WO2020121571A1 - Pneumatic radial tire for passenger vehicles - Google Patents

Pneumatic radial tire for passenger vehicles Download PDF

Info

Publication number
WO2020121571A1
WO2020121571A1 PCT/JP2019/027043 JP2019027043W WO2020121571A1 WO 2020121571 A1 WO2020121571 A1 WO 2020121571A1 JP 2019027043 W JP2019027043 W JP 2019027043W WO 2020121571 A1 WO2020121571 A1 WO 2020121571A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
width direction
noise
noise suppressor
tire width
Prior art date
Application number
PCT/JP2019/027043
Other languages
French (fr)
Japanese (ja)
Inventor
勲 桑山
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2020121571A1 publication Critical patent/WO2020121571A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes

Definitions

  • the present invention relates to a pneumatic radial tire for passenger cars.
  • Patent Document 1 The applicant has proposed various narrow and large-diameter pneumatic radial tires for passenger cars in which the tire cross-section width SW and the tire outer diameter OD have a predetermined relationship (for example, Patent Document 1).
  • the noise damper when the above-mentioned noise damper is provided on the inner surface of the tire in order to improve the noise damping property, heat is accumulated in the noise damper, and the noise damper and the inner surface of the tire are bonded to each other, for example, after running for a long time. In some cases, the durability of the tire is deteriorated by melting the adhesive layer, peeling the noise suppressor from the inner surface of the tire, or easily causing a failure in the tire member. As described above, it is usually difficult to achieve both the noise control property and the tire durability.
  • an object of the present invention is to provide a pneumatic radial tire for passenger cars, which has both noise control and tire durability.
  • the pneumatic radial tire for passenger cars of the present invention is A pneumatic radial tire for a passenger vehicle, which comprises a carcass consisting of a ply of a radial arrangement cord, straddling toroidally between a pair of bead portions,
  • the sectional width SW of the tire is less than 165 (mm), the ratio SW/OD of the sectional width SW (mm) and the outer diameter OD (mm) of the tire is 0.26 or less
  • the inner surface of the tire is provided with one or more noise dampers,
  • a tire width direction region of the tire width direction center 50% between ground contact ends is defined as a center region, and the center
  • the noise damper is provided at least on the inner surface of the tire in the shoulder region,
  • the "rim” is an industrial standard that is effective in regions where tires are produced and used.
  • JATMA Joint Automobile Tire Association
  • ETRTO European Tire and Rim
  • STANDARDS MANUAL of ETRTO, or STANDARDS MANUAL of standard size described in YEAR BOOK of TRA (The Tire and Rim Association, Inc.) in the United States, STANDARDS MANUAL of ETRA , TRA's YEAR BOOK Design Rim) i.e., the above-mentioned "rim” includes, in addition to the current size, a size that may be included in the industry standard in the future.
  • the width corresponding to the bead width of the tire Refers to the rim.
  • the "specified internal pressure” refers to the air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in the applicable size and ply rating described in JATMA, etc.
  • the “specified internal pressure” means the air pressure (maximum air pressure) corresponding to the maximum load capacity specified for each vehicle in which the tire is mounted.
  • the “maximum load capacity” described later means a load corresponding to the maximum load capacity.
  • ground contact edge means both ends in the tire width direction of the ground contact surface that comes into contact with the road surface when the tire is incorporated into a rim, the specified internal pressure is filled, and the maximum load is applied.
  • the pneumatic radial tire for passenger cars of the present invention is A pneumatic radial tire for a passenger vehicle, which comprises a carcass consisting of a ply of a radial arrangement cord, straddling toroidally between a pair of bead portions,
  • the sectional width SW of the tire is 165 (mm) or more, and the sectional width SW (mm) and the outer diameter OD (mm) of the tire are expressed by a relational expression, OD (mm) ⁇ 2.135 ⁇ SW (mm)+282.3
  • the inner surface of the tire is provided with one or more noise dampers, In the tire width direction cross section when the tire is incorporated into a rim, filled with a specified internal pressure, and in a no-load state, a tire width direction region of the tire width direction center 50% between ground contact ends is defined as a center region, and the center When the tire width direction area of 25% outside the area in the tire width direction is set as the shoulder area,
  • the noise damper is provided at least on the
  • the pneumatic radial tire for passenger cars of the present invention is A pneumatic radial tire for a passenger vehicle, which comprises a carcass consisting of a ply of a radial arrangement cord, straddling toroidally between a pair of bead portions,
  • the sectional width SW (mm) and outer diameter OD (mm) of the tire are expressed by a relational expression, OD (mm) ⁇ -0.0187 x SW (mm) 2 +9.15 x SW (mm)-380
  • the inner surface of the tire is provided with one or more noise dampers,
  • a tire width direction region of the tire width direction center 50% between ground contact ends is defined as a center region, and the center
  • the noise damper is provided at least on the inner surface of the tire in the shoulder region
  • the “sidewall portion” is the tire width direction outer side of the ground contact end E, and the tire radial direction outer end of the bead portion from the ground contact end E (in the case of having a bead filler, the tire radial direction outer end thereof). In the case of not having a bead filler, it means a tire radial direction region up to the tire radial direction outer end of the bead core.
  • the "butless portion” means a virtual line extending in the tire radial direction through the ground contact end E in the tire width direction cross-sectional view in which the tire is mounted on the applicable rim, the internal pressure is filled with the tire, and no load is applied. And a virtual line that passes through the tire surface position that is half the length of the peripheral from the ground contact end E to the tire surface position that is the maximum width of the tire and that is perpendicular to the tire inner surface.
  • FIG. 3 is a cross-sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to an embodiment of the first to third aspects of the present invention. It is a figure which shows typically the contact pressure distribution of the tire of a normal tire size. It is a figure which shows typically the contact pressure distribution of a narrow width and large diameter tire.
  • FIG. 4 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to another embodiment of the first to third aspects of the present invention.
  • FIG. 3 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to another embodiment of the first to third aspects of the present invention.
  • FIG. 6 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to still another embodiment of the first to third aspects of the present invention.
  • FIG. 1 is a schematic diagram showing a sectional width SW and an outer diameter OD of a tire.
  • a pneumatic radial tire for passenger cars (hereinafter, also simply referred to as a tire) according to an embodiment of the first aspect of the present invention has a tire sectional width SW of less than 165 (mm), and a tire sectional width SW and an outer diameter.
  • the ratio SW/OD with OD is 0.26 or less, and the shape is narrow and large in diameter.
  • the rolling resistance can be reduced by suppressing the deformation of the tread rubber near the ground contact surface of the tire, which can improve the fuel economy of the tire.
  • the SW/OD is preferably 0.25 or less, more preferably 0.24 or less.
  • the above ratio is preferably satisfied when the internal pressure of the tire is 200 kPa or more, more preferably 220 kPa or more, and more preferably 280 kPa or more. Is more preferable. This is because the rolling resistance can be reduced.
  • the above ratio is preferably satisfied when the internal pressure of the tire is 350 kPa or less. This is because the riding comfort can be improved.
  • the sectional width SW of the tire is preferably 105 mm or more, more preferably 125 mm or more, and further preferably 135 mm or more in the range satisfying the above ratio. It is preferably 145 mm or more and particularly preferably.
  • the sectional width SW of the tire is preferably 155 mm or less in the range satisfying the above ratio from the viewpoint of reducing the air resistance.
  • the outer diameter OD of the tire is preferably 500 mm or more, more preferably 550 mm or more, and further preferably 580 mm or more in the range satisfying the above ratio. ..
  • the outer diameter OD of the tire is preferably 800 mm or less, more preferably 720 mm or less, and further preferably 650 mm or less in the range satisfying the above ratio. It is preferably 630 mm or less, and particularly preferably 630 mm or less. Further, from the viewpoint of reducing rolling resistance, the rim diameter is preferably 16 inches or more, and more preferably 17 inches or more when the sectional width SW and the outer diameter OD of the tire satisfy the above ratio. More preferably, it is 18 inches or more.
  • the rim diameter is preferably 22 inches or less, and more preferably 21 inches or less when the sectional width SW and the outer diameter OD of the tire satisfy the above ratio. 20 inches or less is more preferable, and 19 inches or less is particularly preferable. Further, the flatness of the tire is more preferably 45 to 70, and further preferably 45 to 65 when the sectional width SW and the outer diameter OD of the tire satisfy the above ratios.
  • the specific tire size is not particularly limited, but as an example, 105/50R16, 115/50R17, 125/55R20, 125/60R18, 125/65R19, 135/45R21, 135/55R20, 135/60R17.
  • the tire of one embodiment in the second aspect of the present invention has a tire cross-section width SW of 165 (mm) or more, and the tire cross-section width SW (mm) and outer diameter OD (mm) are expressed by a relational expression, OD (mm) ⁇ 2.135 ⁇ SW (mm)+282.3 It has a narrow width and a large diameter.
  • the sectional width SW and the outer diameter OD of the tire satisfy the above relational expression, and the ratio SW/OD is preferably 0.26 or less, and is 0.25 or less. More preferably, it is more preferably 0.24 or less.
  • the above relational expression and/or ratio is preferably satisfied when the internal pressure of the tire is 200 kPa or more, more preferably 220 kPa or more, and more preferably 280 kPa or more. More preferably, it is satisfied. This is because the rolling resistance can be reduced. On the other hand, it is preferable that the above relational expressions and/or ratios are satisfied when the internal pressure of the tire is 350 kPa or less. This is because the riding comfort can be improved.
  • the sectional width SW of the tire is preferably 175 mm or more, and more preferably 185 mm or more, in the range satisfying the above relational expression, from the viewpoint of ensuring the ground contact area.
  • the sectional width SW of the tire is preferably 230 mm or less, more preferably 215 mm or less, and more preferably 205 mm or less in the range satisfying the above relational expression. More preferably, it is particularly preferably 195 mm or less.
  • the outer diameter OD of the tire is preferably 630 mm or more, and more preferably 650 mm or more, in the range satisfying the above relational expression.
  • the outer diameter OD of the tire is preferably 800 mm or less, more preferably 750 mm or less, and even more preferably 720 mm or less in the range satisfying the above relational expression.
  • the rim diameter is preferably 18 inches or more, and more preferably 19 inches or more when the sectional width SW and the outer diameter OD of the tire satisfy the above relational expressions. ..
  • the rim diameter is preferably 22 inches or less, and more preferably 21 inches or less when the tire sectional width SW and the outer diameter OD satisfy the above relational expressions.
  • the flatness of the tire is preferably 45 to 70, more preferably 45 to 65.
  • the specific tire size is not particularly limited, but as an example, 165/45R22, 165/55R18, 165/55R19, 165/55R20, 165/55R21, 165/60R19, 165/65R19, 165/70R18. 175/45R23, 175/55R19, 175/55R20, 175/55R22, 175/60R18, 185/45R22, 185/50R20, 185/55R19, 185/55R20, 185/60R19, 185/60R20, 195/50R20, 195 /55R20, 195/60R19, 205/50R21, 205/55R20, 215/50R21.
  • the sectional width SW (mm) and the outer diameter OD (mm) of the tire are expressed by a relational expression, OD (mm) ⁇ -0.0187 x SW (mm) 2 +9.15 x SW (mm)-380 It has a narrow width and a large diameter.
  • the air resistance can be reduced and the rolling resistance can be reduced, whereby the fuel efficiency of the tire can be improved.
  • the sectional width SW and the outer diameter OD of the tire satisfy the above relational expression, and the ratio SW/OD is preferably 0.26 or less, and is 0.25 or less. More preferably, it is more preferably 0.24 or less.
  • the above relational expression and/or ratio is preferably satisfied when the internal pressure of the tire is 200 kPa or more, more preferably 220 kPa or more, and more preferably 280 kPa or more. More preferably, it is satisfied. This is because the rolling resistance can be reduced. On the other hand, it is preferable that the above relational expressions and/or ratios are satisfied when the internal pressure of the tire is 350 kPa or less. This is because the riding comfort can be improved.
  • the tire cross-section width SW is preferably 105 mm or more, more preferably 125 mm or more, and more preferably 135 mm or more in the range satisfying the above relational expression. More preferably, it is more preferably 145 mm or more.
  • the sectional width SW of the tire is preferably 230 mm or less, more preferably 215 mm or less, and more preferably 205 mm or less in the range satisfying the above relational expression. More preferably, it is particularly preferably 195 mm or less.
  • the outer diameter OD of the tire is preferably 500 mm or more, more preferably 550 mm or more, and further preferably 580 mm or more in the range satisfying the above relational expression.
  • the outer diameter OD of the tire is preferably 800 mm or less, more preferably 750 mm or less, and even more preferably 720 mm or less in the range satisfying the above relational expression. More preferable.
  • the rim diameter is preferably 16 inches or more, and more preferably 17 inches or more when the sectional width SW and the outer diameter OD of the tire satisfy the above relational expressions. And more preferably 18 inches or more.
  • the rim diameter is preferably 22 inches or less, and more preferably 21 inches or less when the tire sectional width SW and the outer diameter OD satisfy the above relational expressions. It is preferably 20 inches or less. Further, the flatness of the tire is more preferably 45 to 70, and further preferably 45 to 65 when the sectional width SW and the outer diameter OD of the tire satisfy the above ratios.
  • the specific tire size is not particularly limited, but as an example, 105/50R16, 115/50R17, 125/55R20, 125/60R18, 125/65R19, 135/45R21, 135/55R20, 135/60R17.
  • FIG. 2 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to an embodiment of the first to third aspects of the present invention.
  • FIG. 2 shows a cross-section in the width direction of the tire when the tire is incorporated into a rim, a specified internal pressure is filled, and no load is applied.
  • the tire 1 is provided with a carcass 3 made of a ply of a radial arrangement cord, which extends in a toroidal manner between a pair of bead portions 2.
  • the tire 1 is provided with a belt 4 and a tread 5, which are two layers of belt layers 4a and 4b in the illustrated example, in that order on the tire radial outside of the carcass 3.
  • a bead core 2a is embedded in each of the pair of bead portions 2.
  • the cross-sectional shape and the material of the bead core 2a are not particularly limited, and the bead core 2a may have a configuration normally used in a pneumatic radial tire for passenger cars.
  • the bead core 2a may be divided into a plurality of small bead cores.
  • the bead core 2a may be omitted.
  • the tire 1 in the illustrated example has a bead filler 2b having a substantially triangular cross section on the tire radial outside of the bead core 2a.
  • the cross-sectional shape of the bead filler 2b is not limited to this example, and the material is not particularly limited. Alternatively, it is possible to reduce the weight of the tire by using the configuration without the bead filler 2b.
  • the tire width direction cross-sectional area S1 of the bead filler 2b is preferably 1 to 4 times the tire width direction cross-sectional area S2 of the bead core 2a.
  • the ratio Ts/Tb of the gauge Ts of the sidewall portion and the bead width (width of the bead portion 2 in the tire width direction) Tb at the tire radial center of the bead core 2a is preferably 15% or more and 40% or less. ..
  • the ratio Ts/Tb By setting the ratio Ts/Tb to 15% or more, the rigidity of the sidewall portion can be secured.
  • the ratio Ts/Tb to 40% or less, the tire can be made lighter and the fuel economy can be improved.
  • the gauge Ts is the sum of the thicknesses of all the members such as rubber, the reinforcing member, and the inner liner (however, even when the noise suppressor is arranged on the inner surface of the sidewall portion, the thickness of the noise suppressor is Not included).
  • the distance between the innermost end and the outermost end in the tire width direction of all the small bead cores is Tb.
  • the ratio Ts/Tc of the gauge Ts of the sidewall portion at the tire maximum width position and the diameter Tc of the carcass cord is 5 or more and 10 or less.
  • the maximum tire width position is, for example, in the range of 50% to 90% in terms of tire cross-sectional height from the bead base line (imaginary line that passes through the bead base and is parallel to the tire width direction) to the tire radial outside. Can be provided.
  • the "bead portion” refers to a portion in the tire radial region from the rim baseline to the tire radial outermost end of the bead filler when it has a bead filler, and when it does not have a bead filler, The portion in the tire radial direction region from the baseline to the tire radial outermost end of the bead core.
  • the tire 1 may have a structure having a rim guard.
  • the bead portion 2 may be further provided with an additional member such as a rubber layer or a cord layer for the purpose of reinforcement or the like.
  • Such an additional member can be provided at various positions with respect to the carcass 3 and the bead filler 2b.
  • the carcass 3 is composed of one carcass ply.
  • the number of carcass plies is not particularly limited, and may be two or more.
  • the carcass 3 includes a carcass body portion 3a that straddles between the pair of bead portions 2 in a toroidal shape, and a folded portion 3b that is folded from the carcass body portion 3a around the bead core 2a.
  • the carcass folded-back portion 3b may be wound around the bead core 2a or may be sandwiched between a plurality of divided small bead cores.
  • the end 3c of the carcass folded-back portion 3b is located outside the tire radial direction outer end of the bead filler 2b in the tire radial direction and inside the tire maximum width position in the tire radial direction.
  • the end 3c of the carcass folded-back portion 3b may be located on the tire radial direction inner side from the tire radial direction outer end of the bead filler 2b, or on the tire radial direction outer side from the tire maximum width position. It may be located.
  • the end 3c of the carcass folded-back portion 3b is positioned inside the tire width direction from the end of the belt 4 (for example, the end of the belt layer 4b) so as to be located between the carcass body 2a and the belt 4 in the tire radial direction. It may also be an envelope structure. Further, when the carcass 3 is composed of a plurality of carcass plies, the positions (for example, tire radial direction positions) of the ends 3c of the carcass folded-back portions 3b may be the same or different between the carcass plies. .
  • the number of cords to be driven into the carcass 3 is not particularly limited, but may be, for example, 20 to 60 cords/50 mm. Further, various structures can be adopted for the carcass line.
  • the carcass maximum width position can be brought closer to the bead portion 2 side or the tread 5 side in the tire radial direction.
  • the carcass maximum width position can be provided outside the bead base line in the tire radial direction in the range of 50% to 90% in terms of the tire cross-sectional height.
  • the “radial arrangement” is 85° or more with respect to the tire circumferential direction, and preferably 90° with respect to the tire circumferential direction.
  • the tire according to the present embodiment preferably has one or more inclined belt layers formed of rubberized layers of cords that extend obliquely with respect to the tire circumferential direction, and is a compromise between weight reduction and suppression of ground plane shape distortion. It is most preferable to have two layers.
  • the belt layer may be a single layer from the viewpoint of weight reduction, or may be three or more layers from the viewpoint of suppressing distortion of the ground contact surface shape.
  • the width in the tire width direction of the belt layer 4b on the tire radial direction outer side is smaller than the width of the belt layer 4a on the tire radial direction inner side in the tire width direction. ..
  • the width in the tire width direction of the belt layer 4b on the outer side in the tire radial direction can be made larger than or the same as the width of the belt layer 4a on the inner side in the tire radial direction in the tire width direction.
  • the width of the belt layer having the largest width in the tire width direction (the belt layer 4a in the illustrated example) in the tire width direction is preferably 90 to 115% of the ground contact width, and 100 to 105% of the ground contact width. Particularly preferred.
  • the "ground contact width” means the distance in the tire width direction between the ground contact ends E on the ground contact surface.
  • the belt cord of the belt layers 4a and 4b it is most preferable to use a metal cord, particularly a steel cord, as the belt cord of the belt layers 4a and 4b, but an organic fiber cord can also be used.
  • the steel cord is mainly composed of steel and may contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper and chromium.
  • the belt cords of the belt layers 4a and 4b may be monofilament cords, cords in which a plurality of filaments are aligned, or cords in which a plurality of filaments are twisted.
  • Various twist structures can be adopted, and the cross-sectional structure, twist pitch, twist direction, and distance between adjacent filaments can be various.
  • the inclination angle of the belt cords of the belt layers 4a and 4b is preferably 10° or more with respect to the tire circumferential direction.
  • the inclination angle of the belt cords of the belt layers 4a and 4b is a high angle, specifically 20° or more, preferably 35° or more, and particularly 55° to the tire circumferential direction with respect to the tire circumferential direction. It is preferably in the range of 85°.
  • the inclination angle is set to 20° or more (preferably 35° or more), the rigidity in the tire width direction can be increased, and particularly the steering stability performance during cornering can be improved. Also, it is possible to reduce the shear deformation of the interlayer rubber and reduce the rolling resistance.
  • the tire according to the present embodiment has a configuration in which one or more circumferential belt layers including cords extending substantially along the tire circumferential direction are not provided outside the belt 4 in the tire radial direction.
  • a configuration in which a circumferential belt composed of one or more circumferential belt layers can be provided outside the belt 4 in the tire radial direction.
  • the belt cords of the belt layers 4a and 4b forming the belt 4 have inclination angles ⁇ 1 and ⁇ 2 of 35° or more, it is preferable to provide a circumferential belt, and the circumferential belt is a unit of the center region C.
  • the tire circumferential rigidity per width is preferably higher than the tire circumferential rigidity per unit width of the shoulder region S.
  • a tire width direction area of the tire width direction center 50% between the ground contact ends E is defined as a center area C
  • the tire width direction regions of 25% on both sides in the tire width direction from the center region are defined as shoulder regions S.
  • the tire circumferential rigidity per unit width of the center region C can be made smaller than the tire circumferential rigidity per unit width of the shoulder region S. Can be higher.
  • the circumferential belt layer when the circumferential belt is provided, the circumferential belt layer preferably has high rigidity, and more specifically, the circumferential belt layer is made of a rubberized layer of a cord extending in the tire circumferential direction.
  • the rate is Y (GPa)
  • the number of driving is n (pieces/50 mm)
  • the circumferential belt layer is m layers
  • the cord diameter is d (mm)
  • X Y ⁇ n ⁇ m ⁇ d It is preferable that 1500 ⁇ X ⁇ 225.
  • the inclination angle of the belt cords of the belt layers 4a and 4b with respect to the tire circumferential direction may be a high angle, specifically, 35° or more. preferable.
  • the rigidity in the tire circumferential direction becomes high, which may reduce the ground contact length depending on the tire. Therefore, by using a belt layer with a high angle, it is possible to reduce the out-of-plane bending rigidity in the tire circumferential direction, increase the elongation of the rubber in the tire circumferential direction when the tread deforms, and suppress the decrease in the ground contact length. ..
  • a wavy cord may be used for the circumferential belt layer in order to increase the breaking strength.
  • a high elongation cord (for example, elongation at break of 4.5 to 5.5%) may be used to increase the breaking strength.
  • various materials can be used for the circumferential belt layer, and typical examples are rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass. Fiber, carbon fiber, steel, etc. can be used. From the viewpoint of weight reduction, organic fiber cords are particularly preferable.
  • the cord of the circumferential belt layer is a monofilament cord, a cord in which a plurality of filaments are aligned, a cord in which a plurality of filaments are twisted, and a different material. It is also possible to use a hybrid cord formed by twisting filaments. Further, in the present embodiment, the number of circumferential belt layers to be driven can be set in a range of 20 to 60 lines/50 mm, but the number is not limited to this range.
  • the circumferential belt layer may have a width in the tire width direction larger or smaller than that of the belt layers 4a and 4b.
  • the width in the tire width direction of the circumferential belt layer is 90% to 110% of the width in the tire width direction of the belt layer (belt layer 4a in the illustrated example) having the largest width in the tire width direction among the belt layers 4a and 4b. It can be %.
  • the circumferential belt layer is configured as a spiral layer.
  • the tread rubber forming the tread 5 is composed of one layer.
  • the tread rubber forming the tread 5 may be formed by laminating a plurality of different rubber layers in the tire radial direction.
  • the plurality of rubber layers those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used.
  • the ratio of the thickness of the plurality of rubber layers in the tire radial direction may be changed in the tire width direction, and only the circumferential main groove bottom or the like may be a rubber layer different from the periphery thereof.
  • the tread rubber that constitutes the tread 5 may be formed of a plurality of rubber layers that are different in the tire width direction.
  • the plurality of rubber layers those having different tangent loss, modulus, hardness, glass transition temperature, material, etc. can be used. Further, the ratio of the width in the tire width direction of the plurality of rubber layers may be changed in the tire radial direction, and only in the vicinity of the circumferential main groove, only in the vicinity of the ground contact end, only in the shoulder land portion, only in the center land portion, etc. Only a limited part of the area may be a rubber layer different from the surrounding area. Further, in the present embodiment, in the tire width direction cross section, a straight line parallel to the tire width direction passing through the point P on the tread surface CL of the tire equatorial plane CL is defined as a straight line parallel to the tire width direction passing through the ground contact end E.
  • the ratio L CR /W is preferably 0.045 or less.
  • the tire 1 has three circumferential main grooves 6 extending in the tire circumferential direction. Specifically, one circumferential main groove 6 is provided on the tire equatorial plane CL, and one circumferential main groove 6 is provided in each shoulder region S on both sides in the tire width direction.
  • the groove width (opening width) of the circumferential main groove 6 is not particularly limited, but may be, for example, 2 mm to 5 mm. In the present embodiment, it is preferable to reduce the amount of grooves occupying the tread 5 from the viewpoint of achieving both wet performance and other performance.
  • the groove volume ratio (groove volume V2/tread rubber volume V1) is preferably 30% or less, and the negative ratio (ratio of the groove area to the tread tread area) is 30% or less.
  • the ground contact pressure in the center region C is higher than that in the shoulder region S, so that heat generation in the center region C tends to be relatively large. Therefore, as in the present embodiment, by providing one circumferential main groove 6 in the center region C (on the tire equatorial plane CL in the illustrated example), heat can be efficiently dissipated.
  • the noise suppressor 9 (sponge material) is provided on the inner surface 7 of the tire in the shoulder region S at each half in the tire width direction with the tire equatorial plane CL as the boundary, By having one or more (one in this example) circumferential main groove 6 in each shoulder region S, heat can be efficiently radiated.
  • the tread 5 in a tire in which the rigidity of the center region C in the tire circumferential direction is increased by a belt structure or the like, the tread 5 has a land portion continuous in the tire circumferential direction in a region including at least the tire equatorial plane CL of the tread tread surface.
  • the number and arrangement of the circumferential main grooves 6 are not particularly limited to the above example. Further, a widthwise groove extending in the tire widthwise direction, a sipe closed at the time of contact with the ground, and the like can be appropriately provided. Further, from the viewpoint of satisfying both noise performance and wet performance, the cross-sectional area of each circumferential direction main grooves it is preferably set to 24 mm 2 or more 96 mm 2 or less, the number of the time circumferential main groove, two or more is preferably set to five or less, therefore, the sum of the cross-sectional area of the circumferential main groove in the entire tread surface, it is preferable that the 48 mm 2 or more 480 mm 2 or less.
  • the tire 1 of the present embodiment has an inner liner 8 on the inner surface 7 of the tire (hereinafter, also simply referred to as the tire inner surface 7).
  • the inner liner 8 preferably has a thickness of about 1.5 mm to 2.8 mm. This is because the vehicle interior noise of 80 to 100 Hz can be effectively reduced.
  • the air permeability coefficient of the rubber composition constituting the inner liner 8 is 1.0 ⁇ 10 ⁇ 14 cc ⁇ cm/(cm 2 ⁇ s ⁇ cmHg) or more and 6.5 ⁇ 10 ⁇ 10 cc ⁇ cm/(cm 2 ⁇ S ⁇ cmHg) or less is preferable.
  • the inner liner 8 can be formed of a rubber layer mainly containing butyl rubber or a film layer mainly containing resin.
  • a sealant member for preventing air leakage at the time of puncture can be provided in a portion of the tire inner surface 7 where the noise suppressor 9 is not arranged.
  • the tire 1 of the present embodiment is provided with one or more (one in the illustrated example) noise suppressors 9 on the tire inner surface 7 (in this example, the inner surface of the inner liner 8). ..
  • the noise suppressor 9 is a sponge material.
  • the noise suppressor 9 is provided at least on the tire inner surface 7 in the shoulder region S.
  • the noise suppressor 9 extends from the tire inner surface 7 in the shoulder region S on one half of the tire width direction bounded by the tire equatorial plane CL to the tire inner surface 7 in the shoulder region S on the other half of the tire width direction.
  • Both ends of the noise damper 9 in the direction along the tire inner surface 7 are located in the shoulder regions S of both half portions in the tire width direction (in the illustrated example, of the shoulder region S).
  • the noise damper 9 may be provided at least on the tire inner surface 7 in the shoulder region S, and the end of the noise damper 9 is located inside the ground contact end E in the tire width direction. May be.
  • the noise damper 9 is bonded to all or part of the tire inner surface 7 via an adhesive layer (not shown) containing an adhesive. Any known adhesive layer can be used. Alternatively, they may be adhered by fusion or the like.
  • the noise suppressor 9 can be provided by directly adhering to the tire inner surface 7. Further, it is preferable that the noise suppressor 9 is composed of one noise suppressor 9 in the continuous extending region, but it may be constituted by adhering two or more noise suppressors 9 with an adhesive layer or the like. it can.
  • the noise suppressor 9 continuously extends in the tire circumferential direction.
  • the noise damper 9 is not divided in the tire circumferential direction, but two or more noise dampers 9 divided in the tire circumferential direction are bonded in the tire circumferential direction with an adhesive layer or the like. You can also do it.
  • the noise suppressor 9 may extend discontinuously in the tire circumferential direction. In this case, from the viewpoint of improving the sound damping property, it is preferable that the total extension be 80% or more of the entire area in the tire circumferential direction.
  • the noise suppressor 9 when the noise suppressor 9 extends discontinuously in the tire circumferential direction, from the viewpoint of improving the uniformity in the circumferential direction of the tire, the noise suppressor 9 having the same circumferential length is used at equal intervals. It is preferable to arrange at a directional pitch.
  • the noise suppressor 9 has a substantially rectangular cross-sectional shape (however, the side bonded to the tire inner surface 7 is along the tire inner surface shape).
  • the cross-sectional shape of the noise suppressor 9 may be any shape such as another polygonal shape such as a triangular shape, a trapezoidal shape, a circular shape, an elliptical shape, or the like. From the viewpoint of ensuring a bonding area between the noise damper 9 and the tire inner surface 7 and increasing the volume of the noise damper 9 as compared with the bonding area, the cross-sectional shape of the noise damper 9 is substantially rectangular.
  • the noise suppressor 9 has the same cross-sectional shape and size in any cross section in the tire width direction, but may change in the tire circumferential direction.
  • the volume of the noise damper 9 is preferably 0.1% to 80% of the total volume of the tire inner cavity. By setting the volume of the noise suppressor 9 to 0.1% or more with respect to the total volume of the tire inner cavity, the effect of reducing cavity resonance noise can be effectively obtained, while the total volume of the tire inner cavity is reduced. On the other hand, by setting the volume of the noise damper 9 to 80% or less, the weight increase by the noise damper 9 can be suppressed. Further, it is possible to prevent heat from being accumulated in the noise suppressor 9.
  • the volume of the noise damper 9 is preferably 5 to 70% of the total volume of the tire inner cavity, and more preferably 15 to 50%.
  • dimensions are shown in the figure showing the state where the tire is built into the rim and the specified internal pressure is filled, but the volume of the noise suppressor and the width, thickness, flatness, cross-sectional area, peripheral length, etc., which will be described later, are shown. Indicates that the tire is removed from the rim at room temperature and pressure.
  • the peripheral length along the tire inner surface 7 of the noise suppressor 9 was set to L1 (mm), and measurement was performed in a direction orthogonal to the direction along the tire inner surface 7 of the noise suppressor 9.
  • the ratio T1/L1 is 0.2 or more and 0.8 or less.
  • the material forming the noise suppressor 9 can be controlled so as to reduce the cavity resonance energy by relaxation, absorption of the cavity resonance energy, conversion to another energy (for example, thermal energy), or the like.
  • another energy for example, thermal energy
  • it is not limited to the sponge material described above, and for example, a non-woven fabric made of organic fibers or inorganic fibers may be used.
  • the sponge material can be a sponge-like porous structure, and has, for example, open cells formed by foaming rubber or synthetic resin, Including so-called sponge.
  • the sponge material includes, in addition to the above-mentioned sponge, a web-shaped material in which animal fibers, plant fibers, synthetic fibers or the like are entwined and integrally connected.
  • the above-mentioned “porous structure” is not limited to a structure having open cells, but includes a structure having closed cells. The sponge material as described above converts the vibration energy of air in which the voids formed on the surface and inside vibrate into heat energy.
  • the material of the sponge material include synthetic polyurethane resin sponges such as ether polyurethane sponge, ester polyurethane sponge, polyethylene sponge, chloroprene rubber sponge (CR sponge), ethylene propylene rubber sponge (EPDM sponge), nitrile rubber sponge (NBR sponge). ) Such as rubber sponge. From the viewpoints of noise control, lightness, controllability of foaming, durability, etc., it is preferable to use a polyurethane-based or polyethylene-based sponge including an ether-based polyurethane sponge.
  • the total cross-sectional area of the noise suppressor 9 in the tire width direction cross section is preferably 20 to 30000 (mm 2 ).
  • the total cross-sectional area is 20 (mm 2 ) or more, the sound damping property can be further improved.
  • the total cross-sectional area is 30000 (mm 2 ) or less, the noise suppressor 9 is heated. This is because it is possible to suppress the muddyness and further improve the tire durability.
  • the total cross-sectional area is more preferably 100 (mm 2 ) to 20000 (mm 2 ), more preferably 1000 (mm 2 ) to 18000 (mm 2 ), and 3000 (mm 2 ) to 15000 (mm 2 ) is more preferable.
  • the hardness of the sponge material is not particularly limited, but is preferably in the range of 5N to 450N. By setting the hardness to 5 N or more, the sound damping property can be improved, and by setting the hardness to 450 N or less, the adhesive force of the sound damping body can be increased. Similarly, the hardness of the noise damper is more preferably in the range of 8 to 300N.
  • the "hardness” is a value measured according to the A method of 6.3 in the measuring method of 6th item of JIS K6400.
  • the specific gravity of the sponge material is preferably 0.001 to 0.090.
  • the specific gravity of the sponge material By setting the specific gravity of the sponge material to 0.001 or more, the sound damping property can be improved, and on the other hand, by setting the specific gravity of the sponge material to 0.090 or less, the increase in weight due to the sponge material is suppressed. Because you can.
  • the specific gravity of the sponge material is more preferably 0.003 to 0.080.
  • the “specific gravity” is a value obtained by converting the apparent density into a specific gravity in accordance with the measuring method of the fifth item of JIS K6400.
  • the tensile strength of the sponge material is preferably 20 kPa to 500 kPa.
  • the adhesive force can be improved, and on the other hand, by setting the tensile strength to 500 kPa or less, the productivity of the sponge material can be improved.
  • the tensile strength of the sponge material is more preferably 40 to 400 kPa.
  • the “tensile strength” is a value measured by a No. 1 dumbbell-shaped test piece in accordance with the measuring method of Item 10 of JIS K6400.
  • the elongation at break of the sponge material is preferably 110% or more and 800% or less.
  • the elongation at break of the sponge material is more preferably 130% or more and 750% or less.
  • the "elongation at break” is a value measured with a No. 1 dumbbell-shaped test piece in accordance with the measuring method of Item 10 of JIS K6400.
  • the tear strength of the sponge material is preferably 1 to 130 N/cm.
  • the tear strength of the sponge material is more preferably 3 to 115 N/cm.
  • the “tear strength” is a value measured with a No. 1 type test piece in accordance with the measuring method of Item 11 of JIS K6400.
  • the foaming rate of the sponge material is preferably 1% or more and 40% or less.
  • the foaming rate of the sponge material is more preferably 2 to 25%.
  • the "foaming rate” means a value obtained by subtracting 1 from the ratio A/B of the specific gravity A of the solid phase portion of the sponge material to the specific gravity B of the sponge material and multiplying the value by 100.
  • the mass of the sponge material is preferably 5 to 800 g. This is because if the mass is 5 g or more, the sound damping property can be reduced, and if the mass is 800 g or less, the weight increase due to the sponge material can be suppressed. Similarly, the mass of the sponge material is preferably 20 to 600 g.
  • the tire cross-section width SW and the tire outer diameter OD satisfy the above-mentioned predetermined relationship (that is, in the first aspect, the tire cross-section width SW is The cross-sectional width SW of the tire is less than 165 (mm), and the ratio SW/OD of the tire cross-sectional width SW to the outer diameter OD is 0.26 or less. ) It is above, and the cross-sectional width SW (mm) and outer diameter OD (mm) of the tire satisfy the relational expression, OD (mm) ⁇ 2.135 ⁇ SW (mm)+282.3. In the aspect of 3, the relational expression, OD (mm) ⁇ 0.0187 ⁇ SW (mm) 2 +9.15 ⁇ SW (mm) ⁇ 380, is satisfied).
  • the fuel efficiency can be improved.
  • the ground contact pressure tends to be higher in the shoulder region S than in the center region C. Therefore, in a pneumatic radial tire for a passenger car having a narrow width and a large diameter, in which the sectional width SW and the outer diameter OD of the tire satisfy the above-mentioned predetermined relationship, the ground contact pressure is equal to or higher than the shoulder area S in the center area C. Tends to be higher.
  • one or more noise dampers 9 are provided on the tire inner surface 7, and the noise damper 9 is provided at least on the tire inner surface 7 in the shoulder region S. ..
  • the extending region of the noise suppressor 9 can be secured so as to include the shoulder region S, so that the noise suppressing property can be enhanced, and the heat generation in the shoulder region S is relatively low. From the above, it is possible to prevent the noise suppressor 9 from peeling from the tire inner surface 7 due to melting of the adhesive layer or the like, and to prevent failure of other members due to heat buildup in the noise suppressor 9 and a high temperature inside the tire. It is also possible to improve the durability of the tire.
  • the predetermined relationship between the sectional width SW of the tire and the tire outer diameter OD is that the internal pressure is It is preferably satisfied when it is 200 kPa or more, more preferably satisfied when it is 220 kPa or more, and further preferably satisfied when it is 280 kPa or more. This is because the above effects can be obtained more effectively, and the rolling resistance can be further reduced by setting the internal pressure to a high value.
  • the predetermined relationship between the sectional width SW of the tire and the tire outer diameter OD is preferably satisfied when the internal pressure is 350 kPa or less. This is because the riding comfort can be improved.
  • the noise suppressor 9 extends from the tire inner surface 7 in one half of the shoulder area S in the tire width direction bounded by the tire equatorial plane CL to the other half of the shoulder area S in the tire width direction. Both ends of the noise suppressor 9 extending in the direction along the tire inner surface 7 are continuously located in the tire inner surface 7, and both ends of the noise suppressor 9 are located in the shoulder regions S of both half portions in the tire width direction (in the illustrated example, the shoulder area). Since the region S is located at the outer end position in the tire width direction (that is, at the ground contact end E), it is possible to secure the volume of the noise suppressor 9 and further improve the noise suppressing property.
  • the noise suppressor 9 is provided outside the shoulder region S in the tire width direction, it is possible to suppress heat from being accumulated in the noise suppressor 9 and improve tire durability.
  • the weight increase can be further suppressed.
  • a sponge material is used as the noise suppressor 9, and since the sponge material can exhibit high sound damping property despite its small specific gravity, it is possible to prevent an excessive weight increase.
  • the noise control property can be further improved.
  • the ratio T1/L1 is set to 0.2 or more and 0.8 or less. If the ratio T1/L1 is less than 0.2, the thickness of the noise damper 9 is small and the noise damping property is deteriorated. On the other hand, if the ratio T1/L1 is more than 0.8, the noise damper 9 is reduced. This is because heat is likely to accumulate and tire durability is reduced. For the same reason, the ratio T1/L1 is preferably 0.3 or more and 0.6 or less. As described above, according to the pneumatic radial tire for a passenger vehicle of the present embodiment, it is possible to achieve both sound damping and tire durability.
  • FIG. 5 is a cross-sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to another embodiment of the first to third aspects of the present invention.
  • FIG. 5 shows a cross-section in the width direction of the tire when the tire is incorporated into a rim, a specified internal pressure is filled, and no load is applied.
  • the tire of the other embodiment shown in FIG. 5 is different from the tire of the previous embodiment shown in FIG. 2 only in the arrangement mode and size of the noise suppressor 9. Therefore, the configuration will be described below and other tires will be described. The description of the common configuration is omitted. That is, in the tire of the embodiment shown in FIG.
  • the noise suppressor 9 is formed from the tire inner surface 7 in the sidewall portion of one half portion in the tire width direction bounded by the tire equatorial plane CL to the other half portion in the tire width direction.
  • the noise suppressor 9 extending in a direction along the tire inner surface 7 at both sidewall portions of the sidewall portion of the tire width direction (in the illustrated example, the maximum tire width). It is located on the tire inner surface 7 at the tire radial direction inner side of the position and at the tire radial direction outer side of the tire radial direction outer end of the bead filler 2b). In the embodiment shown in FIG.
  • the thickness of the noise damper 9 measured in the direction orthogonal to the tire inner surface 7 is substantially constant, and has the maximum thickness T1 (mm) on the tire equatorial plane CL. Also with the tire of the embodiment shown in FIG. 5, since the extending region of the noise suppressor 9 can be ensured so as to include the shoulder region S, the noise suppressing property can be improved, and the shoulder region S can be improved. Since the heat generation in the tire is relatively low, the noise suppressor 9 is separated from the tire inner surface 7 due to melting of the adhesive layer or the like, and heat is accumulated in the noise suppressor 9 to increase the temperature inside the tire. It is possible to suppress the breakdown of members and improve the durability of the tire. Further, similar to the embodiment shown in FIG.
  • the ratio T1/L1 is set to 0.2 or more and 0.8 or less.
  • the ratio T1/L1 is preferably 0.3 or more and 0.6 or less.
  • the thickness T1 of the noise suppressor 9 can be set to 5 to 40 mm in the range of the above ratio T1/L1.
  • the noise suppressor 9 is provided over the center region C, the shoulder region S, and the sidewall portion (in the illustrated example, to the tire radial direction inner side from the tire maximum width position). Therefore, as compared with the embodiment shown in FIG. 2, it is possible to secure a large volume of the noise damper 9, and it is possible to further improve the noise damping property without significantly impairing the tire durability.
  • FIG. 1 the embodiment shown in FIG.
  • the innermost end of the noise suppressor 9 in the tire radial direction is located outside of the outermost end of the bead filler 2b in the tire radial direction. According to this, heat transfer from the bead filler 2b, which is a member that generates a large amount of heat, to the noise suppressor 9 can be suppressed, and tire durability can be improved.
  • the noise suppressor 9 may be provided up to the tire inner surface 7 of the bead portion 2.
  • the innermost end in the tire radial direction of the noise suppressor 9 is closer to the tire outer diameter end than the outermost end in the tire radial direction of the bead filler 2b. It may be located inside the direction. In this case, it is possible to secure a larger volume of the sound damping body 9 and improve the sound damping property.
  • FIG. 6 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to another embodiment of the first to third aspects of the present invention.
  • FIG. 6 shows a cross-section in the width direction of the tire when the tire is incorporated into a rim, the internal pressure is filled with the tire, and no load is applied.
  • the tire of another embodiment shown in FIG. 6 is different from the tire of the previous embodiment shown in FIGS. 2 and 5 only in the arrangement mode and size of the noise damper 9, and therefore the configuration will be described below. Description of other common configurations will be omitted.
  • the noise suppressor 9 continuously extends from the tire inner surface 7 in the shoulder region S to the tire inner surface 7 in the sidewall portion in each half portion in the tire width direction, One end of each half of the noise width direction in the tire width direction along the tire inner surface 7 is located on the tire inner surface 7 in the shoulder region S (the tire width direction inner end of the shoulder region S in the illustrated example), and The other end is located on the tire inner surface 7 in the sidewall portion (in the illustrated example, the tire radial direction inner side from the tire maximum width position and the tire radial direction outer end of the bead filler 2b).
  • the ratio T1/L1 is set to 0.2 or more and 0.8 or less.
  • the ratio T1/L1 is preferably 0.3 or more and 0.6 or less.
  • the thickness T1 of the noise suppressor 9 can be set to 5 to 40 mm in the range of the above ratio T1/L1.
  • the adhesive layer is melted to prevent the noise suppressor 9 from peeling from the tire inner surface 7, and heat from being transferred to the noise suppressor 9 to prevent other tire members from breaking down, thereby improving tire durability. It can be improved.
  • the innermost end of the noise suppressor 9 in the tire radial direction is located outside of the outermost end of the bead filler 2b in the tire radial direction. According to this, heat transfer from the bead filler 2b, which is a member that generates a large amount of heat, to the noise suppressor 9 can be suppressed, and tire durability can be improved.
  • the noise suppressor 9 may be provided up to the tire inner surface 7 of the bead portion 2.
  • the innermost end in the tire radial direction of the noise suppressor 9 is closer to the tire outer diameter end than the outermost end in the tire radial direction of the bead filler 2b. It may be located inside the direction. In this case, it is possible to secure a larger volume of the sound damping body 9 and improve the sound damping property.
  • FIG. 7 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to still another embodiment of the first to third aspects of the present invention.
  • FIG. 7 shows a cross-section in the width direction of the tire when the tire is incorporated in a rim, a specified internal pressure is filled, and no load is applied.
  • the tire of yet another embodiment shown in FIG. 7 is different from the tires of the previous embodiments shown in FIGS. 2, 5, and 6 only in the arrangement mode and size of the noise suppressor 9. The description will be given below, and the description of other common configurations will be omitted. That is, in the tire of the embodiment shown in FIG.
  • the noise damper 9 extends intermittently in each half of the tire width direction from the tire inner surface 7 in the shoulder region S to the tire inner surface 7 in the sidewall portion.
  • the noise suppressor 9 is not provided on the tire inner surface 7 in the center region C and the tire inner surface 7 in the buttress portion in each half portion in the tire width direction.
  • the width W3 of the noise suppressor 9 in the tire width direction is smaller than the thickness T3 of the noise suppressor 9. Large, flat shape.
  • the noise suppressor 9 provided on the tire inner surface 7 in the shoulder region S has a substantially quadrangular cross-section (however, the side bonded to the tire inner surface 7 is along the tire inner surface shape).
  • the cross-sectional shape of the noise suppressor 9 may be any shape such as another polygonal shape such as a triangular shape, a trapezoidal shape, a circular shape, an elliptical shape, or the like. From the viewpoint of ensuring a bonding area between the noise damper 9 and the tire inner surface 7 and increasing the volume of the noise damper 9 as compared with the bonding area, the cross-sectional shape of the noise damper 9 is substantially rectangular.
  • the noise suppressor 9 is provided on the tire inner surface 7 in the entire shoulder region S.
  • the thickness of the noise damper 9 in the shoulder region S gradually increases toward the inside in the tire width direction.
  • the noise suppressor 9 provided on the tire inner surface 7 in the shoulder region S has a peripheral length L3 (mm).
  • the noise suppressor 9 provided on the tire inner surface 7 in the sidewall portion is provided in substantially the entire sidewall portion (excluding the buttress portion). As shown in FIG.
  • the noise suppressor 9 Since the heat generation in the tire is relatively low, the noise suppressor 9 is separated from the tire inner surface 7 due to melting of the adhesive layer or the like, and heat is accumulated in the noise suppressor 9 to increase the temperature inside the tire. It is possible to suppress breakdown of members and improve durability of the tire. Further, as in the embodiment shown in FIGS. 2, 5, and 6, the ratio T1/L1 is set to 0.2 or more and 0.8 or less. The ratio T1/L1 is preferably 0.3 or more and 0.6 or less. For example, the thickness T1 of the noise damper 9 can be set to 5 to 40 mm in the range of the flattening ratio T1/L1. In particular, in the tire of the embodiment shown in FIG. 7, compared to the embodiment shown in FIG.
  • the noise suppressor 9 is a buttress in which the deformation is relatively large in the narrow width/large diameter tire in the sidewall portion. Since it is not in contact with the tire inner surface 7 in the portion, it is possible to suppress the noise suppressor 9 from receiving a force due to the deformation and the heat transmitted from the buttress portion to the noise suppressor 9 as compared with the embodiment shown in FIG. It is also possible to secure a large volume of the noise suppressor 9 as compared with the embodiment shown in FIG. As a result, it is possible to better balance the noise control performance and the tire durability.
  • the region where the noise suppressor 9 is not provided on the tire inner surface 7 is the tire inner surface 7 of the buttress portion, but it may be another region in the sidewall portion.
  • the innermost end of the noise suppressor 9 in the tire radial direction is located outside of the outermost end of the bead filler 2b in the tire radial direction. According to this, heat transfer from the bead filler 2b, which is a member that generates a large amount of heat, to the noise suppressor 9 can be suppressed, and tire durability can be improved.
  • the noise suppressor 9 can be provided up to the tire inner surface 7 of the bead portion 2.
  • the innermost end of the noise suppressor 9 in the tire radial direction is closer to the tire outer diameter end than the outermost end of the bead filler 2b in the tire radial direction. It may be located inside the direction. In this case, it is possible to secure a larger volume of the sound damping body 9 and improve the sound damping property.
  • the noise suppressor 9 extends from the tire inner surface 7 in the shoulder region S in one half of the tire width direction to the tire in the shoulder region S in the other half of the tire width direction. It is preferable that both ends of the noise suppressor 9 in the direction along the tire inner surface 7 extend continuously to the inner surface 7 and that they are located in the shoulder regions S at both half portions in the tire width direction. This is because it is possible to secure a large volume of the sound damping body 9 and further improve the sound damping property without lowering the tire durability. Further, in the present invention, as shown in FIG.
  • the noise suppressor 9 extends from the tire inner surface 7 in the sidewall portion of one half portion in the tire width direction to the tire in the sidewall portion of the other half portion in the tire width direction. It is preferable that the both ends of the noise damper 9 extending in the direction along the tire inner surface 7 are located on the tire inner surface 7 in the sidewall portions of the tire width direction halves, respectively. This is because it is possible to secure a larger volume of the sound damping body 9 and further improve the sound damping property without lowering the tire durability. Further, in the present invention, as shown in FIG. 6, the noise suppressor 9 continuously extends from the tire inner surface 7 in the shoulder region S to the tire inner surface 7 in the sidewall portion in each half portion in the tire width direction.
  • One end in the direction extending along the tire inner surface 7 of the noise suppressor 9 in each half of the tire width direction is located on the tire inner surface 7 in the shoulder region S, and the other end is the tire inner surface in the sidewall portion. It is preferably located at 7. This is because it is possible to further improve tire durability by preventing the region where the noise suppressor 9 is provided from being applied to the center portion C where heat generation is relatively large. Further, in the present invention, as shown in FIG. 7, the noise suppressor 9 intermittently extends in each half portion in the tire width direction from the tire inner surface 7 in the shoulder region S to the tire inner surface in the sidewall portion.
  • the noise suppressor 9 is not provided on the tire inner surface 7 in the center region C and the tire inner surface 7 in the buttress portion in each half portion in the tire width direction. This is because it is possible to further improve tire durability by preventing the region where the noise suppressor 9 is provided from being applied to the center portion where heat generation is relatively large and the buttress portion where deformation is large. Further, in the present invention, the noise suppressor 9 is preferably a sponge material. Since the sponge material has a small specific gravity, it is possible to improve the sound damping property while preventing an excessive increase in weight.
  • the tire/rim assembly here is one in which the pneumatic radial tire for passenger cars according to each of the embodiments of the first to third aspects is incorporated in a rim. According to the tire/rim assembly, it is possible to obtain the same operational effects as those described for the pneumatic radial tire for a passenger vehicle according to each of the embodiments of the first to third aspects.
  • the internal pressure of the tire/rim assembly is preferably 200 kPa or more, more preferably 220 kPa or more, and further preferably 280 kPa or more.
  • the internal pressure of the tire/rim assembly is preferably 350 kPa or less. This is because the riding comfort can be improved.
  • the pneumatic radial tire for passenger cars used here is the pneumatic radial tire for passenger cars according to the respective embodiments of the first to third aspects.
  • the same operational effects as those described for the pneumatic radial tire for a passenger vehicle according to the respective embodiments of the first to third aspects can be obtained.
  • the internal pressure is preferably 200 kPa or more, more preferably 220 kPa or more, and further preferably 280 kPa or more.
  • the internal pressure it is preferable to use the internal pressure of 350 kPa or less. This is because the riding comfort can be improved.
  • the noise suppressor 9 has a symmetrical structure with the tire equatorial plane CL as a boundary, but may have an asymmetric structure.
  • any one or more of the position, the extension region, the shape, the material, the maximum width, the maximum thickness, etc. of the noise suppressor 9 in one half of the tire width direction may be used to suppress the noise in the other half of the tire width direction. It can be different from the body 9.
  • the position, the extension region, and the like of the noise suppressor 9 in one half of the tire width direction may be changed to the noise suppressor 9 in the other half of the tire width direction.
  • the position, the extension area, and the like can be different.
  • the noise suppressor 9 of each of the above-described embodiments and its modifications is provided only in one half of the tire width direction, and the noise suppressor 9 is not provided in the other half of the tire width direction.
  • SW is less than 165 mm
  • the ratio SW/OD is 0.26 or less
  • the internal pressure is 200 kPa or more
  • the oblateness is 70 or less
  • the rim diameter is 18 inches or more
  • the sound absorber eg, sponge material
  • the "perimeter of the noise suppressor” here means the perimeter at the position where the circumference of the noise suppressor is minimized when measured in the tire circumferential direction, and the noise suppressor is divided into multiple parts. In the case of the sound damping body, it means the circumference of the sound damping body having the smallest circumference.
  • the noise damper when divided in the tire circumferential direction, it means the total circumferential length.
  • the internal pressure when the internal pressure is set high, the ground contact pressure on the tread tread increases, and the cavity resonance tends to deteriorate. Further, when the flatness is lowered, the belt tension increases and the ground contact pressure on the tread tread increases, so that the cavity resonance tends to be deteriorated.
  • the tread width is also narrowed accordingly, so that the cross-sectional area of the noise suppressor is generally reduced and the cavity resonance tends to be deteriorated. Therefore, by increasing the outer diameter of the tire and increasing the circumferential length of the noise suppressor, it is possible to increase the total volume of the noise suppressor without increasing the cross-sectional area of the noise suppressor. Can be suppressed. Furthermore, since the noise suppressor has a small cross-sectional area, the amount of heat generated by the noise suppressor can be suppressed. As described above, according to the above configuration, it is possible to achieve a high level of both cavity resonance reduction, rolling resistance reduction, and heat generation endurance performance.
  • the tire/rim assembly has SW of 165 mm or more, satisfies OD (mm) ⁇ 2.135 ⁇ SW (mm)+282.3, and has an internal pressure of 200 kPa or more, and a flatness Is 70 or less, the rim diameter is 18 inches or more, and the peripheral length of the noise damper (eg, sponge material) is 1800 mm or more.
  • the noise damper eg, sponge material
  • the tire/rim assembly satisfies OD (mm) ⁇ 0.0187 ⁇ SW(mm) 2 +9.15 ⁇ SW(mm) ⁇ 380, and has an internal pressure of 200 kPa or more, Further, it is preferable that the flatness is 70 or less, the rim diameter is 18 inches or more, and the circumferential length of the noise damper (eg, sponge material) is 1800 mm or more.
  • the noise damper eg, sponge material

Abstract

This pneumatic radial tire for passenger vehicles is equipped with a carcass which comprises a ply of radially arranged cords extending toroidally across a pair of bead portions, and the cross-sectional width SW (mm) and outer diameter OD (mm) of the tire satisfy a predetermined relational expression. One or more noise suppressors are provided on the inner surface of the tire. The noise suppressors are provided at least on the inner surface of the tire in a shoulder region. The ratio T1/L1 falls within the range of 0.2-0.8 where L1 (mm) is the peripheral length of the noise suppressor along the inner surface of the tire and T1 (mm) is the maximum thickness of the noise suppressor measured in a direction perpendicular to the direction along the inner surface of the tire.

Description

乗用車用空気入りラジアルタイヤPneumatic radial tires for passenger cars
 本発明は、乗用車用空気入りラジアルタイヤに関するものである。 The present invention relates to a pneumatic radial tire for passenger cars.
 本出願人は、タイヤの断面幅SWとタイヤの外径ODとを所定の関係とした、狭幅かつ大径の乗用車用空気入りラジアルタイヤを種々提案している(例えば、特許文献1)。 The applicant has proposed various narrow and large-diameter pneumatic radial tires for passenger cars in which the tire cross-section width SW and the tire outer diameter OD have a predetermined relationship (for example, Patent Document 1).
 ここで、乗用車用空気入りラジアルタイヤ(特に、電気自動車用の空気入りラジアルタイヤ)では、タイヤ騒音の低減が求められている。そして、タイヤ騒音の一つとして、路面を走行した際に50~400Hzの周波数範囲での音が生じる、いわゆるロードノイズが知られている。その主な原因としては、タイヤ内腔内で生じる空気やガスの共鳴振動(空洞共鳴)がある。これに対し、タイヤの内面に、スポンジ材等からなる制音体を配置することが知られている(例えば、特許文献2)。制音体は、タイヤ内腔内での空気やガスの振動エネルギーを熱エネルギーへと変換し、タイヤ内腔内での空洞共鳴を抑制することができる。 ▽Here, for pneumatic radial tires for passenger cars (especially pneumatic radial tires for electric vehicles), reduction of tire noise is required. As one of the tire noises, so-called road noise is known, which produces a sound in a frequency range of 50 to 400 Hz when traveling on a road surface. The main cause of this is resonance vibration (cavity resonance) of air or gas generated in the tire inner cavity. On the other hand, it is known to dispose a noise suppressor made of a sponge material or the like on the inner surface of the tire (for example, Patent Document 2). The noise suppressor can convert vibration energy of air or gas in the tire inner cavity into heat energy, and suppress cavity resonance in the tire inner cavity.
国際公開第2012/176476号パンフレットInternational publication 2012/176476 pamphlet 特開2005-254924号公報JP 2005-254924 A
 しかしながら、制音性を高めようとして、タイヤの内面に上記のような制音体を設けた際に、制音体に熱がこもり、例えば長時間走行後に、制音体とタイヤ内面とを接着する接着層が溶けて、制音体がタイヤ内面から剥離したり、あるいは、タイヤ部材に故障が生じやすくなったりする等、タイヤ耐久性が低下してしまう場合があった。このように、通常、制音性とタイヤ耐久性を両立することは困難であった。 However, when the above-mentioned noise damper is provided on the inner surface of the tire in order to improve the noise damping property, heat is accumulated in the noise damper, and the noise damper and the inner surface of the tire are bonded to each other, for example, after running for a long time. In some cases, the durability of the tire is deteriorated by melting the adhesive layer, peeling the noise suppressor from the inner surface of the tire, or easily causing a failure in the tire member. As described above, it is usually difficult to achieve both the noise control property and the tire durability.
 そこで、本発明は、制音性とタイヤ耐久性とを両立させた、乗用車用空気入りラジアルタイヤを提供することを目的とする。 Therefore, an object of the present invention is to provide a pneumatic radial tire for passenger cars, which has both noise control and tire durability.
 本発明の要旨構成は、以下の通りである。
 第1の態様において、本発明の乗用車用空気入りラジアルタイヤは、
 一対のビード部間でトロイダル状に跨る、ラジアル配列コードのプライからなるカーカスを備えた、乗用車用空気入りラジアルタイヤであって、
 前記タイヤの断面幅SWが165(mm)未満であり、前記タイヤの断面幅SW(mm)と外径OD(mm)との比SW/ODは、0.26以下であり、
 前記タイヤの内面に、1つ以上の制音体を設け、
 前記タイヤをリムに組み込み、規定内圧を充填し、無負荷状態とした際の、タイヤ幅方向断面において、接地端間でのタイヤ幅方向中央50%のタイヤ幅方向領域をセンター領域とし、該センター領域よりタイヤ幅方向外側の25%ずつのタイヤ幅方向領域をショルダー領域とするとき、
 前記制音体は、少なくとも、前記ショルダー領域における前記タイヤの内面に設けられ、
 タイヤ幅方向断面において、前記制音体の前記タイヤの内面に沿ったペリフェリ長さをL1(mm)とし、前記制音体の前記タイヤの内面に沿った方向に直交する方向に計測した際の最大厚さをT1(mm)とするとき、比T1/L1は、0.2以上0.8以下であることを特徴とする。
 ここでいう、「ペリフェリ長さ」とは、制音体が2つ以上設けられている場合は、合計のペリフェリ長さをいうものとする。
The gist of the present invention is as follows.
In the first aspect, the pneumatic radial tire for passenger cars of the present invention is
A pneumatic radial tire for a passenger vehicle, which comprises a carcass consisting of a ply of a radial arrangement cord, straddling toroidally between a pair of bead portions,
The sectional width SW of the tire is less than 165 (mm), the ratio SW/OD of the sectional width SW (mm) and the outer diameter OD (mm) of the tire is 0.26 or less,
The inner surface of the tire is provided with one or more noise dampers,
In the tire width direction cross section when the tire is incorporated into a rim, filled with a specified internal pressure, and in a no-load state, a tire width direction region of the tire width direction center 50% between ground contact ends is defined as a center region, and the center When the tire width direction area of 25% outside the area in the tire width direction is set as the shoulder area,
The noise damper is provided at least on the inner surface of the tire in the shoulder region,
In the tire width direction cross section, when the peripheral length of the noise suppressor along the inner surface of the tire is L1 (mm), the measurement is performed in a direction orthogonal to the direction of the noise suppressor along the inner surface of the tire. When the maximum thickness is T1 (mm), the ratio T1/L1 is characterized by being 0.2 or more and 0.8 or less.
The term “periphery length” as used herein means the total length of peripherals when two or more noise suppressors are provided.
 ここで、「リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会)のJATMA  YEAR  BOOK、欧州ではETRTO(The  European  Tyre  and  Rim  Technical  Organisation)のSTANDARDS  MANUAL、米国ではTRA(The  Tire  and  Rim  Association,Inc.)のYEAR  BOOK等に記載されているまたは将来的に記載される、適用サイズにおける標準リム(ETRTOのSTANDARDS  MANUALではMeasuring  Rim、TRAのYEAR  BOOKではDesign  Rim)を指す(即ち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTO  2013年度版において「FUTURE  DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいう。
 また、「規定内圧」とは、上記JATMA等に記載されている、適用サイズ・プライレーティングにおける単輪の最大負荷能力に対応する空気圧(最高空気圧)を指し、上記産業規格に記載のないサイズの場合は、「規定内圧」は、タイヤを装着する車両毎に規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。さらに、後述の「最大負荷荷重」とは、上記最大負荷能力に対応する荷重をいうものとする。
Here, the "rim" is an industrial standard that is effective in regions where tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, and in Europe, ETRTO (The European Tire and Rim). STANDARDS MANUAL of ETRTO, or STANDARDS MANUAL of standard size described in YEAR BOOK of TRA (The Tire and Rim Association, Inc.) in the United States, STANDARDS MANUAL of ETRA , TRA's YEAR BOOK Design Rim) (i.e., the above-mentioned "rim" includes, in addition to the current size, a size that may be included in the industry standard in the future. , The size described as “FUTURE DEVELOPMENTS” in the ETRTO 2013 edition can be mentioned.) However, in the case of a size not listed in the above industrial standards, the width corresponding to the bead width of the tire Refers to the rim.
The "specified internal pressure" refers to the air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in the applicable size and ply rating described in JATMA, etc. In this case, the “specified internal pressure” means the air pressure (maximum air pressure) corresponding to the maximum load capacity specified for each vehicle in which the tire is mounted. Further, the “maximum load capacity” described later means a load corresponding to the maximum load capacity.
 また、「接地端」とは、上記タイヤをリムに組み込み、規定内圧を充填し、最大負荷荷重を負荷した際に、路面と接する接地面のタイヤ幅方向両端を意味する。 The term "ground contact edge" means both ends in the tire width direction of the ground contact surface that comes into contact with the road surface when the tire is incorporated into a rim, the specified internal pressure is filled, and the maximum load is applied.
 第2の態様において、本発明の乗用車用空気入りラジアルタイヤは、
 一対のビード部間でトロイダル状に跨る、ラジアル配列コードのプライからなるカーカスを備えた、乗用車用空気入りラジアルタイヤであって、
 前記タイヤの断面幅SWが165(mm)以上であり、前記タイヤの断面幅SW(mm)及び外径OD(mm)は、関係式、
OD(mm)≧2.135×SW(mm)+282.3
を満たし、
 前記タイヤの内面に、1つ以上の制音体を設け、
 前記タイヤをリムに組み込み、規定内圧を充填し、無負荷状態とした際の、タイヤ幅方向断面において、接地端間でのタイヤ幅方向中央50%のタイヤ幅方向領域をセンター領域とし、該センター領域よりタイヤ幅方向外側の25%ずつのタイヤ幅方向領域をショルダー領域とするとき、
 前記制音体は、少なくとも、前記ショルダー領域における前記タイヤの内面に設けられ、
 タイヤ幅方向断面において、前記制音体の前記タイヤの内面に沿ったペリフェリ長さをL1(mm)とし、前記制音体の前記タイヤの内面に沿った方向に直交する方向に計測した際の最大厚さをT1(mm)とするとき、比T1/L1は、0.2以上0.8以下であることを特徴とする。
In a second aspect, the pneumatic radial tire for passenger cars of the present invention is
A pneumatic radial tire for a passenger vehicle, which comprises a carcass consisting of a ply of a radial arrangement cord, straddling toroidally between a pair of bead portions,
The sectional width SW of the tire is 165 (mm) or more, and the sectional width SW (mm) and the outer diameter OD (mm) of the tire are expressed by a relational expression,
OD (mm)≧2.135×SW (mm)+282.3
The filling,
The inner surface of the tire is provided with one or more noise dampers,
In the tire width direction cross section when the tire is incorporated into a rim, filled with a specified internal pressure, and in a no-load state, a tire width direction region of the tire width direction center 50% between ground contact ends is defined as a center region, and the center When the tire width direction area of 25% outside the area in the tire width direction is set as the shoulder area,
The noise damper is provided at least on the inner surface of the tire in the shoulder region,
In the tire width direction cross section, when the peripheral length of the noise suppressor along the inner surface of the tire is L1 (mm), the measurement is performed in a direction orthogonal to the direction of the noise suppressor along the inner surface of the tire. When the maximum thickness is T1 (mm), the ratio T1/L1 is characterized by being 0.2 or more and 0.8 or less.
 第3の態様において、本発明の乗用車用空気入りラジアルタイヤは、
 一対のビード部間でトロイダル状に跨る、ラジアル配列コードのプライからなるカーカスを備えた、乗用車用空気入りラジアルタイヤであって、
 前記タイヤの断面幅SW(mm)及び外径OD(mm)は、関係式、
OD(mm)≧-0.0187×SW(mm)2+9.15×SW(mm)-380
を満たし、
 前記タイヤの内面に、1つ以上の制音体を設け、
 前記タイヤをリムに組み込み、規定内圧を充填し、無負荷状態とした際の、タイヤ幅方向断面において、接地端間でのタイヤ幅方向中央50%のタイヤ幅方向領域をセンター領域とし、該センター領域よりタイヤ幅方向外側の25%ずつのタイヤ幅方向領域をショルダー領域とするとき、
 前記制音体は、少なくとも、前記ショルダー領域における前記タイヤの内面に設けられ、
 タイヤ幅方向断面において、前記制音体の前記タイヤの内面に沿ったペリフェリ長さをL1(mm)とし、前記制音体の前記タイヤの内面に沿った方向に直交する方向に計測した際の最大厚さをT1(mm)とするとき、比T1/L1は、0.2以上0.8以下であることを特徴とする。
In a third aspect, the pneumatic radial tire for passenger cars of the present invention is
A pneumatic radial tire for a passenger vehicle, which comprises a carcass consisting of a ply of a radial arrangement cord, straddling toroidally between a pair of bead portions,
The sectional width SW (mm) and outer diameter OD (mm) of the tire are expressed by a relational expression,
OD (mm) ≥-0.0187 x SW (mm) 2 +9.15 x SW (mm)-380
The filling,
The inner surface of the tire is provided with one or more noise dampers,
In the tire width direction cross section when the tire is incorporated into a rim, filled with a specified internal pressure, and in a no-load state, a tire width direction region of the tire width direction center 50% between ground contact ends is defined as a center region, and the center When the tire width direction area of 25% outside the area in the tire width direction is set as the shoulder area,
The noise damper is provided at least on the inner surface of the tire in the shoulder region,
In the tire width direction cross section, when the peripheral length of the noise suppressor along the inner surface of the tire is L1 (mm), the measurement is performed in a direction orthogonal to the direction of the noise suppressor along the inner surface of the tire. When the maximum thickness is T1 (mm), the ratio T1/L1 is characterized by being 0.2 or more and 0.8 or less.
 本明細書において、「サイドウォール部」とは、接地端Eのタイヤ幅方向外側であって、接地端Eからビード部のタイヤ径方向外側端(ビードフィラを有する場合は、そのタイヤ径方向外側端であり、ビードフィラを有しない場合は、ビードコアのタイヤ径方向外側端)までにかけてのタイヤ径方向領域をいう。 In the present specification, the “sidewall portion” is the tire width direction outer side of the ground contact end E, and the tire radial direction outer end of the bead portion from the ground contact end E (in the case of having a bead filler, the tire radial direction outer end thereof). In the case of not having a bead filler, it means a tire radial direction region up to the tire radial direction outer end of the bead core.
 本明細書において、「バットレス部」とは、タイヤを適用リムに装着し、規定内圧を充填し、無負荷とした、タイヤ幅方向断面視において、接地端Eを通りタイヤ径方向に延びる仮想線と、接地端Eからタイヤの最大幅となるタイヤ表面位置までのペリフェリ長さの半分の長さとなるタイヤ表面位置を通りタイヤ内面に垂直な仮想線と、で挟まれるタイヤ部分を意味する。 In the present specification, the "butless portion" means a virtual line extending in the tire radial direction through the ground contact end E in the tire width direction cross-sectional view in which the tire is mounted on the applicable rim, the internal pressure is filled with the tire, and no load is applied. And a virtual line that passes through the tire surface position that is half the length of the peripheral from the ground contact end E to the tire surface position that is the maximum width of the tire and that is perpendicular to the tire inner surface.
 本発明によれば、制音性とタイヤ耐久性とを両立させた、乗用車用空気入りラジアルタイヤを提供することができる。 According to the present invention, it is possible to provide a pneumatic radial tire for passenger cars, which has both noise control and tire durability.
タイヤの断面幅SW及び外径ODを示す概略図である。It is a schematic diagram showing section width SW and outer diameter OD of a tire. 本発明の第1~第3の態様の一実施形態にかかる乗用車用空気入りラジアルタイヤを示す、タイヤ幅方向断面図である。FIG. 3 is a cross-sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to an embodiment of the first to third aspects of the present invention. 通常のタイヤサイズのタイヤの接地圧分布を模式的に示す図である。It is a figure which shows typically the contact pressure distribution of the tire of a normal tire size. 狭幅・大径タイヤの接地圧分布を模式的に示す図である。It is a figure which shows typically the contact pressure distribution of a narrow width and large diameter tire. 本発明の第1~第3の態様の他の実施形態にかかる乗用車用空気入りラジアルタイヤを示す、タイヤ幅方向断面図である。FIG. 4 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to another embodiment of the first to third aspects of the present invention. 本発明の第1~第3の態様の別の実施形態にかかる乗用車用空気入りラジアルタイヤを示す、タイヤ幅方向断面図である。FIG. 3 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to another embodiment of the first to third aspects of the present invention. 本発明の第1~第3の態様のさらに別の実施形態にかかる乗用車用空気入りラジアルタイヤを示す、タイヤ幅方向断面図である。FIG. 6 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to still another embodiment of the first to third aspects of the present invention.
 以下、本発明の実施形態について、図面を参照して詳細に例示説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<乗用車用空気入りラジアルタイヤ>
 図1は、タイヤの断面幅SW及び外径ODを示す概略図である。
 本発明の第1の態様における一実施形態の乗用車用空気入りラジアルタイヤ(以下、単にタイヤとも称する)は、タイヤの断面幅SWが165(mm)未満であり、タイヤの断面幅SWと外径ODとの比SW/ODは、0.26以下であり、狭幅・大径の形状をなしている。タイヤの断面幅SWをタイヤの外径ODに比して狭くすることにより、空気抵抗を低減することができ、且つ、タイヤの外径ODをタイヤの断面幅SWに比して大きくすることにより、タイヤの接地面付近でのトレッドゴムの変形を抑制して、転がり抵抗を低減することができ、これらにより、タイヤの燃費性を向上させることができる。上記SW/ODは、0.25以下とすることが好ましく、0.24以下とすることがより好ましい。
 上記比は、タイヤの内圧が200kPa以上である場合に満たされるものであることが好ましく、220kPa以上である場合に満たされるものであることがより好ましく、280kPa以上である場合に満たされるものであることがさらに好ましい。転がり抵抗を低減することができるからである。一方で、上記比は、タイヤの内圧が350kPa以下である場合に満たされるものであることが好ましい。乗り心地性を向上させることができるからである。
 ここで、タイヤの断面幅SWは、接地面積を確保する観点からは、上記比を満たす範囲において、105mm以上とすることが好ましく、125mm以上とすることがより好ましく、135mm以上とすることがさらに好ましく、145mm以上とすることが特に好ましい。一方で、タイヤの断面幅SWは、空気抵抗を低減する観点からは、上記比を満たす範囲において、155mm以下とすることが好ましい。また、タイヤの外径ODは、転がり抵抗を低減する観点からは、上記比を満たす範囲において、500mm以上とすることが好ましく、550mm以上とすることがより好ましく、580mm以上とすることがさらに好ましい。一方で、タイヤの外径ODは、空気抵抗を低減する観点からは、上記比を満たす範囲において、800mm以下とすることが好ましく、720mm以下とすることがより好ましく、650mm以下とすることがさらに好ましく、630mm以下とすることが特に好ましい。また、リム径は、転がり抵抗を低減する観点からは、タイヤの断面幅SW及び外径ODが上記比を満たすとき、16インチ以上とすることが好ましく、17インチ以上とすることがより好ましく、18インチ以上とすることがさらに好ましい。一方で、リム径は、空気抵抗を低減する観点からは、タイヤの断面幅SW及び外径ODが上記比を満たすとき、22インチ以下とすることが好ましく、21インチ以下とすることがより好ましく、20インチ以下とすることがさらに好ましく、19インチ以下とすることが特に好ましい。また、タイヤの扁平率は、タイヤの断面幅SW及び外径ODが上記比を満たすとき、45~70とすることがより好ましく、45~65とすることがより好ましい。
 具体的なタイヤサイズは、特に限定されるものではないが、一例として、105/50R16、115/50R17、125/55R20、125/60R18、125/65R19、135/45R21、135/55R20、135/60R17、135/60R18、135/60R19、135/65R19、145/45R21、145/55R20、145/60R16、145/60R17、145/60R18、145/60R19、145/65R19、155/45R18、155/45R21、155/55R18、155/55R19、155/55R21、155/60R17、155/65R18、155/70R17、155/70R19のいずれかとすることができる。
<Pneumatic radial tires for passenger cars>
FIG. 1 is a schematic diagram showing a sectional width SW and an outer diameter OD of a tire.
A pneumatic radial tire for passenger cars (hereinafter, also simply referred to as a tire) according to an embodiment of the first aspect of the present invention has a tire sectional width SW of less than 165 (mm), and a tire sectional width SW and an outer diameter. The ratio SW/OD with OD is 0.26 or less, and the shape is narrow and large in diameter. By narrowing the cross-sectional width SW of the tire as compared with the outer diameter OD of the tire, air resistance can be reduced, and by increasing the outer diameter OD of the tire as compared with the cross-sectional width SW of the tire. The rolling resistance can be reduced by suppressing the deformation of the tread rubber near the ground contact surface of the tire, which can improve the fuel economy of the tire. The SW/OD is preferably 0.25 or less, more preferably 0.24 or less.
The above ratio is preferably satisfied when the internal pressure of the tire is 200 kPa or more, more preferably 220 kPa or more, and more preferably 280 kPa or more. Is more preferable. This is because the rolling resistance can be reduced. On the other hand, the above ratio is preferably satisfied when the internal pressure of the tire is 350 kPa or less. This is because the riding comfort can be improved.
Here, from the viewpoint of ensuring the ground contact area, the sectional width SW of the tire is preferably 105 mm or more, more preferably 125 mm or more, and further preferably 135 mm or more in the range satisfying the above ratio. It is preferably 145 mm or more and particularly preferably. On the other hand, the sectional width SW of the tire is preferably 155 mm or less in the range satisfying the above ratio from the viewpoint of reducing the air resistance. Further, from the viewpoint of reducing rolling resistance, the outer diameter OD of the tire is preferably 500 mm or more, more preferably 550 mm or more, and further preferably 580 mm or more in the range satisfying the above ratio. .. On the other hand, from the viewpoint of reducing the air resistance, the outer diameter OD of the tire is preferably 800 mm or less, more preferably 720 mm or less, and further preferably 650 mm or less in the range satisfying the above ratio. It is preferably 630 mm or less, and particularly preferably 630 mm or less. Further, from the viewpoint of reducing rolling resistance, the rim diameter is preferably 16 inches or more, and more preferably 17 inches or more when the sectional width SW and the outer diameter OD of the tire satisfy the above ratio. More preferably, it is 18 inches or more. On the other hand, from the viewpoint of reducing air resistance, the rim diameter is preferably 22 inches or less, and more preferably 21 inches or less when the sectional width SW and the outer diameter OD of the tire satisfy the above ratio. 20 inches or less is more preferable, and 19 inches or less is particularly preferable. Further, the flatness of the tire is more preferably 45 to 70, and further preferably 45 to 65 when the sectional width SW and the outer diameter OD of the tire satisfy the above ratios.
The specific tire size is not particularly limited, but as an example, 105/50R16, 115/50R17, 125/55R20, 125/60R18, 125/65R19, 135/45R21, 135/55R20, 135/60R17. , 135/60R18, 135/60R19, 135/65R19, 145/45R21, 145/55R20, 145/60R16, 145/60R17, 145/60R18, 145/60R19, 145/65R19, 155/45R18, 155/45R21, 155 /55R18, 155/55R19, 155/55R21, 155/60R17, 155/65R18, 155/70R17, 155/70R19.
 本発明の第2の態様における一実施形態のタイヤは、タイヤの断面幅SWが165(mm)以上であり、タイヤの断面幅SW(mm)及び外径OD(mm)は、関係式、
OD(mm)≧2.135×SW(mm)+282.3
を満たしており、狭幅・大径の形状をなしている。
 上記の関係式を満たすことにより、空気抵抗を低減することができ、且つ、転がり抵抗を低減することができ、これらにより、タイヤの燃費性を向上させることができる。
 なお、第2の態様において、タイヤの断面幅SW及び外径ODは、上記の関係式を満たした上で、比SW/ODが0.26以下であることが好ましく、0.25以下であることがより好ましく、0.24以下であることがさらに好ましい。タイヤの燃費性をさらに向上させることができるからである。
 上記関係式及び/又は比は、タイヤの内圧が200kPa以上である場合に満たされるものであることが好ましく、220kPa以上である場合に満たされるものであることがより好ましく、280kPa以上である場合に満たされるものであることがさらに好ましい。転がり抵抗を低減することができるからである。一方で、上記関係式及び/又は比は、タイヤの内圧が350kPa以下である場合に満たされるものであることが好ましい。乗り心地性を向上させることができるからである。
 ここで、タイヤの断面幅SWは、接地面積を確保する観点からは、上記関係式を満たす範囲において、175mm以上とすることが好ましく、185mm以上とすることがより好ましい。一方で、タイヤの断面幅SWは、空気抵抗を低減する観点からは、上記関係式を満たす範囲において、230mm以下とすることが好ましく、215mm以下とすることがより好ましく、205mm以下とすることがさらに好ましく、195mm以下とすることが特に好ましい。また、タイヤの外径ODは、転がり抵抗を低減する観点からは、上記関係式を満たす範囲において、630mm以上とすることが好ましく、650mm以上とすることがより好ましい。一方で、タイヤの外径ODは、空気抵抗を低減する観点からは、上記関係式を満たす範囲において、800mm以下とすることが好ましく、750mm以下とすることがより好ましく、720mm以下とすることがさらに好ましい。また、リム径は、転がり抵抗を低減する観点からは、タイヤの断面幅SW及び外径ODが上記関係式を満たすとき、18インチ以上とすることが好ましく、19インチ以上とすることがより好ましい。一方で、リム径は、空気抵抗を低減する観点からは、タイヤの断面幅SW及び外径ODが上記関係式を満たすとき、22インチ以下とすることが好ましく、21インチ以下とすることがより好ましい。また、タイヤの断面幅SW及び外径ODが上記関係式を満たすとき、タイヤの扁平率は、45~70とすることが好ましく、45~65とすることがより好ましい。
 具体的なタイヤサイズは、特に限定されるものではないが、一例として、165/45R22、165/55R18、165/55R19、165/55R20、165/55R21、165/60R19、165/65R19、165/70R18、175/45R23、175/55R19、175/55R20、175/55R22、175/60R18、185/45R22、185/50R20、185/55R19、185/55R20、185/60R19、185/60R20、195/50R20、195/55R20、195/60R19、205/50R21、205/55R20、215/50R21のいずれかとすることができる。
The tire of one embodiment in the second aspect of the present invention has a tire cross-section width SW of 165 (mm) or more, and the tire cross-section width SW (mm) and outer diameter OD (mm) are expressed by a relational expression,
OD (mm)≧2.135×SW (mm)+282.3
It has a narrow width and a large diameter.
By satisfying the above relational expression, the air resistance can be reduced and the rolling resistance can be reduced, whereby the fuel efficiency of the tire can be improved.
In the second aspect, the sectional width SW and the outer diameter OD of the tire satisfy the above relational expression, and the ratio SW/OD is preferably 0.26 or less, and is 0.25 or less. More preferably, it is more preferably 0.24 or less. This is because the fuel efficiency of the tire can be further improved.
The above relational expression and/or ratio is preferably satisfied when the internal pressure of the tire is 200 kPa or more, more preferably 220 kPa or more, and more preferably 280 kPa or more. More preferably, it is satisfied. This is because the rolling resistance can be reduced. On the other hand, it is preferable that the above relational expressions and/or ratios are satisfied when the internal pressure of the tire is 350 kPa or less. This is because the riding comfort can be improved.
Here, the sectional width SW of the tire is preferably 175 mm or more, and more preferably 185 mm or more, in the range satisfying the above relational expression, from the viewpoint of ensuring the ground contact area. On the other hand, from the viewpoint of reducing the air resistance, the sectional width SW of the tire is preferably 230 mm or less, more preferably 215 mm or less, and more preferably 205 mm or less in the range satisfying the above relational expression. More preferably, it is particularly preferably 195 mm or less. From the viewpoint of reducing rolling resistance, the outer diameter OD of the tire is preferably 630 mm or more, and more preferably 650 mm or more, in the range satisfying the above relational expression. On the other hand, from the viewpoint of reducing air resistance, the outer diameter OD of the tire is preferably 800 mm or less, more preferably 750 mm or less, and even more preferably 720 mm or less in the range satisfying the above relational expression. More preferable. Further, from the viewpoint of reducing rolling resistance, the rim diameter is preferably 18 inches or more, and more preferably 19 inches or more when the sectional width SW and the outer diameter OD of the tire satisfy the above relational expressions. .. On the other hand, from the viewpoint of reducing air resistance, the rim diameter is preferably 22 inches or less, and more preferably 21 inches or less when the tire sectional width SW and the outer diameter OD satisfy the above relational expressions. preferable. Further, when the sectional width SW and the outer diameter OD of the tire satisfy the above relational expressions, the flatness of the tire is preferably 45 to 70, more preferably 45 to 65.
The specific tire size is not particularly limited, but as an example, 165/45R22, 165/55R18, 165/55R19, 165/55R20, 165/55R21, 165/60R19, 165/65R19, 165/70R18. 175/45R23, 175/55R19, 175/55R20, 175/55R22, 175/60R18, 185/45R22, 185/50R20, 185/55R19, 185/55R20, 185/60R19, 185/60R20, 195/50R20, 195 /55R20, 195/60R19, 205/50R21, 205/55R20, 215/50R21.
 本発明の第3の態様における一実施形態のタイヤは、タイヤの断面幅SW(mm)及び外径OD(mm)は、関係式、
OD(mm)≧-0.0187×SW(mm)2+9.15×SW(mm)-380
を満たしており、狭幅・大径の形状をなしている。
 上記の関係式を満たすことにより、空気抵抗を低減することができ、且つ、転がり抵抗を低減することができ、これらにより、タイヤの燃費性を向上させることができる。
 なお、第3の態様において、タイヤの断面幅SW及び外径ODは、上記の関係式を満たした上で、比SW/ODが0.26以下であることが好ましく、0.25以下であることがより好ましく、0.24以下であることがさらに好ましい。タイヤの燃費性をさらに向上させることができるからである。
 上記関係式及び/又は比は、タイヤの内圧が200kPa以上である場合に満たされるものであることが好ましく、220kPa以上である場合に満たされるものであることがより好ましく、280kPa以上である場合に満たされるものであることがさらに好ましい。転がり抵抗を低減することができるからである。一方で、上記関係式及び/又は比は、タイヤの内圧が350kPa以下である場合に満たされるものであることが好ましい。乗り心地性を向上させることができるからである。
 ここで、タイヤの断面幅SWは、接地面積を確保する観点からは、上記関係式を満たす範囲において、105mm以上とすることが好ましく、125mm以上とすることがより好ましく、135mm以上とすることがさらに好ましく、145mm以上とすることが特に好ましい。一方で、タイヤの断面幅SWは、空気抵抗を低減する観点からは、上記関係式を満たす範囲において、230mm以下とすることが好ましく、215mm以下とすることがより好ましく、205mm以下とすることがさらに好ましく、195mm以下とすることが特に好ましい。また、タイヤの外径ODは、転がり抵抗を低減する観点からは、上記関係式を満たす範囲において、500mm以上とすることが好ましく、550mm以上とすることがより好ましく、580mm以上とすることがさらに好ましい。一方で、タイヤの外径ODは、空気抵抗を低減する観点からは、上記関係式を満たす範囲において、800mm以下とすることが好ましく、750mm以下とすることがより好ましく、720mm以下とすることがさらに好ましい。また、リム径は、転がり抵抗を低減する観点からは、タイヤの断面幅SW及び外径ODが上記関係式を満たすとき、16インチ以上とすることが好ましく、17インチ以上とすることがより好ましく、18インチ以上とすることがさらに好ましい。一方で、リム径は、空気抵抗を低減する観点からは、タイヤの断面幅SW及び外径ODが上記関係式を満たすとき、22インチ以下とすることが好ましく、21インチ以下とすることがより好ましく、20インチ以下とすることがさらに好ましい。また、タイヤの扁平率は、タイヤの断面幅SW及び外径ODが上記比を満たすとき、45~70とすることがより好ましく、45~65とすることがより好ましい。
 具体的なタイヤサイズは、特に限定されるものではないが、一例として、105/50R16、115/50R17、125/55R20、125/60R18、125/65R19、135/45R21、135/55R20、135/60R17、135/60R18、135/60R19、135/65R19、145/45R21、145/55R20、145/60R16、145/60R17、145/60R18、145/60R19、145/65R19、155/45R18、155/45R21、155/55R18、155/55R19、155/55R21、155/60R17、155/65R18、155/70R17、155/70R19、165/45R22、165/55R18、165/55R19、165/55R20、165/55R21、165/60R19、165/65R19、165/70R18、175/45R23、175/55R18、175/55R19、175/55R20、175/55R22、175/60R18、185/45R22、185/50R20、185/55R19、185/55R20、185/60R19、185/60R20、195/50R20、195/55R20、195/60R19、205/50R21、205/55R20、215/50R21のいずれかとすることができる。
In the tire according to the embodiment of the third aspect of the present invention, the sectional width SW (mm) and the outer diameter OD (mm) of the tire are expressed by a relational expression,
OD (mm) ≥-0.0187 x SW (mm) 2 +9.15 x SW (mm)-380
It has a narrow width and a large diameter.
By satisfying the above relational expression, the air resistance can be reduced and the rolling resistance can be reduced, whereby the fuel efficiency of the tire can be improved.
In the third aspect, the sectional width SW and the outer diameter OD of the tire satisfy the above relational expression, and the ratio SW/OD is preferably 0.26 or less, and is 0.25 or less. More preferably, it is more preferably 0.24 or less. This is because the fuel efficiency of the tire can be further improved.
The above relational expression and/or ratio is preferably satisfied when the internal pressure of the tire is 200 kPa or more, more preferably 220 kPa or more, and more preferably 280 kPa or more. More preferably, it is satisfied. This is because the rolling resistance can be reduced. On the other hand, it is preferable that the above relational expressions and/or ratios are satisfied when the internal pressure of the tire is 350 kPa or less. This is because the riding comfort can be improved.
Here, from the viewpoint of securing the ground contact area, the tire cross-section width SW is preferably 105 mm or more, more preferably 125 mm or more, and more preferably 135 mm or more in the range satisfying the above relational expression. More preferably, it is more preferably 145 mm or more. On the other hand, from the viewpoint of reducing the air resistance, the sectional width SW of the tire is preferably 230 mm or less, more preferably 215 mm or less, and more preferably 205 mm or less in the range satisfying the above relational expression. More preferably, it is particularly preferably 195 mm or less. From the viewpoint of reducing rolling resistance, the outer diameter OD of the tire is preferably 500 mm or more, more preferably 550 mm or more, and further preferably 580 mm or more in the range satisfying the above relational expression. preferable. On the other hand, from the viewpoint of reducing air resistance, the outer diameter OD of the tire is preferably 800 mm or less, more preferably 750 mm or less, and even more preferably 720 mm or less in the range satisfying the above relational expression. More preferable. From the viewpoint of reducing rolling resistance, the rim diameter is preferably 16 inches or more, and more preferably 17 inches or more when the sectional width SW and the outer diameter OD of the tire satisfy the above relational expressions. And more preferably 18 inches or more. On the other hand, from the viewpoint of reducing air resistance, the rim diameter is preferably 22 inches or less, and more preferably 21 inches or less when the tire sectional width SW and the outer diameter OD satisfy the above relational expressions. It is preferably 20 inches or less. Further, the flatness of the tire is more preferably 45 to 70, and further preferably 45 to 65 when the sectional width SW and the outer diameter OD of the tire satisfy the above ratios.
The specific tire size is not particularly limited, but as an example, 105/50R16, 115/50R17, 125/55R20, 125/60R18, 125/65R19, 135/45R21, 135/55R20, 135/60R17. , 135/60R18, 135/60R19, 135/65R19, 145/45R21, 145/55R20, 145/60R16, 145/60R17, 145/60R18, 145/60R19, 145/65R19, 155/45R18, 155/45R21, 155 /55R18, 155/55R19, 155/55R21, 155/60R17, 155/65R18, 155/70R17, 155/70R19, 165/45R22, 165/55R18, 165/55R19, 165/55R20, 165/55R21, 165/60R19. , 165/65R19, 165/70R18, 175/45R23, 175/55R18, 175/55R19, 175/55R20, 175/55R22, 175/60R18, 185/45R22, 185/50R20, 185/55R19, 185/55R20, 185 /60R19, 185/60R20, 195/50R20, 195/55R20, 195/60R19, 205/50R21, 205/55R20, 215/50R21.
 図2は、本発明の第1~第3の態様の一実施形態にかかる乗用車用空気入りラジアルタイヤを示す、タイヤ幅方向断面図である。図2は、タイヤをリムに組み込み、規定内圧を充填し、無負荷とした際のタイヤの幅方向断面を示している。図2に示すように、このタイヤ1は、一対のビード部2間でトロイダル状に跨る、ラジアル配列コードのプライからなるカーカス3を備えている。また、このタイヤ1は、カーカス3のタイヤ径方向外側に、図示例で2層のベルト層4a、4bからなるベルト4及びトレッド5を順に備えている。 FIG. 2 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to an embodiment of the first to third aspects of the present invention. FIG. 2 shows a cross-section in the width direction of the tire when the tire is incorporated into a rim, a specified internal pressure is filled, and no load is applied. As shown in FIG. 2, the tire 1 is provided with a carcass 3 made of a ply of a radial arrangement cord, which extends in a toroidal manner between a pair of bead portions 2. Further, the tire 1 is provided with a belt 4 and a tread 5, which are two layers of belt layers 4a and 4b in the illustrated example, in that order on the tire radial outside of the carcass 3.
 この例では、一対のビード部2には、ビードコア2aがそれぞれ埋設されている。本発明では、ビードコア2aの断面形状や材質は特に限定されず、乗用車用空気入りラジアルタイヤにおいて通常用いられる構成とすることができる。本発明では、ビードコア2aは、複数の小ビードコアに分割されたものとすることもできる。あるいは、本発明では、ビードコア2aを有しない構成とすることもできる。 In this example, a bead core 2a is embedded in each of the pair of bead portions 2. In the present invention, the cross-sectional shape and the material of the bead core 2a are not particularly limited, and the bead core 2a may have a configuration normally used in a pneumatic radial tire for passenger cars. In the present invention, the bead core 2a may be divided into a plurality of small bead cores. Alternatively, in the present invention, the bead core 2a may be omitted.
 図示例のタイヤ1は、ビードコア2aのタイヤ径方向外側に、断面略三角形状のビードフィラ2bを有している。ビードフィラ2bの断面形状は、この例に限定されるものではなく、材質も特に限定されない。あるいは、ビードフィラ2bを有しない構成としてタイヤを軽量化することもできる。 The tire 1 in the illustrated example has a bead filler 2b having a substantially triangular cross section on the tire radial outside of the bead core 2a. The cross-sectional shape of the bead filler 2b is not limited to this example, and the material is not particularly limited. Alternatively, it is possible to reduce the weight of the tire by using the configuration without the bead filler 2b.
 本実施形態において、ビードフィラ2bのタイヤ幅方向断面積S1は、ビードコア2aのタイヤ幅方向断面積S2の1倍以上4倍以下とすることが好ましい。上記断面積S1を上記断面積S2の1倍以上とすることにより、ビード部2の剛性を確保することができ、上記断面積S1を上記断面積S2の4倍以下とすることにより、タイヤを軽量化して燃費性をさらに向上させることができるからである。また、本実施形態において、タイヤ最大幅位置(タイヤ幅方向の幅が最大となるタイヤ径方向位置であって、それがタイヤ径方向領域となる場合は、その領域のタイヤ径方向中心位置)におけるサイドウォール部のゲージTsと、ビードコア2aのタイヤ径方向中心位置におけるビード幅(ビード部2のタイヤ幅方向の幅)Tbとの比Ts/Tbを、15%以上40%以下とすることが好ましい。上記比Ts/Tbを15%以上とすることにより、サイドウォール部の剛性を確保することができ、一方で、上記比Ts/Tbを40%以下とすることにより、タイヤを軽量化して燃費性をさらに向上させることができるからである。なお、ゲージTsはゴム、補強部材、インナーライナーなど全ての部材の厚みの合計となる(ただし、サイドウォール部の内面に制音体が配置されている場合であっても、制音体の厚さは含まない)。また、ビードコア2aがカーカス3によって複数の小ビードコアに分割されている構造の場合には、全小ビードコアのうちタイヤ幅方向最内側端部と最外側端部の距離をTbとする。また、本実施形態では、タイヤ最大幅位置におけるサイドウォール部のゲージTsと、カーカスコードの径Tcとの比Ts/Tcを5以上10以下とすることが好ましい。上記比Ts/Tcを5以上とすることにより、サイドウォール部の剛性を確保することができ、一方で、上記比Ts/Tcを10以下とすることにより、タイヤを軽量化して燃費性をさらに向上させることができるからである。本実施形態では、タイヤ最大幅位置は、例えば、ビードベースライン(ビードベースを通りタイヤ幅方向に平行な仮想線)からタイヤ径方向外側に、タイヤ断面高さ対比で50%~90%の範囲に設けることができる。
 ここで、「ビード部」とは、ビードフィラを有する場合には、リムベースラインからビードフィラのタイヤ径方向最外側端までのタイヤ径方向領域にある部分をいい、ビードフィラを有しない場合には、リムベースラインからビードコアのタイヤ径方向最外側端までのタイヤ径方向領域にある部分をいう。
In the present embodiment, the tire width direction cross-sectional area S1 of the bead filler 2b is preferably 1 to 4 times the tire width direction cross-sectional area S2 of the bead core 2a. By setting the cross-sectional area S1 to 1 times or more of the cross-sectional area S2, the rigidity of the bead portion 2 can be ensured, and by setting the cross-sectional area S1 to 4 times or less of the cross-sectional area S2, the tire is This is because the weight can be reduced and the fuel economy can be further improved. Further, in the present embodiment, at the tire maximum width position (the tire radial direction position where the width in the tire width direction is the maximum, and when it is the tire radial direction region, the tire radial direction center position of that region) The ratio Ts/Tb of the gauge Ts of the sidewall portion and the bead width (width of the bead portion 2 in the tire width direction) Tb at the tire radial center of the bead core 2a is preferably 15% or more and 40% or less. .. By setting the ratio Ts/Tb to 15% or more, the rigidity of the sidewall portion can be secured. On the other hand, by setting the ratio Ts/Tb to 40% or less, the tire can be made lighter and the fuel economy can be improved. This is because it can be further improved. Note that the gauge Ts is the sum of the thicknesses of all the members such as rubber, the reinforcing member, and the inner liner (however, even when the noise suppressor is arranged on the inner surface of the sidewall portion, the thickness of the noise suppressor is Not included). In the case where the bead core 2a is divided into a plurality of small bead cores by the carcass 3, the distance between the innermost end and the outermost end in the tire width direction of all the small bead cores is Tb. Further, in the present embodiment, it is preferable that the ratio Ts/Tc of the gauge Ts of the sidewall portion at the tire maximum width position and the diameter Tc of the carcass cord is 5 or more and 10 or less. By setting the ratio Ts/Tc to 5 or more, the rigidity of the sidewall portion can be secured, while setting the ratio Ts/Tc to 10 or less makes the tire lighter and further improves fuel economy. This is because it can be improved. In the present embodiment, the maximum tire width position is, for example, in the range of 50% to 90% in terms of tire cross-sectional height from the bead base line (imaginary line that passes through the bead base and is parallel to the tire width direction) to the tire radial outside. Can be provided.
Here, the "bead portion" refers to a portion in the tire radial region from the rim baseline to the tire radial outermost end of the bead filler when it has a bead filler, and when it does not have a bead filler, The portion in the tire radial direction region from the baseline to the tire radial outermost end of the bead core.
 本実施形態では、タイヤ1は、リムガードを有する構造とすることもできる。また、本実施形態では、ビード部2には補強等を目的としてゴム層やコード層等の追加部材をさらに設けることもできる。このような追加部材はカーカス3やビードフィラ2bに対して様々な位置に設けることができる。 In the present embodiment, the tire 1 may have a structure having a rim guard. Further, in the present embodiment, the bead portion 2 may be further provided with an additional member such as a rubber layer or a cord layer for the purpose of reinforcement or the like. Such an additional member can be provided at various positions with respect to the carcass 3 and the bead filler 2b.
 図2に示す例では、カーカス3は、1枚のカーカスプライからなる。一方で、本発明では、カーカスプライの枚数は特に限定されず、2枚以上とすることもできる。また、図2に示す例では、カーカス3は、一対のビード部2間をトロイダル状に跨るカーカス本体部3aと、該カーカス本体部3aからビードコア2a周りに折り返されてなる折り返し部3bと、を有している。一方で、本発明では、カーカス折り返し部3bは、ビードコア2aに巻き付けることもでき、あるいは、分割された複数の小ビードコアで挟みこむ構造とすることもできる。図示例では、カーカス折り返し部3bの端3cは、ビードフィラ2bのタイヤ径方向外側端よりタイヤ径方向外側、且つ、タイヤ最大幅位置よりタイヤ径方向内側に位置している。これにより、サイドウォール部の剛性を確保しつつも、タイヤを軽量化することができる。一方で、本発明においては、カーカス折り返し部3bの端3cは、ビードフィラ2bのタイヤ径方向外側端よりタイヤ径方向内側に位置していても良く、あるいは、タイヤ最大幅位置よりタイヤ径方向外側に位置していても良い。あるいは、カーカス折り返し部3bの端3cは、カーカス本体部2aとベルト4とのタイヤ径方向の間に位置するように、ベルト4の端(例えばベルト層4bの端)よりタイヤ幅方向内側に位置する、エンベロープ構造とすることもできる。さらに、カーカス3が複数枚のカーカスプライで構成される場合には、カーカスプライ間で、カーカス折り返し部3bの端3cの位置(例えばタイヤ径方向位置)を同じとすることも異ならせることもできる。カーカス3のコードの打ち込み数としては、特に限定されるものではないが、例えば、20~60本/50mmの範囲とすることができる。また、カーカスラインには様々な構造を採用することができる。例えば、タイヤ径方向において、カーカス最大幅位置をビード部2側に近づけることも、トレッド5側に近づけることもできる。例えば、カーカス最大幅位置は、ビードベースラインからタイヤ径方向外側に、タイヤ断面高さ対比で50%~90%の範囲に設けることができる。上記「ラジアル配列」は、タイヤ周方向に対して85°以上、好ましくはタイヤ周方向に対して90°である。 In the example shown in FIG. 2, the carcass 3 is composed of one carcass ply. On the other hand, in the present invention, the number of carcass plies is not particularly limited, and may be two or more. Further, in the example shown in FIG. 2, the carcass 3 includes a carcass body portion 3a that straddles between the pair of bead portions 2 in a toroidal shape, and a folded portion 3b that is folded from the carcass body portion 3a around the bead core 2a. Have On the other hand, in the present invention, the carcass folded-back portion 3b may be wound around the bead core 2a or may be sandwiched between a plurality of divided small bead cores. In the illustrated example, the end 3c of the carcass folded-back portion 3b is located outside the tire radial direction outer end of the bead filler 2b in the tire radial direction and inside the tire maximum width position in the tire radial direction. As a result, it is possible to reduce the weight of the tire while ensuring the rigidity of the sidewall portion. On the other hand, in the present invention, the end 3c of the carcass folded-back portion 3b may be located on the tire radial direction inner side from the tire radial direction outer end of the bead filler 2b, or on the tire radial direction outer side from the tire maximum width position. It may be located. Alternatively, the end 3c of the carcass folded-back portion 3b is positioned inside the tire width direction from the end of the belt 4 (for example, the end of the belt layer 4b) so as to be located between the carcass body 2a and the belt 4 in the tire radial direction. It may also be an envelope structure. Further, when the carcass 3 is composed of a plurality of carcass plies, the positions (for example, tire radial direction positions) of the ends 3c of the carcass folded-back portions 3b may be the same or different between the carcass plies. . The number of cords to be driven into the carcass 3 is not particularly limited, but may be, for example, 20 to 60 cords/50 mm. Further, various structures can be adopted for the carcass line. For example, the carcass maximum width position can be brought closer to the bead portion 2 side or the tread 5 side in the tire radial direction. For example, the carcass maximum width position can be provided outside the bead base line in the tire radial direction in the range of 50% to 90% in terms of the tire cross-sectional height. The “radial arrangement” is 85° or more with respect to the tire circumferential direction, and preferably 90° with respect to the tire circumferential direction.
 本実施形態のタイヤは、タイヤ周方向に対して傾斜して延びるコードのゴム引き層からなる1層以上の傾斜ベルト層を有することが好ましく、軽量化と接地面形状の歪みの抑制との兼ね合いから2層とすることが最も好ましい。なお、軽量化の観点からはベルト層を1層とすることもでき、接地面形状の歪みを抑制する観点からは3層以上とすることもできる。図2に示す例では、2層のベルト層4a、4bのうち、タイヤ径方向外側のベルト層4bのタイヤ幅方向の幅は、タイヤ径方向内側のベルト層4aのタイヤ幅方向の幅より小さい。一方で、タイヤ径方向外側のベルト層4bのタイヤ幅方向の幅は、タイヤ径方向内側のベルト層4aのタイヤ幅方向の幅より大きくすることもでき、同じとすることもできる。タイヤ幅方向の幅が最も大きいベルト層(図示例ではベルト層4a)のタイヤ幅方向の幅は、接地幅の90~115%であることが好ましく、接地幅の100~105%であることが特に好ましい。なお、「接地幅」とは、上記接地面における上記接地端E間のタイヤ幅方向の距離をいう。
 本実施形態において、ベルト層4a、4bのベルトコードとしては、金属コード、特にスチールコードを用いるのが最も好ましいが、有機繊維コードを用いることもできる。スチールコードはスチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むことができる。本実施形態において、ベルト層4a、4bのベルトコードはモノフィラメントコードや、複数のフィラメントを引き揃えたコード、複数のフィラメントを撚り合せたコードを用いることができる。撚り構造も種々のものを採用することができ、断面構造、撚りピッチ、撚り方向、隣接するフィラメント同士の距離も様々なものとすることができる。さらには異なる材質のフィラメントを撚り合せたコードを用いることもでき、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。
 本実施形態では、ベルト層4a、4bのベルトコードの傾斜角度は、タイヤ周方向に対して10°以上とすることが好ましい。本実施形態では、ベルト層4a、4bのベルトコードの傾斜角度を高角度、具体的にはタイヤ周方向に対して20°以上、好ましくは35°以上、特にタイヤ周方向に対して55°~85°の範囲とすることが好ましい。傾斜角度を20°以上(好ましくは35°以上)とすることにより、タイヤ幅方向に対する剛性を高め、特にコーナリング時の操縦安定性能を向上させることができるからである。また、層間ゴムのせん断変形を減少させて、転がり抵抗を低減することができるからである。
The tire according to the present embodiment preferably has one or more inclined belt layers formed of rubberized layers of cords that extend obliquely with respect to the tire circumferential direction, and is a compromise between weight reduction and suppression of ground plane shape distortion. It is most preferable to have two layers. The belt layer may be a single layer from the viewpoint of weight reduction, or may be three or more layers from the viewpoint of suppressing distortion of the ground contact surface shape. In the example shown in FIG. 2, of the two belt layers 4a and 4b, the width in the tire width direction of the belt layer 4b on the tire radial direction outer side is smaller than the width of the belt layer 4a on the tire radial direction inner side in the tire width direction. .. On the other hand, the width in the tire width direction of the belt layer 4b on the outer side in the tire radial direction can be made larger than or the same as the width of the belt layer 4a on the inner side in the tire radial direction in the tire width direction. The width of the belt layer having the largest width in the tire width direction (the belt layer 4a in the illustrated example) in the tire width direction is preferably 90 to 115% of the ground contact width, and 100 to 105% of the ground contact width. Particularly preferred. The "ground contact width" means the distance in the tire width direction between the ground contact ends E on the ground contact surface.
In the present embodiment, it is most preferable to use a metal cord, particularly a steel cord, as the belt cord of the belt layers 4a and 4b, but an organic fiber cord can also be used. The steel cord is mainly composed of steel and may contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper and chromium. In the present embodiment, the belt cords of the belt layers 4a and 4b may be monofilament cords, cords in which a plurality of filaments are aligned, or cords in which a plurality of filaments are twisted. Various twist structures can be adopted, and the cross-sectional structure, twist pitch, twist direction, and distance between adjacent filaments can be various. Furthermore, a cord formed by twisting filaments of different materials can be used, and the cross-sectional structure is not particularly limited, and various twist structures such as single twist, layer twist, and double twist can be adopted.
In the present embodiment, the inclination angle of the belt cords of the belt layers 4a and 4b is preferably 10° or more with respect to the tire circumferential direction. In the present embodiment, the inclination angle of the belt cords of the belt layers 4a and 4b is a high angle, specifically 20° or more, preferably 35° or more, and particularly 55° to the tire circumferential direction with respect to the tire circumferential direction. It is preferably in the range of 85°. This is because by setting the inclination angle to 20° or more (preferably 35° or more), the rigidity in the tire width direction can be increased, and particularly the steering stability performance during cornering can be improved. Also, it is possible to reduce the shear deformation of the interlayer rubber and reduce the rolling resistance.
 本実施形態のタイヤは、ベルト4のタイヤ径方向外側に、タイヤ周方向にほぼ沿って延びるコードからなる1層以上の周方向ベルト層を有しない構成としている。一方で、本発明においては、ベルト4のタイヤ径方向外側に、1層以上の周方向ベルト層からなる周方向ベルトを有する構成とすることもできる。特に、ベルト4を構成するベルト層4a、4bのベルトコードの傾斜角度θ1、θ2が35°以上の場合には、周方向ベルトを設けることが好ましく、該周方向ベルトは、センター領域Cの単位幅あたりのタイヤ周方向剛性が、ショルダー領域Sの単位幅あたりのタイヤ周方向剛性より高いことが好ましい。
 なお、タイヤをリムに組み込み、規定内圧を充填し、無負荷状態とした際の、タイヤ幅方向断面において、接地端E間のタイヤ幅方向中央50%のタイヤ幅方向領域をセンター領域Cとし、該センター領域よりタイヤ幅方向両外側の25%ずつのタイヤ幅方向領域をショルダー領域Sとしている。
 例えば、センター領域Cにおける周方向ベルト層の層数をショルダー領域Sより多くすることにより、センター領域Cの単位幅あたりのタイヤ周方向剛性を、ショルダー領域Sの単位幅あたりのタイヤ周方向剛性より高くすることができる。ここで、ベルト層4a、4bのベルトコードがタイヤ周方向に対して35°以上で傾斜するタイヤの多くは、400Hz~2kHzの高周波域において、断面方向の1次、2次および3次等の振動モードにて、トレッド踏面が一律に大きく振動する形状となるため、大きな放射音が生じる。そこで、トレッド5のセンター領域Cのタイヤ周方向剛性を局所的に増加させると、トレッド5のセンター領域Cがタイヤ周方向に広がり難くなり、トレッド踏面のタイヤ周方向への広がりが抑制される結果、放射音を減少させることができる。
 本実施形態では、タイヤ幅方向の幅が最も広いベルト層(図示例ではベルト層4a)のベルトコードのタイヤ周方向に対する傾斜角度θ1と、タイヤ幅方向の幅が最も狭いベルト層(図示例ではベルト層4b)のベルトコードのタイヤ周方向に対する傾斜角度θ2とが、35°≦θ1≦85°、10°≦θ2≦30°、及び、θ1>θ2を満たすことも好ましい。タイヤ周方向に対して35°以上で傾斜するベルトコードを有するベルト層を備えたタイヤの多くは、400Hz~2kHzの高周波域において、断面方向の1次、2次および3次等の振動モードにて、トレッド踏面が一律に大きく振動する形状となるため、大きな放射音が生じる。そこで、トレッド5のセンター領域Cのタイヤ周方向剛性を局所的に増加させると、トレッド5のセンター領域Cがタイヤ周方向に広がり難くなり、トレッド踏面のタイヤ周方向への広がりが抑制される結果、放射音を減少させることができる。
 ここで、本実施形態では、周方向ベルトを設ける場合は、周方向ベルト層は高剛性であることが好ましく、より具体的にはタイヤ周方向に延びるコードのゴム引き層からなり、コードのヤング率をY(GPa)、打ち込み数をn(本/50mm)とし、周方向ベルト層をm層とし、コード径をd(mm)として、X=Y×n×m×dと定義するとき、1500≧X≧225であることが好ましい。狭幅・大径サイズの乗用車用空気入りラジアルタイヤにおいては、路面からの旋回時における入力に対しタイヤ周方向において局所的な変形を起こし、接地面は略三角形状、すなわち、タイヤ幅方向の位置によって周方向の接地長が大きく変化する形状となりやすい。これに対し、高剛性の周方向ベルト層とすることにより、タイヤのリング剛性が向上して、タイヤ周方向の変形が抑制されることとなるため、ゴムの非圧縮性により、タイヤ幅方向の変形も抑制され、接地形状が変化しにくくなる。さらには、リング剛性が向上することにより偏心変形が促進され、転がり抵抗も同時に向上する。さらに、上記のように高剛性の周方向ベルト層を用いた場合には、ベルト層4a、4bのベルトコードのタイヤ周方向に対する傾斜角度を高角度、具体的には35°以上とすることが好ましい。高剛性の周方向ベルト層を用いた場合には、タイヤ周方向の剛性が高くなることにより、タイヤによっては、接地長が減少してしまうことがある。そこで、高角度のベルト層を用いることにより、タイヤ周方向の面外曲げ剛性を低下させて、踏面変形時のゴムのタイヤ周方向の伸びを増大させ、接地長の減少を抑制することができる。また、本実施形態では、周方向ベルト層には、破断強度を高めるために波状のコードを用いてもよい。同様に破断強度を高めるために、ハイエロンゲーションコード(例えば破断時の伸びが4.5~5.5%)を用いてもよい。さらに、本実施形態では、周方向ベルト層には、種々の材質が採用可能であり、代表的な例としては、レーヨン、ナイロン、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、アラミド、ガラス繊維、カーボン繊維、スチール等が採用できる。軽量化の点から、有機繊維コードが特に好ましい。ここで、本実施形態では、周方向ベルトを設ける場合は、周方向ベルト層のコードは、モノフィラメントコードや、複数のフィラメントを引き揃えたコード、複数のフィラメントを撚り合せたコード、さらには異なる材質のフィラメントを撚り合せたハイブリッドコードを用いることもできる。また、本実施形態では、周方向ベルト層の打ち込み数は、20~60本/50mmの範囲とすることができるが、この範囲に限定されるのもではない。さらに、本実施形態では、タイヤ幅方向に剛性・材質・層数・打ち込み密度等の分布を持たせることもでき、例えばショルダー部Sのみにおいて、周方向ベルト層の層数を増やすこともでき、一方でセンター領域Cのみにおいて、周方向ベルト層の層数を増やすこともできる。また、本実施形態では、周方向ベルト層は、ベルト層4a、4bよりもタイヤ幅方向の幅を大きくすることも小さくすることも同じとすることもできる。例えば、周方向ベルト層のタイヤ幅方向の幅は、ベルト層4a、4bのうちタイヤ幅方向の幅が最も広いベルト層(図示例ではベルト層4a)のタイヤ幅方向の幅の90%~110%とすることができる。ここで、周方向ベルト層は、スパイラル層として構成することが製造の観点から特に有利である。
The tire according to the present embodiment has a configuration in which one or more circumferential belt layers including cords extending substantially along the tire circumferential direction are not provided outside the belt 4 in the tire radial direction. On the other hand, in the present invention, a configuration in which a circumferential belt composed of one or more circumferential belt layers can be provided outside the belt 4 in the tire radial direction. In particular, when the belt cords of the belt layers 4a and 4b forming the belt 4 have inclination angles θ1 and θ2 of 35° or more, it is preferable to provide a circumferential belt, and the circumferential belt is a unit of the center region C. The tire circumferential rigidity per width is preferably higher than the tire circumferential rigidity per unit width of the shoulder region S.
In the tire width direction cross section when the tire is incorporated into a rim, filled with a specified internal pressure, and in a non-loaded state, a tire width direction area of the tire width direction center 50% between the ground contact ends E is defined as a center area C, The tire width direction regions of 25% on both sides in the tire width direction from the center region are defined as shoulder regions S.
For example, by setting the number of circumferential belt layers in the center region C to be greater than that in the shoulder region S, the tire circumferential rigidity per unit width of the center region C can be made smaller than the tire circumferential rigidity per unit width of the shoulder region S. Can be higher. Here, most of the tires in which the belt cords of the belt layers 4a and 4b incline at 35° or more with respect to the tire circumferential direction have a primary, secondary, and tertiary order in the cross-sectional direction in a high frequency range of 400 Hz to 2 kHz. In the vibration mode, since the tread tread has a shape that vibrates uniformly and greatly, a large radiated sound is generated. Therefore, if the tire circumferential rigidity of the center region C of the tread 5 is locally increased, the center region C of the tread 5 becomes difficult to spread in the tire circumferential direction, and the tread tread's spread in the tire circumferential direction is suppressed. , Radiated sound can be reduced.
In the present embodiment, the inclination angle θ1 of the belt cord of the belt layer having the largest width in the tire width direction (belt layer 4a in the illustrated example) with respect to the tire circumferential direction, and the belt layer having the smallest width in the tire width direction (in the illustrated example, It is also preferable that the inclination angle θ2 of the belt cord of the belt layer 4b) with respect to the tire circumferential direction satisfies 35°≦θ1≦85°, 10°≦θ2≦30°, and θ1>θ2. Most of tires provided with a belt layer having a belt cord inclined at 35° or more with respect to the tire circumferential direction are subjected to a vibration mode such as a primary, secondary and tertiary vibration in a cross-sectional direction in a high frequency range of 400 Hz to 2 kHz. As a result, the tread surface is uniformly vibrated and a large radiated sound is produced. Therefore, if the tire circumferential rigidity of the center region C of the tread 5 is locally increased, the center region C of the tread 5 becomes difficult to spread in the tire circumferential direction, and the tread tread's spread in the tire circumferential direction is suppressed. , Radiated sound can be reduced.
Here, in the present embodiment, when the circumferential belt is provided, the circumferential belt layer preferably has high rigidity, and more specifically, the circumferential belt layer is made of a rubberized layer of a cord extending in the tire circumferential direction. When the rate is Y (GPa), the number of driving is n (pieces/50 mm), the circumferential belt layer is m layers, and the cord diameter is d (mm), X=Y×n×m×d It is preferable that 1500≧X≧225. In a pneumatic radial tire for passenger cars of narrow width and large diameter, local deformation occurs in the tire circumferential direction with respect to the input when turning from the road surface, and the ground contact surface has a substantially triangular shape, that is, the position in the tire width direction. Therefore, the contact length in the circumferential direction tends to change greatly. On the other hand, by using a highly rigid circumferential belt layer, the ring rigidity of the tire is improved and deformation in the tire circumferential direction is suppressed. Deformation is also suppressed, and the ground contact shape is less likely to change. Further, since the ring rigidity is improved, the eccentric deformation is promoted, and the rolling resistance is also improved at the same time. Furthermore, when the high-rigidity circumferential belt layer is used as described above, the inclination angle of the belt cords of the belt layers 4a and 4b with respect to the tire circumferential direction may be a high angle, specifically, 35° or more. preferable. When a high-rigidity circumferential belt layer is used, the rigidity in the tire circumferential direction becomes high, which may reduce the ground contact length depending on the tire. Therefore, by using a belt layer with a high angle, it is possible to reduce the out-of-plane bending rigidity in the tire circumferential direction, increase the elongation of the rubber in the tire circumferential direction when the tread deforms, and suppress the decrease in the ground contact length. .. Further, in the present embodiment, a wavy cord may be used for the circumferential belt layer in order to increase the breaking strength. Similarly, a high elongation cord (for example, elongation at break of 4.5 to 5.5%) may be used to increase the breaking strength. Further, in the present embodiment, various materials can be used for the circumferential belt layer, and typical examples are rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass. Fiber, carbon fiber, steel, etc. can be used. From the viewpoint of weight reduction, organic fiber cords are particularly preferable. Here, in the present embodiment, when the circumferential belt is provided, the cord of the circumferential belt layer is a monofilament cord, a cord in which a plurality of filaments are aligned, a cord in which a plurality of filaments are twisted, and a different material. It is also possible to use a hybrid cord formed by twisting filaments. Further, in the present embodiment, the number of circumferential belt layers to be driven can be set in a range of 20 to 60 lines/50 mm, but the number is not limited to this range. Further, in the present embodiment, distribution of rigidity, material, number of layers, driving density, and the like can be provided in the tire width direction, and the number of layers of the circumferential belt layer can be increased only in the shoulder portion S, for example. On the other hand, the number of circumferential belt layers can be increased only in the center region C. Further, in the present embodiment, the circumferential belt layer may have a width in the tire width direction larger or smaller than that of the belt layers 4a and 4b. For example, the width in the tire width direction of the circumferential belt layer is 90% to 110% of the width in the tire width direction of the belt layer (belt layer 4a in the illustrated example) having the largest width in the tire width direction among the belt layers 4a and 4b. It can be %. Here, it is particularly advantageous from the viewpoint of manufacturing that the circumferential belt layer is configured as a spiral layer.
 図示例では、トレッド5を構成するトレッドゴムは、1層からなる。一方で、本実施形態では、トレッド5を構成するトレッドゴムは、異なる複数のゴム層がタイヤ径方向に積層されて形成されていても良い。上記の複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを用いることができる。また、複数のゴム層のタイヤ径方向の厚さの比率は、タイヤ幅方向に変化していてもよく、また周方向主溝底のみ等をその周辺と異なるゴム層とすることもできる。また、トレッド5を構成するトレッドゴムは、タイヤ幅方向に異なる複数のゴム層で形成されていても良い。上記の複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを使用することができる。また、複数のゴム層のタイヤ幅方向の幅の比率は、タイヤ径方向に変化していてもよく、また周方向主溝近傍のみ、接地端近傍のみ、ショルダー陸部のみ、センター陸部のみといった限定された一部の領域のみをその周囲とは異なるゴム層とすることもできる。
 また、本実施形態では、タイヤ幅方向断面において、タイヤ赤道面CLにおけるトレッド表面上の点Pを通りタイヤ幅方向に平行な直線をm1とし、接地端Eを通りタイヤ幅方向に平行な直線をm2として、直線m1と直線m2とのタイヤ径方向の距離を落ち高LCRとし、タイヤの接地幅をWとするとき、比LCR/Wを0.045以下とすることが好ましい。比LCR/Wを上記の範囲とすることにより、タイヤのクラウン部がフラット化(平坦化)し、接地面積が増大して、路面からの入力(圧力)を緩和して、タイヤ径方向の撓み率を低減し、タイヤの耐久性及び耐摩耗性を向上させることができる。
In the illustrated example, the tread rubber forming the tread 5 is composed of one layer. On the other hand, in the present embodiment, the tread rubber forming the tread 5 may be formed by laminating a plurality of different rubber layers in the tire radial direction. As the plurality of rubber layers, those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used. Further, the ratio of the thickness of the plurality of rubber layers in the tire radial direction may be changed in the tire width direction, and only the circumferential main groove bottom or the like may be a rubber layer different from the periphery thereof. The tread rubber that constitutes the tread 5 may be formed of a plurality of rubber layers that are different in the tire width direction. As the plurality of rubber layers, those having different tangent loss, modulus, hardness, glass transition temperature, material, etc. can be used. Further, the ratio of the width in the tire width direction of the plurality of rubber layers may be changed in the tire radial direction, and only in the vicinity of the circumferential main groove, only in the vicinity of the ground contact end, only in the shoulder land portion, only in the center land portion, etc. Only a limited part of the area may be a rubber layer different from the surrounding area.
Further, in the present embodiment, in the tire width direction cross section, a straight line parallel to the tire width direction passing through the point P on the tread surface CL of the tire equatorial plane CL is defined as a straight line parallel to the tire width direction passing through the ground contact end E. As m2, when the distance between the straight line m1 and the straight line m2 in the tire radial direction is set to be the height L CR and the ground contact width of the tire is W, the ratio L CR /W is preferably 0.045 or less. By setting the ratio L CR /W in the above range, the crown portion of the tire is flattened (flattened), the ground contact area is increased, and the input (pressure) from the road surface is relaxed, so that the tire radial direction It is possible to reduce the deflection rate and improve the durability and wear resistance of the tire.
 図示例では、このタイヤ1は、タイヤ周方向に延びる周方向主溝6を3本有している。具体的には、タイヤ赤道面CL上に1本の周方向主溝6を有し、そのタイヤ幅方向両側のショルダー領域Sに1本ずつの周方向主溝6を有している。周方向主溝6の溝幅(開口幅)は、特に限定しないが、例えば2mm~5mmとすることができる。
 本実施形態では、トレッド5を占める溝量を少なくすることがウェット性能とその他の性能との両立の観点から好ましい。具体的には、溝体積率(溝体積V2/トレッドゴム体積V1)を30%以下とすることが好ましく、また、ネガティブ率(トレッド踏面の面積に対する、溝面積の割合)を30%以下とすることが好ましい。
 後述するように、狭幅・大径の乗用車用空気入りラジアルタイヤでは、センター領域Cでの接地圧がショルダー領域S対比で高くなるため、センター領域Cでの発熱が相対的に大きくなりやすい。そこで、本実施形態のように、センター領域C(図示例ではタイヤ赤道面CL上)に1本の周方向主溝6を有することにより、効率的に放熱を行うことができる。さらに、後述するように、本実施形態では、タイヤ赤道面CLを境界とするタイヤ幅方向各半部のショルダー領域Sのタイヤの内面7に制音体9(スポンジ材)を設けているため、各ショルダー領域Sに1本以上(この例で1本)の周方向主溝6を有することにより、効率的に放熱を行うことができる。
 一方で、ベルト構造等により、センター領域Cのタイヤ周方向の剛性を高めたタイヤでは、トレッド5はトレッド踏面の少なくともタイヤ赤道面CLを含む領域に、タイヤ周方向に連続する陸部を有することも、接地長を確保してコーナリング性能を向上させる観点からは好ましい。
 本発明においては、周方向主溝6の本数や配置は、特に上記の例には限定されない。また、タイヤ幅方向に延びる幅方向溝や、接地時に閉塞するサイプ等も適宜設けることができる。
 さらに、ノイズ性能とウェット性能とを両立させる観点からは、各周方向主溝の断面積は、24mm2以上96mm2以下とすることが好ましく、このとき周方向主溝の本数は、2本以上5本以下とすることが好ましく、従って、トレッド踏面全体での周方向主溝の断面積の総和は、48mm2以上480mm2以下とすることが好ましい。
In the illustrated example, the tire 1 has three circumferential main grooves 6 extending in the tire circumferential direction. Specifically, one circumferential main groove 6 is provided on the tire equatorial plane CL, and one circumferential main groove 6 is provided in each shoulder region S on both sides in the tire width direction. The groove width (opening width) of the circumferential main groove 6 is not particularly limited, but may be, for example, 2 mm to 5 mm.
In the present embodiment, it is preferable to reduce the amount of grooves occupying the tread 5 from the viewpoint of achieving both wet performance and other performance. Specifically, the groove volume ratio (groove volume V2/tread rubber volume V1) is preferably 30% or less, and the negative ratio (ratio of the groove area to the tread tread area) is 30% or less. Preferably.
As will be described later, in a pneumatic radial tire for a passenger car having a narrow width and a large diameter, the ground contact pressure in the center region C is higher than that in the shoulder region S, so that heat generation in the center region C tends to be relatively large. Therefore, as in the present embodiment, by providing one circumferential main groove 6 in the center region C (on the tire equatorial plane CL in the illustrated example), heat can be efficiently dissipated. Further, as will be described later, in the present embodiment, since the noise suppressor 9 (sponge material) is provided on the inner surface 7 of the tire in the shoulder region S at each half in the tire width direction with the tire equatorial plane CL as the boundary, By having one or more (one in this example) circumferential main groove 6 in each shoulder region S, heat can be efficiently radiated.
On the other hand, in a tire in which the rigidity of the center region C in the tire circumferential direction is increased by a belt structure or the like, the tread 5 has a land portion continuous in the tire circumferential direction in a region including at least the tire equatorial plane CL of the tread tread surface. However, it is preferable from the viewpoint of ensuring the contact length and improving the cornering performance.
In the present invention, the number and arrangement of the circumferential main grooves 6 are not particularly limited to the above example. Further, a widthwise groove extending in the tire widthwise direction, a sipe closed at the time of contact with the ground, and the like can be appropriately provided.
Further, from the viewpoint of satisfying both noise performance and wet performance, the cross-sectional area of each circumferential direction main grooves it is preferably set to 24 mm 2 or more 96 mm 2 or less, the number of the time circumferential main groove, two or more is preferably set to five or less, therefore, the sum of the cross-sectional area of the circumferential main groove in the entire tread surface, it is preferable that the 48 mm 2 or more 480 mm 2 or less.
 本実施形態のタイヤ1は、タイヤの内面7(以下、単に、タイヤ内面7ともいう)にインナーライナー8を有している。インナーライナー8の厚さは、1.5mm~2.8mm程度とすることが好ましい。80~100Hzの車内騒音を効果的に低減することができるからである。インナーライナー8を構成するゴム組成物の空気透過係数は、1.0×10-14cc・cm/(cm2・s・cmHg)以上、6.5×10-10cc・cm/(cm2・s・cmHg)以下とすることが好ましい。また、タイヤ内面の100μm2の領域当たりに、最大径1.0μm以上のフッ素を含む粒子を1つ以上有することが好ましく、タイヤ内面の周上に、タイヤ幅方向に延びる複数本のブラダーリッヂが形成され、ブラダーリッヂは、前記タイヤ内面のタイヤ幅方向のいずれかの位置で、タイヤ周方向1インチ当たり5本以上形成されていることが好ましい。
 本実施形態では、インナーライナー8は、ブチルゴムを主体としたゴム層のほか、樹脂を主成分とするフィルム層によって形成することもできる。本実施形態では、タイヤ内面7のうち、制音体9が配置されていない箇所には、パンク時の空気の漏れを防ぐためのシーラント部材を備えることもできる。
The tire 1 of the present embodiment has an inner liner 8 on the inner surface 7 of the tire (hereinafter, also simply referred to as the tire inner surface 7). The inner liner 8 preferably has a thickness of about 1.5 mm to 2.8 mm. This is because the vehicle interior noise of 80 to 100 Hz can be effectively reduced. The air permeability coefficient of the rubber composition constituting the inner liner 8 is 1.0×10 −14 cc·cm/(cm 2 ·s·cmHg) or more and 6.5×10 −10 cc·cm/(cm 2 ·S·cmHg) or less is preferable. Further, it is preferable to have one or more particles containing fluorine having a maximum diameter of 1.0 μm or more per 100 μm 2 area of the tire inner surface, and a plurality of bladder ridges extending in the tire width direction are formed on the circumference of the tire inner surface. It is preferable that five or more bladder ridges are formed per inch in the tire circumferential direction at any position on the inner surface of the tire in the tire width direction.
In the present embodiment, the inner liner 8 can be formed of a rubber layer mainly containing butyl rubber or a film layer mainly containing resin. In the present embodiment, a sealant member for preventing air leakage at the time of puncture can be provided in a portion of the tire inner surface 7 where the noise suppressor 9 is not arranged.
 図2に示すように、本実施形態のタイヤ1は、タイヤ内面7(この例では、インナーライナー8の内面)に、1つ以上の(図示例で1つの)制音体9を設けている。この例では、制音体9は、スポンジ材である。
 本実施形態では、制音体9は、少なくとも、ショルダー領域Sにおけるタイヤ内面7に設けられている。図示例では、制音体9は、タイヤ赤道面CLを境界とするタイヤ幅方向一方の半部のショルダー領域Sにおけるタイヤ内面7から、タイヤ幅方向他方の半部のショルダー領域Sにおけるタイヤ内面7まで連続して延在し、制音体9のタイヤ内面7に沿った方向の両端は、タイヤ幅方向両半部のショルダー領域S内にそれぞれ位置している(図示例では、ショルダー領域Sのタイヤ幅方向外側端位置(すなわち接地端E)にある)。なお、本発明では、制音体9は、少なくとも、ショルダー領域Sにおけるタイヤ内面7に設けられていればよく、制音体9の端は、接地端Eよりもタイヤ幅方向内側に位置していても良い。
 図示例では、制音体9は、タイヤ内面7の全部又は一部に、接着剤を含む(図示しない)接着層を介して接着されている。接着層は、任意の既知のものを用いることができる。あるいは、融着等で接着することもできる。接着力を確保するためには、本例のように、タイヤ内面7と接する領域の全域にわたって接着させることが好ましい。なお、タイヤ内面7にインナーライナー8を有しない場合においては、制音体9は、タイヤ内面7に直接接着等して設けることができる。
 また、制音体9は、連続した延在領域においては、1つの制音体9で構成することが好ましいが、2つ以上の制音体9を接着層等により接着して構成することもできる。
As shown in FIG. 2, the tire 1 of the present embodiment is provided with one or more (one in the illustrated example) noise suppressors 9 on the tire inner surface 7 (in this example, the inner surface of the inner liner 8). .. In this example, the noise suppressor 9 is a sponge material.
In the present embodiment, the noise suppressor 9 is provided at least on the tire inner surface 7 in the shoulder region S. In the illustrated example, the noise suppressor 9 extends from the tire inner surface 7 in the shoulder region S on one half of the tire width direction bounded by the tire equatorial plane CL to the tire inner surface 7 in the shoulder region S on the other half of the tire width direction. Both ends of the noise damper 9 in the direction along the tire inner surface 7 are located in the shoulder regions S of both half portions in the tire width direction (in the illustrated example, of the shoulder region S). At the tire width direction outer end position (that is, at the ground contact end E). In the present invention, the noise damper 9 may be provided at least on the tire inner surface 7 in the shoulder region S, and the end of the noise damper 9 is located inside the ground contact end E in the tire width direction. May be.
In the illustrated example, the noise damper 9 is bonded to all or part of the tire inner surface 7 via an adhesive layer (not shown) containing an adhesive. Any known adhesive layer can be used. Alternatively, they may be adhered by fusion or the like. In order to secure the adhesive force, it is preferable to adhere the entire area of the area in contact with the tire inner surface 7 as in this example. When the inner liner 8 is not provided on the tire inner surface 7, the noise suppressor 9 can be provided by directly adhering to the tire inner surface 7.
Further, it is preferable that the noise suppressor 9 is composed of one noise suppressor 9 in the continuous extending region, but it may be constituted by adhering two or more noise suppressors 9 with an adhesive layer or the like. it can.
 本実施形態において、制音体9は、タイヤ周方向に連続して延在している。なお、図示例では、制音体9は、タイヤ周方向に分割されていないが、タイヤ周方向に分割された2つ以上の制音体9を接着層等によりタイヤ周方向に接着して構成することもできる。あるいは、制音体9は、タイヤ周方向に不連続に延在していてもよい。この場合、制音性を向上させる観点から、合計で、タイヤ周方向全域の80%以上のタイヤ周方向領域に延在するように構成することが好ましい。また、制音体9が、タイヤ周方向に不連続に延在する場合には、タイヤの周方向のユニフォーミティを向上させる観点から、同じ周方向長さの制音体9を等間隔の周方向ピッチで配置することが好ましい。 In the present embodiment, the noise suppressor 9 continuously extends in the tire circumferential direction. In the illustrated example, the noise damper 9 is not divided in the tire circumferential direction, but two or more noise dampers 9 divided in the tire circumferential direction are bonded in the tire circumferential direction with an adhesive layer or the like. You can also do it. Alternatively, the noise suppressor 9 may extend discontinuously in the tire circumferential direction. In this case, from the viewpoint of improving the sound damping property, it is preferable that the total extension be 80% or more of the entire area in the tire circumferential direction. Further, when the noise suppressor 9 extends discontinuously in the tire circumferential direction, from the viewpoint of improving the uniformity in the circumferential direction of the tire, the noise suppressor 9 having the same circumferential length is used at equal intervals. It is preferable to arrange at a directional pitch.
 本実施形態においては、制音体9の断面形状は、略四角形状(ただし、タイヤ内面7に接着している辺は、タイヤ内面形状に沿っている)をなしているが、本発明においては、制音体9の断面形状は、三角形状等の他の多角形状、台形状、円形状、楕円形状等、任意の形状とすることができる。制音体9とタイヤ内面7との接着面積を確保しつつ、該接着面積に比して、制音体9の体積を大きくする観点からは、制音体9の断面形状は、略四角形状とすることが好ましい。
 なお、本実施形態では、任意のタイヤ幅方向断面において、制音体9の断面形状及びサイズは同一であるが、タイヤ周方向に変化していても良い。
 制音体9の体積は、タイヤ内腔の全体積の0.1%~80%とすることが好ましい。タイヤ内腔の全体積に対して制音体9の体積を0.1%以上とすることにより、空洞共鳴音の低減効果を有効に得ることができ、一方で、タイヤ内腔の全体積に対して制音体9の体積を80%以下とすることで、制音体9による重量増を抑制することができる。また、制音体9に熱がこもるのを抑制することができる。同様の理由により、制音体9の体積は、タイヤ内腔の全体積の5~70%とすることが好ましく、15~50%とすることがさらに好ましい。
 便宜上、タイヤをリムに組み込み、規定内圧を充填した状態を示す図において、寸法等を示しているが、制音体の体積及び後述の幅、厚さ、扁平率、断面積、ペリフェリ長さ等は、常温、常圧下での、タイヤをリムから取り外した状態でのものとする。
In the present embodiment, the noise suppressor 9 has a substantially rectangular cross-sectional shape (however, the side bonded to the tire inner surface 7 is along the tire inner surface shape). The cross-sectional shape of the noise suppressor 9 may be any shape such as another polygonal shape such as a triangular shape, a trapezoidal shape, a circular shape, an elliptical shape, or the like. From the viewpoint of ensuring a bonding area between the noise damper 9 and the tire inner surface 7 and increasing the volume of the noise damper 9 as compared with the bonding area, the cross-sectional shape of the noise damper 9 is substantially rectangular. It is preferable that
In this embodiment, the noise suppressor 9 has the same cross-sectional shape and size in any cross section in the tire width direction, but may change in the tire circumferential direction.
The volume of the noise damper 9 is preferably 0.1% to 80% of the total volume of the tire inner cavity. By setting the volume of the noise suppressor 9 to 0.1% or more with respect to the total volume of the tire inner cavity, the effect of reducing cavity resonance noise can be effectively obtained, while the total volume of the tire inner cavity is reduced. On the other hand, by setting the volume of the noise damper 9 to 80% or less, the weight increase by the noise damper 9 can be suppressed. Further, it is possible to prevent heat from being accumulated in the noise suppressor 9. For the same reason, the volume of the noise damper 9 is preferably 5 to 70% of the total volume of the tire inner cavity, and more preferably 15 to 50%.
For the sake of convenience, dimensions are shown in the figure showing the state where the tire is built into the rim and the specified internal pressure is filled, but the volume of the noise suppressor and the width, thickness, flatness, cross-sectional area, peripheral length, etc., which will be described later, are shown. Indicates that the tire is removed from the rim at room temperature and pressure.
 ここで、図2に示すように、制音体9のタイヤ内面7に沿ったペリフェリ長さをL1(mm)とし、制音体9のタイヤ内面7に沿った方向に直交する方向に計測した際の最大厚さをT1(mm)とするとき、比T1/L1は、0.2以上0.8以下である。 Here, as shown in FIG. 2, the peripheral length along the tire inner surface 7 of the noise suppressor 9 was set to L1 (mm), and measurement was performed in a direction orthogonal to the direction along the tire inner surface 7 of the noise suppressor 9. When the maximum thickness is T1 (mm), the ratio T1/L1 is 0.2 or more and 0.8 or less.
 なお、制音体9を構成する材料は、空洞共鳴エネルギーの緩和、吸収、別のエネルギー(例えば、熱エネルギー)への変換、等によって、空洞共鳴エネルギーを低減するように制御できるものであればよく、上述したスポンジ材に限られるものではなく、例えば、有機繊維や無機繊維からなる不織布等を用いることもできる。 The material forming the noise suppressor 9 can be controlled so as to reduce the cavity resonance energy by relaxation, absorption of the cavity resonance energy, conversion to another energy (for example, thermal energy), or the like. Of course, it is not limited to the sponge material described above, and for example, a non-woven fabric made of organic fibers or inorganic fibers may be used.
 本実施形態のように、制音体9がスポンジ材である場合は、スポンジ材は、海綿状の多孔構造体とすることができ、例えば、ゴムや合成樹脂を発泡させた連続気泡を有する、いわゆるスポンジを含む。また、スポンジ材は、上述のスポンジの他に、動物繊維、植物繊維又は合成繊維等を絡み合わせて一体に連結したウエブ状のものを含む。なお、上述の「多孔構造体」は、連続気泡を有する構造体に限らず、独立気泡を有する構造体も含む意味である。上述のようなスポンジ材は、表面や内部に形成される空隙が振動する空気の振動エネルギーを熱エネルギーに変換する。これにより、タイヤ内腔での空洞共鳴が抑制され、その結果、ロードノイズを低減することができる。
 スポンジ材の材料としては、例えば、エーテル系ポリウレタンスポンジ、エステル系ポリウレタンスポンジ、ポリエチレンスポンジなどの合成樹脂スポンジ、クロロプレンゴムスポンジ(CRスポンジ)、エチレンプロピレンゴムスポンジ(EPDMスポンジ)、ニトリルゴムスポンジ(NBRスポンジ)などのゴムスポンジが挙げられる。制音性、軽量性、発泡の調節可能性、耐久性などの観点を考慮すれば、エーテル系ポリウレタンスポンジを含むポリウレタン系又はポリエチレン系等のスポンジを用いることが好ましい。
When the noise suppressor 9 is a sponge material as in the present embodiment, the sponge material can be a sponge-like porous structure, and has, for example, open cells formed by foaming rubber or synthetic resin, Including so-called sponge. Further, the sponge material includes, in addition to the above-mentioned sponge, a web-shaped material in which animal fibers, plant fibers, synthetic fibers or the like are entwined and integrally connected. Note that the above-mentioned “porous structure” is not limited to a structure having open cells, but includes a structure having closed cells. The sponge material as described above converts the vibration energy of air in which the voids formed on the surface and inside vibrate into heat energy. Thereby, cavity resonance in the tire inner cavity is suppressed, and as a result, road noise can be reduced.
Examples of the material of the sponge material include synthetic polyurethane resin sponges such as ether polyurethane sponge, ester polyurethane sponge, polyethylene sponge, chloroprene rubber sponge (CR sponge), ethylene propylene rubber sponge (EPDM sponge), nitrile rubber sponge (NBR sponge). ) Such as rubber sponge. From the viewpoints of noise control, lightness, controllability of foaming, durability, etc., it is preferable to use a polyurethane-based or polyethylene-based sponge including an ether-based polyurethane sponge.
 また、タイヤ幅方向断面における、制音体9の断面積の総和は、20~30000(mm2)とすることが好ましい。断面積の総和を20(mm2)以上とすることにより制音性をより向上させることができ、一方で、断面積の総和を30000(mm2)以下とすることにより制音体9に熱がこもるのを抑制して、タイヤ耐久性をより向上させることができるからである。同様の理由により、断面積の総和は、100(mm2)~20000(mm2)とすることがより好ましく、1000(mm2)~18000(mm2)がより好ましく、3000(mm2)~15000(mm2)がより好ましい。
 本実施形態のように、制音体9がスポンジ材である場合は、スポンジ材の硬度は、特には限定されないが、5N~450Nの範囲とすることが好ましい。硬度を5N以上とすることにより、制音性を向上させることができ、一方で、硬度を450N以下とすることにより、制音体の接着力を増大させることができる。同様に、制音体の硬度は、8~300Nの範囲とすることがより好ましい。ここで、「硬度」とは、JIS K6400の第6項の測定法のうち、6.3項のA法に準拠して測定された値とする。
 また、スポンジ材の比重は、0.001~0.090とすることが好ましい。スポンジ材の比重を0.001以上とすることにより、制音性を向上させることができ、一方で、スポンジ材の比重を0.090以下とすることにより、スポンジ材による重量増を抑制することができるからである。同様に、スポンジ材の比重は、0.003~0.080とすることがより好ましい。ここで、「比重」とは、JIS K6400の第5項の測定法に準拠し、見かけ密度を比重に換算した値とする。
 また、スポンジ材の引張り強さは、20kPa~500kPaとすることが好ましい。引張り強さを20kPa以上とすることにより、接着力を向上させることができ、一方で、引張り強さを500kPa以下とすることにより、スポンジ材の生産性を向上させることができるからである。同様に、スポンジ材の引張り強さは、40~400kPaとすることがより好ましい。ここで、「引張り強さ」とは、JIS K6400の第10項の測定法に準拠し、1号形のダンベル状試験片で測定した値とする。
 また、スポンジ材の破断時の伸びは、110%以上800%以下とすることが好ましい。破断時の伸びを110%以上とすることにより、スポンジ材にクラックが発生するのを抑制することができ、一方で、破断時の伸びを800%以下とすることにより、スポンジ材の生産性を向上させることができるからである。同様に、スポンジ材の破断時の伸びは、130%以上750%以下とすることがより好ましい。ここで、「破断時の伸び」とは、JIS K6400の第10項の測定法に準拠し、1号形のダンベル状試験片で測定した値とする。
 また、スポンジ材の引裂強さは、1~130N/cmとすることが好ましい。引裂強さを1N/cm以上とすることにより、スポンジ材にクラックが発生するのを抑制することができ、一方で、引裂強さを130N/cm以下とすることにより、スポンジ材の製造性を向上させることができるからである。同様に、スポンジ材の引裂強さは、3~115N/cmとすることがより好ましい。ここで、「引裂強さ」とは、JIS K6400の第11項の測定法に準拠し、1号形の試験片で測定した値とする。
 また、スポンジ材の発泡率は、1%以上40%以下とすることが好ましい。発泡率を1%以上とすることにより、制音性を向上させることができ、一方で、発泡率を40%以下とすることにより、スポンジ材の生産性を向上させることができるからである。同様に、スポンジ材の発泡率は、2~25%とすることがより好ましい。ここで、「発泡率」とは、スポンジ材の固相部の比重Aの、スポンジ材の比重Bに対する比A/Bから1を引いて、その値に100を乗じた値をいう。
 また、スポンジ材の質量は、5~800gとすることが好ましい。質量を5g以上とすることにより、制音性を低減することができ、一方で、質量を800g以下とすることにより、スポンジ材による重量増を抑制することができるからである。同様に、スポンジ材の質量は、20~600gとすることが好ましい。
The total cross-sectional area of the noise suppressor 9 in the tire width direction cross section is preferably 20 to 30000 (mm 2 ). When the total cross-sectional area is 20 (mm 2 ) or more, the sound damping property can be further improved. On the other hand, when the total cross-sectional area is 30000 (mm 2 ) or less, the noise suppressor 9 is heated. This is because it is possible to suppress the muddyness and further improve the tire durability. For the same reason, the total cross-sectional area is more preferably 100 (mm 2 ) to 20000 (mm 2 ), more preferably 1000 (mm 2 ) to 18000 (mm 2 ), and 3000 (mm 2 ) to 15000 (mm 2 ) is more preferable.
When the noise suppressor 9 is a sponge material as in the present embodiment, the hardness of the sponge material is not particularly limited, but is preferably in the range of 5N to 450N. By setting the hardness to 5 N or more, the sound damping property can be improved, and by setting the hardness to 450 N or less, the adhesive force of the sound damping body can be increased. Similarly, the hardness of the noise damper is more preferably in the range of 8 to 300N. Here, the "hardness" is a value measured according to the A method of 6.3 in the measuring method of 6th item of JIS K6400.
The specific gravity of the sponge material is preferably 0.001 to 0.090. By setting the specific gravity of the sponge material to 0.001 or more, the sound damping property can be improved, and on the other hand, by setting the specific gravity of the sponge material to 0.090 or less, the increase in weight due to the sponge material is suppressed. Because you can. Similarly, the specific gravity of the sponge material is more preferably 0.003 to 0.080. Here, the “specific gravity” is a value obtained by converting the apparent density into a specific gravity in accordance with the measuring method of the fifth item of JIS K6400.
The tensile strength of the sponge material is preferably 20 kPa to 500 kPa. By setting the tensile strength to 20 kPa or more, the adhesive force can be improved, and on the other hand, by setting the tensile strength to 500 kPa or less, the productivity of the sponge material can be improved. Similarly, the tensile strength of the sponge material is more preferably 40 to 400 kPa. Here, the “tensile strength” is a value measured by a No. 1 dumbbell-shaped test piece in accordance with the measuring method of Item 10 of JIS K6400.
The elongation at break of the sponge material is preferably 110% or more and 800% or less. By setting the elongation at break to 110% or more, it is possible to suppress the occurrence of cracks in the sponge material, while setting the elongation at break to 800% or less increases the productivity of the sponge material. This is because it can be improved. Similarly, the elongation at break of the sponge material is more preferably 130% or more and 750% or less. Here, the "elongation at break" is a value measured with a No. 1 dumbbell-shaped test piece in accordance with the measuring method of Item 10 of JIS K6400.
The tear strength of the sponge material is preferably 1 to 130 N/cm. By setting the tear strength to 1 N/cm or more, it is possible to suppress the generation of cracks in the sponge material, while setting the tear strength to 130 N/cm or less improves the manufacturability of the sponge material. This is because it can be improved. Similarly, the tear strength of the sponge material is more preferably 3 to 115 N/cm. Here, the “tear strength” is a value measured with a No. 1 type test piece in accordance with the measuring method of Item 11 of JIS K6400.
The foaming rate of the sponge material is preferably 1% or more and 40% or less. This is because by setting the foaming rate to 1% or more, the sound damping property can be improved, and on the other hand, by setting the foaming rate to 40% or less, the productivity of the sponge material can be improved. Similarly, the foaming rate of the sponge material is more preferably 2 to 25%. Here, the "foaming rate" means a value obtained by subtracting 1 from the ratio A/B of the specific gravity A of the solid phase portion of the sponge material to the specific gravity B of the sponge material and multiplying the value by 100.
The mass of the sponge material is preferably 5 to 800 g. This is because if the mass is 5 g or more, the sound damping property can be reduced, and if the mass is 800 g or less, the weight increase due to the sponge material can be suppressed. Similarly, the mass of the sponge material is preferably 20 to 600 g.
 以下、本発明の第1~第3の態様にかかる本実施形態の乗用車用空気入りラジアルタイヤの作用効果について説明する。 Hereinafter, the operational effects of the pneumatic radial tire for a passenger vehicle according to the present embodiment according to the first to third aspects of the present invention will be described.
 本実施形態の乗用車用空気入りラジアルタイヤでは、タイヤの断面幅SWとタイヤの外径ODとが、所定の上記関係を満たしている(すなわち、第1の態様においては、タイヤの断面幅SWが165(mm)未満であり、タイヤの断面幅SWと外径ODとの比SW/ODは、0.26以下である。また、第2の態様においては、タイヤの断面幅SWが165(mm)以上であり、タイヤの断面幅SW(mm)及び外径OD(mm)は、関係式、OD(mm)≧2.135×SW(mm)+282.3、を満たしている。また、第3の態様においては、関係式、OD(mm)≧-0.0187×SW(mm)2+9.15×SW(mm)-380、を満たしている)。これにより、上述したように、燃費性を向上させることができる。
 ところで、図3及び図4に模式的に示すように、通常のタイヤサイズの乗用車用空気入りラジアルタイヤでは、接地圧が、センター領域C対比で、ショルダー領域Sにおいて高くなる傾向にあるのに対して、タイヤの断面幅SW及び外径ODが上記所定の関係を満たす、狭幅・大径の乗用車用空気入りラジアルタイヤでは、接地圧が、ショルダー領域S対比で、センター領域Cにおいて同等以上に高くなる傾向にある。このことから、タイヤの断面幅SW及び外径ODが上記所定の関係を満たす、狭幅・大径の乗用車用空気入りラジアルタイヤでは、ショルダー領域Sでの発熱が相対的に小さくなることが判明した。
In the pneumatic radial tire for passenger cars of the present embodiment, the tire cross-section width SW and the tire outer diameter OD satisfy the above-mentioned predetermined relationship (that is, in the first aspect, the tire cross-section width SW is The cross-sectional width SW of the tire is less than 165 (mm), and the ratio SW/OD of the tire cross-sectional width SW to the outer diameter OD is 0.26 or less. ) It is above, and the cross-sectional width SW (mm) and outer diameter OD (mm) of the tire satisfy the relational expression, OD (mm)≧2.135×SW (mm)+282.3. In the aspect of 3, the relational expression, OD (mm)≧−0.0187×SW (mm) 2 +9.15×SW (mm)−380, is satisfied). Thereby, as described above, the fuel efficiency can be improved.
By the way, as schematically shown in FIGS. 3 and 4, in a pneumatic radial tire for a passenger vehicle of a normal tire size, the ground contact pressure tends to be higher in the shoulder region S than in the center region C. Therefore, in a pneumatic radial tire for a passenger car having a narrow width and a large diameter, in which the sectional width SW and the outer diameter OD of the tire satisfy the above-mentioned predetermined relationship, the ground contact pressure is equal to or higher than the shoulder area S in the center area C. Tends to be higher. From this, it is clear that the heat generation in the shoulder region S is relatively small in the narrow width and large diameter pneumatic radial tire for passenger cars in which the tire cross-sectional width SW and the outer diameter OD satisfy the above-mentioned predetermined relationship. did.
 そこで、本実施形態の乗用車用空気入りラジアルタイヤでは、タイヤ内面7に、1つ以上の制音体9を設け、制音体9は、少なくとも、ショルダー領域Sにおけるタイヤ内面7に設けられている。
 これにより、制音体9の延在領域を、ショルダー領域Sを含むようにして確保することができるため、制音性を高めることができ、また、該ショルダー領域Sでの発熱が相対的に低いことから、接着層等が溶けることによって制音体9がタイヤ内面7から剥離することや、制音体9に熱がこもってタイヤ内部が高温になることによる他の部材の故障等を抑制することができ、タイヤの耐久性を向上させることもできる。
 ここで、タイヤの内圧が高内圧であるほど、接地圧は、ショルダー領域S対比で、センター領域Cが高くなるため、上記タイヤの断面幅SW及びタイヤ外径ODの所定の関係は、内圧が200kPa以上である場合に満たされることが好ましく、220kPa以上である場合に満たされることがより好ましく、280kPa以上である場合に満たされることがさらに好ましい。上記の効果をより有効に得ることができるからであり、また、高内圧とすることによって転がり抵抗をより低減することができるからである。一方で、上記タイヤの断面幅SW及びタイヤ外径ODの所定の関係は、内圧が350kPa以下である場合に満たされることが好ましい。乗り心地性を向上させることができるからである。
Therefore, in the pneumatic radial tire for a passenger vehicle of the present embodiment, one or more noise dampers 9 are provided on the tire inner surface 7, and the noise damper 9 is provided at least on the tire inner surface 7 in the shoulder region S. ..
As a result, the extending region of the noise suppressor 9 can be secured so as to include the shoulder region S, so that the noise suppressing property can be enhanced, and the heat generation in the shoulder region S is relatively low. From the above, it is possible to prevent the noise suppressor 9 from peeling from the tire inner surface 7 due to melting of the adhesive layer or the like, and to prevent failure of other members due to heat buildup in the noise suppressor 9 and a high temperature inside the tire. It is also possible to improve the durability of the tire.
Here, the higher the internal pressure of the tire, the higher the ground pressure becomes in the center region C in comparison with the shoulder region S. Therefore, the predetermined relationship between the sectional width SW of the tire and the tire outer diameter OD is that the internal pressure is It is preferably satisfied when it is 200 kPa or more, more preferably satisfied when it is 220 kPa or more, and further preferably satisfied when it is 280 kPa or more. This is because the above effects can be obtained more effectively, and the rolling resistance can be further reduced by setting the internal pressure to a high value. On the other hand, the predetermined relationship between the sectional width SW of the tire and the tire outer diameter OD is preferably satisfied when the internal pressure is 350 kPa or less. This is because the riding comfort can be improved.
 さらに、本実施形態では、制音体9は、タイヤ赤道面CLを境界とするタイヤ幅方向一方の半部のショルダー領域Sにおけるタイヤ内面7から、タイヤ幅方向他方の半部のショルダー領域Sにおけるタイヤ内面7まで連続して延在し、制音体9のタイヤ内面7に沿った方向の両端は、タイヤ幅方向両半部のショルダー領域S内にそれぞれ位置している(図示例では、ショルダー領域Sのタイヤ幅方向外側端位置(すなわち接地端E)にある)ため、制音体9の体積を確保して、制音性をさらに向上させることができる。また、ショルダー領域Sよりタイヤ幅方向外側にも制音体9を設ける場合に比して、制音体9に熱がこもるのを抑制してタイヤ耐久性を向上させることができ、また、タイヤ重量増をより抑えることができる。
 また、本実施形態では、制音体9として、スポンジ材を用いており、スポンジ材は比重が小さい割に高い制音性を発揮することができるため、過度の重量増とならないようにしつつ、制音性をより向上させることができる。
Further, in the present embodiment, the noise suppressor 9 extends from the tire inner surface 7 in one half of the shoulder area S in the tire width direction bounded by the tire equatorial plane CL to the other half of the shoulder area S in the tire width direction. Both ends of the noise suppressor 9 extending in the direction along the tire inner surface 7 are continuously located in the tire inner surface 7, and both ends of the noise suppressor 9 are located in the shoulder regions S of both half portions in the tire width direction (in the illustrated example, the shoulder area). Since the region S is located at the outer end position in the tire width direction (that is, at the ground contact end E), it is possible to secure the volume of the noise suppressor 9 and further improve the noise suppressing property. Further, as compared with the case where the noise suppressor 9 is provided outside the shoulder region S in the tire width direction, it is possible to suppress heat from being accumulated in the noise suppressor 9 and improve tire durability. The weight increase can be further suppressed.
Further, in the present embodiment, a sponge material is used as the noise suppressor 9, and since the sponge material can exhibit high sound damping property despite its small specific gravity, it is possible to prevent an excessive weight increase. The noise control property can be further improved.
 また、本実施形態では、上記比T1/L1を0.2以上0.8以下としている。上記比T1/L1が0.2未満だと制音体9の厚さが小さくなって制音性が低下し、一方で、上記比T1/L1が0.8超だと制音体9に熱がこもりやすくなりタイヤ耐久性が低下してしまうからである。同様の理由により、上記比T1/L1は、0.3以上0.6以下とすることが好ましい。
 以上のように、本実施形態の乗用車用空気入りラジアルタイヤによれば、制音性とタイヤ耐久性とを両立させることができる。
Further, in the present embodiment, the ratio T1/L1 is set to 0.2 or more and 0.8 or less. If the ratio T1/L1 is less than 0.2, the thickness of the noise damper 9 is small and the noise damping property is deteriorated. On the other hand, if the ratio T1/L1 is more than 0.8, the noise damper 9 is reduced. This is because heat is likely to accumulate and tire durability is reduced. For the same reason, the ratio T1/L1 is preferably 0.3 or more and 0.6 or less.
As described above, according to the pneumatic radial tire for a passenger vehicle of the present embodiment, it is possible to achieve both sound damping and tire durability.
 図5は、本発明の第1~第3の態様の他の実施形態にかかる乗用車用空気入りラジアルタイヤを示す、タイヤ幅方向断面図である。図5は、タイヤをリムに組み込み、規定内圧を充填し、無負荷とした際のタイヤの幅方向断面を示している。
 図5に示す他の実施形態のタイヤは、制音体9の配置態様及びサイズのみが、図2に示す先の一実施形態のタイヤと異なっているので、当該構成について以下説明し、その他の共通する構成の説明は省略する。
 すなわち、図5に示す実施形態のタイヤでは、制音体9は、タイヤ赤道面CLを境界とするタイヤ幅方向一方の半部のサイドウォール部におけるタイヤ内面7から、タイヤ幅方向他方の半部のサイドウォール部におけるタイヤ内面7まで連続して延在し、制音体9のタイヤ内面7に沿った方向の両端は、タイヤ幅方向両半部のサイドウォール部(図示例では、タイヤ最大幅位置よりもタイヤ径方向内側、且つ、ビードフィラ2bのタイヤ径方向外側端よりタイヤ径方向外側)におけるタイヤ内面7にそれぞれ位置している。
 図5に示す実施形態では、制音体9のタイヤ内面7に直交する方向に計測した厚さは略一定であり、タイヤ赤道面CL上において最大厚さT1(mm)を有する。
 図5に示す実施形態のタイヤによっても、制音体9の延在領域を、ショルダー領域Sを含むようにして確保することができるため、制音性を高めることができ、また、該ショルダー領域Sでの発熱が相対的に低いことから、接着層等が溶けることによって制音体9がタイヤ内面7から剥離することや、制音体9に熱がこもってタイヤ内部が高温になることによる他の部材の故障等を抑制することができ、タイヤの耐久性を向上させることもできる。
 また、図2に示した実施形態と同様に、上記比T1/L1を0.2以上0.8以下としている。上記比T1/L1は、0.3以上0.6以下とすることが好ましい。
 例えば、制音体9の厚さT1は、上記の比T1/L1の範囲において、5~40mmとすることができる。
 特に、図5に示す実施形態のタイヤでは、センター領域C、ショルダー領域S、及びサイドウォール部(図示例では、タイヤ最大幅位置よりもタイヤ径方向内側まで)にわたって制音体9を設けているため、図2に示した実施形態に比して、制音体9の体積を大きく確保することができ、タイヤ耐久性を大きく損なうことなく、制音性をより向上させることができる。
 図5に示す実施形態では、制音体9のタイヤ径方向最内側端は、ビードフィラ2bのタイヤ径方向最外側端より、タイヤ径方向外側に位置している。これによれば、発熱の大きい部材であるビードフィラ2bから制音体9に熱が伝わるのを抑制して、タイヤ耐久性を向上させることができる。
 一方で、制音体9は、ビード部2におけるタイヤ内面7まで設けることもでき、例えば、制音体9のタイヤ径方向最内側端は、ビードフィラ2bのタイヤ径方向最外側端より、タイヤ径方向内側に位置していてもよい。この場合、制音体9の体積をより大きく確保して制音性を向上させることができる。
FIG. 5 is a cross-sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to another embodiment of the first to third aspects of the present invention. FIG. 5 shows a cross-section in the width direction of the tire when the tire is incorporated into a rim, a specified internal pressure is filled, and no load is applied.
The tire of the other embodiment shown in FIG. 5 is different from the tire of the previous embodiment shown in FIG. 2 only in the arrangement mode and size of the noise suppressor 9. Therefore, the configuration will be described below and other tires will be described. The description of the common configuration is omitted.
That is, in the tire of the embodiment shown in FIG. 5, the noise suppressor 9 is formed from the tire inner surface 7 in the sidewall portion of one half portion in the tire width direction bounded by the tire equatorial plane CL to the other half portion in the tire width direction. Of the noise suppressor 9 extending in a direction along the tire inner surface 7 at both sidewall portions of the sidewall portion of the tire width direction (in the illustrated example, the maximum tire width). It is located on the tire inner surface 7 at the tire radial direction inner side of the position and at the tire radial direction outer side of the tire radial direction outer end of the bead filler 2b).
In the embodiment shown in FIG. 5, the thickness of the noise damper 9 measured in the direction orthogonal to the tire inner surface 7 is substantially constant, and has the maximum thickness T1 (mm) on the tire equatorial plane CL.
Also with the tire of the embodiment shown in FIG. 5, since the extending region of the noise suppressor 9 can be ensured so as to include the shoulder region S, the noise suppressing property can be improved, and the shoulder region S can be improved. Since the heat generation in the tire is relatively low, the noise suppressor 9 is separated from the tire inner surface 7 due to melting of the adhesive layer or the like, and heat is accumulated in the noise suppressor 9 to increase the temperature inside the tire. It is possible to suppress the breakdown of members and improve the durability of the tire.
Further, similar to the embodiment shown in FIG. 2, the ratio T1/L1 is set to 0.2 or more and 0.8 or less. The ratio T1/L1 is preferably 0.3 or more and 0.6 or less.
For example, the thickness T1 of the noise suppressor 9 can be set to 5 to 40 mm in the range of the above ratio T1/L1.
Particularly, in the tire of the embodiment shown in FIG. 5, the noise suppressor 9 is provided over the center region C, the shoulder region S, and the sidewall portion (in the illustrated example, to the tire radial direction inner side from the tire maximum width position). Therefore, as compared with the embodiment shown in FIG. 2, it is possible to secure a large volume of the noise damper 9, and it is possible to further improve the noise damping property without significantly impairing the tire durability.
In the embodiment shown in FIG. 5, the innermost end of the noise suppressor 9 in the tire radial direction is located outside of the outermost end of the bead filler 2b in the tire radial direction. According to this, heat transfer from the bead filler 2b, which is a member that generates a large amount of heat, to the noise suppressor 9 can be suppressed, and tire durability can be improved.
On the other hand, the noise suppressor 9 may be provided up to the tire inner surface 7 of the bead portion 2. For example, the innermost end in the tire radial direction of the noise suppressor 9 is closer to the tire outer diameter end than the outermost end in the tire radial direction of the bead filler 2b. It may be located inside the direction. In this case, it is possible to secure a larger volume of the sound damping body 9 and improve the sound damping property.
 図6は、本発明の第1~第3の態様の別の実施形態にかかる乗用車用空気入りラジアルタイヤを示す、タイヤ幅方向断面図である。図6は、タイヤをリムに組み込み、規定内圧を充填し、無負荷とした際のタイヤの幅方向断面を示している。
 図6に示す別の実施形態のタイヤは、制音体9の配置態様及びサイズのみが、図2、図5に示す先の実施形態のタイヤと異なっているので、当該構成について以下説明し、その他の共通する構成の説明は省略する。
 図6に示す実施形態のタイヤでは、制音体9は、タイヤ幅方向各半部において、ショルダー領域Sにおけるタイヤ内面7からサイドウォール部におけるタイヤ内面7まで、それぞれ、連続して延在し、タイヤ幅方向各半部における制音体9のタイヤ内面7に沿った方向の一端は、ショルダー領域S(図示例ではショルダー領域Sのタイヤ幅方向内側端)におけるタイヤ内面7に位置し、且つ、他端は、サイドウォール部(図示例では、タイヤ最大幅位置よりもタイヤ径方向内側、且つ、ビードフィラ2bのタイヤ径方向外側端よりタイヤ径方向外側)におけるタイヤ内面7に位置している。
 各制音体9は、ペリフェリ長さL2(mm)(定義により、L2(mm)=L1(mm)/2)を有し、タイヤ幅方向内側端において最大厚さT2(=T1)(mm)を有している。
 図6に示す実施形態のタイヤによっても、制音体9の延在領域を、ショルダー領域Sを含むようにして確保することができるため、制音性を高めることができ、また、該ショルダー領域Sでの発熱が相対的に低いことから、接着層等が溶けることによって制音体9がタイヤ内面7から剥離することや、制音体9に熱がこもってタイヤ内部が高温になることによる他の部材の故障等を抑制することができ、タイヤの耐久性を向上させることもできる。
 また、図2、図5に示した実施形態と同様に、上記比T1/L1を0.2以上0.8以下としている。上記比T1/L1は、0.3以上0.6以下とすることが好ましい。
 例えば、制音体9の厚さT1は、上記の比T1/L1の範囲において、5~40mmとすることができる。
 特に、図6に示す実施形態のタイヤでは、図2、図5に示す実施形態と比較して、相対的に発熱の大きいセンター部Cにおけるタイヤ内面7は制音体9を設けていないため、センター領域Cにおいて接着層が溶けて制音体9がタイヤ内面7から剥離したり、制音体9に熱が伝わって他のタイヤ部材が故障したりするのを抑制して、タイヤ耐久性をより向上することができる。
 図6に示す実施形態では、制音体9のタイヤ径方向最内側端は、ビードフィラ2bのタイヤ径方向最外側端より、タイヤ径方向外側に位置している。これによれば、発熱の大きい部材であるビードフィラ2bから制音体9に熱が伝わるのを抑制して、タイヤ耐久性を向上させることができる。
 一方で、制音体9は、ビード部2におけるタイヤ内面7まで設けることもでき、例えば、制音体9のタイヤ径方向最内側端は、ビードフィラ2bのタイヤ径方向最外側端より、タイヤ径方向内側に位置していてもよい。この場合、制音体9の体積をより大きく確保して制音性を向上させることができる。
FIG. 6 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to another embodiment of the first to third aspects of the present invention. FIG. 6 shows a cross-section in the width direction of the tire when the tire is incorporated into a rim, the internal pressure is filled with the tire, and no load is applied.
The tire of another embodiment shown in FIG. 6 is different from the tire of the previous embodiment shown in FIGS. 2 and 5 only in the arrangement mode and size of the noise damper 9, and therefore the configuration will be described below. Description of other common configurations will be omitted.
In the tire of the embodiment shown in FIG. 6, the noise suppressor 9 continuously extends from the tire inner surface 7 in the shoulder region S to the tire inner surface 7 in the sidewall portion in each half portion in the tire width direction, One end of each half of the noise width direction in the tire width direction along the tire inner surface 7 is located on the tire inner surface 7 in the shoulder region S (the tire width direction inner end of the shoulder region S in the illustrated example), and The other end is located on the tire inner surface 7 in the sidewall portion (in the illustrated example, the tire radial direction inner side from the tire maximum width position and the tire radial direction outer end of the bead filler 2b).
Each noise suppressor 9 has a peripheral length L2 (mm) (by definition, L2 (mm)=L1 (mm)/2), and a maximum thickness T2 (=T1) (mm) at the tire width direction inner end. )have.
Also with the tire of the embodiment shown in FIG. 6, since the extending region of the noise suppressor 9 can be ensured so as to include the shoulder region S, the noise suppressing property can be enhanced, and the shoulder region S can be improved. Since the heat generation in the tire is relatively low, the noise suppressor 9 is separated from the tire inner surface 7 due to melting of the adhesive layer or the like, and heat is accumulated in the noise suppressor 9 to increase the temperature inside the tire. It is possible to suppress the breakdown of members and improve the durability of the tire.
Further, similar to the embodiment shown in FIGS. 2 and 5, the ratio T1/L1 is set to 0.2 or more and 0.8 or less. The ratio T1/L1 is preferably 0.3 or more and 0.6 or less.
For example, the thickness T1 of the noise suppressor 9 can be set to 5 to 40 mm in the range of the above ratio T1/L1.
Particularly, in the tire of the embodiment shown in FIG. 6, as compared with the embodiment shown in FIGS. 2 and 5, since the tire inner surface 7 in the center portion C that generates relatively large heat is not provided with the noise suppressor 9, In the center region C, the adhesive layer is melted to prevent the noise suppressor 9 from peeling from the tire inner surface 7, and heat from being transferred to the noise suppressor 9 to prevent other tire members from breaking down, thereby improving tire durability. It can be improved.
In the embodiment shown in FIG. 6, the innermost end of the noise suppressor 9 in the tire radial direction is located outside of the outermost end of the bead filler 2b in the tire radial direction. According to this, heat transfer from the bead filler 2b, which is a member that generates a large amount of heat, to the noise suppressor 9 can be suppressed, and tire durability can be improved.
On the other hand, the noise suppressor 9 may be provided up to the tire inner surface 7 of the bead portion 2. For example, the innermost end in the tire radial direction of the noise suppressor 9 is closer to the tire outer diameter end than the outermost end in the tire radial direction of the bead filler 2b. It may be located inside the direction. In this case, it is possible to secure a larger volume of the sound damping body 9 and improve the sound damping property.
 図7は、本発明の第1~第3の態様のさらに別の実施形態にかかる乗用車用空気入りラジアルタイヤを示す、タイヤ幅方向断面図である。図7は、タイヤをリムに組み込み、規定内圧を充填し、無負荷とした際のタイヤの幅方向断面を示している。
 図7に示すさらに別の実施形態のタイヤは、制音体9の配置態様及びサイズのみが、図2、図5、図6に示す先の実施形態のタイヤと異なっているので、当該構成について以下説明し、その他の共通する構成の説明は省略する。
 すなわち、図7に示す実施形態のタイヤでは、制音体9は、タイヤ幅方向各半部において、ショルダー領域Sにおけるタイヤ内面7からサイドウォール部におけるタイヤ内面7まで、それぞれ、断続的に延在し、制音体9は、タイヤ幅方向各半部において、センター領域Cにおけるタイヤ内面7及びバットレス部におけるタイヤ内面7には設けられていない。
 図7に示すように、本実施形態では、ショルダー領域Sにおけるタイヤ内面7に設けられた制音体9は、制音体9のタイヤ幅方向の幅W3が制音体9の厚さT3より大きい、扁平形状である。ショルダー領域Sにおけるタイヤ内面7に設けられた制音体9の断面形状は、略四角形状(ただし、タイヤ内面7に接着している辺は、タイヤ内面形状に沿っている)をなしているが、本発明においては、制音体9の断面形状は、三角形状等の他の多角形状、台形状、円形状、楕円形状等、任意の形状とすることができる。制音体9とタイヤ内面7との接着面積を確保しつつ、該接着面積に比して、制音体9の体積を大きくする観点からは、制音体9の断面形状は、略四角形状とすることが好ましい。
 図示例では、ショルダー領域Sの全域におけるタイヤ内面7に制音体9が設けられている。
 図示例では、制音体9の厚さは、ショルダー領域Sでは、タイヤ幅方向内側に向かうにつれて漸増している。図示例では、タイヤ赤道面CL上で最大厚さT3(=T1)(mm)を有している。ショルダー領域Sにおけるタイヤ内面7に設けられた制音体9は、ペリフェリ長さL3(mm)を有している。
 また、図示例では、サイドウォール部におけるタイヤ内面7に設けられた制音体9は、サイドウォール部の略全域(バットレス部を除く)に設けられている。
 図7に示すように、サイドウォール部におけるタイヤ内面7に設けられた制音体9は、略一定の厚さT4(mm)を有し、この例では、T3(=T1)>T4であるが、T3=T4(=T1)としても良く、T4(=T1)>T3としても良い。また、サイドウォール部におけるタイヤ内面7に設けられた制音体9は、ペリフェリ長さL3(mm)を有している。定義により、L1(mm)=2×L3(mm)+2×L4(mm)である。
 図7に示す実施形態のタイヤによっても、制音体9の延在領域を、ショルダー領域Sを含むようにして確保することができるため、制音性を高めることができ、また、該ショルダー領域Sでの発熱が相対的に低いことから、接着層等が溶けることによって制音体9がタイヤ内面7から剥離することや、制音体9に熱がこもってタイヤ内部が高温になることによる他の部材の故障等を抑制することができ、タイヤの耐久性を向上させることもできる。
 また、図2、図5、図6に示した実施形態と同様に、上記比T1/L1を0.2以上0.8以下としている。上記比T1/L1は、0.3以上0.6以下とすることが好ましい。
 例えば、制音体9の厚さT1は、上記の扁平率T1/L1の範囲において、5~40mmとすることができる。
 特に、図7に示す実施形態のタイヤでは、図6に示す実施形態と比較して、制音体9は、サイドウォール部のうち、狭幅・大径タイヤにおいて相対的に変形が大きくなるバットレス部におけるタイヤ内面7には接していないため、図6に示した実施形態に比して、制音体9が変形による力を受けたり、バットレス部から制音体9に熱が伝わるのを抑制したりすることができ、また、図2に示した実施形態に比しては、制音体9の体積を大きく確保することができる。これにより、制音性とタイヤ耐久性とをより良く両立させることができる。
 なお、図7に示す実施形態では、制音体9がタイヤ内面7に設けない領域を、バットレス部のタイヤ内面7としたが、サイドウォール部内の他の領域とすることもできる。
 図7に示す実施形態では、制音体9のタイヤ径方向最内側端は、ビードフィラ2bのタイヤ径方向最外側端より、タイヤ径方向外側に位置している。これによれば、発熱の大きい部材であるビードフィラ2bから制音体9に熱が伝わるのを抑制して、タイヤ耐久性を向上させることができる。
 一方で、制音体9は、ビード部2におけるタイヤ内面7まで設けることもでき、例えば、制音体9のタイヤ径方向最内側端は、ビードフィラ2bのタイヤ径方向最外側端より、タイヤ径方向内側に位置していてもよい。この場合、制音体9の体積をより大きく確保して制音性を向上させることができる。
FIG. 7 is a sectional view in the tire width direction showing a pneumatic radial tire for passenger cars according to still another embodiment of the first to third aspects of the present invention. FIG. 7 shows a cross-section in the width direction of the tire when the tire is incorporated in a rim, a specified internal pressure is filled, and no load is applied.
The tire of yet another embodiment shown in FIG. 7 is different from the tires of the previous embodiments shown in FIGS. 2, 5, and 6 only in the arrangement mode and size of the noise suppressor 9. The description will be given below, and the description of other common configurations will be omitted.
That is, in the tire of the embodiment shown in FIG. 7, the noise damper 9 extends intermittently in each half of the tire width direction from the tire inner surface 7 in the shoulder region S to the tire inner surface 7 in the sidewall portion. However, the noise suppressor 9 is not provided on the tire inner surface 7 in the center region C and the tire inner surface 7 in the buttress portion in each half portion in the tire width direction.
As shown in FIG. 7, in the present embodiment, in the noise suppressor 9 provided on the tire inner surface 7 in the shoulder region S, the width W3 of the noise suppressor 9 in the tire width direction is smaller than the thickness T3 of the noise suppressor 9. Large, flat shape. The noise suppressor 9 provided on the tire inner surface 7 in the shoulder region S has a substantially quadrangular cross-section (however, the side bonded to the tire inner surface 7 is along the tire inner surface shape). In the present invention, the cross-sectional shape of the noise suppressor 9 may be any shape such as another polygonal shape such as a triangular shape, a trapezoidal shape, a circular shape, an elliptical shape, or the like. From the viewpoint of ensuring a bonding area between the noise damper 9 and the tire inner surface 7 and increasing the volume of the noise damper 9 as compared with the bonding area, the cross-sectional shape of the noise damper 9 is substantially rectangular. It is preferable that
In the illustrated example, the noise suppressor 9 is provided on the tire inner surface 7 in the entire shoulder region S.
In the illustrated example, the thickness of the noise damper 9 in the shoulder region S gradually increases toward the inside in the tire width direction. In the illustrated example, the tire has a maximum thickness T3 (=T1) (mm) on the equatorial plane CL. The noise suppressor 9 provided on the tire inner surface 7 in the shoulder region S has a peripheral length L3 (mm).
Further, in the illustrated example, the noise suppressor 9 provided on the tire inner surface 7 in the sidewall portion is provided in substantially the entire sidewall portion (excluding the buttress portion).
As shown in FIG. 7, the noise suppressor 9 provided on the tire inner surface 7 in the sidewall portion has a substantially constant thickness T4 (mm), and in this example, T3 (=T1)>T4. However, T3=T4(=T1) may be satisfied, or T4(=T1)>T3 may be satisfied. The noise suppressor 9 provided on the tire inner surface 7 in the sidewall portion has a peripheral length L3 (mm). By definition, L1 (mm)=2×L3 (mm)+2×L4 (mm).
Also with the tire of the embodiment shown in FIG. 7, since the extending region of the noise suppressor 9 can be ensured so as to include the shoulder region S, the noise suppressing property can be improved, and the shoulder region S can be improved. Since the heat generation in the tire is relatively low, the noise suppressor 9 is separated from the tire inner surface 7 due to melting of the adhesive layer or the like, and heat is accumulated in the noise suppressor 9 to increase the temperature inside the tire. It is possible to suppress breakdown of members and improve durability of the tire.
Further, as in the embodiment shown in FIGS. 2, 5, and 6, the ratio T1/L1 is set to 0.2 or more and 0.8 or less. The ratio T1/L1 is preferably 0.3 or more and 0.6 or less.
For example, the thickness T1 of the noise damper 9 can be set to 5 to 40 mm in the range of the flattening ratio T1/L1.
In particular, in the tire of the embodiment shown in FIG. 7, compared to the embodiment shown in FIG. 6, the noise suppressor 9 is a buttress in which the deformation is relatively large in the narrow width/large diameter tire in the sidewall portion. Since it is not in contact with the tire inner surface 7 in the portion, it is possible to suppress the noise suppressor 9 from receiving a force due to the deformation and the heat transmitted from the buttress portion to the noise suppressor 9 as compared with the embodiment shown in FIG. It is also possible to secure a large volume of the noise suppressor 9 as compared with the embodiment shown in FIG. As a result, it is possible to better balance the noise control performance and the tire durability.
In the embodiment shown in FIG. 7, the region where the noise suppressor 9 is not provided on the tire inner surface 7 is the tire inner surface 7 of the buttress portion, but it may be another region in the sidewall portion.
In the embodiment shown in FIG. 7, the innermost end of the noise suppressor 9 in the tire radial direction is located outside of the outermost end of the bead filler 2b in the tire radial direction. According to this, heat transfer from the bead filler 2b, which is a member that generates a large amount of heat, to the noise suppressor 9 can be suppressed, and tire durability can be improved.
On the other hand, the noise suppressor 9 can be provided up to the tire inner surface 7 of the bead portion 2. For example, the innermost end of the noise suppressor 9 in the tire radial direction is closer to the tire outer diameter end than the outermost end of the bead filler 2b in the tire radial direction. It may be located inside the direction. In this case, it is possible to secure a larger volume of the sound damping body 9 and improve the sound damping property.
 また、本発明では、図2に示したように、制音体9は、タイヤ幅方向一方の半部のショルダー領域Sにおけるタイヤ内面7から、タイヤ幅方向他方の半部のショルダー領域Sにおけるタイヤ内面7まで連続して延在し、制音体9のタイヤ内面7に沿った方向の両端は、タイヤ幅方向両半部のショルダー領域S内にそれぞれ位置することが好ましい。
 タイヤ耐久性を低下させることなく、制音体9の体積を大きく確保して制音性をより向上させることができるからである。
 また、本発明では、図5に示したように、制音体9は、タイヤ幅方向一方の半部のサイドウォール部におけるタイヤ内面7から、タイヤ幅方向他方の半部のサイドウォール部におけるタイヤ内面7まで連続して延在し、制音体9のタイヤ内面7に沿った方向の両端は、タイヤ幅方向両半部のサイドウォール部におけるタイヤ内面7にそれぞれ位置することが好ましい。
 タイヤ耐久性を低下させることなく、制音体9の体積をさらに大きく確保して制音性をさらに向上させることができるからである。
 また、本発明では、図6に示したように、制音体9は、タイヤ幅方向各半部において、ショルダー領域Sにおけるタイヤ内面7からサイドウォール部におけるタイヤ内面7まで、それぞれ、連続して延在し、タイヤ幅方向各半部における制音体9のタイヤ内面7に沿った方向の一端は、ショルダー領域Sにおけるタイヤ内面7に位置し、且つ、他端は、サイドウォール部におけるタイヤ内面7に位置することが好ましい。
 制音体9を設ける領域を発熱が相対的に大きいセンター部Cにかからないようにして、タイヤ耐久性をより一層向上させることができるからである。
 また、本発明では、図7に示したように、制音体9は、タイヤ幅方向各半部において、ショルダー領域Sにおけるタイヤ内面7からサイドウォール部におけるタイヤ内面まで、それぞれ、断続的に延在し、制音体9は、タイヤ幅方向各半部において、センター領域Cにおけるタイヤ内面7及びバットレス部におけるタイヤ内面7には設けられていないことが好ましい。
 制音体9を設ける領域を発熱が相対的に大きいセンター部及び変形の大きいバットレス部にかからないようにして、タイヤ耐久性をさらに向上させることができるからである。
 また、本発明では、制音体9は、スポンジ材であることが好ましい。
 スポンジ材は、比重が小さいため、過度の重量増とならないようにしつつ、制音性を向上させることができるからである。
Further, in the present invention, as shown in FIG. 2, the noise suppressor 9 extends from the tire inner surface 7 in the shoulder region S in one half of the tire width direction to the tire in the shoulder region S in the other half of the tire width direction. It is preferable that both ends of the noise suppressor 9 in the direction along the tire inner surface 7 extend continuously to the inner surface 7 and that they are located in the shoulder regions S at both half portions in the tire width direction.
This is because it is possible to secure a large volume of the sound damping body 9 and further improve the sound damping property without lowering the tire durability.
Further, in the present invention, as shown in FIG. 5, the noise suppressor 9 extends from the tire inner surface 7 in the sidewall portion of one half portion in the tire width direction to the tire in the sidewall portion of the other half portion in the tire width direction. It is preferable that the both ends of the noise damper 9 extending in the direction along the tire inner surface 7 are located on the tire inner surface 7 in the sidewall portions of the tire width direction halves, respectively.
This is because it is possible to secure a larger volume of the sound damping body 9 and further improve the sound damping property without lowering the tire durability.
Further, in the present invention, as shown in FIG. 6, the noise suppressor 9 continuously extends from the tire inner surface 7 in the shoulder region S to the tire inner surface 7 in the sidewall portion in each half portion in the tire width direction. One end in the direction extending along the tire inner surface 7 of the noise suppressor 9 in each half of the tire width direction is located on the tire inner surface 7 in the shoulder region S, and the other end is the tire inner surface in the sidewall portion. It is preferably located at 7.
This is because it is possible to further improve tire durability by preventing the region where the noise suppressor 9 is provided from being applied to the center portion C where heat generation is relatively large.
Further, in the present invention, as shown in FIG. 7, the noise suppressor 9 intermittently extends in each half portion in the tire width direction from the tire inner surface 7 in the shoulder region S to the tire inner surface in the sidewall portion. It is preferable that the noise suppressor 9 is not provided on the tire inner surface 7 in the center region C and the tire inner surface 7 in the buttress portion in each half portion in the tire width direction.
This is because it is possible to further improve tire durability by preventing the region where the noise suppressor 9 is provided from being applied to the center portion where heat generation is relatively large and the buttress portion where deformation is large.
Further, in the present invention, the noise suppressor 9 is preferably a sponge material.
Since the sponge material has a small specific gravity, it is possible to improve the sound damping property while preventing an excessive increase in weight.
<タイヤ・リム組立体>
 ここでのタイヤ・リム組立体は、上記第1~第3の態様の各実施形態にかかる乗用車用空気入りラジアルタイヤをリムに組み込んでなるものである。当該タイヤ・リム組立体によれば、上記第1~第3の態様の各実施形態にかかる乗用車用空気入りラジアルタイヤについて説明したのと同様の作用効果を得ることができる。このとき、タイヤ・リム組立体の内圧は、200kPa以上であることが好ましく、220kPa以上であることがより好ましく、280kPa以上であることがさらに好ましい。上述したように、タイヤの内圧が高内圧であるほど、接地圧は、ショルダー領域S対比で、センター領域Cが高くなるため、上記の作用効果を有効に得ることができ、また、高内圧とすることで転がり抵抗をより低減することができるからである。一方で、タイヤ・リム組立体の内圧は、350kPa以下であることが好ましい。乗り心地性を向上させることができるからである。
<Tire/rim assembly>
The tire/rim assembly here is one in which the pneumatic radial tire for passenger cars according to each of the embodiments of the first to third aspects is incorporated in a rim. According to the tire/rim assembly, it is possible to obtain the same operational effects as those described for the pneumatic radial tire for a passenger vehicle according to each of the embodiments of the first to third aspects. At this time, the internal pressure of the tire/rim assembly is preferably 200 kPa or more, more preferably 220 kPa or more, and further preferably 280 kPa or more. As described above, the higher the internal pressure of the tire is, the higher the ground pressure is in the center region C as compared with the shoulder region S, so that the above-described function and effect can be effectively obtained, and the high internal pressure By doing so, the rolling resistance can be further reduced. On the other hand, the internal pressure of the tire/rim assembly is preferably 350 kPa or less. This is because the riding comfort can be improved.
<乗用車用空気入りラジアルタイヤの使用方法>
 ここでの乗用車用空気入りラジアルタイヤの使用方法は、上記第1~第3の態様の各実施形態にかかる乗用車用空気入りラジアルタイヤを使用する。当該乗用車用空気入りラジアルタイヤの使用方法によれば、上記第1~第3の態様の各実施形態にかかる乗用車用空気入りラジアルタイヤについて説明したのと同様の作用効果を得ることができる。このとき、内圧を200kPa以上として使用することが好ましく、220kPa以上として使用することがより好ましく、280kPa以上として使用することがさらに好ましい。上述したように、タイヤの内圧が高内圧であるほど、接地圧は、ショルダー領域S対比で、センター領域Cが高くなるため、上記の作用効果を有効に得ることができ、また、高内圧とすることで転がり抵抗をより低減することができるからである。一方で、内圧を350kPa以下として使用することが好ましい。乗り心地性を向上させることができるからである。
<How to use pneumatic radial tires for passenger cars>
The pneumatic radial tire for passenger cars used here is the pneumatic radial tire for passenger cars according to the respective embodiments of the first to third aspects. According to the method of using the pneumatic radial tire for a passenger vehicle, the same operational effects as those described for the pneumatic radial tire for a passenger vehicle according to the respective embodiments of the first to third aspects can be obtained. At this time, the internal pressure is preferably 200 kPa or more, more preferably 220 kPa or more, and further preferably 280 kPa or more. As described above, the higher the internal pressure of the tire is, the higher the ground pressure is in the center region C as compared with the shoulder region S, so that the above-described function and effect can be effectively obtained, and the high internal pressure By doing so, the rolling resistance can be further reduced. On the other hand, it is preferable to use the internal pressure of 350 kPa or less. This is because the riding comfort can be improved.
 以上、本発明の実施形態について説明したが、本発明は上記の実施形態に何ら限定されるものではない。例えば、図2、図5~図7に示した実施形態では、タイヤ赤道面CLを境界として、制音体9を対称な構成としているが、非対称な構成としても良い。例えば、タイヤ幅方向一方の半部における制音体9の位置、延在領域、形状、材質、最大幅、最大厚さ等のいずれか1つ以上を、タイヤ幅方向他方の半部における制音体9と異ならせることもできる。一例としては、上記各実施形態及びその変形例の異なる組み合わせにより、タイヤ幅方向一方の半部における制音体9の位置、延在領域等を、タイヤ幅方向他方の半部における制音体9の位置、延在領域等と異ならせることができる。あるいは、タイヤ幅方向一方の半部のみに、例えば上記各実施形態及びその変形例の制音体9を設け、タイヤ幅方向他方の半部には、制音体9を設けないようにすることもできる。
 また、制音体9がタイヤ周方向に分断されている場合には、その一部が、センター領域におけるタイヤの内面に接していない又は接着されていないことにより、上記の作用効果を奏することができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, in the embodiments shown in FIGS. 2 and 5 to 7, the noise suppressor 9 has a symmetrical structure with the tire equatorial plane CL as a boundary, but may have an asymmetric structure. For example, any one or more of the position, the extension region, the shape, the material, the maximum width, the maximum thickness, etc. of the noise suppressor 9 in one half of the tire width direction may be used to suppress the noise in the other half of the tire width direction. It can be different from the body 9. As an example, by different combinations of the above-described respective embodiments and the modifications thereof, the position, the extension region, and the like of the noise suppressor 9 in one half of the tire width direction may be changed to the noise suppressor 9 in the other half of the tire width direction. The position, the extension area, and the like can be different. Alternatively, for example, the noise suppressor 9 of each of the above-described embodiments and its modifications is provided only in one half of the tire width direction, and the noise suppressor 9 is not provided in the other half of the tire width direction. You can also
Further, when the noise suppressor 9 is divided in the tire circumferential direction, a part of the noise suppressor 9 is not in contact with or adhered to the inner surface of the tire in the center region, so that the above-described effect can be obtained. it can.
 ここで、タイヤ・リム組立体は、SWが165mm未満であり、比SW/ODは、0.26以下であり、且つ、内圧が200kPa以上であり、且つ、扁平率が70以下であり、且つ、リム径18インチ以上であって、制音体(例えばスポンジ材)の周長が1800mm以上であることが好ましい。
 ここでいう「制音体の周長」は、制音体の周長をタイヤ周方向に計測した際に最小となるような位置での周長をいい、制音体が複数個に分割されている場合は、複数個の制音体のうち、周長が最小となる制音体の周長をいう。また、制音体がタイヤ周方向に分断されている場合は、合計の周長をいうものとする。
 燃費性を向上させるためには、内圧を高くして転がり抵抗を低減することが好ましく、また、扁平率を低くして軽量化することやタイヤ変形を抑制することも好ましく、また、タイヤの断面幅を狭くして、空気抵抗を低減することも好ましい。
 一方で、内圧を高く設定すると、トレッド踏面における接地圧が高くなるため、空洞共鳴音は悪化する傾向となる。また、扁平率を低くすると、ベルト張力が増大して、トレッド踏面における接地圧が高くなるため空洞共鳴音は悪化する傾向となる。また、タイヤの断面幅を狭くするとトレッド幅もそれに伴い狭くなるため、一般的には制音体の断面積も減少し、空洞共鳴が悪化する傾向となる。
 そこで、タイヤの外径を大きくして、制音体の周方向長さを長くすることで制音体の断面積を大きくすることなく、制音体の総体積を増大させて、空洞共鳴を抑制することができる。さらに、制音体の断面積が小さいため、制音体の発熱量を抑えることもできる。
 このように、上記の構成によれば、空洞共鳴の低減と、転がり抵抗の低減と、発熱耐久性能とを、高次元で両立することができる。
 同様に、タイヤ・リム組立体は、SWが165mm以上であり、OD(mm)≧2.135×SW(mm)+282.3、を満たし、且つ、内圧が200kPa以上であり、且つ、扁平率が70以下であり、且つ、リム径18インチ以上であって、制音体(例えばスポンジ材)の周長が1800mm以上であることが好ましい。
 また、同様に、タイヤ・リム組立体は、OD(mm)≧-0.0187×SW(mm)2+9.15×SW(mm)-380、を満たし、且つ、内圧が200kPa以上であり、且つ、扁平率が70以下であり、且つ、リム径18インチ以上であって、制音体(例えばスポンジ材)の周長が1800mm以上であることが好ましい。
Here, in the tire/rim assembly, SW is less than 165 mm, the ratio SW/OD is 0.26 or less, the internal pressure is 200 kPa or more, and the oblateness is 70 or less, and It is preferable that the rim diameter is 18 inches or more, and the sound absorber (eg, sponge material) has a peripheral length of 1800 mm or more.
The "perimeter of the noise suppressor" here means the perimeter at the position where the circumference of the noise suppressor is minimized when measured in the tire circumferential direction, and the noise suppressor is divided into multiple parts. In the case of the sound damping body, it means the circumference of the sound damping body having the smallest circumference. Further, when the noise damper is divided in the tire circumferential direction, it means the total circumferential length.
In order to improve fuel efficiency, it is preferable to increase the internal pressure to reduce the rolling resistance, and it is also preferable to reduce the flatness to reduce the weight and suppress the tire deformation, and the tire cross section. It is also preferable to reduce the air resistance by narrowing the width.
On the other hand, when the internal pressure is set high, the ground contact pressure on the tread tread increases, and the cavity resonance tends to deteriorate. Further, when the flatness is lowered, the belt tension increases and the ground contact pressure on the tread tread increases, so that the cavity resonance tends to be deteriorated. Further, when the tire cross-sectional width is narrowed, the tread width is also narrowed accordingly, so that the cross-sectional area of the noise suppressor is generally reduced and the cavity resonance tends to be deteriorated.
Therefore, by increasing the outer diameter of the tire and increasing the circumferential length of the noise suppressor, it is possible to increase the total volume of the noise suppressor without increasing the cross-sectional area of the noise suppressor. Can be suppressed. Furthermore, since the noise suppressor has a small cross-sectional area, the amount of heat generated by the noise suppressor can be suppressed.
As described above, according to the above configuration, it is possible to achieve a high level of both cavity resonance reduction, rolling resistance reduction, and heat generation endurance performance.
Similarly, the tire/rim assembly has SW of 165 mm or more, satisfies OD (mm)≧2.135×SW (mm)+282.3, and has an internal pressure of 200 kPa or more, and a flatness Is 70 or less, the rim diameter is 18 inches or more, and the peripheral length of the noise damper (eg, sponge material) is 1800 mm or more.
Similarly, the tire/rim assembly satisfies OD (mm)≧−0.0187×SW(mm) 2 +9.15×SW(mm)−380, and has an internal pressure of 200 kPa or more, Further, it is preferable that the flatness is 70 or less, the rim diameter is 18 inches or more, and the circumferential length of the noise damper (eg, sponge material) is 1800 mm or more.
1:乗用車用空気入りラジアルタイヤ(タイヤ)、
2:ビード部、 2a:ビードコア、 2b:ビードフィラ、 3:カーカス、
4:ベルト、 4a、4b:ベルト層、 5:トレッド、
6:周方向主溝、 7:タイヤ内面、 8:インナーライナー、
9:制音体、
CL:タイヤ赤道面、 E:接地端、
C:センター領域、 S:ショルダー領域
1: Pneumatic radial tires (tires) for passenger cars,
2: bead portion, 2a: bead core, 2b: bead filler, 3: carcass,
4: belt, 4a, 4b: belt layer, 5: tread,
6: circumferential main groove, 7: tire inner surface, 8: inner liner,
9: Suppressor,
CL: tire equatorial plane, E: ground contact edge,
C: Center area, S: Shoulder area

Claims (8)

  1.  一対のビード部間でトロイダル状に跨る、ラジアル配列コードのプライからなるカーカスを備えた、乗用車用空気入りラジアルタイヤであって、
     前記タイヤの断面幅SWが165(mm)未満であり、前記タイヤの断面幅SW(mm)と外径OD(mm)との比SW/ODは、0.26以下であり、
     前記タイヤの内面に、1つ以上の制音体を設け、
     前記タイヤをリムに組み込み、規定内圧を充填し、無負荷状態とした際の、タイヤ幅方向断面において、接地端間でのタイヤ幅方向中央50%のタイヤ幅方向領域をセンター領域とし、該センター領域よりタイヤ幅方向外側の25%ずつのタイヤ幅方向領域をショルダー領域とするとき、
     前記制音体は、少なくとも、前記ショルダー領域における前記タイヤの内面に設けられ、
     タイヤ幅方向断面において、前記制音体の前記タイヤの内面に沿ったペリフェリ長さをL1(mm)とし、前記制音体の前記タイヤの内面に沿った方向に直交する方向に計測した際の最大厚さをT1(mm)とするとき、比T1/L1は、0.2以上0.8以下であることを特徴とする、乗用車用空気入りラジアルタイヤ。
    A pneumatic radial tire for a passenger vehicle, which comprises a carcass consisting of a ply of a radial arrangement cord, straddling toroidally between a pair of bead portions,
    The sectional width SW of the tire is less than 165 (mm), the ratio SW/OD of the sectional width SW (mm) and the outer diameter OD (mm) of the tire is 0.26 or less,
    The inner surface of the tire is provided with one or more noise dampers,
    In the tire width direction cross section when the tire is incorporated into a rim, filled with a specified internal pressure, and in a no-load state, a tire width direction region of the tire width direction center 50% between ground contact ends is defined as a center region, and the center When the tire width direction area of 25% outside the area in the tire width direction is set as the shoulder area,
    The noise damper is provided at least on the inner surface of the tire in the shoulder region,
    In the tire width direction cross section, when the peripheral length of the noise suppressor along the inner surface of the tire is L1 (mm), the measurement is performed in a direction orthogonal to the direction of the noise suppressor along the inner surface of the tire. A pneumatic radial tire for passenger cars, characterized in that the ratio T1/L1 is 0.2 or more and 0.8 or less when the maximum thickness is T1 (mm).
  2.  一対のビード部間でトロイダル状に跨る、ラジアル配列コードのプライからなるカーカスを備えた、乗用車用空気入りラジアルタイヤであって、
     前記タイヤの断面幅SWが165(mm)以上であり、前記タイヤの断面幅SW(mm)及び外径OD(mm)は、関係式、
    OD(mm)≧2.135×SW(mm)+282.3
    を満たし、
     前記タイヤの内面に、1つ以上の制音体を設け、
     前記タイヤをリムに組み込み、規定内圧を充填し、無負荷状態とした際の、タイヤ幅方向断面において、接地端間でのタイヤ幅方向中央50%のタイヤ幅方向領域をセンター領域とし、該センター領域よりタイヤ幅方向外側の25%ずつのタイヤ幅方向領域をショルダー領域とするとき、
     前記制音体は、少なくとも、前記ショルダー領域における前記タイヤの内面に設けられ、
     タイヤ幅方向断面において、前記制音体の前記タイヤの内面に沿ったペリフェリ長さをL1(mm)とし、前記制音体の前記タイヤの内面に沿った方向に直交する方向に計測した際の最大厚さをT1(mm)とするとき、比T1/L1は、0.2以上0.8以下であることを特徴とする、乗用車用空気入りラジアルタイヤ。
    A pneumatic radial tire for a passenger vehicle, which comprises a carcass consisting of a ply of a radial arrangement cord, straddling toroidally between a pair of bead portions,
    The sectional width SW of the tire is 165 (mm) or more, and the sectional width SW (mm) and the outer diameter OD (mm) of the tire are expressed by a relational expression,
    OD (mm)≧2.135×SW (mm)+282.3
    The filling,
    The inner surface of the tire is provided with one or more noise dampers,
    In the tire width direction cross section when the tire is incorporated into a rim, filled with a specified internal pressure, and in a no-load state, a tire width direction region of the tire width direction center 50% between ground contact ends is defined as a center region, and the center When the tire width direction area of 25% outside the area in the tire width direction is set as the shoulder area,
    The noise damper is provided at least on the inner surface of the tire in the shoulder region,
    In the tire width direction cross section, when the peripheral length of the noise suppressor along the inner surface of the tire is L1 (mm), the measurement is performed in a direction orthogonal to the direction of the noise suppressor along the inner surface of the tire. A pneumatic radial tire for passenger cars, characterized in that the ratio T1/L1 is 0.2 or more and 0.8 or less when the maximum thickness is T1 (mm).
  3.  一対のビード部間でトロイダル状に跨る、ラジアル配列コードのプライからなるカーカスを備えた、乗用車用空気入りラジアルタイヤであって、
     前記タイヤの断面幅SW(mm)及び外径OD(mm)は、関係式、
    OD(mm)≧-0.0187×SW(mm)2+9.15×SW(mm)-380
    を満たし、
     前記タイヤの内面に、1つ以上の制音体を設け、
     前記タイヤをリムに組み込み、規定内圧を充填し、無負荷状態とした際の、タイヤ幅方向断面において、接地端間でのタイヤ幅方向中央50%のタイヤ幅方向領域をセンター領域とし、該センター領域よりタイヤ幅方向外側の25%ずつのタイヤ幅方向領域をショルダー領域とするとき、
     前記制音体は、少なくとも、前記ショルダー領域における前記タイヤの内面に設けられ、
     タイヤ幅方向断面において、前記制音体の前記タイヤの内面に沿ったペリフェリ長さをL1(mm)とし、前記制音体の前記タイヤの内面に沿った方向に直交する方向に計測した際の最大厚さをT1(mm)とするとき、比T1/L1は、0.2以上0.8以下であることを特徴とする、乗用車用空気入りラジアルタイヤ。
    A pneumatic radial tire for a passenger vehicle, which comprises a carcass consisting of a ply of a radial arrangement cord, straddling toroidally between a pair of bead portions,
    The sectional width SW (mm) and outer diameter OD (mm) of the tire are expressed by a relational expression,
    OD (mm) ≥-0.0187 x SW (mm) 2 +9.15 x SW (mm)-380
    The filling,
    The inner surface of the tire is provided with one or more noise dampers,
    In the tire width direction cross section when the tire is incorporated into a rim, filled with a specified internal pressure, and in a no-load state, a tire width direction region of the tire width direction center 50% between ground contact ends is defined as a center region, and the center When the tire width direction area of 25% outside the area in the tire width direction is set as the shoulder area,
    The noise damper is provided at least on the inner surface of the tire in the shoulder region,
    In the tire width direction cross section, when the peripheral length of the noise suppressor along the inner surface of the tire is L1 (mm), the measurement is performed in a direction orthogonal to the direction of the noise suppressor along the inner surface of the tire. A pneumatic radial tire for passenger cars, characterized in that the ratio T1/L1 is 0.2 or more and 0.8 or less when the maximum thickness is T1 (mm).
  4.  前記制音体は、タイヤ幅方向一方の半部の前記ショルダー領域における前記タイヤの内面から、タイヤ幅方向他方の半部の前記ショルダー領域における前記タイヤの内面まで連続して延在し、
     前記制音体の前記タイヤの内面に沿った方向の両端は、タイヤ幅方向両半部の前記ショルダー領域内にそれぞれ位置する、請求項1~3のいずれか一項に記載の乗用車用空気入りラジアルタイヤ。
    The sound damper extends continuously from the inner surface of the tire in the shoulder region of one half of the tire width direction to the inner surface of the tire in the shoulder region of the other half of the tire width direction,
    4. The pneumatic passenger vehicle according to any one of claims 1 to 3, wherein both ends of the noise suppressor in a direction along an inner surface of the tire are located in the shoulder regions of both half portions in a tire width direction, respectively. Radial tires.
  5.  前記制音体は、タイヤ幅方向一方の半部のサイドウォール部における前記タイヤの内面から、タイヤ幅方向他方の半部の前記サイドウォール部における前記タイヤの内面まで連続して延在し、
     前記制音体の前記タイヤの内面に沿った方向の両端は、タイヤ幅方向両半部の前記サイドウォール部における前記タイヤの内面にそれぞれ位置する、請求項1~3のいずれか一項に記載の乗用車用空気入りラジアルタイヤ。
    The sound damper extends continuously from the inner surface of the tire in the sidewall portion of one half of the tire width direction to the inner surface of the tire in the sidewall portion of the other half of the tire width direction,
    The both ends of the noise suppressor in the direction along the inner surface of the tire are respectively located on the inner surface of the tire in the sidewall portions of both half portions in the tire width direction, according to any one of claims 1 to 3. Pneumatic radial tires for passenger cars.
  6.  前記制音体は、タイヤ幅方向各半部において、前記ショルダー領域における前記タイヤの内面から前記サイドウォール部における前記タイヤの内面まで、それぞれ、連続して延在し、
     タイヤ幅方向各半部における前記制音体の前記タイヤの内面に沿った方向の一端は、前記ショルダー領域における前記タイヤの内面に位置し、且つ、他端は、前記サイドウォール部における前記タイヤの内面に位置する、請求項1~3のいずれか一項に記載の乗用車用空気入りラジアルタイヤ。
    The noise suppressor, in each half of the tire width direction, from the inner surface of the tire in the shoulder region to the inner surface of the tire in the sidewall portion, respectively, extending continuously,
    One end in the direction along the inner surface of the tire of the noise suppressor in each half of the tire width direction is located on the inner surface of the tire in the shoulder region, and the other end of the tire in the sidewall portion. The pneumatic radial tire for passenger cars according to any one of claims 1 to 3, which is located on the inner surface.
  7.  前記制音体は、タイヤ幅方向各半部において、前記ショルダー領域における前記タイヤの内面から前記サイドウォール部における前記タイヤの内面まで、それぞれ、断続的に延在し、
     前記制音体は、タイヤ幅方向各半部において、前記センター領域における前記タイヤの内面及びバットレス部における前記タイヤの内面には設けられていない、請求項1~3のいずれか一項に記載の乗用車用空気入りラジアルタイヤ。
    The noise suppressor, in each half portion in the tire width direction, from the inner surface of the tire in the shoulder region to the inner surface of the tire in the sidewall portion, each extending intermittently,
    4. The noise suppressor according to claim 1, wherein, in each half of the tire width direction, the noise suppressor is not provided on an inner surface of the tire in the center region and an inner surface of the tire in a buttress portion. Pneumatic radial tires for passenger cars.
  8.  前記制音体は、スポンジ材である、請求項1~7のいずれか一項に記載の乗用車用空気入りラジアルタイヤ。 The pneumatic radial tire for passenger cars according to any one of claims 1 to 7, wherein the noise damper is a sponge material.
PCT/JP2019/027043 2018-12-13 2019-07-08 Pneumatic radial tire for passenger vehicles WO2020121571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233176A JP2020093675A (en) 2018-12-13 2018-12-13 Automobile pneumatic radial tire
JP2018-233176 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020121571A1 true WO2020121571A1 (en) 2020-06-18

Family

ID=71075510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027043 WO2020121571A1 (en) 2018-12-13 2019-07-08 Pneumatic radial tire for passenger vehicles

Country Status (2)

Country Link
JP (2) JP2020093675A (en)
WO (1) WO2020121571A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065318A1 (en) * 2011-11-02 2013-05-10 株式会社ブリヂストン Pneumatic radial tire for passenger car
JP2014213837A (en) * 2013-04-30 2014-11-17 株式会社ブリヂストン Pneumatic radial tire and assembly of the same and rim
JP2016074280A (en) * 2014-10-03 2016-05-12 株式会社ブリヂストン Run flat tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515468A (en) * 2017-03-27 2020-05-28 ブリヂストン バンダグ エルエルシー Variable vibration three-dimensional sipes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065318A1 (en) * 2011-11-02 2013-05-10 株式会社ブリヂストン Pneumatic radial tire for passenger car
JP2014213837A (en) * 2013-04-30 2014-11-17 株式会社ブリヂストン Pneumatic radial tire and assembly of the same and rim
JP2016074280A (en) * 2014-10-03 2016-05-12 株式会社ブリヂストン Run flat tire

Also Published As

Publication number Publication date
JP2020093675A (en) 2020-06-18
JP2022164929A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
WO2020121573A1 (en) Pneumatic radial tire for passenger vehicles
WO2018179636A1 (en) Pneumatic tire
JP2022173595A (en) Automobile pneumatic radial tire
JP2022164930A (en) Automobile pneumatic radial tire
JP4901144B2 (en) Pneumatic tire
WO2018179638A1 (en) Pneumatic tire
WO2020121571A1 (en) Pneumatic radial tire for passenger vehicles
WO2020121567A1 (en) Pneumatic radial tire for passenger vehicle
WO2020121570A1 (en) Pneumatic radial tire for passenger vehicle
WO2020121572A1 (en) Pneumatic radial tire for passenger vehicles
JP7329106B2 (en) Pneumatic radial tires for passenger cars
JP2020093679A (en) Automobile pneumatic radial tire
JP4855972B2 (en) Pneumatic tire
JP7132172B2 (en) pneumatic tire
WO2018179637A1 (en) Pneumatic tire
JP6038574B2 (en) Pneumatic tire
JP2017159740A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897385

Country of ref document: EP

Kind code of ref document: A1