WO2020121679A1 - Mini-batch learning device, and operation program and operation method therefor - Google Patents

Mini-batch learning device, and operation program and operation method therefor Download PDF

Info

Publication number
WO2020121679A1
WO2020121679A1 PCT/JP2019/042937 JP2019042937W WO2020121679A1 WO 2020121679 A1 WO2020121679 A1 WO 2020121679A1 JP 2019042937 W JP2019042937 W JP 2019042937W WO 2020121679 A1 WO2020121679 A1 WO 2020121679A1
Authority
WO
WIPO (PCT)
Prior art keywords
class
value
mini
loss
batch
Prior art date
Application number
PCT/JP2019/042937
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 涌井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP19895335.8A priority Critical patent/EP3896646A4/en
Priority to CN201980081719.3A priority patent/CN113168698A/en
Priority to JP2020559801A priority patent/JP7096362B2/en
Publication of WO2020121679A1 publication Critical patent/WO2020121679A1/en
Priority to US17/336,846 priority patent/US11983880B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2155Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • G06F18/2193Validation; Performance evaluation; Active pattern learning techniques based on specific statistical tests
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2431Multiple classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/772Determining representative reference patterns, e.g. averaging or distorting patterns; Generating dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06V10/7747Organisation of the process, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/776Validation; Performance evaluation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the technique of the present disclosure relates to a mini-batch learning device, an operating program thereof, and an operating method thereof.
  • Semantic segmentation is known in which a plurality of classes in an image are discriminated on a pixel-by-pixel basis. Semantic segmentation is realized by a machine learning model (hereinafter, simply model) such as a U-shaped convolutional neural network (U-Net; U-Shaped Neural Network).
  • a machine learning model hereinafter, simply model
  • U-Net U-shaped convolutional neural network
  • U-Shaped Neural Network U-shaped convolutional neural network
  • the learning data is composed of a learning input image and an annotation image in which a class in the learning input image is manually designated.
  • one learning input image that is the basis of the annotation image is extracted from the plurality of learning input images.
  • mini-batch learning There is a method called mini-batch learning for learning.
  • mini-batch learning mini-batch data is given to the model as learning data.
  • the mini-batch data is a part (for example, 10,000 divided images divided by a frame having a size of 1/100 of the original image) obtained by dividing the learning input image and the annotation image. 100 sheets).
  • a plurality of sets (for example, 100 sets) of mini-batch data are generated, and each set is sequentially given to the model.
  • the learning input image and the annotation image have class bias.
  • the learning input image is a phase-contrast microscope image showing a state of cell culture, and class 1 is classified into differentiated cells, class 2 is undifferentiated cells, class 3 is medium, and class 4 is classified as dead cells. It is an image.
  • the area ratio of each class in the entire learning input image and annotation image is 38% differentiated cells, 2% undifferentiated cells, 40% medium, 20% dead cells, and the area ratio of undifferentiated cells is relatively low. Is.
  • class bias is likely to occur in the mini-batch data composed of the learning input image and the annotation image.
  • the learning is performed without adding the rare class having a relatively small area ratio. As a result, a model with low discrimination accuracy for rare classes is created.
  • Patent Document 1 as described above, one learning input image that is the source of the annotation image is extracted from the plurality of learning input images.
  • this method if all of the plurality of learning input images have a class bias, a model with a low class discrimination accuracy is eventually created. Therefore, the method described in Patent Document 1 cannot solve the problem that a model with low rare class discrimination accuracy is created.
  • An object of the technology of the present disclosure is to provide a mini-batch learning device capable of suppressing a decrease in the accuracy of class discrimination of a machine learning model for performing semantic segmentation, an operating program and an operating method thereof.
  • a mini-batch learning device of the present disclosure is a mini-batch that performs learning by giving mini-batch data to a machine learning model for performing semantic segmentation for discriminating a plurality of classes in an image on a pixel-by-pixel basis.
  • a learning device in the mini-batch data, a calculating unit that calculates the area ratio of each of the plurality of classes, a specifying unit that specifies the correction target class based on the area ratio, and a loss function, using a plurality of classes Is an evaluation unit that evaluates the classification accuracy of the class of the machine learning model by calculating the loss value, and the first loss value of the correction target class and the second loss value of the class other than the correction target class.
  • an evaluation unit including a correction processing unit that executes a correction process for correcting the value of the first loss based on the result of the comparison.
  • the specifying unit specifies a rare class whose area ratio is lower than a preset setting value as the correction target class, and the correction processing unit sets the weight of the first loss value to the second loss value as the correction process. It is preferable to execute processing for making the value of the loss larger than the weight.
  • the specifying unit specifies a non-rare class whose area ratio is higher than a preset value as the correction target class, and the correction processing unit sets the weight of the first loss value to the second loss value as the correction process. It is preferable to execute processing for making the value of the loss smaller than the weight.
  • the specifying unit specifies a rare class whose area ratio is lower than the set value as the correction target class, and the correction processing unit determines the correct value and the predicted value when the first loss value is calculated as the correction process. It is preferable to execute enlargement processing for making the value larger than the correct value and the predicted value when the second loss value is calculated.
  • the correction processing unit sets the enlargement ratio in the enlargement processing such that the area ratio of the rare class in the mini-batch data becomes the same as the area ratio of the rare class in the learning input image and the annotation image which are the sources of the mini-batch data. A value is preferable.
  • the specifying unit specifies a non-rare class whose area ratio is higher than the set value as the correction target class, and the correction processing unit determines the correct value and the predicted value when calculating the value of the first loss as the correction process. It is preferable to execute a reduction process for making the value smaller than the correct value and the predicted value when the second loss value is calculated.
  • the correction processing unit determines the reduction ratio in the reduction process such that the area ratio of the non-rare class in the mini-batch data is the same as the area ratio of the non-rare class in the learning input image and the annotation image that are the source of the mini-batch data. It is preferable to set the value to
  • the correction processing unit includes a reception unit that receives an instruction to select whether or not to execute the correction process.
  • An operation program of a mini-batch learning device is an operation program of a mini-batch learning device for giving mini-batch data to a machine learning model for performing semantic segmentation for discriminating a plurality of classes in an image on a pixel-by-pixel basis.
  • the calculation unit that calculates the area ratio of each of the plurality of classes
  • the specifying unit that specifies the correction target class based on the area ratio
  • the loss function for each of the plurality of classes using the loss function.
  • the computer is caused to function as an evaluation unit including a correction processing unit that executes a correction process that corrects the first loss value based on the result.
  • the operation method of the mini-batch learning apparatus is an operation method of a mini-batch learning apparatus that applies mini-batch data to a machine learning model for performing semantic segmentation for discriminating a plurality of classes in an image on a pixel-by-pixel basis.
  • the calculation step for calculating the area ratio of each of the plurality of classes, the specific step for specifying the correction target class based on the area ratio, and the loss function for each of the plurality of classes are performed.
  • An evaluation step including a correction processing step of executing a correction processing for correcting the first loss value based on the result.
  • a mini-batch learning device capable of suppressing a decrease in the accuracy of class discrimination of a machine learning model for performing semantic segmentation, an operating program and an operating method thereof.
  • FIG. 6 is a diagram showing that a part of a plurality of divided learning input images constitutes a divided learning input image group.
  • FIG. 12A shows that a part of a some division
  • FIG. 12A shows the weight of the loss value of each class the same, FIG. The case of increasing the weight of is shown respectively.
  • FIG. 17A shows the case where the weight of the loss value of each class is made the same, FIG. Each case is shown in which the weight of the class loss value is reduced.
  • the mini-batch learning device 2 uses the mini-batch data 11 for the model 10 in order to improve the discrimination accuracy of the model 10 for performing the semantic segmentation that discriminates a plurality of classes in the input image on a pixel-by-pixel basis. Have the mini-batch learning done.
  • the mini-batch learning device 2 is, for example, a desktop personal computer.
  • the model 10 is, for example, U-Net.
  • the class may be rephrased as the type of object shown in the input image.
  • the semantic segmentation discriminates the class of the object and the contour of the object shown in the input image, and the discrimination result is output from the model 10 as the output image.
  • the output image is ideally determined to be the class of the cup, the book, and the mobile phone, and the contours of these objects are faithfully reproduced.
  • the contour line traced is drawn on each object.
  • the classification accuracy of the class of the model 10 can be improved by giving learning data to the model 10 for learning and updating the model 10.
  • the learning data is composed of a set of a learning input image input to the model 10 and an annotation image in which a class in the learning input image is manually specified.
  • the annotation image is an image for performing so-called answer matching with the learning output image output from the model 10 according to the learning input image, and is compared with the learning output image. The higher the classification accuracy of the model 10 is, the smaller the difference between the annotation image and the learning output image is.
  • the mini-batch learning device 2 uses the mini-batch data 11 as learning data.
  • the mini-batch data 11 is composed of a divided learning input image group 12 and a divided annotation image group 13.
  • the divided learning input image group 12 is given to the model 10.
  • the learning output image is output from the model 10 for each divided learning input image 20S (see FIG. 4) of the divided learning input image group 12.
  • the learning output image group 14, which is a set of learning output images output from the model 10, and the divided annotation image group 13 are compared, and the class determination accuracy of the model 10 is evaluated.
  • the model 10 is updated according to the evaluation result of the discrimination accuracy of this class.
  • the mini-batch learning device 2 inputs the divided learning input image group 12 to the model 10, outputs the learning output image group 14 from the model 10, evaluates the class discrimination accuracy of the model 10, and updates the model 10. Is performed while replacing the mini-batch data 11, and is repeated until the class discrimination accuracy of the model 10 reaches a desired level.
  • the model 10 whose class discrimination accuracy is increased to a desired level as described above is incorporated into the operation device 15 as a learned machine learning model (hereinafter, learned model) 10T.
  • the learned model 10T is provided with the input image 16 in which the class of the reflected object and its contour have not yet been determined.
  • the learned model 10T discriminates the class of the object shown in the input image 16 and its contour, and outputs the output image 17 as the discrimination result.
  • the operation device 15 is, for example, a desktop personal computer like the mini-batch learning device 2, and displays the input image 16 and the output image 17 side by side on the display.
  • the operation device 15 may be a device different from the mini-batch learning device 2 or the same device as the mini-batch learning device 2. Further, even after the learned model 10T is incorporated in the operation device 15, the learned model 10T may be given the mini-batch data 11 for learning.
  • the learning input image 20 is, in this example, one image of a phase contrast microscope showing a state of cell culture.
  • the learning input image 20 differentiated cells, undifferentiated cells, medium, and dead cells are reflected as objects.
  • the annotation image 21 in this case, as shown in FIG. 3B, class 1 differentiated cells, class 2 undifferentiated cells, class 3 medium, and class 4 dead cells are manually designated.
  • the input image 16 provided to the learned model 10T is also a phase-contrast microscope image showing the state of cell culture, like the learning input image 20.
  • the divided learning input image 20S includes a region surrounded by a rectangular frame 25 that is sequentially moved in the horizontal direction by DX and in the vertical direction by DY in the learning input image 20S. , Each time it was cut out.
  • the lateral movement amount DX of the frame 25 is, for example, 1 ⁇ 2 of the lateral size of the frame 25.
  • the vertical movement amount DY of the frame 25 is, for example, 1 ⁇ 2 of the vertical size of the frame 25.
  • the frame 25 is, for example, 1/50 the size of the learning input image 20. In this case, there are 10,000 input images for divided learning 20S, that is, 20S_1 to 20S_10000.
  • the divided annotation image 21S is a region surrounded by a rectangular frame 25 that is sequentially moved in the annotation image 21 by DX in the horizontal direction and DY in the vertical direction. , Each time it was cut out.
  • the learning input image 20 and the annotation image 21 are already prepared in the mini-batch learning device 2, and the split learning input image 20S and the split annotation image 21S are already generated.
  • the divided learning input image group 12 is a part (for example, 10,000 divided learning input images) of the plurality of divided learning input images 20S generated as shown in FIG. It is composed of 100 sheets of 20S).
  • the divided annotation image group 13 is part of the plurality of divided annotation images 21S generated as shown in FIG. 5 (for example, of the 10,000 divided annotation images 21S). 100 sheets).
  • the divided learning input image 20S forming the divided learning input image group 12 and the divided annotation image 21S forming the divided annotation image group 13 have the same region cut out by the frame 25.
  • the computer configuring the mini-batch learning device 2 includes a storage device 30, a memory 31, a CPU (Central Processing Unit) 32, a communication unit 33, a display 34, and an input device 35. These are interconnected via a data bus 36.
  • a storage device 30 a memory 31, a CPU (Central Processing Unit) 32, a communication unit 33, a display 34, and an input device 35.
  • a CPU Central Processing Unit
  • the storage device 30 is a hard disk drive that is built in the computer that constitutes the mini-batch learning apparatus 2 or that is connected via a cable or a network. Alternatively, the storage device 30 is a disk array in which a plurality of hard disk drives are connected in series. The storage device 30 stores a control program such as an operating system, various application programs, and various data associated with these programs.
  • the memory 31 is a work memory for the CPU 32 to execute processing.
  • the CPU 32 loads the program stored in the storage device 30 into the memory 31 and executes the process according to the program, thereby centrally controlling each unit of the computer.
  • the communication unit 33 is a network interface that controls transmission of various information via a network such as the Internet or a WAN (Wide Area Network) such as a public communication network.
  • the display 34 displays various screens. Various screens are provided with an operation function by GUI (Graphical User Interface).
  • GUI Graphic User Interface
  • the computer configuring the mini-batch learning device 2 receives input of an operation instruction from the input device 35 through various screens.
  • the input device 35 is a keyboard, a mouse, a touch panel, or the like.
  • the storage device 30 stores a learning input image 20, an annotation image 21, a split learning input image 20S, a split annotation image 21S, and a model 10.
  • the operation program 40 is stored in the storage device 30 as an application program.
  • the operation program 40 is an application program for causing a computer to function as the mini-batch learning device 2.
  • the CPU 32 of the computer constituting the mini-batch learning device 2 cooperates with the memory 31 and the like to generate the generation unit 50, the calculation unit 51, the identification unit 52, the learning unit 53, the evaluation unit 54, And functions as the updating unit 55.
  • a correction processing unit 56 is provided in the evaluation unit 54.
  • the generation unit 50 uses the divided learning input image 20S and the divided annotation image 21S generated from the learning input image 20 and the annotation image 21 as shown in FIGS.
  • the mini-batch data 11 is generated by selecting a part of them.
  • the generation unit 50 generates a plurality of sets (for example, 100 sets) of mini-batch data 11.
  • the generation unit 50 outputs the generated mini-batch data 11 to the calculation unit 51, the learning unit 53, and the evaluation unit 54.
  • the generation unit 50 may execute a method of increasing the choices of the split learning input image 20S and the split annotation image 21S to be the mini-batch data 11.
  • the input image for split learning 20S and the split annotation image 21S are subjected to image processing such as trimming, left-right reversal, and rotation to be made into another image, which is a new option of the mini-batch data 11.
  • image processing such as trimming, left-right reversal, and rotation to be made into another image, which is a new option of the mini-batch data 11.
  • data augmentation is augmentation.
  • the identifying unit 52 identifies the correction target class based on the area ratio. In the present embodiment, the identifying unit 52 identifies, as the correction target class, a rare class whose area ratio is lower than a preset setting value. The identification unit 52 outputs the identified rare class to the evaluation unit 54.
  • the learning unit 53 gives the input image group 12 for divided learning of the mini-batch data 11 from the generation unit 50 to the model 10 for learning.
  • the learning unit 53 outputs the learning output image group 14 output from the model 10 to the evaluation unit 54.
  • the evaluation unit 54 compares the divided annotation image group 13 of the mini-batch data 11 from the generation unit 50 and the learning output image group 14 from the learning unit 53, and evaluates the classification accuracy of the class of the model 10.
  • the evaluation unit 54 outputs the evaluation result to the update unit 55.
  • the evaluation unit 54 evaluates the class determination accuracy of the model 10 using the loss function L (TN, PN) shown below.
  • the loss function L(TN, PN) is a function indicating the degree of difference between the divided annotation image group 13 and the learning output image group 14.
  • the TN of the loss function L(TN, PN) represents the discrimination state of the class in the divided annotation image group 13, and corresponds to the correct value.
  • PN represents a class discrimination state in the learning output image group 14, and corresponds to a predicted value. The closer the calculated value of the loss function L(TN, PN) is to 0, the higher the classification accuracy of the class of the model 10.
  • WK is a weighting factor.
  • F(TK, PK) is, for example, a categorical cross entropy function.
  • F(TK, PK) corresponds to the loss value of each class. That is, the loss function L(TN, PN) is the sum of products of the loss value F(TK, PK) of each class and the weighting coefficient WK.
  • the evaluation unit 54 outputs the calculated value of the loss function L(TN, PN) to the update unit 55 as the evaluation result.
  • the correction processing unit 56 determines whether the first loss value, which is the loss value of the correction target class, and the second loss value, which is the loss value of the class other than the correction target class, are compared with each other.
  • a correction process for correcting the loss value of is executed.
  • the correction process includes a process of aligning the numbers of digits of the first loss value and the second loss value. For example, if the number of digits of the first loss value is 1 and the number of digits of the second loss value is 2, the number of digits of the first loss value is set to 2 Processing.
  • the correction process also includes a process of setting the first loss value and the second loss value to the same value.
  • the process of setting the same value includes not only the process of setting the first loss value and the second loss value to be completely the same value, but also the first loss value with respect to the second loss value.
  • a prescribed error range for example, within a range of ⁇ 50% (when the value of the second loss is 50, the value of the first loss is set to 25 to 75).
  • the correction processing unit 56 executes, as the correction processing, processing for making the weight of the first loss value larger than the weight of the second loss value.
  • the “weight” is the weight coefficient WK.
  • the correction target class is a rare class whose area ratio is lower than the set value. Therefore, in the present embodiment, the first loss value is the rare class loss value F(TK, PK), and the second loss value is the loss value F(TK, PK) of a class other than the rare class. ).
  • the correction processing unit 56 uses the weighting factor WK to the loss value F (TK, PK) of the rare class as the correction process and the loss value F of the class other than the rare class as the correction process.
  • a process of increasing the weighting coefficient WK to (TK, PK) is executed.
  • the correction processing unit 56 sets the weighting factor WK to the loss value F(TK, PK) of the rare class to 10, and sets the weighting factor WK to the loss value F(TK, PK) of the class other than the rare class, for example. 1 (see FIGS. 11 and 12).
  • the update unit 55 updates the model 10 according to the evaluation result from the evaluation unit 54. More specifically, the updating unit 55 changes the values of various parameters of the model 10 by a stochastic gradient descent method with a learning coefficient.
  • the learning coefficient indicates the range of change in the values of various parameters of the model 10. That is, as the learning coefficient has a relatively large value, the range of change in the values of various parameters increases, and the degree of updating the model 10 also increases.
  • FIG. 10 and FIG. 11 show specific examples of the processing of each unit of the calculation unit 51, the identification unit 52, and the evaluation unit 54 (correction processing unit 56).
  • the calculation unit 51 calculates the area ratio of each class for each set 1, 2, 3,... Of the mini-batch data 11 as shown in Table 60.
  • the area ratio of the differentiated cells of class 1 of the first set of mini-batch data 11 is 38%
  • the area ratio of the undifferentiated cells of class 2 is 2%
  • the area ratio of the medium of class 3 is 40%
  • the class ratio is 40%.
  • the case where the area ratio of the dead cells of No. 4 is calculated to be 20% or the like is illustrated.
  • the identifying unit 52 identifies a rare class whose area ratio is lower than the set value.
  • the set value is 5%
  • the area ratio is 2%, which is lower than the set value
  • the undifferentiated cells of class 2 in the first set of mini-batch data 11 are specified as a rare class. ing.
  • only one rare class is specified here as an example, if there are a plurality of classes whose area ratio is lower than the set value, the plurality of classes are naturally specified as the rare classes.
  • the correction processing unit 56 of the evaluation unit 54 as shown in Table 61, the mini batch data of the classes 1, 3, 4, the second set, and the third set of the mini batch data 11 of the first set.
  • the weighting factor WK to the loss value F(TK, PK) of a class other than the rare class, such as 11 classes, is set to 1.
  • the correction processing unit 56 sets the weighting factor WK to the loss value F(TK, PK) of a rare class such as class 2 of the first set of mini-batch data 11 to 10.
  • FIG. 12 shows a table of loss values F (TK, PK) and calculated values of loss function L (TN, PN) of each class.
  • the table 65A in FIG. 12A shows a case where the weighting factor WK for the loss value F(TK, PK) of each class is set to 1 which is the same.
  • the table 65B of FIG. 12B shows a case where the weighting factor WK for the loss value F(TK, PK) of the rare class is increased.
  • the rare class is an undifferentiated cell of class 2, the loss value F(T2, P2) is 2, and the loss values F(T1, P1), F(T3, P3) of the other classes 1, 3, 4 are ) And F(T4, P4) are 25, 20, and 15, respectively.
  • the loss value F(TK, PK) of the rare class is smaller than the loss value F(TK, PK) of the class other than the rare class.
  • the rare class has a limited learning opportunity for the model 10 as compared to other classes, and the learning (called an epoch) in which a set of mini-batch data 11 is given determines the model 10. This is because the degree of accuracy improvement or deterioration is small.
  • the evaluation unit 54 sets the rare class loss value F(TK, PK) to the loss of classes other than the rare class.
  • the value F (TK, PK) is compared to the value F (TK, PK), the loss function L (TN, PN) is calculated, and the discrimination accuracy of the model 10 is evaluated.
  • the operation program 40 is started, and as shown in FIG. 9, the CPU 32 of the computer constituting the mini-batch learning device 2 functions as the processing units 50 to 56.
  • the mini-batch data 11 is generated in the generation unit 50 (step ST100).
  • the mini-batch data 11 is output from the generation unit 50 to the calculation unit 51, the learning unit 53, and the evaluation unit 54.
  • the calculation unit 51 calculates the area ratio of each class for each set of the mini-batch data 11 (step ST110, calculation step). Subsequently, as also shown in FIG. 10, in the identifying unit 52, a rare class whose area ratio is lower than the set value is identified as a correction target class (step ST120, identifying step).
  • the input image group 12 for divided learning of the mini-batch data 11 from the generation unit 50 is given to the model 10 and learning is performed (step ST130).
  • the mini-batch data 11 given to the model 10 in step ST130 includes a rare class (YES in step ST140), as shown in table 61 of FIG. 11 and table 65B of FIG.
  • the weighting factor WK for the loss value F(TK, PK) of the rare class is made larger than the weighting factor WK for the loss value F(TK, PK) of the class other than the rare class (step ST150, correction process). Step).
  • the weighting factor WK to the loss value F(TK, PK) of the rare class is large. Instead, the normal weighting coefficient WK is set.
  • the evaluation unit 54 compares the learning output image group 14 output from the model 10 with the divided annotation image group 13 of the mini-batch data 11 from the generation unit 50, and evaluates the class determination accuracy of the model 10. (Step ST160, evaluation step). More specifically, the loss value F(TK, PK) is calculated for each of the plurality of classes. Then, the weighting factor WK set in step ST150 or the normal weighting factor WK is added to the loss value F(TK, PK), and the sum is calculated as the calculated value of the loss function L(TN, PN). It
  • the mini-batch learning is terminated.
  • the updating unit 55 updates the model 10 (step ST180). Then, the process is returned to step ST130, another set of mini-batch data 11 is given to the model 10, and the subsequent steps are repeated.
  • the case where the rare class is specified by the specifying unit 52 is that the class is biased in the mini-batch data 11.
  • learning is performed without adding rare classes. More specifically, the learning frequency of the rare class is relatively low compared to other classes.
  • the discrimination accuracy of the model 10 is evaluated by the evaluation unit 54 without any restrictions after such biased learning is performed, an evaluation result in which the rare class is not added so much is output as shown in FIG. 12A. The Rukoto. Then, the subsequent update of the model 10 will not include the rare class. As a result, the model 10 having a low discrimination accuracy of the rare class is completed.
  • the correction processing unit 56 uses the comparison result of the loss value F(TK, PK) of the rare class and the loss value F(TK, PK) of the class other than the rare class. The correction processing based on it is being executed. More specifically, in the correction processing unit 56, the weighting factor WK for the loss value F(TK, PK) of the rare class is calculated from the weighting factor WK for the loss value F(TK, PK) of the class other than the rare class. Is also getting bigger. By doing so, the evaluation result in which the rare class is sufficiently added can be output, and the subsequent update of the model 10 also tends to improve the accuracy of identifying the rare class. Therefore, it is possible to avoid a situation in which the model 10 having low discrimination accuracy of the rare class is created, and it is possible to suppress the deterioration of the discrimination accuracy of the class of the model 10.
  • the smaller the area ratio the larger the degree of increasing the weighting factor WK for the rare class loss value F(TK, PK) may be increased.
  • the weight coefficient W2 of the rare class 2 is set to 100.
  • the weight coefficient W4 of the rare class 4 is set to 10. It is considered that the smaller the area ratio, the smaller the loss value F(TK, PK).
  • the identifying unit 80 of the present embodiment identifies a non-rare class whose area ratio is higher than the set value, as a correction target class.
  • the set value is 50%, as shown in Table 75 and the like, the undifferentiated cells of class 2 of the mini-batch data 11 of the 30th set, which have an area ratio of 56% and are higher than the set value, are non-differentiated.
  • the case where it is specified as a rare class is illustrated. Note that, like the rare class of the first embodiment, a plurality of classes may be specified as non-rare classes.
  • the correction processing unit 82 of the evaluation unit 81 of the present embodiment sets the weighting factor WK to the loss value F(TK, PK) of the non-rare class to the loss of the classes other than the non-rare class.
  • the value F(TK, PK) is set to be smaller than the weighting coefficient WK.
  • classes other than the non-rare class such as all classes of the 30th set of mini-batch data 11 of classes 1, 3, 4, 31st set, and 32nd set of mini-batch data 11.
  • the weighting factor WK to the loss value F(TK, PK) of is set to 1.
  • the correction processing unit 82 sets the weighting coefficient WK to the loss value F(TK, PK) of the non-rare class such as class 2 of the 30th set of mini-batch data 11 to 0.5.
  • FIG. 17 shows a table of calculated values of the loss value F (TK, PK) and the loss function L (TN, PN) of each class, as in FIG.
  • the table 85A of FIG. 17A shows a case where the weighting factor WK for the loss value F (TK, PK) of each class is set to the same value of 1.
  • the table 85B of FIG. 17B shows a case where the weighting factor WK for the loss value F(TK, PK) of the non-rare class is reduced.
  • the non-rare class is an undifferentiated cell of class 2, the loss value F(T2, P2) is 42, and the loss values F(T1, P1), F(T3, In this example, P3) and F(T4, P4) are 19, 22, and 18, respectively.
  • the loss value F(TK, PK) of the non-rare class is larger than the loss value F(TK, PK) of the class other than the non-rare class. Therefore, the evaluation unit 81 reduces the weighting coefficient WK for the loss value F(TK, PK) of the non-rare class. As a result, as shown in FIG. 17B, the loss value F(TK, PK) of the non-rare class is reduced to a value comparable to the loss value F(TK, PK) of the class other than the non-rare class, and the weight is reduced. Compared to the case of FIG. 17A in which the coefficient WK has the same value, the influence of the loss value F(TK, PK) of the non-rare class on the calculated value of the loss function L(TN, PN) is reduced.
  • the non-rare class whose area ratio is higher than the set value is specified as the correction target class, and the weight of the first loss value is set to the weight of the second loss as the correction process.
  • the process of making the value smaller than the weight is executed. Therefore, as in the first embodiment, it is possible to suppress a decrease in the accuracy of class determination of the model 10.
  • FIG. 18 illustrates a case where undifferentiated cells of class 2 in the first set of mini-batch data 11 are specified as a rare class, as shown in FIG. 10.
  • the correction processing unit 91 of the evaluation unit 90 of the present embodiment as shown in Table 92, class 1, 3, 4, second set, and third set of mini-batches of the first set of mini-batch data 11. Correct values and predicted values of classes other than rare classes, such as all classes of data 11, are left unchanged.
  • the correction processing unit 91 executes the enlargement processing for multiplying the correct value and the predicted value of the rare class such as the class 2 of the first batch of mini-batch data 11 by 10.
  • 19 and 20 are diagrams conceptually showing an enlargement process for multiplying the correct value and predicted value of class 2 of the first set of mini-batch data 11 of FIG. 18 by 10.
  • the size of the correct answer value T2 is set to 10 times that before the enlargement process by the enlargement process.
  • the size of the predicted value P2 is set to 10 times that before the enlargement process by the enlargement process.
  • the enlargement process is a process of increasing the number of target pixels of the correct value of the rare class and the number of target pixels of the predicted value of the rare class.
  • the correction processing unit 91 determines the enlargement ratio in the enlargement process, the area ratio of the rare class in the mini-batch data 11 is the source of the mini-batch data 11, the learning input image 20 and the annotation. The value is the same as the area ratio of the rare class in the image 21.
  • the undifferentiated cells of class 2 of the first set of mini-batch data 11 are identified as rare classes, the area ratio of the rare classes in the mini-batch data 11 is 2%, and the learning input image 20 and the annotation image 21.
  • the same value means that the area ratio of the rare class in the mini-batch data 11 and the area ratio of the rare class in the learning input image 20 and the annotation image 21 are completely the same.
  • the area ratio of the rare class and the area ratio of the rare class in the learning input image 20 and the annotation image 21 also include values within a specified error range, for example, ⁇ 10%.
  • the correct value when the rare class whose area ratio is lower than the preset value is specified as the correction target class and the first loss value is calculated as the correction process.
  • the enlargement processing for increasing the predicted value to be larger than the correct value and the predicted value when the second loss value is calculated.
  • the imbalance of the loss values F(TK, PK) between the rare class and the other class can be corrected. Therefore, it is possible to suppress a decrease in the classification accuracy of the model 10 class. Further, such a correction process is effective when the loss value F(TK, PK) is not a linear function.
  • the enlargement ratio in the enlargement processing is set to a value such that the area ratio of the rare class in the mini-batch data 11 becomes the same as the area ratio of the rare class in the learning input image 20 and the annotation image 21. Therefore, the enlargement ratio can be set to a reasonable value. It should be noted that such a method of determining the enlargement ratio is preferably adopted when there is no bias in the area ratio of each class in the learning input image 20 and the annotation image 21. The case where there is no bias in the area ratio of each class in the learning input image 20 and the annotation image 21 is, for example, when the difference between the maximum value and the minimum value of the area ratio of each class is within 10%.
  • FIG. 22 exemplifies a case where undifferentiated cells of class 2 in the mini-batch data 11 of the 30th set are specified as a non-rare class, as shown in FIG.
  • the correction processing unit 101 of the evaluation unit 100 as shown in Table 102, class 1, 3, 4, 31st group, and 32nd group minibatch of the 30th group of minibatch data 11. Correct values and predicted values of classes other than the non-rare class, such as all classes of data 11, are left unchanged.
  • the correction processing unit 101 executes a reduction process for multiplying the correct value and the predicted value of the non-rare class such as class 2 of the 30th set of mini-batch data 11 by 0.5.
  • 23 and 24 are diagrams conceptually showing the reduction processing for multiplying the correct answer value and predicted value of class 2 of the mini-batch data 11 of the 30th set in FIG. 22 by 0.5.
  • the size of the correct answer value T2 is set to 0.5 times that before the reduction processing by the reduction processing.
  • the size of the predicted value P2 is set to 0.5 times that before the reduction process by the reduction process.
  • the reduction process is a process of reducing the number of target pixels of the correct value of the non-rare class and the number of target pixels of the predicted value of the non-rare class, contrary to the enlargement process of the third embodiment.
  • the correction processing unit 101 determines the reduction ratio in the reduction process, the learning input image 20 from which the area ratio of the non-rare class in the mini-batch data 11 is the source of the mini-batch data 11, The value is the same as the area ratio of the non-rare class in the annotation image 21.
  • the undifferentiated cells of class 2 of the 30th set of mini-batch data 11 are identified as the non-rare class, the area ratio of the non-rare class in the mini-batch data 11 is 56%, and the learning input image 20 and the annotation The case where the area ratio of the non-rare class in the image 21 is 28% is illustrated.
  • the same value means that the area ratio of the rare class in the mini-batch data 11 and the area ratio of the rare class in the learning input image 20 and the annotation image 21 are completely.
  • the area ratio of the rare class in the mini-batch data 11 and the area ratio of the rare class in the learning input image 20 and the annotation image 21 may fall within a specified error range, for example, ⁇ 10%. Including.
  • the correct answer in the case where the non-rare class whose area ratio is higher than the preset value is specified as the correction target class and the first loss value is calculated as the correction process A reduction process is performed to make the value and the predicted value smaller than the correct value and the predicted value when the second loss value is calculated. Therefore, as in the third embodiment, it is possible to suppress a decrease in the accuracy of class determination of the model 10. Further, like the third embodiment, it is effective when the loss value F(TK, PK) is not a linear function.
  • the reduction ratio in the reduction processing is set to a value at which the area ratio of the non-rare class in the mini-batch data 11 becomes the same as the area ratio of the non-rare class in the learning input image 20 and the annotation image 21. There is. Therefore, the reduction rate can be set to an appropriate value. Similar to the third embodiment, it is preferable to employ such a method of determining the reduction rate when the area ratios of the classes in the learning input image 20 and the annotation image 21 are not biased.
  • the CPU of the mini-batch learning device of the fifth embodiment functions as a reception unit 110 in addition to the processing units of the above embodiments.
  • the specifying unit 52 specifies the correction target class
  • the receiving unit 110 receives an instruction to select whether or not the correction processing unit executes the correction process.
  • the inquiry screen 111 is displayed on the display 34.
  • a message 112 for asking that the correction target class is specified and asking whether the correction processing for correcting the loss value of the correction target class may be executed, a Yes button 113, and a No button 114.
  • the receiving unit 110 receives the selection instruction of the Yes button 113 and the No button 114 as a selection instruction of whether or not to execute the correction process.
  • the Yes button 113 is selected, the correction processing unit executes the correction processing.
  • the No button 114 is selected, the correction processing unit does not execute the correction processing.
  • the class is specified manually, so the class may be specified incorrectly.
  • the model 10 was designated as a class at the beginning of development, some classes may become less important as the development progresses. In such a case, the correction target class is specified by the specifying unit 52, but it may not be necessary to execute the correction process.
  • the receiving unit 110 receives a selection instruction as to whether or not the correction processing unit should execute the correction process. Therefore, it is possible to deal with the case where the correction target class is specified by the specifying unit 52, but it is not necessary to execute the correction process.
  • the weighting factor for the loss value of the rare class is made smaller than the weighting factor for the loss value of the classes other than the rare class, and the weighting factor for the loss value of the non-rare class is set to the non-rare class. It may be larger than the weighting factor for the loss values of other classes.
  • the third embodiment and the fourth embodiment may be combined and implemented.
  • the correct value and the predicted value when calculating the loss value of the rare class is made larger than the correct value and the predicted value when calculating the loss value of the class other than the rare class, and the non-rare class
  • the correct value and the predicted value when calculating the loss value may be smaller than the correct value and the predicted value when calculating the loss value of a class other than the non-rare class.
  • the input image 16 and the learning input image 20 are exemplified by images of a phase contrast microscope showing the state of cell culture, and differentiated cells and medium are illustrated as classes, but the invention is not limited thereto.
  • an MRI (Magnetic Resonance Imaging) image may be used as the input image 16 and the learning input image 20
  • an organ such as a liver or a kidney may be used as a class.
  • the model 10 is not limited to U-Net, but may be another convolutional neural network such as SegNet.
  • the hardware configuration of the computer that constitutes the mini-batch learning device 2 can be modified in various ways.
  • the mini-batch learning device 2 may be composed of a plurality of computers separated as hardware for the purpose of improving processing capacity and reliability.
  • the functions of the generation unit 50, the calculation unit 51, and the identification unit 52, and the functions of the learning unit 53, the evaluation unit 54, and the update unit 55 are distributed to two computers. In this case, the two computers form the mini-batch learning device 2.
  • the hardware configuration of the computer can be appropriately changed according to the required performance such as processing capacity, safety and reliability.
  • the application program such as the operation program 40 can be duplicated or stored in a plurality of storage devices in a distributed manner for the purpose of ensuring safety and reliability. is there.
  • the generation unit 50 the calculation unit 51, the identification units 52, 80, the learning unit 53, the evaluation units 54, 81, 90, 100, the update unit 55, the correction processing units 56, 82, 91, 101.
  • a processing unit Processing Unit
  • the following various processors can be used.
  • the CPU which is a general-purpose processor that executes software (operation program 40) and functions as various processing units
  • various processors are manufactured after manufacturing FPGA (Field Programmable Gate Array) and the like.
  • Programmable Logic Device which is a processor whose circuit configuration can be changed, dedicated processor, which has a circuit configuration specifically designed to execute specific processing such as ASIC (Application Specific Integrated Circuit) An electric circuit etc. are included.
  • One processing unit may be configured by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). Combination). Further, the plurality of processing units may be configured by one processor.
  • one processor is configured with a combination of one or more CPUs and software, as represented by computers such as clients and servers.
  • the processor functions as a plurality of processing units.
  • SoC system on chip
  • a processor that realizes the functions of the entire system including a plurality of processing units by one IC (Integrated Circuit) chip is used. is there.
  • the various processing units are configured by using one or more of the various processors as a hardware structure.
  • circuitry in which circuit elements such as semiconductor elements are combined can be used.
  • [Appendix 1] It is a mini-batch learning device that gives learning by giving mini-batch data to a machine learning model for performing semantic segmentation that performs discrimination of multiple classes in an image in pixel units, A calculation processor for calculating the area ratio of each of the plurality of classes in the mini-batch data, A specific processor for specifying a correction target class based on the area ratio, A first loss value of the correction target class, which is an evaluation processor for evaluating the discrimination accuracy of the class of the machine learning model by calculating a loss value for each of the plurality of classes using a loss function. And an evaluation processor including a correction processing processor that executes a correction process for correcting the first loss value based on a comparison result of the second loss value of a class other than the correction target class. apparatus.
  • the technology of the present disclosure can be appropriately combined with the above-described various embodiments and various modifications. Further, it is needless to say that various configurations can be adopted without departing from the scope of the invention, without being limited to the above-mentioned respective embodiments. Furthermore, the technique of the present disclosure extends to a storage medium that stores the program non-temporarily, in addition to the program.
  • Mini batch learning device 10 Machine learning model (model) 10T learned machine learning model (learned model) 11 mini batch data Input image group for 12-division learning 13-divided annotation image group 14 Output image group for learning 15 Operation equipment 16 Input image 17 Output image 20 Input image for learning Input image for 20S split learning 21 Annotation image 21S split annotation image 25 frames 30 storage devices 31 memory 32 CPU 33 Communication unit 34 display 35 Input device 36 data bus 40 operating program 50 Generator 51 calculator 52,80 Specific section 53 Learning Department 54, 81, 90, 100 Evaluation Department 55 Update Department 56, 82, 91, 101 Correction processing unit 60, 61, 65A, 65B, 70, 75, 83, 85A, 85B, 92, 95, 102, 105 Table 110 Reception Department 111 Inquiry screen 112 messages 113 Yes button 114 No button Horizontal movement amount of DX frame Amount of vertical movement of DY frame L(TN, PN) loss function WK Weight coefficient of each class F (TK, PK) Loss value of each class TK Correct answer

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Geometry (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mathematical Physics (AREA)
  • Image Analysis (AREA)

Abstract

Provided are a mini-batch learning device, and an operation program and operation method therefor, which are capable of suppressing reductions in the class determination accuracy of a machine learning model for implementing semantic segmentation. A CPU in this mini-batch learning device functions as a calculation unit, an identification unit and an evaluation unit when the operation program is started. The calculation unit calculates the area ratio of each of multiple classes in the mini-batch data. The identification unit identifies rare classes which have an area ratio of less than a set value as correction target classes. The evaluation unit uses a loss function to evaluate the class determination accuracy of the machine learning model. As correction processing, the evaluation unit increases the weighting of the loss value of rare classes more than for non-rare classes.

Description

ミニバッチ学習装置とその作動プログラムおよび作動方法Mini-batch learning device and its operating program and operating method

 本開示の技術は、ミニバッチ学習装置とその作動プログラムおよび作動方法に関する。

The technique of the present disclosure relates to a mini-batch learning device, an operating program thereof, and an operating method thereof.

 画像内の複数のクラスの判別を画素単位で行うセマンティックセグメンテーションが知られている。セマンティックセグメンテーションは、U字型の畳み込みニューラルネットワーク(U-Net;U-Shaped Neural Network)等の機械学習モデル(以下、単にモデル)で実現される。

Semantic segmentation is known in which a plurality of classes in an image are discriminated on a pixel-by-pixel basis. Semantic segmentation is realized by a machine learning model (hereinafter, simply model) such as a U-shaped convolutional neural network (U-Net; U-Shaped Neural Network).

 モデルの判別精度を高めるためには、モデルに学習データを与えて学習させ、モデルを更新していくことが必要である。学習データは、学習用入力画像と、学習用入力画像内のクラスが手動で指定されたアノテーション画像とで構成される。特許文献1では、複数の学習用入力画像の中から、アノテーション画像の元となる1つの学習用入力画像を抽出している。

In order to improve the discrimination accuracy of the model, it is necessary to give learning data to the model for learning and update the model. The learning data is composed of a learning input image and an annotation image in which a class in the learning input image is manually designated. In Patent Document 1, one learning input image that is the basis of the annotation image is extracted from the plurality of learning input images.

特開2017-107386号公報JP, 2017-107386, A

 学習には、ミニバッチ学習という手法がある。ミニバッチ学習では、学習データとしてミニバッチデータをモデルに与える。ミニバッチデータは、学習用入力画像とアノテーション画像とを分割した複数の分割画像(例えば元の画像の1/100のサイズの枠で分割した1万枚の分割画像)のうちの一部(例えば100枚)で構成される。ミニバッチデータは複数組(例えば100組)生成され、各組が順次モデルに与えられる。

There is a method called mini-batch learning for learning. In mini-batch learning, mini-batch data is given to the model as learning data. The mini-batch data is a part (for example, 10,000 divided images divided by a frame having a size of 1/100 of the original image) obtained by dividing the learning input image and the annotation image. 100 sheets). A plurality of sets (for example, 100 sets) of mini-batch data are generated, and each set is sequentially given to the model.

 ここで、学習用入力画像およびアノテーション画像にクラスの偏りがある場合を考える。例えば、学習用入力画像は細胞培養の様子を映した位相差顕微鏡の画像であって、クラス1が分化細胞、クラス2が未分化細胞、クラス3が培地、クラス4が死細胞に分類される画像である。そして、学習用入力画像およびアノテーション画像全体における各クラスの面積割合が、分化細胞38%、未分化細胞2%、培地40%、死細胞20%で、未分化細胞の面積割合が比較的低い場合である。

Here, consider a case where the learning input image and the annotation image have class bias. For example, the learning input image is a phase-contrast microscope image showing a state of cell culture, and class 1 is classified into differentiated cells, class 2 is undifferentiated cells, class 3 is medium, and class 4 is classified as dead cells. It is an image. When the area ratio of each class in the entire learning input image and annotation image is 38% differentiated cells, 2% undifferentiated cells, 40% medium, 20% dead cells, and the area ratio of undifferentiated cells is relatively low. Is.

 このように学習用入力画像およびアノテーション画像にクラスの偏りがあると、学習用入力画像およびアノテーション画像から構成されるミニバッチデータにも、クラスの偏りが生じる可能性が高くなる。ミニバッチデータにクラスの偏りが生じた場合は、面積割合が比較的低い稀少クラスが加味されずに学習が行われる。結果として、稀少クラスの判別精度が低いモデルができあがってしまう。

If the learning input image and the annotation image have a class bias in this way, class bias is likely to occur in the mini-batch data composed of the learning input image and the annotation image. When the class deviation occurs in the mini-batch data, the learning is performed without adding the rare class having a relatively small area ratio. As a result, a model with low discrimination accuracy for rare classes is created.

 特許文献1では、前述のように、複数の学習用入力画像の中から、アノテーション画像の元となる1つの学習用入力画像を抽出している。しかしながら、この手法では、複数の学習用入力画像の全てにクラスの偏りがあった場合は、結局は稀少クラスの判別精度が低いモデルができあがってしまう。したがって、特許文献1に記載の手法では、稀少クラスの判別精度が低いモデルができあがってしまう、という問題を解決することはできない。

In Patent Document 1, as described above, one learning input image that is the source of the annotation image is extracted from the plurality of learning input images. However, with this method, if all of the plurality of learning input images have a class bias, a model with a low class discrimination accuracy is eventually created. Therefore, the method described in Patent Document 1 cannot solve the problem that a model with low rare class discrimination accuracy is created.

 本開示の技術は、セマンティックセグメンテーションを実施するための機械学習モデルのクラスの判別精度の低下を抑制することが可能なミニバッチ学習装置とその作動プログラムおよび作動方法を提供することを目的とする。

An object of the technology of the present disclosure is to provide a mini-batch learning device capable of suppressing a decrease in the accuracy of class discrimination of a machine learning model for performing semantic segmentation, an operating program and an operating method thereof.

 上記目的を達成するために、本開示のミニバッチ学習装置は、画像内の複数のクラスの判別を画素単位で行うセマンティックセグメンテーションを実施するための機械学習モデルに、ミニバッチデータを与えて学習させるミニバッチ学習装置であり、ミニバッチデータにおける、複数のクラスの各々の面積割合を算出する算出部と、面積割合に基づいて補正対象クラスを特定する特定部と、損失関数を用いて、複数のクラス毎に損失の値を算出することによって、機械学習モデルのクラスの判別精度を評価する評価部であり、補正対象クラスの第1の損失の値および補正対象クラス以外のクラスの第2の損失の値の比較結果に基づいて、第1の損失の値を補正する補正処理を実行する補正処理部を含む評価部と、を備える。

In order to achieve the above object, a mini-batch learning device of the present disclosure is a mini-batch that performs learning by giving mini-batch data to a machine learning model for performing semantic segmentation for discriminating a plurality of classes in an image on a pixel-by-pixel basis. A learning device, in the mini-batch data, a calculating unit that calculates the area ratio of each of the plurality of classes, a specifying unit that specifies the correction target class based on the area ratio, and a loss function, using a plurality of classes Is an evaluation unit that evaluates the classification accuracy of the class of the machine learning model by calculating the loss value, and the first loss value of the correction target class and the second loss value of the class other than the correction target class. And an evaluation unit including a correction processing unit that executes a correction process for correcting the value of the first loss based on the result of the comparison.

 特定部は、補正対象クラスとして、面積割合が予め設定された設定値よりも低い稀少クラスを特定し、補正処理部は、補正処理として、第1の損失の値への重みを、第2の損失の値への重みよりも大きくする処理を実行することが好ましい。

The specifying unit specifies a rare class whose area ratio is lower than a preset setting value as the correction target class, and the correction processing unit sets the weight of the first loss value to the second loss value as the correction process. It is preferable to execute processing for making the value of the loss larger than the weight.

 特定部は、補正対象クラスとして、面積割合が予め設定された設定値よりも高い非稀少クラスを特定し、補正処理部は、補正処理として、第1の損失の値への重みを、第2の損失の値への重みよりも小さくする処理を実行することが好ましい。

The specifying unit specifies a non-rare class whose area ratio is higher than a preset value as the correction target class, and the correction processing unit sets the weight of the first loss value to the second loss value as the correction process. It is preferable to execute processing for making the value of the loss smaller than the weight.

 特定部は、補正対象クラスとして、面積割合が設定値よりも低い稀少クラスを特定し、補正処理部は、補正処理として、第1の損失の値を算出する場合の正解値および予測値を、第2の損失の値を算出する場合の正解値および予測値よりも大きくする拡大処理を実行することが好ましい。この場合、補正処理部は、拡大処理における拡大率を、ミニバッチデータにおける稀少クラスの面積割合が、ミニバッチデータの元となる学習用入力画像およびアノテーション画像における稀少クラスの面積割合と同じになる値とすることが好ましい。

The specifying unit specifies a rare class whose area ratio is lower than the set value as the correction target class, and the correction processing unit determines the correct value and the predicted value when the first loss value is calculated as the correction process. It is preferable to execute enlargement processing for making the value larger than the correct value and the predicted value when the second loss value is calculated. In this case, the correction processing unit sets the enlargement ratio in the enlargement processing such that the area ratio of the rare class in the mini-batch data becomes the same as the area ratio of the rare class in the learning input image and the annotation image which are the sources of the mini-batch data. A value is preferable.

 特定部は、補正対象クラスとして、面積割合が設定値よりも高い非稀少クラスを特定し、補正処理部は、補正処理として、第1の損失の値を算出する場合の正解値および予測値を、第2の損失の値を算出する場合の正解値および予測値よりも小さくする縮小処理を実行することが好ましい。この場合、補正処理部は、縮小処理における縮小率を、ミニバッチデータにおける非稀少クラスの面積割合が、ミニバッチデータの元となる学習用入力画像およびアノテーション画像における非稀少クラスの面積割合と同じになる値とすることが好ましい。

The specifying unit specifies a non-rare class whose area ratio is higher than the set value as the correction target class, and the correction processing unit determines the correct value and the predicted value when calculating the value of the first loss as the correction process. It is preferable to execute a reduction process for making the value smaller than the correct value and the predicted value when the second loss value is calculated. In this case, the correction processing unit determines the reduction ratio in the reduction process such that the area ratio of the non-rare class in the mini-batch data is the same as the area ratio of the non-rare class in the learning input image and the annotation image that are the source of the mini-batch data. It is preferable to set the value to

 補正処理部に補正処理を実行させるか否かの選択指示を受け付ける受付部を備えることが好ましい。

It is preferable that the correction processing unit includes a reception unit that receives an instruction to select whether or not to execute the correction process.

 本開示のミニバッチ学習装置の作動プログラムは、画像内の複数のクラスの判別を画素単位で行うセマンティックセグメンテーションを実施するための機械学習モデルに、ミニバッチデータを与えて学習させるミニバッチ学習装置の作動プログラムであり、ミニバッチデータにおける、複数のクラスの各々の面積割合を算出する算出部と、面積割合に基づいて補正対象クラスを特定する特定部と、損失関数を用いて、複数のクラス毎に損失の値を算出することによって、機械学習モデルのクラスの判別精度を評価する評価部であり、補正対象クラスの第1の損失の値および補正対象クラス以外のクラスの第2の損失の値の比較結果に基づいて、第1の損失の値を補正する補正処理を実行する補正処理部を含む評価部として、コンピュータを機能させる。

An operation program of a mini-batch learning device according to the present disclosure is an operation program of a mini-batch learning device for giving mini-batch data to a machine learning model for performing semantic segmentation for discriminating a plurality of classes in an image on a pixel-by-pixel basis. In the mini-batch data, the calculation unit that calculates the area ratio of each of the plurality of classes, the specifying unit that specifies the correction target class based on the area ratio, and the loss function for each of the plurality of classes using the loss function. Is an evaluation unit for evaluating the discrimination accuracy of the class of the machine learning model by calculating the value of, and comparing the first loss value of the correction target class and the second loss value of the class other than the correction target class. The computer is caused to function as an evaluation unit including a correction processing unit that executes a correction process that corrects the first loss value based on the result.

 本開示のミニバッチ学習装置の作動方法は、画像内の複数のクラスの判別を画素単位で行うセマンティックセグメンテーションを実施するための機械学習モデルに、ミニバッチデータを与えて学習させるミニバッチ学習装置の作動方法であり、ミニバッチデータにおける、複数のクラスの各々の面積割合を算出する算出ステップと、面積割合に基づいて補正対象クラスを特定する特定ステップと、損失関数を用いて、複数のクラス毎に損失の値を算出することによって、機械学習モデルのクラスの判別精度を評価する評価ステップであり、補正対象クラスの第1の損失の値および補正対象クラス以外のクラスの第2の損失の値の比較結果に基づいて、第1の損失の値を補正する補正処理を実行する補正処理ステップを含む評価ステップと、を備える。

The operation method of the mini-batch learning apparatus according to the present disclosure is an operation method of a mini-batch learning apparatus that applies mini-batch data to a machine learning model for performing semantic segmentation for discriminating a plurality of classes in an image on a pixel-by-pixel basis. In the mini-batch data, the calculation step for calculating the area ratio of each of the plurality of classes, the specific step for specifying the correction target class based on the area ratio, and the loss function for each of the plurality of classes are performed. Is a step of evaluating the discrimination accuracy of the class of the machine learning model by calculating the value of, and comparing the first loss value of the correction target class and the second loss value of the class other than the correction target class. An evaluation step including a correction processing step of executing a correction processing for correcting the first loss value based on the result.

 本開示の技術によれば、セマンティックセグメンテーションを実施するための機械学習モデルのクラスの判別精度の低下を抑制することが可能なミニバッチ学習装置とその作動プログラムおよび作動方法を提供することができる。

According to the technique of the present disclosure, it is possible to provide a mini-batch learning device capable of suppressing a decrease in the accuracy of class discrimination of a machine learning model for performing semantic segmentation, an operating program and an operating method thereof.

ミニバッチ学習装置とその処理の概要を示す図である。It is a figure which shows the outline of a mini-batch learning apparatus and its process. 運用装置とその処理の概要を示す図である。It is a figure showing an outline of an operating device and its processing. 画像を示す図であり、図3Aは学習用入力画像、図3Bはアノテーション画像をそれぞれ示す。It is a figure which shows an image, FIG. 3A shows an input image for learning, and FIG. 3B shows an annotation image, respectively. 学習用入力画像から分割学習用入力画像を生成する様子を示す図である。It is a figure which shows a mode that the input image for division learning is produced|generated from the input image for learning. アノテーション画像から分割アノテーション画像を生成する様子を示す図である。It is a figure which shows a mode that a division|segmentation annotation image is produced|generated from an annotation image. 複数の分割学習用入力画像の一部で、分割学習用入力画像群を構成することを示す図である。FIG. 6 is a diagram showing that a part of a plurality of divided learning input images constitutes a divided learning input image group. 複数の分割アノテーション画像の一部で、分割アノテーション画像群を構成することを示す図である。It is a figure which shows that a part of a some division|segmentation annotation image comprises a division|segmentation annotation image group. ミニバッチ学習装置を構成するコンピュータを示すブロック図である。It is a block diagram which shows the computer which comprises a mini batch learning apparatus. ミニバッチ学習装置のCPUの処理部を示すブロック図である。It is a block diagram which shows the processing part of CPU of a mini-batch learning apparatus. 算出部および特定部の処理の具体例を示す図である。It is a figure which shows the specific example of a process of a calculation part and a specific part. 評価部の処理の具体例を示す図である。It is a figure which shows the specific example of a process of an evaluation part. 各クラスの損失の値と損失関数の算出値の表を示す図であり、図12Aは、各クラスの損失の値への重みを同じにした場合、図12Bは、稀少クラスの損失の値への重みを大きくした場合をそれぞれ示す。It is a figure which shows the table of the loss value of each class and the calculated value of a loss function, and when FIG. 12A makes the weight of the loss value of each class the same, FIG. The case of increasing the weight of is shown respectively. ミニバッチ学習装置の処理手順を示すフローチャートである。It is a flow chart which shows a processing procedure of a mini-batch learning device. 評価部の処理の変形例を示す図である。It is a figure which shows the modification of the process of an evaluation part. 第2実施形態における算出部および特定部の処理の具体例を示す図である。It is a figure which shows the specific example of a process of the calculation part and specific part in 2nd Embodiment. 第2実施形態における評価部の処理の具体例を示す図である。It is a figure which shows the specific example of a process of the evaluation part in 2nd Embodiment. 第2実施形態における各クラスの損失の値と損失関数の算出値の表を示す図であり、図17Aは、各クラスの損失の値への重みを同じにした場合、図17Bは、非稀少クラスの損失の値への重みを小さくした場合をそれぞれ示す。It is a figure which shows the table of the loss value of each class in 2nd Embodiment, and the calculated value of a loss function, FIG. 17A shows the case where the weight of the loss value of each class is made the same, FIG. Each case is shown in which the weight of the class loss value is reduced. 第3実施形態における評価部の処理の具体例を示す図である。It is a figure which shows the specific example of a process of the evaluation part in 3rd Embodiment. 第3実施形態における評価部の処理を概念的に示す図である。It is a figure which shows notionally the process of the evaluation part in 3rd Embodiment. 第3実施形態における評価部の処理を概念的に示す図である。It is a figure which shows notionally the process of the evaluation part in 3rd Embodiment. 拡大処理の拡大率の決定方法を示す図である。It is a figure which shows the determination method of the expansion rate of an expansion process. 第4実施形態における評価部の処理の具体例を示す図である。It is a figure which shows the specific example of a process of the evaluation part in 4th Embodiment. 第4実施形態における評価部の処理を概念的に示す図である。It is a figure which shows notionally the process of the evaluation part in 4th Embodiment. 第4実施形態における評価部の処理を概念的に示す図である。It is a figure which shows notionally the process of the evaluation part in 4th Embodiment. 縮小処理の縮小率の決定方法を示す図である。It is a figure which shows the determination method of the reduction rate of reduction processing. 補正処理部に補正処理を実行させるか否かを問う第5実施形態を示す図である。It is a figure which shows 5th Embodiment which asks whether a correction process part is made to perform a correction process.

 [第1実施形態]

 図1において、ミニバッチ学習装置2は、入力画像内の複数のクラスの判別を画素単位で行うセマンティックセグメンテーションを実施するためのモデル10の判別精度を高めるために、モデル10にミニバッチデータ11を用いたミニバッチ学習を行わせる。ミニバッチ学習装置2は、例えばデスクトップ型のパーソナルコンピュータである。また、モデル10は、例えばU-Netである。

[First Embodiment]

In FIG. 1, the mini-batch learning device 2 uses the mini-batch data 11 for the model 10 in order to improve the discrimination accuracy of the model 10 for performing the semantic segmentation that discriminates a plurality of classes in the input image on a pixel-by-pixel basis. Have the mini-batch learning done. The mini-batch learning device 2 is, for example, a desktop personal computer. The model 10 is, for example, U-Net.

 クラスは、入力画像に映る物体の種類と言い換えてもよい。また、セマンティックセグメンテーションは、端的に言えば、入力画像に映る物体のクラスとその輪郭を判別するもので、その判別結果を、モデル10は出力画像として出力する。例えば入力画像にコップ、本、携帯電話の3つの物体が映っていた場合、出力画像は、理想的には、コップ、本、携帯電話が各々クラスとして判別され、かつこれら物体の輪郭を忠実に辿った輪郭線がそれぞれの物体に描かれたものとなる。

The class may be rephrased as the type of object shown in the input image. In short, the semantic segmentation discriminates the class of the object and the contour of the object shown in the input image, and the discrimination result is output from the model 10 as the output image. For example, when three objects of a cup, a book, and a mobile phone are reflected in the input image, the output image is ideally determined to be the class of the cup, the book, and the mobile phone, and the contours of these objects are faithfully reproduced. The contour line traced is drawn on each object.

 モデル10のクラスの判別精度は、モデル10に学習データを与えて学習させ、モデル10を更新することで高められる。学習データは、モデル10に入力する学習用入力画像と、学習用入力画像内のクラスが手動で指定されたアノテーション画像との組で構成される。アノテーション画像は、学習用入力画像に応じてモデル10から出力された学習用出力画像とのいわば答え合わせを行うための画像で、学習用出力画像と比較される。モデル10のクラスの判別精度が高いほど、アノテーション画像と学習用出力画像との差異は小さくなる。

The classification accuracy of the class of the model 10 can be improved by giving learning data to the model 10 for learning and updating the model 10. The learning data is composed of a set of a learning input image input to the model 10 and an annotation image in which a class in the learning input image is manually specified. The annotation image is an image for performing so-called answer matching with the learning output image output from the model 10 according to the learning input image, and is compared with the learning output image. The higher the classification accuracy of the model 10 is, the smaller the difference between the annotation image and the learning output image is.

 ミニバッチ学習装置2では、前述のように、学習データとしてミニバッチデータ11を用いる。ミニバッチデータ11は、分割学習用入力画像群12と分割アノテーション画像群13とで構成される。

As described above, the mini-batch learning device 2 uses the mini-batch data 11 as learning data. The mini-batch data 11 is composed of a divided learning input image group 12 and a divided annotation image group 13.

 ミニバッチ学習においては、分割学習用入力画像群12がモデル10に与えられる。これにより、モデル10から、分割学習用入力画像群12の分割学習用入力画像20S(図4参照)毎に学習用出力画像が出力される。こうしてモデル10から出力された学習用出力画像の集合である学習用出力画像群14と、分割アノテーション画像群13とが比較され、モデル10のクラスの判別精度が評価される。そして、このクラスの判別精度の評価結果に応じて、モデル10が更新される。ミニバッチ学習装置2は、これらの分割学習用入力画像群12のモデル10への入力と学習用出力画像群14のモデル10からの出力、モデル10のクラスの判別精度の評価、およびモデル10の更新を、ミニバッチデータ11を代えつつ行い、モデル10のクラスの判別精度が所望のレベルとなるまで繰り返す。

In the mini-batch learning, the divided learning input image group 12 is given to the model 10. As a result, the learning output image is output from the model 10 for each divided learning input image 20S (see FIG. 4) of the divided learning input image group 12. In this way, the learning output image group 14, which is a set of learning output images output from the model 10, and the divided annotation image group 13 are compared, and the class determination accuracy of the model 10 is evaluated. Then, the model 10 is updated according to the evaluation result of the discrimination accuracy of this class. The mini-batch learning device 2 inputs the divided learning input image group 12 to the model 10, outputs the learning output image group 14 from the model 10, evaluates the class discrimination accuracy of the model 10, and updates the model 10. Is performed while replacing the mini-batch data 11, and is repeated until the class discrimination accuracy of the model 10 reaches a desired level.

 図2に示すように、上記のようにしてクラスの判別精度が所望のレベルまで引き上げられたモデル10は、学習済み機械学習モデル(以下、学習済みモデル)10Tとして運用装置15に組み込まれる。学習済みモデル10Tには、映った物体のクラスおよびその輪郭が未だ判別されていない入力画像16が与えられる。学習済みモデル10Tは、入力画像16に映る物体のクラスとその輪郭を判別し、その判別結果として出力画像17を出力する。運用装置15は、ミニバッチ学習装置2と同様、例えばデスクトップ型のパーソナルコンピュータであり、入力画像16と出力画像17とを、ディスプレイに並べて表示したりする。なお、運用装置15は、ミニバッチ学習装置2とは別の装置でもよいし、ミニバッチ学習装置2と同じ装置でもよい。また、運用装置15に学習済みモデル10Tを組み込んだ後も、学習済みモデル10Tにミニバッチデータ11を与えて学習させてもよい。

As shown in FIG. 2, the model 10 whose class discrimination accuracy is increased to a desired level as described above is incorporated into the operation device 15 as a learned machine learning model (hereinafter, learned model) 10T. The learned model 10T is provided with the input image 16 in which the class of the reflected object and its contour have not yet been determined. The learned model 10T discriminates the class of the object shown in the input image 16 and its contour, and outputs the output image 17 as the discrimination result. The operation device 15 is, for example, a desktop personal computer like the mini-batch learning device 2, and displays the input image 16 and the output image 17 side by side on the display. The operation device 15 may be a device different from the mini-batch learning device 2 or the same device as the mini-batch learning device 2. Further, even after the learned model 10T is incorporated in the operation device 15, the learned model 10T may be given the mini-batch data 11 for learning.

 図3Aに示すように、学習用入力画像20は、本例においては、細胞培養の様子を映した位相差顕微鏡の1枚の画像である。学習用入力画像20には、分化細胞、未分化細胞、培地、死細胞が物体として映っている。この場合のアノテーション画像21は、図3Bに示すように、クラス1の分化細胞、クラス2の未分化細胞、クラス3の培地、クラス4の死細胞が、各々手動で指定されたものとなる。なお、学習済みモデル10Tに与えられる入力画像16も、学習用入力画像20と同じく、細胞培養の様子を映した位相差顕微鏡の画像である。

As shown in FIG. 3A, the learning input image 20 is, in this example, one image of a phase contrast microscope showing a state of cell culture. In the learning input image 20, differentiated cells, undifferentiated cells, medium, and dead cells are reflected as objects. In the annotation image 21 in this case, as shown in FIG. 3B, class 1 differentiated cells, class 2 undifferentiated cells, class 3 medium, and class 4 dead cells are manually designated. The input image 16 provided to the learned model 10T is also a phase-contrast microscope image showing the state of cell culture, like the learning input image 20.

 図4に示すように、分割学習用入力画像20Sは、学習用入力画像20内において、横方向にDXずつ、かつ縦方向にDYずつ順次移動される矩形状の枠25で囲われた領域を、その都度切り取ったものである。枠25の横方向の移動量DXは、例えば、枠25の横方向のサイズの1/2である。同様に、枠25の縦方向の移動量DYは、例えば、枠25の縦方向のサイズの1/2である。枠25は、例えば、学習用入力画像20の1/50のサイズである。この場合、分割学習用入力画像20Sは、20S_1~20S_10000の計1万枚ある。

As illustrated in FIG. 4, the divided learning input image 20S includes a region surrounded by a rectangular frame 25 that is sequentially moved in the horizontal direction by DX and in the vertical direction by DY in the learning input image 20S. , Each time it was cut out. The lateral movement amount DX of the frame 25 is, for example, ½ of the lateral size of the frame 25. Similarly, the vertical movement amount DY of the frame 25 is, for example, ½ of the vertical size of the frame 25. The frame 25 is, for example, 1/50 the size of the learning input image 20. In this case, there are 10,000 input images for divided learning 20S, that is, 20S_1 to 20S_10000.

 同様にして、図5に示すように、分割アノテーション画像21Sは、アノテーション画像21内において、横方向にDXずつ、かつ縦方向にDYずつ順次移動される矩形状の枠25で囲われた領域を、その都度切り取ったものである。分割アノテーション画像21Sは、21S_1~21S_10000の計1万枚ある。なお、以下では、ミニバッチ学習装置2内に学習用入力画像20およびアノテーション画像21が既に用意されており、かつ分割学習用入力画像20Sおよび分割アノテーション画像21Sも既に生成されているとして話を進める。

Similarly, as shown in FIG. 5, the divided annotation image 21S is a region surrounded by a rectangular frame 25 that is sequentially moved in the annotation image 21 by DX in the horizontal direction and DY in the vertical direction. , Each time it was cut out. There are 10,000 divided annotation images 21S in total, 21S_1 to 21S_10000. In the following description, the learning input image 20 and the annotation image 21 are already prepared in the mini-batch learning device 2, and the split learning input image 20S and the split annotation image 21S are already generated.

 図6に示すように、分割学習用入力画像群12は、図4で示したように生成された複数の分割学習用入力画像20Sのうちの一部(例えば1万枚の分割学習用入力画像20Sのうちの100枚)で構成される。同様に図7に示すように、分割アノテーション画像群13は、図5で示したように生成された複数の分割アノテーション画像21Sのうちの一部(例えば1万枚の分割アノテーション画像21Sのうちの100枚)で構成される。分割学習用入力画像群12を構成する分割学習用入力画像20Sと、分割アノテーション画像群13を構成する分割アノテーション画像21Sとは、枠25で切り取った領域が同じもの同士である。

As shown in FIG. 6, the divided learning input image group 12 is a part (for example, 10,000 divided learning input images) of the plurality of divided learning input images 20S generated as shown in FIG. It is composed of 100 sheets of 20S). Similarly, as shown in FIG. 7, the divided annotation image group 13 is part of the plurality of divided annotation images 21S generated as shown in FIG. 5 (for example, of the 10,000 divided annotation images 21S). 100 sheets). The divided learning input image 20S forming the divided learning input image group 12 and the divided annotation image 21S forming the divided annotation image group 13 have the same region cut out by the frame 25.

 図8において、ミニバッチ学習装置2を構成するコンピュータは、ストレージデバイス30、メモリ31、CPU(Central Processing Unit)32、通信部33、ディスプレイ34、および入力デバイス35を備えている。これらはデータバス36を介して相互接続されている。

In FIG. 8, the computer configuring the mini-batch learning device 2 includes a storage device 30, a memory 31, a CPU (Central Processing Unit) 32, a communication unit 33, a display 34, and an input device 35. These are interconnected via a data bus 36.

 ストレージデバイス30は、ミニバッチ学習装置2を構成するコンピュータに内蔵、またはケーブルやネットワークを通じて接続されたハードディスクドライブである。もしくはストレージデバイス30は、ハードディスクドライブを複数台連装したディスクアレイである。ストレージデバイス30には、オペレーティングシステム等の制御プログラムや各種アプリケーションプログラム、およびこれらのプログラムに付随する各種データ等が記憶されている。

The storage device 30 is a hard disk drive that is built in the computer that constitutes the mini-batch learning apparatus 2 or that is connected via a cable or a network. Alternatively, the storage device 30 is a disk array in which a plurality of hard disk drives are connected in series. The storage device 30 stores a control program such as an operating system, various application programs, and various data associated with these programs.

 メモリ31は、CPU32が処理を実行するためのワークメモリである。CPU32は、ストレージデバイス30に記憶されたプログラムをメモリ31へロードして、プログラムにしたがった処理を実行することにより、コンピュータの各部を統括的に制御する。

The memory 31 is a work memory for the CPU 32 to execute processing. The CPU 32 loads the program stored in the storage device 30 into the memory 31 and executes the process according to the program, thereby centrally controlling each unit of the computer.

 通信部33は、インターネットあるいは公衆通信網等のWAN(Wide Area Network)といったネットワークを介した各種情報の伝送制御を行うネットワークインターフェースである。ディスプレイ34は各種画面を表示する。各種画面にはGUI(Graphical User Interface)による操作機能が備えられる。ミニバッチ学習装置2を構成するコンピュータは、各種画面を通じて、入力デバイス35からの操作指示の入力を受け付ける。入力デバイス35は、キーボードやマウス、タッチパネル等である。

The communication unit 33 is a network interface that controls transmission of various information via a network such as the Internet or a WAN (Wide Area Network) such as a public communication network. The display 34 displays various screens. Various screens are provided with an operation function by GUI (Graphical User Interface). The computer configuring the mini-batch learning device 2 receives input of an operation instruction from the input device 35 through various screens. The input device 35 is a keyboard, a mouse, a touch panel, or the like.

 図9において、ストレージデバイス30には、学習用入力画像20、アノテーション画像21、分割学習用入力画像20S、分割アノテーション画像21S、およびモデル10が記憶されている。また、ストレージデバイス30には、アプリケーションプログラムとして作動プログラム40が記憶されている。作動プログラム40は、コンピュータをミニバッチ学習装置2として機能させるためのアプリケーションプログラムである。

In FIG. 9, the storage device 30 stores a learning input image 20, an annotation image 21, a split learning input image 20S, a split annotation image 21S, and a model 10. The operation program 40 is stored in the storage device 30 as an application program. The operation program 40 is an application program for causing a computer to function as the mini-batch learning device 2.

 作動プログラム40が起動されると、ミニバッチ学習装置2を構成するコンピュータのCPU32は、メモリ31等と協働して、生成部50、算出部51、特定部52、学習部53、評価部54、および更新部55として機能する。評価部54には、補正処理部56が設けられている。

When the operation program 40 is activated, the CPU 32 of the computer constituting the mini-batch learning device 2 cooperates with the memory 31 and the like to generate the generation unit 50, the calculation unit 51, the identification unit 52, the learning unit 53, the evaluation unit 54, And functions as the updating unit 55. A correction processing unit 56 is provided in the evaluation unit 54.

 生成部50は、図4および図5で示したように学習用入力画像20およびアノテーション画像21から生成された分割学習用入力画像20Sおよび分割アノテーション画像21Sから、図6および図7で示したようにその一部を選択することで、ミニバッチデータ11を生成する。生成部50は、ミニバッチデータ11を複数組(例えば100組)生成する。生成部50は、生成したミニバッチデータ11を、算出部51、学習部53、および評価部54に出力する。

The generation unit 50 uses the divided learning input image 20S and the divided annotation image 21S generated from the learning input image 20 and the annotation image 21 as shown in FIGS. The mini-batch data 11 is generated by selecting a part of them. The generation unit 50 generates a plurality of sets (for example, 100 sets) of mini-batch data 11. The generation unit 50 outputs the generated mini-batch data 11 to the calculation unit 51, the learning unit 53, and the evaluation unit 54.

 なお、生成部50において、ミニバッチデータ11とする分割学習用入力画像20Sおよび分割アノテーション画像21Sの選択肢を増やす手法を実行してもよい。具体的には、分割学習用入力画像20Sおよび分割アノテーション画像21Sに、トリミング、左右反転、回転といった画像処理を施して別の画像に仕立て、ミニバッチデータ11の新たな選択肢とする。こうした手法は、データオーギュメンテーションと呼ばれる。

Note that the generation unit 50 may execute a method of increasing the choices of the split learning input image 20S and the split annotation image 21S to be the mini-batch data 11. Specifically, the input image for split learning 20S and the split annotation image 21S are subjected to image processing such as trimming, left-right reversal, and rotation to be made into another image, which is a new option of the mini-batch data 11. Such a technique is called data augmentation.

 算出部51は、ミニバッチデータ11における、複数のクラスの各々の面積割合を算出する。より詳しくは、算出部51は、生成部50からのミニバッチデータ11の分割アノテーション画像群13を構成する分割アノテーション画像21Sにおいて手動で指定された領域の画素数を、クラス毎に加算する。次いで、加算した画素数を分割アノテーション画像21Sの全画素数で除算することで、面積割合を算出する。例えば、クラス1の分化細胞と指定された領域の、加算した画素数が10000で、全画素数が50000であった場合、クラス1の分化細胞の面積割合は、(10000/50000)×100=20%である。算出部51は、算出した面積割合を特定部52に出力する。

The calculation unit 51 calculates the area ratio of each of the plurality of classes in the mini-batch data 11. More specifically, the calculation unit 51 adds, for each class, the number of pixels in a region manually specified in the divided annotation image 21S that forms the divided annotation image group 13 of the mini-batch data 11 from the generation unit 50. Next, the area ratio is calculated by dividing the added pixel number by the total pixel number of the divided annotation image 21S. For example, when the number of added pixels is 10,000 and the total number of pixels is 50000 in a region designated as a class 1 differentiated cell, the area ratio of the class 1 differentiated cell is (10000/50000)×100= 20%. The calculating unit 51 outputs the calculated area ratio to the specifying unit 52.

 特定部52は、面積割合に基づいて補正対象クラスを特定する。本実施形態においては、特定部52は、補正対象クラスとして、面積割合が予め設定された設定値よりも低い稀少クラスを特定する。特定部52は、特定した稀少クラスを評価部54に出力する。

The identifying unit 52 identifies the correction target class based on the area ratio. In the present embodiment, the identifying unit 52 identifies, as the correction target class, a rare class whose area ratio is lower than a preset setting value. The identification unit 52 outputs the identified rare class to the evaluation unit 54.

 学習部53は、生成部50からのミニバッチデータ11の分割学習用入力画像群12をモデル10に与えて学習させる。これによりモデル10から出力された学習用出力画像群14を、学習部53は評価部54に出力する。

The learning unit 53 gives the input image group 12 for divided learning of the mini-batch data 11 from the generation unit 50 to the model 10 for learning. The learning unit 53 outputs the learning output image group 14 output from the model 10 to the evaluation unit 54.

 評価部54は、生成部50からのミニバッチデータ11の分割アノテーション画像群13と、学習部53からの学習用出力画像群14とを比較し、モデル10のクラスの判別精度を評価する。評価部54は、評価結果を更新部55に出力する。

The evaluation unit 54 compares the divided annotation image group 13 of the mini-batch data 11 from the generation unit 50 and the learning output image group 14 from the learning unit 53, and evaluates the classification accuracy of the class of the model 10. The evaluation unit 54 outputs the evaluation result to the update unit 55.

 評価部54は、以下に示す損失関数L(TN、PN)を用いて、モデル10のクラスの判別精度を評価する。損失関数L(TN、PN)は、分割アノテーション画像群13と学習用出力画像群14との差異の程度を表す関数である。損失関数L(TN、PN)のTNは分割アノテーション画像群13におけるクラスの判別状態を表し、正解値に相当する。PNは学習用出力画像群14におけるクラスの判別状態を表し、予測値に相当する。損失関数L(TN、PN)の算出値が0に近いほど、モデル10のクラスの判別精度が高いことを示す。

The evaluation unit 54 evaluates the class determination accuracy of the model 10 using the loss function L (TN, PN) shown below. The loss function L(TN, PN) is a function indicating the degree of difference between the divided annotation image group 13 and the learning output image group 14. The TN of the loss function L(TN, PN) represents the discrimination state of the class in the divided annotation image group 13, and corresponds to the correct value. PN represents a class discrimination state in the learning output image group 14, and corresponds to a predicted value. The closer the calculated value of the loss function L(TN, PN) is to 0, the higher the classification accuracy of the class of the model 10.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 Nはクラスの数で、本例ではN=4である。WKは重み係数である。F(TK、PK)は、例えば、カテゴリカルクロスエントロピー関数である。F(TK、PK)は、各クラスの損失の値に相当する。すなわち、損失関数L(TN、PN)は、各クラスの損失の値F(TK、PK)と重み係数WKとの積の総和である。評価部54は、評価結果として、この損失関数L(TN、PN)の算出値を更新部55に出力する。

N is the number of classes, N=4 in this example. WK is a weighting factor. F(TK, PK) is, for example, a categorical cross entropy function. F(TK, PK) corresponds to the loss value of each class. That is, the loss function L(TN, PN) is the sum of products of the loss value F(TK, PK) of each class and the weighting coefficient WK. The evaluation unit 54 outputs the calculated value of the loss function L(TN, PN) to the update unit 55 as the evaluation result.

 補正処理部56は、補正対象クラスの損失の値である第1の損失の値、および補正対象クラス以外のクラスの損失の値である第2の損失の値の比較結果に基づいて、第1の損失の値を補正する補正処理を実行する。なお、補正処理は、第1の損失の値および第2の損失の値の桁数を揃える処理を含む。桁数を揃える処理とは、例えば、第1の損失の値の桁数が1で、第2の損失の値の桁数が2の場合、第1の損失の値の桁数を2にする処理である。また、補正処理は、第1の損失の値と第2の損失の値とを同じ値とする処理も含む。同じ値とする処理は、第1の損失の値と第2の損失の値とを完全に同一の値にする処理はもとより、理第2の損失の値に対して、第1の損失の値を、規定の誤差範囲、例えば±50%の範囲に収める(第2の損失の値が50の場合、第1の損失の値を25~75とする)処理も含む。

The correction processing unit 56 determines whether the first loss value, which is the loss value of the correction target class, and the second loss value, which is the loss value of the class other than the correction target class, are compared with each other. A correction process for correcting the loss value of is executed. The correction process includes a process of aligning the numbers of digits of the first loss value and the second loss value. For example, if the number of digits of the first loss value is 1 and the number of digits of the second loss value is 2, the number of digits of the first loss value is set to 2 Processing. The correction process also includes a process of setting the first loss value and the second loss value to the same value. The process of setting the same value includes not only the process of setting the first loss value and the second loss value to be completely the same value, but also the first loss value with respect to the second loss value. Within a prescribed error range, for example, within a range of ±50% (when the value of the second loss is 50, the value of the first loss is set to 25 to 75).

 より詳しくは、補正処理部56は、補正処理として、第1の損失の値への重みを、第2の損失の値への重みよりも大きくする処理を実行する。ここで、「重み」とは、重み係数WKのことである。また、本実施形態においては、前述のように、補正対象クラスは、面積割合が設定値よりも低い稀少クラスである。このため、本実施形態においては、第1の損失の値は稀少クラスの損失の値F(TK、PK)、第2の損失の値は稀少クラス以外のクラスの損失の値F(TK、PK)である。これらを踏まえて上記の表現を言い換えると、補正処理部56は、補正処理として、稀少クラスの損失の値F(TK、PK)への重み係数WKを、稀少クラス以外のクラスの損失の値F(TK、PK)への重み係数WKよりも大きくする処理を実行する、となる。補正処理部56は、例えば、稀少クラスの損失の値F(TK、PK)への重み係数WKを10とし、稀少クラス以外のクラスの損失の値F(TK、PK)への重み係数WKを1とする(図11および図12参照)。

More specifically, the correction processing unit 56 executes, as the correction processing, processing for making the weight of the first loss value larger than the weight of the second loss value. Here, the “weight” is the weight coefficient WK. Further, in the present embodiment, as described above, the correction target class is a rare class whose area ratio is lower than the set value. Therefore, in the present embodiment, the first loss value is the rare class loss value F(TK, PK), and the second loss value is the loss value F(TK, PK) of a class other than the rare class. ). In other words, the correction processing unit 56 uses the weighting factor WK to the loss value F (TK, PK) of the rare class as the correction process and the loss value F of the class other than the rare class as the correction process. A process of increasing the weighting coefficient WK to (TK, PK) is executed. The correction processing unit 56 sets the weighting factor WK to the loss value F(TK, PK) of the rare class to 10, and sets the weighting factor WK to the loss value F(TK, PK) of the class other than the rare class, for example. 1 (see FIGS. 11 and 12).

 更新部55は、評価部54からの評価結果に応じて、モデル10を更新する。より具体的には、更新部55は、学習係数を伴う確率的勾配降下法等により、モデル10の各種パラメータの値を変化させる。学習係数は、モデル10の各種パラメータの値の変化幅を示す。すなわち、学習係数が比較的大きい値であるほど、各種パラメータの値の変化幅は大きくなり、モデル10の更新度合いも大きくなる。

The update unit 55 updates the model 10 according to the evaluation result from the evaluation unit 54. More specifically, the updating unit 55 changes the values of various parameters of the model 10 by a stochastic gradient descent method with a learning coefficient. The learning coefficient indicates the range of change in the values of various parameters of the model 10. That is, as the learning coefficient has a relatively large value, the range of change in the values of various parameters increases, and the degree of updating the model 10 also increases.

 図10および図11は、算出部51、特定部52、評価部54(補正処理部56)の各部の処理の具体例を示す。まず、図10において、算出部51は、表60に示すように、ミニバッチデータ11の各組1、2、3、・・・について、各クラスの面積割合を算出する。図10では、第1組のミニバッチデータ11のクラス1の分化細胞の面積割合を38%、クラス2の未分化細胞の面積割合を2%、クラス3の培地の面積割合を40%、クラス4の死細胞の面積割合を20%等と算出した場合を例示している。

FIG. 10 and FIG. 11 show specific examples of the processing of each unit of the calculation unit 51, the identification unit 52, and the evaluation unit 54 (correction processing unit 56). First, in FIG. 10, the calculation unit 51 calculates the area ratio of each class for each set 1, 2, 3,... Of the mini-batch data 11 as shown in Table 60. In FIG. 10, the area ratio of the differentiated cells of class 1 of the first set of mini-batch data 11 is 38%, the area ratio of the undifferentiated cells of class 2 is 2%, the area ratio of the medium of class 3 is 40%, and the class ratio is 40%. The case where the area ratio of the dead cells of No. 4 is calculated to be 20% or the like is illustrated.

 特定部52は、面積割合が設定値よりも低い稀少クラスを特定する。図10では、設定値が5%であるため、面積割合が2%と設定値よりも低い、第1組のミニバッチデータ11のクラス2の未分化細胞を稀少クラスとして特定した場合を例示している。なお、ここでは稀少クラスが1つだけ特定された場合を例示しているが、面積割合が設定値よりも低いクラスが複数あった場合は、当然ながら複数のクラスが稀少クラスとして特定される。

The identifying unit 52 identifies a rare class whose area ratio is lower than the set value. In FIG. 10, since the set value is 5%, the area ratio is 2%, which is lower than the set value, and the undifferentiated cells of class 2 in the first set of mini-batch data 11 are specified as a rare class. ing. Although only one rare class is specified here as an example, if there are a plurality of classes whose area ratio is lower than the set value, the plurality of classes are naturally specified as the rare classes.

 続いて図11において、評価部54の補正処理部56は、表61に示すように、第1組のミニバッチデータ11のクラス1、3、4、第2組、第3組のミニバッチデータ11の全クラスといった、稀少クラス以外のクラスの損失の値F(TK、PK)への重み係数WKを1とする。対して、補正処理部56は、第1組のミニバッチデータ11のクラス2といった稀少クラスの損失の値F(TK、PK)への重み係数WKを10とする。

Then, in FIG. 11, the correction processing unit 56 of the evaluation unit 54, as shown in Table 61, the mini batch data of the classes 1, 3, 4, the second set, and the third set of the mini batch data 11 of the first set. The weighting factor WK to the loss value F(TK, PK) of a class other than the rare class, such as 11 classes, is set to 1. On the other hand, the correction processing unit 56 sets the weighting factor WK to the loss value F(TK, PK) of a rare class such as class 2 of the first set of mini-batch data 11 to 10.

 図12は、各クラスの損失の値F(TK、PK)と損失関数L(TN、PN)の算出値の表を示す。図12Aの表65Aは、各クラスの損失の値F(TK、PK)への重み係数WKを一律同じ1にした場合を示す。一方、図12Bの表65Bは、稀少クラスの損失の値F(TK、PK)への重み係数WKを大きくした場合を示す。そして、稀少クラスがクラス2の未分化細胞で、損失の値F(T2、P2)が2、その他のクラス1、3、4の、損失の値F(T1、P1)、F(T3、P3)、F(T4、P4)が、それぞれ25、20、15であった場合を例示している。

FIG. 12 shows a table of loss values F (TK, PK) and calculated values of loss function L (TN, PN) of each class. The table 65A in FIG. 12A shows a case where the weighting factor WK for the loss value F(TK, PK) of each class is set to 1 which is the same. On the other hand, the table 65B of FIG. 12B shows a case where the weighting factor WK for the loss value F(TK, PK) of the rare class is increased. The rare class is an undifferentiated cell of class 2, the loss value F(T2, P2) is 2, and the loss values F(T1, P1), F(T3, P3) of the other classes 1, 3, 4 are ) And F(T4, P4) are 25, 20, and 15, respectively.

 このように、稀少クラスの損失の値F(TK、PK)は、稀少クラス以外のクラスの損失の値F(TK、PK)と比べて小さくなる。こうした差異が生じるのは、稀少クラスは、他のクラスと比べてモデル10の学習機会が限られていて、1組のミニバッチデータ11を与えた学習(エポックと呼ばれる)では、モデル10の判別精度が改善または悪化する程度が小さいためである。

Thus, the loss value F(TK, PK) of the rare class is smaller than the loss value F(TK, PK) of the class other than the rare class. Such a difference occurs because the rare class has a limited learning opportunity for the model 10 as compared to other classes, and the learning (called an epoch) in which a set of mini-batch data 11 is given determines the model 10. This is because the degree of accuracy improvement or deterioration is small.

 稀少クラスとその他のクラスで損失の値F(TK、PK)に大きな差異がある状態で、図12Aのように重み係数WKを一律同じにした場合、稀少クラスの損失の値F(TK、PK)が損失関数L(TN、PN)の算出値(=62)に与える影響は比較的少ない。対して、図12Bのように稀少クラスの損失の値F(TK、PK)への重み係数WKを大きくした場合は、図12Aの場合と比べて、稀少クラスの損失の値F(TK、PK)が損失関数L(TN、PN)の算出値(=80)に与える影響は大きい。こうして稀少クラスの損失の値F(TK、PK)への重み係数WKを大きくすることで、評価部54は、稀少クラスの損失の値F(TK、PK)を、稀少クラス以外のクラスの損失の値F(TK、PK)に比肩する値に引き上げ、そのうえで損失関数L(TN、PN)を算出し、モデル10の判別精度を評価する。

When there is a large difference in the loss value F (TK, PK) between the rare class and the other classes and the weighting factors WK are made the same as shown in FIG. 12A, the loss value F (TK, PK of the rare class is ) Has a relatively small effect on the calculated value (=62) of the loss function L(TN, PN). On the other hand, when the weighting factor WK for the rare class loss value F(TK, PK) is increased as shown in FIG. 12B, the rare class loss value F(TK, PK) is larger than that in FIG. 12A. ) Has a large effect on the calculated value (=80) of the loss function L(TN, PN). In this way, by increasing the weighting factor WK for the rare class loss value F(TK, PK), the evaluation unit 54 sets the rare class loss value F(TK, PK) to the loss of classes other than the rare class. The value F (TK, PK) is compared to the value F (TK, PK), the loss function L (TN, PN) is calculated, and the discrimination accuracy of the model 10 is evaluated.

 次に、上記構成による作用について、図13に示すフローチャートを参照して説明する。まず、作動プログラム40が起動されて、図9で示したように、ミニバッチ学習装置2を構成するコンピュータのCPU32が、各処理部50~56として機能する。

Next, the operation of the above configuration will be described with reference to the flowchart shown in FIG. First, the operation program 40 is started, and as shown in FIG. 9, the CPU 32 of the computer constituting the mini-batch learning device 2 functions as the processing units 50 to 56.

 生成部50において、ミニバッチデータ11が生成される(ステップST100)。ミニバッチデータ11は、生成部50から算出部51、学習部53、および評価部54に出力される。

The mini-batch data 11 is generated in the generation unit 50 (step ST100). The mini-batch data 11 is output from the generation unit 50 to the calculation unit 51, the learning unit 53, and the evaluation unit 54.

 図10の表60で示したように、算出部51により、ミニバッチデータ11の各組について、各クラスの面積割合が算出される(ステップST110、算出ステップ)。続いて、これも図10で示したように、特定部52において、面積割合が設定値よりも低い稀少クラスが、補正対象クラスとして特定される(ステップST120、特定ステップ)。

As shown in the table 60 of FIG. 10, the calculation unit 51 calculates the area ratio of each class for each set of the mini-batch data 11 (step ST110, calculation step). Subsequently, as also shown in FIG. 10, in the identifying unit 52, a rare class whose area ratio is lower than the set value is identified as a correction target class (step ST120, identifying step).

 学習部53において、生成部50からのミニバッチデータ11の分割学習用入力画像群12がモデル10に与えられて学習が行われる(ステップST130)。

In the learning unit 53, the input image group 12 for divided learning of the mini-batch data 11 from the generation unit 50 is given to the model 10 and learning is performed (step ST130).

 ステップST130においてモデル10に与えたミニバッチデータ11に、稀少クラスがあった場合(ステップST140でYES)、図11の表61および図12Bの表65Bで示したように、補正処理部56により、稀少クラスの損失の値F(TK、PK)への重み係数WKが、稀少クラス以外のクラスの損失の値F(TK、PK)への重み係数WKよりも大きくされる(ステップST150、補正処理ステップ)。対して、ステップST130においてモデル10に与えたミニバッチデータ11に、稀少クラスがなかった場合(ステップST140でNO)は、稀少クラスの損失の値F(TK、PK)への重み係数WKが大きくされることなく、通常の重み係数WKとされる。

When the mini-batch data 11 given to the model 10 in step ST130 includes a rare class (YES in step ST140), as shown in table 61 of FIG. 11 and table 65B of FIG. The weighting factor WK for the loss value F(TK, PK) of the rare class is made larger than the weighting factor WK for the loss value F(TK, PK) of the class other than the rare class (step ST150, correction process). Step). On the other hand, when there is no rare class in the mini-batch data 11 given to the model 10 in step ST130 (NO in step ST140), the weighting factor WK to the loss value F(TK, PK) of the rare class is large. Instead, the normal weighting coefficient WK is set.

 評価部54では、モデル10から出力された学習用出力画像群14と、生成部50からのミニバッチデータ11の分割アノテーション画像群13とが比較され、モデル10のクラスの判別精度が評価される(ステップST160、評価ステップ)。より詳しくは、複数のクラス毎に損失の値F(TK、PK)が算出される。そして、損失の値F(TK、PK)に、ステップST150で設定された重み係数WK、または通常の重み係数WKが積算され、その総和が損失関数L(TN、PN)の算出値として算出される。

The evaluation unit 54 compares the learning output image group 14 output from the model 10 with the divided annotation image group 13 of the mini-batch data 11 from the generation unit 50, and evaluates the class determination accuracy of the model 10. (Step ST160, evaluation step). More specifically, the loss value F(TK, PK) is calculated for each of the plurality of classes. Then, the weighting factor WK set in step ST150 or the normal weighting factor WK is added to the loss value F(TK, PK), and the sum is calculated as the calculated value of the loss function L(TN, PN). It

 評価部54による損失関数L(TN、PN)の算出値に基づき、モデル10のクラスの判別精度が所望のレベルに達したと判定された場合(ST170でYES)、ミニバッチ学習が終了される。一方、モデル10のクラスの判別精度が所望のレベルに達していないと判定された場合(ステップST170でNO)は、更新部55によりモデル10が更新(ステップST180)される。そのうえで、ステップST130に処理が戻され、別の組のミニバッチデータ11がモデル10に与えられて以降のステップが繰り返される。

When it is determined that the class determination accuracy of the model 10 has reached a desired level based on the calculated value of the loss function L(TN, PN) by the evaluation unit 54 (YES in ST170), the mini-batch learning is terminated. On the other hand, when it is determined that the class determination accuracy of the model 10 has not reached the desired level (NO in step ST170), the updating unit 55 updates the model 10 (step ST180). Then, the process is returned to step ST130, another set of mini-batch data 11 is given to the model 10, and the subsequent steps are repeated.

 特定部52において稀少クラスが特定された場合とは、すなわちミニバッチデータ11にクラスの偏りがあった場合である。こうしたクラスの偏りがあるミニバッチデータ11では、稀少クラスが加味されずに学習が行われる。より詳しくは、稀少クラスの学習の頻度が、他のクラスと比べて相対的に低くなる。このような偏った学習が行われた後に、評価部54において何の制約もなくモデル10の判別精度を評価した場合、図12Aで示したように、稀少クラスがあまり加味されない評価結果が出力されることとなる。そうすると、その後のモデル10の更新も、稀少クラスが加味されないものとなる。結果として、稀少クラスの判別精度が低いモデル10ができあがってしまう。

The case where the rare class is specified by the specifying unit 52 is that the class is biased in the mini-batch data 11. In the mini-batch data 11 having such class bias, learning is performed without adding rare classes. More specifically, the learning frequency of the rare class is relatively low compared to other classes. When the discrimination accuracy of the model 10 is evaluated by the evaluation unit 54 without any restrictions after such biased learning is performed, an evaluation result in which the rare class is not added so much is output as shown in FIG. 12A. The Rukoto. Then, the subsequent update of the model 10 will not include the rare class. As a result, the model 10 having a low discrimination accuracy of the rare class is completed.

 しかしながら、本実施形態では、上述のように、補正処理部56において、稀少クラスの損失の値F(TK、PK)および稀少クラス以外のクラスの損失の値F(TK、PK)の比較結果に基づく補正処理を実行している。より詳しくは、補正処理部56において、稀少クラスの損失の値F(TK、PK)への重み係数WKを、稀少クラス以外のクラスの損失の値F(TK、PK)への重み係数WKよりも大きくしている。こうすることで、稀少クラスが十分に加味された評価結果を出力することができ、その後のモデル10の更新も、稀少クラスの判別精度を高める方向に向かう。したがって、稀少クラスの判別精度が低いモデル10ができあがってしまう、という事態が避けられ、モデル10のクラスの判別精度の低下を抑制することが可能となる。

However, in the present embodiment, as described above, the correction processing unit 56 uses the comparison result of the loss value F(TK, PK) of the rare class and the loss value F(TK, PK) of the class other than the rare class. The correction processing based on it is being executed. More specifically, in the correction processing unit 56, the weighting factor WK for the loss value F(TK, PK) of the rare class is calculated from the weighting factor WK for the loss value F(TK, PK) of the class other than the rare class. Is also getting bigger. By doing so, the evaluation result in which the rare class is sufficiently added can be output, and the subsequent update of the model 10 also tends to improve the accuracy of identifying the rare class. Therefore, it is possible to avoid a situation in which the model 10 having low discrimination accuracy of the rare class is created, and it is possible to suppress the deterioration of the discrimination accuracy of the class of the model 10.

 なお、面積割合が小さいほど、稀少クラスの損失の値F(TK、PK)への重み係数WKを大きくする程度を増やしてもよい。例えば図14の表70に示すように、第20組のミニバッチデータ11のように、面積割合が0%以上2.5%未満の場合は、稀少クラスであるクラス2の重み係数W2を100とする。対して、第21組のミニバッチデータ11のように、面積割合が2.5%以上5%未満の場合は、稀少クラスであるクラス4の重み係数W4を10とする。面積割合が小さいほど、損失の値F(TK、PK)もより小さくなると考えられる。したがって、このように面積割合に応じて重み係数WKを変更すれば、より稀少クラスが加味された評価結果を出力することができ、結果としてよりモデル10のクラスの判別精度の低下を抑制することが可能となる。

It should be noted that the smaller the area ratio, the larger the degree of increasing the weighting factor WK for the rare class loss value F(TK, PK) may be increased. For example, as shown in Table 70 in FIG. 14, when the area ratio is 0% or more and less than 2.5% as in the 20th set of mini-batch data 11, the weight coefficient W2 of the rare class 2 is set to 100. And On the other hand, when the area ratio is 2.5% or more and less than 5% as in the 21st set of mini-batch data 11, the weight coefficient W4 of the rare class 4 is set to 10. It is considered that the smaller the area ratio, the smaller the loss value F(TK, PK). Therefore, by changing the weighting coefficient WK in accordance with the area ratio in this way, it is possible to output the evaluation result in which the rarer class is added, and as a result, it is possible to further suppress the deterioration of the classification accuracy of the model 10 class. Is possible.

 [第2実施形態]

 図15~図17に示す第2実施形態では、上記第1実施形態とは逆に、補正対象クラスとして、面積割合が予め設定された設定値よりも高い非稀少クラスを特定し、補正処理として、第1の損失の値への重みを、第2の損失の値への重みよりも小さくする処理を実行する。

[Second Embodiment]

In the second embodiment shown in FIGS. 15 to 17, contrary to the first embodiment, a non-rare class whose area ratio is higher than a preset value is specified as the correction target class, and the correction processing is performed. , The weight of the first loss value is made smaller than the weight of the second loss value.

 図15において、本実施形態の特定部80は、補正対象クラスとして、面積割合が設定値よりも高い非稀少クラスを特定する。図15では、設定値が50%であるため、表75等に示すように、面積割合が56%と設定値よりも高い、第30組のミニバッチデータ11のクラス2の未分化細胞を非稀少クラスとして特定した場合を例示している。なお、上記第1実施形態の稀少クラスと同じく、複数のクラスが非稀少クラスとして特定される場合もある。

In FIG. 15, the identifying unit 80 of the present embodiment identifies a non-rare class whose area ratio is higher than the set value, as a correction target class. In FIG. 15, since the set value is 50%, as shown in Table 75 and the like, the undifferentiated cells of class 2 of the mini-batch data 11 of the 30th set, which have an area ratio of 56% and are higher than the set value, are non-differentiated. The case where it is specified as a rare class is illustrated. Note that, like the rare class of the first embodiment, a plurality of classes may be specified as non-rare classes.

 図16において、本実施形態の評価部81の補正処理部82は、補正処理として、非稀少クラスの損失の値F(TK、PK)への重み係数WKを、非稀少クラス以外のクラスの損失の値F(TK、PK)への重み係数WKよりも小さくする処理を実行する。具体的には表83に示すように、第30組のミニバッチデータ11のクラス1、3、4、第31組、第32組のミニバッチデータ11の全クラスといった、非稀少クラス以外のクラスの損失の値F(TK、PK)への重み係数WKを1とする。対して、補正処理部82は、第30組のミニバッチデータ11のクラス2といった非稀少クラスの損失の値F(TK、PK)への重み係数WKを0.5とする。

In FIG. 16, the correction processing unit 82 of the evaluation unit 81 of the present embodiment, as the correction processing, sets the weighting factor WK to the loss value F(TK, PK) of the non-rare class to the loss of the classes other than the non-rare class. The value F(TK, PK) is set to be smaller than the weighting coefficient WK. Specifically, as shown in Table 83, classes other than the non-rare class, such as all classes of the 30th set of mini-batch data 11 of classes 1, 3, 4, 31st set, and 32nd set of mini-batch data 11. The weighting factor WK to the loss value F(TK, PK) of is set to 1. On the other hand, the correction processing unit 82 sets the weighting coefficient WK to the loss value F(TK, PK) of the non-rare class such as class 2 of the 30th set of mini-batch data 11 to 0.5.

 図17は、図12と同様に、各クラスの損失の値F(TK、PK)と損失関数L(TN、PN)の算出値の表を示す。図17Aの表85Aは、各クラスの損失の値F(TK、PK)への重み係数WKを一律同じ1にした場合を示す。一方、図17Bの表85Bは、非稀少クラスの損失の値F(TK、PK)への重み係数WKを小さくした場合を示す。そして、非稀少クラスがクラス2の未分化細胞で、損失の値F(T2、P2)が42、その他のクラス1、3、4の、損失の値F(T1、P1)、F(T3、P3)、F(T4、P4)が、それぞれ19、22、18であった場合を例示している。

17 shows a table of calculated values of the loss value F (TK, PK) and the loss function L (TN, PN) of each class, as in FIG. The table 85A of FIG. 17A shows a case where the weighting factor WK for the loss value F (TK, PK) of each class is set to the same value of 1. On the other hand, the table 85B of FIG. 17B shows a case where the weighting factor WK for the loss value F(TK, PK) of the non-rare class is reduced. Then, the non-rare class is an undifferentiated cell of class 2, the loss value F(T2, P2) is 42, and the loss values F(T1, P1), F(T3, In this example, P3) and F(T4, P4) are 19, 22, and 18, respectively.

 上記第1実施形態とは逆に、非稀少クラスの損失の値F(TK、PK)は、非稀少クラス以外のクラスの損失の値F(TK、PK)と比べて大きくなる。そこで、評価部81は、非稀少クラスの損失の値F(TK、PK)への重み係数WKを小さくしている。これにより、図17Bに示すように、非稀少クラスの損失の値F(TK、PK)が、非稀少クラス以外のクラスの損失の値F(TK、PK)に比肩する値に引き下げられ、重み係数WKを一律同じ値にした図17Aの場合よりも、非稀少クラスの損失の値F(TK、PK)が損失関数L(TN、PN)の算出値に与える影響を少なくしている。

Contrary to the first embodiment, the loss value F(TK, PK) of the non-rare class is larger than the loss value F(TK, PK) of the class other than the non-rare class. Therefore, the evaluation unit 81 reduces the weighting coefficient WK for the loss value F(TK, PK) of the non-rare class. As a result, as shown in FIG. 17B, the loss value F(TK, PK) of the non-rare class is reduced to a value comparable to the loss value F(TK, PK) of the class other than the non-rare class, and the weight is reduced. Compared to the case of FIG. 17A in which the coefficient WK has the same value, the influence of the loss value F(TK, PK) of the non-rare class on the calculated value of the loss function L(TN, PN) is reduced.

 このように、第2実施形態では、補正対象クラスとして、面積割合が設定値よりも高い非稀少クラスを特定し、補正処理として、第1の損失の値への重みを、第2の損失の値への重みよりも小さくする処理を実行している。したがって、上記第1実施形態と同じく、モデル10のクラスの判別精度の低下を抑制することが可能となる。

As described above, in the second embodiment, the non-rare class whose area ratio is higher than the set value is specified as the correction target class, and the weight of the first loss value is set to the weight of the second loss as the correction process. The process of making the value smaller than the weight is executed. Therefore, as in the first embodiment, it is possible to suppress a decrease in the accuracy of class determination of the model 10.

 なお、この場合も上記第1実施形態と同様に、面積割合が大きいほど、非稀少クラスの損失の値F(TK、PK)への重み係数WKを小さくする程度を増やしてもよい。

In this case, as in the first embodiment, the larger the area ratio, the smaller the weighting factor WK for the loss value F(TK, PK) of the non-rare class loss may be increased.

 [第3実施形態]

 図18~図21に示す第3実施形態では、補正対象クラスとして、面積割合が予め設定された設定値よりも低い稀少クラスを特定し、補正処理として、第1の損失の値を算出する場合の正解値および予測値を、第2の損失の値を算出する場合の正解値および予測値よりも大きくする拡大処理を実行する。

[Third Embodiment]

In the third embodiment shown in FIGS. 18 to 21, when a rare class whose area ratio is lower than a preset value is specified as the correction target class, and the first loss value is calculated as the correction process The enlarging process for increasing the correct value and the predicted value of is larger than the correct value and the predicted value when the second loss value is calculated.

 図18は、図10で示したように、第1組のミニバッチデータ11のクラス2の未分化細胞を稀少クラスとして特定した場合を例示している。この場合、本実施形態の評価部90の補正処理部91は、表92に示すように、第1組のミニバッチデータ11のクラス1、3、4、第2組、第3組のミニバッチデータ11の全クラスといった、稀少クラス以外のクラスの正解値および予測値はそのままとする。対して、補正処理部91は、第1組のミニバッチデータ11のクラス2といった稀少クラスの正解値および予測値を10倍する拡大処理を実行する。

FIG. 18 illustrates a case where undifferentiated cells of class 2 in the first set of mini-batch data 11 are specified as a rare class, as shown in FIG. 10. In this case, the correction processing unit 91 of the evaluation unit 90 of the present embodiment, as shown in Table 92, class 1, 3, 4, second set, and third set of mini-batches of the first set of mini-batch data 11. Correct values and predicted values of classes other than rare classes, such as all classes of data 11, are left unchanged. On the other hand, the correction processing unit 91 executes the enlargement processing for multiplying the correct value and the predicted value of the rare class such as the class 2 of the first batch of mini-batch data 11 by 10.

 図19および図20は、図18の第1組のミニバッチデータ11のクラス2の正解値および予測値を10倍する拡大処理を概念的に示した図である。図19に示すように、正解値T2のサイズは、拡大処理によって拡大処理前の10倍とされる。同じく図20に示すように、予測値P2のサイズは、拡大処理によって拡大処理前の10倍とされる。このように、拡大処理は、稀少クラスの正解値の対象画素数および稀少クラスの予測値の対象画素数を増やす処理である。

19 and 20 are diagrams conceptually showing an enlargement process for multiplying the correct value and predicted value of class 2 of the first set of mini-batch data 11 of FIG. 18 by 10. As shown in FIG. 19, the size of the correct answer value T2 is set to 10 times that before the enlargement process by the enlargement process. Similarly, as shown in FIG. 20, the size of the predicted value P2 is set to 10 times that before the enlargement process by the enlargement process. As described above, the enlargement process is a process of increasing the number of target pixels of the correct value of the rare class and the number of target pixels of the predicted value of the rare class.

 図21の表95に示すように、補正処理部91は、拡大処理における拡大率を、ミニバッチデータ11における稀少クラスの面積割合が、ミニバッチデータ11の元となる学習用入力画像20およびアノテーション画像21における稀少クラスの面積割合と同じになる値とする。図21では、第1組のミニバッチデータ11のクラス2の未分化細胞が稀少クラスと特定され、ミニバッチデータ11における稀少クラスの面積割合が2%で、学習用入力画像20およびアノテーション画像21における稀少クラスの面積割合が20%であった場合を例示している。この場合、補正処理部91は、拡大処理における拡大率を20/2=10倍とする。なお、同じになる値とは、ミニバッチデータ11における稀少クラスの面積割合と学習用入力画像20およびアノテーション画像21における稀少クラスの面積割合とが完全に同じになる値はもとより、ミニバッチデータ11における稀少クラスの面積割合と学習用入力画像20およびアノテーション画像21における稀少クラスの面積割合とが規定の誤差範囲、例えば±10%の範囲に収まる値も含む。

As shown in Table 95 in FIG. 21, the correction processing unit 91 determines the enlargement ratio in the enlargement process, the area ratio of the rare class in the mini-batch data 11 is the source of the mini-batch data 11, the learning input image 20 and the annotation. The value is the same as the area ratio of the rare class in the image 21. In FIG. 21, the undifferentiated cells of class 2 of the first set of mini-batch data 11 are identified as rare classes, the area ratio of the rare classes in the mini-batch data 11 is 2%, and the learning input image 20 and the annotation image 21. The case where the area ratio of the rare class is 20% is illustrated. In this case, the correction processing unit 91 sets the enlargement ratio in the enlargement processing to 20/2=10 times. In addition, the same value means that the area ratio of the rare class in the mini-batch data 11 and the area ratio of the rare class in the learning input image 20 and the annotation image 21 are completely the same. The area ratio of the rare class and the area ratio of the rare class in the learning input image 20 and the annotation image 21 also include values within a specified error range, for example, ±10%.

 このように、第3実施形態では、補正対象クラスとして、面積割合が予め設定された設定値よりも低い稀少クラスを特定し、補正処理として、第1の損失の値を算出する場合の正解値および予測値を、第2の損失の値を算出する場合の正解値および予測値よりも大きくする拡大処理を実行している。こうした補正処理によっても、稀少クラスとそうでないクラスとの損失の値F(TK、PK)の不均衡を是正することができる。したがって、モデル10のクラスの判別精度の低下を抑制することが可能となる。さらに、こうした補正処理は、損失の値F(TK、PK)が線形な関数でない場合に有効である。

As described above, in the third embodiment, the correct value when the rare class whose area ratio is lower than the preset value is specified as the correction target class and the first loss value is calculated as the correction process. And the enlargement processing for increasing the predicted value to be larger than the correct value and the predicted value when the second loss value is calculated. Even by such a correction process, the imbalance of the loss values F(TK, PK) between the rare class and the other class can be corrected. Therefore, it is possible to suppress a decrease in the classification accuracy of the model 10 class. Further, such a correction process is effective when the loss value F(TK, PK) is not a linear function.

 また、第3実施形態では、拡大処理における拡大率を、ミニバッチデータ11における稀少クラスの面積割合が、学習用入力画像20およびアノテーション画像21における稀少クラスの面積割合と同じになる値としている。したがって、拡大率を妥当な値とすることができる。なお、こうした拡大率の決定方法は、学習用入力画像20およびアノテーション画像21における各クラスの面積割合に偏りがない場合に採用することが好ましい。

学習用入力画像20およびアノテーション画像21における各クラスの面積割合に偏りがない場合とは、例えば、各クラスの面積割合の最大値と最小値の差分が10%以内の場合等である。

Further, in the third embodiment, the enlargement ratio in the enlargement processing is set to a value such that the area ratio of the rare class in the mini-batch data 11 becomes the same as the area ratio of the rare class in the learning input image 20 and the annotation image 21. Therefore, the enlargement ratio can be set to a reasonable value. It should be noted that such a method of determining the enlargement ratio is preferably adopted when there is no bias in the area ratio of each class in the learning input image 20 and the annotation image 21.

The case where there is no bias in the area ratio of each class in the learning input image 20 and the annotation image 21 is, for example, when the difference between the maximum value and the minimum value of the area ratio of each class is within 10%.

 [第4実施形態]

 図22~図25に示す第4実施形態では、上記第3実施形態とは逆に、補正対象クラスとして、面積割合が予め設定された設定値よりも高い非稀少クラスを特定し、補正処理として、第1の損失の値を算出する場合の正解値および予測値を、第2の損失の値を算出する場合の正解値および予測値よりも小さくする縮小処理を実行する。

[Fourth Embodiment]

In the fourth embodiment shown in FIGS. 22 to 25, contrary to the third embodiment, a non-rare class whose area ratio is higher than a preset setting value is specified as the correction target class, and the correction processing is performed. A reduction process is executed to reduce the correct value and predicted value when calculating the first loss value to be smaller than the correct value and predicted value when calculating the second loss value.

 図22は、図15で示したように、第30組のミニバッチデータ11のクラス2の未分化細胞を非稀少クラスとして特定した場合を例示している。この場合、本実施形態の評価部100の補正処理部101は、表102に示すように、第30組のミニバッチデータ11のクラス1、3、4、第31組、第32組のミニバッチデータ11の全クラスといった、非稀少クラス以外のクラスの正解値および予測値はそのままとする。対して、補正処理部101は、第30組のミニバッチデータ11のクラス2といった非稀少クラスの正解値および予測値を0.5倍する縮小処理を実行する。

FIG. 22 exemplifies a case where undifferentiated cells of class 2 in the mini-batch data 11 of the 30th set are specified as a non-rare class, as shown in FIG. In this case, the correction processing unit 101 of the evaluation unit 100 according to the present embodiment, as shown in Table 102, class 1, 3, 4, 31st group, and 32nd group minibatch of the 30th group of minibatch data 11. Correct values and predicted values of classes other than the non-rare class, such as all classes of data 11, are left unchanged. On the other hand, the correction processing unit 101 executes a reduction process for multiplying the correct value and the predicted value of the non-rare class such as class 2 of the 30th set of mini-batch data 11 by 0.5.

 図23および図24は、図22の第30組のミニバッチデータ11のクラス2の正解値および予測値を0.5倍する縮小処理を概念的に示した図である。図23に示すように、正解値T2のサイズは、縮小処理によって縮小処理前の0.5倍とされる。同じく図24に示すように、予測値P2のサイズは、縮小処理によって縮小処理前の0.5倍とされる。このように、縮小処理は、上記第3実施形態の拡大処理とは逆に、非稀少クラスの正解値の対象画素数および非稀少クラスの予測値の対象画素数を減らす処理である。

23 and 24 are diagrams conceptually showing the reduction processing for multiplying the correct answer value and predicted value of class 2 of the mini-batch data 11 of the 30th set in FIG. 22 by 0.5. As shown in FIG. 23, the size of the correct answer value T2 is set to 0.5 times that before the reduction processing by the reduction processing. Similarly, as shown in FIG. 24, the size of the predicted value P2 is set to 0.5 times that before the reduction process by the reduction process. As described above, the reduction process is a process of reducing the number of target pixels of the correct value of the non-rare class and the number of target pixels of the predicted value of the non-rare class, contrary to the enlargement process of the third embodiment.

 図25の表105に示すように、補正処理部101は、縮小処理における縮小率を、ミニバッチデータ11における非稀少クラスの面積割合が、ミニバッチデータ11の元となる学習用入力画像20およびアノテーション画像21における非稀少クラスの面積割合と同じになる値とする。図25では、第30組のミニバッチデータ11のクラス2の未分化細胞が非稀少クラスと特定され、ミニバッチデータ11における非稀少クラスの面積割合が56%で、学習用入力画像20およびアノテーション画像21における非稀少クラスの面積割合が28%であった場合を例示している。この場合、補正処理部101は、縮小処理における縮小率を28/56=0.5倍とする。なお、この場合も上記第3実施形態と同じく、同じになる値とは、ミニバッチデータ11における稀少クラスの面積割合と学習用入力画像20およびアノテーション画像21における稀少クラスの面積割合とが完全に同じになる値はもとより、ミニバッチデータ11における稀少クラスの面積割合と学習用入力画像20およびアノテーション画像21における稀少クラスの面積割合とが規定の誤差範囲、例えば±10%の範囲に収まる値も含む。

As shown in the table 105 of FIG. 25, the correction processing unit 101 determines the reduction ratio in the reduction process, the learning input image 20 from which the area ratio of the non-rare class in the mini-batch data 11 is the source of the mini-batch data 11, The value is the same as the area ratio of the non-rare class in the annotation image 21. In FIG. 25, the undifferentiated cells of class 2 of the 30th set of mini-batch data 11 are identified as the non-rare class, the area ratio of the non-rare class in the mini-batch data 11 is 56%, and the learning input image 20 and the annotation The case where the area ratio of the non-rare class in the image 21 is 28% is illustrated. In this case, the correction processing unit 101 sets the reduction ratio in the reduction process to 28/56=0.5 times. Also in this case, as in the third embodiment, the same value means that the area ratio of the rare class in the mini-batch data 11 and the area ratio of the rare class in the learning input image 20 and the annotation image 21 are completely. In addition to the same value, the area ratio of the rare class in the mini-batch data 11 and the area ratio of the rare class in the learning input image 20 and the annotation image 21 may fall within a specified error range, for example, ±10%. Including.

 このように、第4実施形態では、補正対象クラスとして、面積割合が予め設定された設定値よりも高い非稀少クラスを特定し、補正処理として、第1の損失の値を算出する場合の正解値および予測値を、第2の損失の値を算出する場合の正解値および予測値よりも小さくする縮小処理を実行している。したがって、上記第3実施形態と同じく、モデル10のクラスの判別精度の低下を抑制することが可能となる。さらに、上記第3実施形態と同じく、損失の値F(TK、PK)が線形な関数でない場合に有効である。

As described above, in the fourth embodiment, the correct answer in the case where the non-rare class whose area ratio is higher than the preset value is specified as the correction target class and the first loss value is calculated as the correction process A reduction process is performed to make the value and the predicted value smaller than the correct value and the predicted value when the second loss value is calculated. Therefore, as in the third embodiment, it is possible to suppress a decrease in the accuracy of class determination of the model 10. Further, like the third embodiment, it is effective when the loss value F(TK, PK) is not a linear function.

 また、第4実施形態では、縮小処理における縮小率を、ミニバッチデータ11における非稀少クラスの面積割合が、学習用入力画像20およびアノテーション画像21における非稀少クラスの面積割合と同じになる値としている。したがって、縮小率を妥当な値とすることができる。なお、上記第3実施形態と同様に、こうした縮小率の決定方法は、学習用入力画像20およびアノテーション画像21における各クラスの面積割合に偏りがない場合に採用することが好ましい。

In the fourth embodiment, the reduction ratio in the reduction processing is set to a value at which the area ratio of the non-rare class in the mini-batch data 11 becomes the same as the area ratio of the non-rare class in the learning input image 20 and the annotation image 21. There is. Therefore, the reduction rate can be set to an appropriate value. Similar to the third embodiment, it is preferable to employ such a method of determining the reduction rate when the area ratios of the classes in the learning input image 20 and the annotation image 21 are not biased.

 [第5実施形態]

 図26に示す第5実施形態では、補正処理部に補正処理を実行させるか否かを問う。

[Fifth Embodiment]

In the fifth embodiment shown in FIG. 26, it is inquired whether or not the correction processing unit is made to execute the correction processing.

 図26において、第5実施形態のミニバッチ学習装置のCPUは、上記各実施形態の各処理部に加えて、受付部110として機能する。受付部110は、特定部52において補正対象クラスを特定した場合に、補正処理部に補正処理を実行させるか否かの選択指示を受け付ける。

In FIG. 26, the CPU of the mini-batch learning device of the fifth embodiment functions as a reception unit 110 in addition to the processing units of the above embodiments. When the specifying unit 52 specifies the correction target class, the receiving unit 110 receives an instruction to select whether or not the correction processing unit executes the correction process.

 第5実施形態においては、特定部52において補正対象クラスが特定された場合、ディスプレイ34に問い合わせ画面111が表示される。問い合わせ画面111には、補正対象クラスが特定された旨と、補正対象クラスの損失の値を補正する補正処理を実行してよいか否かを問う旨のメッセージ112、はいボタン113、いいえボタン114が表示される。受付部110は、はいボタン113といいえボタン114の選択指示を、補正処理を実行させるか否かの選択指示として受け付ける。はいボタン113が選択された場合は、補正処理部において、補正処理が実行される。一方、いいえボタン114が選択された場合は、補正処理部において、補正処理は実行されない。

In the fifth embodiment, when the specifying unit 52 specifies the correction target class, the inquiry screen 111 is displayed on the display 34. On the inquiry screen 111, a message 112 for asking that the correction target class is specified and asking whether the correction processing for correcting the loss value of the correction target class may be executed, a Yes button 113, and a No button 114. Is displayed. The receiving unit 110 receives the selection instruction of the Yes button 113 and the No button 114 as a selection instruction of whether or not to execute the correction process. When the Yes button 113 is selected, the correction processing unit executes the correction processing. On the other hand, when the No button 114 is selected, the correction processing unit does not execute the correction processing.

 アノテーション画像の生成に際しては、クラスの指定は手動であるため、クラスの指定を間違えたりすることがある。また、モデル10の開発当初はクラスとして指定していたが、開発が進むにつれてあまり重要視しなくなったクラスが出てくることもある。こうした場合は、特定部52において補正対象クラスが特定されたが、補正処理を実行しなくても構わない場合がある。

When an annotation image is generated, the class is specified manually, so the class may be specified incorrectly. Although the model 10 was designated as a class at the beginning of development, some classes may become less important as the development progresses. In such a case, the correction target class is specified by the specifying unit 52, but it may not be necessary to execute the correction process.

 そこで、第5実施形態では、受付部110により、補正処理部に補正処理を実行させるか否かの選択指示を受け付けている。したがって、特定部52において補正対象クラスが特定されたが、補正処理を実行しなくても構わない場合に対応することができる。

Therefore, in the fifth embodiment, the receiving unit 110 receives a selection instruction as to whether or not the correction processing unit should execute the correction process. Therefore, it is possible to deal with the case where the correction target class is specified by the specifying unit 52, but it is not necessary to execute the correction process.

 第1実施形態と第2実施形態を複合して実施してもよい。すなわち、稀少クラスの損失の値への重み係数を、稀少クラス以外のクラスの損失の値への重み係数よりも小さくし、かつ、非稀少クラスの損失の値への重み係数を、非稀少クラス以外のクラスの損失の値への重み係数よりも大きくしてもよい。同様に、第3実施形態と第4実施形態を複合して実施してもよい。すなわち、稀少クラスの損失の値を算出する場合の正解値および予測値を、稀少クラス以外のクラスの損失の値を算出する場合の正解値および予測値よりも大きくし、かつ、非稀少クラスの損失の値を算出する場合の正解値および予測値を、非稀少クラス以外のクラスの損失の値を算出する場合の正解値および予測値よりも小さくしてもよい。

You may implement combining 1st Embodiment and 2nd Embodiment. That is, the weighting factor for the loss value of the rare class is made smaller than the weighting factor for the loss value of the classes other than the rare class, and the weighting factor for the loss value of the non-rare class is set to the non-rare class. It may be larger than the weighting factor for the loss values of other classes. Similarly, the third embodiment and the fourth embodiment may be combined and implemented. That is, the correct value and the predicted value when calculating the loss value of the rare class is made larger than the correct value and the predicted value when calculating the loss value of the class other than the rare class, and the non-rare class The correct value and the predicted value when calculating the loss value may be smaller than the correct value and the predicted value when calculating the loss value of a class other than the non-rare class.

 上記各実施形態では、入力画像16および学習用入力画像20として、細胞培養の様子を映した位相差顕微鏡の画像を例示し、クラスとして分化細胞や培地を例示したが、これに限定されない。例えばMRI(Magnetic Resonance Imaging)画像を入力画像16および学習用入力画像20とし、肝臓、腎臓といった臓器をクラスとしてもよい。

In each of the above embodiments, the input image 16 and the learning input image 20 are exemplified by images of a phase contrast microscope showing the state of cell culture, and differentiated cells and medium are illustrated as classes, but the invention is not limited thereto. For example, an MRI (Magnetic Resonance Imaging) image may be used as the input image 16 and the learning input image 20, and an organ such as a liver or a kidney may be used as a class.

 モデル10はU-Netに限らず、他の畳み込みニューラルネットワーク、例えばSegNetでもよい。

The model 10 is not limited to U-Net, but may be another convolutional neural network such as SegNet.

 ミニバッチ学習装置2を構成するコンピュータのハードウェア構成は種々の変形が可能である。例えば、ミニバッチ学習装置2を、処理能力や信頼性の向上を目的として、ハードウェアとして分離された複数台のコンピュータで構成することも可能である。具体的には、生成部50、算出部51、および特定部52の機能と、学習部53、評価部54、および更新部55の機能とを、2台のコンピュータに分散して担わせる。この場合は2台のコンピュータでミニバッチ学習装置2を構成する。

The hardware configuration of the computer that constitutes the mini-batch learning device 2 can be modified in various ways. For example, the mini-batch learning device 2 may be composed of a plurality of computers separated as hardware for the purpose of improving processing capacity and reliability. Specifically, the functions of the generation unit 50, the calculation unit 51, and the identification unit 52, and the functions of the learning unit 53, the evaluation unit 54, and the update unit 55 are distributed to two computers. In this case, the two computers form the mini-batch learning device 2.

 このように、コンピュータのハードウェア構成は、処理能力、安全性、信頼性等の要求される性能に応じて適宜変更することができる。さらに、ハードウェアに限らず、作動プログラム40等のアプリケーションプログラムについても、安全性や信頼性の確保を目的として、二重化したり、あるいは、複数のストレージデバイスに分散して格納することももちろん可能である。

In this way, the hardware configuration of the computer can be appropriately changed according to the required performance such as processing capacity, safety and reliability. Further, not only the hardware but also the application program such as the operation program 40 can be duplicated or stored in a plurality of storage devices in a distributed manner for the purpose of ensuring safety and reliability. is there.

 上記各実施形態において、例えば、生成部50、算出部51、特定部52、80、学習部53、評価部54、81、90、100、更新部55、補正処理部56、82、91、101、受付部110といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。各種のプロセッサには、上述したように、ソフトウェア(作動プログラム40)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。

In each of the above-described embodiments, for example, the generation unit 50, the calculation unit 51, the identification units 52, 80, the learning unit 53, the evaluation units 54, 81, 90, 100, the update unit 55, the correction processing units 56, 82, 91, 101. As the hardware structure of a processing unit (Processing Unit) that executes various processes such as the reception unit 110, the following various processors (Processors) can be used. As described above, in addition to the CPU, which is a general-purpose processor that executes software (operation program 40) and functions as various processing units, various processors are manufactured after manufacturing FPGA (Field Programmable Gate Array) and the like. Programmable Logic Device (PLD), which is a processor whose circuit configuration can be changed, dedicated processor, which has a circuit configuration specifically designed to execute specific processing such as ASIC (Application Specific Integrated Circuit) An electric circuit etc. are included.

 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。

One processing unit may be configured by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). Combination). Further, the plurality of processing units may be configured by one processor.

 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。

As an example of configuring a plurality of processing units with one processor, firstly, one processor is configured with a combination of one or more CPUs and software, as represented by computers such as clients and servers. There is a form in which the processor functions as a plurality of processing units. Secondly, as represented by a system on chip (SoC) or the like, there is a form in which a processor that realizes the functions of the entire system including a plurality of processing units by one IC (Integrated Circuit) chip is used. is there. As described above, the various processing units are configured by using one or more of the various processors as a hardware structure.

 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)を用いることができる。

Further, as a hardware structure of these various processors, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined can be used.

 以上の記載から、以下の付記項1に記載の発明を把握することができる。

From the above description, the invention described in additional item 1 below can be understood.

 [付記項1]

 画像内の複数のクラスの判別を画素単位で行うセマンティックセグメンテーションを実施するための機械学習モデルに、ミニバッチデータを与えて学習させるミニバッチ学習装置であり、

 前記ミニバッチデータにおける、前記複数のクラスの各々の面積割合を算出する算出プロセッサと、

 前記面積割合に基づいて補正対象クラスを特定する特定プロセッサと、

 損失関数を用いて、前記複数のクラス毎に損失の値を算出することによって、前記機械学習モデルの前記クラスの判別精度を評価する評価プロセッサであり、前記補正対象クラスの第1の損失の値および前記補正対象クラス以外のクラスの第2の損失の値の比較結果に基づいて、前記第1の損失の値を補正する補正処理を実行する補正処理プロセッサを含む評価プロセッサと、を備えるミニバッチ学習装置。

[Appendix 1]

It is a mini-batch learning device that gives learning by giving mini-batch data to a machine learning model for performing semantic segmentation that performs discrimination of multiple classes in an image in pixel units,

A calculation processor for calculating the area ratio of each of the plurality of classes in the mini-batch data,

A specific processor for specifying a correction target class based on the area ratio,

A first loss value of the correction target class, which is an evaluation processor for evaluating the discrimination accuracy of the class of the machine learning model by calculating a loss value for each of the plurality of classes using a loss function. And an evaluation processor including a correction processing processor that executes a correction process for correcting the first loss value based on a comparison result of the second loss value of a class other than the correction target class. apparatus.

 本開示の技術は、上述の種々の実施形態や種々の変形例を適宜組み合わせることも可能である。また、上記各実施形態に限らず、要旨を逸脱しない限り種々の構成を採用し得ることはもちろんである。さらに、本開示の技術は、プログラムに加えて、プログラムを非一時的に記憶する記憶媒体にもおよぶ。

The technology of the present disclosure can be appropriately combined with the above-described various embodiments and various modifications. Further, it is needless to say that various configurations can be adopted without departing from the scope of the invention, without being limited to the above-mentioned respective embodiments. Furthermore, the technique of the present disclosure extends to a storage medium that stores the program non-temporarily, in addition to the program.

2 ミニバッチ学習装置

10 機械学習モデル(モデル)

10T 学習済み機械学習モデル(学習済みモデル)

11 ミニバッチデータ

12 分割学習用入力画像群

13 分割アノテーション画像群

14 学習用出力画像群

15 運用装置

16 入力画像

17 出力画像

20 学習用入力画像

20S 分割学習用入力画像

21 アノテーション画像

21S 分割アノテーション画像

25 枠

30 ストレージデバイス

31 メモリ

32 CPU

33 通信部

34 ディスプレイ

35 入力デバイス

36 データバス

40 作動プログラム

50 生成部

51 算出部

52、80 特定部

53 学習部

54、81、90、100 評価部

55 更新部

56、82、91、101 補正処理部

60、61、65A、65B、70、75、83、85A、85B、92、95、102、105 表

110 受付部

111 問い合わせ画面

112 メッセージ

113 はいボタン

114 いいえボタン

DX 枠の横方向の移動量

DY 枠の縦方向の移動量

L(TN、PN) 損失関数

WK 各クラスの重み係数

F(TK、PK) 各クラスの損失の値

TK 各クラスの正解値

PK 各クラスの予測値

ST100~ST180 ステップ

2 Mini batch learning device

10 Machine learning model (model)

10T learned machine learning model (learned model)

11 mini batch data

Input image group for 12-division learning

13-divided annotation image group

14 Output image group for learning

15 Operation equipment

16 Input image

17 Output image

20 Input image for learning

Input image for 20S split learning

21 Annotation image

21S split annotation image

25 frames

30 storage devices

31 memory

32 CPU

33 Communication unit

34 display

35 Input device

36 data bus

40 operating program

50 Generator

51 calculator

52,80 Specific section

53 Learning Department

54, 81, 90, 100 Evaluation Department

55 Update Department

56, 82, 91, 101 Correction processing unit

60, 61, 65A, 65B, 70, 75, 83, 85A, 85B, 92, 95, 102, 105 Table

110 Reception Department

111 Inquiry screen

112 messages

113 Yes button

114 No button

Horizontal movement amount of DX frame

Amount of vertical movement of DY frame

L(TN, PN) loss function

WK Weight coefficient of each class

F (TK, PK) Loss value of each class

TK Correct answer value for each class

PK Predicted value of each class

ST100 to ST180 steps

Claims (10)


  1.  画像内の複数のクラスの判別を画素単位で行うセマンティックセグメンテーションを実施するための機械学習モデルに、ミニバッチデータを与えて学習させるミニバッチ学習装置であり、

     前記ミニバッチデータにおける、前記複数のクラスの各々の面積割合を算出する算出部と、

     前記面積割合に基づいて補正対象クラスを特定する特定部と、

     損失関数を用いて、前記複数のクラス毎に損失の値を算出することによって、前記機械学習モデルの前記クラスの判別精度を評価する評価部であり、前記補正対象クラスの第1の損失の値および前記補正対象クラス以外のクラスの第2の損失の値の比較結果に基づいて、前記第1の損失の値を補正する補正処理を実行する補正処理部を含む評価部と、を備えるミニバッチ学習装置。

    It is a mini-batch learning device that gives learning by giving mini-batch data to a machine learning model for performing semantic segmentation that performs discrimination of multiple classes in an image in pixel units,

    In the mini-batch data, a calculation unit that calculates the area ratio of each of the plurality of classes,

    A specifying unit that specifies a correction target class based on the area ratio,

    A first loss value of the correction target class, which is an evaluation unit for evaluating the discrimination accuracy of the class of the machine learning model by calculating a loss value for each of the plurality of classes using a loss function. And an evaluation unit including a correction processing unit that executes a correction process for correcting the first loss value based on the comparison result of the second loss values of the classes other than the correction target class, and a mini-batch learning. apparatus.

  2.  前記特定部は、前記補正対象クラスとして、前記面積割合が予め設定された設定値よりも低い稀少クラスを特定し、

     前記補正処理部は、前記補正処理として、前記第1の損失の値への重みを、前記第2の損失の値への重みよりも大きくする処理を実行する請求項1に記載のミニバッチ学習装置。

    The specifying unit, as the correction target class, specifies a rare class in which the area ratio is lower than a preset value,

    The mini-batch learning device according to claim 1, wherein the correction processing unit executes, as the correction processing, processing for weighting the value of the first loss larger than weighting for the value of the second loss. ..

  3.  前記特定部は、前記補正対象クラスとして、前記面積割合が予め設定された設定値よりも高い非稀少クラスを特定し、

     前記補正処理部は、前記補正処理として、前記第1の損失の値への重みを、前記第2の損失の値への重みよりも小さくする処理を実行する請求項1または2に記載のミニバッチ学習装置。

    The identifying unit identifies, as the correction target class, a non-rare class in which the area ratio is higher than a preset value.

    The mini-batch according to claim 1 or 2, wherein the correction processing unit performs, as the correction processing, processing for weighting the value of the first loss smaller than weighting for the value of the second loss. Learning device.

  4.  前記特定部は、前記補正対象クラスとして、前記面積割合が設定値よりも低い稀少クラスを特定し、

     前記補正処理部は、前記補正処理として、前記第1の損失の値を算出する場合の正解値および予測値を、前記第2の損失の値を算出する場合の正解値および予測値よりも大きくする拡大処理を実行する請求項1に記載のミニバッチ学習装置。

    The identifying unit identifies, as the correction target class, a rare class in which the area ratio is lower than a set value,

    As the correction processing, the correction processing unit makes the correct value and the predicted value when calculating the first loss value larger than the correct value and the predicted value when calculating the second loss value. The mini-batch learning device according to claim 1, which executes an enlarging process.

  5.  前記補正処理部は、前記拡大処理における拡大率を、前記ミニバッチデータにおける前記稀少クラスの前記面積割合が、前記ミニバッチデータの元となる学習用入力画像およびアノテーション画像における前記稀少クラスの面積割合と同じになる値とする請求項4に記載のミニバッチ学習装置。

    The correction processing unit, the enlargement ratio in the enlargement process, the area ratio of the rare class in the mini-batch data, the area ratio of the rare class in the learning input image and the annotation image that is the source of the mini-batch data. The mini-batch learning device according to claim 4, wherein the value is the same as

  6.  前記特定部は、前記補正対象クラスとして、前記面積割合が設定値よりも高い非稀少クラスを特定し、

     前記補正処理部は、前記補正処理として、前記第1の損失の値を算出する場合の正解値および予測値を、前記第2の損失の値を算出する場合の正解値および予測値よりも小さくする縮小処理を実行する請求項1、4、5のいずれか1項に記載のミニバッチ学習装置。

    The identifying unit identifies, as the correction target class, a non-rare class in which the area ratio is higher than a set value,

    As the correction processing, the correction processing unit makes the correct value and the predicted value when calculating the value of the first loss smaller than the correct value and the predicted value when calculating the value of the second loss. The mini-batch learning device according to claim 1, wherein the mini-batch learning device executes a reduction process.

  7.  前記補正処理部は、前記縮小処理における縮小率を、前記ミニバッチデータにおける前記非稀少クラスの前記面積割合が、前記ミニバッチデータの元となる学習用入力画像およびアノテーション画像における前記非稀少クラスの面積割合と同じになる値とする請求項6に記載のミニバッチ学習装置。

    The correction processing unit, the reduction ratio in the reduction processing, the area ratio of the non-rare class in the mini-batch data, the learning input image and the annotation image of the non-rare class of the source of the mini-batch data The mini-batch learning device according to claim 6, wherein the value is the same as the area ratio.

  8.  前記補正処理部に前記補正処理を実行させるか否かの選択指示を受け付ける受付部を備える請求項1ないし7のいずれか1項に記載のミニバッチ学習装置。

    The mini-batch learning device according to any one of claims 1 to 7, further comprising: a receiving unit that receives an instruction to select whether or not to execute the correction processing in the correction processing unit.

  9.  画像内の複数のクラスの判別を画素単位で行うセマンティックセグメンテーションを実施するための機械学習モデルに、ミニバッチデータを与えて学習させるミニバッチ学習装置の作動プログラムであり、

     前記ミニバッチデータにおける、前記複数のクラスの各々の面積割合を算出する算出部と、

     前記面積割合に基づいて補正対象クラスを特定する特定部と、

     損失関数を用いて、前記複数のクラス毎に損失の値を算出することによって、前記機械学習モデルの前記クラスの判別精度を評価する評価部であり、前記補正対象クラスの第1の損失の値および前記補正対象クラス以外のクラスの第2の損失の値の比較結果に基づいて、前記第1の損失の値を補正する補正処理を実行する補正処理部を含む評価部として、

    コンピュータを機能させるミニバッチ学習装置の作動プログラム。

    It is an operating program of a mini-batch learning device for giving learning by giving mini-batch data to a machine learning model for carrying out semantic segmentation for discriminating a plurality of classes in an image in pixel units,

    In the mini-batch data, a calculation unit that calculates the area ratio of each of the plurality of classes,

    A specifying unit that specifies a correction target class based on the area ratio,

    A first loss value of the correction target class, which is an evaluation unit for evaluating the discrimination accuracy of the class of the machine learning model by calculating a loss value for each of the plurality of classes using a loss function. And an evaluation unit including a correction processing unit that executes a correction process for correcting the value of the first loss based on the comparison result of the value of the second loss of the class other than the class to be corrected,

    An operation program for a mini-batch learning device that causes a computer to function.

  10.  画像内の複数のクラスの判別を画素単位で行うセマンティックセグメンテーションを実施するための機械学習モデルに、ミニバッチデータを与えて学習させるミニバッチ学習装置の作動方法であり、

     前記ミニバッチデータにおける、前記複数のクラスの各々の面積割合を算出する算出ステップと、

     前記面積割合に基づいて補正対象クラスを特定する特定ステップと、

     損失関数を用いて、前記複数のクラス毎に損失の値を算出することによって、前記機械学習モデルの前記クラスの判別精度を評価する評価ステップであり、前記補正対象クラスの第1の損失の値および前記補正対象クラス以外のクラスの第2の損失の値の比較結果に基づいて、前記第1の損失の値を補正する補正処理を実行する補正処理ステップを含む評価ステップと、を備えるミニバッチ学習装置の作動方法。

    A method of operating a mini-batch learning device for giving learning by giving mini-batch data to a machine learning model for performing semantic segmentation for discriminating a plurality of classes in an image on a pixel-by-pixel basis,

    In the mini-batch data, a calculation step of calculating the area ratio of each of the plurality of classes,

    A specifying step of specifying a correction target class based on the area ratio;

    It is an evaluation step for evaluating the discrimination accuracy of the class of the machine learning model by calculating a loss value for each of the plurality of classes using a loss function, and a first loss value of the correction target class. And an evaluation step including a correction processing step for executing a correction processing for correcting the value of the first loss based on the comparison result of the value of the second loss of the class other than the correction target class. How the device works.
PCT/JP2019/042937 2018-12-14 2019-10-31 Mini-batch learning device, and operation program and operation method therefor WO2020121679A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19895335.8A EP3896646A4 (en) 2018-12-14 2019-10-31 Mini-batch learning device, and operation program and operation method therefor
CN201980081719.3A CN113168698A (en) 2018-12-14 2019-10-31 Small-batch learning device and working program and working method thereof
JP2020559801A JP7096362B2 (en) 2018-12-14 2019-10-31 Mini-batch learning device and its operation program and operation method
US17/336,846 US11983880B2 (en) 2018-12-14 2021-06-02 Mini-batch learning apparatus, operation program of mini-batch learning apparatus, and operation method of mini-batch learning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-234882 2018-12-14
JP2018234882 2018-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/336,846 Continuation US11983880B2 (en) 2018-12-14 2021-06-02 Mini-batch learning apparatus, operation program of mini-batch learning apparatus, and operation method of mini-batch learning apparatus

Publications (1)

Publication Number Publication Date
WO2020121679A1 true WO2020121679A1 (en) 2020-06-18

Family

ID=71077225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042937 WO2020121679A1 (en) 2018-12-14 2019-10-31 Mini-batch learning device, and operation program and operation method therefor

Country Status (5)

Country Link
US (1) US11983880B2 (en)
EP (1) EP3896646A4 (en)
JP (1) JP7096362B2 (en)
CN (1) CN113168698A (en)
WO (1) WO2020121679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022079322A (en) * 2020-11-16 2022-05-26 沖電気工業株式会社 Learning device, learning method, and learning program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113168713A (en) * 2018-12-14 2021-07-23 富士胶片株式会社 Small-batch learning device, and working program, working method, and image processing device therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107386A (en) 2015-12-09 2017-06-15 日本電信電話株式会社 Instance selection device, classification device, method, and program
JP2017162456A (en) * 2016-03-11 2017-09-14 株式会社東芝 Training of restricted deconvolution network for semantic segmentation of road scene
WO2018081537A1 (en) * 2016-10-31 2018-05-03 Konica Minolta Laboratory U.S.A., Inc. Method and system for image segmentation using controlled feedback

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017106645A1 (en) * 2015-12-18 2017-06-22 The Regents Of The University Of California Interpretation and quantification of emergency features on head computed tomography
CN108898604A (en) * 2018-06-28 2018-11-27 上海连尚网络科技有限公司 Method and apparatus for handling image
JP7277699B2 (en) * 2018-12-05 2023-05-19 日本電信電話株式会社 Image processing device, learning device, image processing method, learning method, and program
CN113168713A (en) * 2018-12-14 2021-07-23 富士胶片株式会社 Small-batch learning device, and working program, working method, and image processing device therefor
US11705226B2 (en) * 2019-09-19 2023-07-18 Tempus Labs, Inc. Data based cancer research and treatment systems and methods
EP4036211A4 (en) * 2019-09-27 2022-11-09 FUJIFILM Corporation Information processing device, method for operating information processing device, and program for operating information processing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107386A (en) 2015-12-09 2017-06-15 日本電信電話株式会社 Instance selection device, classification device, method, and program
JP2017162456A (en) * 2016-03-11 2017-09-14 株式会社東芝 Training of restricted deconvolution network for semantic segmentation of road scene
WO2018081537A1 (en) * 2016-10-31 2018-05-03 Konica Minolta Laboratory U.S.A., Inc. Method and system for image segmentation using controlled feedback

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AIZAWA, HIROAKI : "Parts Segmentation of Encoder-Decoder CNN incorporated multi-resolution", THE 23RD SYMPOSIUM ON SENSING VIA IMAGE INFORMATION, 7 June 2017 (2017-06-07) *
AIZAWA, HIROAKI: "Application and improvement of Encoder-Decoder CNN for aircraft image segmentation", ITE TECHNICAL REPORT, vol. 40, no. 28, 24 August 2016 (2016-08-24), JP, pages 9 - 10, XP009527783, ISSN: 1342-6893, DOI: 10.11485/itetr.40.28.0_9 *
HIRAMATSU, YUKI : "IS2-13 Segmentation of cell image integrated by multiple CNNs", 24TH SYMPOSIUM ON SENSING VIA IMAGE INFORMATION (SSII2018); JUNE 13-15, 2018, vol. 24, 13 June 2018 (2018-06-13), pages 1 - 7, XP009527825 *
See also references of EP3896646A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022079322A (en) * 2020-11-16 2022-05-26 沖電気工業株式会社 Learning device, learning method, and learning program

Also Published As

Publication number Publication date
JP7096362B2 (en) 2022-07-05
CN113168698A (en) 2021-07-23
US20210287052A1 (en) 2021-09-16
EP3896646A1 (en) 2021-10-20
US11983880B2 (en) 2024-05-14
JPWO2020121679A1 (en) 2021-09-27
EP3896646A4 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
US10810435B2 (en) Segmenting objects in video sequences
US11610082B2 (en) Method and apparatus for training neural network model used for image processing, and storage medium
US11449966B2 (en) Real-time video ultra resolution
US20220189149A1 (en) Information processing apparatus, method for operating information processing apparatus, and operating program of information processing apparatus
CN110023964B (en) Training and/or using neural network models to generate intermediate outputs of spectral images
US20170004628A1 (en) Method and apparatus for segmenting object in image
WO2020121679A1 (en) Mini-batch learning device, and operation program and operation method therefor
US20210248729A1 (en) Superpixel merging
US11900249B2 (en) Mini-batch learning apparatus, operation program of mini-batch learning apparatus, operation method of mini-batch learning apparatus, and image processing apparatus
CN111553840B (en) Image super-resolution model training and processing method, device, equipment and medium
CN109272526B (en) Image processing method and system and electronic equipment
CN110633717A (en) Training method and device for target detection model
CN112149745B (en) Method, device, equipment and storage medium for determining difficult example sample
WO2020121668A1 (en) Mini-batch learning device, and operation program and operation method therefor
JP7195220B2 (en) LEARNING DEVICE, METHOD OF OPERATION OF LEARNING DEVICE, AND OPERATION PROGRAM OF LEARNING DEVICE
US9154671B2 (en) Image processing apparatus, image processing method, and program
WO2022123684A1 (en) Object detection device, object detection method, and object detection program
CN112200730A (en) Image filtering processing method, device, equipment and storage medium
CN117952879B (en) Underwater image enhancement method, device and equipment for comprehensive degradation, estimation and recovery
US20240078753A1 (en) Image processing apparatus for generating surface profile of three-dimensional geometric model, control method therefor, and storage medium
EP4123589A1 (en) Method and system for image processing
CN111738903B (en) Method, device and equipment for optimizing layered material of object
JP2024512344A (en) Efficient pose estimation through iterative improvement
CN116030256A (en) Small object segmentation method, small object segmentation system, device and medium
CN116543133A (en) Training method and device for face image generation model, electronic equipment and readable medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019895335

Country of ref document: EP

Effective date: 20210714