WO2020121452A1 - Lidar device - Google Patents

Lidar device Download PDF

Info

Publication number
WO2020121452A1
WO2020121452A1 PCT/JP2018/045744 JP2018045744W WO2020121452A1 WO 2020121452 A1 WO2020121452 A1 WO 2020121452A1 JP 2018045744 W JP2018045744 W JP 2018045744W WO 2020121452 A1 WO2020121452 A1 WO 2020121452A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
txopa
space
antenna elements
Prior art date
Application number
PCT/JP2018/045744
Other languages
French (fr)
Japanese (ja)
Inventor
成君 金
Original Assignee
株式会社大成テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大成テクノロジー filed Critical 株式会社大成テクノロジー
Priority to CN201880096931.2A priority Critical patent/CN112673273B/en
Priority to PCT/JP2018/045744 priority patent/WO2020121452A1/en
Priority to JP2018566457A priority patent/JP6828062B2/en
Publication of WO2020121452A1 publication Critical patent/WO2020121452A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention generally relates to the field of remote sensing and distance measurement, and more particularly to a lidar (LiDAR, Light Detection and Ranging) for performing three-dimensional spatial mapping, object detection, object tracking, and object identification in an autonomous driving system in real time.
  • a lidar LiDAR, Light Detection and Ranging
  • the lidar device sends the search light to the space, scans the space, receives reflected return light generated by the search light being reflected by an object in the space, and determines the direction and distance of the object in the space. Detect.
  • An optical phased array (OPA, Optical Phased Array) is known as a device constituting such a lidar device.
  • OPA Optical Phased Array
  • the lidar device using the OPA can be configured at a higher speed and smaller than a lidar device using a mechanical beam scanning device.
  • an OPA configured by arranging a plurality of unit cells each including an optical coupler, a phase shifter, and an antenna element has been conventionally known (Patent Document 1). ).
  • Patent Document 1 an OPA configured by arranging a plurality of unit cells each including an optical coupler, a phase shifter, and an antenna element.
  • each unit cell is composed of many elements such as the above-mentioned optical coupler, the unit cell has a corresponding size. Therefore, there is a limit to reducing the arrangement interval of the unit cells, that is, the arrangement interval of the antenna elements, and the angle range of the beam steering of the search light is narrowed due to the size of the arrangement interval.
  • an OPA based on an optical integrated circuit is conventionally known (Non-patent document 1).
  • This OPA includes a bus waveguide for inputting light, a plurality of branch portions each formed of a thermal phase shifter and an evanescent coupler and provided on the bus waveguide, and the evanescent coupler. And a plurality of grating-based antenna elements for transmitting each of the plurality of lights branched by each to the space.
  • beam steering is performed along the extending direction of the antenna element by changing the wavelength of the input light.
  • a wider beam steering angle range is realized by overcoming the limitation of the beam steering angle range due to the arrangement pitch of the antenna elements without increasing the cost. Is required to do.
  • One aspect of the present invention is configured by a first optical phased array, and transmits diffracted light generated by light output from a plurality of first antenna elements forming the first optical phased array to space.
  • an optical receiver that is configured by a second optical phased array and that receives light coming from the space by a plurality of second antenna elements that configure the second optical phased array.
  • the optical receiver has a plurality of maximum sensitivity directions with respect to the direction of light coming from the space, the receiving sensitivity of the light being maximum, and the optical transmitter transmits the diffracted light adjacent to the space.
  • a first angle formed by the directions is different from a second angle formed by the adjacent maximum sensitivity directions in the optical receiver.
  • a phase shift controller that controls a first phase shifter included in the first optical phased array and a second phase shifter included in the second optical phased array.
  • the phase shift control unit controls the phase shift amount of the first phase shifter to change the sending direction of the main lobe of the diffracted light sent to the space by the optical transmitter, and at the same time, among the maximum sensitivity directions.
  • the phase shift amount of the second phase shifter is controlled so that the maximum sensitivity direction having the maximum sensitivity matches the sending direction of the main lobe.
  • the array interval of the first antenna elements and the array interval of the second antenna elements are set to different values.
  • the ratio between the first angle and the second angle is set so as to be expressed as a ratio of natural numbers that are relatively prime.
  • the ratio of the arrangement interval of the first antenna elements and the arrangement interval of the second antenna elements is set to be represented by a ratio of natural numbers that are mutually prime.
  • the optical transmitter includes a first optical component that forms an image conversion optical system for the diffracted light generated by the light output from the plurality of first antenna elements. Via the first optical component, the first angle being defined by the angle between adjacent diffracted lights that are delivered to the space via the first optical component.
  • the first optical component is composed of two convex lenses.
  • the first optical component includes two prisms forming an anamorphic prism pair.
  • the optical receiver receives light coming from the space by the plurality of second antenna elements via a second optical component forming an image conversion optical system,
  • the second angle is defined as an angle formed by adjacent maximal sensitivity directions defined in the space with respect to light coming from the space received via the second optical component.
  • the present invention it is possible to realize a wider beam steering angle range by overcoming the limitation of the beam steering angle range due to the arrangement pitch of the antenna elements in the lidar device using the OPA without increasing the cost. it can.
  • FIG. 1 is a diagram showing a configuration of a rider device according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining the operation of the rider device shown in FIG.
  • FIG. 3 is a diagram showing a configuration of a rider device according to a second embodiment of the present invention.
  • FIG. 4 is a diagram showing the configuration of the rider device according to the third embodiment of the present invention.
  • FIG. 5: is a figure which shows the structure of the conventional rider apparatus.
  • FIG. 6 is a diagram showing an example of characteristics of a conventional rider device.
  • FIG. 7 is a diagram showing an example of an optical phased array that can be used in the lidar device.
  • FIG. 8 is a diagram showing a configuration of a unit cell included in the optical phased array shown in FIG.
  • FIG. 9 is a diagram showing another example of the optical phased array that can be used in the lidar device.
  • the OPA is provided with an optical branching device for branching the input light into a plurality of lights, a plurality of waveguide lines for propagating each of the plurality of branched lights, and a plurality of waveguide lines provided for the waveguide lines. It is composed of a phase shifter that changes the phase of light propagating in the wave line, and an antenna element that is connected to each waveguide line and outputs the light propagating in the waveguide line.
  • the OPA is generally reciprocal and can be used not only in an optical transmitter that sends out a light beam that is a search light, but also in a receiver that receives the reflected return light of the light beam.
  • the light received by each of the antenna elements of the OPA is propagated to each waveguide line, the phase is changed by the phase shifter, and the optical branching device is used as an optical coupler (combiner).
  • An optical receiver can be configured by combining the light propagating through the waveguide line into one light and outputting the combined light.
  • the OPA is used as an optical transmitter and the phase shift amount in the phase shifter is adjusted so that diffracted light is sent out from the antenna element of the OPA toward space. Then, in this state, it is assumed that the OPA is used as an optical receiver and light is received from the antenna element while holding the phase shift amount of the phase shifter. Then, the light arriving from the same direction as the diffracted light transmission direction is received by each of the antenna elements, and then phase-shifted to the same phase by the phase shifter, and the signals are mutually strengthened and output in the optical coupler.
  • the Rukoto is assumed that the OPA is used as an optical transmitter and the phase shift amount in the phase shifter is adjusted so that diffracted light is sent out from the antenna element of the OPA toward space. Then, in this state, it is assumed that the OPA is used as an optical receiver and light is received from the antenna element while holding the phase shift amount of the phase shifter. Then, the light arriving from the same direction as the diffracted light transmission direction is received by each of the antenna elements
  • the optical receiver has a maximum reception sensitivity with respect to the light coming from the transmission direction of the diffracted light. Further, the optical receiver has the maximum receiving sensitivity for the light coming from the direction of transmission of the main lobe having the maximum intensity among the diffracted lights.
  • an optical transmitter including an OPA functioning as a transmitter for transmitting a beam is referred to as TxOPA
  • an optical receiver including an OPA functioning as a receiver for receiving light is referred to as RxOPA. ..
  • the diffracted light, the main lobe, and the side lobes that would be generated by the light sent from the antenna element if the light was sent from the antenna element forming the RxOPA They are referred to as “diffracted light of RxOPA”, “main lobe of RxOPA”, and “sidelobe of RxOPA”, respectively.
  • the “far-field image of RxOPA” refers to a far-field image of the light transmitted from the antenna element when the light is transmitted from the antenna element forming the RxOPA 104. ..
  • the reception sensitivity of RxOPA is the loss received by the light received by the antenna element of the RxOPA before being output from the optical coupler via the phase shifter and the optical coupler of the RxOPA.
  • the reciprocal that is, the reciprocal of the ratio of the amount of light output from the optical coupler to the total amount of light that reaches the antenna element from the same direction).
  • a rider device that performs three-dimensional space mapping or the like can be generally realized by the configuration shown in FIG.
  • the rider device 500 shown in FIG. 5 includes TxOPA 502 and RxOPA 504 configured by OPA, and a light source 506.
  • the TxOPA 502 includes a phase shift unit 514 including an optical splitter 510 that splits light from the light source 506, and a plurality of phase shifters 512 that shift the phases of the respective lights split by the optical splitter 510, and a phase shift unit.
  • An antenna unit 518 in which a plurality of antenna elements 516 for emitting each light output from 514 to the space are arranged.
  • the RxOPA 504 also includes an antenna unit 528 in which antenna elements 526 for receiving light propagating in space are arranged, and a phase shift unit 524 including a plurality of phase shifters 522 for respectively shifting the phases of the light received by each antenna element 526. And an optical coupler 520 for combining and outputting the lights output from the phase shift unit 524.
  • the lidar device 500 also includes a photodetector 530 that receives the light output from the RxOPA 504, a steering control unit 532 that controls the operation of the phase shift units 514 and 524 of the TxOPA 502 and RxOPA 504, and a light source 506. And a control device 536 that controls the steering control unit 532 and receives the output of the photodetector 530 to perform a data generation process for, for example, spatial mapping.
  • the light source 506 is, for example, a pulse laser, and the control device 536 measures the distance to an object in space by, for example, the time of flight (TOF) method.
  • TOF time of flight
  • the optical signal from the light source 506 is incident on the TxOPA 502.
  • the steering control unit 532 operates the phase shifter 512 of the phase shift unit 514 to cause the plurality of arranged antenna elements 516 forming the antenna unit 518 of the TxOPA 502 to emit diffracted light toward the space and also to diffract the diffracted light. Beam steering is performed by changing the delivery direction to the space.
  • the steering control unit 532 controls the phase shifter 522 of the phase shift unit 524 of the RxOPA 504 so that the diffracted light of the RxOPA 504 is directed in the same direction as the diffracted light that the TxOPA 502 is currently sending.
  • the RxOPA 504 has the maximum receiving sensitivity for the light coming from the sending direction of the main lobe of the TxOPA 502 and the maximum receiving sensitivity for the light coming from the sending direction of the sidelobe of the TxOPA 502.
  • the arrangement intervals of the antenna elements 516 and 526 are set so that diffracted light adjacent to the steering angle range of the main lobe does not enter. Both are designed to be as narrow as possible, and as a result, they are designed to have the same arrangement interval p.
  • FIG. 6 is a diagram showing exemplary characteristics of the TxOPA 502 and RxOPA 504 shown in FIG.
  • the upper part of FIG. 6 shows the case where the optical phase difference generated in each optical path (each channel) from the optical input end of the optical branching device 510 to each optical output end of the antenna element 516 is zero for the TxOPA502.
  • FIG. 8 is a diagram showing a distribution of reception sensitivity of the RxOPA 504 with respect to the direction of light coming from space at that time. Further, in the lower part of FIG. 6, when the diffracted light having the light intensity distribution shown in the upper part of FIG. 6 is transmitted to the space, and the reflected return light from the space is received by the RxOPA 504 having the receiving sensitivity distribution shown in the middle part of FIG. 6 is a diagram showing a distribution of the total sensitivity of the rider device 500 in each direction in the space viewed from the rider device 500.
  • the abscissas of the upper, middle, and lower tiers are axes that indicate each direction in the XZ plane (the vertical direction in FIG. 5) by the sine value of the angle ⁇ with respect to the Z axis. ..
  • the vertical axis in the upper part of FIG. 6 is the normalized light intensity obtained by normalizing the intensity of the light transmitted from the TxOPA 502 with the maximum intensity of the main lobe.
  • the vertical axis in the middle of FIG. 6 is the normalized reception sensitivity obtained by normalizing the reception sensitivity of the RxOPA 504 by the maximum reception sensitivity value.
  • the vertical axis in the lower part of FIG. 6 is the normalized total sensitivity obtained by normalizing the total sensitivity of the lidar device 500 with its maximum value.
  • the light intensity portions 602, 604, 606, 608, 610, 612 other than the portions correspond to side lobes (diffracted light beams having a diffraction order other than zero).
  • ⁇ 0 is the center wavelength of the light output from the light source 506, and p is the array pitch of the antenna elements 516.
  • the receiving sensitivity of the RxOPA 504 shown in the middle part of FIG. 6 has the maximum portions 620 at the same positions as the light intensity parts 600, 602, 604, 606, 608, 610, 612 corresponding to the diffracted light of the TxOPA 502 in the upper part of FIG. 6, respectively. It has 622, 624, 626, 628, 630, and 632, and has a maximum portion 620 at which the reception sensitivity is maximum at the same position as the light intensity portion 600 corresponding to the main lobe of the TxOPA 502.
  • this lidar device 500 when the same phase shift is generated in each channel of the TxOPA 502 and each channel of the RxOPA 504 and the directions of the diffracted light of the TxOPA 502 and the RxOPA 504 are changed in the same manner, the light in the upper stage of FIG.
  • the intensity portion 600 and the like and the maximum portion 620 and the like in the middle of FIG. 6 are shifted in the same direction by the same amount. Further, in response to this, the maximum portions 640 and the like in the lower part of FIG. 6 are also shifted by the same amount in the same direction.
  • the maximum portion 640 of the total sensitivity when the main lobe is used is within the shift range in the horizontal direction in the figure.
  • the range of the beam steering is limited to the range of Expression (1) so that the maximum portions 642 and 644 of the total sensitivity for the adjacent side lobes do not enter.
  • the allowable range of the steering angle ⁇ is ⁇ max to + ⁇ max , and as a result, the maximum allowable range of the steering angle ⁇ is the array pitch of the antenna elements 516 and 526. Limited by the size of p.
  • the beam steering on the YZ plane also depends on the array pitch in the Y-axis direction of the antenna elements 516 and 526, similarly to the above.
  • the steering angle range is limited.
  • FIG. 7 is a diagram showing a part of the configuration of such an OPA 700
  • FIG. 8 is a diagram showing a configuration of a unit cell 710 forming the OPA 700.
  • each unit cell 710 (each of the 16 parts shown by the dotted ellipse in the figure) outputs a part of the light propagating through the row-direction bus waveguide 708 from the adjacent row-direction bus waveguide 708 to the evanescent coupler 800 (described later).
  • a column direction control wire 712 and a row direction control wire 714, which are current paths, are connected to each unit cell 710, and a phase shifter 806 (described later) included in each unit cell 710 is selectively energized.
  • each unit cell 710 includes an evanescent coupler 800 coupled to the row-direction bus waveguide 708, an antenna element 802, a waveguide 804 connecting the evanescent coupler 800 and the antenna element 802, and the waveguide 804.
  • the column direction electrodes 808 and the row direction electrodes 810 are connected to the column direction control wires 712 and the row direction control wires 714, respectively.
  • the OPA 700 shown in FIG. 7 can generate a controllable linear phase tilt along the row and/or column directions and can operate as an OPA with controllable beam steering in the XZ and YZ planes. ..
  • each unit cell 710 has many additional elements (phase shifter 806, waveguide 804, evanescent coupler 800) in addition to the antenna element 802, its size is sufficient. It cannot be made smaller. As a result, in the OPA 700 of Patent Document 1, the unit cell 710 (specifically, the antenna element 802 included in the unit cell 710) cannot be arranged with a sufficiently small pitch p in both the X direction and the Y direction. ..
  • the arrangement pitch of the unit cells 710 realized in the OPA 700 is about 9 ⁇ m, and when beam steering is performed using light with a center wavelength of 1550 nm, the allowable range of the steering angle ⁇ that can be used for the beam steering is From the formula (1), it is limited to ⁇ 5°.
  • FIG. 9 is a diagram showing the configuration of the OPA 900 according to Non-Patent Document 1.
  • the OPA 900 includes a bus waveguide 902 for inputting light, and a portion 904 that is provided on the bus waveguide 902 and is composed of thermal phase shifters and evanescent couplers that are alternately cascade-connected.
  • the light branched by the evanescent coupler is connected to the antenna unit 908 in which the antenna elements of the grating base are arranged via the waveguide line unit 906.
  • the thermal phase shifter controls the phase increment of the light sequentially input to the arrayed antenna elements, and also controls the wavelength of the light input to the bus waveguide 902 to generate a two-dimensional beam.
  • a steering function is provided.
  • a plurality of grating-based antenna elements forming the antenna unit 908 of the OPA 900 are extended in the Y direction shown in FIG. 5, and the plurality of antenna elements are arranged in the X direction. It can be configured by
  • the plurality of antenna elements forming the antenna unit 908 are configured as waveguides formed on the substrate, and the array pitch of the antenna elements (the array pitch in the X direction) is the waveguides formed as described above. Equal to the array pitch of.
  • the allowable minimum value of the array pitch of the waveguides is limited by the optical confinement strength of the waveguides. If the optical index confinement strength is increased by increasing the refractive index difference between the substrate and the waveguides, the array pitch of the antenna elements is increased. Can be narrowed. However, there is a limit to the difference in refractive index that can be realized depending on the substrate material and the like, and it is difficult to reduce the array pitch from several ⁇ m to a large extent. Therefore, in the beam steering of the OPA 900 in the X direction, the steering angle range may be limited to about several degrees, as in the case of the OPA 700 described above.
  • the OPA900 requires a wavelength tunable laser having an extremely wide wavelength tunable range as shown below, which significantly increases the cost of the entire lidar device. Can be done. Conversely, in the OPA 900, it may be difficult to realize a practical beam steering range in the Y direction without a significant increase in cost.
  • the steering angle ⁇ y of the main lobe emitted from the antenna unit 908 (the deflection angle of the main lobe in the YZ plane with respect to the Z axis) is It is calculated from equation (2).
  • n E is the effective refractive index of the waveguide constituting the antenna element
  • p g is a grating pitch which is provided to each antenna element.
  • FIG. 1 is a diagram showing a configuration of a rider device according to a first embodiment of the present invention.
  • the lidar device 100 includes a light source 106, a TxOPA 102 that outputs the output light of the light source 106 to the space, and an RxOPA 104 that receives reflected return light that is reflected back from an object in the space among the light sent from the TxOPA 102.
  • a photodetector 130 that detects the light output from the RxOPA 104.
  • the light source 106 is, for example, a pulse laser.
  • the TxOPA 102 includes an optical splitter 110 that splits the output light of the light source 106, a phase shift unit 114 that includes a plurality of phase shifters 112 that shift the phases of the lights split by the optical splitter 110, and a phase shift unit.
  • An antenna unit 118 in which a plurality of antenna elements 116 for emitting each light output from 114 to the space are arranged.
  • the antenna elements 116 are two-dimensionally arrayed, for example, along the X-axis and the Y-axis in the drawing so that the mutual intervals have an array pitch (arrangement interval) p T in the XY plane defined by the X-axis and the Y-axis. Has been done.
  • the RxOPA 104 includes an antenna unit 128 in which antenna elements 126 that receive the reflected return light are arranged, a phase shift unit 124 that includes a plurality of phase shifters 122 that shift the phase of the light received by each antenna element 126, and a phase shift unit 124. And an optical coupler 120 that combines the lights output from the shift unit 124 into one and outputs the combined light.
  • the antenna elements 126 are two-dimensionally arrayed, for example, along the X-axis and the Y-axis in the drawing so that the mutual intervals have an array pitch (array interval) p R in the XY plane defined by the X-axis and the Y-axis. Has been done.
  • the directions of the plurality of diffracted lights of the RxOPA 104 are the maximum sensitivity directions in which the respective reception sensitivities are maximized. That is, the RxOPA 104 is configured to have a plurality of maximum sensitivity directions with respect to the direction of the light coming from the space, which maximizes the reception sensitivity of the light.
  • the TxOPA 102 is an optical transmitter including a first optical phased array, and diffraction generated by light output from a plurality of first antenna elements forming the first optical phased array. It corresponds to a light transmitter that sends light to space.
  • the first optical phased array includes an optical splitter 110, a phase shift unit 114 including a phase shifter 112 which is a first phase shifter, an antenna unit 118 including an antenna element 116 which is a first antenna element, It corresponds to the part including.
  • the RxOPA 104 is an optical receiver including a second optical phased array, and is an optical receiver that receives light coming from a space by a plurality of second antenna elements forming the second optical phased array. It corresponds to a bowl.
  • the second optical phased array includes an optical coupler 120, a phase shift unit 124 including a phase shifter 122 that is a second phase shifter, an antenna unit 128 including an antenna element 126 that is a second antenna element, It corresponds to the part including.
  • the TxOPA 102 and the RxOPA 104 can be configured using the OPA described in Patent Document 1, for example. That is, the TxOPA 102 is configured such that the antenna elements 802 shown in FIG. 8 as the antenna elements 116 are two-dimensionally arranged in the XY plane at intervals (arrangement pitch) p T in the X and Y directions shown in FIG. Similarly, the RxOPA 104 is configured such that the antenna elements 802 shown in FIG. 8 as the antenna elements 126 are two-dimensionally arranged in the XY plane at intervals (arrangement pitch) p R in the X and Y directions shown in FIG.
  • phase shifter 112 of the TxOPA 102 is composed of a phase shifter 806 which is a thermal phase shifter including a heater provided on the waveguide 804 as shown in FIG. 8, for example.
  • phase shifter 122 of the RxOPA 104 is composed of a phase shifter 806 including a heater provided on the waveguide 804 as shown in FIG. 8, for example.
  • optical branching device 110 of the TxOPA 102 and the optical coupler 120 of the RxOPA 104 are both the column-direction bus waveguide 704 and the row-direction bus waveguide 704 for propagating the light from the light source 106 as shown in FIGS. 708 and evanescent couplers 706 and 800.
  • the configuration of the TxOPA 102 and the RxOPA 104 described above is an example, and the present invention is not limited to this.
  • the antenna units 118 and 128 of the TxOPA 102 and the RxOPA 104 are arbitrary as long as the antenna elements 116 and 126 for transmitting and receiving light are two-dimensionally arrayed in the illustrated XY plane at array pitches p T and p R , respectively. It may have a structure of.
  • the phase shift units 114 and 124 are not limited to the above, and are provided in each optical path that propagates the light branched by the optical branching device 110 and each optical path that propagates the light received by the antenna element 126. It can be configured by a phase shifter having an arbitrary configuration described above.
  • the optical branching device 110 and the optical coupler 120 are not limited to the above, and as long as they have the function of branching the input light and the function of multiplexing the input light and combining them into one light, respectively. In, the optical branching device and the optical coupler operating according to any configuration or principle can be used.
  • the rider device 100 also includes a control device 134 and a steering control unit 132 that is a phase shift control unit.
  • the steering control unit 132 controls the operation of the phase shifters 112 and 122 of the TxOPA 102 and the RxOPA 104 under the control of the control device 134.
  • the control device 134 synchronizes the optical pulse output operation of the light source 106 with the operation of the phase shifter 112 of the TxOPA 102 and the phase shifter 122 of the RxOPA 104, and performs space mapping and the like based on the signal from the photodetector 130. Data generation processing and the like.
  • the lidar apparatus 100 causes the steering control unit 132 to cause a desired phase shift in the phase shifters 112 and 122 under the control of the control device 134, and the emission direction of the main lobe of the TxOPA 102 and the maximum reception of the RxOPA 104 are received.
  • the beam steering is performed by changing the directions to the X direction and/or the Y direction in the drawing while maintaining the state in which the sensitivity directions are oriented in the same direction.
  • the lidar device 100 performs beam steering with the main lobe of the TxOPA 102 and receives the reflected return light from the irradiation direction of the main lobe of the TxOPA 102 with the RxOPA 104.
  • the lidar apparatus 100 measures the time from the light source 106 emitting a light pulse until the reflected return light of the light pulse is received via the RxOPA 104 by the control device 134, thereby irradiating the main lobe of the TxOPA 102.
  • the distance to the object existing in the direction is calculated by the time-of-flight method.
  • the lidar device 100 sequentially detects the reflected return light coming from the emission direction of the main lobe of the TxOPA 102 that sequentially changes according to the beam steering operation, and detects the distance to the object in the sequentially changing direction. , For example, data for space mapping etc. is generated.
  • the array pitch p T of the antenna elements 116 of the TxOPA 102 and the array pitch p R of the antenna elements 126 of the RxOPA 104 have different values, and for example, in Expression (6), It is set to have a relationship.
  • N 1 /M 1 is an irreducible function
  • M 1 and N 1 are relatively prime natural numbers.
  • the lidar device 100 has an array pitch of the antenna elements 116 of the TxOPA 102 more than that of a conventional rider device (for example, the rider device 500) configured by using TxOPA and RxOPA in which the array pitch of the antenna elements is the same value p.
  • Beam steering can be performed by changing the steering angle ⁇ of the main lobe of the TxOPA 102 in a wider range without reducing p T with respect to p. This will be described below.
  • the lidar device 100 is configured such that the array pitch p T of the antenna elements 116 of the TxOPA 102 and the array pitch p R of the antenna elements 126 of the RxOPA 104 have different values. There is. Therefore, the first angle formed by the directions of the adjacent diffracted light beams transmitted by the TxOPA 102 to each other and the second angle formed by the directions of the adjacent diffracted light beams of the RxOPA 104, that is, the second maximum angle formed by the adjacent maximum sensitivity directions are mutually formed. It is different.
  • the TxOPA 102 and the RxOPA 104 are controlled so that the directions of the main lobes of the TxOPA 102 and the RxOPA match, the direction of the side lobe adjacent to the main lobe becomes different between the TxOPA 102 and the RxOPA 104. That is, since the reception sensitivity of the RxOPA 104 transmitted from the TxOPA 102 in the direction of the adjacent side lobes does not have a maximum value, reception of light coming from the direction of the adjacent side lobes is suppressed. As a result, the steering angle range of the main lobe of the TxOPA 102 is not limited by the angle between the main lobe and the side lobes adjacent to the main lobe, and a wider steering angle range can be used.
  • the difference ⁇ T between the deflection angles (angles with respect to the Z axis) of the adjacent diffracted lights of the TxOPA 102 and the difference ⁇ R between the deflection angles of the adjacent diffracted light of the RxOPA 104 are respectively expressed by It is represented by (7) and equation (8).
  • equation (9) is established from the equations (6), (7), and (8).
  • the ratio of the first angle formed by the directions of the adjacent diffracted light beams transmitted by the TxOPA 102 to each other and the second angle formed by the adjacent maximum sensitivity directions of the RxOPA 104 are mutually disjoint. It is set to be expressed as a ratio of natural numbers.
  • Expression (9) can be expressed as Expression (10).
  • the directions of the main lobes of the TxOPA 102 and the RxOPA 104 are the same, the direction of the M 1- th sidelobe counted from the mainlobe of the TxOPA 102 and the direction of the N 1- th sidelobe of the RxOPA 104 counted from the mainlobe. However, it will be the first match. In other words, reception of the reflected light of the 1st to M 1 ⁇ 1st side lobes in the TxOPA 102 is suppressed in the RxOPA 104.
  • alpha max allowable variation range - ⁇ max ⁇ + ⁇ max of the steering angle alpha of the main lobe of TxOPA102 becomes possible determined by equation (11).
  • the arrangement pitch p T of the antenna elements 116 of the TxOPA 102 constituting the rider apparatus 100 is set to the arrangement pitch p of the TxOPA 502 of the conventional rider apparatus 500. Even if it does (that is, without setting the array pitch p T to a value smaller than p), the allowable angle range of the beam steering of the rider apparatus 100 is improved to M times the allowable angle range of the conventional rider apparatus 500.
  • the upper part of FIG. 2 is a diagram showing an example of a far-field image of the light transmitted from the antenna unit 118 of the TxOPA 102, and the middle part of FIG. 2 is a diagram showing the light reception sensitivity distribution in the RxOPA 104.
  • the lower part of FIG. 2 is a diagram showing the distribution of the total sensitivity in the lidar device 100, which is obtained as the product of the light intensity and the receiving sensitivity shown in the upper part and the middle part of FIG. 2, respectively.
  • the horizontal axis in FIG. 2 is the sine value sin ⁇ of the angle ⁇ with respect to the Z-axis direction on the XZ plane.
  • the vertical axis in the upper part of FIG. 2 is the normalized light intensity normalized by the maximum light intensity
  • the vertical axis in the middle part of FIG. 2 is the normalized reception sensitivity normalized by the maximum reception sensitivity
  • the vertical axis in the lower part of FIG. 2 is the total sensitivity. It is the normalized total sensitivity normalized by the maximum value of.
  • the arrangement pitch p T of the antenna element 116 of the TxOPA 102 is reduced by controlling the phase shifters 112 and 122 so that the direction of the main lobe of the TxOPA 102 and the direction of the main lobe of the RxOPA 104 match.
  • the change range of the beam steering angle ⁇ of the main lobe of the TxOPA 102 can be expanded to M times, that is, 6 times, as compared with the conventional lidar device.
  • the rider device 100 operates as follows.
  • beam steering is performed in the X-axis direction in the figure.
  • a dimensional beam steering operation can be performed.
  • the control device 134 of the lidar apparatus 100 controls the light source 106 to generate light pulses at regular time intervals. Further, the control device 134 instructs the steering control unit 132 to change the deflection angle ⁇ (steering angle ⁇ ) in the X direction of the main lobe sent from the TxOPA 102 to the space to perform beam steering. More specifically, the steering control unit 132 makes the phase of the light emitted from each antenna element 116 have a linear phase inclination according to the deflection angle ⁇ along the X axis, and the deflection angle ⁇ . The phase shifter 112 is controlled so that the time shifts in a predetermined pattern within a predetermined steering angle range.
  • the linear phase inclination according to the deflection angle ⁇ is expressed by the equation (12) as the phase shift amount generated in each optical path (each channel) from the optical input end of the optical branching device 110 to the output end of each antenna element 116. ) Can be implemented by setting each phase shifter 122 so that
  • the control device 134 also instructs the steering control unit 132 to control the phase shifter 122 so that the main lobe of the RxOPA 104 has the same deflection angle ⁇ as the main lobe of the TxOPA 102.
  • the steering control unit 132 causes the phase shift amount generated in each optical path (each channel) from the optical receiving end of each antenna element 126 to the optical output end of the optical coupler 120 to follow the equation (13).
  • Each phase shifter 122 is set to.
  • the phases ⁇ T (u) and ⁇ R (u) to be generated in each channel corresponding to the antenna elements 116 and 126 having the same index value u are calculated by equation (14).
  • phase shift generated in each channel of the RxOPA 104 needs to be p R /p T times the phase shift generated in each channel of the TxOPA 102.
  • the control device 134 further controls the main lobes of the TxOPA 102 and the RxOPA 104 in the same direction as described above, and the optical pulse output from the light source 106 and transmitted from the TxOPA 102 as the main lobe is received from the main lobe direction of the RxOPA 104.
  • the time to reach the object is measured, and the distance to the object existing in the main lobe direction is calculated.
  • the control device 134 can generate data for spatial mapping within the beam steering range of the main lobe of the TxOPA 102, for example.
  • the arrangement pitch p T of the antenna units 118 of the TxOPA 102 and the arrangement pitch p R of the antenna units 128 of the RxOPA 104 are configured to have the relationship of Expression (6). Not limited to, even when the array pitches p T and p R simply have different values, the side lobe directions of the TxOPA 102 and the RxOPA 104 are made different, and the allowable range of the steering angle of the main lobe of the TxOPA 102 is the same as above. Can be expanded.
  • the beam emitting portion of the antenna element 116 of the TxOPA 102 and/or the RxOPA 104 By arranging optical components such as a lens, which form the image conversion optical system, at the beam arrival portion of the antenna element 126, the substantial array pitch p converted from the diffracted light emitted from the TxOPA 102 via these optical components.
  • the allowable range of the steering angle of the main lobe of the TxOPA 102 can be expanded.
  • the first angle formed by the directions of the adjacent diffracted light beams that the TxOPA 102 sends to the space is, when the diffracted light beams of the TxOPA 102 are sent to the space through the optical components forming the image conversion optical system, It is defined by the angle between adjacent diffracted lights that are sent out into space through the optical component.
  • the second angle formed by the adjacent maximal sensitivity directions in the RxOPA 104 is the same as that before passing through the optical component when the RxOPA 104 receives light from the space via the optical component that constitutes the image conversion optical system. It is defined as an angle formed by adjacent maximal sensitivity directions in the space.
  • the first angle and the second angle are set to different values (for example, the ratio between the first angle and the second angle is relatively prime). If it is set to be a ratio of natural numbers), the allowable range of the steering angle of the main lobe of the TxOPA 102 can be expanded by the same principle as described above.
  • FIG. 3 is a diagram showing a configuration of a rider device 300 according to the second embodiment of the present invention.
  • the same components as those of the rider device 100 according to the first embodiment shown in FIG. 1 are denoted by the same reference symbols as those of FIG. 1, and the description of the rider device 100 described above is cited.
  • the same components as those of the rider device 100 according to the first embodiment shown in FIG. 1 are denoted by the same reference symbols as those of FIG. 1, and the description of the rider device 100 described above is cited.
  • the lidar device 300 has the same configuration as the lidar device 100, except that an optical unit 346 forming an image conversion optical system is arranged on the light transmission side of the antenna unit 118 of the TxOPA 102.
  • the image conversion optical system configured by the optical unit 346 in the present embodiment is, for example, a two-lens system having an image magnification K 1 configured of two convex lenses 342 and 344 having focal lengths f 1 and f 2 , respectively. It is composed of.
  • the lidar device 300 having the above-described configuration includes the optical unit 346 having the image magnification K 1 on the light transmission side of the TxOPA 102, the TxOPA 102 is substantially located at the distance f 2 from the lens 344 to the right side in the drawing. It functions as an OPA having the antenna elements 316 arranged at a 1- times arrangement pitch K 1 ⁇ p T. Therefore, by configuring the optical unit 346, the TxOPA 102, and the RxOPA 104 so that K 1 ⁇ p T ⁇ p R , the TxOPA 102 sends the light to the space like the lidar device 100 according to the first embodiment.
  • the first angle formed by the adjacent diffracted lights and the second angle formed by the adjacent maximum sensitivity directions in the space in the RxOPA 104 are made different from each other to reduce p T without reducing the main lobe of the TxOPA 102.
  • the allowable range of the steering angle can be expanded.
  • the optical unit 346, the TxOPA 102, and the RxOPA 104 are configured so that the image magnification K 1 and the array pitches p T and p R satisfy the expression (15).
  • N 2 /M 2 is an irreducible function
  • M 2 and N 2 are natural numbers that are relatively prime.
  • the image magnification K 1 is given by the equation (16) using the focal lengths f 1 and f 2 of the two lenses 342 and 344 forming the optical unit 346.
  • the difference ⁇ R in the sine values of the deflection angles of the adjacent diffracted lights (that is, the adjacent receiving sensitivity maximum directions) in the RxOPA 104 is expressed by the same formula as in the lidar device 100. It is given in (8).
  • alpha max allowable variable range - ⁇ max ⁇ ⁇ max of the steering angle alpha of the main lobe to be sent from the optical unit 346 to space is given by Equation (19).
  • the allowable range of the steering angle of the main lobe output from the TxOPA 102 and transmitted to the space is expanded without reducing the array pitch p T of the antenna elements 116 of the TxOPA 102. can do.
  • the substantial array pitch of the antenna elements 116 of the TxOPA 102 viewed from the light output side of the optical unit 346 is the array pitch p T of the TxOPA 102 itself and the image magnification K 1 of the optical unit 346. , K 1 p T , the degree of freedom in design can be further improved as compared with the rider device 100.
  • the rider device 300 operates as follows.
  • beam steering is performed in the X-axis direction in the figure.
  • a dimensional beam steering operation can be performed.
  • the rider device 300 operates in the same manner as the rider device 100 described above, but the operation of the steering control unit 332 is slightly different from that of the steering control unit 132.
  • the steering control unit 332 performs beam steering by changing the deflection angle ⁇ (steering angle ⁇ ) of the main lobe sent from the TxOPA 102 to the space in the X direction. More specifically, the steering control unit 332 causes the phase of the light emitted from the virtual antenna element 316 formed by image conversion to have a linear phase inclination according to the deflection angle ⁇ along the X axis.
  • the phase shifter 112 is controlled so that the deflection angle ⁇ changes with time in a predetermined pattern within a predetermined steering angle range.
  • the linear phase tilt corresponding to the deflection angle ⁇ is expressed by the equation (20) as the phase shift amount generated in each optical path (each channel) from the optical input end of the optical branching device 110 to the output end of each antenna element 116. It is realized by setting each phase shifter 122 so as to comply with (4).
  • phase shift amount generated in each channel of the RxOPA 104 by the phase shifter 122 so that the main lobe of the RxOPA 104 has the same deflection angle ⁇ as described above is given by the equation (13) as in the case of the rider device 100. ..
  • phase shift generated in each channel of the RxOPA 104 needs to be p R /(K 1 ⁇ p T ) times the phase shift generated in each channel of the TxOPA 102.
  • the rider device 300 is configured using the TxOPA 102 and the RxOPA 104 having the array pitches p T and p R different from each other, but the present invention is not limited to this.
  • the array pitches p T and p R may have the same value as long as the expression (15) is satisfied. That is, the lidar device 300 may be configured by using TxOPA and RxOPA in which the antenna elements are arranged at the same interval, instead of the TxOPA 102 and RxOPA104.
  • the substantial array pitch of the antenna elements 116 of the TxOPA 102 is expanded by the optical unit 346 that is the image conversion optical system configured by the two-lens system.
  • an anamorphic prism pair is used as the image conversion optical system to expand the substantial array pitch of the antenna elements 116 in the one-dimensional direction.
  • FIG. 4 is a diagram showing a configuration of a rider device 400 according to the third embodiment of the present invention. 4, the same components as those of the rider device 100 according to the first embodiment shown in FIG. 1 are assigned the same reference numerals as those shown in FIG. 1, and the description of the rider device 100 described above is cited. And
  • the lidar device 400 has the same configuration as the lidar device 100, but an optical unit 446 composed of an anamorphic prism pair composed of two prisms 442 and 444 is arranged on the light transmission side of the antenna unit 118 of the TxOPA 102. Is different.
  • the anamorphic prism pair including the two prisms 442 and 444 is configured to magnify the image in the X direction shown in the figure. Therefore, the beam steering of the main lobe of the TxOPA 102 in the Y direction in the drawing is the same as that of the rider device 100 according to the first embodiment shown in FIG.
  • the TxOPA 102 is substantially the same as the light output side of the prism 444. It functions as an OPA having antenna elements 416 arranged at a distance D from the output surface (right side in the drawing) to the left side in the drawing at an array pitch K 2 ⁇ p T of K 2 times. Therefore, by configuring the optical unit 446, the TxOPA 102, and the RxOPA 104 so that K 2 ⁇ p T ⁇ p R , in the X direction, similarly to the rider device 100 according to the first embodiment, the first unit.
  • a first angle formed by adjacent diffracted light beams transmitted by the TxOPA 102 to a space and a second angle formed by adjacent maximum sensitivity directions in the space on the RxOPA 104 are formed by a second angle.
  • the rider device 400 operates similarly to the rider device 100, and the allowable range of the steering angle of the main lobe of the TxOPA 102 is expanded without reducing pT as in the rider device 100.
  • the optical unit 446, the TxOPA 102, and the RxOPA 104 are configured so that the image magnification K 2 , the array pitch p T , and p R satisfy the expression (22).
  • the beam steering of the main lobe of the TxOPA 102 in the Y direction in the drawing is performed in the first embodiment shown in FIG. It is similar to the rider device 100 according to the embodiment. Therefore, the beam steering in the X direction in the figure will be described below.
  • N 3 /M 3 is an irreducible function
  • M 3 and N 3 are natural numbers that are relatively prime.
  • ⁇ R is the difference between the sine values of the deflection angles of the adjacent diffracted lights (that is, the adjacent receiving sensitivity maximum directions) in the RxOPA 104, and ⁇ R is the same as that of the lidar device 100. It is given by equation (8).
  • equation (24) is obtained.
  • alpha max allowable variable range - ⁇ max ⁇ ⁇ max of the steering angle alpha of the main lobe to be sent from the optical unit 446 to space is given by equation (25).
  • the main lobe output from the TxOPA 102 and transmitted to the space is output without reducing the array pitch p T of the antenna elements 116 of the TxOPA 102.
  • the allowable range of the steering angle can be expanded.
  • the substantial array pitch of the antenna elements 116 of the TxOPA 102 in the X direction viewed from the light output side of the optical unit 446 is the array pitch p T of the TxOPA 102 itself and the image magnification of the optical unit 446. Since it is given by the product of K 2 and K 2 p T , the degree of freedom in design can be further improved as compared with the rider device 100.
  • the image magnification K 2 can be determined from the geometric shape and arrangement of the prisms 442 and 444 forming the anamorphic prism pair in the optical unit 446 according to the conventional technique.
  • the distance D that defines the position of the substantial antenna element 416 formed by the presence of the optical unit 446 is determined from the image magnification K 2 and the distance from the antenna element 116 to the prism 442 according to the related art. obtain.
  • the rider device 400 specifically operates as follows.
  • the rider device 400 operates in the same manner as the rider device 100 described above, but the operation of the steering control unit 432 is different from that of the steering control unit 132.
  • the steering control unit 432 changes the deflection angle ⁇ (steering angle ⁇ ) in the X direction of the main lobe sent from the TxOPA 102 to the space via the optical unit 446 in the same manner as the steering control unit 132.
  • the phase of the light emitted from the antenna element 116 via the optical unit 446 has a linear phase inclination according to the deflection angle ⁇ along the X axis, and the deflection angle ⁇ is within a predetermined steering angle range.
  • the phase shifter 112 is controlled so that it changes with time in a predetermined pattern.
  • the linear phase tilt corresponding to the deflection angle ⁇ is expressed by the equation (26) as the phase shift amount generated in each optical path (each channel) from the optical input end of the optical branching device 110 to the output end of each antenna element 116. It is realized by setting each phase shifter 122 so as to comply with (4).
  • phase shift generated in each channel of the RxOPA 104 needs to be p R /(K 2 ⁇ p T ) times the phase shift generated in each channel of the TxOPA 102.
  • the rider device 400 is configured using the TxOPA 102 and the RxOPA 104 having the array pitches p T and p R different from each other, but the present invention is not limited to this.
  • the array pitches p T and p R may have the same value as long as the expression (22) is satisfied. That is, the lidar device 300 may be configured by using TxOPA and RxOPA in which the antenna elements are arranged at the same interval, instead of the TxOPA 102 and RxOPA104.
  • the antenna element 116 of the TxOPA 102 and the antenna element 126 of the RxOPA 104 are arranged in the XY plane at the same arrangement pitches p T and p R in the X and Y directions. Is not limited.
  • the antenna element 116 of the TxOPA 102 and the antenna element 126 of the RxOPA 104 may be configured to have different array pitches in the X direction and the Y direction.
  • the first angle formed by the adjacent diffracted lights transmitted by the TxOPA 102 to the space and the second maximum sensitivity direction formed by the adjacent RxOPA 104 in the space are formed by the second angle.
  • the allowable range of the steering angle in the X direction and the Y direction of the main lobe of the TxOPA 102 can be expanded together without reducing the arrangement pitch in the X direction and the Y direction.
  • the array pitches of the antenna elements of the TxOPA 102 and the RxOPA 104 are different from each other (for example, their ratio is different from each other, taking into consideration the image magnification of the optical components that can be provided in the light emitting portion of the TxOPA 102 and the light receiving portion of the RxOPA 104).
  • the allowable range of the steering angle of the main lobe of the TxOPA 102 can be expanded.
  • the TxOPA 102 and the RxOPA 104 are described as being configured using OPA having reciprocity for the sake of simplicity, but the present invention is not limited to this.
  • the RxOPA 104 may be one in which light propagates in one direction from the antenna element 126 to the optical output end of the optical coupler 120.
  • the maximum sensitivity direction is defined for each channel from each antenna element 126 to the optical output end of the optical coupler 120 in consideration of virtual diffracted light when light is virtually propagated in the opposite direction.
  • the range of beam steering can be expanded by using the same configuration as each of the above-described embodiments.
  • the TxOPA 102 and the RxOPA 104 are configured by using the OPA 700 as disclosed in Patent Document 1, for example, but the present invention is not limited to this.
  • the TxOPA 102 and the RxOPA 104 can be configured using the OPA 900 disclosed in Non-Patent Document 1.
  • the TxOPA 102 and the RxOPA 104 are configured by aligning the extending direction of the antenna elements of the blending base with the Y direction in FIG. 1 so that the antenna elements are arranged in the X direction of FIG.
  • the arrangement pitch of the antenna elements in the TxOPA 102 and the RxOPA 104 is set to p T and p R , respectively, and the beam steering in the X direction is expanded in the allowable angle range of the beam steering by the same configuration as that of each of the above-described embodiments. be able to.
  • FIGS. 3 and 4 are drawn assuming that the optical units 346 and 446 forming the image conversion optical system have image magnifications K 1 and K 2 that are larger than 1, respectively.
  • the image magnifications K 1 and K 2 may have values smaller than 1.
  • the image conversion optical system can be any optical system as long as it has a function of performing image conversion in at least a one-dimensional direction.
  • the lidar device 100 and the like includes the TxOPA 102 that is an optical transmitter configured by an optical phased array.
  • the TxOPA 102 sends the diffracted light generated by the light output from the antenna element 116, which is the plurality of first antenna elements forming the optical phased array, to the space.
  • the lidar device 100 and the like include an RxOPA 104 which is an optical receiver including an optical phased array.
  • the RxOPA 104 receives the light coming from the space by the antenna element 126 which is the plurality of second antenna elements forming the optical phased array.
  • the RxOPA 104 which is an optical receiver, has a plurality of maximum sensitivity directions in which the reception sensitivity of the light is maximized with respect to the direction of the light coming from the space.
  • the first angle formed by the TxOPA 102 which is an optical transmitter, in the direction of adjacent diffracted light that is transmitted to the space, and the adjacent maximum sensitivity direction in the RxOPA 104, which is the optical receiver, form each other.
  • the second angle is different from each other.
  • the lidar device 100 and the like overcome the limitation of the beam steering angle range due to the angular interval between adjacent diffracted lights determined by the array pitch p T of the antenna elements 116 of the TxOPA 102 without increasing the cost, A wider beam steering angle range can be realized.
  • the lidar device 100 and the like include a phase shifter 112 that is a first phase shifter included in the optical phased array that configures the TxOPA 102, and a phase shifter 122 that is a second phase shifter included in the optical phased array that configures the RxOPA 104.
  • a steering control unit 132 or the like which is a phase shift control unit for controlling Then, the steering control unit 132 or the like which is the phase shift control unit controls the phase shift amount of the phase shifter 112 which is the first phase shifter to control the main lobe of the diffracted light which the TxOPA 102 which is the optical transmitter sends to the space. Change the sending direction.
  • the steering control unit 132 or the like which is a phase shift control unit, is a second phase shifter so that the maximum sensitivity direction having the maximum sensitivity among the maximum sensitivity directions matches the sending direction of the main lobe of the TxOPA 102.
  • the amount of phase shift of the phase shifter 122 is controlled.
  • the receiving sensitivity of the RxOPA 104 with respect to the reflected return light coming from the transmission direction of the main lobe of the TxOPA 102 can be always maintained at the maximum.
  • the arrangement interval p T of the antenna elements 116 that are the first antenna elements and the arrangement interval p R of the antenna elements 126 that are the second antenna elements are set to different values. .. According to this configuration, the first angle formed by the adjacent diffracted light beams transmitted to the space by the TxOPA 102 and the second angle formed by the adjacent maximum sensitivity directions of the RxOPA 104 are easily different from each other. can do.
  • the ratio between the first angle and the second angle is set so as to be represented by a ratio of natural numbers that are relatively prime.
  • the allowable angle range of the beam steering of the TxOPA 102 can be expanded by the magnification determined by the natural number, as shown in the equation (11), for example.
  • the ratio of the arrangement interval p T of the antenna elements 116 that are the first antenna elements and the arrangement interval p R of the antenna elements 126 that is the second antenna element is a ratio of natural numbers that are mutually prime. It is set to be represented. According to this configuration, the ratio between the first angle and the second angle can be easily set so as to be represented by a ratio of natural numbers that are relatively prime.
  • the TxOPA 102 which is an optical transmitter, forms diffracted light generated by the light output from the antenna elements 116, which are the first plurality of antenna elements, in the image conversion optical system. It is sent to the space through the lenses 342 and 344 or the prisms 442 and 444 which are the first optical component. Then, in the lidar devices 300 and 400, the first angle is defined by the angle between adjacent diffracted lights that are sent to the space via the first optical component.
  • the first angle is set using the image magnification of the image conversion optical system. Therefore, the degree of freedom in design is improved.
  • the first optical component is composed of two convex lenses 342 and 344. With this configuration, the image conversion optical system can be easily configured.
  • the first optical component is composed of two prisms 442 and 444 which form an anamorphic prism pair. With this configuration, the image conversion optical system can be easily configured.
  • the RxOPA 104 which is an optical receiver, receives the light coming from the space through the second optical component that constitutes the image conversion optical system, and the antenna elements 126 that are the second antenna elements. Can be received by.
  • the second angle is defined as an angle formed by adjacent maximal sensitivity directions defined in the space with respect to the light received from the space and received through the second optical component. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

This LiDAR device comprises: an optical transmitter that is configured from a first optical phased array and transmits, into a space, diffracted light produced from light output from a plurality of first antenna elements composing the first optical phased array; and an optical receiver that is configured from a second optical phased array and uses a plurality of second antenna elements composing the second optical phased array to receive light arriving from the space. The optical receiver has a plurality of local maximum sensitivity directions each of which is a direction of the arrival of the light from the space in which the light reception sensitivity is at a local maximum. A first angle formed between adjacent directions of diffracted light transmitted into the space by the optical transmitter is different from a second angle formed between adjacent local maximum sensitivity directions of the optical receiver.

Description

ライダー装置Rider device
 本発明は、一般に、リモートセンシング及び距離測定の分野に関し、特に、自律運転システムにおける3次元の空間マッピング、物体検出、物体追跡、物体特定をリアルタイムで行うためのライダー(LiDAR、Light Detection and Ranging)装置に関する。 The present invention generally relates to the field of remote sensing and distance measurement, and more particularly to a lidar (LiDAR, Light Detection and Ranging) for performing three-dimensional spatial mapping, object detection, object tracking, and object identification in an autonomous driving system in real time. Regarding the device.
 ライダー装置は、探索光を空間に送出して当該空間をスキャンし、当該探索光が空間内の物体に反射することで発生する反射戻り光を受信して、空間内の物体の方向と距離を検知する。このようなライダー装置を構成するデバイスとして、光フェーズドアレイ(OPA、Optical Phased Array)が知られている。OPAを用いるライダー装置は、機械式ビームスキャンニング機器を用いたライダー装置に比べて高速且つ小型に構成され得る。 The lidar device sends the search light to the space, scans the space, receives reflected return light generated by the search light being reflected by an object in the space, and determines the direction and distance of the object in the space. Detect. An optical phased array (OPA, Optical Phased Array) is known as a device constituting such a lidar device. The lidar device using the OPA can be configured at a higher speed and smaller than a lidar device using a mechanical beam scanning device.
 ライダー装置に用いることのできるOPAとして、従来、光カプラと、位相シフタと、アンテナエレメントと、でそれぞれ構成される複数のユニットセルを配列して構成されるOPAが知られている(特許文献1)。しかしながら、このOPAは、それぞれのユニットセルが上記光カプラ等の多くの要素で構成されるため、ユニットセルは相応のサイズを有することとなる。このため、ユニットセルの配置間隔、従ってアンテナエレメントの配置間隔を小さくすることには限界があり、当該配置間隔の大きさに起因して探索光のビームステアリングの角度範囲が狭く制限される。 As an OPA that can be used for a lidar device, an OPA configured by arranging a plurality of unit cells each including an optical coupler, a phase shifter, and an antenna element has been conventionally known (Patent Document 1). ). However, in this OPA, since each unit cell is composed of many elements such as the above-mentioned optical coupler, the unit cell has a corresponding size. Therefore, there is a limit to reducing the arrangement interval of the unit cells, that is, the arrangement interval of the antenna elements, and the angle range of the beam steering of the search light is narrowed due to the size of the arrangement interval.
 また、ライダー装置に用いることのできる他のOPAとして、従来、光集積回路(photonic integrated circuit (PIC))をベースとするOPAが知られている(非特許文献1)。このOPAは、光を入力するバス導波路と、それぞれが熱位相シフタ及びエバネセントカプラで構成される複数の分岐部分であってバス導波路上に設けられた複数の分岐部分と、上記エバネセントカプラのそれぞれにより分岐された複数の光のそれぞれを空間へ送出する複数のグレーティングベースのアンテナエレメントと、で構成される。このOPAでは、入力光の波長を変化させることにより、上記アンテナエレメントの延在方向に沿ったビームステアリングが行われる。 Also, as another OPA that can be used for a lidar device, an OPA based on an optical integrated circuit (photonic integrated circuit (PIC)) is conventionally known (Non-patent document 1). This OPA includes a bus waveguide for inputting light, a plurality of branch portions each formed of a thermal phase shifter and an evanescent coupler and provided on the bus waveguide, and the evanescent coupler. And a plurality of grating-based antenna elements for transmitting each of the plurality of lights branched by each to the space. In this OPA, beam steering is performed along the extending direction of the antenna element by changing the wavelength of the input light.
 しかしながら、このOPAでは、実用上十分なビームステアリング角度範囲を確保しようとすると、極めて広い波長可変範囲を持った波長可変レーザが必要となり、ライダー装置全体としてのコストが増大する。 However, in order to secure a practically sufficient beam steering angle range in this OPA, a wavelength tunable laser having an extremely wide wavelength tunable range is required, and the cost of the entire lidar device increases.
米国特許第8,988,754号明細書U.S. Pat. No. 8,988,754
 上記背景より、光フェーズドアレイ(OPA)を用いたライダー装置において、コストの増大を招くことなく、アンテナエレメントの配列ピッチによるビームステアリング角度範囲の制限を克服して、より広いビームステアリング角度範囲を実現することが求められている。 From the above background, in a lidar device using an optical phased array (OPA), a wider beam steering angle range is realized by overcoming the limitation of the beam steering angle range due to the arrangement pitch of the antenna elements without increasing the cost. Is required to do.
 本発明の一の態様は、第1の光フェーズドアレイにより構成され、当該第1の光フェーズドアレイを構成する複数の第1のアンテナエレメントから出力される光により生成された回折光を空間へ送出する光送信器と、第2の光フェーズドアレイにより構成され、前記空間から到来する光を前記第2の光フェーズドアレイを構成する複数の第2のアンテナエレメントにより受信する光受信器と、を備え、前記光受信器は、前記空間から到来する光の方向に関し、当該光の受信感度が極大となる極大感度方向を複数有し、前記光送信器が前記空間へ送出する隣接する前記回折光の方向が互いに成す第1の角度と、前記光受信器における隣接する前記極大感度方向が互いに成す第2の角度と、が互いに異なっている、ライダー装置である。
 本発明の他の態様によると、前記第1の光フェーズドアレイが備える第1の位相シフタと、前記第2の光フェーズドアレイが備える第2の位相シフタと、を制御する位相シフト制御部を備え、位相シフト制御部は、前記第1の位相シフタの位相シフト量を制御して前記光送信器が前記空間へ送出する回折光のメインローブの送出方向を変化させると共に、前記極大感度方向のうち最大感度を有する前記極大感度方向が前記メインローブの送出方向と一致するように前記第2の位相シフタの位相シフト量を制御する。
 本発明の他の態様によると、前記第1のアンテナエレメントの配列間隔と前記第2のアンテナエレメントの配列間隔とが互いに異なる値に設定されている。
 本発明の他の態様によると、前記第1の角度と前記第2の角度との比は、互いに素な自然数の比で表されるよう設定される。
 本発明の他の態様によると、前記第1のアンテナエレメントの配列間隔と前記第2のアンテナエレメントの配列間隔との比が互いに素な自然数の比で表されるよう設定されている。
 本発明の他の態様によると、前記光送信器は、前記複数の第1のアンテナエレメントから出力される光により生成された前記回折光を、像変換光学系を構成する第1の光学部品を介して前記空間へ送出し、前記第1の角度は、前記第1の光学部品を介して前記空間へ送出された隣接する前記回折光の間の角度で定義される。
 本発明の他の態様によると、前記第1の光学部品は、2つの凸レンズで構成される。
 本発明の他の態様によると、前記第1の光学部品は、アナモルフィックプリズムペアを構成する2つのプリズムで構成される。
 本発明の他の態様によると、前記光受信器は、前記空間から到来する光を、像変換光学系を構成する第2の光学部品を介して前記複数の第2のアンテナエレメントにより受信し、前記第2の角度は、前記第2の光学部品を介して受信される前記空間から到来する光についての、前記空間において規定される隣接する前記極大感度方向が互いに成す角度で定義される。
One aspect of the present invention is configured by a first optical phased array, and transmits diffracted light generated by light output from a plurality of first antenna elements forming the first optical phased array to space. And an optical receiver that is configured by a second optical phased array and that receives light coming from the space by a plurality of second antenna elements that configure the second optical phased array. , The optical receiver has a plurality of maximum sensitivity directions with respect to the direction of light coming from the space, the receiving sensitivity of the light being maximum, and the optical transmitter transmits the diffracted light adjacent to the space. In the lidar device, a first angle formed by the directions is different from a second angle formed by the adjacent maximum sensitivity directions in the optical receiver.
According to another aspect of the present invention, a phase shift controller that controls a first phase shifter included in the first optical phased array and a second phase shifter included in the second optical phased array is provided. The phase shift control unit controls the phase shift amount of the first phase shifter to change the sending direction of the main lobe of the diffracted light sent to the space by the optical transmitter, and at the same time, among the maximum sensitivity directions. The phase shift amount of the second phase shifter is controlled so that the maximum sensitivity direction having the maximum sensitivity matches the sending direction of the main lobe.
According to another aspect of the present invention, the array interval of the first antenna elements and the array interval of the second antenna elements are set to different values.
According to another aspect of the present invention, the ratio between the first angle and the second angle is set so as to be expressed as a ratio of natural numbers that are relatively prime.
According to another aspect of the present invention, the ratio of the arrangement interval of the first antenna elements and the arrangement interval of the second antenna elements is set to be represented by a ratio of natural numbers that are mutually prime.
According to another aspect of the present invention, the optical transmitter includes a first optical component that forms an image conversion optical system for the diffracted light generated by the light output from the plurality of first antenna elements. Via the first optical component, the first angle being defined by the angle between adjacent diffracted lights that are delivered to the space via the first optical component.
According to another aspect of the present invention, the first optical component is composed of two convex lenses.
According to another aspect of the present invention, the first optical component includes two prisms forming an anamorphic prism pair.
According to another aspect of the present invention, the optical receiver receives light coming from the space by the plurality of second antenna elements via a second optical component forming an image conversion optical system, The second angle is defined as an angle formed by adjacent maximal sensitivity directions defined in the space with respect to light coming from the space received via the second optical component.
 本発明によれば、OPAを用いたライダー装置において、コストの増大を招くことなく、アンテナエレメントの配列ピッチによるビームステアリング角度範囲の制限を克服して、より広いビームステアリング角度範囲を実現することができる。 According to the present invention, it is possible to realize a wider beam steering angle range by overcoming the limitation of the beam steering angle range due to the arrangement pitch of the antenna elements in the lidar device using the OPA without increasing the cost. it can.
図1は、本発明の第1の実施形態に係るライダー装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a rider device according to a first embodiment of the present invention. 図2は、図1に示すライダー装置の動作を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the operation of the rider device shown in FIG. 図3は、本発明の第2の実施形態に係るライダー装置の構成を示す図である。FIG. 3 is a diagram showing a configuration of a rider device according to a second embodiment of the present invention. 図4は、本発明の第3の実施形態に係るライダー装置の構成を示す図である。FIG. 4 is a diagram showing the configuration of the rider device according to the third embodiment of the present invention. 図5は、従来のライダー装置の構成を示す図でる。FIG. 5: is a figure which shows the structure of the conventional rider apparatus. 図6は、従来のライダー装置の特性の一例を示す図である。FIG. 6 is a diagram showing an example of characteristics of a conventional rider device. 図7は、ライダー装置に用いることのできる光フェーズドアレイの一例を示す図である。FIG. 7 is a diagram showing an example of an optical phased array that can be used in the lidar device. 図8は、図7に示す光フェーズドアレイが備えるユニットセルの構成を示す図である。FIG. 8 is a diagram showing a configuration of a unit cell included in the optical phased array shown in FIG. 図9は、ライダー装置に用いることのできる光フェーズドアレイの他の一例を示す図である。FIG. 9 is a diagram showing another example of the optical phased array that can be used in the lidar device.
 一般に、OPAは、入力された光を複数の光に分岐する光分岐器と、分岐された複数の光のそれぞれを伝搬する複数の導波ラインと、複数の導波ラインに設けられて当該導波ラインを伝搬する光の位相を変化させる位相シフタと、各導波ラインに接続されて当該導波ラインを伝搬する光を出力するアンテナエレメントと、で構成される。また、OPAは、一般的に相反的であり、探索光である光ビームを送出する光送信器に用いられるほか、当該光ビームの反射戻り光を受信する受信器にも用いられ得る。 Generally, the OPA is provided with an optical branching device for branching the input light into a plurality of lights, a plurality of waveguide lines for propagating each of the plurality of branched lights, and a plurality of waveguide lines provided for the waveguide lines. It is composed of a phase shifter that changes the phase of light propagating in the wave line, and an antenna element that is connected to each waveguide line and outputs the light propagating in the waveguide line. The OPA is generally reciprocal and can be used not only in an optical transmitter that sends out a light beam that is a search light, but also in a receiver that receives the reflected return light of the light beam.
 例えば、OPAのアンテナエレメントのそれぞれで受信した光を各導波ラインに伝搬させ、上記位相シフタにより位相を変化させた後、上記光分岐器を光結合器(合波器)として用いて、各導波ラインを伝搬した光を一つの光に合波して出力させることで、光受信器を構成するものとすることができる。 For example, the light received by each of the antenna elements of the OPA is propagated to each waveguide line, the phase is changed by the phase shifter, and the optical branching device is used as an optical coupler (combiner). An optical receiver can be configured by combining the light propagating through the waveguide line into one light and outputting the combined light.
 ここで、OPAを光送信器として用い、当該OPAのアンテナエレメントから空間に向かって回折光を送出するように位相シフタにおける位相シフト量を調整したとする。そして、この状態において、位相シフタの位相シフト量を保持したまま、上記OPAを光受信器として用いて上記アンテナエレメントから光を受信したとする。そうすると、上記回折光の送出方向と同じ方向から到来する光は、アンテナエレメントのそれぞれで受信された後、位相シフタにより同位相に位相シフトされることとなり、光結合器内で強め合って出力されることとなる。また、逆に、上記回折光の送出方向と異なる方向から到来する光は、アンテナエレメントのそれぞれで受信された後、位相シフタにより位相シフトを受けても同位相とはならず、光結合器内で強め合うことなく出力されることとなる。このため上記光受信器は、上記回折光の送出方向から到来する光に対してその受信感度が極大となる。また、当該光受信器は、上記回折光のうち最大の強度を持つメインローブの送出方向から到来する光に対して最大の受信感度を有することとなる。 Here, it is assumed that the OPA is used as an optical transmitter and the phase shift amount in the phase shifter is adjusted so that diffracted light is sent out from the antenna element of the OPA toward space. Then, in this state, it is assumed that the OPA is used as an optical receiver and light is received from the antenna element while holding the phase shift amount of the phase shifter. Then, the light arriving from the same direction as the diffracted light transmission direction is received by each of the antenna elements, and then phase-shifted to the same phase by the phase shifter, and the signals are mutually strengthened and output in the optical coupler. The Rukoto. On the contrary, the light arriving from a direction different from the diffracted light transmission direction does not become the same phase even if it undergoes a phase shift by the phase shifter after being received by each of the antenna elements. Will be output without strengthening each other. For this reason, the optical receiver has a maximum reception sensitivity with respect to the light coming from the transmission direction of the diffracted light. Further, the optical receiver has the maximum receiving sensitivity for the light coming from the direction of transmission of the main lobe having the maximum intensity among the diffracted lights.
 以下、本明細書において、ビームを送出する送信器として機能させたOPAにより構成される光送信器をTxOPA、光を受信する受信器として機能させたOPAにより構成される光受信器をRxOPAと称する。また、本明細書においては、RxOPAを構成するアンテナエレメントから光を送出したとしたならば当該アンテナエレメントから送出された光により発生することとなる回折光、メインローブ、及びサイドローブを、便宜上、それぞれ「RxOPAの回折光」、「RxOPAのメインローブ」、及び「RxOPAのサイドローブ」というものとする。また、本明細書において「RxOPAの遠視野像」とは、当該RxOPA104を構成するアンテナエレメントから光を送出したとしたときの、当該アンテナエレメントから送出される光の遠視野像をいうものとする。 Hereinafter, in the present specification, an optical transmitter including an OPA functioning as a transmitter for transmitting a beam is referred to as TxOPA, and an optical receiver including an OPA functioning as a receiver for receiving light is referred to as RxOPA. .. Further, in the present specification, for the sake of convenience, the diffracted light, the main lobe, and the side lobes that would be generated by the light sent from the antenna element if the light was sent from the antenna element forming the RxOPA, They are referred to as “diffracted light of RxOPA”, “main lobe of RxOPA”, and “sidelobe of RxOPA”, respectively. Further, in the present specification, the “far-field image of RxOPA” refers to a far-field image of the light transmitted from the antenna element when the light is transmitted from the antenna element forming the RxOPA 104. ..
 また、本明細書において、RxOPAの受信感度とは、当該RxOPAのアンテナエレメントにより受信された光が、当該RxOPAの位相シフタ及び光結合器を経て当該光結合器から出力されるまでに受ける損失の逆数(すなわち、同一方向からアンテナエレメントに到達する光の総光量に対する、光結合器から出力される光の光量の比の逆数)をいうものとする。 In addition, in the present specification, the reception sensitivity of RxOPA is the loss received by the light received by the antenna element of the RxOPA before being output from the optical coupler via the phase shifter and the optical coupler of the RxOPA. The reciprocal (that is, the reciprocal of the ratio of the amount of light output from the optical coupler to the total amount of light that reaches the antenna element from the same direction).
 3次元の空間マッピング等を行うライダー装置は、一般的には、図5に示すような構成により実現することができる。図5に示すライダー装置500は、OPAにより構成されるTxOPA502及びRxOPA504と、光源506と、を備える。TxOPA502は、光源506からの光を分岐する光分岐器510と、光分岐器510により分岐された各光の位相をそれぞれシフトさせる複数の位相シフタ512を備えた位相シフトユニット514と、位相シフトユニット514から出力される各光を空間へ放出する複数のアンテナエレメント516が配列されたアンテナユニット518と、を有する。 A rider device that performs three-dimensional space mapping or the like can be generally realized by the configuration shown in FIG. The rider device 500 shown in FIG. 5 includes TxOPA 502 and RxOPA 504 configured by OPA, and a light source 506. The TxOPA 502 includes a phase shift unit 514 including an optical splitter 510 that splits light from the light source 506, and a plurality of phase shifters 512 that shift the phases of the respective lights split by the optical splitter 510, and a phase shift unit. An antenna unit 518 in which a plurality of antenna elements 516 for emitting each light output from 514 to the space are arranged.
 また、RxOPA504は、空間を伝搬する光を受信するアンテナエレメント526が配列されたアンテナユニット528と、各アンテナエレメント526が受信した光の位相をそれぞれシフトさせる複数の位相シフタ522を備える位相シフトユニット524と、位相シフトユニット524が出力する光を一つに結合して出力する光結合器520と、を有する。 The RxOPA 504 also includes an antenna unit 528 in which antenna elements 526 for receiving light propagating in space are arranged, and a phase shift unit 524 including a plurality of phase shifters 522 for respectively shifting the phases of the light received by each antenna element 526. And an optical coupler 520 for combining and outputting the lights output from the phase shift unit 524.
 ライダー装置500は、また、RxOPA504が出力する光を受信する光検出器530と、TxOPA502及びRxOPA504の位相シフトユニット514、524の位相シフタ512、522の動作を制御するステアリング制御ユニット532と、光源506及びステアリング制御ユニット532を制御すると共に光検出器530の出力を受信して例えば空間マッピング等のためのデータ生成処理を行う制御デバイス536と、を備える。 The lidar device 500 also includes a photodetector 530 that receives the light output from the RxOPA 504, a steering control unit 532 that controls the operation of the phase shift units 514 and 524 of the TxOPA 502 and RxOPA 504, and a light source 506. And a control device 536 that controls the steering control unit 532 and receives the output of the photodetector 530 to perform a data generation process for, for example, spatial mapping.
 光源506は、例えばパルスレーザであり、制御デバイス536は、空間内の物体までの距離を例えば飛行時間(TOF)法により測定する。 The light source 506 is, for example, a pulse laser, and the control device 536 measures the distance to an object in space by, for example, the time of flight (TOF) method.
 光源506からの光信号は、TxOPA502に入射される。ステアリング制御ユニット532は、位相シフトユニット514の位相シフタ512を動作させ、TxOPA502のアンテナユニット518を構成する配列された複数のアンテナエレメント516から空間に向かって回折光を送出させると共に、それらの回折光の空間への送出方向を変化させてビームステアリングを行う。 The optical signal from the light source 506 is incident on the TxOPA 502. The steering control unit 532 operates the phase shifter 512 of the phase shift unit 514 to cause the plurality of arranged antenna elements 516 forming the antenna unit 518 of the TxOPA 502 to emit diffracted light toward the space and also to diffract the diffracted light. Beam steering is performed by changing the delivery direction to the space.
 また、ステアリング制御ユニット532は、TxOPA502が現在送出している回折光に対応して、それらの回折光と同じ方向にRxOPA504の回折光が向くように、RxOPA504の位相シフトユニット524の位相シフタ522を動作させる。これにより、RxOPA504は、TxOPA502のメインローブの送出方向から到来する光に対して最大受信感度を持ち、TxOPA502のサイドローブの送出方向から到来する光に対して極大受信感度を持つこととなる。 Further, the steering control unit 532 controls the phase shifter 522 of the phase shift unit 524 of the RxOPA 504 so that the diffracted light of the RxOPA 504 is directed in the same direction as the diffracted light that the TxOPA 502 is currently sending. To operate. As a result, the RxOPA 504 has the maximum receiving sensitivity for the light coming from the sending direction of the main lobe of the TxOPA 502 and the maximum receiving sensitivity for the light coming from the sending direction of the sidelobe of the TxOPA 502.
 ここで、従来のライダー装置500では、一般に、回折光の収束度を上げて物体検出における空間分解能を上げるべく、アンテナエレメント516、526の数として数千程度の数が求められる。また、一般に、探索光として用いるメインローブのステアリング角度範囲をできる限り広く確保するため、メインローブのステアリング角度範囲に隣接する回折光が進入しないよう、アンテナエレメント516、526のそれぞれの配置間隔は、共にできる限り狭く設計され、結果として互いに同じ配置間隔pを持つよう設計される。 Here, in the conventional lidar device 500, in general, about several thousand antenna elements 516 and 526 are required in order to increase the degree of convergence of diffracted light and improve the spatial resolution in object detection. Further, in general, in order to secure the steering angle range of the main lobe used as the search light as wide as possible, the arrangement intervals of the antenna elements 516 and 526 are set so that diffracted light adjacent to the steering angle range of the main lobe does not enter. Both are designed to be as narrow as possible, and as a result, they are designed to have the same arrangement interval p.
 その結果、TxOPA502とRxOPA504の回折光は、共に同じ方向を持つこととなる。図6は、図5に示すTxOPA502及びRxOPA504の例示的な特性を示す図である。図6の上段は、TxOPA502について、光分岐器510の光入力端からアンテナエレメント516のそれぞれの光出力端に至るまでの各光経路(各チャネル)で発生する光位相差がゼロであるときの、アンテナユニット518から送出される光の遠視野像である。また、図6の中段は、RxOPA504について、アンテナエレメント526のそれぞれの光入力端から光結合器520の光出力端に至るまでの各光経路(各チャネル)で発生する光位相差がゼロであるときの、空間から到来する光の方向に対するRxOPA504の受信感度の分布を示す図である。また、図6の下段は、図6の上段に示す光強度分布を持つ回折光を空間に送出し、図6の中段に示す受信感度分布を持つRxOPA504により空間からの反射戻り光を受信したときの、ライダー装置500から見た空間内の各方向に対する、当該ライダー装置500としての総感度の分布を示した図である。 As a result, the diffracted lights of TxOPA502 and RxOPA504 both have the same direction. FIG. 6 is a diagram showing exemplary characteristics of the TxOPA 502 and RxOPA 504 shown in FIG. The upper part of FIG. 6 shows the case where the optical phase difference generated in each optical path (each channel) from the optical input end of the optical branching device 510 to each optical output end of the antenna element 516 is zero for the TxOPA502. , Is a far-field image of the light transmitted from the antenna unit 518. Further, in the middle part of FIG. 6, in the RxOPA 504, the optical phase difference generated in each optical path (each channel) from each optical input end of the antenna element 526 to the optical output end of the optical coupler 520 is zero. FIG. 8 is a diagram showing a distribution of reception sensitivity of the RxOPA 504 with respect to the direction of light coming from space at that time. Further, in the lower part of FIG. 6, when the diffracted light having the light intensity distribution shown in the upper part of FIG. 6 is transmitted to the space, and the reflected return light from the space is received by the RxOPA 504 having the receiving sensitivity distribution shown in the middle part of FIG. 6 is a diagram showing a distribution of the total sensitivity of the rider device 500 in each direction in the space viewed from the rider device 500. FIG.
 図6において、上段、中段、及び下段の横軸は、いずれも、XZ平面内の各方角(図5の図示上下方向の方角)を、Z軸に対する角度θの正弦値で示した軸である。また、図6の上段の縦軸は、TxOPA502から送出される光の強度を、メインローブの最大強度で正規化した正規化光強度である。また、図6の中段の縦軸は、RxOPA504の受信感度を、その最大受信感度値で正規化した正規化受信感度である。さらに、図6の下段の縦軸は、ライダー装置500の総感度を、その最大値で正規化した正規化総感度である。 In FIG. 6, the abscissas of the upper, middle, and lower tiers are axes that indicate each direction in the XZ plane (the vertical direction in FIG. 5) by the sine value of the angle θ with respect to the Z axis. .. The vertical axis in the upper part of FIG. 6 is the normalized light intensity obtained by normalizing the intensity of the light transmitted from the TxOPA 502 with the maximum intensity of the main lobe. Further, the vertical axis in the middle of FIG. 6 is the normalized reception sensitivity obtained by normalizing the reception sensitivity of the RxOPA 504 by the maximum reception sensitivity value. Further, the vertical axis in the lower part of FIG. 6 is the normalized total sensitivity obtained by normalizing the total sensitivity of the lidar device 500 with its maximum value.
 図6上段において、sinθ=0の位置に最大強度を有する光強度部分600は、TxOPA502から出力される回折光のメインローブ(回折次数がゼロの主極大ビーム)に相当し、当該最大の光強度部分以外の光強度部分602、604、606、608、610、612は、サイドローブ(回折次数がゼロ以外の回折光ビーム)に相当する。このうち、光強度部分602、604は、メインローブに隣接するサイドローブ(回折次数が±1)に相当し、sinθ=±λ0/pの位置に発生する。ここで、λ0は、光源506が出力する光の中心波長、pは、アンテナエレメント516の配列ピッチである。 In the upper part of FIG. 6, the light intensity portion 600 having the maximum intensity at the position of sin θ=0 corresponds to the main lobe of the diffracted light output from the TxOPA 502 (the main maximum beam with the diffraction order of zero), and the maximum light intensity. The light intensity portions 602, 604, 606, 608, 610, 612 other than the portions correspond to side lobes (diffracted light beams having a diffraction order other than zero). Of these, the light intensity portions 602 and 604 correspond to side lobes (diffraction orders are ±1) adjacent to the main lobe, and are generated at positions of sin θ=±λ 0 /p. Here, λ 0 is the center wavelength of the light output from the light source 506, and p is the array pitch of the antenna elements 516.
 RxOPA504のアンテナエレメント526は、TxOPA502のアンテナエレメント516と同じ配列ピッチpで配列されていることから、RxOPA504の回折光はTxOPA502とそれぞれ同じ方向を向く。このため、図6中段に示すRxOPA504の受信感度は、図6上段におけるTxOPA502の回折光に相当する光強度部分600、602、604、606、608、610、612と同じ位置にそれぞれ極大部分620、622、624、626、628、630、632を持ち、TxOPA502のメインローブに相当する光強度部分600と同じ位置に、受信感度が最大となる極大部分620を有する。 Since the antenna elements 526 of the RxOPA 504 are arranged at the same arrangement pitch p as the antenna elements 516 of the TxOPA 502, the diffracted light of the RxOPA 504 is directed in the same direction as the TxOPA 502. Therefore, the receiving sensitivity of the RxOPA 504 shown in the middle part of FIG. 6 has the maximum portions 620 at the same positions as the light intensity parts 600, 602, 604, 606, 608, 610, 612 corresponding to the diffracted light of the TxOPA 502 in the upper part of FIG. 6, respectively. It has 622, 624, 626, 628, 630, and 632, and has a maximum portion 620 at which the reception sensitivity is maximum at the same position as the light intensity portion 600 corresponding to the main lobe of the TxOPA 502.
 また、ライダー装置500としての総感度は、TxOPA502が送出する光強度分布(すなわち、図6上段に示す正規化光強度の値)と、RxOPA504における受信感度分布(すなわち、図6中段に示す正規化受信感度の値)と、の積に比例する。したがって、ライダー装置500としての総感度は、図6下段に示すように、TxOPA502の光強度の極大部分とRxOPA504の受信感度の極大部分とが一致する位置(mλ0/p、m=0、±1、±2、±3)において、極大部分640、642、644、646、648、650、652を持ち、メインローブに対応する位置(sinθ=0)において最大の総感度を示す極大部分640を持つ。 Further, the total sensitivity of the lidar device 500 is the light intensity distribution transmitted by the TxOPA 502 (that is, the normalized light intensity value shown in the upper part of FIG. 6) and the reception sensitivity distribution in the RxOPA 504 (that is, the normalized sensitivity shown in the middle part of FIG. 6). It is proportional to the product of (reception sensitivity value). Therefore, the total sensitivity of the lidar device 500 is, as shown in the lower part of FIG. 6, a position (mλ 0 /p, m=0, ±) where the maximum light intensity of the TxOPA 502 and the maximum reception sensitivity of the RxOPA 504 coincide. 1, ±2, ±3) has maximum portions 640, 642, 644, 646, 648, 650, 652, and shows a maximum portion 640 showing the maximum total sensitivity at the position corresponding to the main lobe (sin θ=0). To have.
 このライダー装置500において、TxOPA502の各チャネルと、RxOPA504の各チャネルと、においてそれぞれ同様の位相シフトを発生させつつ、TxOPA502及びRxOPA504の回折光の方向を同じように変化させると、図6上段の光強度部分600等及び図6中段の極大部分620等は、それぞれ同じ方向へ同じ量だけシフトする。また、これに応じて、図6下段の極大部分640等も、これと同じ方向へ同じ量だけシフトする。 In this lidar device 500, when the same phase shift is generated in each channel of the TxOPA 502 and each channel of the RxOPA 504 and the directions of the diffracted light of the TxOPA 502 and the RxOPA 504 are changed in the same manner, the light in the upper stage of FIG. The intensity portion 600 and the like and the maximum portion 620 and the like in the middle of FIG. 6 are shifted in the same direction by the same amount. Further, in response to this, the maximum portions 640 and the like in the lower part of FIG. 6 are also shifted by the same amount in the same direction.
 したがって、例えば、TxOPA502のメインローブを探索光として用いてビームステアリングを行う場合には、図6下段において、当該メインローブを用いた場合の総感度の極大部分640の図示左右方向のシフト範囲内に、隣接するサイドローブについての総感度の極大部分642、644が入り込まないように、当該ビームステアリングの範囲は、式(1)の範囲に制限される。
Figure JPOXMLDOC01-appb-M000001
Therefore, for example, when beam steering is performed using the main lobe of the TxOPA 502 as the search light, in the lower part of FIG. 6, the maximum portion 640 of the total sensitivity when the main lobe is used is within the shift range in the horizontal direction in the figure. , The range of the beam steering is limited to the range of Expression (1) so that the maximum portions 642 and 644 of the total sensitivity for the adjacent side lobes do not enter.
Figure JPOXMLDOC01-appb-M000001
 すなわち、αmax≡λ0/2pとすれば、ステアリング角度αの許容範囲は、-αmax~+αmaxであり、結果として、ステアリング角度αの最大許容範囲は、アンテナエレメント516、526の配列ピッチpの大きさにより制限される。 That is, if α max ≡λ 0 /2p, the allowable range of the steering angle α is −α max to +α max , and as a result, the maximum allowable range of the steering angle α is the array pitch of the antenna elements 516 and 526. Limited by the size of p.
 なお、上記の説明においてはXZ平面におけるビームステアリングについて説明したが、YZ平面においても、上記と同様に、アンテナエレメント516、526のY軸方向における配列ピッチの大きさに依存して、ビームステアリングのステアリング角度範囲が制限される。 Although the beam steering on the XZ plane has been described in the above description, the beam steering on the YZ plane also depends on the array pitch in the Y-axis direction of the antenna elements 516 and 526, similarly to the above. The steering angle range is limited.
 一方、ライダー装置に用いることのできるOPAとしては、上述したように、それぞれが光を放出する複数のユニットセルを配列して構成されるOPAが知られている(特許文献1)。図7は、そのようなOPA700の構成の一部を示す図、図8は、OPA700を構成するユニットセル710の構成を示す図である。 On the other hand, as an OPA that can be used for a lidar device, as described above, an OPA configured by arranging a plurality of unit cells each emitting light is known (Patent Document 1). FIG. 7 is a diagram showing a part of the configuration of such an OPA 700, and FIG. 8 is a diagram showing a configuration of a unit cell 710 forming the OPA 700.
 図7を参照し、光ファイバ702から入力された光は列方向バス導波路704を伝搬する。列方向バス導波路704を伝搬する光は、当該列方向バス導波路704に所定の間隔で設けられた複数のエバネセントカプラ706により分岐されて複数の行方向バス導波路708を伝搬する。各ユニットセル710(図示点線楕円で示す16個の部分のそれぞれ)は、近接する行方向バス導波路708から、当該行方向バス導波路708を伝搬する光の一部を、エバネセントカプラ800(後述)を介して受信する。また、各ユニットセル710には、電流経路である列方向制御ワイヤ712と行方向制御ワイヤ714が接続され、各ユニットセル710が有する位相シフタ806(後述)が選択的に通電される。 Referring to FIG. 7, light input from the optical fiber 702 propagates in the column direction bus waveguide 704. The light propagating through the column-direction bus waveguide 704 is branched by the plurality of evanescent couplers 706 provided in the column-direction bus waveguide 704 at predetermined intervals and propagates through the plurality of row-direction bus waveguides 708. Each unit cell 710 (each of the 16 parts shown by the dotted ellipse in the figure) outputs a part of the light propagating through the row-direction bus waveguide 708 from the adjacent row-direction bus waveguide 708 to the evanescent coupler 800 (described later). A) via. A column direction control wire 712 and a row direction control wire 714, which are current paths, are connected to each unit cell 710, and a phase shifter 806 (described later) included in each unit cell 710 is selectively energized.
 図8を参照し、各ユニットセル710は、上記行方向バス導波路708に結合されたエバネセントカプラ800、アンテナエレメント802、当該エバネセントカプラ800とアンテナエレメント802とをつなぐ導波路804、当該導波路804のS字部分に設けられたヒータである位相シフタ806、及び位相シフタ806であるヒータに通電するための2つの電極である列方向電極808と行方向電極810とを備える。列方向電極808及び行方向電極810は、上記列方向制御ワイヤ712と行方向制御ワイヤ714にそれぞれ接続される。 Referring to FIG. 8, each unit cell 710 includes an evanescent coupler 800 coupled to the row-direction bus waveguide 708, an antenna element 802, a waveguide 804 connecting the evanescent coupler 800 and the antenna element 802, and the waveguide 804. A phase shifter 806, which is a heater provided in the S-shaped portion, and a column-direction electrode 808 and a row-direction electrode 810, which are two electrodes for energizing the heater, which is the phase shifter 806, are provided. The column direction electrodes 808 and the row direction electrodes 810 are connected to the column direction control wires 712 and the row direction control wires 714, respectively.
 図7に示すOPA700は、行方向及び又は列方向に沿って制御可能な線形位相傾斜を発生させることができ、XZ平面及びYZ平面での制御可能なビームステアリングを行うOPAとして動作することができる。 The OPA 700 shown in FIG. 7 can generate a controllable linear phase tilt along the row and/or column directions and can operate as an OPA with controllable beam steering in the XZ and YZ planes. ..
 しかしながら、特許文献1に従う図7のOPA700では、各ユニットセル710は、アンテナエレメント802に加えて多くの追加のエレメント(位相シフタ806、導波路804、エバネセントカプラ800)を有するので、そのサイズを十分小さくすることができない。その結果、特許文献1のOPA700は、ユニットセル710(具体的には、ユニットセル710が備えるアンテナエレメント802)を、X方向及びY方向の双方において十分小さなピッチpを持って配列することができない。 However, in the OPA 700 of FIG. 7 according to Patent Document 1, since each unit cell 710 has many additional elements (phase shifter 806, waveguide 804, evanescent coupler 800) in addition to the antenna element 802, its size is sufficient. It cannot be made smaller. As a result, in the OPA 700 of Patent Document 1, the unit cell 710 (specifically, the antenna element 802 included in the unit cell 710) cannot be arranged with a sufficiently small pitch p in both the X direction and the Y direction. ..
 例えば、OPA700において実現されるユニットセル710の配列ピッチは9μm程度であり、中心波長1550nmの光を用いてビームステアリングを行う場合には、当該ビームステアリングに用いることのできるステアリング角度αの許容範囲は、式(1)より、±5°に制限される。 For example, the arrangement pitch of the unit cells 710 realized in the OPA 700 is about 9 μm, and when beam steering is performed using light with a center wavelength of 1550 nm, the allowable range of the steering angle α that can be used for the beam steering is From the formula (1), it is limited to ±5°.
 ライダー装置に用いることのできる他のOPAとして、上述したように、非特許文献1に開示された光集積回路をベースとするOPAが知られている。図9は、非特許文献1に従うOPA900の構成を示す図である。このOPA900は、光を入力するためのバス導波路902と、バス導波路902上に設けられて交互にカスケード接続された熱位相シフタ及びエバネセントカプラで構成される部分904と、を備える。上記エバネセントカプラにより分岐された光は、それぞれ導波ライン部906を介して、グレーティングベースのアンテナエレメントが配列されたアンテナ部908に接続される。このOPA900では、上記熱位相シフタにより、上記配列されたアンテナエレメントに順次入力される光の位相増分を制御すると共に、バス導波路902に入力する光の波長を制御することにより、2次元のビームステアリング機能が提供される。 As described above, the OPA based on the optical integrated circuit disclosed in Non-Patent Document 1 is known as another OPA that can be used in the lidar device. FIG. 9 is a diagram showing the configuration of the OPA 900 according to Non-Patent Document 1. The OPA 900 includes a bus waveguide 902 for inputting light, and a portion 904 that is provided on the bus waveguide 902 and is composed of thermal phase shifters and evanescent couplers that are alternately cascade-connected. The light branched by the evanescent coupler is connected to the antenna unit 908 in which the antenna elements of the grating base are arranged via the waveguide line unit 906. In this OPA900, the thermal phase shifter controls the phase increment of the light sequentially input to the arrayed antenna elements, and also controls the wavelength of the light input to the bus waveguide 902 to generate a two-dimensional beam. A steering function is provided.
 図5に示すTxOPA502及びRxOPA504は、例えば、OPA900のアンテナ部908を構成するグレーティングベースの複数のアンテナエレメントをそれぞれ図5の図示Y方向に延在させ、それら複数のアンテナエレメントをX方向に配列することで構成することができる。 In the TxOPA 502 and the RxOPA 504 shown in FIG. 5, for example, a plurality of grating-based antenna elements forming the antenna unit 908 of the OPA 900 are extended in the Y direction shown in FIG. 5, and the plurality of antenna elements are arranged in the X direction. It can be configured by
 しかしながら、アンテナ部908を構成する複数のアンテナエレメントは、基板上に形成された導波路として構成されており、当該アンテナエレメントの配列ピッチ(上記X方向の配列ピッチ)は、上記形成される導波路の配列ピッチに等しい。この導波路の配列ピッチの許容最小値は、当該導波路の光閉じ込め強度により制限され、基板と導波路との屈折率差を大きくして光の閉じ込め強度を高めれば、アンテナエレメントの配列ピッチを狭めることができる。しかしながら、基板素材等に応じて、実現し得る上記屈折率差には限界があり、上記配列ピッチを数μmから大幅に小さくすることには困難を伴う。このため、OPA900のX方向におけるビームステアリングにおいては、上述したOPA700と同様に、ステアリング角度範囲が数度程度に制限されてしまうという問題が生じ得る。 However, the plurality of antenna elements forming the antenna unit 908 are configured as waveguides formed on the substrate, and the array pitch of the antenna elements (the array pitch in the X direction) is the waveguides formed as described above. Equal to the array pitch of. The allowable minimum value of the array pitch of the waveguides is limited by the optical confinement strength of the waveguides. If the optical index confinement strength is increased by increasing the refractive index difference between the substrate and the waveguides, the array pitch of the antenna elements is increased. Can be narrowed. However, there is a limit to the difference in refractive index that can be realized depending on the substrate material and the like, and it is difficult to reduce the array pitch from several μm to a large extent. Therefore, in the beam steering of the OPA 900 in the X direction, the steering angle range may be limited to about several degrees, as in the case of the OPA 700 described above.
 また、OPA900では、Y方向において実用上十分なビームステアリング範囲を確保しようとすると、以下に示すように、波長可変範囲の極めて広い波長可変レーザが必要となり、ライダー装置全体としてのコストが大幅に増加することとなり得る。逆にいえば、OPA900においては、コストの大幅な増加を伴うことなくY方向における実用的なビームステアリング範囲を実現することは困難であり得る。 Further, in order to secure a practically sufficient beam steering range in the Y direction, the OPA900 requires a wavelength tunable laser having an extremely wide wavelength tunable range as shown below, which significantly increases the cost of the entire lidar device. Can be done. Conversely, in the OPA 900, it may be difficult to realize a practical beam steering range in the Y direction without a significant increase in cost.
 すなわち、波長可変レーザの発振波長が中心波長λ0に対しΔλ変化した場合、アンテナ部908から放出されるメインローブのステアリング角度αy(YZ平面におけるメインローブの、Z軸に対する偏向角)は、式(2)から算出される。
Figure JPOXMLDOC01-appb-M000002
That is, when the oscillation wavelength of the wavelength tunable laser changes by Δλ with respect to the central wavelength λ 0 , the steering angle α y of the main lobe emitted from the antenna unit 908 (the deflection angle of the main lobe in the YZ plane with respect to the Z axis) is It is calculated from equation (2).
Figure JPOXMLDOC01-appb-M000002
 ここで、nEは上記アンテナエレメントを構成する導波路の実効屈折率、pgは各アンテナエレメントに設けられたグレーティングピッチである。波長可変レーザの中心波長λ0は、通常、波長シフトがゼロ(Δλ=0)であるときにステアリング角度αyがゼロ(αy=0)となるように、式(3)を満たすように選択される。
Figure JPOXMLDOC01-appb-M000003
Here, n E is the effective refractive index of the waveguide constituting the antenna element, p g is a grating pitch which is provided to each antenna element. The central wavelength λ 0 of the wavelength tunable laser is normally set so as to satisfy the formula (3) so that the steering angle α y becomes zero (α y =0) when the wavelength shift is zero (Δλ=0). To be selected.
Figure JPOXMLDOC01-appb-M000003
 そして、波長可変レーザの最大波長変化範囲がλ0±ΔλmaxであるときにOPA900により実現され得るY方向におけるステアリング角度αyの変化範囲-αymax~+αymaxのαymaxは、式(4)の関係から導かれる。
Figure JPOXMLDOC01-appb-M000004
Then, when the maximum wavelength change range of the wavelength tunable laser is λ 0 ±Δλ max , the change range of the steering angle α y in the Y direction that can be realized by the OPA900 −α ymax to +α ymax is represented by the formula (4). Derived from the relationship.
Figure JPOXMLDOC01-appb-M000004
 ここで、グレーティングピッチpgは、通常、半波長λ0/2に近い値で作製される。pg=λ0/2とすれば、式(4)は、式(5)となる。
Figure JPOXMLDOC01-appb-M000005
Here, the grating pitch pg is usually produced with a value close to the half wavelength λ 0 /2. If p g0 /2, then equation (4) becomes equation (5).
Figure JPOXMLDOC01-appb-M000005
 すなわち、最大ステアリング角度αymax=30°とする場合、中心波長λ0が1550nmであれば、2Δλmaxは775nmとなり、1550±387.5nmもの広い範囲にわたって発振波長を制御し得る波長可変レーザが必要となる。そして、このような条件を満たす市販の波長可変レーザを探し出すことは極めて困難であるか、又は探し出せたとしても極めて高価である。 That is, when the maximum steering angle α ymax =30°, if the central wavelength λ 0 is 1550 nm, 2Δλ max becomes 775 nm, and a wavelength tunable laser capable of controlling the oscillation wavelength over a wide range of 1550±387.5 nm is required. Becomes Then, it is extremely difficult to find a commercially available wavelength tunable laser that satisfies such a condition, or even if it is possible, it is extremely expensive.
 以下、本発明の実施形態に係るライダー装置について説明する。
<第1実施形態>
 図1は、本発明の第1の実施形態に係るライダー装置の構成を示す図である。このライダー装置100は、光源106と、光源106の出力光を空間へ送出するTxOPA102と、TxOPA102から送出された光のうち空間内の物体から反射して戻って来る反射戻り光を受信するRxOPA104と、RxOPA104から出力される光を検出する光検出器130と、を備える。光源106は、例えばパルスレーザである。
Hereinafter, the rider device according to the embodiment of the present invention will be described.
<First Embodiment>
FIG. 1 is a diagram showing a configuration of a rider device according to a first embodiment of the present invention. The lidar device 100 includes a light source 106, a TxOPA 102 that outputs the output light of the light source 106 to the space, and an RxOPA 104 that receives reflected return light that is reflected back from an object in the space among the light sent from the TxOPA 102. , A photodetector 130 that detects the light output from the RxOPA 104. The light source 106 is, for example, a pulse laser.
 TxOPA102は、光源106の出力光を分岐する光分岐器110と、光分岐器110により分岐された各光の位相をそれぞれシフトさせる複数の位相シフタ112を備えた位相シフトユニット114と、位相シフトユニット114から出力される各光を空間へ放出する複数のアンテナエレメント116が配列されたアンテナユニット118と、を有する。アンテナエレメント116は、例えば図示X軸及びY軸に沿って、当該X軸及びY軸で規定されるXY平面内に、互いの間隔が配列ピッチ(配列間隔)pTを持つように二次元配列されている。 The TxOPA 102 includes an optical splitter 110 that splits the output light of the light source 106, a phase shift unit 114 that includes a plurality of phase shifters 112 that shift the phases of the lights split by the optical splitter 110, and a phase shift unit. An antenna unit 118 in which a plurality of antenna elements 116 for emitting each light output from 114 to the space are arranged. The antenna elements 116 are two-dimensionally arrayed, for example, along the X-axis and the Y-axis in the drawing so that the mutual intervals have an array pitch (arrangement interval) p T in the XY plane defined by the X-axis and the Y-axis. Has been done.
 RxOPA104は、上記反射戻り光を受信するアンテナエレメント126が配列されたアンテナユニット128と、各アンテナエレメント126が受信した光の位相をそれぞれシフトさせる複数の位相シフタ122を備える位相シフトユニット124と、位相シフトユニット124が出力する光を一つに結合して出力する光結合器120と、を有する。アンテナエレメント126は、例えば図示X軸及びY軸に沿って、当該X軸及びY軸で規定されるXY平面内に、互いの間隔が配列ピッチ(配列間隔)pRを持つように二次元配列されている。これにより、RxOPA104は、RxOPA104の複数の回折光の方向が、それぞれ受信感度が極大となる極大感度方向となる。すなわち、RxOPA104は、空間から到来する光の方向に関し、当該光の受信感度が極大となる複数の極大感度方向を有するよう構成されている。 The RxOPA 104 includes an antenna unit 128 in which antenna elements 126 that receive the reflected return light are arranged, a phase shift unit 124 that includes a plurality of phase shifters 122 that shift the phase of the light received by each antenna element 126, and a phase shift unit 124. And an optical coupler 120 that combines the lights output from the shift unit 124 into one and outputs the combined light. The antenna elements 126 are two-dimensionally arrayed, for example, along the X-axis and the Y-axis in the drawing so that the mutual intervals have an array pitch (array interval) p R in the XY plane defined by the X-axis and the Y-axis. Has been done. As a result, in the RxOPA 104, the directions of the plurality of diffracted lights of the RxOPA 104 are the maximum sensitivity directions in which the respective reception sensitivities are maximized. That is, the RxOPA 104 is configured to have a plurality of maximum sensitivity directions with respect to the direction of the light coming from the space, which maximizes the reception sensitivity of the light.
 ここで、TxOPA102は、第1の光フェーズドアレイにより構成される光送信器であって、当該第1の光フェーズドアレイを構成する複数の第1のアンテナエレメントから出力される光により生成された回折光を空間へ送出する光送出器に相当する。上記第1の光フェーズドアレイは、光分岐器110と、第1の位相シフタである位相シフタ112を備える位相シフトユニット114と、第1のアンテナエレメントであるアンテナエレメント116を備えるアンテナユニット118と、を含む部分に相当する。 Here, the TxOPA 102 is an optical transmitter including a first optical phased array, and diffraction generated by light output from a plurality of first antenna elements forming the first optical phased array. It corresponds to a light transmitter that sends light to space. The first optical phased array includes an optical splitter 110, a phase shift unit 114 including a phase shifter 112 which is a first phase shifter, an antenna unit 118 including an antenna element 116 which is a first antenna element, It corresponds to the part including.
 また、RxOPA104は、第2の光フェーズドアレイにより構成される光受信器であって、空間から到来する光を当該第2の光フェーズドアレイを構成する複数の第2のアンテナエレメントにより受信する光受信器に相当する。上記第2の光フェーズドアレイは、光結合器120と、第2の位相シフタである位相シフタ122を備える位相シフトユニット124と、第2のアンテナエレメントであるアンテナエレメント126を備えるアンテナユニット128と、を含む部分に相当する。 The RxOPA 104 is an optical receiver including a second optical phased array, and is an optical receiver that receives light coming from a space by a plurality of second antenna elements forming the second optical phased array. It corresponds to a bowl. The second optical phased array includes an optical coupler 120, a phase shift unit 124 including a phase shifter 122 that is a second phase shifter, an antenna unit 128 including an antenna element 126 that is a second antenna element, It corresponds to the part including.
 TxOPA102及びRxOPA104は、例えば特許文献1に記載のOPAを用いて構成され得る。すなわち、TxOPA102は、アンテナエレメント116として例えば図8に示すアンテナエレメント802が図1の図示X方向及びY方向に間隔(配列ピッチ)pTをもってXY平面内に2次元配列されて構成される。同様に、RxOPA104は、アンテナエレメント126として例えば図8に示すアンテナエレメント802が図1の図示X方向及びY方向に間隔(配列ピッチ)pRをもってXY平面内に2次元配列されて構成される。 The TxOPA 102 and the RxOPA 104 can be configured using the OPA described in Patent Document 1, for example. That is, the TxOPA 102 is configured such that the antenna elements 802 shown in FIG. 8 as the antenna elements 116 are two-dimensionally arranged in the XY plane at intervals (arrangement pitch) p T in the X and Y directions shown in FIG. Similarly, the RxOPA 104 is configured such that the antenna elements 802 shown in FIG. 8 as the antenna elements 126 are two-dimensionally arranged in the XY plane at intervals (arrangement pitch) p R in the X and Y directions shown in FIG.
 また、TxOPA102の位相シフタ112は、例えば図8に示すような、導波路804上に設けられたヒータで構成される熱位相シフタである位相シフタ806で構成されている。同様に、RxOPA104の位相シフタ122は、例えば図8に示すような、導波路804上に設けられたヒータで構成される位相シフタ806で構成されている。 Further, the phase shifter 112 of the TxOPA 102 is composed of a phase shifter 806 which is a thermal phase shifter including a heater provided on the waveguide 804 as shown in FIG. 8, for example. Similarly, the phase shifter 122 of the RxOPA 104 is composed of a phase shifter 806 including a heater provided on the waveguide 804 as shown in FIG. 8, for example.
 さらに、TxOPA102の光分岐器110及びRxOPA104の光結合器120は、共に、例えば図7、図8に示すような、光源106からの光を伝搬する列方向バス導波路704及び行方向バス導波路708と、エバネセントカプラ706及び800と、により構成され得る。 Further, the optical branching device 110 of the TxOPA 102 and the optical coupler 120 of the RxOPA 104 are both the column-direction bus waveguide 704 and the row-direction bus waveguide 704 for propagating the light from the light source 106 as shown in FIGS. 708 and evanescent couplers 706 and 800.
 ただし、上記のTxOPA102及びRxOPA104の構成は一例であって、これには限られない。例えば、TxOPA102及びRxOPA104のアンテナユニット118及び128は、それぞれ、光を送出及び受信するアンテナエレメント116及び126が共に図示XY平面においてそれぞれ配列ピッチpT及びpRをもって二次元配列される限りにおいて、任意の構成を有するものとすることができる。 However, the configuration of the TxOPA 102 and the RxOPA 104 described above is an example, and the present invention is not limited to this. For example, the antenna units 118 and 128 of the TxOPA 102 and the RxOPA 104 are arbitrary as long as the antenna elements 116 and 126 for transmitting and receiving light are two-dimensionally arrayed in the illustrated XY plane at array pitches p T and p R , respectively. It may have a structure of.
 また、位相シフトユニット114及び124は、上記に限らず、それぞれ、光分岐器110により分岐された光を伝搬する各光経路、及びアンテナエレメント126により受信された光を伝搬する各光経路に設けられた任意の構成の位相シフタにより構成されるものとすることができる。同様に、光分岐器110及び光結合器120は、上記に限らず、それぞれ、入力された光を分岐する機能、及び入力された光を合波して一つの光に結合する機能を有する限りにおいて、任意の構成又は原理により動作する光分岐器及び光結合器であるものとすることができる。 The phase shift units 114 and 124 are not limited to the above, and are provided in each optical path that propagates the light branched by the optical branching device 110 and each optical path that propagates the light received by the antenna element 126. It can be configured by a phase shifter having an arbitrary configuration described above. Similarly, the optical branching device 110 and the optical coupler 120 are not limited to the above, and as long as they have the function of branching the input light and the function of multiplexing the input light and combining them into one light, respectively. In, the optical branching device and the optical coupler operating according to any configuration or principle can be used.
 ライダー装置100は、また、制御デバイス134と、位相シフト制御部であるステアリング制御ユニット132と、を有する。ステアリング制御ユニット132は、制御デバイス134の制御の下にTxOPA102及びRxOPA104の位相シフタ112、122の動作を制御する。制御デバイス134は、光源106の光パルス出力動作と、TxOPA102の位相シフタ112及びRxOPA104の位相シフタ122の動作と、の同期を行うと共に、光検出器130からの信号に基づいて空間マッピング等のためのデータ生成処理等を行う。 The rider device 100 also includes a control device 134 and a steering control unit 132 that is a phase shift control unit. The steering control unit 132 controls the operation of the phase shifters 112 and 122 of the TxOPA 102 and the RxOPA 104 under the control of the control device 134. The control device 134 synchronizes the optical pulse output operation of the light source 106 with the operation of the phase shifter 112 of the TxOPA 102 and the phase shifter 122 of the RxOPA 104, and performs space mapping and the like based on the signal from the photodetector 130. Data generation processing and the like.
 すなわち、上記構成によりライダー装置100は、制御デバイス134による制御の下に、ステアリング制御ユニット132により位相シフタ112、122に所望の位相シフトを発生させ、TxOPA102のメインローブの出射方向とRxOPA104の最大受信感度方向とが同じ方向を向いた状態を維持しつつ、それらの方向を図示X方向及び又はY方向に変化させてビームステアリングを行う。これにより、ライダー装置100は、TxOPA102のメインローブによりビームステアリングを行うと共に、TxOPA102のメインローブ照射方向からの反射戻り光をRxOPA104により受信する。 That is, with the above-described configuration, the lidar apparatus 100 causes the steering control unit 132 to cause a desired phase shift in the phase shifters 112 and 122 under the control of the control device 134, and the emission direction of the main lobe of the TxOPA 102 and the maximum reception of the RxOPA 104 are received. The beam steering is performed by changing the directions to the X direction and/or the Y direction in the drawing while maintaining the state in which the sensitivity directions are oriented in the same direction. As a result, the lidar device 100 performs beam steering with the main lobe of the TxOPA 102 and receives the reflected return light from the irradiation direction of the main lobe of the TxOPA 102 with the RxOPA 104.
 また、ライダー装置100は、制御デバイス134により、光源106が光パルスを発出してから当該光パルスの反射戻り光をRxOPA104を介して受信するまでの時間を計測することにより、TxOPA102のメインローブ照射方向に存在する物体までの距離を飛行時間法により算出する。そして、ライダー装置100は、上記ビームステアリング動作に応じて逐次変化するTxOPA102のメインローブの出射方向から到来する反射戻り光を逐次検知し、上記逐次変化する方向における物体までの距離を検出することで、例えば空間マッピング等のためのデータ等を生成する。 Further, the lidar apparatus 100 measures the time from the light source 106 emitting a light pulse until the reflected return light of the light pulse is received via the RxOPA 104 by the control device 134, thereby irradiating the main lobe of the TxOPA 102. The distance to the object existing in the direction is calculated by the time-of-flight method. Then, the lidar device 100 sequentially detects the reflected return light coming from the emission direction of the main lobe of the TxOPA 102 that sequentially changes according to the beam steering operation, and detects the distance to the object in the sequentially changing direction. , For example, data for space mapping etc. is generated.
 特に、本実施形態に係るライダー装置100は、TxOPA102のアンテナエレメント116の配列ピッチpTと、RxOPA104のアンテナエレメント126の配列ピッチpRとが、互いに異なる値を有し、例えば式(6)の関係を有するように設定されている。ここで、N1/M1は既約関数であり、M1及びN1は互いに素な自然数である。
Figure JPOXMLDOC01-appb-M000006
In particular, in the rider device 100 according to the present embodiment, the array pitch p T of the antenna elements 116 of the TxOPA 102 and the array pitch p R of the antenna elements 126 of the RxOPA 104 have different values, and for example, in Expression (6), It is set to have a relationship. Here, N 1 /M 1 is an irreducible function, and M 1 and N 1 are relatively prime natural numbers.
Figure JPOXMLDOC01-appb-M000006
 これにより、ライダー装置100は、アンテナエレメントの配列ピッチが同じ値pであるTxOPA及びRxOPAを用いて構成される従来のライダー装置(例えばライダー装置500)に比べて、TxOPA102のアンテナエレメント116の配列ピッチpTを上記pに対して低減することなく、TxOPA102のメインローブのステアリング角αをより広い範囲で変化させてビームステアリングを行うことが可能となる。これについて、以下、説明する。 As a result, the lidar device 100 has an array pitch of the antenna elements 116 of the TxOPA 102 more than that of a conventional rider device (for example, the rider device 500) configured by using TxOPA and RxOPA in which the array pitch of the antenna elements is the same value p. Beam steering can be performed by changing the steering angle α of the main lobe of the TxOPA 102 in a wider range without reducing p T with respect to p. This will be described below.
 なお、以下の説明においては、簡単のため、X軸方向におけるビームステアリング動作を例にとって説明する。当該説明は、当業者にとり明らかなように、X軸に直交するY軸方向においても同様に成り立つ。 Note that in the following description, for simplicity, the beam steering operation in the X-axis direction will be described as an example. As is apparent to those skilled in the art, the description also applies to the Y-axis direction orthogonal to the X-axis.
 上述したように、本実施形態に係るライダー装置100は、TxOPA102のアンテナエレメント116の配列ピッチpTと、RxOPA104のアンテナエレメント126の配列ピッチpRとが、互いに異なる値を有するように構成されている。このため、TxOPA102が空間に送出する隣接する回折光の方向が互いに成す第1の角度と、RxOPA104の隣接する回折光の方向、すなわち隣接する極大感度方向が互いに成す第2の角度と、が互いに異なるものとなっている。 As described above, the lidar device 100 according to the present embodiment is configured such that the array pitch p T of the antenna elements 116 of the TxOPA 102 and the array pitch p R of the antenna elements 126 of the RxOPA 104 have different values. There is. Therefore, the first angle formed by the directions of the adjacent diffracted light beams transmitted by the TxOPA 102 to each other and the second angle formed by the directions of the adjacent diffracted light beams of the RxOPA 104, that is, the second maximum angle formed by the adjacent maximum sensitivity directions are mutually formed. It is different.
 このため、TxOPA102及びRxOPA104を、TxOPA102及びRxOPAのメインローブの方向が一致するように制御すれば、当該メインローブに隣接するサイドローブの方向は、TxOPA102とRxOPA104とで異なるものとなる。すなわち、TxOPA102から送出される上記隣接するサイドローブの方向におけるRxOPA104の受信感度は極大値を持たないため、当該隣接するサイドローブの方向から到来する光の受信が抑制される。その結果、TxOPA102のメインローブのステアリング角度範囲は、当該メインローブとこれに隣接するサイドローブとの間の角度によっては制限されず、より広いステアリング角度範囲を利用することが可能となる。 Therefore, if the TxOPA 102 and the RxOPA 104 are controlled so that the directions of the main lobes of the TxOPA 102 and the RxOPA match, the direction of the side lobe adjacent to the main lobe becomes different between the TxOPA 102 and the RxOPA 104. That is, since the reception sensitivity of the RxOPA 104 transmitted from the TxOPA 102 in the direction of the adjacent side lobes does not have a maximum value, reception of light coming from the direction of the adjacent side lobes is suppressed. As a result, the steering angle range of the main lobe of the TxOPA 102 is not limited by the angle between the main lobe and the side lobes adjacent to the main lobe, and a wider steering angle range can be used.
 より詳細には、TxOPA102の隣接する回折光の偏向角(図示Z軸に対する角度)の正弦値の差ΔωT、及びRxOPA104の隣接する回折光の偏向角の正弦値の差ΔωRは、それぞれ式(7)及び式(8)で表される。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
More specifically, the difference Δω T between the deflection angles (angles with respect to the Z axis) of the adjacent diffracted lights of the TxOPA 102 and the difference Δω R between the deflection angles of the adjacent diffracted light of the RxOPA 104 are respectively expressed by It is represented by (7) and equation (8).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 また、式(6)(7)(8)より、式(9)が成り立つ。
Figure JPOXMLDOC01-appb-M000009
Further, the equation (9) is established from the equations (6), (7), and (8).
Figure JPOXMLDOC01-appb-M000009
 すなわち、ライダー装置100では、TxOPA102が空間に送出する隣接する回折光の方向が互いに成す第1の角度と、RxOPA104の隣接する極大感度方向が互いに成す第2の角度と、の比が互いに素な自然数の比で表されるよう設定されている。 That is, in the lidar device 100, the ratio of the first angle formed by the directions of the adjacent diffracted light beams transmitted by the TxOPA 102 to each other and the second angle formed by the adjacent maximum sensitivity directions of the RxOPA 104 are mutually disjoint. It is set to be expressed as a ratio of natural numbers.
 式(9)は、式(10)のように表すことができる。
Figure JPOXMLDOC01-appb-M000010
Expression (9) can be expressed as Expression (10).
Figure JPOXMLDOC01-appb-M000010
 すなわち、TxOPA102及びRxOPA104のメインローブの方向が同じであるとすると、TxOPA102におけるメインローブから数えてM1番目のサイドローブの方向と、RxOPA104におけるメインローブから数えてN1番目のサイドローブの方向とが、初めて一致することとなる。言い換えれば、TxOPA102における1~M1-1番目のサイドローブの反射光については、RxOPA104における受信が抑制される。 That is, if the directions of the main lobes of the TxOPA 102 and the RxOPA 104 are the same, the direction of the M 1- th sidelobe counted from the mainlobe of the TxOPA 102 and the direction of the N 1- th sidelobe of the RxOPA 104 counted from the mainlobe. However, it will be the first match. In other words, reception of the reflected light of the 1st to M 1 −1st side lobes in the TxOPA 102 is suppressed in the RxOPA 104.
 その結果、TxOPA102のメインローブのステアリング角度αの許容変化範囲-αmax~+αmaxのαmaxは、式(11)で定まることとなる。
Figure JPOXMLDOC01-appb-M000011
As a result, alpha max allowable variation range -α max ~ + α max of the steering angle alpha of the main lobe of TxOPA102 becomes possible determined by equation (11).
Figure JPOXMLDOC01-appb-M000011
 すなわち、式(1)と式(11)との比較からわかるように、ライダー装置100を構成するTxOPA102のアンテナエレメント116の配列ピッチpTを、従来のライダー装置500のTxOPA502の配列ピッチpに設定したとしても(すなわち、配列ピッチpTをpより小さい値に設定することなく)、ライダー装置100のビームステアリングの許容角度範囲は、従来のライダー装置500の許容角度範囲のM倍に向上する。 That is, as can be seen from the comparison between the equations (1) and (11), the arrangement pitch p T of the antenna elements 116 of the TxOPA 102 constituting the rider apparatus 100 is set to the arrangement pitch p of the TxOPA 502 of the conventional rider apparatus 500. Even if it does (that is, without setting the array pitch p T to a value smaller than p), the allowable angle range of the beam steering of the rider apparatus 100 is improved to M times the allowable angle range of the conventional rider apparatus 500.
 図2は、式(6)においてN=5、M=6としたときの、ライダー装置100の動作を説明するための図である。図2の上段は、TxOPA102のアンテナユニット118から送出される光の遠視野像の一例を示す図、図2の中段は、RxOPA104における光の受信感度分布を示す図である。また、図2の下段は、図2の上段及び中段にそれぞれ示す光強度と受信感度との積として得られる、ライダー装置100における総感度の分布を示す図である。図2の横軸は、いずれも、XZ平面におけるZ軸方向に対する角度θの正弦値sinθである。また、図2上段の縦軸は最大光強度により正規化した正規化光強度、図2中段の縦軸は最大受信感度により正規化した正規化受信感度、図2下段の縦軸は、総感度の最大値で正規化した正規化総感度である。 FIG. 2 is a diagram for explaining the operation of the rider device 100 when N=5 and M=6 in Expression (6). The upper part of FIG. 2 is a diagram showing an example of a far-field image of the light transmitted from the antenna unit 118 of the TxOPA 102, and the middle part of FIG. 2 is a diagram showing the light reception sensitivity distribution in the RxOPA 104. The lower part of FIG. 2 is a diagram showing the distribution of the total sensitivity in the lidar device 100, which is obtained as the product of the light intensity and the receiving sensitivity shown in the upper part and the middle part of FIG. 2, respectively. The horizontal axis in FIG. 2 is the sine value sin θ of the angle θ with respect to the Z-axis direction on the XZ plane. The vertical axis in the upper part of FIG. 2 is the normalized light intensity normalized by the maximum light intensity, the vertical axis in the middle part of FIG. 2 is the normalized reception sensitivity normalized by the maximum reception sensitivity, and the vertical axis in the lower part of FIG. 2 is the total sensitivity. It is the normalized total sensitivity normalized by the maximum value of.
 図2上段に示すTxOPA102の光強度分布においてsinθ=0の位置に存在するTxOPA102のメインローブ200から数えてM番目である6番目のサイドローブ202、204の位置と、図2中段に示すRxOPA104の受信感度分布おいてsinθ=0の位置に存在するRxOPA104のメインローブに相当する最大強度部分210から数えてM番目である5番目のサイドローブに相当する極大感度部分212、214の位置とが一致している。 In the light intensity distribution of the TxOPA 102 shown in the upper part of FIG. 2, the sixth side lobes 202 and 204, which are Mth from the main lobe 200 of the TxOPA 102 existing at the position of sin θ=0, and the RxOPA 104 shown in the middle part of FIG. The positions of maximum sensitivity portions 212 and 214 corresponding to the M-th fifth side lobe counted from the maximum intensity portion 210 corresponding to the main lobe of RxOPA 104 existing at the position of sin θ=0 in the reception sensitivity distribution are the same. I am doing it.
 このため、図2下段に示すように、ライダー装置100における総感度の分布は、TxOPA102及びRxOPA104のメインローブに対応するsinθ=0の位置にある最大感度を持つ極大部分220に対し、これに隣接する総感度の極大部分222、224は、大きく離れてsinθ=±6λ0/pT(=±5λ0/pR)の位置に現れる。その結果、ライダー装置100においては、TxOPA102のメインローブの方向とRxOPA104のメインローブの方向が一致するように位相シフタ112及び122を制御することで、TxOPA102のアンテナエレメント116の配置ピッチpTを縮小することなく、式(11)に示すように、TxOPA102のメインローブのビームステリング角αの変化範囲を、従来のライダー装置に比べてM倍、すなわち6倍に拡大することができる。 Therefore, as shown in the lower part of FIG. 2, the distribution of the total sensitivity in the lidar device 100 is adjacent to the maximum sensitivity portion 220 at the position of sin θ=0 corresponding to the main lobes of the TxOPA 102 and the RxOPA 104. The maximal portions 222 and 224 of the total sensitivity that appear are largely separated and appear at the position of sin θ=±6λ 0 /p T (=±5λ 0 /p R ). As a result, in the lidar device 100, the arrangement pitch p T of the antenna element 116 of the TxOPA 102 is reduced by controlling the phase shifters 112 and 122 so that the direction of the main lobe of the TxOPA 102 and the direction of the main lobe of the RxOPA 104 match. Without doing so, as shown in Expression (11), the change range of the beam steering angle α of the main lobe of the TxOPA 102 can be expanded to M times, that is, 6 times, as compared with the conventional lidar device.
 具体的には、本実施形態に係るライダー装置100は、以下のように動作する。なお、以下の説明においては、簡単のため、図示X軸方向にビームステアリングが行われるものとする。ただし、当業者において理解されるように、以下に示すX軸方向のビームステアリング動作に合わせて、当該X軸方向のビームステアリング動作と同様の図示Y軸方向のビームステアリング動作を行うことにより、2次元のビームステアリング動作を行うことができる。 Specifically, the rider device 100 according to the present embodiment operates as follows. In the following description, for simplicity, beam steering is performed in the X-axis direction in the figure. However, as will be understood by those skilled in the art, by performing the beam steering operation in the illustrated Y-axis direction similar to the beam steering operation in the X-axis direction in accordance with the beam steering operation in the X-axis direction described below, A dimensional beam steering operation can be performed.
 まず、ライダー装置100の制御デバイス134は、光源106を制御して、一定の時間間隔で光パルスを発生させる。また、制御デバイス134は、ステアリング制御ユニット132に指示して、TxOPA102から空間へ送出するメインローブのX方向の偏向角α(ステアリング角α)を変化させてビームステアリングを行う。より具体的には、ステアリング制御ユニット132は、各アンテナエレメント116から出射される光の位相がX軸に沿って上記偏向角αに応じた線形位相傾斜をもつように、且つ、当該偏向角αが所定のステアリング角度範囲内において所定のパターンで時間的に変化するように、位相シフタ112を制御する。ここで、上記偏向角αに応じた線形位相傾斜は、光分岐器110の光入力端から各アンテナエレメント116の出力端までの各光経路(各チャネル)に発生する位相シフト量が式(12)に従うように各位相シフタ122を設定することで実現され得る。
Figure JPOXMLDOC01-appb-M000012
First, the control device 134 of the lidar apparatus 100 controls the light source 106 to generate light pulses at regular time intervals. Further, the control device 134 instructs the steering control unit 132 to change the deflection angle α (steering angle α) in the X direction of the main lobe sent from the TxOPA 102 to the space to perform beam steering. More specifically, the steering control unit 132 makes the phase of the light emitted from each antenna element 116 have a linear phase inclination according to the deflection angle α along the X axis, and the deflection angle α. The phase shifter 112 is controlled so that the time shifts in a predetermined pattern within a predetermined steering angle range. Here, the linear phase inclination according to the deflection angle α is expressed by the equation (12) as the phase shift amount generated in each optical path (each channel) from the optical input end of the optical branching device 110 to the output end of each antenna element 116. ) Can be implemented by setting each phase shifter 122 so that
Figure JPOXMLDOC01-appb-M000012
 ここで、qは、各チャネルに対応するアンテナエレメント116のそれぞれに対し、当該アンテナエレメント116のX軸における位置に沿って端から順に付したインデックスであり、q=-Q、…、-1、0、1、…、Qである。 Here, q is an index attached to each of the antenna elements 116 corresponding to each channel in order from the end along the position of the antenna element 116 on the X axis, and q=−Q,..., −1, 0, 1,..., Q.
 また、制御デバイス134は、ステアリング制御ユニット132に指示して、RxOPA104のメインローブがTxOPA102のメインローブと同じ偏向角αを有するように、位相シフタ122を制御する。具体的には、ステアリング制御ユニット132は、各アンテナエレメント126の光受信端から光結合器120の光出力端までの各光経路(各チャネル)に発生する位相シフト量が式(13)に従うように各位相シフタ122を設定する。
Figure JPOXMLDOC01-appb-M000013
The control device 134 also instructs the steering control unit 132 to control the phase shifter 122 so that the main lobe of the RxOPA 104 has the same deflection angle α as the main lobe of the TxOPA 102. Specifically, the steering control unit 132 causes the phase shift amount generated in each optical path (each channel) from the optical receiving end of each antenna element 126 to the optical output end of the optical coupler 120 to follow the equation (13). Each phase shifter 122 is set to.
Figure JPOXMLDOC01-appb-M000013
 ここで、sは、各チャネルに対応するアンテナエレメント126のそれぞれに対し、当該アンテナエレメント126のX軸における位置に沿って端から順に付したインデックスであり、q=-S、…、-1、0、1、…、Sである。式(12)、(13)より、同じインデックス値uを持つアンテナエレメント116及び126のそれぞれに対応する各チャネルにおいて発生させるべき位相φT(u)及びφR(u)は、式(14)を満たす。
Figure JPOXMLDOC01-appb-M000014
Here, s is an index which is sequentially attached to each of the antenna elements 126 corresponding to the respective channels from the end along the position of the antenna element 126 on the X axis, and q=−S,..., −1, 0, 1,..., S. From equations (12) and (13), the phases φ T (u) and φ R (u) to be generated in each channel corresponding to the antenna elements 116 and 126 having the same index value u are calculated by equation (14). Meet
Figure JPOXMLDOC01-appb-M000014
 すなわち、RxOPA104の各チャネルに発生させる位相シフトは、TxOPA102の各チャネルに発生させる位相シフトのpR/pT倍とする必要がある。 That is, the phase shift generated in each channel of the RxOPA 104 needs to be p R /p T times the phase shift generated in each channel of the TxOPA 102.
 制御デバイス134は、さらに、上記のようにTxOPA102及びRxOPA104のメインローブを同じ方向に制御しつつ、光源106から出力されTxOPA102からメインローブとして送出された光パルスが、RxOPA104のメインローブ方向から受信されるまでの時間を計測し、当該メインローブ方向に存在する物体までの距離を算出する。これにより、制御デバイス134は、例えばTxOPA102のメインローブのビームステアリング範囲内の空間マッピング用データを生成し得る。 The control device 134 further controls the main lobes of the TxOPA 102 and the RxOPA 104 in the same direction as described above, and the optical pulse output from the light source 106 and transmitted from the TxOPA 102 as the main lobe is received from the main lobe direction of the RxOPA 104. The time to reach the object is measured, and the distance to the object existing in the main lobe direction is calculated. Thereby, the control device 134 can generate data for spatial mapping within the beam steering range of the main lobe of the TxOPA 102, for example.
 なお、本実施形態では、TxOPA102のアンテナユニット118の配列ピッチpTと、RxOPA104のアンテナユニット128の配列ピッチpRとが、式(6)の関係を有するよう構成されるものとしたが、これには限られない。例えば、配列ピッチpTとpRとが単に互いに異なる値を有するものとしても、上記と同様に、TxOPA102とRxOPA104とでサイドローブの方向を異ならせて、TxOPA102のメインローブのステアリング角の許容範囲を拡大することができる。 In the present embodiment, the arrangement pitch p T of the antenna units 118 of the TxOPA 102 and the arrangement pitch p R of the antenna units 128 of the RxOPA 104 are configured to have the relationship of Expression (6). Not limited to For example, even when the array pitches p T and p R simply have different values, the side lobe directions of the TxOPA 102 and the RxOPA 104 are made different, and the allowable range of the steering angle of the main lobe of the TxOPA 102 is the same as above. Can be expanded.
 また、アンテナユニット118の実際の配列ピッチpT及び又はアンテナユニット128の実際の配列ピッチpRが式(6)を見たさなくても、例えばTxOPA102のアンテナエレメント116のビーム出射部分及び又はRxOPA104のアンテナエレメント126のビーム到来部分にレンズ等の像変換光学系を構成する光学部品を配置することで、それら光学部品を介してTxOPA102から出射される回折光から換算される実質的な配列ピッチpTe、及び又はそれら光学部品を介してRxOPA104が受信する光の受信感度から換算される実質的な配列ピッチpReが、互いに異なっていれば(例えば式(6)を満たしていれば)、上記と同様に、TxOPA102のメインローブのステアリング角の許容範囲を拡大することができる。 Further, even if the actual arrangement pitch p T of the antenna units 118 and/or the actual arrangement pitch p R of the antenna units 128 is not seen in the formula (6), for example, the beam emitting portion of the antenna element 116 of the TxOPA 102 and/or the RxOPA 104. By arranging optical components such as a lens, which form the image conversion optical system, at the beam arrival portion of the antenna element 126, the substantial array pitch p converted from the diffracted light emitted from the TxOPA 102 via these optical components. If the substantial array pitch p Re calculated from the reception sensitivity of the light received by the RxOPA 104 via Te and/or these optical components is different from each other (for example, if Expression (6) is satisfied), Similarly, the allowable range of the steering angle of the main lobe of the TxOPA 102 can be expanded.
 言い換えれば、TxOPA102が空間に送出する隣接する回折光の方向が互いに成す第1の角度は、TxOPA102の回折光が像変換光学系を構成する光学部品を介して空間へ送出される場合には、当該光学部品を介して空間へ送出された隣接する回折光の間の角度で定義される。また、RxOPA104における隣接する極大感度方向が互いに成す第2の角度は、RxOPA104が像変換光学系を構成する光学部品を介して空間から光を受信する場合には、当該光学部品を通過する前の上記空間における隣接する極大感度方向が互いに成す角度として定義される。そして、上述したのと同様に、上記第1の角度と上記第2の角度とが互いに異なる値となるように(例えば、上記第1の角度と上記第2の角度との比が互いに素な自然数の比となるように)設定されていれば、上述したのと同様の原理によりTxOPA102のメインローブのステアリング角の許容範囲を拡大することができる。 In other words, the first angle formed by the directions of the adjacent diffracted light beams that the TxOPA 102 sends to the space is, when the diffracted light beams of the TxOPA 102 are sent to the space through the optical components forming the image conversion optical system, It is defined by the angle between adjacent diffracted lights that are sent out into space through the optical component. Further, the second angle formed by the adjacent maximal sensitivity directions in the RxOPA 104 is the same as that before passing through the optical component when the RxOPA 104 receives light from the space via the optical component that constitutes the image conversion optical system. It is defined as an angle formed by adjacent maximal sensitivity directions in the space. Then, similarly to the above, the first angle and the second angle are set to different values (for example, the ratio between the first angle and the second angle is relatively prime). If it is set to be a ratio of natural numbers), the allowable range of the steering angle of the main lobe of the TxOPA 102 can be expanded by the same principle as described above.
<第2実施形態>
 次に、本発明の第2の実施形態に係るライダー装置について説明する。
 図3は、本発明の第2の実施形態に係るライダー装置300の構成を示す図である。図3において、図1に示す第1の実施形態に係るライダー装置100と同じ構成要素については、図1に示す符号と同じ符号を用いるものとし、上述したライダー装置100についての説明を援用するものとする。
<Second Embodiment>
Next, a rider device according to a second embodiment of the present invention will be described.
FIG. 3 is a diagram showing a configuration of a rider device 300 according to the second embodiment of the present invention. In FIG. 3, the same components as those of the rider device 100 according to the first embodiment shown in FIG. 1 are denoted by the same reference symbols as those of FIG. 1, and the description of the rider device 100 described above is cited. And
 ライダー装置300は、ライダー装置100と同様の構成を有するが、TxOPA102のアンテナユニット118の光送出側に、像変換光学系を構成する光学ユニット346が配されている点が異なる。本実施形態における光学ユニット346が構成する像変換光学系は、例えば焦点距離f1及びf2をそれぞれ有する2つの凸レンズであるレンズ342及び344で構成された像倍率K1をもつ2枚レンズ系で構成されている。 The lidar device 300 has the same configuration as the lidar device 100, except that an optical unit 346 forming an image conversion optical system is arranged on the light transmission side of the antenna unit 118 of the TxOPA 102. The image conversion optical system configured by the optical unit 346 in the present embodiment is, for example, a two-lens system having an image magnification K 1 configured of two convex lenses 342 and 344 having focal lengths f 1 and f 2 , respectively. It is composed of.
 上記の構成を有するライダー装置300は、TxOPA102の光送出側に像倍率K1を有する光学ユニット346を備えるため、TxOPA102は、実質的には、レンズ344から図示右側へ距離f2の位置にK1倍の配列ピッチK1・pTで配列されたアンテナエレメント316を備えたOPAとして機能する。このため、光学ユニット346、TxOPA102、及びRxOPA104を、K1・pT≠pRとなるように構成することで、第1の実施形態に係るライダー装置100と同様に、TxOPA102が空間に送出する隣接する回折光が互いに成す第1の角度と、RxOPA104における当該空間での隣接する極大感度方向が互いに成す第2の角度とを異ならせて、pTを縮小することなく、TxOPA102のメインローブのステアリング角度の許容範囲を拡大することができる。 Since the lidar device 300 having the above-described configuration includes the optical unit 346 having the image magnification K 1 on the light transmission side of the TxOPA 102, the TxOPA 102 is substantially located at the distance f 2 from the lens 344 to the right side in the drawing. It functions as an OPA having the antenna elements 316 arranged at a 1- times arrangement pitch K 1 ·p T. Therefore, by configuring the optical unit 346, the TxOPA 102, and the RxOPA 104 so that K 1 ·p T ≠p R , the TxOPA 102 sends the light to the space like the lidar device 100 according to the first embodiment. The first angle formed by the adjacent diffracted lights and the second angle formed by the adjacent maximum sensitivity directions in the space in the RxOPA 104 are made different from each other to reduce p T without reducing the main lobe of the TxOPA 102. The allowable range of the steering angle can be expanded.
 例えば、本実施形態では、像倍率K1、及び配列ピッチpT、pRが式(15)を満たすように、光学ユニット346、TxOPA102、及びRxOPA104が構成されている。
Figure JPOXMLDOC01-appb-M000015
For example, in this embodiment, the optical unit 346, the TxOPA 102, and the RxOPA 104 are configured so that the image magnification K 1 and the array pitches p T and p R satisfy the expression (15).
Figure JPOXMLDOC01-appb-M000015
 ここで、式(6)と同様に、N2/M2は既約関数であり、M2、N2は互いに素な自然数である。像倍率K1は、光学ユニット346を構成する2つのレンズ342、344の焦点距離f1、f2を用いて、式(16)により与えられる。
Figure JPOXMLDOC01-appb-M000016
Here, similarly to the equation (6), N 2 /M 2 is an irreducible function, and M 2 and N 2 are natural numbers that are relatively prime. The image magnification K 1 is given by the equation (16) using the focal lengths f 1 and f 2 of the two lenses 342 and 344 forming the optical unit 346.
Figure JPOXMLDOC01-appb-M000016
 このとき、TxOPA102から光学ユニット346を通って空間へ送出される隣接する回折光の偏向角の正弦値の差ΔωT2は、式(17)により与えられる。
Figure JPOXMLDOC01-appb-M000017
At this time, the difference Δω T2 between the sine values of the deflection angles of the adjacent diffracted lights sent from the TxOPA 102 to the space through the optical unit 346 is given by the equation (17).
Figure JPOXMLDOC01-appb-M000017
 なお、RxOPA104にはレンズ光学系は配されていないので、RxOPA104における隣接する回折光(すなわち、隣接する受信感度極大方向)の偏向角の正弦値の差ΔωRは、ライダー装置100と同様に式(8)で与えられる。 Since no lens optical system is arranged in the RxOPA 104, the difference Δω R in the sine values of the deflection angles of the adjacent diffracted lights (that is, the adjacent receiving sensitivity maximum directions) in the RxOPA 104 is expressed by the same formula as in the lidar device 100. It is given in (8).
 上記の式(15)、(17)、及び式(8)より、式(18)を得る。
Figure JPOXMLDOC01-appb-M000018
From the above equations (15), (17), and equation (8), equation (18) is obtained.
Figure JPOXMLDOC01-appb-M000018
 すなわち、光学ユニット346から空間に送出されるTxOPA102の回折光のうち、TxOPA102のメインローブから数えてM2番目のサイドローブの方向と、RxOPA104におけるメインローブから数えてN2番目のサイドローブの方向と、が一致することがわかる。 That is, of the diffracted light of the TxOPA 102 transmitted from the optical unit 346 to the space, the direction of the M 2 -th sidelobe counted from the main lobe of the TxOPA 102 and the direction of the N 2 -th sidelobe counted from the main lobe of the RxOPA 104. You can see that and match.
 したがって、光学ユニット346から空間へ送出するメインローブのステアリング角αの許容可変範囲-αmax~αmaxのαmaxは、式(19)で与えられる。
Figure JPOXMLDOC01-appb-M000019
Accordingly, alpha max allowable variable range -α max ~ α max of the steering angle alpha of the main lobe to be sent from the optical unit 346 to space is given by Equation (19).
Figure JPOXMLDOC01-appb-M000019
 すなわち、ライダー装置300においても、ライダー装置100と同様に、TxOPA102のアンテナエレメント116の配列ピッチpTを縮小させることなく、TxOPA102から出力され空間に送出されるメインローブのステアリング角度の許容範囲を拡大することができる。特に、ライダー装置300においては、TxOPA102のアンテナエレメント116の、光学ユニット346の光出力側から見た実質的な配列ピッチは、TxOPA102そのものの配列ピッチpTと、光学ユニット346の像倍率K1と、の積K1Tで与えられるので、ライダー装置100に比べて更に設計自由度を向上することができる。 That is, in the rider device 300 as well as in the rider device 100, the allowable range of the steering angle of the main lobe output from the TxOPA 102 and transmitted to the space is expanded without reducing the array pitch p T of the antenna elements 116 of the TxOPA 102. can do. Particularly, in the lidar device 300, the substantial array pitch of the antenna elements 116 of the TxOPA 102 viewed from the light output side of the optical unit 346 is the array pitch p T of the TxOPA 102 itself and the image magnification K 1 of the optical unit 346. , K 1 p T , the degree of freedom in design can be further improved as compared with the rider device 100.
 具体的には、本実施形態に係るライダー装置300は、以下のように動作する。なお、以下の説明においては、簡単のため、図示X軸方向にビームステアリングが行われるものとする。ただし、当業者において理解されるように、以下に示すX軸方向のビームステアリング動作に合わせて、当該X軸方向のビームステアリング動作と同様の図示Y軸方向のビームステアリング動作を行うことにより、2次元のビームステアリング動作を行うことができる。 Specifically, the rider device 300 according to the present embodiment operates as follows. In the following description, for simplicity, beam steering is performed in the X-axis direction in the figure. However, as will be understood by those skilled in the art, by performing the beam steering operation in the illustrated Y-axis direction similar to the beam steering operation in the X-axis direction in accordance with the beam steering operation in the X-axis direction described below, A dimensional beam steering operation can be performed.
 本実施形態に係るライダー装置300は、上述したライダー装置100と同様に動作するが、ステアリング制御ユニット332の動作が、ステアリング制御ユニット132と若干異なる。ステアリング制御ユニット332は、X方向について、TxOPA102から空間へ送出するメインローブの偏向角α(ステアリング角α)を変化させてビームステアリングを行う。より具体的には、ステアリング制御ユニット332は、像変換により形成された仮想的なアンテナエレメント316から出射される光の位相がX軸に沿って上記偏向角αに応じた線形位相傾斜をもつように、且つ、当該偏向角αが所定のステアリング角度範囲内において所定のパターンで時間的に変化するように、位相シフタ112を制御する。ここで、上記偏向角αに応じた線形位相傾斜は、光分岐器110の光入力端から各アンテナエレメント116の出力端までの各光経路(各チャネル)に発生する位相シフト量が式(20)に従うように各位相シフタ122を設定することで実現される。
Figure JPOXMLDOC01-appb-M000020
The rider device 300 according to the present embodiment operates in the same manner as the rider device 100 described above, but the operation of the steering control unit 332 is slightly different from that of the steering control unit 132. The steering control unit 332 performs beam steering by changing the deflection angle α (steering angle α) of the main lobe sent from the TxOPA 102 to the space in the X direction. More specifically, the steering control unit 332 causes the phase of the light emitted from the virtual antenna element 316 formed by image conversion to have a linear phase inclination according to the deflection angle α along the X axis. In addition, the phase shifter 112 is controlled so that the deflection angle α changes with time in a predetermined pattern within a predetermined steering angle range. Here, the linear phase tilt corresponding to the deflection angle α is expressed by the equation (20) as the phase shift amount generated in each optical path (each channel) from the optical input end of the optical branching device 110 to the output end of each antenna element 116. It is realized by setting each phase shifter 122 so as to comply with (4).
Figure JPOXMLDOC01-appb-M000020
 ここで、qは、各チャネルに対応するアンテナエレメント116のそれぞれに対し、当該アンテナエレメント116のX軸における位置に沿って端から順に付したインデックスであり、q=-Q、…、-1、0、1、…、Qである。 Here, q is an index attached to each of the antenna elements 116 corresponding to each channel in order from the end along the position of the antenna element 116 on the X axis, and q=−Q,..., −1, 0, 1,..., Q.
 なお、RxOPA104のメインローブが上記と同様の偏向角αを有するように位相シフタ122によりRxOPA104の各チャネルに発生させる位相シフト量は、ライダー装置100の場合と同様に、式(13)で与えられる。 The phase shift amount generated in each channel of the RxOPA 104 by the phase shifter 122 so that the main lobe of the RxOPA 104 has the same deflection angle α as described above is given by the equation (13) as in the case of the rider device 100. ..
 式(14)と同様に、式(13)、(20)より、同じインデックス値uを持つアンテナエレメント116及び126のそれぞれに対応する各チャネルにおいて発生させるべき位相φT2(u)及びφR(u)は、式(21)を満たす。
Figure JPOXMLDOC01-appb-M000021
Similar to Expression (14), from Expressions (13) and (20), the phases φ T2 (u) and φ R (u) to be generated in each channel corresponding to the antenna elements 116 and 126 having the same index value u, respectively. u) satisfies the equation (21).
Figure JPOXMLDOC01-appb-M000021
 すなわち、RxOPA104の各チャネルに発生させる位相シフトは、TxOPA102の各チャネルに発生させる位相シフトのpR/(K1・pT)倍とする必要がある。 That is, the phase shift generated in each channel of the RxOPA 104 needs to be p R /(K 1 ·p T ) times the phase shift generated in each channel of the TxOPA 102.
 なお、本実施形態においては、ライダー装置300は、互いに異なる配列ピッチpT及びpRを有するTxOPA102及びRxOPA104を用いて構成されるものとしたが、これには限られない。ライダー装置300においては、式(15)が満たされる限りにおいて、配列ピッチpT及びpRが同じ値であってもよい。すなわち、ライダー装置300は、TxOPA102及びRxOPA104に代えて、それぞれのアンテナエレメントの配列間隔が同じであるTxOPA及びRxOPAを用いて構成することもできる。 In the present embodiment, the rider device 300 is configured using the TxOPA 102 and the RxOPA 104 having the array pitches p T and p R different from each other, but the present invention is not limited to this. In the rider device 300, the array pitches p T and p R may have the same value as long as the expression (15) is satisfied. That is, the lidar device 300 may be configured by using TxOPA and RxOPA in which the antenna elements are arranged at the same interval, instead of the TxOPA 102 and RxOPA104.
<第3実施形態>
 次に、本発明の第3の実施形態に係るライダー装置について説明する。
 上述した第2の実施形態に係るライダー装置300では、2枚レンズ系で構成される像変換光学系である光学ユニット346によりTxOPA102のアンテナエレメント116の実質的な配列ピッチを拡大している。これに対し、第3の実施形態では、像変換光学系としてアナモルフィックプリズムペアを用いてアンテナエレメント116の実質的な配列ピッチを一次元方向に拡大する。
<Third Embodiment>
Next, a rider device according to a third embodiment of the present invention will be described.
In the rider device 300 according to the second embodiment described above, the substantial array pitch of the antenna elements 116 of the TxOPA 102 is expanded by the optical unit 346 that is the image conversion optical system configured by the two-lens system. On the other hand, in the third embodiment, an anamorphic prism pair is used as the image conversion optical system to expand the substantial array pitch of the antenna elements 116 in the one-dimensional direction.
 図4は、本発明の第3の実施形態に係るライダー装置400の構成を示す図である。図4において、図1に示す第1の実施形態に係るライダー装置100と同じ構成要素については、図1に示す符号と同じ符号を用いるものとし、上述したライダー装置100についての説明を援用するものとする。 FIG. 4 is a diagram showing a configuration of a rider device 400 according to the third embodiment of the present invention. 4, the same components as those of the rider device 100 according to the first embodiment shown in FIG. 1 are assigned the same reference numerals as those shown in FIG. 1, and the description of the rider device 100 described above is cited. And
 ライダー装置400は、ライダー装置100と同様の構成を有するが、TxOPA102のアンテナユニット118の光送出側に、2つのプリズム442、444から成るアナモルフィックプリズムペアで構成された光学ユニット446が配されている点が異なる。 The lidar device 400 has the same configuration as the lidar device 100, but an optical unit 446 composed of an anamorphic prism pair composed of two prisms 442 and 444 is arranged on the light transmission side of the antenna unit 118 of the TxOPA 102. Is different.
 本実施形態では、2つのプリズム442、444から成るアナモルフィックプリズムペアは、図示X方向において像を拡大するよう構成されている。したがって、図示Y方向におけるTxOPA102のメインローブのビームステアリングは、図1に示す第1の実施形態に係るライダー装置100と同様である。 In the present embodiment, the anamorphic prism pair including the two prisms 442 and 444 is configured to magnify the image in the X direction shown in the figure. Therefore, the beam steering of the main lobe of the TxOPA 102 in the Y direction in the drawing is the same as that of the rider device 100 according to the first embodiment shown in FIG.
 上記の構成を有するライダー装置400は、TxOPA102の光送出側に、図示X方向において像倍率K2を有する光学ユニット446を備えるため、TxOPA102は、実質的には、光出力側のプリズム444の光出力面(図示右側面)から図示左側へ距離Dの位置にK2倍の配列ピッチK2・pTで配列されたアンテナエレメント416を備えたOPAとして機能する。このため、光学ユニット446、TxOPA102、及びRxOPA104を、K2・pT≠pRとなるように構成することで、X方向に関して、第1の実施形態に係るライダー装置100と同様に、第1の実施形態に係るライダー装置100と同様に、TxOPA102が空間に送出する隣接する回折光が互いに成す第1の角度と、RxOPA104における当該空間での隣接する極大感度方向は互いに成す第2の角度とを異ならせて、pTを縮小することなく、TxOPA102のメインローブのステアリング角度の許容範囲を拡大することができる。なお、Y方向に関しては、ライダー装置400はライダー装置100と同様に動作し、ライダー装置100と同様にpTを縮小することなくTxOPA102のメインローブのステアリング角度の許容範囲が拡大される。 Since the lidar device 400 having the above configuration is provided with the optical unit 446 having the image magnification K 2 in the X direction in the drawing on the light transmission side of the TxOPA 102, the TxOPA 102 is substantially the same as the light output side of the prism 444. It functions as an OPA having antenna elements 416 arranged at a distance D from the output surface (right side in the drawing) to the left side in the drawing at an array pitch K 2 ·p T of K 2 times. Therefore, by configuring the optical unit 446, the TxOPA 102, and the RxOPA 104 so that K 2 ·p T ≠p R , in the X direction, similarly to the rider device 100 according to the first embodiment, the first unit. Similar to the lidar device 100 according to the embodiment of the first embodiment, a first angle formed by adjacent diffracted light beams transmitted by the TxOPA 102 to a space and a second angle formed by adjacent maximum sensitivity directions in the space on the RxOPA 104 are formed by a second angle. Can be made different, and the allowable range of the steering angle of the main lobe of the TxOPA 102 can be expanded without reducing p T. In the Y direction, the rider device 400 operates similarly to the rider device 100, and the allowable range of the steering angle of the main lobe of the TxOPA 102 is expanded without reducing pT as in the rider device 100.
 例えば、本実施形態では、像倍率K2、配列ピッチpT、及びpRが式(22)を満たすように、光学ユニット446、TxOPA102、及びRxOPA104が構成されている。
Figure JPOXMLDOC01-appb-M000022
For example, in this embodiment, the optical unit 446, the TxOPA 102, and the RxOPA 104 are configured so that the image magnification K 2 , the array pitch p T , and p R satisfy the expression (22).
Figure JPOXMLDOC01-appb-M000022
 ここで、上述したように、光学ユニット446はX方向においてのみ像を拡大することから、ライダー装置400においては、図示Y方向におけるTxOPA102のメインローブのビームステアリングは、図1に示す第1の実施形態に係るライダー装置100と同様である。したがって、以下では、図示X方向のビームステアリングについて説明するものとする。 Here, as described above, since the optical unit 446 magnifies the image only in the X direction, in the rider apparatus 400, the beam steering of the main lobe of the TxOPA 102 in the Y direction in the drawing is performed in the first embodiment shown in FIG. It is similar to the rider device 100 according to the embodiment. Therefore, the beam steering in the X direction in the figure will be described below.
 上記の式(22)において、N3/M3は既約関数であり、M3、N3は互いに素な自然数である。このとき、TxOPA102から光学ユニット446を通って空間へ送出される隣接する回折光の偏向角の正弦値の差ΔωT3は、式(23)により与えられる。
Figure JPOXMLDOC01-appb-M000023
In the above formula (22), N 3 /M 3 is an irreducible function, and M 3 and N 3 are natural numbers that are relatively prime. At this time, the difference Δω T3 between the sine values of the deflection angles of the adjacent diffracted lights sent from the TxOPA 102 to the space through the optical unit 446 is given by the equation (23).
Figure JPOXMLDOC01-appb-M000023
 なお、RxOPA104にはレンズ光学系は配されていないので、RxOPA104における隣接する回折光(すなわち、隣接する受信感度極大方向)の偏向角の正弦値の差でΔωRは、ライダー装置100と同様に式(8)で与えられる。 Since the RxOPA 104 is not provided with a lens optical system, Δω R is the difference between the sine values of the deflection angles of the adjacent diffracted lights (that is, the adjacent receiving sensitivity maximum directions) in the RxOPA 104, and Δω R is the same as that of the lidar device 100. It is given by equation (8).
 上記の式(22)、(23)、及び式(8)より、式(24)を得る。
Figure JPOXMLDOC01-appb-M000024
From the above equations (22), (23) and equation (8), equation (24) is obtained.
Figure JPOXMLDOC01-appb-M000024
 すなわち、光学ユニット446から空間に送出されるTxOPA102の回折光のうち、TxOPA102のメインローブから数えてM3番目のサイドローブの方向と、RxOPA104におけるメインローブから数えてN3番目のサイドローブの方向と、が一致することがわかる。 That is, in the diffracted light of the TxOPA 102 transmitted from the optical unit 446 to the space, the direction of the M 3 sidelobe counted from the main lobe of the TxOPA 102 and the direction of the N 3th sidelobe counted from the main lobe of the RxOPA 104. You can see that and match.
 したがって、光学ユニット446から空間へ送出するメインローブのステアリング角αの許容可変範囲-αmax~αmaxのαmaxは、式(25)で与えられる。
Figure JPOXMLDOC01-appb-M000025
Accordingly, alpha max allowable variable range -α max ~ α max of the steering angle alpha of the main lobe to be sent from the optical unit 446 to space is given by equation (25).
Figure JPOXMLDOC01-appb-M000025
 すなわち、ライダー装置400のX方向のビームステアリング動作においても、ライダー装置100と同様に、TxOPA102のアンテナエレメント116の配列ピッチpTを縮小させることなく、TxOPA102から出力され空間に送出されるメインローブのステアリング角度の許容範囲を拡大することができる。特に、ライダー装置400においては、TxOPA102のアンテナエレメント116の、光学ユニット446の光出力側から見たX方向における実質的な配列ピッチは、TxOPA102そのものの配列ピッチpTと、光学ユニット446の像倍率K2と、の積K2Tで与えられるので、ライダー装置100に比べて更に設計自由度を向上することができる。 That is, also in the beam steering operation of the rider apparatus 400 in the X direction, similarly to the rider apparatus 100, the main lobe output from the TxOPA 102 and transmitted to the space is output without reducing the array pitch p T of the antenna elements 116 of the TxOPA 102. The allowable range of the steering angle can be expanded. Particularly in the lidar device 400, the substantial array pitch of the antenna elements 116 of the TxOPA 102 in the X direction viewed from the light output side of the optical unit 446 is the array pitch p T of the TxOPA 102 itself and the image magnification of the optical unit 446. Since it is given by the product of K 2 and K 2 p T , the degree of freedom in design can be further improved as compared with the rider device 100.
 なお、像倍率K2は、従来技術に従い、光学ユニット446においてアナモルフィックプリズムペアを構成するプリズム442及び444の幾何形状及び配置から決定され得る。同様に、光学ユニット446があることにより形成される実質的なアンテナエレメント416の位置を規定する距離Dは、従来技術に従い、像倍率K2及びアンテナエレメント116からプリズム442までの距離等から決定され得る。 It should be noted that the image magnification K 2 can be determined from the geometric shape and arrangement of the prisms 442 and 444 forming the anamorphic prism pair in the optical unit 446 according to the conventional technique. Similarly, the distance D that defines the position of the substantial antenna element 416 formed by the presence of the optical unit 446 is determined from the image magnification K 2 and the distance from the antenna element 116 to the prism 442 according to the related art. obtain.
 本実施形態に係るライダー装置400は、具体的には、以下のように動作する。
 ライダー装置400は、上述したライダー装置100と同様に動作するが、ステアリング制御ユニット432の動作が、ステアリング制御ユニット132と異なる。ステアリング制御ユニット432は、X方向について、ステアリング制御ユニット132と同様に、TxOPA102から光学ユニット446を介して空間へ送出するメインローブのX方向の偏向角α(ステアリング角α)を変化させるため、各アンテナエレメント116から光学ユニット446を介して出射される光の位相がX軸に沿って上記偏向角αに応じた線形位相傾斜をもつように、且つ、当該偏向角αが所定のステアリング角度範囲内において所定のパターンで時間的に変化するように、位相シフタ112を制御する。ここで、上記偏向角αに応じた線形位相傾斜は、光分岐器110の光入力端から各アンテナエレメント116の出力端までの各光経路(各チャネル)に発生する位相シフト量が式(26)に従うように各位相シフタ122を設定することで実現される。
Figure JPOXMLDOC01-appb-M000026
The rider device 400 according to the present embodiment specifically operates as follows.
The rider device 400 operates in the same manner as the rider device 100 described above, but the operation of the steering control unit 432 is different from that of the steering control unit 132. As with the steering control unit 132, the steering control unit 432 changes the deflection angle α (steering angle α) in the X direction of the main lobe sent from the TxOPA 102 to the space via the optical unit 446 in the same manner as the steering control unit 132. The phase of the light emitted from the antenna element 116 via the optical unit 446 has a linear phase inclination according to the deflection angle α along the X axis, and the deflection angle α is within a predetermined steering angle range. In, the phase shifter 112 is controlled so that it changes with time in a predetermined pattern. Here, the linear phase tilt corresponding to the deflection angle α is expressed by the equation (26) as the phase shift amount generated in each optical path (each channel) from the optical input end of the optical branching device 110 to the output end of each antenna element 116. It is realized by setting each phase shifter 122 so as to comply with (4).
Figure JPOXMLDOC01-appb-M000026
 ここで、qは、アンテナユニット118を構成する各アンテナエレメント116に対し、当該アンテナエレメント116のX軸における位置に沿って端から順に付したインデックスであり、q=-Q、…、-1、0、1、…、Qである。 Here, q is an index attached to each antenna element 116 that constitutes the antenna unit 118 in order from the end along the position of the antenna element 116 on the X axis, and q=−Q,..., −1, 0, 1,..., Q.
 なお、RxOPA104のメインローブが偏向角αを有するように位相シフタ122により発生させる線形位相傾斜は、ライダー装置100の場合と同様に、式(13)で与えられる。 The linear phase tilt generated by the phase shifter 122 so that the main lobe of the RxOPA 104 has the deflection angle α is given by the equation (13) as in the case of the lidar device 100.
 式(14)と同様に、式(13)、(26)より、同じインデックス値uを持つアンテナエレメント116及び126のそれぞれに対応する各チャネルに発生させるべき位相φT3(u)及びφR(u)は、式(27)を満たす。
Figure JPOXMLDOC01-appb-M000027
Similar to equation (14), from equations (13) and (26), the phases φ T3 (u) and φ R (u) to be generated in each channel corresponding to the antenna elements 116 and 126 having the same index value u, respectively. u) satisfies the equation (27).
Figure JPOXMLDOC01-appb-M000027
 すなわち、RxOPA104の各チャネルに発生させる位相シフトは、TxOPA102の各チャネルに発生させる位相シフトのpR/(K2・pT)倍とする必要がある。 That is, the phase shift generated in each channel of the RxOPA 104 needs to be p R /(K 2 ·p T ) times the phase shift generated in each channel of the TxOPA 102.
 なお、本実施形態においては、ライダー装置400は、互いに異なる配列ピッチpT及びpRを有するTxOPA102及びRxOPA104を用いて構成されるものとしたが、これには限られない。ライダー装置400においては、式(22)が満たされる限りにおいて、配列ピッチpT及びpRが同じ値であってもよい。すなわち、ライダー装置300は、TxOPA102及びRxOPA104に代えて、それぞれのアンテナエレメントの配列間隔が同じであるTxOPA及びRxOPAを用いて構成することもできる。 In the present embodiment, the rider device 400 is configured using the TxOPA 102 and the RxOPA 104 having the array pitches p T and p R different from each other, but the present invention is not limited to this. In the rider device 400, the array pitches p T and p R may have the same value as long as the expression (22) is satisfied. That is, the lidar device 300 may be configured by using TxOPA and RxOPA in which the antenna elements are arranged at the same interval, instead of the TxOPA 102 and RxOPA104.
 なお、本発明は上記各実施形態の構成に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。 The present invention is not limited to the configurations of the above-described embodiments, and can be implemented in various modes without departing from the spirit of the invention.
 例えば、上記各実施形態では、TxOPA102のアンテナエレメント116及びRxOPA104のアンテナエレメント126は、XY平面内にX方向及びY方向に同じ配列ピッチpT及びpRで配列されるものとしたが、これには限られない。TxOPA102のアンテナエレメント116及びRxOPA104のアンテナエレメント126は、X方向とY方向の配列ピッチが異なるように構成されるものとしてもよい。 For example, in each of the above embodiments, the antenna element 116 of the TxOPA 102 and the antenna element 126 of the RxOPA 104 are arranged in the XY plane at the same arrangement pitches p T and p R in the X and Y directions. Is not limited. The antenna element 116 of the TxOPA 102 and the antenna element 126 of the RxOPA 104 may be configured to have different array pitches in the X direction and the Y direction.
 この場合には、X方向及びY方向のそれぞれについて、TxOPA102が空間に送出する隣接する回折光が互いに成す第1の角度と、RxOPA104における当該空間での隣接する極大感度方向は互いに成す第2の角度とを異ならせることで、上記X方向及びY方向の配列ピッチを縮小することなく、TxOPA102のメインローブのX方向及びY方向におけるステアリング角度の許容範囲を共に拡大することができる。 In this case, in each of the X direction and the Y direction, the first angle formed by the adjacent diffracted lights transmitted by the TxOPA 102 to the space and the second maximum sensitivity direction formed by the adjacent RxOPA 104 in the space are formed by the second angle. By making the angle different, the allowable range of the steering angle in the X direction and the Y direction of the main lobe of the TxOPA 102 can be expanded together without reducing the arrangement pitch in the X direction and the Y direction.
 具体的には、TxOPA102の光出射部及びRxOPA104の光受信部に設けられ得る光学部品による像倍率を加味したTxOPA102及びRxOPA104の実質的なアンテナエレメントの配列ピッチが互いに異なるように(例えばそれらの比が互いに素な自然数で表されるように)設定することで、TxOPA102のメインローブのステアリング角度の許容範囲を拡大することができる。 Specifically, the array pitches of the antenna elements of the TxOPA 102 and the RxOPA 104 are different from each other (for example, their ratio is different from each other, taking into consideration the image magnification of the optical components that can be provided in the light emitting portion of the TxOPA 102 and the light receiving portion of the RxOPA 104). Are set so that they are represented by mutually prime natural numbers), the allowable range of the steering angle of the main lobe of the TxOPA 102 can be expanded.
 また、上記各実施形態では、TxOPA102及びRxOPA104が、簡単のため相反性を有するOPAを用いて構成されるものとして説明したが、これには限られない。例えば、RxOPA104は、アンテナエレメント126から光結合器120の光出力端まで一方向に光が伝搬するものであってもよい。この場合でも、各アンテナエレメント126から光結合器120の光出力端までの各チャネルについて、仮想的に逆方向に光を伝搬させた場合の仮想的な回折光を考慮して極大感度方向を定義し、上述した各実施形態と同様の構成を用いてビームステアリングの範囲を拡大することができる。 Also, in each of the above embodiments, the TxOPA 102 and the RxOPA 104 are described as being configured using OPA having reciprocity for the sake of simplicity, but the present invention is not limited to this. For example, the RxOPA 104 may be one in which light propagates in one direction from the antenna element 126 to the optical output end of the optical coupler 120. Even in this case, the maximum sensitivity direction is defined for each channel from each antenna element 126 to the optical output end of the optical coupler 120 in consideration of virtual diffracted light when light is virtually propagated in the opposite direction. However, the range of beam steering can be expanded by using the same configuration as each of the above-described embodiments.
 また、上記各実施形態では、TxOPA102及びRxOPA104は、一例として特許文献1に示されるようなOPA700を用いて構成されるものとしたが、これには限られない。他の例として、例えば、非特許文献1に開示されているようなOPA900を用いてTxOPA102及びRxOPA104を構成することもできる。具体的には、例えば、グレンティングベースのアンテナエレメントの延在方向を図1におけるY方向に合わせ、各アンテナエレメントが図1のX方向に配列されるようにして、TxOPA102及びRxOPA104を構成するものとすることができる。この場合には、TxOPA102及びRxOPA104における上記アンテナエレメントの配列ピッチをそれぞれpT及びpRとして、X方向のビームステアリングについて、上述した各実施形態と同様の構成によりビームステアリングの許容角度範囲を拡大することができる。 Further, in each of the above embodiments, the TxOPA 102 and the RxOPA 104 are configured by using the OPA 700 as disclosed in Patent Document 1, for example, but the present invention is not limited to this. As another example, for example, the TxOPA 102 and the RxOPA 104 can be configured using the OPA 900 disclosed in Non-Patent Document 1. Specifically, for example, the TxOPA 102 and the RxOPA 104 are configured by aligning the extending direction of the antenna elements of the blending base with the Y direction in FIG. 1 so that the antenna elements are arranged in the X direction of FIG. Can be In this case, the arrangement pitch of the antenna elements in the TxOPA 102 and the RxOPA 104 is set to p T and p R , respectively, and the beam steering in the X direction is expanded in the allowable angle range of the beam steering by the same configuration as that of each of the above-described embodiments. be able to.
 また、第2及び第3の実施形態においては、像変換光学系を構成する光学ユニット346及び446は、それぞれ1より大きい像倍率K1、K2を持つものとして図3及び図4が描かれているが、これには限られない。像倍率K1、K2は1より小さい値を持つものとしてもよい。また、像変換光学系は、少なくとも一次元方向において像変換を行う機能を有する限り、任意の光学系であるものとすることができる。 Further, in the second and third embodiments, FIGS. 3 and 4 are drawn assuming that the optical units 346 and 446 forming the image conversion optical system have image magnifications K 1 and K 2 that are larger than 1, respectively. However, it is not limited to this. The image magnifications K 1 and K 2 may have values smaller than 1. Further, the image conversion optical system can be any optical system as long as it has a function of performing image conversion in at least a one-dimensional direction.
 以上、説明したように、本発明の実施形態に係るライダー装置100等は、光フェーズドアレイにより構成された光送信器であるTxOPA102を備える。TxOPA102は、当該光フェーズドアレイを構成する複数の第1のアンテナエレメントであるアンテナエレメント116から出力される光により生成された回折光を空間へ送出する。また、ライダー装置100等は、光フェーズドアレイにより構成された光受信器であるRxOPA104を備える。RxOPA104は、空間から到来する光を、当該光フェーズドアレイを構成する複数の第2のアンテナエレメントであるアンテナエレメント126により受信する。そして、ライダー装置100等では、光受信器であるRxOPA104は、空間から到来する光の方向に関し、当該光の受信感度が極大となる極大感度方向を複数有する。また、ライダー装置100等では、光送信器であるTxOPA102が空間へ送出する隣接する回折光の方向が互いに成す第1の角度と、光受信器であるRxOPA104における隣接する上記極大感度方向が互いに成す第2の角度と、が互いに異なっている。 As described above, the lidar device 100 and the like according to the embodiment of the present invention includes the TxOPA 102 that is an optical transmitter configured by an optical phased array. The TxOPA 102 sends the diffracted light generated by the light output from the antenna element 116, which is the plurality of first antenna elements forming the optical phased array, to the space. Further, the lidar device 100 and the like include an RxOPA 104 which is an optical receiver including an optical phased array. The RxOPA 104 receives the light coming from the space by the antenna element 126 which is the plurality of second antenna elements forming the optical phased array. Then, in the lidar device 100 and the like, the RxOPA 104, which is an optical receiver, has a plurality of maximum sensitivity directions in which the reception sensitivity of the light is maximized with respect to the direction of the light coming from the space. In addition, in the lidar device 100 and the like, the first angle formed by the TxOPA 102, which is an optical transmitter, in the direction of adjacent diffracted light that is transmitted to the space, and the adjacent maximum sensitivity direction in the RxOPA 104, which is the optical receiver, form each other. The second angle is different from each other.
 この構成によれば、TxOPA102から空間に送出されるメインローブに隣接するサイドローブの反射戻り光は、RxOPA104においては抑圧されて出力されることとなる。このため、ライダー装置100等では、コストの増大を招くことなく、TxOPA102のアンテナエレメント116の配列ピッチpTで定まる隣接回折光間の角度間隔に起因するビームステアリング角度範囲の制限を克服して、より広いビームステアリング角度範囲を実現することができる。 According to this configuration, the reflected return light of the side lobe adjacent to the main lobe sent from the TxOPA 102 to the space is suppressed and output in the RxOPA 104. Therefore, the lidar device 100 and the like overcome the limitation of the beam steering angle range due to the angular interval between adjacent diffracted lights determined by the array pitch p T of the antenna elements 116 of the TxOPA 102 without increasing the cost, A wider beam steering angle range can be realized.
 また、ライダー装置100等は、TxOPA102を構成する光フェーズドアレイが備える第1の位相シフタである位相シフタ112と、RxOPA104を構成する光フェーズドアレイが備える第2の位相シフタである位相シフタ122と、を制御する位相シフト制御部であるステアリング制御ユニット132等を備える。そして、位相シフト制御部であるステアリング制御ユニット132等は、第1の位相シフタである位相シフタ112の位相シフト量を制御して光送信器であるTxOPA102が空間へ送出する回折光のメインローブの送出方向を変化させる。また、位相シフト制御部であるステアリング制御ユニット132等は、上記極大感度方向のうち最大感度を有する極大感度方向がTxOPA102の上記メインローブの送出方向と一致するように、第2の位相シフタである位相シフタ122の位相シフト量を制御する。 The lidar device 100 and the like include a phase shifter 112 that is a first phase shifter included in the optical phased array that configures the TxOPA 102, and a phase shifter 122 that is a second phase shifter included in the optical phased array that configures the RxOPA 104. A steering control unit 132 or the like, which is a phase shift control unit for controlling Then, the steering control unit 132 or the like which is the phase shift control unit controls the phase shift amount of the phase shifter 112 which is the first phase shifter to control the main lobe of the diffracted light which the TxOPA 102 which is the optical transmitter sends to the space. Change the sending direction. Further, the steering control unit 132 or the like, which is a phase shift control unit, is a second phase shifter so that the maximum sensitivity direction having the maximum sensitivity among the maximum sensitivity directions matches the sending direction of the main lobe of the TxOPA 102. The amount of phase shift of the phase shifter 122 is controlled.
 この構成によれば、TxOPA102のメインローブの送出方向から到来する反射戻り光に対するRxOPA104の受信感度を常に最大に維持することができる。 According to this configuration, the receiving sensitivity of the RxOPA 104 with respect to the reflected return light coming from the transmission direction of the main lobe of the TxOPA 102 can be always maintained at the maximum.
 また、ライダー装置100等では、第1のアンテナエレメントであるアンテナエレメント116の配列間隔pTと、第2のアンテナエレメントであるアンテナエレメント126の配列間隔pRとが互いに異なる値に設定されている。この構成によれば、TxOPA102が空間へ送出する隣接する回折光の方向が互いに成す第1の角度と、RxOPA104における隣接する上記極大感度方向が互いに成す第2の角度と、を容易に異なるものとすることができる。 Further, in the lidar device 100 and the like, the arrangement interval p T of the antenna elements 116 that are the first antenna elements and the arrangement interval p R of the antenna elements 126 that are the second antenna elements are set to different values. .. According to this configuration, the first angle formed by the adjacent diffracted light beams transmitted to the space by the TxOPA 102 and the second angle formed by the adjacent maximum sensitivity directions of the RxOPA 104 are easily different from each other. can do.
 また、ライダー装置100等では、上記第1の角度と上記第2の角度との比は、互いに素な自然数の比で表されるよう設定される。この構成によれば、TxOPA102のビームステアリングの許容角度範囲を、例えば式(11)で示されるように、上記自然数で定まる倍率で拡大することができる。 In addition, in the rider device 100 and the like, the ratio between the first angle and the second angle is set so as to be represented by a ratio of natural numbers that are relatively prime. According to this configuration, the allowable angle range of the beam steering of the TxOPA 102 can be expanded by the magnification determined by the natural number, as shown in the equation (11), for example.
 また、ライダー装置100等では、第1のアンテナエレメントであるアンテナエレメント116の配列間隔pTと第2のアンテナエレメントであるアンテナエレメント126の配列間隔pRとの比が互いに素な自然数の比で表されるよう設定されている。この構成によれば、上記第1の角度と上記第2の角度との比が互いに素な自然数の比で表されるように容易に設定することができる。 In addition, in the lidar device 100 and the like, the ratio of the arrangement interval p T of the antenna elements 116 that are the first antenna elements and the arrangement interval p R of the antenna elements 126 that is the second antenna element is a ratio of natural numbers that are mutually prime. It is set to be represented. According to this configuration, the ratio between the first angle and the second angle can be easily set so as to be represented by a ratio of natural numbers that are relatively prime.
 また、ライダー装置300、400では、光送信器であるTxOPA102は、複数の第1のアンテナエレメントであるアンテナエレメント116から出力される光により生成された回折光を、像変換光学系を構成する第1の光学部品であるレンズ342、344あるいはプリズム442、444を介して空間へ送出する。そして、ライダー装置300、400では、上記第1の角度は、上記第1の光学部品を介して空間へ送出された隣接する回折光間の角度で定義される。 In the lidar devices 300 and 400, the TxOPA 102, which is an optical transmitter, forms diffracted light generated by the light output from the antenna elements 116, which are the first plurality of antenna elements, in the image conversion optical system. It is sent to the space through the lenses 342 and 344 or the prisms 442 and 444 which are the first optical component. Then, in the lidar devices 300 and 400, the first angle is defined by the angle between adjacent diffracted lights that are sent to the space via the first optical component.
 この構成によれば、TxOPA102のアンテナエレメント116の配列ピッチpT及びRxOPA104のアンテナエレメント126の配列ピッチpRに加えて、上記像変換光学系の像倍率を用いて、上記第1の角度を設定することができるので、設計自由度が向上する。 According to this configuration, in addition to the array pitch p T of the antenna elements 116 of the TxOPA 102 and the array pitch p R of the antenna elements 126 of the RxOPA 104, the first angle is set using the image magnification of the image conversion optical system. Therefore, the degree of freedom in design is improved.
 また、ライダー装置300では、上記第1の光学部品は、2つの凸レンズであるレンズ342、344で構成される。この構成によれば、像変換光学系を容易に構成することができる。 Further, in the lidar device 300, the first optical component is composed of two convex lenses 342 and 344. With this configuration, the image conversion optical system can be easily configured.
 また、ライダー装置400では、上記第1の光学部品は、アナモルフィックプリズムペアを構成する2つのプリズム442、444で構成される。この構成によれば、像変換光学系を容易に構成することができる。 Further, in the lidar device 400, the first optical component is composed of two prisms 442 and 444 which form an anamorphic prism pair. With this configuration, the image conversion optical system can be easily configured.
 また、ライダー装置100等では、光受信器であるRxOPA104は、空間から到来する光を、像変換光学系を構成する第2の光学部品を介して複数の第2のアンテナエレメントであるアンテナエレメント126により受信するものとすることができる。この場合、上記第2の角度は、上記第2の光学部品を介して受信される上記空間から到来する光についての、上記空間において規定される隣接する極大感度方向が互いに成す角度で定義される。 この構成によれば、ライダー装置100等の設計自由度を更に向上することができる。 In addition, in the lidar device 100 and the like, the RxOPA 104, which is an optical receiver, receives the light coming from the space through the second optical component that constitutes the image conversion optical system, and the antenna elements 126 that are the second antenna elements. Can be received by. In this case, the second angle is defined as an angle formed by adjacent maximal sensitivity directions defined in the space with respect to the light received from the space and received through the second optical component. .. With this configuration, the degree of freedom in designing the rider device 100 and the like can be further improved.
 100、300、400、500…ライダー装置、102、502…TxOPA、104、504…RxOPA、106、506…光源、110、510…光分岐器、112、122、512、522…位相シフタ、114、124、514、524…位相シフトユニット、116、126、516、526…アンテナエレメント、118、128、518、528…アンテナユニット、120、520…光結合器、130、530…光検出器、132、532…ステアリング制御ユニット、134、536…制御デバイス、346、446…光学ユニット、342、344…レンズ、442、444…プリズム、700、900…OPA。 100, 300, 400, 500... Rider device, 102, 502... TxOPA, 104, 504... RxOPA, 106, 506... Light source, 110, 510... Optical branching device, 112, 122, 512, 522... Phase shifter, 114, 124, 514, 524... Phase shift unit, 116, 126, 516, 526... Antenna element, 118, 128, 518, 528... Antenna unit, 120, 520... Optical coupler, 130, 530... Photodetector, 132, 532... Steering control unit, 134, 536... Control device, 346, 446... Optical unit, 342, 344... Lens, 442, 444... Prism, 700, 900... OPA.

Claims (9)

  1.  第1の光フェーズドアレイにより構成され、当該第1の光フェーズドアレイを構成する複数の第1のアンテナエレメントから出力される光により生成された回折光を空間へ送出する光送信器と、
     第2の光フェーズドアレイにより構成され、前記空間から到来する光を前記第2の光フェーズドアレイを構成する複数の第2のアンテナエレメントにより受信する光受信器と、
     を備え、
     前記光受信器は、前記空間から到来する光の方向に関し、当該光の受信感度が極大となる極大感度方向を複数有し、
     前記光送信器が前記空間へ送出する隣接する前記回折光の方向が互いに成す第1の角度と、前記光受信器における隣接する前記極大感度方向が互いに成す第2の角度と、が互いに異なっている、
     ライダー装置。
    An optical transmitter configured by a first optical phased array and transmitting to the space diffracted light generated by light output from a plurality of first antenna elements configuring the first optical phased array,
    An optical receiver configured by a second optical phased array and receiving light coming from the space by a plurality of second antenna elements configuring the second optical phased array,
    Equipped with
    The optical receiver has a plurality of maximum sensitivity directions in which the reception sensitivity of the light becomes maximum with respect to the direction of light coming from the space.
    The first angle formed by mutually adjacent directions of the diffracted light emitted by the optical transmitter to the space and the second angle formed by the adjacent maximum sensitivity directions of the optical receiver are different from each other. Is
    Rider device.
  2.  前記第1の光フェーズドアレイが備える第1の位相シフタと、前記第2の光フェーズドアレイが備える第2の位相シフタと、を制御する位相シフト制御部を備え、
     位相シフト制御部は、前記第1の位相シフタの位相シフト量を制御して前記光送信器が前記空間へ送出する回折光のメインローブの送出方向を変化させると共に、前記極大感度方向のうち最大感度を有する前記極大感度方向が前記メインローブの送出方向と一致するように前記第2の位相シフタの位相シフト量を制御する、
     請求項1に記載のライダー装置。
    A phase shift control unit that controls a first phase shifter included in the first optical phased array and a second phase shifter included in the second optical phased array,
    The phase shift control unit controls the phase shift amount of the first phase shifter to change the sending direction of the main lobe of the diffracted light sent to the space by the optical transmitter, and the maximum sensitivity direction among the maximum sensitivity directions. The phase shift amount of the second phase shifter is controlled so that the maximum sensitive direction having sensitivity matches the sending direction of the main lobe.
    The rider device according to claim 1.
  3.  前記第1のアンテナエレメントの配列間隔と前記第2のアンテナエレメントの配列間隔とが互いに異なる値に設定されている、
     請求項1又は2に記載のライダー装置。
    The array spacing of the first antenna elements and the array spacing of the second antenna elements are set to different values.
    The rider device according to claim 1.
  4.  前記第1の角度と前記第2の角度との比は、互いに素な自然数の比で表されるよう設定される、
     請求項1ないし3のいずれか一項に記載のライダー装置。
    The ratio between the first angle and the second angle is set so as to be expressed as a ratio of natural numbers that are relatively prime.
    The rider device according to any one of claims 1 to 3.
  5.  前記第1のアンテナエレメントの配列間隔と前記第2のアンテナエレメントの配列間隔との比が互いに素な自然数の比で表されるよう設定されている、
     請求項4に記載のライダー装置。
    The ratio of the arrangement interval of the first antenna elements and the arrangement interval of the second antenna elements is set to be expressed by a ratio of natural numbers that are relatively prime.
    The rider device according to claim 4.
  6.  前記光送信器は、前記複数の第1のアンテナエレメントから出力される光により生成された前記回折光を、像変換光学系を構成する第1の光学部品を介して前記空間へ送出し、
     前記第1の角度は、前記第1の光学部品を介して前記空間へ送出された隣接する前記回折光の間の角度で定義される、
     請求項1ないし5のいずれか一項に記載のライダー装置。
    The optical transmitter sends the diffracted light generated by the light output from the plurality of first antenna elements to the space via a first optical component that constitutes an image conversion optical system,
    The first angle is defined as the angle between adjacent diffracted lights that are delivered to the space via the first optical component,
    The rider device according to any one of claims 1 to 5.
  7.  前記第1の光学部品は、2つの凸レンズで構成される、
     請求項6に記載のライダー装置。
    The first optical component is composed of two convex lenses,
    The rider device according to claim 6.
  8.  前記第1の光学部品は、アナモルフィックプリズムペアを構成する2つのプリズムで構成される、
     請求項6に記載のライダー装置。
    The first optical component includes two prisms that form an anamorphic prism pair.
    The rider device according to claim 6.
  9.  前記光受信器は、前記空間から到来する光を、像変換光学系を構成する第2の光学部品を介して前記複数の第2のアンテナエレメントにより受信し、
     前記第2の角度は、前記第2の光学部品を介して受信される前記空間から到来する光についての、前記空間において規定される隣接する前記極大感度方向が互いに成す角度で定義される、
     請求項1ないし8のいずれか一項に記載のライダー装置。
    The optical receiver receives light coming from the space by the plurality of second antenna elements via a second optical component that constitutes an image conversion optical system,
    The second angle is defined as an angle formed by adjacent maximal sensitivity directions defined in the space with respect to light coming from the space received via the second optical component,
    The rider device according to any one of claims 1 to 8.
PCT/JP2018/045744 2018-12-12 2018-12-12 Lidar device WO2020121452A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880096931.2A CN112673273B (en) 2018-12-12 2018-12-12 Laser radar device
PCT/JP2018/045744 WO2020121452A1 (en) 2018-12-12 2018-12-12 Lidar device
JP2018566457A JP6828062B2 (en) 2018-12-12 2018-12-12 Rider device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045744 WO2020121452A1 (en) 2018-12-12 2018-12-12 Lidar device

Publications (1)

Publication Number Publication Date
WO2020121452A1 true WO2020121452A1 (en) 2020-06-18

Family

ID=71076028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045744 WO2020121452A1 (en) 2018-12-12 2018-12-12 Lidar device

Country Status (3)

Country Link
JP (1) JP6828062B2 (en)
CN (1) CN112673273B (en)
WO (1) WO2020121452A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210095957A1 (en) * 2019-09-27 2021-04-01 Asml Holding N.V. Lithographic Apparatus, Metrology Systems, Phased Array Illumination Sources and Methods thereof
WO2023219880A1 (en) * 2022-05-11 2023-11-16 Analog Photonics LLC Managing optical phased array performance based on angular intensity distributions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115685220A (en) * 2021-07-30 2023-02-03 北京万集科技股份有限公司 Target detection method, OPA laser radar and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508235A (en) * 2013-01-08 2016-03-17 マサチューセッツ インスティテュート オブ テクノロジー Optical phased array
JP2017072532A (en) * 2015-10-09 2017-04-13 富士通株式会社 Distance measuring apparatus, distance measuring method, distance measuring program, and table creation method
JP2017083467A (en) * 2016-12-27 2017-05-18 アクト電子株式会社 Railway vehicle speed measurement method and measuring device therefor
WO2018165633A1 (en) * 2017-03-09 2018-09-13 California Institute Of Technology Co-prime optical transceiver array
JP2018156059A (en) * 2017-03-15 2018-10-04 パナソニックIpマネジメント株式会社 Optical scan system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896978B (en) * 2018-06-27 2022-01-04 上海交通大学 Nyquist pulse based integrated laser radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508235A (en) * 2013-01-08 2016-03-17 マサチューセッツ インスティテュート オブ テクノロジー Optical phased array
JP2017072532A (en) * 2015-10-09 2017-04-13 富士通株式会社 Distance measuring apparatus, distance measuring method, distance measuring program, and table creation method
JP2017083467A (en) * 2016-12-27 2017-05-18 アクト電子株式会社 Railway vehicle speed measurement method and measuring device therefor
WO2018165633A1 (en) * 2017-03-09 2018-09-13 California Institute Of Technology Co-prime optical transceiver array
JP2018156059A (en) * 2017-03-15 2018-10-04 パナソニックIpマネジメント株式会社 Optical scan system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210095957A1 (en) * 2019-09-27 2021-04-01 Asml Holding N.V. Lithographic Apparatus, Metrology Systems, Phased Array Illumination Sources and Methods thereof
US11994808B2 (en) * 2019-09-27 2024-05-28 Asml Holding N.V. Lithographic apparatus, metrology systems, phased array illumination sources and methods thereof
WO2023219880A1 (en) * 2022-05-11 2023-11-16 Analog Photonics LLC Managing optical phased array performance based on angular intensity distributions

Also Published As

Publication number Publication date
JPWO2020121452A1 (en) 2021-02-15
CN112673273A (en) 2021-04-16
JP6828062B2 (en) 2021-02-10
CN112673273B (en) 2024-03-12

Similar Documents

Publication Publication Date Title
JP6956964B2 (en) Light deflection device and rider device
US11971589B2 (en) Photonic beam steering and applications for optical communications
JP2022109947A (en) Method for operating chip-scale wavelength division multiplex communication lidar and wavelength division multiplex communication lidar system
JP2023120335A (en) Switchable coherent pixel array for frequency modulated continuous wave light detection and ranging
López et al. Planar-lens enabled beam steering for chip-scale LIDAR
WO2020121452A1 (en) Lidar device
WO2018221310A1 (en) Optical receiver array and lidar device
CN106575017A (en) Planar beam forming and steering optical phased array chip and method of using same
JP6513884B1 (en) Optical phased array and LIDAR sensor using the same
US20220121080A1 (en) Optical beam scanning based on waveguide switching and position-to-angle conversion of a lens and applications
JP2018180116A (en) Optical deflection device and lidar device
CN113608305B (en) Beam controller and beam control method
KR20200094789A (en) Devices for deflection of the laser beam
JP2018173537A (en) Optical waveguide device and laser radar
CN115398296A (en) Optoelectronic transmitter with phased array antenna comprising an integrated control device
JP6513885B1 (en) Optical integrated circuit and optical phased array and LiDAR sensor using the same
US9874434B2 (en) Position-measuring system, having scanning units multiplexed to light sources and detectors, for optically scanning a measuring standard and method for operating such a position-measuring system
CN113985603B (en) Light beam scanning system
US20230258861A1 (en) Serpentine Optical Phased Array with Dispersion Matched Waveguides
JP2006323175A (en) Light output method and light output device
Hao et al. Non-mechanical Lidar beamforming enabled by combined wavelength-division-and time-division-multiplexing
JPWO2020115856A1 (en) Laser radar device
US11543730B1 (en) Phase shifter architecture for optical beam steering devices
CN118020000A (en) Switch type pixel array LiDAR sensor and optoelectronic integrated circuit
KR20240018320A (en) Scanning Apparatus And LIDAR Apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018566457

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943170

Country of ref document: EP

Kind code of ref document: A1