンパク質を製造することができる。培養は、公知の方法に従い行うことができる。
 本発明の動物細胞の培養に用いる培地としては、通常の動物細胞の培養で使用されている培地を用いることができる。例えば、OptiCHO(Lifetechnologies社、12681011)培地、ダルベッコ変法イーグル培地(DMEM)、イーグル最小必須培地(MEM)、RPMI-1640培地、RPMI-1641培地、F-12K培地、ハムF12培地、イスコブ変法ダルベッコ培地(IMDM)、マッコイ5A培地、ライボビッツL-15培地、およびEX-CELL(商標)300シリーズ(JRH Biosciences社)、CHO-S-SFMII(Invitrogen社)、CHO-SF(Sigma-Aldrich社)、CD-CHO(Invitrogen社)、 IS CHO-V(Irvine Scientific社)、PF-ACF-CHO (Sigma-Aldrich社)などを使用することができる。
The target protein can be produced by culturing the animal cell of the present invention. The culture can be performed according to a known method.
As the medium used for culturing the animal cells of the present invention, a medium used for culturing ordinary animal cells can be used. For example, OptiCHO (Lifetechnologies, 12681011) medium, Dulbecco's modified Eagle medium (DMEM), Eagle minimal essential medium (MEM), RPMI-1640 medium, RPMI-1641 medium, F-12K medium, Ham's F12 medium, Iscove modified method Dulbecco's medium (IMDM), McCoy's 5A medium, Leibovitz L-15 medium, and EX-CELL™ 300 series (JRH Biosciences), CHO-S-SFMII (Invitrogen), CHO-SF (Sigma-Aldrich). , CD-CHO (Invitrogen), IS CHO-V (Irvine Scientific), PF-ACF-CHO (Sigma-Aldrich), and the like can be used.
 培地には牛胎児血清(FCS)等の血清を添加してもよく、より好ましくは無血清培地で培養してもよく、最も好ましくは完全合成培地がよい。
 培地には、アミノ酸、塩、糖類、ビタミン、ホルモン、増殖因子、緩衝液、抗生物質、脂質、微量元素、植物タンパク質の加水分解物などの追加成分を補充してもよい。
Serum such as fetal calf serum (FCS) may be added to the medium, more preferably serum-free medium, and most preferably completely synthetic medium.
The medium may be supplemented with additional components such as amino acids, salts, sugars, vitamins, hormones, growth factors, buffers, antibiotics, lipids, trace elements, plant protein hydrolysates.
 培地のpHは培養する細胞により異なるが、一般的にはpH6.0~8.0であり、好ましくはpH6.8~7.6であり、より好ましくはpH7.0~7.4である。
 培養温度は、一般的には30℃~40℃であり、好ましくは32℃~37℃であり、より好ましくは36℃~37℃であり、培養中に培養温度を変更してもよい。
Although the pH of the medium varies depending on the cells to be cultured, it is generally pH 6.0 to 8.0, preferably pH 6.8 to 7.6, and more preferably pH 7.0 to 7.4.
The culture temperature is generally 30°C to 40°C, preferably 32°C to 37°C, more preferably 36°C to 37°C, and the culture temperature may be changed during the culture.
 培養は、CO濃度が0~40%、好ましくは2~10%の雰囲気下で行うことが好ましい。
 培養時間は特に限定されないが、一般的には12時間~90日間であり、好ましくは24時間~60日間であり、より好ましくは24時間~30日間である。
 培養においては、必要に応じて培地の交換、通気、攪拌を加えることができる。
Cultivation is preferably performed in an atmosphere having a CO 2 concentration of 0 to 40%, preferably 2 to 10%.
The culture time is not particularly limited, but is generally 12 hours to 90 days, preferably 24 hours to 60 days, and more preferably 24 hours to 30 days.
In the culturing, medium exchange, aeration and stirring can be added as necessary.
 本発明の動物細胞の培養は、培養装置(バイオリアクターとも言う)、またはそれ以外の好適な容器内で行うことができる。培養装置としては、発酵槽型タンク培養装置、エアーリフト型培養装置、カルチャーフラスコ型培養装置、スピンナーフラスコ型培養装置、マイクロキャリアー型培養装置、流動層型培養装置、ホロファイバー型培養装置、ローラーボトル型培養装置、充填槽型培養装置等を用いてすることができる。 The culturing of the animal cells of the present invention can be carried out in a culturing device (also called a bioreactor) or another suitable container. As the culture device, a fermenter type tank culture device, an air lift type culture device, a culture flask type culture device, a spinner flask type culture device, a microcarrier type culture device, a fluidized bed type culture device, a hollow fiber type culture device, a roller bottle. It can be performed by using a type culture device, a filled-tank type culture device, or the like.
 培養スケールは、一般的には1L~20000Lであり、好ましくは1L~10000Lであり、より好ましくは200L~2000Lであり、さらに好ましくは500L~2000Lである。 The culture scale is generally 1 L to 20000 L, preferably 1 L to 10000 L, more preferably 200 L to 2000 L, and further preferably 500 L to 2000 L.
 培養は、バッチ培養(batch culture)、フェドバッチ培養 (fed-batch culture;流加培養とも言う)、灌流培養(perfusion culture)などのいずれの方法を用いてもよいが、フェドバッチ培養または灌流培養が好ましい。 For the culture, any method such as batch culture, fed-batch culture (also referred to as fed-batch culture), and perfusion culture may be used, but fed-batch culture or perfusion culture is preferable. ..
 バッチ培養とは、細胞を固定体積の培養培地中で短期間増殖させ、その後、完全に回収する不連続な方法である。バッチ法を用いて増殖させた培養物は、最大細胞密度に達するまで細胞密度の増加を経験し、その後、培地成分が消費され、代謝副産物(乳酸塩およびアンモニア等)のレベルが蓄積するにつれて生存細胞密度が減退する。回収は、典型的には、最大細胞密度(典型的には、5~10×10cells/mL)が達成された時点で行う。バッチプロセスは、最も単純な培養方法であるが、しかしながら生存細胞密度は、栄養分利用能によって制限され、細胞が一度最大密度になると、培養は減退し、目的タンパク質の産生が低減する。廃棄産物の蓄積および栄養枯渇が培養減退に迅速につながるため(典型的には、約3~7日)、目的タンパク質の産生期間を延長することはできない。 Batch culture is a discontinuous method in which cells are grown in a fixed volume of culture medium for a short period of time and then completely recovered. Cultures grown using the batch method experience an increase in cell density until they reach maximal cell density, then survive as media components are consumed and levels of metabolic byproducts (such as lactate and ammonia) accumulate. Cell density declines. Harvesting is typically performed when maximum cell density (typically 5-10 x 10 6 cells/mL) is reached. The batch process is the simplest culturing method, however, the viable cell density is limited by nutrient availability and once the cells reach maximum density, the culture declines and the production of the protein of interest is reduced. It is not possible to prolong the production period of the protein of interest, as waste product accumulation and nutrient depletion quickly lead to culture decline (typically about 3-7 days).
 フェドバッチ培養は、ボーラスまたは連続的に培地を供給して、消費された培地成分を補給することによって、バッチプロセスを改善する培養方法である。即ち、フェドバッチ培養においては、培養形態は懸濁培養であり、培養プロセスの開始後の一以上の時点において培養に追加成分を提供する。追加成分としては、培養プロセス中に枯渇している細胞のための栄養補助成分が挙げられ、その他の補助成分(例えば、細胞周期阻害化合物)を含めてもよい。 Fed-batch culture is a culture method that improves the batch process by supplying a medium in a bolus or continuously to supplement the consumed medium components. Thus, in fed-batch culture, the culture form is a suspension culture, providing additional components to the culture at one or more points after the start of the culture process. Additional components include nutritional supplements for cells that are depleted during the culturing process, and may include other supplements (eg, cell cycle inhibiting compounds).
 フェドバッチ培養では、培養期間を通して追加の栄養分を添加するため、バッチ培養と比較して、より高い細胞密度、および目的タンパク質の高い産生量を達成できる可能性がある。フェドバッチ培養では、バッチ培養とは異なり、所望の細胞密度を達成するための細胞増殖の期間(増殖期)を、中止したまたは遅い細胞増殖の期間(産生期)から区別するように供給スケジュールおよび培地成分を操作することにより二相培養を作製および持続することができる。これにより、フェドバッチ培養は、バッチ培養と比較して、目的タンパク質のより高い産生量を達成できる可能性がある。 In fed-batch culture, additional nutrients are added throughout the culture period, so there is a possibility that higher cell density and higher production of target protein can be achieved compared to batch culture. In fed-batch cultures, unlike batch cultures, the feeding schedule and medium are used to distinguish the period of cell growth (growth phase) to achieve the desired cell density from the period of aborted or slow cell growth (production phase). By manipulating the components, biphasic cultures can be made and maintained. As a result, the fed-batch culture may be able to achieve a higher production amount of the target protein as compared with the batch culture.
 フェドバッチ培養において、細胞培養の播種細胞密度は、一般的には0.2×10cells/mL以上1×10cells/mL以下であり、好ましくは0.2×10cells/mL以上5×10cells/mL以下であり、より好ましくは0.5×10cells/mL以上2.5×10cells/mL以下であり、さらに好ましくは0.5×10cells/mL以上1.5×10cells/mL以下である。
 フェドバッチ培養において、培養期間中の生細胞率は全期間において、好ましくは60%以上100%以下であり、より好ましくは70%以上100%以下であり、さらに好ましくは75%以上100%以下である。
In the fed-batch culture, the seeding cell density of the cell culture is generally 0.2×10 6 cells/mL or more and 1×10 7 cells/mL or less, preferably 0.2×10 6 cells/mL or more 5. ×10 6 cells/mL or less, more preferably 0.5×10 6 cells/mL or more and 2.5×10 6 cells/mL or less, and still more preferably 0.5×10 6 cells/mL or more 1. It is less than or equal to 5×10 6 cells/mL.
In the fed-batch culture, the viable cell rate during the culture period is preferably 60% or more and 100% or less, more preferably 70% or more and 100% or less, and further preferably 75% or more and 100% or less in the entire period. ..
 灌流培養は、新鮮な培地を添加し、同時に使用済み培地を除去する培養法であり、バッチ培養およびフェドバッチ培養をさらに改善できる可能性がある。灌流培養は、例えば、ATF(Alternating Tangential Flow Filtration)ポンプまたはTFF(Tangential Flow Filtration)ポンプを用いて行うことができる。灌流培養によれば、1×10cells/mLを超える高い細胞密度を達成することが可能である。典型的な灌流培養は、1日間または2日間続くバッチ培養スタートアップで始まり、その後、培養物に新鮮な供給培地を連続的、段階的、および/または断続的に添加し、使用済み培地を同時に除去する。灌流培養においては、沈降、遠心分離または濾過などの方法を用いて、細胞密度を維持しながら使用済み培地を除去することができる。 Perfusion culture is a culture method in which fresh medium is added and used medium is removed at the same time, and there is a possibility that batch culture and fed-batch culture can be further improved. Perfusion culture can be performed using, for example, an ATF (Alternating Tangential Flow Filtration) pump or a TFF (Tangential Flow Filtration) pump. With perfusion cultures, it is possible to achieve high cell densities in excess of 1×10 8 cells/mL. A typical perfusion culture begins with a batch culture start-up lasting 1 or 2 days, after which fresh feed medium is added continuously, stepwise, and/or intermittently to the culture to remove spent medium simultaneously. To do. In perfusion culture, methods such as sedimentation, centrifugation or filtration can be used to remove spent medium while maintaining cell density.
 灌流培養の利点は、目的タンパク質が生産される培養が、バッチ培養法またはフェドバッチ培養よりも長期間維持されることである。しかし、長期の灌流培養、特に高細胞密度での灌流培養を維持するためには、培地の調製、使用、保存および廃棄が必要である。灌流培養では、多くの栄養分が必要であり、バッチ培養およびフェドバッチ培養と比較して、目的タンパク質の生産コストが高くなる傾向にある。また、膜孔径の選択により、抗体を系外へ回収しながら培養を継続することが可能であるため、抗体の培養液中での滞留時間を短くし、化学的変化を減らすことで抗体の品質を高く保つことが可能である。  The advantage of perfusion culture is that the culture in which the target protein is produced is maintained longer than the batch culture method or the fed-batch culture. However, maintenance of long-term perfusion cultures, especially perfusion cultures at high cell densities, requires media preparation, use, storage and disposal. The perfusion culture requires a large amount of nutrients and tends to increase the production cost of the target protein as compared with batch culture and fed-batch culture. In addition, by selecting the membrane pore size, it is possible to continue culturing while recovering the antibody outside the system.Therefore, the retention time of the antibody in the culture solution is shortened and the chemical changes are reduced to improve antibody quality. Can be kept high. ‥
 フェドバッチ培養および灌流培養を組み合わせた培養を行うことも可能である。一例としては、ボーラス供給を伴うフェドバッチ培養を、増殖期の細胞の培養を維持するために使用し、次いで、灌流培養を目的タンパク質の産生のために使用することができる。 It is also possible to perform a culture that combines fed-batch culture and perfusion culture. As an example, a fed-batch culture with a bolus feed can be used to maintain a culture of cells in the growing phase, and then a perfusion culture can be used to produce the protein of interest.
 灌流は、連続的、段階的、断続的またはこれらの組み合わせの何れの形態でもよい。動物細胞は、培養物中に保持され、除去される使用済みの培地は、細胞を実質的に含まないか、または培養物よりもはるかに少ない細胞を有していてもよい。細胞培養によって発現される目的タンパク質は膜孔径の選択により、培養物中に保持または回収することができる。培養中の細胞密度が過剰にならないよう、培養液の一部を細胞ごと抜き取り、新鮮な培地を同量加えることにより細胞密度を減らす(セルブリーディング)ことを行っても良い。 The perfusion may be continuous, stepwise, intermittent, or a combination thereof. Animal cells are maintained in culture and the spent media that is removed may be substantially free of cells or have much less cells than culture. The target protein expressed by cell culture can be retained or recovered in the culture by selecting the membrane pore size. In order to prevent the cell density in the culture from becoming excessive, a part of the culture medium may be extracted together with the cells, and the same amount of fresh medium may be added to reduce the cell density (cell bleeding).
 灌流培養において、細胞培養の播種細胞密度は、一般的には0.2×10cells/mL以上3×10cells/mL以下であり、好ましくは0.2×10cells/mL以上1×10cells/mL以下であり、より好ましくは0.5×10cells/mL以上1×10cells/mL以下である。
 灌流培養において、培養期間中の生細胞率は全期間において、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上である。
In the perfusion culture, the seeding cell density of the cell culture is generally 0.2×10 6 cells/mL or more and 3×10 7 cells/mL or less, preferably 0.2×10 6 cells/mL or more 1. ×10 7 cells/mL or less, more preferably 0.5×10 6 cells/mL or more and 1×10 7 cells/mL or less.
In the perfusion culture, the viable cell rate during the culture period is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more in the entire period.
 灌流培養において、最高到達細胞密度は、好ましくは2×10cells/mL以下であり、より好ましくは1.5×10cells/mL以下であり、さらに好ましくは1.0×10cells/mL以下である。 In perfusion culture, the highest cell density reached is preferably 2×10 8 cells/mL or less, more preferably 1.5×10 8 cells/mL or less, and further preferably 1.0×10 8 cells/mL. It is less than or equal to mL.
 灌流培養における灌流比としては、好ましくは0.3vvd以上5.0vvd以下であり、より好ましくは0.3vvd以上1.5vvd以下である。但し、vvdは以下を表す。
vvd=(volume of fresh medium/working volume of reactor/day, 1日当たりの供給培養液量/培養液量)
The perfusion ratio in the perfusion culture is preferably 0.3 vvd or more and 5.0 vvd or less, more preferably 0.3 vvd or more and 1.5 vvd or less. However, vvd represents the following.
vvd=(volume of fresh medium/working volume of reactor/day, amount of supplied culture fluid/volume of culture fluid per day)
 細胞培養の播種細胞密度、および培養における最高到達細胞密度は、細胞数を常法により測定し、細胞数を培養液量で割ることにより求めることができる。
 培養期間中の生細胞率(生存率)は、生細胞数を(生細胞数+死細胞数)で除算することで求められる。たとえば、細胞数の測定はVi-CELL XR(Beckman Coulter社)を用いて測定することができる。
The seeded cell density in cell culture and the highest cell density reached in culture can be determined by measuring the number of cells by a conventional method and dividing the number of cells by the amount of culture solution.
The viable cell rate (viability) during the culture period is obtained by dividing the viable cell number by (viable cell number+dead cell number). For example, the number of cells can be measured using Vi-CELL XR (Beckman Coulter).
 上記した培養により製造される目的タンパク質は精製することができる。目的タンパク質の分離および精製は通常のタンパク質で使用されている分離および精製方法を使用すればよい。例えば、アフィニティークロマトグラフィー等のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析、ドデシル硫酸ナトリウム(SDS)ポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択および組み合わせることにより、目的タンパク質を分離および精製することができるが、これらに限定されるものではない。上記で得られた目的タンパク質の濃度測定は、吸光度測定または酵素結合免疫吸着検定法(Enzyme-linked immunosorbent assay;ELISA)等により行うことができる。 The target protein produced by the above culture can be purified. Separation and purification of the target protein may be performed by using the separation and purification methods used for ordinary proteins. For example, a target protein can be obtained by appropriately selecting and combining a chromatography column such as affinity chromatography, a filter, ultrafiltration, salting out, dialysis, sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, and isoelectric focusing. Can be isolated and purified, but is not limited thereto. The concentration of the target protein obtained as described above can be measured by absorbance measurement, enzyme-linked immunosorbent assay (Enzyme-linked immunosorbent assay; ELISA), or the like.
 アフィニティークロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムが挙げられる。アフィニティークロマトグラフィー以外のクロマトグラフィーとしては、例えば、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる。これらのクロマトグラフィーはHPLC(high performance liquid chromatography;高速液体クロマトグラフィー)またはFPLC(fast protein liquid chromatography)等の液相クロマトグラフィーを用いて行うことができる。 Examples of columns used for affinity chromatography include protein A columns and protein G columns. Examples of the chromatography other than the affinity chromatography include ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography and the like. These chromatographys can be performed using liquid phase chromatography such as HPLC (high performance liquid chromatography) or FPLC (fast protein liquid chromatography).
 なお、目的タンパク質は、精製前または精製後に適当なポリペプチド修飾酵素を作用させることにより、目的タンパク質を修飾したり、部分的にペプチドを除去することもできる。ポリペプチド修飾酵素としては、例えば、トリプシン、キモトリプシン、リシルエンドペプチダーゼ、プロテインキナーゼ、グルコシダーゼなどが用いられる。 The target protein can be modified or partially removed by treating it with an appropriate polypeptide-modifying enzyme before or after purification. Examples of the polypeptide modifying enzyme include trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, glucosidase and the like.
[目的タンパク質の利用]
 本発明の方法により製造された目的タンパク質が、医薬品として有用な生物学的活性を有する場合には、目的タンパク質を、薬学的に許容される担体または添加剤と混合して製剤化することにより、医薬品を製造することができる。
[Use of target protein]
When the target protein produced by the method of the present invention has a biologically useful biological activity, the target protein is mixed with a pharmaceutically acceptable carrier or additive to prepare a formulation, Can manufacture pharmaceutical products.
 薬学的に許容される担体および添加剤の例として、水、薬学的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン(HSA)、マンニトール、ソルビトール、ラクトース、薬学的に許容される界面活性剤等が挙げられる。 Examples of pharmaceutically acceptable carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethyl cellulose, sodium polyacrylate, sodium alginate, water-soluble. Dextran, sodium carboxymethyl starch, pectin, methyl cellulose, ethyl cellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin (HSA) , Mannitol, sorbitol, lactose, pharmaceutically acceptable surfactants and the like.
 例えば、注射用製剤として使用する場合、精製された目的タンパク質を溶剤、例えば生理食塩水、緩衝液、ブドウ糖溶液等に溶解し、これに吸着防止剤、例えばTween80、Tween20、ゼラチン、ヒト血清アルブミン等を加えたものを使用することができる。あるいは、目的タンパク質は、使用前に溶解再構成する剤形とするために凍結乾燥したものであってもよく、凍結乾燥のための賦形剤としては、例えば、マンニトール、ブドウ糖等の糖アルコールや糖類を使用することができる。 For example, when used as an injectable preparation, the purified target protein is dissolved in a solvent such as physiological saline, a buffer solution, a glucose solution, etc., and an adsorption inhibitor such as Tween 80, Tween 20, gelatin, human serum albumin, etc. Can be used. Alternatively, the target protein may be freeze-dried to obtain a dosage form that is reconstituted before use, and examples of the excipient for freeze-drying include sugar alcohols such as mannitol and glucose, and Sugars can be used.
 目的タンパク質の投与方法は、経口投与または非経口投与のいずれでもよいが、好ましくは非経口投与である。例えば、注射(例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などによる全身または局所投与)、経鼻投与、経肺投与、または経皮投与などが挙げられる。 The method of administering the target protein may be either oral administration or parenteral administration, but parenteral administration is preferred. For example, injection (eg, systemic or local administration by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, etc.), nasal administration, pulmonary administration, transdermal administration and the like can be mentioned.
 目的タンパク質の投与量は、目的タンパク質の種類、治療や予防の対象とする疾患の種類、患者の年齢、疾患の重篤度などにより適宜選択される。一般的には、一回につき体重1kgあたり0.001mgから1000mgの範囲であるが、特に限定されない。 The dose of the target protein is appropriately selected according to the type of target protein, the type of disease to be treated or prevented, the age of the patient, the severity of the disease, etc. Generally, it is in the range of 0.001 mg to 1000 mg per 1 kg of body weight per one time, but is not particularly limited.
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples.
<実施例1>動物細胞の作製
 ヒトMZB1/pERp1遺伝子をコードするベクター(OriGene社、Cat# RC205659)を購入し、MZB1/pERp1遺伝子の発現カセット(プロモーター、オープンリーディングフレーム、ターミネーター)をプライマー1(配列番号3)及びプライマー2(配列番号4)を用いてポリメラーゼ連鎖反応(PCR)によって増幅した。
<Example 1> Preparation of animal cells A vector encoding the human MZB1/pERp1 gene (OriGene, Cat# RC205659) was purchased, and an expression cassette (promoter, open reading frame, terminator) of the MZB1/pERp1 gene was used as a primer 1 ( It was amplified by polymerase chain reaction (PCR) using SEQ ID NO:3) and primer 2 (SEQ ID NO:4).
 抗体1(デノスマブ、https://www.drugbank.ca/drugs/DB06643)又は抗体2(ブロソズマブ、https://www.drugbank.ca/drugs/DB12560)又は抗体3(抗MUC1抗体、特表2016-517691号公報)各抗体のL鎖及びH鎖を共発現するベクターに、増幅したMZB1/pERp1発現カセットを挿入した。L鎖及びH鎖共発現ベクターの構築および細胞への導入は、特表2016-517691号公報の実施例2に準じて行った。 Antibody 1 (denosumab, https://www.drugbank.ca/drugs/DB06643) or antibody 2 (brosozumab, https://www.drugbank.ca/drugs/DB12560) or antibody 3 (anti-MUC16 antibody, anti-MUC16 antibody). (-5171691) The amplified MZB1/pERp1 expression cassette was inserted into a vector that co-expresses the L chain and H chain of each antibody. Construction of the L-chain and H-chain co-expression vector and introduction into cells were carried out according to Example 2 of JP-T-2016-517691.
 抗体及びMZB1/pERp1遺伝子を導入する前のホストCHO-DG44細胞はすべて37℃、5%CO雰囲気下のインキュベーターで培養した。ホスト細胞5×10cellsにエレクトロポレーション法(Lonza社、4D-Nucleofector)を用いて上記ベクターを導入し、100倍希釈したHT Supplement(x100)(Lifetechnologies社、11067-030)を含む20mLのOptiCHO(Lifetechnologies社、12681011)培地に懸濁の後、T75フラスコに播種した。1日後、HTサプリメントを含まず175nmol/Lのメトトレキサート(MTX)(和光純薬工業社)を含むOptiCHO(Lifetechnologies社、12681011)培地に入れ替えた。遺伝子導入後3週間からT75フラスコの顕微鏡観察を開始し、細胞の増殖が見られたフラスコから順次、培養体積を20mLへ拡大し、125mL容振とうフラスコ(Corning)へ播種し、140rpmで振とう培養した。 All host CHO-DG44 cells before the introduction of the antibody and MZB1/pERp1 gene were cultured in an incubator at 37° C. in a 5% CO 2 atmosphere. 20 mL of HT Supplement (x100) (Lifetechnologies, 11067-030) diluted with 100 times the above vector was introduced into host cells 5×10 6 cells by electroporation (Lonza, 4D-Nucleofector) and diluted 100-fold. After suspending in OptiCHO (Lifetechnologies, 12681011) medium, it was seeded in a T75 flask. One day later, the medium was replaced with OptiCHO (Lifetechnologies, 12681011) medium containing 175 nmol/L methotrexate (MTX) (Wako Pure Chemical Industries, Ltd.) without HT supplement. Microscopic observation of T75 flask was started from 3 weeks after gene introduction, and the culture volume was expanded to 20 mL sequentially from the flask in which cell growth was observed, seeded in a 125 mL shaking flask (Corning), and shaken at 140 rpm. Cultured.
 上記の方法で、ヒトMZB1/pERp1遺伝子及び抗体1又は抗体2又は抗体3を強制発現する抗体1-MZB1細胞、抗体2-MZB1細胞、抗体3-MZB1細胞を樹立した。また、抗体L鎖及びH鎖を発現するベクターを用いて、同様の方法で遺伝子導入を実施し、対照群の抗体1細胞、抗体2細胞、抗体3細胞を構築した。 According to the above method, antibody 1-MZB1 cells, antibody 2-MZB1 cells, antibody 3-MZB1 cells that forcibly express the human MZB1/pERp1 gene and antibody 1 or antibody 2 or antibody 3 were established. In addition, gene transfer was carried out in the same manner using a vector expressing the antibody L chain and H chain to construct a control group of antibody 1 cell, antibody 2 cell, and antibody 3 cell.
プライマ-1: CCGCGGTCATAGCTGTTTCCTGAAC(配列番号3)
プライマ-2: CAGCTATGACCGCGGTTAGAGCTCTTCTCTTGTGGCTGACACC(配列番号4)
Primer-1: CCGCGGTCATAGCTGTTTCCTGAAC (SEQ ID NO: 3)
Primer-2: CAGCTATGACCGCGGTTAGAGCTCTTCTCTTGTGGCTGACACC (SEQ ID NO: 4)
<実施例2>培養実験
 抗体1-MZB1細胞、抗体2-MZB1細胞、抗体3-MZB1細胞および抗体1細胞、抗体2細胞、抗体3細胞をそれぞれ8水準ずつ用いて流加培養実験を実施した。
 細胞を5×10cells/mLの細胞密度でOptiCHO(Lifetechnologies社、12681011)培地15mLに懸濁し、AMBR15培養装置(ザルトリウス・ステディム社)による自動培養を行った。培養開始2日目から13日目まで、毎日フィード培地(Cellboost7a,7b,GE healthcare社)を初期培養体積比で2%ずつ加えた。経時的に細胞密度、培養液成分および抗体濃度を測定するため、3-4日おきにサンプリングを実施した。培養開始14日目に培養液を回収し、0.22μmのデプスフィルター(メルクミリポア社)を用いて細胞および細胞デブリを除いた。上清中の抗体濃度および細胞あたりの抗体生産性(Qp)を液体クロマトグラフィーによって測定したところ、抗体濃度は抗体1で83%、抗体2で24%、抗体3で38%増加した(図1および表1)。また、Qpは抗体1で79%、抗体2で40%、抗体3で55%増加した(図2および表2)。一方で、積分生存細胞密度(IVCD)はどの抗体においてもほぼ変化しない(図3および表3)。図1~図3において、左は抗体のみ、右は抗体-MZB1を示す。MZB1/pERp1の発現によって抗体分泌経路の効率が増加したため、抗体生産性が向上したと考えられる。
 なお、積分生存細胞密度(IVCD)は、以下の方法で測定した。0、3、7、10および14日目に生細胞密度(VCD)をVi-CELL XR(Beckman Coulter社)で測定し、それぞれの値をV0、V3、V7、V10およびV14とする。積分生存細胞密度(IVCD)は、以下の式で求められる。
積分生存細胞密度(IVCD)={(V0+V3)×(3-0)/2}+{(V3+V7)×(7-3)/2}+{(V10+V7)×(10-7)/2}+{(V14+V10)×(14-10)/2}
<Example 2> Culture experiment A fed-batch culture experiment was carried out using 8 levels of each of antibody 1-MZB1 cells, antibody 2-MZB1 cells, antibody 3-MZB1 cells and antibody 1 cells, antibody 2 cells, and antibody 3 cells. .
The cells were suspended in 15 mL of OptiCHO (Lifetechnologies, 12681011) medium at a cell density of 5×10 5 cells/mL, and automatic culturing was performed using an AMBR15 culture device (Sartorius Stedim). From the second day to the 13th day from the start of the culture, a feed medium (Cellboost 7a, 7b, GE healthcare) was added every 2% at the initial culture volume ratio every day. Sampling was carried out every 3-4 days in order to measure cell density, culture solution components and antibody concentration over time. The culture medium was collected 14 days after the start of the culture, and cells and cell debris were removed using a 0.22 μm depth filter (Merck Millipore). When the antibody concentration in the supernatant and the antibody productivity per cell (Qp) were measured by liquid chromatography, the antibody concentration was increased by 83% for antibody 1, 24% for antibody 2, and 38% for antibody 3 (Fig. 1). And Table 1). In addition, Qp was increased by 79% for Antibody 1, 40% for Antibody 2, and 55% for Antibody 3 (Fig. 2 and Table 2). On the other hand, integrated viable cell density (IVCD) is almost unchanged for all antibodies (Figure 3 and Table 3). 1 to 3, the left shows only the antibody and the right shows the antibody-MZB1. The expression of MZB1/pERp1 increased the efficiency of the antibody secretory pathway, which is considered to improve the antibody productivity.
The integrated viable cell density (IVCD) was measured by the following method. Viable cell density (VCD) was measured by Vi-CELL XR (Beckman Coulter, Inc.) on days 0, 3, 7, 10 and 14, and the respective values were designated as V0, V3, V7, V10 and V14. The integrated viable cell density (IVCD) is calculated by the following formula.
Integrated viable cell density (IVCD)={(V0+V3)×(3-0)/2}+{(V3+V7)×(7-3)/2}+{(V10+V7)×(10-7)/2}+ {(V14+V10)×(14-10)/2}
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 細胞あたりの抗体生産性Qp[pg/cell/day]は、以下の式で求めた。 The antibody productivity Qp [pg/cell/day] per cell was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Pti[g/L] = 培養日tiにおける精製物の濃度
Xti[cell/day]= 培養日tiにおける生細胞密度
Pti [g/L] = concentration of purified product on culture day ti Xti [cell/day] = viable cell density on culture day ti
 積分の近似値は、時間t1からt2までの増殖曲線下面積を台形の面積として求めることで算定した。
Figure JPOXMLDOC01-appb-M000005
The approximate value of the integral was calculated by obtaining the area under the growth curve from time t1 to time t2 as the trapezoidal area.
Figure JPOXMLDOC01-appb-M000005

Claims (14)

  1. 目的タンパク質をコードする遺伝子と、MZB1/pERp1をコードする外来遺伝子であってプロモーターに連結された外来遺伝子とを有し、前記MZB1/pERp1が過剰発現している、動物細胞。 An animal cell having a gene encoding a protein of interest and a foreign gene encoding MZB1/pERp1 which is linked to a promoter, wherein said MZB1/pERp1 is overexpressed.
  2. 過剰発現が恒常的である、請求項1に記載の動物細胞。 The animal cell according to claim 1, wherein overexpression is constitutive.
  3. MZB1/pERp1をコードする外来遺伝子が、配列番号1に記載の塩基配列と90%以上の配列同一性を有する塩基配列を有する、請求項1または2に記載の動物細胞。 The animal cell according to claim 1 or 2, wherein the foreign gene encoding MZB1/pERp1 has a nucleotide sequence having 90% or more sequence identity with the nucleotide sequence shown in SEQ ID NO:1.
  4. MZB1/pERp1をコードする外来遺伝子が、配列番号1に記載の塩基配列を含む、請求項1から3の何れか一項に記載の動物細胞。 The animal cell according to any one of claims 1 to 3, wherein the foreign gene encoding MZB1/pERp1 contains the nucleotide sequence set forth in SEQ ID NO: 1.
  5. 動物細胞がCHO細胞である、請求項1から4の何れか一項に記載の動物細胞。 The animal cell according to any one of claims 1 to 4, wherein the animal cell is a CHO cell.
  6. 動物細胞に対して、目的タンパク質をコードする遺伝子と、MZB1/pERp1をコードする外来遺伝子であってプロモーターに連結された外来遺伝子とを導入する工程を含む、請求項1から5の何れか一項に記載の動物細胞の製造方法。 6. The method according to claim 1, further comprising the step of introducing a gene encoding a protein of interest and a foreign gene encoding MZB1/pERp1 which is linked to a promoter into an animal cell. The method for producing an animal cell according to 1.
  7. MZB1/pERp1をコードする外来遺伝子であってプロモーターに連結された外来遺伝子を導入する工程が、エレクトロポレーションにより行われる、請求項6に記載の方法。 The method according to claim 6, wherein the step of introducing a foreign gene encoding MZB1/pERp1 and linked to a promoter is performed by electroporation.
  8. 請求項1から5の何れか一項に記載の動物細胞を培養することを含む、目的タンパク質の製造方法。 A method for producing a target protein, which comprises culturing the animal cell according to any one of claims 1 to 5.
  9. 培養が、フェドバッチ培養である、請求項8に記載の方法。 The method according to claim 8, wherein the culture is a fed-batch culture.
  10. 細胞培養の播種細胞密度が0.2×10cells/mL以上5×10cells/mL以下である、請求項9に記載の方法。 The method according to claim 9, wherein the seeding cell density of the cell culture is 0.2×10 6 cells/mL or more and 5×10 6 cells/mL or less.
  11. 培養期間中の生細胞率が全期間において60%以上である、請求項10に記載の方法。 The method according to claim 10, wherein the viable cell rate during the culture period is 60% or more over the entire period.
  12. 培養が、灌流培養である、請求項8に記載の方法。 The method according to claim 8, wherein the culture is perfusion culture.
  13. 細胞培養の播種細胞密度が0.2×10cells/mL以上1×10cells/mL以下である、請求項12に記載の方法。 The method according to claim 12, wherein the seeded cell density of the cell culture is 0.2×10 6 cells/mL or more and 1×10 7 cells/mL or less.
  14. 培養期間中の生細胞率が全期間において90%以上である、請求項13に記載の方法。 The method according to claim 13, wherein the viable cell rate during the culture period is 90% or more over the entire period.
PCT/JP2019/048215 2018-12-11 2019-12-10 Animal cells, animal cell production method, and target protein production method WO2020122048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-231591 2018-12-11
JP2018231591 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020122048A1 true WO2020122048A1 (en) 2020-06-18

Family

ID=71077318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048215 WO2020122048A1 (en) 2018-12-11 2019-12-10 Animal cells, animal cell production method, and target protein production method

Country Status (1)

Country Link
WO (1) WO2020122048A1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANELLI, TIZIANA ET AL.: "Missing Links in Antibody Assembly Control", INTERNATIONAL JOURNAL OF CELL BIOLOGY, vol. 2013, pages 1 - 9, XP055718372 *
AZUMA, YUMIKO ET AL.: "Recombinant Human Hexamer-Dominant IgM Monoclonal Antibody to Ganglioside GM3 for Treatment of Melanoma", CLIN. CANCER RES., vol. 13, no. 9, 1 May 2007 (2007-05-01), pages 2745 - 2750, XP007913011 *
FLACH, HENRIK ET AL.: "Mzb1 Protein Regulates Calcium Homeostasis, Antibody Secretion, and Integrin Activation in Innate-like B cells", IMMUNITY, vol. 33, 24 November 2010 (2010-11-24), pages 723 - 735, XP055718364 *
NISHIMIYA, DAISUKE: "Proteins improving recombinant antibody production in mammalian cells", APPL. MICROBIAL. BIOTECHNOL., vol. 98, 11 December 2013 (2013-12-11), pages 1031 - 1042, XP035328534, DOI: 10.1007/s00253-013-5427-3 *
ROSENBAUM, MARC ET AL.: "MZB1 is a GRP94 cochaperone that enables proper immunoglobulin heavy chain biosynthesis upon ER stress", GENES & DEVELOPMENT, vol. 28, 2014, pages 1165 - 1178, XP055718370 *
XU, XIAOHUA ET AL.: "Therapeutics to Promote CNS Repair: A Natural Human Neuron-Binding IgM Regulates Membrane-Raft Dynamics and Improves Motility in a Mouse Model of Multiple Sclerosis", J. CLIN. IMMUNOL., vol. 33, no. 1, 19 September 2012 (2012-09-19), pages S50 - S56, XP035161063, DOI: 10.1007/s10875-012-9795-8 *

Similar Documents

Publication Publication Date Title
KR102369211B1 (en) Methods and systems for processing a cell culture
JP6943972B2 (en) Perfusion medium
JP2017500017A (en) Use of perfusion seed cultures to improve biopharmaceutical fed-batch production capacity and product quality
JP6843750B2 (en) How to culture mammalian cells
US11542523B2 (en) Animal cell, method for producing animal cell, and method for producing target protein
JP2007500016A (en) Method for increasing protein production in culture
JP7453151B2 (en) How to prepare liquid culture medium
WO2020122048A1 (en) Animal cells, animal cell production method, and target protein production method
US20160108357A1 (en) Methods of culturing a cell
JP7123168B2 (en) Animal cell, method for producing animal cell, and method for producing target protein
ES2812923T3 (en) Method for preparing an aqueous solution containing culture medium and chelating agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP