WO2020121406A1 - 3次元計測装置、移動ロボット、手押し車型移動装置および3次元計測処理方法 - Google Patents
3次元計測装置、移動ロボット、手押し車型移動装置および3次元計測処理方法 Download PDFInfo
- Publication number
- WO2020121406A1 WO2020121406A1 PCT/JP2018/045498 JP2018045498W WO2020121406A1 WO 2020121406 A1 WO2020121406 A1 WO 2020121406A1 JP 2018045498 W JP2018045498 W JP 2018045498W WO 2020121406 A1 WO2020121406 A1 WO 2020121406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dimensional
- measurement
- map
- unit
- polygon
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/20—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/30—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
Definitions
- the present invention measures a shape of an object existing in a three-dimensional space and creates a three-dimensional map, a three-dimensional measuring device equipped with a mobile robot and a wheelbarrow type moving device, and a three-dimensional measurement processing method.
- a technique in which the shape of a three-dimensional object in the real world is measured by a sensor and three-dimensional point cloud data representing the shape of this object is generated.
- three-dimensional point cloud data representing the shape of the entire object is generated by repeatedly taking images with various viewpoints of the sensor for the object to be measured and connecting the obtained image data.
- SLAM Simultaneous Localization and Mapping
- NBV Next Best View
- voxels elements of volume
- point cloud data is placed in a three-dimensional space finely divided by voxels, and the degree of sufficiency is evaluated in voxel units. Therefore, the number of voxels is calculated based on the size of the point cloud data to be generated in advance. It is necessary to secure a memory having a capacity proportional to that in the processing device. For this reason, the technique disclosed in Patent Document 1 is not suitable for applications such as generating a three-dimensional map of a large-scale space.
- the present invention has been made to solve the above problems, and is a three-dimensional measuring device, a wheelbarrow-type moving device, a mobile robot, and a three-dimensional measuring process capable of obtaining a three-dimensional map while suppressing memory consumption.
- the purpose is to provide a method.
- a three-dimensional image measuring apparatus is a three-dimensional image of a measurement target, and includes a three-dimensional image including three-dimensional point cloud data that is a set of data related to three-dimensional points that are points on an object surface in a three-dimensional space.
- a three-dimensional image acquisition unit that acquires the three-dimensional image
- a three-dimensional map generation unit that synthesizes the three-dimensional images and generates a three-dimensional map in which the three-dimensional shape of the measurement target is represented by the three-dimensional point cloud data after the synthesis.
- a polygon extraction unit that extracts polygons from the three-dimensional point cloud data forming the three-dimensional map or the three-dimensional point cloud data included in the three-dimensional image used to generate the three-dimensional map, and a three-dimensional map of the three-dimensional map based on the polygon.
- a map evaluation unit that evaluates quality and a measurement plan generation unit that generates a measurement plan including information indicating a measurement target region or a measurement position from which a three-dimensional image should be acquired based on the quality evaluation result of the three-dimensional map.
- an aspect of the pushcart-type moving device is the above-described three-dimensional measuring device, which includes a three-dimensional image sensor that captures a three-dimensional image and a display unit that displays information based on a measurement plan.
- a three-dimensional measuring device provided is installed.
- the mobile robot according to the present invention is the above-described three-dimensional measuring apparatus, which is equipped with a three-dimensional measuring apparatus including a three-dimensional image sensor that captures a three-dimensional image, and a measurement plan generated by the three-dimensional measuring apparatus. Based on the above, a movement information output unit that generates and outputs an operation command signal for reaching the next measurement position from the current position, and a drive unit that moves based on the operation command signal.
- the three-dimensional measurement processing method includes three-dimensional point cloud data, which is a three-dimensional image of a measurement target and is a set of data regarding three-dimensional points that are points on an object surface in a three-dimensional space.
- a step of obtaining a three-dimensional image, a step of synthesizing the three-dimensional images to generate a three-dimensional map in which the three-dimensional shape of the measurement target is represented by the synthesized three-dimensional point cloud data, and a three-dimensional map are configured. Extracting polygons from the three-dimensional point cloud data included in the three-dimensional image used to generate the three-dimensional point cloud data or the three-dimensional map, and evaluating the quality of the three-dimensional map based on the polygons. Generating a measurement plan including information indicating a measurement target region or a measurement position from which a three-dimensional image is to be obtained, based on the quality evaluation result of the three-dimensional map.
- the three-dimensional measurement device and the three-dimensional measurement processing method of the present invention it is possible to generate a three-dimensional map while suppressing memory consumption as compared with the conventional technique.
- the wheelbarrow-type moving device according to the present invention the user can easily move the wheelbarrow-type moving device based on the information displayed on the display unit to easily acquire a necessary and sufficient three-dimensional image. Therefore, in addition to the memory reduction effect, a three-dimensional map can be efficiently obtained.
- the mobile robot of the present invention in addition to the memory reduction effect, it is possible to efficiently obtain a three-dimensional map without human intervention.
- FIG. 1 is a block diagram showing a configuration example of an entire three-dimensional measuring device according to a first embodiment of the present invention.
- 1 is a schematic view showing how a three-dimensional measuring device according to a first embodiment of the present invention is mounted on a mobile robot for measurement.
- FIG. 3 is a block diagram illustrating a configuration of a measurement processing unit included in the three-dimensional measurement device according to the first embodiment of the present invention. It is a figure which shows the procedure of a process of the three-dimensional measuring device by Embodiment 1 of this invention.
- FIG. 6 is a diagram for explaining a method in which the polygon extraction unit included in the three-dimensional measurement apparatus according to the first embodiment of the present invention determines the front surface or the back surface of a polygon.
- FIG. 3 is a block diagram illustrating a configuration of a map evaluation unit included in the three-dimensional measurement device according to the first embodiment of the present invention.
- FIG. 6 is a diagram for explaining a method in which a measurement posture evaluation unit included in the three-dimensional measurement device according to the first embodiment of the present invention evaluates a measurement posture.
- FIG. 3 is a plan view showing an example of the shape of an indoor space measured by the three-dimensional measuring device according to the first embodiment of the present invention.
- FIG. 9 is a diagram showing how the three-dimensional measuring apparatus according to the first embodiment of the present invention measures while moving in the indoor space illustrated in FIG. 8.
- FIG. 8 is a block diagram illustrating a configuration of a map evaluation unit included in the three-dimensional measurement device according to the first embodiment of the present invention.
- FIG. 6 is a diagram for explaining the operation of the map satisfaction evaluation unit included in the three-dimensional measurement apparatus according to the first embodiment of the present invention for evaluating the satisfaction of the map during the measurement of the indoor space illustrated in FIG. 8. is there.
- FIG. 3 is a diagram showing an example of an image displayed by a display unit included in the three-dimensional measuring apparatus according to the first embodiment of the present invention. It is a figure which shows a mode that the three-dimensional measuring device by Embodiment 2 of this invention is mounted in a handcart type moving device, and a user pushes with a hand and measures it. It is a figure which shows the example which displayed the information based on a measurement plan on the display part with which the three-dimensional measuring device by Embodiment 2 of this invention is equipped. It is a figure which shows a mode that a user holds the three-dimensional measuring device by Embodiment 3 of this invention in a hand, and measures it.
- FIG. 1 is a block diagram showing the configuration of the three-dimensional measuring apparatus according to the first embodiment of the present invention. It should be noted that FIG. 1 represents the configuration of the three-dimensional measuring apparatus of the present embodiment by means of functional blocks.
- the three-dimensional measurement device according to the first embodiment includes a three-dimensional image sensor 1, an input unit 2, a measurement processing unit 3, a display unit 4, and a movement information output unit 5.
- FIG. 2 shows how the three-dimensional measuring apparatus mounted on the wheel-type movable mobile robot 1000 according to the first embodiment generates a three-dimensional map of indoor space.
- FIG. 1 is a block diagram showing the configuration of the three-dimensional measuring apparatus according to the first embodiment of the present invention. It should be noted that FIG. 1 represents the configuration of the three-dimensional measuring apparatus of the present embodiment by means of functional blocks.
- the three-dimensional measurement device according to the first embodiment includes a three-dimensional image sensor 1, an input unit 2, a measurement processing unit 3, a display unit 4, and a movement information output unit 5.
- FIG. 2 shows how the
- the quadrangular pyramid indicated by the thick straight line and the broken line schematically shows the range of the visual field of the three-dimensional image sensor 1 (the photographing range 1001 and the photographing range 1002, respectively).
- the three-dimensional measuring apparatus captures a three-dimensional image using the three-dimensional image sensor 1 in accordance with the movement of the mobile robot 1000, and generates a three-dimensional map around the mobile robot 1000.
- a three-dimensional image sensor 1 is a sensor that captures a three-dimensional image of a measurement target in frame units and outputs the data as data.
- the space means a place having a space where one or more objects exist, such as indoors or outdoors.
- the three-dimensional image is an image in which a two-dimensional image obtained by photographing the same position of the measurement target and a distance image are paired.
- a two-dimensional image is an image in which information indicating the brightness of an object or space is recorded for each two-dimensionally arranged pixel.
- the two-dimensional image includes a monochrome image and a color image.
- the color image is generally an RGB image represented by the brightness of three colors of red (R), green (G), and blue (B).
- the distance image is an image in which distance information indicating the distance from the image pickup element to the object which is the subject is recorded for each pixel. In each pixel of the distance image, for example, the value of the distance from the image pickup element to the object is recorded in units of millimeters. From this distance image, the three-dimensional shape of the measurement target can be obtained as a set of points in the three-dimensional space (three-dimensional point group).
- three-dimensional point cloud data data regarding a three-dimensional point cloud, which is a set of points on the surface of an object in a three-dimensional space
- the three-dimensional point cloud data obtained from the three-dimensional image includes not only data indicating the position of each point (three-dimensional coordinates, etc.) but also data indicating the brightness of the object at that point position (luminance value, RGB value, CMYK values, other color codes, etc.) may also be included.
- the 3D point cloud data obtained from the 3D image is not limited to data (distance information or brightness for each pixel) directly obtained from the 3D image, and data obtained by conversion or the like from the data is not limited. Including.
- the three-dimensional image is not limited to the image in which the two-dimensional image and the distance image are paired, and may be any image including three-dimensional point cloud data.
- image including three-dimensional point cloud data is not limited to the image in which the three-dimensional point cloud data is directly recorded, but the information recorded as image data (for each pixel, like the distance image described above).
- An image from which desired three-dimensional point cloud data can be acquired by conversion from the distance information) is also included.
- a distance measuring method for example, a ToF (Time of Flight) method or a pattern projection method with a configuration in which a projector and a camera are combined can be used.
- the paired two-dimensional image and the distance image are captured at the same time.
- the input unit 2 receives input of various instructions from the user to the three-dimensional measuring device.
- the function of the input unit 2 is realized by, for example, a keyboard, a mouse, a pen type device, a touch display, or the like. Through these devices, the user inputs to the input unit 2 instructions such as start/pause/end of the three-dimensional map generation processing, display of the generated three-dimensional map, and file storage processing. Further, the user may set the parameters relating to the operation of the three-dimensional measuring apparatus via the input unit 2.
- the measurement processing unit 3 generates a three-dimensional map of a measurement target such as a surrounding space from the data of the three-dimensional image acquired by the three-dimensional image sensor 1 based on the user's instruction input from the input unit 2 and at the same time, A movement route to a position to be measured is generated.
- the measurement processing unit 3 can be configured by a computer having an arithmetic processing unit (CPU), a storage unit (ROM, RAM, hard disk drive, etc.) and a signal input/output unit.
- the function of the measurement processing unit 3 is realized by a computer. That is, a program for realizing the functions of the measurement processing unit 3 is stored in the storage unit of the computer, and various calculation processes in the measurement processing unit 3 are executed by the calculation processing unit according to this program.
- a laptop PC notebook personal computer
- a tablet PC plate personal computer
- the display unit 4 displays the status of the process executed by the measurement processing unit 3 or information obtained as a result of the process. For example, the display unit 4 may sequentially display the status of processing executed by the measurement processing unit 3.
- the display unit 4 may also display information based on the measurement plan generated by the measurement processing unit 3.
- the display unit 4 may display information indicating a measurement target region or a measurement position where a three-dimensional image should be acquired based on the measurement plan.
- the information indicating the measurement target area or the measurement position where the three-dimensional image is to be acquired includes information about the route to the position (measurement position) where the three-dimensional image of the measurement target area can be acquired.
- the display unit 4 may display the measurement target region or measurement position to be measured next by the three-dimensional image sensor 1 and the line-of-sight direction at this time based on the measurement plan. Further, the display unit 4 may display the three-dimensional map generated by the measurement processing unit 3 as an image. The display unit 4 may also display the three-dimensional image captured by the three-dimensional image sensor 1.
- the function of the display unit 4 is realized by, for example, a liquid crystal display or a projector. Further, the functions of the input unit 2 and the display unit 4 may be combined by using a touch display as the input unit 2 and the display unit 4.
- the movement information output unit 5 determines the next measurement position and the movement route to the measurement position based on the measurement plan generated by the measurement processing unit 3. Then, the movement information output unit 5 outputs a control signal for moving the three-dimensional measuring apparatus along the determined movement route.
- the movement information output unit 5 determines, for example, the next movement direction and movement speed of the mobile robot 1000 based on the determined movement path, and outputs it as a control signal to an external device. For example, when the three-dimensional measuring apparatus according to the present invention is mounted on the mobile robot 1000 that moves by the rotation of wheels, the control signals regarding the moving direction and the moving speed output from the movement information output unit 5 indicate the movement of the mobile robot 1000. It is input as a command signal.
- the mobile robot 1000 may include a drive unit (not shown) that controls the angle and rotation speed of the wheels to move in accordance with a control signal provided from the movement information output unit 5.
- the three-dimensional measuring device captures an image of the surroundings by the three-dimensional image sensor 1 and processes the obtained three-dimensional image to generate a three-dimensional map of the measurement target.
- the three-dimensional measuring device according to the present invention is mounted on the mobile robot 1000 having an actuator, the three-dimensional image sensor 1 is attached to the actuator of the mobile robot 1000, and the position of the three-dimensional image sensor 1 is driven by driving the actuator ( For example, at least one of height) and posture may be changed.
- the movement information output unit 5 causes the measurement processing unit 3 to measure the next measurement position and line-of-sight direction indicated by the measurement plan, the current position of the mobile robot 1000, and the current three-dimensional image sensor.
- the moving speed and moving direction of the mobile robot 1000 and the position and orientation of the three-dimensional sensor 1 may be determined based on the position and orientation of the mobile robot 1000 and output to the mobile robot 1000 as a control signal.
- the mobile robot 1000 receives, for example, a control signal regarding the position and orientation of the three-dimensional image sensor 1 from the movement information output unit 5, the mobile robot 1000 operates the actuator in addition to the above-described movement processing to the own measurement position.
- the position and orientation of the three-dimensional image sensor 1 are changed.
- the control signal may be a signal relating to either the position or the posture of the three-dimensional image sensor 1.
- the movement information output unit 5 may be omitted when the three-dimensional measurement device or the device equipped with the three-dimensional measurement device is a device that cannot move autonomously.
- FIG. 3 is a block diagram showing an example of constituent elements of the measurement processing unit 3 provided in the three-dimensional measuring apparatus according to the first embodiment of the present invention.
- the measurement processing unit 3 includes a 3D image acquisition unit 10, a 3D map generation unit 20, a polygon extraction unit 30, a 3D image storage unit 40, a 3D map storage unit 50, a map evaluation unit 60,
- the measurement plan generation unit 70, the input event processing unit 80, and the display control unit 90 are provided.
- FIG. 4 is a diagram showing a flow in a three-dimensional measurement processing method in which the three-dimensional measurement apparatus according to the first embodiment of the present invention generates a three-dimensional map. Note that the flow of the operation illustrated in FIG. 4 is an example, and the order of some operations may be changed, and some operations may be executed in parallel at the same time.
- the operation of the three-dimensional measuring apparatus according to this embodiment will be described below with reference to FIGS. 3 and 4.
- the operation of the three-dimensional measuring apparatus of this embodiment is controlled by an operation control unit (not shown).
- step S1 the three-dimensional image acquisition unit 10 acquires the three-dimensional image output from the three-dimensional image sensor 1 in frame units. After acquiring one frame of the three-dimensional image, the operation of the three-dimensional measuring device moves to step S2.
- step S2 the polygon extraction unit 30 extracts polygons from the distance image in the three-dimensional image.
- the polygon is assumed to be a polygonal surface element whose front surface and back surface are defined.
- the polygon data is assumed to be data representing the polygon, that is, polygonal surface format data in which the front surface and the back surface are defined.
- the polygon extraction unit 30 executes a process of converting a set of points in the three-dimensional space (three-dimensional point group) into a set of surface elements in the three-dimensional space (polygon set).
- the polygon extraction unit 30 connects the three neighboring points in the three-dimensional point cloud indicated by the three-dimensional point cloud data acquired from the three-dimensional image or the three-dimensional map being generated to generate a triangular polygon.
- a method for generating a polygon from three-dimensional point cloud data an existing method such as the Marching Cubes method or the Ball-Pivoting algorithm can be used.
- the size of the generated polygon is small in a region where the density of the points forming the three-dimensional point cloud data is high.
- the shape of the polygon is not limited to the triangle, but may be a quadrangle, a pentagon, a hexagon, or the like. In this case, points in the three-dimensional point group may be connected by the number of vertices in a predetermined shape. Also, all polygons do not have to be the same polygon.
- the shape of the polygon is a triangle
- the number of polygons generated from the same three-dimensional point group can be increased compared to other shapes, and the evaluation based on the polygon is performed in the quality evaluation of the three-dimensional map described later. It is preferable because the evaluation can be performed more precisely and with simpler calculation.
- the polygon extraction unit extracts the polygon 31 from the distance image acquired at the measurement position 32.
- the dotted line 33 represents the optical axis of the sensor
- the arrow 34 represents the optical axis direction vector of the sensor starting from the measurement position 32
- the arrow 35a represents the normal vector of the extracted polygon 31.
- the normal vector of the surface is defined as a vector that is not zero and has a multiple of a real number. Therefore, the dotted arrow 35b can also be the normal vector of the polygon 31.
- the arrow 35a and the arrow 35b representing the normal vector of the polygon 31 are collectively referred to as the normal vector 35 of the polygon 31.
- the arrow 35a is selected as the normal vector of the polygon 31 by defining the normal vector in the following procedure.
- the optical axis direction vector in the three-dimensional coordinate system of the three-dimensional image sensor 1 fixed to the three-dimensional image sensor 1 is expressed as in Expression (1).
- ⁇ is a non-zero real number, and this sign is defined so that the inner product of the optical axis direction vector 34 of the three-dimensional image sensor 1 and the normal vector 35 becomes negative. That is, when the following expression (3) is established, ⁇ is set to an arbitrary positive real number. On the other hand, when the following expression (4) is established, ⁇ is set to an arbitrary negative real number.
- the side where the direction of the normal vector 35 of the polygon 31 is positive is defined as the front surface of this polygon, and the negative side is defined as the back surface of this polygon.
- the relationship between the positive and negative of the inner product and the direction of the normal vector, and the relationship between the direction of the normal vector and the front and back sides are not limited to this. That is, the front surface and the back surface of the polygon may be defined based on the line-of-sight direction of the three-dimensional image sensor when the three-dimensional image from which the points forming the vertices of the polygon are detected is acquired.
- the polygon vector is determined according to the direction of the normal vector specified based on the line-of-sight direction of the three-dimensional image sensor when the three-dimensional image from which the points forming the vertices of the polygon are detected is acquired. It is an example in which the front surface and the back surface are defined.
- the data of each polygon includes the three-dimensional coordinates of the three vertices forming the polygon and the normal vector of the polygon.
- the polygon information extracted from the range image and the optical axis direction vector information of the three-dimensional image sensor 1 are stored in the three-dimensional image storage unit 40 in association with the three-dimensional image. Again, returning to the description of the operation of the three-dimensional measuring apparatus of the present embodiment with reference to FIGS. 3 and 4.
- the operation of the three-dimensional measuring device moves to step S3.
- the 3D map generation unit 20 associates the 3D image data from the 3D image acquisition unit 10 and the 3D image storage unit 40 with the polygon data from the 3D image storage unit 40 to each 3D image. To generate a three-dimensional map.
- the three-dimensional map is data in which at least a three-dimensional shape of an object or a space (more specifically, an object forming the space) is represented by the three-dimensional point cloud data.
- the three-dimensional map generation unit 20 generates a three-dimensional map including three-dimensional point cloud data that at least represents the three-dimensional shape of the measurement target.
- a publicly known method of generating a three-dimensional map by combining a plurality of three-dimensional images can be used for generating the three-dimensional map.
- methods for generating a three-dimensional map include SLAM (Simultaneous Localization and Mapping) and SfM (Structure from Motion). These methods use a plurality of 3D images captured from different viewpoints as input, and estimate the shooting position and orientation of these 3D images, and connect these 3D images on a 3D coordinate system. Solve the problem of generating a three-dimensional map at the same time.
- the distance information of each pixel of the distance image forming the three-dimensional image is arranged on the three-dimensional coordinate system with the photographing position and posture as a reference.
- each pixel of the distance image corresponds to one point of the point group forming the three-dimensional map.
- a three-dimensional map is generated by executing this process on all input three-dimensional images. Therefore, the 3D map may include points corresponding to the pixels of all the distance images of the input 3D images. As will be described later, when updating the three-dimensional map, it is possible not to use the data of some points based on the evaluation result of the generated three-dimensional map.
- the 3D map generation unit 20 extracts polygon data extracted from the 3D maps generated so far (hereinafter referred to as 3D map polygon data) or 3D images before combining. It is also possible to use the acquired polygon data (hereinafter referred to as three-dimensional image polygon data). For example, the information on the surface of the measurement target (more specifically, the surface of the measurement target object or the surface of the object included in the measurement target space) represented by the polygon data is used for the process of joining the three-dimensional images. can do. When the polygon data of the three-dimensional image is not used for generating the three-dimensional map and evaluating the three-dimensional map described later, the operation of step S2 may be omitted.
- step S4 the polygon extraction unit 30 extracts polygons from the three-dimensional point cloud data that forms the generated three-dimensional map.
- the polygon extraction method is the same as the extraction method from the three-dimensional point cloud data included in the three-dimensional image.
- the polygon of the area is smaller than the polygon of the three-dimensional image before composition.
- the three-dimensional map generated by the three-dimensional map generation unit 20 is stored in the three-dimensional map storage unit 50 together with the polygon data of the three-dimensional map extracted by the polygon extraction unit 30.
- the polygon data corresponding to the three-dimensional map is the data of the polygon generated from the three-dimensional point group including the points forming the three-dimensional map.
- step S5 the map evaluation unit 60 evaluates the quality of the generated three-dimensional map stored in the three-dimensional map storage unit 50.
- the map evaluation unit 60 includes (1) a distance to an object that is a subject when a three-dimensional image is captured, (2) a posture of a three-dimensional image sensor at the time of measurement, and (3) a point cloud forming a three-dimensional map.
- the quality of the three-dimensional map is evaluated based on the density of (4), the sufficiency of the three-dimensional map.
- (1) and (2) are the measurement accuracy of the three-dimensional map, more specifically, the three-dimensional point cloud data forming the three-dimensional map or the three-dimensional image that is the source of the three-dimensional map.
- the measurement accuracy of the three-dimensional point cloud data is used as an index.
- the map evaluation unit 60 evaluates the quality of the three-dimensional map using the three indexes of measurement accuracy, point cloud density, and satisfaction degree.
- the map evaluation unit 60 evaluates the quality of the three-dimensional map based on the polygons extracted by the polygon extraction unit 30, thereby suppressing memory consumption in generating the three-dimensional map.
- the map evaluation unit 60 does not have to use all of the above indexes. Further, the map evaluation unit 60 does not have to evaluate the quality of all of the above indexes using polygons.
- the map evaluation unit 60 can also evaluate the quality of the three-dimensional map using only one of the above indexes.
- FIG. 6 is a block diagram showing a configuration example of the map evaluation unit 60.
- the map evaluation unit 60 includes a measurement distance evaluation unit 61, a measurement posture evaluation unit 62, a point cloud density evaluation unit 63, a map measurement accuracy evaluation unit 64, and a map satisfaction degree evaluation unit 65.
- the measurement distance evaluation unit 61, the measurement posture evaluation unit 62, and the map measurement accuracy evaluation unit 64 measure the measurement accuracy of the 3D map
- the point group density evaluation unit 63 determines the points of the 3D map.
- the map sufficiency evaluation unit 65 evaluates the group density and the sufficiency of the three-dimensional map.
- the map evaluation unit 60 does not necessarily have to include all the above-mentioned components.
- the point cloud density evaluation unit 63 may be omitted from the components of the map evaluation unit 60.
- the measurement distance evaluation unit 61, the measurement posture evaluation unit 62, and the map measurement accuracy evaluation unit 64 are omitted from the components of the map evaluation unit 60.
- the measurement distance evaluation unit 61 or the measurement posture evaluation unit 62 and the map measurement accuracy evaluation unit 64 are further included from the components of the map evaluation unit 60. It is also possible to omit the configuration. Further, for example, when it is not necessary to consider the degree of sufficiency of the three-dimensional map, the map sufficiency evaluation unit 65 may be omitted from the constituent elements of the map evaluation unit 60.
- the measurement distance evaluation unit 61 performs evaluation on the distance from the three-dimensional image sensor 1 to the object represented by the three-dimensional map when the three-dimensional image used to generate the three-dimensional map is captured.
- the distance measurement accuracy deteriorates as the distance from the sensor to the subject increases.
- the measurement distance evaluation unit 61 measures the measurement data (the three-dimensional point cloud data included in the three-dimensional map, which has a small distance) when the three-dimensional image used to generate the three-dimensional map is captured. It operates so as to give a high evaluation value to (data corresponding to points).
- the measurement distance evaluation unit 61 determines the position of the measurement target (more specifically, the position of the measurement target object or the position of the object included in the measurement target space) indicated by the three-dimensional point cloud data forming the three-dimensional map. , The distance from the position of the three-dimensional image sensor when the three-dimensional image including the data (for example, distance value) about the point corresponding to the position of the measurement target is acquired is evaluated. Specifically, the measurement distance evaluation unit 61 first reads the three-dimensional map stored in the three-dimensional map storage unit 50. Next, the three-dimensional image used to generate this three-dimensional map is read from the three-dimensional image storage unit 40. Then, based on the distance value recorded in the read three-dimensional image, the evaluation value is assigned to each point indicated by the three-dimensional point group data forming the three-dimensional map.
- the measurement posture evaluation unit 62 is a direction (posture) of the 3D image sensor 1 with respect to a subject (an object represented by the 3D map) of the 3D image when the 3D image used to generate the 3D map is captured. Perform an evaluation of.
- a subject an object represented by the 3D map
- the measurement posture evaluation unit 62 uses the polygon data of the three-dimensional map or the polygon data of the three-dimensional image used to generate the three-dimensional map to measure the surface of the measurement target (more specifically, the measurement target).
- the relative orientation between the surface of the object or the surface of the object included in the measurement target space) and the three-dimensional image sensor 1 is evaluated.
- the measurement posture evaluation unit 62 includes a normal vector of each polygon indicated by the polygon data of the three-dimensional map or the polygon data of the three-dimensional image used to generate the three-dimensional map, and data including data on points forming the vertices of the polygon.
- the relative posture may be evaluated by calculating the inner product with the optical axis direction vector of the three-dimensional image sensor when the three-dimensional image is acquired.
- the direction vector may be treated as follows.
- the measurement posture evaluation unit 62 may use, for example, the optical axis direction vector of the three-dimensional image sensor in the three-dimensional image including the data of the most vertices, or the three-dimensional image sensor in the three-dimensional image including the data of each vertex. You may use the synthetic
- the absolute value (0 to 1) of the inner product may be used as the evaluation value as it is, or one or a plurality of thresholds may be provided for the absolute value of the inner product, and polygons with a value larger than the threshold may be set to the threshold or less. A higher evaluation value than the existing polygon may be attached. Then, an evaluation value is assigned to each point forming the three-dimensional map.
- the following example can be given as a method of assigning polygon evaluation values to each point that makes up a three-dimensional map.
- a method may be used in which the evaluation value of each polygon is assigned to the evaluation value of each point forming this polygon, and then the evaluation values are added at each point.
- a method may be used in which the evaluation value of each polygon is assigned to the evaluation value of each point constituting this polygon, and the evaluation value is averaged at each point.
- the evaluation value of the polygon may be used as it is as the evaluation value of each point forming this polygon.
- the evaluation value of (1) may be distributed (equal distribution, etc.) among the points forming the polygon.
- the average may be a weighted average by weighting according to the size of the polygon.
- a point 621 represents the position (measurement position) of the three-dimensional image sensor
- an arrow 622 represents the optical axis direction vector of the three-dimensional image sensor 1 starting from the point 621.
- the polygon extracting unit 30 executes a process of extracting polygons from the three-dimensional point cloud data, and thereby the polygons 624a and 624b and the normal vectors 625a and 625b corresponding to the respective polygons are obtained. Be done.
- the angle formed by the optical axis direction vector 622 and the normal vector 625a is about 180 degrees, and the absolute value of the inner product of these vectors is close to 1.
- the measurement posture evaluation unit 62 gives a higher evaluation value to the points 623a and 623b than each of the points forming the polygon whose absolute value of the inner product is closer to 0.
- the inner product of the direction vector 622 and the normal vector 625b is close to zero.
- the measurement posture evaluation unit 62 gives the evaluation values to the points 623c and 623d lower than those of the points forming the polygon whose absolute value of the inner product is closer to 1.
- the measurement posture evaluation unit 62 may obtain an evaluation value according to the inner product for each polygon and allocate the evaluation value to each point by the method described above.
- the point cloud density evaluation unit 63 executes evaluation on the density of the point cloud of the generated three-dimensional map.
- the point cloud density evaluation unit 63 operates to give a higher evaluation value as the density of the point cloud is higher.
- the density of the point cloud is calculated based on the total length of the sides of the polygons extracted by the polygon extraction unit 30. Specifically, the point cloud density evaluation unit 63 first reads the three-dimensional map and this polygon data stored in the three-dimensional map storage unit 50. Further, the point cloud density evaluation unit 63 may read the three-dimensional image stored in the three-dimensional image storage unit 40 and the polygon data instead of the above. Then, based on the size of the polygon indicated by the read polygon data, the evaluation value is assigned to each point forming the three-dimensional map.
- the correspondence between the three-dimensional map or the polygon of the three-dimensional image and each point forming the three-dimensional map may be basically the same as the method of assigning an evaluation value to each point forming the three-dimensional map.
- the evaluation value calculated by the point group density evaluation unit 63 is obtained for each small area of the three-dimensional map as well as for each point forming the three-dimensional map. How to obtain the evaluation value for each small area will be described later.
- the map measurement accuracy evaluation unit 64 calculates the evaluation value of the measurement accuracy of the three-dimensional map based on the result of integrating the evaluation results of the measurement distance evaluation unit 61 and the measurement posture evaluation unit 62. Note that the evaluation values calculated by the measurement distance evaluation unit 61, the measurement posture evaluation unit 62, and the map measurement accuracy evaluation unit 64 are also obtained for each small area of the three-dimensional map, in addition to each point forming the three-dimensional map. ..
- the map measurement accuracy evaluation unit 64 obtains a weighted sum of the evaluation values calculated by the measurement distance evaluation unit 61 and the measurement posture evaluation unit 62 to calculate an evaluation value regarding the measurement accuracy of the generated three-dimensional map.
- the map measurement accuracy evaluation unit 64 outputs a higher evaluation value as the dimensional error of the point group of the generated three-dimensional map is smaller.
- the weight of each evaluation value can be arbitrarily designated by the user. For example, when a three-dimensional image sensor with high measurement distance accuracy is used, the weight of the evaluation value regarding the measurement distance calculated by the measurement distance evaluation unit 61 is set small.
- a small area for example, a voxel having a predetermined size is defined in a three-dimensional space so as to include at least one point that forms a three-dimensional map, and each evaluation value is calculated for each small area.
- the small area may be defined to include a plurality of points forming a three-dimensional map.
- the three-dimensional map can be equally divided into a large number of cubes (small areas), and the average of the evaluation values of the points included in the cube can be used as the evaluation value of this small area. Since the evaluation value itself is assigned to each point forming the three-dimensional map, even if the number of small areas increases, the memory consumption in generating the three-dimensional map does not increase.
- the map sufficiency evaluation unit 65 evaluates the sufficiency of the three-dimensional map such as whether or not a three-dimensional map with no defect can be generated. More specifically, the map sufficiency evaluation unit 65 sets a virtual viewpoint in the three-dimensional map and projects the front or back surface of the polygon of the three-dimensional map on a virtual sphere centered on the virtual viewpoint. The evaluation value based on the degree of satisfaction of the three-dimensional map is calculated by obtaining the surface area of the region.
- FIGS. 8 to 10 A method of evaluating the map satisfaction degree by the map satisfaction degree evaluation unit 65 will be described with reference to FIGS. 8 to 10.
- a three-dimensional map of a corridor-shaped space shown as a plan view in FIG. 8 is generated using the three-dimensional measuring apparatus according to the present embodiment.
- a white portion represents a space in which the three-dimensional measuring device can move
- a hatched portion represents a range inside or behind the wall.
- FIG. 9 shows how the three-dimensional measuring apparatus according to this embodiment measures a space.
- the state of measurement is described using a two-dimensional drawing, but an actual three-dimensional measuring device operates in a three-dimensional space.
- the triangles attached to the black dots represent the angle of view (field of view) of the three-dimensional image sensor.
- the three-dimensional measuring device has a point 651a represented by a black circle as an initial position, moves in the order shown by arrows to point 651b, point 651c, and point 651d, and is currently stopped at the position of point 651d. .. It is assumed that, by measuring the three-dimensional space in this manner, a three-dimensional map shown by a solid line and a dashed-dotted line in FIG. 9 and a polygon (not shown) attached to the three-dimensional map are generated. In FIG.
- a portion indicated by a dotted line 303 in FIG. 9 represents a portion (area) in which a three-dimensional map is not created.
- a method of calculating the satisfaction degree of the generated three-dimensional map will be described with reference to FIG.
- a virtual sphere 652 centered on a virtual viewpoint (standing point) P in the three-dimensional map is defined.
- the polygon of the generated three-dimensional map is projected onto the virtual sphere 652.
- the range in which the front surface of the polygon is visible from the virtual viewpoint P is indicated by a solid line 311
- the range in which the back surface of the polygon is visible is indicated by a dashed-dotted line 312
- the range in which the polygon is not visible is indicated by a dotted line. 313 respectively.
- the solid line 311 measures the range that has been measured from the virtual viewpoint P
- the dashed-dotted line 312 measures only the back side as the surface to be measured when viewed from the virtual viewpoint P.
- the dotted line 313 indicates the unmeasured range.
- the location where the map sufficiency evaluation unit 65 sets a virtual sphere can be set to an arbitrary point within a predetermined space including the measurement target. For example, on a past route that the three-dimensional measuring device has already moved, There may be a plurality of positions (for example, 1 meter intervals). Alternatively, it may be a position in the vicinity of a past route along which the three-dimensional measuring device has moved. The vicinity position is a point between the photographing position of the three-dimensional image by the three-dimensional image sensor and the polygon extracted from the photographed three-dimensional image.
- the map sufficiency evaluation unit 65 included in the three-dimensional measurement apparatus according to the first embodiment can be realized by using a conventional technique.
- the conventional technique since voxels are used in the evaluation of the sufficiency of the three-dimensional map to be generated, in the method in which the data is successively expanded during the generation of the three-dimensional map like SLAM, the voxel is used in advance. It is necessary to secure a large amount of memory assuming the scale of data.
- the three-dimensional measuring apparatus of the present embodiment evaluates the three-dimensional map based on polygons, unlike the voxels that are generated so as to fill the entire space, the polygon is a surface to be measured (especially the surface).
- the degree of sufficiency of the three-dimensional map can be evaluated based on the appearance of the polygon from a virtual viewpoint that can be set arbitrarily. It is possible to obtain a three-dimensional map with no defects while suppressing. Further, using the evaluation result of the obtained three-dimensional map, the position to be measured next, the route to the position or the next virtual viewpoint is determined, and the setting position and setting interval of the virtual viewpoint are adjusted. By optimizing the measurement plan, it is possible to more appropriately achieve both the effect of reducing the amount of memory used and the sufficiency of the three-dimensional map corresponding to a complicated shape.
- step S5 the operation of the three-dimensional measuring device moves to step S6.
- the measurement plan generation unit 70 generates a measurement plan based on the evaluation result of the three-dimensional map.
- the measurement plan indicates a target area (hereinafter, referred to as a measurement target area) from which a new three-dimensional image should be acquired (for example, after the next time) or a position (measurement position) at which the three-dimensional image of the measurement target area can be acquired. Contains information.
- the measurement target area and the measurement position included in the measurement plan may be the same as the area and position for which the three-dimensional image has already been acquired.
- the measurement plan may include information indicating a measurement direction (measurement direction with respect to the measurement target region or measurement direction at the measurement position). Further, the measurement plan may include information indicating a plurality of measurement target areas or a plurality of measurement positions. Further, the measurement plan may include information indicating a route to the measurement position.
- the measurement plan generation unit 70 determines, for example, the next measurement target area and the line-of-sight direction to the measurement target area based on the evaluation of at least one of the measurement accuracy of the three-dimensional map, the point cloud density, and the satisfaction degree. May be determined. Then, the measurement plan generation unit 70 may generate a route from the current position to the position so that the mobile robot moves to the position where the three-dimensional image of the determined measurement target region can be acquired.
- the measurement plan generation unit 70 may determine the next measurement position and the line-of-sight direction based on, for example, the evaluation of at least one of the measurement accuracy of the three-dimensional map, the point cloud density, and the degree of satisfaction. Good. Then, the measurement plan generation unit 70 may generate a route from the current position to the position so that the mobile robot moves to the determined measurement position. The measurement plan generation unit 70 may output the generated measurement plan including the information on the movement route to the movement information output unit 5.
- the user can specify which of the measurement accuracy, the point cloud density, and the degree of sufficiency to be used among the elements of the quality of the 3D map, and which priority is given to the 3D map according to the application of the generated 3D map. To do so. For example, if the application is sufficient if the three-dimensional shape of the space can be roughly known, the weight of the evaluation value of the map satisfaction degree is set to be large. By doing so, the measurement plan generation unit 70 generates a measurement plan that can generate a three-dimensional map without a defect.
- the three-dimensional map generation unit 20 updates the generated three-dimensional map based on the evaluation result of the measurement accuracy of the map obtained by the map evaluation unit 60. For example, if a plurality of three-dimensional image data obtained by photographing the same portion of the measurement target is stored in the three-dimensional image storage unit 40, and any one of the measurement distance, the point cloud density, and the measurement posture when the images are photographed is different. To do.
- the three-dimensional map generation unit 20 selects higher quality three-dimensional image data from the three-dimensional image storage unit 40 based on the evaluation result of the map evaluation unit 60 and uses it for generating the three-dimensional map. May be. Specifically, in the three-dimensional map generation unit 20, the three-dimensional image data captured at a closer distance, the three-dimensional image data having a higher point cloud density, and the posture close to the front of the surface of the captured object are taken. The photographed three-dimensional image data is read from the three-dimensional image storage unit 40 and used for generating a three-dimensional map.
- the three-dimensional image data mentioned here does not necessarily have to be all the data obtained from one three-dimensional image, but may be a part of the data obtained from one three-dimensional image.
- the three-dimensional map generation unit 20 selects the data with a higher evaluation from the data of the portions where the same portion of the three-dimensional images is photographed when the photographing ranges overlap with each other. It may be read out and used to generate a three-dimensional map. Further, for example, the three-dimensional map generation unit 20 does not use the data whose evaluation result is less than the predetermined threshold value for generating the three-dimensional map even when the shooting ranges do not overlap between the plurality of three-dimensional images. It is also possible to do so. Then, the 3D map stored in the 3D map storage unit 50 is updated. By performing the operation of the three-dimensional map generation unit in this way, it is possible to generate a three-dimensional map composed of higher-quality three-dimensional image data.
- step S7 After generating the measurement plan in step S6, the operation of the three-dimensional measuring device moves to step S7.
- step S7 a determination process of whether or not to end the map generation process by the three-dimensional measuring device is executed. If not completed, the process returns to step S1 and the above procedure is repeated.
- step S7 for example, the standard of the quality of the three-dimensional map to be generated is set in advance, and the end is determined by whether or not the three-dimensional map being generated satisfies this standard.
- the map generation process is ended.
- the input event processing unit 80 receives an input instruction given by the user via the input unit 2 to the three-dimensional measuring device.
- the instruction input received by the input event processing unit 80 is, for example, an instruction regarding the operation of the three-dimensional measuring apparatus, such as starting, pausing, and ending of the three-dimensional map generation processing.
- the input event processing unit 80 has a function of receiving parameter setting information regarding internal operations of the three-dimensional map generation unit 20, the map evaluation unit 60, and the measurement plan generation unit 70, and transferring the setting information to each unit. Furthermore, if there are areas that require the creation of a three-dimensional map and areas that do not, or if there are areas that are off-limits, information about these areas is input to the measurement plan generation unit 70.
- the display control unit 90 generates an image (display screen or the like) for displaying the 3D image acquired by the 3D image sensor 1 and the 3D map generated by the 3D map generation unit 20 on the display unit 4. Then, this image data is sent to the display unit 4.
- the display control unit 90 may also generate an image for displaying information based on the measurement plan generated by the measurement plan generation unit 70 on the display unit 4, and send this image data to the display unit 4. At this time, the display control unit 90 superimposes, on the basis of the measurement plan, information indicating the measurement target region or the measurement position where the three-dimensional image is to be acquired, on the acquired three-dimensional image or the generated three-dimensional map. An image to be displayed on the display unit 4 may be generated and this image data may be sent to the display unit 4.
- FIG. 11 shows, as an example of an image displayed by the display unit 4, a color image (a) and a distance image (b) acquired by the three-dimensional image sensor 1 on the left side, and a three-dimensional map (c) being generated on the right side. It is an example that arranged.
- the distance image (b) at the lower left in FIG. 11 is an example in which the distance is converted into the grayscale of the image and displayed.
- the display control unit 90 and the display unit 4 may be provided in the same housing for wired communication, or may send image data to the display unit 4 at a position distant from the three-dimensional measuring device by wireless communication. It may be configured to do so.
- the measurement accuracy of the three-dimensional point cloud data forming the three-dimensional map using the polygons sequentially extracted from the generated three-dimensional map, the three-dimensional map Since the quality evaluation of the three-dimensional map including the quality evaluation based on the degree of sufficiency and the density of the three-dimensional map is performed, a highly accurate three-dimensional map can be obtained with a smaller memory amount as compared with the conventional technique. Therefore, for example, even in a large-scale space or a space having a complicated shape, a highly accurate three-dimensional map can be easily obtained without preparing a large-capacity memory or the like.
- the three-dimensional measuring device is mounted on the mobile robot, and the mobile robot is moved based on the measurement plan generated by the three-dimensional measuring device, or the posture of the three-dimensional image sensor is changed to autonomously perform three-dimensional measurement of the space. If configured to perform, it is possible to efficiently obtain a three-dimensional map of space without human intervention.
- the above three-dimensional image sensor 1 is mounted on a mobile robot, and a three-dimensional image acquired by the three-dimensional measuring device connected to the mobile robot via a network is used to generate a three-dimensional map. You can go.
- the three-dimensional measuring device may evaluate the generated three-dimensional map, generate a measurement plan, and output a control signal to the mobile robot based on the generated measurement plan. Even with such a configuration, the same effect as described above can be obtained.
- Embodiment 2 the three-dimensional measuring device or a part of this function is mounted on the mobile robot to generate the three-dimensional map.
- a three-dimensional measuring device or a part of this function is installed in a wheelbarrow-type moving device, and a user pushes the wheelbarrow-type moving device by hand to move the space.
- at least the three-dimensional image sensor 1 and the display unit 4 among the components of the above-described three-dimensional measuring device are mounted on the wheelbarrow type moving device.
- FIG. 12 is a diagram showing a state in which the three-dimensional measuring device is mounted on the handcart-type moving device 2000, and a user pushes the handcart-type moving device 2000 to move and measure.
- square pyramids indicated by thick straight lines and broken lines schematically show the range of the field of view of the handcart-type moving device 2000 (the photographing range 2001 and the photographing range 2002, respectively).
- the three-dimensional measurement device is configured to show the user where to measure next and guide the user. Good.
- the measurement plan generation unit 70 included in the three-dimensional measurement device generates a measurement plan including the next measurement position or a movement route to the measurement position, and then reaches the next measurement position from the current position according to the measurement plan.
- the display control unit 90 may generate a display screen that generates an operation command signal for performing the operation and guides the user to move, and may display the display screen on the display unit 4.
- FIG. 13 shows an example of displaying information based on the measurement plan on the display unit 4 to guide the user.
- the color image (d) acquired by the three-dimensional image sensor is displayed on the upper left, and the moving path (the traveling direction in this example) and the measurement target region are displayed by being superimposed on the color image (d). doing.
- a message display plate (e) for the user is displayed at the lower left. For example, as shown in Fig. 13, on the display board (e), "There is a measurement omission. Please proceed in the direction of the arrow and measure.” and "Point cloud density is insufficient. Please measure the indicated part.” is displayed.
- the right side of FIG. 13 shows the three-dimensional map (c) being generated, as in FIG.
- the user can manually press the three-dimensional measuring apparatus mounted on the wheelbarrow type moving apparatus to measure the space. At this time, the user can efficiently obtain a necessary and sufficient three-dimensional image by moving the handcart type moving device by the user based on the information displayed on the display unit. Further, according to the three-dimensional measuring apparatus according to the second embodiment, for example, when there is an area where a three-dimensional map needs to be created and an unnecessary area, or when there is an off-limit area, the user can The measurement can be performed while making a judgment at the time of measurement. Therefore, according to the three-dimensional measuring apparatus according to the second embodiment, it is possible to obtain an efficient three-dimensional map even in a space having a measurement condition that requires manual judgment. Further, the three-dimensional measuring device mounted on the handcart-type moving device according to the second embodiment also has the same effect as described in the first embodiment.
- Embodiment 3 In the first and second embodiments, an example is shown in which the three-dimensional measuring device or a part of the functions thereof is mounted on a mobile robot or a wheelbarrow-type moving device that travels on the floor.
- the three-dimensional measuring device or a part of the functions are configured by the portable terminal. That is, the user holds the three-dimensional measuring device including at least the three-dimensional image sensor and the display unit 4 and measures the space.
- the three-dimensional measuring device 10000 is realized by, for example, a tablet PC.
- FIG. 14 is a diagram showing a state in which a user holds a three-dimensional measuring device 10000 realized by a tablet PC and measures an indoor three-dimensional space.
- FIG. 14 a square pyramid indicated by a thick straight line and a broken line schematically shows the range of the visual field of the three-dimensional measuring apparatus 10000 held by the user (the photographing range 10001 and the photographing range 10002, respectively).
- the three-dimensional image sensor 1 is integrally attached to the three-dimensional measuring device 10000.
- a screen for guiding the user as shown in FIG. 13 is displayed on the display unit 4 (here, the screen of the tablet PC), as in the second embodiment.
- the operations of the three-dimensional measuring apparatus according to the third embodiment other than those described above are the same as those described in the second embodiment.
- the portable three-dimensional measuring apparatus according to the third embodiment is realized by a portable terminal or the like, and thus a user can move it by hand. Therefore, according to the portable three-dimensional measurement apparatus according to the third embodiment, not only a space having a measurement condition that requires manual judgment, but also a narrow space in which a mobile robot does not easily enter and an object having a complicated shape It is possible to efficiently obtain a three-dimensional map even in a space where there is. Moreover, the three-dimensional measuring apparatus according to the third embodiment also has the same effect as that described in the first embodiment.
- a three-dimensional image acquisition unit that acquires a three-dimensional image that is a measurement target three-dimensional image and that includes three-dimensional point group data that is a set of data relating to three-dimensional points that are points on the object surface in a three-dimensional space;
- a three-dimensional map generation unit that synthesizes the three-dimensional images and generates a three-dimensional map in which the three-dimensional shape of the measurement target is represented by the synthesized three-dimensional point cloud data;
- a polygon extraction unit for extracting polygons from the three-dimensional point cloud data forming the three-dimensional map or the three-dimensional point cloud data included in the three-dimensional image used to generate the three-dimensional map;
- a map evaluation unit that evaluates the quality of the three-dimensional map based on the polygon,
- a measurement plan generation unit that generates a measurement plan including information indicating a measurement target region or a measurement position from which the three-dimensional image is to be acquired, based on a quality evaluation result of the three-dimensional map;
- a three-dimensional image acquisition unit that acquires a three-dimensional image that is a measurement target three-dimensional image and that includes three-dimensional point group data that is a set of data relating to three-dimensional points that are points on the object surface in a three-dimensional space;
- a three-dimensional map generation unit that synthesizes the three-dimensional images and generates a three-dimensional map in which the three-dimensional shape of the measurement target is represented by the synthesized three-dimensional point cloud data;
- a polygon extraction unit for extracting polygons from the three-dimensional point cloud data forming the three-dimensional map or the three-dimensional point cloud data included in the three-dimensional image used to generate the three-dimensional map;
- a map evaluation unit that evaluates the quality of the three-dimensional map based on the polygon,
- a measurement plan generation unit that generates a measurement plan including information indicating a movement route from a current position to a measurement position where the next three-dimensional image should be acquired based on the evaluation result of the quality of the three-dimensional map.
- Appendix 3 The three-dimensional measuring apparatus according to appendix 1 or 2, wherein the polygon is a triangular surface element that connects three nearby points in the three-dimensional point cloud indicated by the three-dimensional point cloud data that is the extraction source.
- the polygon is a triangular surface element whose back and front surfaces are defined,
- the direction of the normal vector of the polygon is defined so that the inner product of the normal vector of the polygon and the direction vector of the line of sight of the three-dimensional image sensor when the three-dimensional image including the data about the points forming the vertices of the polygon is acquired is negative.
- the three-dimensional measuring apparatus according to any one of appendices 1 to 3, wherein the positive side of the normal vector of the polygon is the front side of the polygon, and the negative side is the back side.
- Appendix 7 The three-dimensional measuring apparatus according to any one of appendices 1 to 6, wherein the quality index evaluated by the map evaluation unit includes a degree of satisfaction of the three-dimensional map.
- the map evaluation unit The three-dimensional image is calculated by calculating the inner product of the normal vector of the polygon and the optical axis direction vector of the three-dimensional image sensor when the three-dimensional image including the data about the points forming the vertices of the polygon is acquired.
- Including a measurement posture evaluation unit that evaluates a relative posture between the sensor and the polygon The three-dimensional measuring apparatus according to appendix 5 or 8, which evaluates the measurement accuracy of the three-dimensional map based on the evaluation by the measurement posture evaluation unit.
- the map evaluation unit A point cloud density evaluation unit for calculating an evaluation value based on the point cloud density of the three-dimensional map as an evaluation of the quality of the three-dimensional map by obtaining the side lengths of the polygons;
- the three-dimensional measuring apparatus according to appendix 6, which evaluates the point cloud density of the three-dimensional map based on the evaluation by the point cloud density evaluation unit.
- the map evaluation unit Satisfaction of the three-dimensional map by setting a virtual viewpoint in the three-dimensional map and determining the surface area of the area onto which the surface of the polygon is projected on a virtual sphere centered on the virtual viewpoint.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Manipulator (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
メモリの消費を抑制しつつ、3次元マップを得ることができる3次元計測装置および3次元計測処理方法を提供する。 3次元計測装置は、計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得する3次元画像取得部10と、3次元画像を合成して、合成後の3次元点群データにより計測対象の3次元形状が表現される3次元マップを生成する3次元マップ生成部20と、3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる3次元画像に含まれる3次元点群データから、ポリゴンを抽出するポリゴン抽出部30と、ポリゴンに基づき、3次元マップの品質を評価するマップ評価部60と、3次元マップの品質の評価結果に基づき、3次元画像を取得すべき計測対象領域または計測位置を示す情報を含む計測計画を生成する計測計画生成部70とを備える。
Description
本発明は、3次元空間に存在する物体の形状を計測し、3次元マップを作成する3次元計測装置、この3次元計測装置を搭載した移動ロボットおよび手押し車型移動装置、並びに3次元計測処理方法に関する。
実世界の3次元物体の形状をセンサで計測し、この物体の形状を表現する3次元点群データを生成する技術が知られている。この技術では、計測対象物体に対するセンサの視点をさまざまに変えて撮影を繰り返し、得られた撮影データをつなぎ合わせることによって物体全体の形状を表現する3次元点群データを生成する。特に、計測対象(以下、計測対象とする空間または物体を計測対象という)の3次元画像をフレーム単位で撮影し、データとして出力する3次元画像センサを用いた計測時の視点の推定と点群データの生成を同時に実行する技術として、Simultaneously Localization and Mapping(SLAM)と呼ばれる技術がある。
上記の3次元計測のための撮影において、撮影すべき視点の選択は、計測対象の形状やアプリケーション等に依存する。欠損のない高品質な3次元点群データを得るため、一般的には計測対象物体の形状が複雑なほど、多くの視点から計測対象を撮影する必要がある。計測の途中の段階で3次元点群データの充足度を評価し、次に計測すべき視点を選択する技術としてNext Best View(NBV)がある(例えば特許文献1参照)。
上記の3次元計測のための撮影において、撮影すべき視点の選択は、計測対象の形状やアプリケーション等に依存する。欠損のない高品質な3次元点群データを得るため、一般的には計測対象物体の形状が複雑なほど、多くの視点から計測対象を撮影する必要がある。計測の途中の段階で3次元点群データの充足度を評価し、次に計測すべき視点を選択する技術としてNext Best View(NBV)がある(例えば特許文献1参照)。
特許文献1に開示されている技術では、充足度の高い高品質な3次元点群データを得るために、計測視点の選択においてボクセル(体積の要素)を使用している。この従来技術では、ボクセルによって細かく分割された3次元空間中に点群データを置き、ボクセル単位で充足度を評価するため、生成する点群データの規模を事前に想定した上で、ボクセルの数に比例する容量のメモリを処理装置内に確保する必要がある。このため、特許文献1に開示されている技術は、大規模な空間の3次元マップを生成するような用途には適し難い。
本発明は、上記問題点を解決するためになされたものであり、メモリ消費を抑制しつつ、3次元マップを得ることができる3次元計測装置、手押し車型移動装置、移動ロボットおよび3次元計測処理方法を提供することを目的とする。
本発明に係る3次元計測装置は、計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得する3次元画像取得部と、3次元画像を合成して、合成後の3次元点群データにより計測対象の3次元形状が表現される3次元マップを生成する3次元マップ生成部と、3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる3次元画像に含まれる3次元点群データから、ポリゴンを抽出するポリゴン抽出部と、ポリゴンに基づき、3次元マップの品質を評価するマップ評価部と、3次元マップの品質の評価結果に基づき、3次元画像を取得すべき計測対象領域または計測位置を示す情報を含む計測計画を生成する計測計画生成部とを備えることを特徴とする。
また、本発明に係る手押し車型移動装置の一態様は、上述した3次元計測装置であって、3次元画像を撮影する3次元画像センサと、計測計画に基づいて情報を表示する表示部とを備える3次元計測装置が搭載されることを特徴とする。
また、本発明に係る移動ロボットは、上述した3次元計測装置であって、3次元画像を撮影する3次元画像センサを備える3次元計測装置が搭載され、3次元計測装置で生成された計測計画に基づき、現在の位置から次の計測位置に到達するための動作指令信号を生成して出力する移動情報出力部と、動作指令信号に基づき移動する駆動部とを備えることを特徴とする。
また、本発明に係る3次元計測処理方法は、計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得するステップと、3次元画像を合成して、合成後の3次元点群データ により計測対象の3次元形状が表現される3次元マップを生成するステップと、3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる3次元画像に含まれる3次元点群データから、ポリゴンを抽出するステップと、ポリゴンに基づき、3次元マップの品質を評価するステップと、3次元マップの品質の評価結果に基づき、3次元画像を取得すべき計測対象領域または計測位置を示す情報を含む計測計画を生成するステップとを含むことを特徴とする。
また、本発明に係る手押し車型移動装置の一態様は、上述した3次元計測装置であって、3次元画像を撮影する3次元画像センサと、計測計画に基づいて情報を表示する表示部とを備える3次元計測装置が搭載されることを特徴とする。
また、本発明に係る移動ロボットは、上述した3次元計測装置であって、3次元画像を撮影する3次元画像センサを備える3次元計測装置が搭載され、3次元計測装置で生成された計測計画に基づき、現在の位置から次の計測位置に到達するための動作指令信号を生成して出力する移動情報出力部と、動作指令信号に基づき移動する駆動部とを備えることを特徴とする。
また、本発明に係る3次元計測処理方法は、計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得するステップと、3次元画像を合成して、合成後の3次元点群データ により計測対象の3次元形状が表現される3次元マップを生成するステップと、3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる3次元画像に含まれる3次元点群データから、ポリゴンを抽出するステップと、ポリゴンに基づき、3次元マップの品質を評価するステップと、3次元マップの品質の評価結果に基づき、3次元画像を取得すべき計測対象領域または計測位置を示す情報を含む計測計画を生成するステップとを含むことを特徴とする。
本発明に係る3次元計測装置および3次元計測処理方法によれば、従来技術と比較してメモリ消費を抑制しつつ3次元マップを生成することができる。
また、本発明に係る手押し車型移動装置によれば、ユーザが、表示部に表示された情報を基に手押し車型移動装置を適切に移動させて必要十分な3次元画像を簡単に取得することができるので、メモリ削減効果に加えて、効率的に3次元マップを得ることができる。
また、本発明に係る移動ロボットによれば、メモリ削減効果に加えて、人手を介することなく効率的に3次元マップを得ることができる。
また、本発明に係る手押し車型移動装置によれば、ユーザが、表示部に表示された情報を基に手押し車型移動装置を適切に移動させて必要十分な3次元画像を簡単に取得することができるので、メモリ削減効果に加えて、効率的に3次元マップを得ることができる。
また、本発明に係る移動ロボットによれば、メモリ削減効果に加えて、人手を介することなく効率的に3次元マップを得ることができる。
以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
実施の形態1.
図1は、本発明の実施の形態1に係る3次元計測装置の構成を表すブロック図である。なお、図1は、機能ブロックによって本実施の形態の3次元計測装置の構成を表している。実施の形態1に係る3次元計測装置は、3次元画像センサ1と、入力部2と、計測処理部3と、表示部4と、移動情報出力部5とを有する。
図2は、実施の形態1に係る車輪型の移動可能な移動ロボット1000に搭載した3次元計測装置が、屋内空間の3次元マップを生成する様子を示している。図2において、太線の直線および破線で示す四角錐は3次元画像センサ1の視野の範囲(それぞれ撮影範囲1001、撮影範囲1002)を模式的に示したものである。実施の形態1に係る3次元計測装置は、移動ロボット1000の移動に合わせて3次元画像センサ1を用いて3次元画像を撮影し、移動ロボット1000の周囲の3次元マップを生成する。
図1は、本発明の実施の形態1に係る3次元計測装置の構成を表すブロック図である。なお、図1は、機能ブロックによって本実施の形態の3次元計測装置の構成を表している。実施の形態1に係る3次元計測装置は、3次元画像センサ1と、入力部2と、計測処理部3と、表示部4と、移動情報出力部5とを有する。
図2は、実施の形態1に係る車輪型の移動可能な移動ロボット1000に搭載した3次元計測装置が、屋内空間の3次元マップを生成する様子を示している。図2において、太線の直線および破線で示す四角錐は3次元画像センサ1の視野の範囲(それぞれ撮影範囲1001、撮影範囲1002)を模式的に示したものである。実施の形態1に係る3次元計測装置は、移動ロボット1000の移動に合わせて3次元画像センサ1を用いて3次元画像を撮影し、移動ロボット1000の周囲の3次元マップを生成する。
次に、実施の形態1に係る3次元計測装置の各構成要素について説明する。
図1において、3次元画像センサ1は、計測対象の3次元画像をフレーム単位で撮影し、データとして出力するセンサである。ここで、計測対象が空間である場合において、空間とは、室内や室外など、1つ以上の物体が存在する広がりを持った場所を意味する。また、3次元画像とは、計測対象の同じ位置を撮影した2次元画像と距離画像とが組になった画像である。2次元画像とは、物体または空間の明るさを示す情報が2次元に配列された画素ごとに記録された画像である。2次元画像には、白黒画像とカラー画像とがある。カラー画像は、赤(R)、緑(G)、青(B)の3色の明るさで表現されるRGB画像が一般的である。また、距離画像とは、撮影素子から被写体となった物体までの距離を示す距離情報が画素ごとに記録された画像である。距離画像の各画素には、例えば撮影素子から物体までの距離の値がミリメートル単位で記録されている。この距離画像から、計測対象の3次元形状を3次元空間中の点の集合(3次元点群)として得ることができる。
図1において、3次元画像センサ1は、計測対象の3次元画像をフレーム単位で撮影し、データとして出力するセンサである。ここで、計測対象が空間である場合において、空間とは、室内や室外など、1つ以上の物体が存在する広がりを持った場所を意味する。また、3次元画像とは、計測対象の同じ位置を撮影した2次元画像と距離画像とが組になった画像である。2次元画像とは、物体または空間の明るさを示す情報が2次元に配列された画素ごとに記録された画像である。2次元画像には、白黒画像とカラー画像とがある。カラー画像は、赤(R)、緑(G)、青(B)の3色の明るさで表現されるRGB画像が一般的である。また、距離画像とは、撮影素子から被写体となった物体までの距離を示す距離情報が画素ごとに記録された画像である。距離画像の各画素には、例えば撮影素子から物体までの距離の値がミリメートル単位で記録されている。この距離画像から、計測対象の3次元形状を3次元空間中の点の集合(3次元点群)として得ることができる。
以下、3次元空間中の物体表面の点の集合である3次元点群に関するデータを3次元点群データという。
3次元画像から得られる3次元点群データは、各点の位置を示すデータ(3次元座標等)だけでなく、その点の位置での物体の明るさを示すデータ(輝度値、RGB値、CMYK値、その他のカラーコード等)も含まれうる。なお、3次元画像から得られる3次元点群データは、3次元画像から直接的に得られるデータ(画素ごとの距離情報や明るさ)に限定されず、該データから変換等によって得られるデータを含む。また、3次元画像は、2次元画像と距離画像とが組になった画像に限定されず、3次元点群データを含む画像であればよい。なお、ここで「3次元点群データを含む画像」には、3次元点群データが直接記録される画像だけでなく、上記の距離画像のように、画像データとして記録された情報(画素ごとの距離情報)から変換等により所望の3次元点群データを取得可能な画像も含まれる。 距離の計測方式としては、例えばToF(Time of Flight)方式、またはプロジェクタとカメラを組み合わせた構成によるパターン投光方式などの方式を利用することができる。3次元画像センサ1から出力される3次元画像において組をなす2次元画像と距離画像の撮像時刻は同期している。
3次元画像から得られる3次元点群データは、各点の位置を示すデータ(3次元座標等)だけでなく、その点の位置での物体の明るさを示すデータ(輝度値、RGB値、CMYK値、その他のカラーコード等)も含まれうる。なお、3次元画像から得られる3次元点群データは、3次元画像から直接的に得られるデータ(画素ごとの距離情報や明るさ)に限定されず、該データから変換等によって得られるデータを含む。また、3次元画像は、2次元画像と距離画像とが組になった画像に限定されず、3次元点群データを含む画像であればよい。なお、ここで「3次元点群データを含む画像」には、3次元点群データが直接記録される画像だけでなく、上記の距離画像のように、画像データとして記録された情報(画素ごとの距離情報)から変換等により所望の3次元点群データを取得可能な画像も含まれる。 距離の計測方式としては、例えばToF(Time of Flight)方式、またはプロジェクタとカメラを組み合わせた構成によるパターン投光方式などの方式を利用することができる。3次元画像センサ1から出力される3次元画像において組をなす2次元画像と距離画像の撮像時刻は同期している。
入力部2は、3次元計測装置に対するユーザからの各種の指示の入力を受け付ける。入力部2の機能は、例えばキーボードやマウス、ペン型デバイス、タッチディスプレイなどにより実現される。これらのデバイスを介して、ユーザは入力部2に対して3次元マップ生成処理の開始・一時停止・終了、生成した3次元マップの表示およびファイル保存処理などの指示を入力する。また、入力部2を介して、ユーザは3次元計測装置の動作に関するパラメータを設定できるように構成してもよい。
計測処理部3は、入力部2から入力されたユーザの指示に基づき、3次元画像センサ1で取得した3次元画像のデータから周囲の空間などの計測対象の3次元マップを生成すると同時に、次に計測すべき位置への移動経路を生成する。計測処理部3は、演算処理部(CPU)、記憶部(ROM、RAMおよびハードディスクドライブ等)および信号入出力部を持ったコンピュータにより構成することができる。計測処理部3の機能は、コンピュータにより実現される。すなわち、コンピュータの記憶部には、計測処理部3の機能を実現するためのプログラムが格納されており、このプログラムに従って、計測処理部3における各種の演算処理が演算処理部にて実行される。計測処理部3を構成するコンピュータとしては、例えばラップトップPC(ノート型パーソナルコンピュータ)やタブレットPC(板状パーソナルコンピュータ)を用いることができる。
表示部4は、計測処理部3で実行される処理の状況または処理の結果得られた情報を表示する。例えば、表示部4は、計測処理部3で実行される処理の状況を逐次表示してもよい。また、表示部4は、計測処理部3で生成される計測計画に基づき、情報を表示してもよい。例えば、表示部4は、計測計画に基づき、3次元画像を取得すべき計測対象領域または計測位置を示す情報を表示してもよい。ここで、3次元画像を取得すべき計測対象領域または計測位置を示す情報には、計測対象領域の3次元画像を取得可能な位置(計測位置)までの経路に関する情報が含まれる。また、例えば、表示部4は、計測計画に基づき、3次元画像センサ1で次に計測すべき計測対象領域または計測位置と、この際の視線方向とを表示してもよい。また、表示部4は、計測処理部3で生成される3次元マップを画像として表示してもよい。また、表示部4は、3次元画像センサ1が撮影した3次元画像を表示してもよい。
表示部4の機能は、例えば液晶ディスプレイ、プロジェクタにより実現される。また、入力部2および表示部4としてタッチディスプレイを使用することにより、入力部2と表示部4の機能を兼備させてもよい。
表示部4の機能は、例えば液晶ディスプレイ、プロジェクタにより実現される。また、入力部2および表示部4としてタッチディスプレイを使用することにより、入力部2と表示部4の機能を兼備させてもよい。
移動情報出力部5は、計測処理部3で生成される計測計画に基づき、次の計測位置および該計測位置への移動経路を決定する。そして、移動情報出力部5は、決定した移動経路に沿って当該3次元計測装置を移動させるための制御信号を出力する。移動情報出力部5は、例えば、決定した移動経路に基づき、移動ロボット1000の次の移動方向および移動速度を決定して、制御信号として外部の装置へと出力する。例えば、本発明に係る3次元計測装置が車輪の回転によって移動する移動ロボット1000に搭載される場合、移動情報出力部5から出力される移動方向と移動速度に関する制御信号が、移動ロボット1000の動作指令信号として入力される。移動ロボット1000は、移動情報出力部5から与えられる制御信号に従って、車輪の角度と回転速度を制御して移動させる駆動部(図示せず)を備えていてもよい。移動ロボット1000の移動に伴って、3次元計測装置は、3次元画像センサ1により周囲を撮影し、得られた3次元画像を処理することにより、計測対象の3次元マップを生成する。
なお、本発明に係る3次元計測装置を、アクチュエーターを備える移動ロボット1000に搭載する場合、3次元画像センサ1を移動ロボット1000のアクチュエーターに取り付け、該アクチュエーターの駆動により3次元画像センサ1の位置(例えば、高さ)および姿勢の少なくともいずれかを変更できるように構成してもよい。この場合、移動情報出力部5は、計測処理部3で生成される計測計画で示される次に計測すべき計測位置および視線方向と、現在の移動ロボット1000の位置と、現在の3次元画像センサ1の位置および姿勢とから、移動ロボット1000の移動速度および移動方向と、3次元センサ1の位置および姿勢とを決定し、制御信号として移動ロボット1000へと出力してもよい。移動ロボット1000は、例えば、3次元画像センサ1の位置および姿勢に関する制御信号を移動情報出力部5から受け取ると、上述した自身の計測位置への移動処理に加えて、アクチュエーターを動作させることにより、3次元画像センサ1の位置および姿勢を変更する。なお、該制御信号は、3次元画像センサ1の位置または姿勢のいずれかに関する信号であってもよい。
移動情報出力部5は、3次元計測装置またはそれを搭載した装置が自律移動できない装置である場合、省略されてもよい。
なお、本発明に係る3次元計測装置を、アクチュエーターを備える移動ロボット1000に搭載する場合、3次元画像センサ1を移動ロボット1000のアクチュエーターに取り付け、該アクチュエーターの駆動により3次元画像センサ1の位置(例えば、高さ)および姿勢の少なくともいずれかを変更できるように構成してもよい。この場合、移動情報出力部5は、計測処理部3で生成される計測計画で示される次に計測すべき計測位置および視線方向と、現在の移動ロボット1000の位置と、現在の3次元画像センサ1の位置および姿勢とから、移動ロボット1000の移動速度および移動方向と、3次元センサ1の位置および姿勢とを決定し、制御信号として移動ロボット1000へと出力してもよい。移動ロボット1000は、例えば、3次元画像センサ1の位置および姿勢に関する制御信号を移動情報出力部5から受け取ると、上述した自身の計測位置への移動処理に加えて、アクチュエーターを動作させることにより、3次元画像センサ1の位置および姿勢を変更する。なお、該制御信号は、3次元画像センサ1の位置または姿勢のいずれかに関する信号であってもよい。
移動情報出力部5は、3次元計測装置またはそれを搭載した装置が自律移動できない装置である場合、省略されてもよい。
図3は、本発明の実施の形態1に係る3次元計測装置に備えられる計測処理部3の構成要素の一例を示したブロック図である。計測処理部3は、3次元画像取得部10と、3次元マップ生成部20と、ポリゴン抽出部30と、3次元画像記憶部40と、3次元マップ記憶部50と、マップ評価部60と、計測計画生成部70と、入力イベント処理部80と、表示制御部90とを備える。
次に、本発明の実施の形態1に係る3次元計測装置の動作について説明する。
図4は、本発明の実施の形態1に係る3次元計測装置が3次元マップを生成する3次元計測処理方法における流れを示す図である。なお、図4に示す動作の流れは一例を示したものであり、一部の動作の順序が入れ替わる場合もあり、一部の動作が同時に並列して実行される場合もある。以下、図3および図4を用いて、本実施の形態の3次元計測装置の動作について説明する。なお、本実施の形態の3次元計測装置の動作は、図示していない動作制御部によって制御される。
図4は、本発明の実施の形態1に係る3次元計測装置が3次元マップを生成する3次元計測処理方法における流れを示す図である。なお、図4に示す動作の流れは一例を示したものであり、一部の動作の順序が入れ替わる場合もあり、一部の動作が同時に並列して実行される場合もある。以下、図3および図4を用いて、本実施の形態の3次元計測装置の動作について説明する。なお、本実施の形態の3次元計測装置の動作は、図示していない動作制御部によって制御される。
3次元計測装置の動作が開始されると、3次元計測装置の動作はステップS1へと移行する。ステップS1では、3次元画像取得部10が、3次元画像センサ1から出力される3次元画像をフレーム単位で取得する。3次元画像を1フレーム取得した後、3次元計測装置の動作はステップS2へと移行する。
ステップS2では、ポリゴン抽出部30が、3次元画像のうちの距離画像からポリゴンを抽出する。ポリゴンとは、ここでは表面と裏面が定義された多角形の面素であるとする。また、ポリゴンデータは、該ポリゴンを表すデータ、すなわち表面と裏面が定義された多角形の面形式データであるとする。ポリゴン抽出部30では、3次元空間中の点の集合(3次元点群)を、3次元空間中の面素の集合(ポリゴン集合)に変換する処理が実行される。ポリゴン抽出部30は、例えば、3次元画像または生成途中の3次元マップから取得される3次元点群データで示される3次元点群内の近傍の3点を接続することにより、三角形のポリゴンを抽出してもよい。3次元点群データからポリゴンを生成する手法としては、Marching Cubes法、またはBall-Pivotingアルゴリズム等の既存手法を用いることができる。3次元点群データを構成する点の密度が高い領域では、生成されるポリゴンのサイズは小さくなる。なお、ポリゴンの形状は三角形に限定されず、四角形、五角形、六角形などでもよい。この場合、所定の形状における頂点の数分、3次元点群内の近傍の点を接続すればよい。また、すべてのポリゴンが同一の多角形でなくてもよい。
ポリゴンの形状を三角形とした場合、他の形状に比べて同じ3次元点群から生成されるポリゴンの数を増やすことができ、後述する3次元マップの品質の評価において、ポリゴンに基づく評価を行う際により精密にかつより簡易な計算で評価を行うことができるので好ましい。
ポリゴンの形状を三角形とした場合、他の形状に比べて同じ3次元点群から生成されるポリゴンの数を増やすことができ、後述する3次元マップの品質の評価において、ポリゴンに基づく評価を行う際により精密にかつより簡易な計算で評価を行うことができるので好ましい。
ここで、ポリゴン抽出部30により生成されたポリゴンに対し、必要に応じて表面と裏面を定義する手順について、図5を用いて説明する。図5において、計測位置32にて取得された距離画像から、ポリゴン抽出部がポリゴン31を抽出したとする。点線33はセンサの光軸を、矢印34は計測位置32を起点としたセンサの光軸方向ベクトルを、矢印35aは抽出されたポリゴン31の法線ベクトルを表す。一般に面の法線ベクトルは0でない実数倍の任意性があるベクトルとして定義されるため、点線の矢印35bもポリゴン31の法線ベクトルとなりえる。ポリゴン31の法線ベクトルを表す矢印35aと矢印35bを、ポリゴン31の法線ベクトル35と総称する。
ここでは、以下に示す手順で法線ベクトルを定義することにより、ポリゴン31の法線ベクトルとして矢印35aが選択されるようにする。
まず、3次元画像センサ1に固定された3次元画像センサ1の3次元座標系における光軸方向ベクトルを式(1)のように表記する。
まず、3次元画像センサ1に固定された3次元画像センサ1の3次元座標系における光軸方向ベクトルを式(1)のように表記する。
距離画像から抽出されたポリゴン情報と3次元画像センサ1の光軸方向ベクトルの情報は、3次元画像と紐付けて、3次元画像記憶部40に記憶される。
再び、図3および図4を用いた、本実施の形態の3次元計測装置の動作の説明に戻る。ステップS2にて3次元画像に紐付けられるポリゴンを抽出した後、3次元計測装置の動作はステップS3へと移行する。
ステップS3では、3次元マップ生成部20は、3次元画像取得部10および3次元画像記憶部40から3次元画像データを、3次元画像記憶部40から各3次元画像に紐づけられたポリゴンデータを受け取り、3次元マップを生成する。3次元マップとは、3次元点群データにより物体または空間(より具体的には、空間を構成する物体)の3次元形状が少なくとも表現されたデータである。本例では、3次元マップ生成部20は、計測対象の3次元形状を少なくとも表現する3次元点群データを含む3次元マップを生成する。
再び、図3および図4を用いた、本実施の形態の3次元計測装置の動作の説明に戻る。ステップS2にて3次元画像に紐付けられるポリゴンを抽出した後、3次元計測装置の動作はステップS3へと移行する。
ステップS3では、3次元マップ生成部20は、3次元画像取得部10および3次元画像記憶部40から3次元画像データを、3次元画像記憶部40から各3次元画像に紐づけられたポリゴンデータを受け取り、3次元マップを生成する。3次元マップとは、3次元点群データにより物体または空間(より具体的には、空間を構成する物体)の3次元形状が少なくとも表現されたデータである。本例では、3次元マップ生成部20は、計測対象の3次元形状を少なくとも表現する3次元点群データを含む3次元マップを生成する。
3次元マップの生成には、複数の3次元画像を合成して3次元マップを生成する公知の手法を用いることができる。3次元マップを生成する手法として、例えばSLAM(Simultaneously Localization and Mapping)、SfM(Structure from Motion)などがある。これらの手法は、異なる視点で撮影された複数の3次元画像を入力とし、これらの3次元画像の撮影位置および姿勢を推定する問題と、これらの3次元画像を3次元座標系上でつなぎ合わせて3次元マップを生成する問題とを同時に解く。ある3次元画像の撮影位置および姿勢が推定された時、この撮影位置および姿勢を基準として、3次元画像をなす距離画像の各画素の距離情報を3次元座標系上に配置する。このとき、距離画像の各画素が3次元マップを構成する点群の1つの点に対応する。入力される3次元画像全てに対してこの処理を実行することにより、3次元マップが生成される。したがって、3次元マップには、入力された3次元画像全ての距離画像の画素に対応した点が含まれうる。なお、後述するように、3次元マップの更新の際には、生成済みの3次元マップの評価結果に基づき一部の点のデータを利用しないようにすることも可能である。
また、3次元マップ生成部20は、3次元マップ生成処理において、これまでに生成された3次元マップから抽出したポリゴンデータ(以下、3次元マップのポリゴンデータという)または合成前の3次元画像から取得したポリゴンデータ(以下、3次元画像のポリゴンデータという)を使用するように構成することも可能である。例えば、該ポリゴンデータにより表現される計測対象の面(より具体的には、計測対象物体の面または計測対象空間に含まれる物体の面)の情報を、3次元画像のつなぎ合わせの処理に使用することができる。なお、3次元マップの生成および後述する3次元マップの評価に3次元画像のポリゴンデータを用いない場合は、ステップS2の動作を省略してもよい。
ステップS3にて3次元マップが生成された後、3次元計測装置の動作はステップS4へと移行する。ステップS4では、ポリゴン抽出部30が、生成後の3次元マップを構成している3次元点群データからポリゴンを抽出する。ポリゴンの抽出方法は、3次元画像に含まれる3次元点群データからの抽出方法と同様である。一般に、3次元マップにおいて3次元画像が重なる領域がある場合、当該領域のポリゴンは合成前の3次元画像のポリゴンよりも小さくなる。3次元マップ生成部20で生成された3次元マップは、ポリゴン抽出部30が抽出した該3次元マップのポリゴンデータと合わせて、3次元マップ記憶部50に記憶される。ここで、3次元マップに対応するポリゴンデータは、3次元マップを構成する各点を含む3次元点群から生成されたポリゴンのデータである。
ステップS4の後、3次元計測装置の動作はステップS5へと移行する。ステップS5では、マップ評価部60が、3次元マップ記憶部50に記憶されている生成済みの3次元マップの品質を評価する。マップ評価部60は、(1)3次元画像を撮影した時の被写体とされた物体までの距離、(2)計測時の3次元画像センサの姿勢、(3)3次元マップを構成する点群の密度、(4)3次元マップの充足度、に基づいて3次元マップの品質を評価する。これらのうち(1)と(2)は、3次元マップの計測精度、より具体的には3次元マップを構成している3次元点群データまたは3次元マップの元となった3次元画像の3次元点群データの計測精度を指標として用いる。換言すると、マップ評価部60は、計測精度、点群密度および充足度の3つの指標を用いて、3次元マップの品質を評価する。このとき、マップ評価部60は、ポリゴン抽出部30が抽出したポリゴンに基づき、3次元マップの品質を評価することで、3次元マップの生成におけるメモリ消費を抑制する。マップ評価部60は、上記指標のすべてを用いなくてもよい。また、マップ評価部60は、上記指標のすべてについて、ポリゴンを利用して品質を評価しなくてもよい。例えば、マップ評価部60は、上記指標のいずれか1つのみを用いて3次元マップの品質を評価することも可能である。
次に、マップ評価部60の各構成要素について説明する。
図6は、マップ評価部60の構成例を示すブロック図である。マップ評価部60は、計測距離評価部61と、計測姿勢評価部62と、点群密度評価部63と、マップ計測精度評価部64と、マップ充足度評価部65とを備える。3次元マップの品質の指標のうち、計測距離評価部61、計測姿勢評価部62、およびマップ計測精度評価部64が3次元マップの計測精度を、点群密度評価部63が3次元マップの点群密度を、マップ充足度評価部65が3次元マップの充足度を評価する。従来技術では3次元マップの充足度のみが評価されていたが、本実施の形態の3次元計測装置は、計測精度、点群密度および充足度という3つの指標を用いて3次元マップの品質を評価することができる。
なお、マップ評価部60は必ずしも前述の構成要素全てを備える必要はない。例えば、3次元マップの点群密度を考慮する必要がない場合には、マップ評価部60の構成要素から点群密度評価部63を省いた構成とすることも可能である。また、例えば、3次元マップの計測精度を考慮する必要がない場合には、マップ評価部60の構成要素から計測距離評価部61、計測姿勢評価部62およびマップ計測精度評価部64を省いた構成とすることも可能である。なお、計測精度として、計測距離または計測姿勢を考慮する必要がない場合は、さらにマップ評価部60の構成要素からさらに計測距離評価部61または計測姿勢評価部62と、マップ計測精度評価部64とを省いた構成とすることも可能である。また、例えば、3次元マップの充足度を考慮する必要がない場合には、マップ評価部60の構成要素からマップ充足度評価部65を省いた構成とすることも可能である。
図6は、マップ評価部60の構成例を示すブロック図である。マップ評価部60は、計測距離評価部61と、計測姿勢評価部62と、点群密度評価部63と、マップ計測精度評価部64と、マップ充足度評価部65とを備える。3次元マップの品質の指標のうち、計測距離評価部61、計測姿勢評価部62、およびマップ計測精度評価部64が3次元マップの計測精度を、点群密度評価部63が3次元マップの点群密度を、マップ充足度評価部65が3次元マップの充足度を評価する。従来技術では3次元マップの充足度のみが評価されていたが、本実施の形態の3次元計測装置は、計測精度、点群密度および充足度という3つの指標を用いて3次元マップの品質を評価することができる。
なお、マップ評価部60は必ずしも前述の構成要素全てを備える必要はない。例えば、3次元マップの点群密度を考慮する必要がない場合には、マップ評価部60の構成要素から点群密度評価部63を省いた構成とすることも可能である。また、例えば、3次元マップの計測精度を考慮する必要がない場合には、マップ評価部60の構成要素から計測距離評価部61、計測姿勢評価部62およびマップ計測精度評価部64を省いた構成とすることも可能である。なお、計測精度として、計測距離または計測姿勢を考慮する必要がない場合は、さらにマップ評価部60の構成要素からさらに計測距離評価部61または計測姿勢評価部62と、マップ計測精度評価部64とを省いた構成とすることも可能である。また、例えば、3次元マップの充足度を考慮する必要がない場合には、マップ評価部60の構成要素からマップ充足度評価部65を省いた構成とすることも可能である。
図6において、計測距離評価部61は、3次元マップの生成に使用した3次元画像を撮影した時の3次元画像センサ1から3次元マップで表現する物体までの距離に関する評価を実行する。3次元画像センサの一般的な性質として、センサから被写体までの距離が遠いほど、距離の計測精度が悪化する。この性質を踏まえて、計測距離評価部61は、3次元マップの生成に用いた3次元画像の撮影時において上記距離が小さい計測データ(3次元マップを構成する3次元点群データに含まれる各点に対応するデータ)に対して高い評価値を与えるように動作する。すなわち、計測距離評価部61は、3次元マップを構成する3次元点群データが示す計測対象の位置(より具体的には、計測対象物体の位置または計測対象空間に含まれる物体の位置)と、該計測対象の位置に対応する点に関するデータ(例えば、距離値)を含む3次元画像を取得した際の3次元画像センサの位置との距離を評価する。
具体的には、計測距離評価部61は、まず3次元マップ記憶部50に記憶されている3次元マップを読み込む。次に、この3次元マップを生成するために使用した3次元画像を3次元画像記憶部40から読み込む。そして、読み込んだ3次元画像に記録されている距離値に基づき、3次元マップを構成する3次元点群データが示す各点に対して評価値を割り付けていく。
具体的には、計測距離評価部61は、まず3次元マップ記憶部50に記憶されている3次元マップを読み込む。次に、この3次元マップを生成するために使用した3次元画像を3次元画像記憶部40から読み込む。そして、読み込んだ3次元画像に記録されている距離値に基づき、3次元マップを構成する3次元点群データが示す各点に対して評価値を割り付けていく。
計測姿勢評価部62は、3次元マップの生成に使用した3次元画像を撮影した際の、3次元画像の被写体(3次元マップで表現される物体 )に対する3次元画像センサ1の向き(姿勢)に関する評価を実行する。3次元画像センサの一般的な性質として、センサで物体の面を撮影する際、物体の面に対してセンサの向きが正面に近いほど距離情報の計測精度が高くなる。この性質を踏まえて、計測姿勢評価部62は、3次元マップのポリゴンデータまたは3次元マップの生成に使用した3次元画像のポリゴンデータに基づき、計測対象の面(より具体的には、計測対象物体の面または計測対象空間に含まれる物体の面)と3次元画像センサ1との相対的な姿勢を評価する。計測姿勢評価部62は、3次元マップのポリゴンデータまたは3次元マップの生成に使用した3次元画像のポリゴンデータが示す各ポリゴンの法線ベクトルと、このポリゴンの頂点をなす点に関するデータを含む3次元画像を取得した際の3次元画像センサの光軸方向ベクトルとの内積を計算して、上記相対的な姿勢を評価してもよい。なお、3次元画像の合成時に、異なる3次元画像に含まれる3次元点群データがつなぎあわされた結果、あるポリゴンの頂点のデータを含む3次元画像が異なる場合の3次元画像センサの光軸方向ベクトルについては次のように扱ってもよい。計測姿勢評価部62は、例えば、最多の頂点のデータを含む3次元画像における3次元画像センサの光軸方向ベクトルを用いてもよいし、各頂点のデータを含む3次元画像における3次元画像センサの光軸方向ベクトルの合成ベクトルを用いてもよい。
内積の絶対値が1に近いほど、相対的に高い評価値を与えるように動作する。例えば、内積の絶対値(0~1)をこのまま評価値としてもよいし、内積の絶対値に対する閾値を1つまたは複数設けて、閾値より大きい値となったポリゴンに対して、該閾値以下であったポリゴンよりも高い評価値を付してもよい。そして、3次元マップを構成する各点に対して評価値を割り付ける。
内積の絶対値が1に近いほど、相対的に高い評価値を与えるように動作する。例えば、内積の絶対値(0~1)をこのまま評価値としてもよいし、内積の絶対値に対する閾値を1つまたは複数設けて、閾値より大きい値となったポリゴンに対して、該閾値以下であったポリゴンよりも高い評価値を付してもよい。そして、3次元マップを構成する各点に対して評価値を割り付ける。
3次元マップを構成する各点にポリゴンの評価値を割り付ける方法としては、次の例が挙げられる。例えば、各ポリゴンの評価値をこのポリゴンを構成している各点の評価値に割り振った上で、各点においてそれら評価値を加算していく方法でもよい。また、例えば、各ポリゴンの評価値をこのポリゴンを構成している各点の評価値に割り振った上で、各点においてそれら評価値の平均をとる方法でもよい。また、各ポリゴンの評価値をこのポリゴンを構成している各点に割り振る方法は、例えば、ポリゴンの評価値をこのままこのポリゴンを構成している各点の評価値とする方法でもよいし、ポリゴンの評価値をこのポリゴンを構成している各点で分配(等分配等)する方法でもよい。なお、平均は、ポリゴンのサイズ等に応じた重みづけによる加重平均であってもよい。
計測姿勢評価部62による計測姿勢の評価の方法を、図7を用いて説明する。図7において、点621は3次元画像センサの位置(計測位置)、矢印622は点621を起点とした3次元画像センサ1の光軸方向ベクトルを表しているとする。そして、白抜き丸印で示している点623a、点623b、点623c、および点623dの4点が3次元点群データとして得られたとする。すると、ポリゴン抽出部30で3次元点群データからポリゴンを抽出する処理を実行することにより、ポリゴン624aとポリゴン624b、およびそれぞれに対応する法線ベクトルとして法線ベクトル625aと法線ベクトル625bが得られる。このとき、光軸方向ベクトル622と法線ベクトル625aのなす角度は約180度であり、これらのベクトルの内積の絶対値は1に近くなる。これは、ポリゴン624aの面が方向ベクトル622に対してほぼ正対していることを示しており、点623aと点623bの距離の計測精度は高いと期待される。このため、計測姿勢評価部62は点623aと点623bに対して、これよりも内積の絶対値が0に近いポリゴンを構成している各点よりも高い評価値を与える。一方、方向ベクトル622と法線ベクトル625bの内積は0に近くなる。これは、3次元画像センサ1がポリゴン624bの面の向きに対して斜め向きに計測していることを示しており、点623cと点623dの距離の計測精度は低いと考えられる。このため、計測姿勢評価部62は点623cと点623dに対して、これよりも内積の絶対値が1に近いポリゴンを構成している各点よりも低い評価値を与える。なお、計測姿勢評価部62は、ポリゴンごとに上記内積に応じた評価値を求め、それを上述した方法により各点に割り付けてもよい。
点群密度評価部63は、生成済みの3次元マップの点群の密度に関する評価を実行する。点群密度評価部63は、点群の密度が高いほど、高い評価値を与えるように動作する。点群の密度は、ポリゴン抽出部30で抽出されるポリゴンの辺の長さの合計に基づいて算出する。具体的には、点群密度評価部63は、まず3次元マップ記憶部50に記憶されている3次元マップおよびこのポリゴンデータを読み込む。また、点群密度評価部63は、上記に代えて、3次元画像記憶部40に記憶されている3次元画像およびこのポリゴンデータを読み込んでもよい。そして、読み込んだポリゴンデータが示すポリゴンのサイズに基づき、3次元マップを構成する各点に対して評価値を割り付けていく。例えば、ポリゴンのサイズが相対的に小さいほど、このポリゴンを構成している点に対して高い評価値を割り付けていく。3次元マップまたは3次元画像のポリゴンと3次元マップを構成する各点との対応づけは、上述した3次元マップを構成する各点に対して評価値を割り付ける方法と基本的に同様でよい。なお、点群密度評価部63で算出される評価値は、3次元マップを構成する点毎以外に、3次元マップの小領域毎にも求められる。小領域毎の評価値の求め方は後述する。
マップ計測精度評価部64は、計測距離評価部61および計測姿勢評価部62のそれぞれの評価結果を統合した結果に基づき、3次元マップの計測精度の評価値を算出する。なお、計測距離評価部61、計測姿勢評価部62およびマップ計測精度評価部64で算出される評価値も、3次元マップを構成する点毎以外に、3次元マップの小領域毎にも求められる。
マップ計測精度評価部64は、計測距離評価部61および計測姿勢評価部62で算出された評価値の重み付け和を求めることにより、生成済みの3次元マップの計測精度に関する評価値を算出する。マップ計測精度評価部64は、生成済みの3次元マップの点群の寸法誤差が小さいほど、高い評価値を出力する。
各評価値の重み付けは、ユーザが任意に指定できるようにする。例えば、計測距離精度が高い3次元画像センサを使用する場合には、計測距離評価部61にて算出される計測距離に関する評価値の重みを小さく設定する。
各評価値の重み付けは、ユーザが任意に指定できるようにする。例えば、計測距離精度が高い3次元画像センサを使用する場合には、計測距離評価部61にて算出される計測距離に関する評価値の重みを小さく設定する。
3次元マップの小領域毎に評価値を求める方法としては、次のような方法が挙げられる。例えば、3次元マップを構成する点を少なくとも1つ含むように所定サイズの小領域(例えばボクセル)を3次元空間に対して定義し、この小領域毎に各々の評価値を算出するように構成してもよい。小領域は、3次元マップを構成する点を複数含むように定義されてもよい。
点を含む小領域毎に評価することにより、局所的な領域に対して計測精度および点群密度を評価することができる。なお、この方法では点を含まない領域に対して上記の評価がされないが、このような領域については後述する充足度を用いて評価すればよい。
また、例えば、3次元マップを多数の立方体(小領域)で等分割し、この立方体内に含まれる各点の評価値の平均をこの小領域の評価値とすることも可能である。評価値自体は3次元マップを構成する各点に割り付けられているため、仮に小領域の数が増えたとしても、3次元マップの生成におけるメモリ消費が増えるわけではない。
点を含む小領域毎に評価することにより、局所的な領域に対して計測精度および点群密度を評価することができる。なお、この方法では点を含まない領域に対して上記の評価がされないが、このような領域については後述する充足度を用いて評価すればよい。
また、例えば、3次元マップを多数の立方体(小領域)で等分割し、この立方体内に含まれる各点の評価値の平均をこの小領域の評価値とすることも可能である。評価値自体は3次元マップを構成する各点に割り付けられているため、仮に小領域の数が増えたとしても、3次元マップの生成におけるメモリ消費が増えるわけではない。
マップ充足度評価部65は、欠損のない3次元マップが生成できているかといった、3次元マップの充足度を評価する。より具体的に、マップ充足度評価部65は、3次元マップ内に仮想的な視点を設定し、仮想的な視点を中心とする仮想球上において、3次元マップのポリゴンの表面または裏面が射影された領域の表面積を求めることにより、3次元マップの充足度に基づく評価値を算出する。
マップ充足度評価部65によるマップ充足度の評価の方法を、図8から図10を用いて説明する。ここで、図8に平面図として示している回廊の形状の空間の3次元マップを、本実施の形態に係る3次元計測装置を用いて生成する場合を考える。図8において、白色の部分が、3次元計測装置が移動できる空間を表し、斜線でハッチングされている部分が壁の内側または裏側にあたる範囲を表す。
図9は、本実施の形態に係る3次元計測装置が空間を計測する様子を示している。図9では2次元の図面を用いて計測の様子を説明しているが、実際の3次元計測装置では3次元空間中で動作する。図9の黒丸の点は3次元画像センサの位置、黒丸の点に付随する三角形は、3次元画像センサの画角(視野)を表現している。3次元計測装置は、黒丸で表している点651aを初期位置として、矢印にて示す順番で点651b、点651c、点651dと移動していき、点651dの位置で現在停止しているとする。このように3次元空間を計測することにより、図9で実線と一点鎖線で示す3次元マップ、ならびにこの3次元マップに付随するポリゴン(図示しない)が生成されたとする。図9において、実線301側がポリゴンの表面であり、一点鎖線302側はポリゴンの裏面であるとする。また、図9の点線303の部分は、3次元マップが作成されていない部分(領域)を表す。
図9は、本実施の形態に係る3次元計測装置が空間を計測する様子を示している。図9では2次元の図面を用いて計測の様子を説明しているが、実際の3次元計測装置では3次元空間中で動作する。図9の黒丸の点は3次元画像センサの位置、黒丸の点に付随する三角形は、3次元画像センサの画角(視野)を表現している。3次元計測装置は、黒丸で表している点651aを初期位置として、矢印にて示す順番で点651b、点651c、点651dと移動していき、点651dの位置で現在停止しているとする。このように3次元空間を計測することにより、図9で実線と一点鎖線で示す3次元マップ、ならびにこの3次元マップに付随するポリゴン(図示しない)が生成されたとする。図9において、実線301側がポリゴンの表面であり、一点鎖線302側はポリゴンの裏面であるとする。また、図9の点線303の部分は、3次元マップが作成されていない部分(領域)を表す。
このとき、生成済みの3次元マップの充足度を算出する方法を、図10を用いて説明する。まず、3次元マップ中のある仮想的な視点(立脚点)Pを中心とした仮想球652を定義する。そして、生成済みの3次元マップのポリゴンを、仮想球652へと射影する。図10の仮想球652において、仮想的な視点Pから見てポリゴンの表面が見えている範囲を実線311で、ポリゴンの裏面が見えている範囲を一点鎖線312で、ポリゴンが見えない範囲を点線313で、それぞれ示している。すなわち、仮想的な視点Pを基準に、実線311は仮想的な視点Pから見て計測済みの範囲を、一点鎖線312は仮想的な視点Pから見て計測対象の面として裏側のみが計測されている範囲を、点線313は未計測の範囲をそれぞれ示している。このように、仮想的な視点Pからのポリゴンの見え方を求めた後、ポリゴンの表面が仮想球に射影された領域(図10の実線311の範囲に対応)の表面積を求める。この表面積を、仮想的な視点Pを基準としたマップ充足度とする。
マップ充足度評価部65が仮想球を設定する場所は、計測対象を含む所定の空間内の任意の点を設定可能であるが、例えば3次元計測装置が既に移動してきた過去の経路上の、複数(例えば、1メートル間隔)の位置としてもよい。あるいは、3次元計測装置が移動してきた過去の経路の、近傍の位置としてもよい。近傍の位置とは、3次元画像センサによる3次元画像の撮影位置と、撮影した3次元画像から抽出されたポリゴンとの間の点とする。仮想球の位置をこのように設定することにより、実際には計測が不可能な壁の内側のような位置を基準としたマップ充足度の評価が実行されないようにできる。
実施の形態1に係る3次元計測装置が備えるマップ充足度評価部65を、従来技術を用いて実現することも可能である。しかしながら、従来技術では、生成する3次元マップの充足度の評価においてボクセルを使用しているため、SLAMのように、3次元マップの生成中にデータが逐次拡大していく手法においては、事前にデータの規模を想定して大量のメモリを確保する必要がある。一方、本実施形態の3次元計測装置は、3次元マップの評価をポリゴンに基づいて行っているため、空間全体を埋めるように生成していくボクセルと異なり、ポリゴンは計測対象の面(特に表面)が存在する領域にのみ生成されればよいため、メモリの使用量を大幅に低減できる。さらに、本実施形態では、任意に設定可能な仮想視点からのポリゴンの見え方に基づいて3次元マップの充足度を評価できるので、複雑な形状の計測対象であっても、メモリの使用量を抑えながら、欠損のない3次元マップを得ることができる。さらに、得られた3次元マップの評価結果を利用して、次に計測すべき位置、該位置までの経路または次の仮想視点を決定したり、仮想視点の設定位置や設定間隔を調整するなど計測計画を最適化することで、さらに適切に、メモリの使用量の削減効果と複雑な形状に対応した3次元マップの充足度とを両立できる。
再び、図3および図4を用いた、実施の形態1に係る3次元計測装置の動作の説明に戻る。
ステップS5にて3次元マップの品質を評価した後、3次元計測装置の動作はステップS6へと移行する。ステップS6では、計測計画生成部70は、3次元マップの評価結果に基づいて、計測計画を生成する。計測計画は、新たに(例えば、次回以降に)3次元画像を取得すべき対象領域(以下、計測対象領域という)または該計測対象領域の3次元画像を取得可能な位置(計測位置)を示す情報を含む。なお、計測計画に含まれる計測対象領域および計測位置は、すでに3次元画像を取得済みの領域および位置と同一であってかまわない。
また、計測計画は、計測方向(計測対象領域に対する計測方向または計測位置における計測方向)を示す情報を含んでいてもよい。また、計測計画は、複数の計測対象領域または複数の計測位置を示す情報を含んでいてもよい。また、計測計画は、計測位置までの経路を示す情報を含んでいてもよい。
ステップS5にて3次元マップの品質を評価した後、3次元計測装置の動作はステップS6へと移行する。ステップS6では、計測計画生成部70は、3次元マップの評価結果に基づいて、計測計画を生成する。計測計画は、新たに(例えば、次回以降に)3次元画像を取得すべき対象領域(以下、計測対象領域という)または該計測対象領域の3次元画像を取得可能な位置(計測位置)を示す情報を含む。なお、計測計画に含まれる計測対象領域および計測位置は、すでに3次元画像を取得済みの領域および位置と同一であってかまわない。
また、計測計画は、計測方向(計測対象領域に対する計測方向または計測位置における計測方向)を示す情報を含んでいてもよい。また、計測計画は、複数の計測対象領域または複数の計測位置を示す情報を含んでいてもよい。また、計測計画は、計測位置までの経路を示す情報を含んでいてもよい。
以下では、計測計画として、次に計測すべき計測対象領域を示す情報と、該計測対象領域に対する計測方向を示す情報と、該計測対象領域の3次元画像を取得可能な計測位置までの経路を示す情報とを生成した場合を例に説明する。
計測計画生成部70は、例えば、3次元マップの計測精度、点群密度および充足度のうちの少なくとも1つの指標の評価に基づいて、次の計測対象領域と該計測対象領域への視線方向とを決定してもよい。そして、計測計画生成部70は、決定された計測対象領域の3次元画像を取得可能な位置に、移動ロボットが移動するように、現在位置から該位置までの経路を生成してもよい。また、計測計画生成部70は、例えば、3次元マップの計測精度、点群密度または充足度のうちの少なくとも1つの指標の評価に基づいて、次の計測位置と視線方向とを決定してもよい。そして、計測計画生成部70は、決定された計測位置に、移動ロボットが移動するように、現在位置から該位置までの経路を生成してもよい。計測計画生成部70は、生成した移動経路の情報を含む計測計画を、移動情報出力部5へと出力してもよい。
計測計画生成部70は、例えば、3次元マップの計測精度、点群密度および充足度のうちの少なくとも1つの指標の評価に基づいて、次の計測対象領域と該計測対象領域への視線方向とを決定してもよい。そして、計測計画生成部70は、決定された計測対象領域の3次元画像を取得可能な位置に、移動ロボットが移動するように、現在位置から該位置までの経路を生成してもよい。また、計測計画生成部70は、例えば、3次元マップの計測精度、点群密度または充足度のうちの少なくとも1つの指標の評価に基づいて、次の計測位置と視線方向とを決定してもよい。そして、計測計画生成部70は、決定された計測位置に、移動ロボットが移動するように、現在位置から該位置までの経路を生成してもよい。計測計画生成部70は、生成した移動経路の情報を含む計測計画を、移動情報出力部5へと出力してもよい。
3次元マップの品質の要素のうち、計測精度、点群密度、充足度のどれを用いるか、またどれをどの程度優先するかは、生成する3次元マップのアプリケーションに応じて、ユーザが指定できるようにする。例えば、空間の3次元形状を大まかに知ることができれば十分なアプリケーションであれば、マップ充足度の評価値の重みを大きく設定する。こうすることにより、計測計画生成部70は、欠損のない3次元マップが生成できるような計測計画を生成する。
なお、図3における3次元マップ生成部20とマップ評価部60とを結ぶ矢印に示すように、ステップS5にて3次元マップの品質を評価した結果を、ステップS3の3次元マップの生成にフィードバックするように処理の流れを構成することも可能である。すなわち、マップ評価部60で得られるマップの特に計測精度の評価結果に基づき、3次元マップ生成部20が、生成済みの3次元マップを更新する。例えば、計測対象の同一の箇所を撮影した3次元画像データが3次元画像記憶部40に複数格納されており、これらを撮影した時の計測距離、点群密度、計測姿勢のいずれかが異なるとする。この場合、3次元マップ生成部20は、マップ評価部60の評価結果に基づき、より品質の高い3次元画像データを3次元画像記憶部40から選択し、3次元マップの生成に使用するようにしてもよい。具体的には、3次元マップ生成部20において、より近距離で撮影された3次元画像データ、より点群密度の高い3次元画像データ、ならびに撮影物体の面に対して正面向きに近い姿勢で撮影された3次元画像データを3次元画像記憶部40から読み出し、3次元マップの生成に利用する。なお、ここでいう3次元画像データは必ずしも1つの3次元画像から得られるすべてのデータでなくてもよく、1つの3次元画像から得られるデータの一部であってもよい。例えば、3次元マップ生成部20は、複数の3次元画像間で撮影範囲が重複している場合に、それら3次元画像のうち同じ個所を撮影した部分のデータの中からより評価が高いデータを読み出し、3次元マップの生成に利用してもよい。また、例えば、3次元マップ生成部20は、複数の3次元画像間で撮影範囲が重複していない場合であっても、評価結果が所定の閾値未満のデータを3次元マップの生成に利用しないようにすることも可能である。
そして、3次元マップ記憶部50に記憶されている3次元マップを更新する。3次元マップ生成部をこのような動作とすることにより、より品質の高い3次元画像データからなる3次元マップを生成することができる。
そして、3次元マップ記憶部50に記憶されている3次元マップを更新する。3次元マップ生成部をこのような動作とすることにより、より品質の高い3次元画像データからなる3次元マップを生成することができる。
ステップS6にて計測計画を生成した後、3次元計測装置の動作はステップS7へと移行する。ステップS7では、3次元計測装置によるマップ生成処理を終了するか否かの判定処理を実行する。終了しない場合にはステップS1へと戻り、前述の手順を繰り返す。ステップS7においては、例えば、生成すべき3次元マップの品質の基準をあらかじめ定めておき、生成途中の3次元マップがこの基準を満たしているか否かにより、終了を判定する。あるいは、入力部2を介したユーザの操作により終了の指示がなされた場合に、マップ生成処理を終了する。
次に、実施の形態1に係る3次元計測装置が備える構成要素のうち、その他の構成要素について説明する。
図3において、入力イベント処理部80は、3次元計測装置に対して、入力部2を介してユーザが与えた入力指示を受け取る。入力イベント処理部80が受け取る指示入力は、例えば3次元マップ生成処理の開始・一時停止・終了などの、3次元計測装置の動作に関する指示である。また、入力イベント処理部80は、3次元マップ生成部20、マップ評価部60、計測計画生成部70の内部動作に関するパラメータの設定情報を受け取り、各部に転送する機能を有する。さらに、3次元マップの作成が必要な区域と不要な区域が存在する場合、あるいは立ち入り禁止の区域が存在する場合、これらの区画に関する情報を計測計画生成部70へと入力する。
図3において、入力イベント処理部80は、3次元計測装置に対して、入力部2を介してユーザが与えた入力指示を受け取る。入力イベント処理部80が受け取る指示入力は、例えば3次元マップ生成処理の開始・一時停止・終了などの、3次元計測装置の動作に関する指示である。また、入力イベント処理部80は、3次元マップ生成部20、マップ評価部60、計測計画生成部70の内部動作に関するパラメータの設定情報を受け取り、各部に転送する機能を有する。さらに、3次元マップの作成が必要な区域と不要な区域が存在する場合、あるいは立ち入り禁止の区域が存在する場合、これらの区画に関する情報を計測計画生成部70へと入力する。
表示制御部90は、3次元画像センサ1により取得された3次元画像、および3次元マップ生成部20で生成された3次元マップを表示部4に表示するための画像(表示画面等)を生成し、この画像データを表示部4に送出する。また、表示制御部90は、計測計画生成部70で生成された計測計画に基づく情報を表示部4に表示するための画像を生成し、この画像データを表示部4に送出してもよい。このとき、表示制御部90は、計測計画に基づいて、3次元画像を取得すべき計測対象領域または計測位置を示す情報を、取得された3次元画像または生成された3次元マップに重畳させて表示部4に表示するための画像を生成し、この画像データを表示部4に送出してもよい。
図11は、表示部4が表示する画像の例として、左側に3次元画像センサ1により取得されるカラー画像(a)と距離画像(b)を、右側に生成途中の3次元マップ(c)を並べた例である。図11中の左下の距離画像(b)は、例えば距離を画像の濃淡に変換して表示した一例である。表示制御部90と表示部4は、同一の筐体に具備するようにして有線通信してもよいし、または無線通信により3次元計測装置から離れた位置にある表示部4へ画像データを送出するように構成してもよい。
以上のように、実施の形態1に係る3次元計測装置によれば、生成する3次元マップから逐次抽出するポリゴンを用いて3次元マップを構成する3次元点群データの計測精度、3次元マップの充足度および3次元マップの密度に基づく品質評価を含んだ3次元マップの品質評価を行うため、従来技術と比較して、高精度な3次元マップをより少ないメモリ量で得ることができる。したがって、例えば、大規模な空間や複雑な形状の空間であっても、大容量のメモリ等を用意しなくても簡便に高精度な3次元マップを得ることができる。
さらに、3次元計測装置を移動ロボットに搭載し、3次元計測装置が生成する計測計画に基づいて移動ロボットを移動させたり、3次元画像センサの姿勢を変更させて自律的に空間の3次元計測を行うよう構成すれば、人手を介することなく効率的に空間の3次元マップを得ることもできる。
なお、上記の3次元画像センサ1を移動ロボットに搭載し、該移動ロボットとネットワークを介して接続された3次元計測装置が移動ロボットから取得した3次元画像を用いて、3次元マップの生成を行ってもよい。この場合、3次元計測装置は、生成した3次元マップを評価して計測計画を生成し、生成した計測計画に基づいて、移動ロボットに制御信号を出力してもよい。このような構成であっても、上記と同様の効果を得ることができる。
さらに、3次元計測装置を移動ロボットに搭載し、3次元計測装置が生成する計測計画に基づいて移動ロボットを移動させたり、3次元画像センサの姿勢を変更させて自律的に空間の3次元計測を行うよう構成すれば、人手を介することなく効率的に空間の3次元マップを得ることもできる。
なお、上記の3次元画像センサ1を移動ロボットに搭載し、該移動ロボットとネットワークを介して接続された3次元計測装置が移動ロボットから取得した3次元画像を用いて、3次元マップの生成を行ってもよい。この場合、3次元計測装置は、生成した3次元マップを評価して計測計画を生成し、生成した計測計画に基づいて、移動ロボットに制御信号を出力してもよい。このような構成であっても、上記と同様の効果を得ることができる。
実施の形態2.
実施の形態1では、3次元計測装置またはこの一部の機能を移動ロボットに搭載して3次元マップを生成していた。実施の形態2では、3次元計測装置またはこの一部の機能を手押し車型移動装置に搭載し、この手押し車型移動装置をユーザが手で押して移動することで空間を計測する。本実施形態では、上述した3次元計測装置の構成要素のうち少なくとも3次元画像センサ1および表示部4が手押し車型移動装置に搭載される。
実施の形態1では、3次元計測装置またはこの一部の機能を移動ロボットに搭載して3次元マップを生成していた。実施の形態2では、3次元計測装置またはこの一部の機能を手押し車型移動装置に搭載し、この手押し車型移動装置をユーザが手で押して移動することで空間を計測する。本実施形態では、上述した3次元計測装置の構成要素のうち少なくとも3次元画像センサ1および表示部4が手押し車型移動装置に搭載される。
図12は、3次元計測装置を手押し車型移動装置2000に搭載し、ユーザが手押し車型移動装置2000を押して移動しながら計測する様子を示した図である。図12において、太線の直線および破線で示す四角錐は手押し車型移動装置2000の視野の範囲(それぞれ撮影範囲2001、撮影範囲2002)を模式的に示したものである。
ユーザ自身が3次元計測装置を動かしながら空間の3次元計測を実施する場合、3次元計測装置は、ユーザが次にどこを計測すべきかをユーザに提示し、ユーザを誘導するように構成してもよい。例えば、3次元計測装置が備える計測計画生成部70が、次の計測位置または該計測位置への移動経路を含む計測計画を生成した後、この計測計画に従って現在の位置から次の計測位置に到達するための動作指令信号を生成し、ユーザが移動するように誘導する表示画面を表示制御部90で生成し、表示部4に表示してもよい。
ユーザ自身が3次元計測装置を動かしながら空間の3次元計測を実施する場合、3次元計測装置は、ユーザが次にどこを計測すべきかをユーザに提示し、ユーザを誘導するように構成してもよい。例えば、3次元計測装置が備える計測計画生成部70が、次の計測位置または該計測位置への移動経路を含む計測計画を生成した後、この計測計画に従って現在の位置から次の計測位置に到達するための動作指令信号を生成し、ユーザが移動するように誘導する表示画面を表示制御部90で生成し、表示部4に表示してもよい。
図13は、計測計画に基づく情報を表示部4に表示し、ユーザを誘導する例を示している。図13では、3次元画像センサにより取得されたカラー画像(d)を左上に表示し、さらに、移動経路(本例では進行方向)および計測対象領域をこのカラー画像(d)に重畳して表示している。カラー画像(d)を用いた視覚的な誘導と合わせて、左下にはユーザに対するメッセージの表示板(e)を表示している。例えば、図13に示すように、表示板(e)において、「計測漏れの場所があります。矢印の方向に進んで計測して下さい。」、および「点群密度が不十分です。色が塗られている部分を計測して下さい。」を表示する。また、図13の右側は、図11と同じく、生成途中の3次元マップ(c)を表している。
実施の形態2に係る3次元計測装置において、以上で述べた以外の動作は、実施の形態1で説明したものと同様である。
実施の形態2に係る3次元計測装置によれば、ユーザは手押し車型移動装置に搭載された3次元計測装置を手で押して空間を計測できる。このとき、ユーザは、表示部に表示された情報を基にユーザが手押し車型移動装置を移動させることで、必要十分な3次元画像を効率的に取得することができる。また、実施の形態2に係る3次元計測装置によれば、例えば3次元マップの作成が必要な区域と不要な区域が存在する場合、あるいは立ち入り禁止の区域が存在するような場合に、ユーザが計測時に現場で判断しながら計測を実施することができる。したがって、実施の形態2に係る3次元計測装置によれば、人手による判断が必要な計測条件を有する空間であっても、効率的な3次元マップに取得できる。
また、実施の形態2に係る手押し車型移動装置に搭載される3次元計測装置は、実施の形態1で説明したのと同様の効果も有する。
また、実施の形態2に係る手押し車型移動装置に搭載される3次元計測装置は、実施の形態1で説明したのと同様の効果も有する。
実施の形態3.
実施の形態1ならびに実施の形態2では、3次元計測装置またはこの一部の機能が床面上を走行する移動ロボットまたは手押し車型移動装置に搭載される例を示した。実施の形態3では、3次元計測装置またはこの一部の機能(少なくとも3次元画像センサ1および表示部4)を携帯型端末によって構成する。すなわち、ユーザは3次元画像センサと表示部4とを少なくとも備える3次元計測装置を手に持って空間を計測する。3次元計測装置10000は、例えばタブレットPCにより実現される。
図14は、タブレットPCにより実現される3次元計測装置10000をユーザが手に持ち、屋内の3次元空間を計測している様子を示した図である。図14において、太線の直線および破線で示す四角錐はユーザ手持ちの3次元計測装置10000の視野の範囲(それぞれ撮影範囲10001、撮影範囲10002)を模式的に示したものである。3次元画像センサ1は、3次元計測装置10000に一体で取り付けられている。表示部4(ここではタブレットPCの画面)には、実施の形態2と同じく、図13に示したようなユーザを誘導する画面が表示される。
実施の形態3に係る3次元計測装置において、以上で述べた以外の動作は、実施の形態2で述べたものと同様である。
実施の形態1ならびに実施の形態2では、3次元計測装置またはこの一部の機能が床面上を走行する移動ロボットまたは手押し車型移動装置に搭載される例を示した。実施の形態3では、3次元計測装置またはこの一部の機能(少なくとも3次元画像センサ1および表示部4)を携帯型端末によって構成する。すなわち、ユーザは3次元画像センサと表示部4とを少なくとも備える3次元計測装置を手に持って空間を計測する。3次元計測装置10000は、例えばタブレットPCにより実現される。
図14は、タブレットPCにより実現される3次元計測装置10000をユーザが手に持ち、屋内の3次元空間を計測している様子を示した図である。図14において、太線の直線および破線で示す四角錐はユーザ手持ちの3次元計測装置10000の視野の範囲(それぞれ撮影範囲10001、撮影範囲10002)を模式的に示したものである。3次元画像センサ1は、3次元計測装置10000に一体で取り付けられている。表示部4(ここではタブレットPCの画面)には、実施の形態2と同じく、図13に示したようなユーザを誘導する画面が表示される。
実施の形態3に係る3次元計測装置において、以上で述べた以外の動作は、実施の形態2で述べたものと同様である。
実施の形態3に係る携帯型の3次元計測装置は、携帯型端末等により実現されるので、ユーザが手にもって移動できる。このため、実施の形態3に係る携帯型の3次元計測装置によれば、人手による判断が必要な計測条件を有する空間だけでなく、移動ロボットが入りにくい狭隘な空間、および複雑な形状の物体が存在する空間でも効率的に3次元マップを得ることができる。
また、実施の形態3に係る3次元計測装置は、実施の形態1で述べたのと同様の効果も有する。
また、実施の形態3に係る3次元計測装置は、実施の形態1で述べたのと同様の効果も有する。
[付記1]
計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得する3次元画像取得部と、
前記3次元画像を合成して、合成後の3次元点群データにより前記計測対象の3次元形状が表現される3次元マップを生成する3次元マップ生成部と、
前記3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる前記3次元画像に含まれる3次元点群データから、ポリゴンを抽出するポリゴン抽出部と、
前記ポリゴンに基づき、前記3次元マップの品質を評価するマップ評価部と、
前記3次元マップの品質の評価結果に基づき、前記3次元画像を取得すべき計測対象領域または計測位置を示す情報を含む計測計画を生成する計測計画生成部と、
を備える3次元計測装置。
計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得する3次元画像取得部と、
前記3次元画像を合成して、合成後の3次元点群データにより前記計測対象の3次元形状が表現される3次元マップを生成する3次元マップ生成部と、
前記3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる前記3次元画像に含まれる3次元点群データから、ポリゴンを抽出するポリゴン抽出部と、
前記ポリゴンに基づき、前記3次元マップの品質を評価するマップ評価部と、
前記3次元マップの品質の評価結果に基づき、前記3次元画像を取得すべき計測対象領域または計測位置を示す情報を含む計測計画を生成する計測計画生成部と、
を備える3次元計測装置。
[付記2]
計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得する3次元画像取得部と、
前記3次元画像を合成して、合成後の3次元点群データにより前記計測対象の3次元形状が表現される3次元マップを生成する3次元マップ生成部と、
前記3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる前記3次元画像に含まれる3次元点群データから、ポリゴンを抽出するポリゴン抽出部と、
前記ポリゴンに基づき、前記3次元マップの品質を評価するマップ評価部と、
前記3次元マップの品質の評価結果に基づき、現在の位置から次に前記3次元画像を取得すべき計測位置までの移動経路を示す情報を含む計測計画を生成する計測計画生成部と を備える3次元計測装置。
計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得する3次元画像取得部と、
前記3次元画像を合成して、合成後の3次元点群データにより前記計測対象の3次元形状が表現される3次元マップを生成する3次元マップ生成部と、
前記3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる前記3次元画像に含まれる3次元点群データから、ポリゴンを抽出するポリゴン抽出部と、
前記ポリゴンに基づき、前記3次元マップの品質を評価するマップ評価部と、
前記3次元マップの品質の評価結果に基づき、現在の位置から次に前記3次元画像を取得すべき計測位置までの移動経路を示す情報を含む計測計画を生成する計測計画生成部と を備える3次元計測装置。
[付記3]
前記ポリゴンは、抽出元とされた3次元点群データが示す3次元点群内の近傍の3点を接続する三角形の面素である付記1または付記2に記載の3次元計測装置。
前記ポリゴンは、抽出元とされた3次元点群データが示す3次元点群内の近傍の3点を接続する三角形の面素である付記1または付記2に記載の3次元計測装置。
[付記4]
前記ポリゴンは、裏面と表面が定義された三角形の面素であり、
前記ポリゴンの法線ベクトルの向きは、前記ポリゴンの頂点をなす点に関するデータを含む前記3次元画像を取得した際の3次元画像センサの視線の方向ベクトルとの内積が負になるように定義され、
前記ポリゴンの法線ベクトルの向きが正の側を前記ポリゴンの表面、負の側を裏面とされる
付記1から3のうちのいずれかに記載の3次元計測装置。
前記ポリゴンは、裏面と表面が定義された三角形の面素であり、
前記ポリゴンの法線ベクトルの向きは、前記ポリゴンの頂点をなす点に関するデータを含む前記3次元画像を取得した際の3次元画像センサの視線の方向ベクトルとの内積が負になるように定義され、
前記ポリゴンの法線ベクトルの向きが正の側を前記ポリゴンの表面、負の側を裏面とされる
付記1から3のうちのいずれかに記載の3次元計測装置。
[付記5]
前記マップ評価部において評価される前記品質の指標には、前記3次元マップの計測精度が含まれる付記1から4のいずれかに記載の3次元計測装置。
前記マップ評価部において評価される前記品質の指標には、前記3次元マップの計測精度が含まれる付記1から4のいずれかに記載の3次元計測装置。
[付記6]
前記マップ評価部において評価される前記品質の指標には、前記3次元マップの点群密度が含まれる付記1から5のいずれかに記載の3次元計測装置。
前記マップ評価部において評価される前記品質の指標には、前記3次元マップの点群密度が含まれる付記1から5のいずれかに記載の3次元計測装置。
[付記7]
前記マップ評価部において評価される前記品質の指標には、前記3次元マップの充足度が含まれる付記1から6のいずれかに記載の3次元計測装置。
前記マップ評価部において評価される前記品質の指標には、前記3次元マップの充足度が含まれる付記1から6のいずれかに記載の3次元計測装置。
[付記8]
前記マップ評価部は、
前記ポリゴンを抽出した3次元点群データが示す物体の位置と、前記物体の位置に対応する点に関するデータを含む前記3次元画像を取得した際の3次元画像センサの位置との距離を評価する計測距離評価部を含み、
前記計測距離評価部による評価に基づき前記3次元マップの計測精度を評価する
付記5に記載の3次元計測装置。
前記マップ評価部は、
前記ポリゴンを抽出した3次元点群データが示す物体の位置と、前記物体の位置に対応する点に関するデータを含む前記3次元画像を取得した際の3次元画像センサの位置との距離を評価する計測距離評価部を含み、
前記計測距離評価部による評価に基づき前記3次元マップの計測精度を評価する
付記5に記載の3次元計測装置。
[付記9]
前記マップ評価部は、
前記ポリゴンの法線ベクトルと、前記ポリゴンの頂点をなす点に関するデータを含む前記3次元画像を取得した際の3次元画像センサの光軸方向ベクトルとの内積を計算することにより、前記3次元画像センサと前記ポリゴンとの相対的な姿勢を評価する計測姿勢評価部を含み、
前記計測姿勢評価部による評価に基づき前記3次元マップの計測精度を評価する付記5または8に記載の3次元計測装置。
前記マップ評価部は、
前記ポリゴンの法線ベクトルと、前記ポリゴンの頂点をなす点に関するデータを含む前記3次元画像を取得した際の3次元画像センサの光軸方向ベクトルとの内積を計算することにより、前記3次元画像センサと前記ポリゴンとの相対的な姿勢を評価する計測姿勢評価部を含み、
前記計測姿勢評価部による評価に基づき前記3次元マップの計測精度を評価する付記5または8に記載の3次元計測装置。
[付記10]
前記マップ評価部は、
前記ポリゴンの辺の長さを求めることにより、前記3次元マップの品質の評価として前記3次元マップの点群密度に基づく評価値を算出する点群密度評価部を含み、
前記点群密度評価部による評価に基づき前記3次元マップの点群密度を評価する付記6に記載の3次元計測装置。
前記マップ評価部は、
前記ポリゴンの辺の長さを求めることにより、前記3次元マップの品質の評価として前記3次元マップの点群密度に基づく評価値を算出する点群密度評価部を含み、
前記点群密度評価部による評価に基づき前記3次元マップの点群密度を評価する付記6に記載の3次元計測装置。
[付記11]
前記マップ評価部は、
前記3次元マップ内に仮想的な視点を設定し、前記仮想的な視点を中心とする仮想球上において、前記ポリゴンの表面が射影された領域の表面積を求めることにより、前記3次元マップの充足度に基づく評価値を算出するマップ充足度評価部を含み、
前記充足度評価部による評価に基づき前記3次元マップの充足度を評価する付記7に記載の3次元計測装置。
前記マップ評価部は、
前記3次元マップ内に仮想的な視点を設定し、前記仮想的な視点を中心とする仮想球上において、前記ポリゴンの表面が射影された領域の表面積を求めることにより、前記3次元マップの充足度に基づく評価値を算出するマップ充足度評価部を含み、
前記充足度評価部による評価に基づき前記3次元マップの充足度を評価する付記7に記載の3次元計測装置。
1 3次元画像センサ、2 入力部、3 計測処理部、4 表示部、5 移動情報出力部、10 3次元画像取得部、20 3次元マップ生成部、30 ポリゴン抽出部、40 3次元画像記憶部、50 3次元マップ記憶部、60 マップ評価部、70 計測計画生成部、80 入力イベント処理部、90 表示制御部、10000 3次元計測装置
Claims (16)
- 計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得する3次元画像取得部と、
前記3次元画像を合成して、合成後の3次元点群データにより前記計測対象の3次元形状が表現される3次元マップを生成する3次元マップ生成部と、
前記3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる前記3次元画像に含まれる3次元点群データから、ポリゴンを抽出するポリゴン抽出部と、
前記ポリゴンに基づき、前記3次元マップの品質を評価するマップ評価部と、
前記3次元マップの品質の評価結果に基づき、前記3次元画像を取得すべき計測対象領域または計測位置を示す情報を含む計測計画を生成する計測計画生成部と、
を備える3次元計測装置。 - 前記マップ評価部は、前記ポリゴンに基づき、前記3次元マップの充足度を少なくとも指標として前記3次元マップの品質を評価する請求項1に記載の3次元計測装置。
- 前記ポリゴンは、表面および裏面が定義された多角形の面素であることを特徴とする請求項1または2に記載の3次元計測装置。
- 前記表面および前記裏面は、前記ポリゴンの頂点をなす点に関するデータを含む前記3次元画像を取得した際の3次元画像センサの視線方向に基づき特定される法線ベクトルの向きに応じて定められる請求項3に記載の3次元計測装置。
- 前記マップ評価部は、
前記3次元マップ内に仮想的な視点を設定し、前記仮想的な視点を中心とする仮想球上において、前記ポリゴンの表面が射影された領域の表面積を求めることにより、前記3次元マップの充足度に基づく評価値を算出するマップ充足度評価部を備える請求項1から4のうちのいずれか1項に記載の3次元計測装置。 - 前記マップ評価部は、
前記ポリゴンを抽出した3次元点群データが示す物体の位置と、前記物体の位置に対応する点に関するデータを含む前記3次元画像を取得した際の3次元画像センサの位置との距離を評価する計測距離評価部と、
前記ポリゴンの法線ベクトルと、前記ポリゴンの頂点をなす点に関するデータを含む前記3次元画像を取得した際の3次元画像センサの光軸方向ベクトルとの内積を計算することにより、前記3次元画像センサと前記ポリゴンとの相対的な姿勢を評価する計測姿勢評価部と、
前記計測距離評価部の評価結果と前記計測姿勢評価部の評価結果とを統合し、前記3次元マップの品質の評価として前記3次元マップの計測精度に基づく評価値を算出するマップ計測精度評価部と、
を備える請求項1から5のいずれか1項に記載の3次元計測装置。 - 前記マップ評価部は、
前記ポリゴンの辺の長さを求めることにより、前記3次元マップの品質の評価として前記3次元マップの点群密度に基づく評価値を算出する点群密度評価部を備える請求項1から6のいずれか1項に記載の3次元計測装置。 - 前記3次元マップ生成部は、前記3次元画像に含まれる3次元点群データから抽出される前記ポリゴンにより表現される被写体の面の情報を利用して、前記3次元マップを生成する請求項1から7のいずれか1項に記載の3次元計測装置。
- 前記計測計画生成部は、3次元画像を取得すべき1つ以上の計測対象領域または計測位置を示す情報と、前記計測対象領域または前記計測位置における計測方向を示す情報とを含む計測計画を生成する請求項1から8のいずれか1項に記載の3次元計測装置。
- 前記計測計画生成部は、次回の計測対象領域または計測位置を示す情報と、現在の位置から前記計測対象領域の3次元画像を取得可能な位置または前記計測位置までの移動経路を示す情報とを含む計測計画を生成する請求項1から9のいずれか1項に記載の3次元計測装置。
- 前記3次元画像を撮影する3次元画像センサと、
前記計測計画に基づいて情報を表示する表示部と、
を備える請求項1から10のいずれか1項に記載の3次元計測装置。 - 前記計測計画に基づいて、前記3次元画像を取得すべき計測対象領域または計測位置を示す情報を、前記3次元画像または前記3次元マップに重畳させて前記表示部に表示させる表示制御部を備える請求項11に記載の3次元計測装置。
- 携帯型である請求項1から12のいずれか1項に記載の3次元計測装置。
- 請求項1から13のいずれか1項に記載の3次元計測装置であって、前記3次元画像を撮影する3次元画像センサと、前記計測計画に基づいて情報を表示する表示部と、を備える3次元計測装置が搭載される手押し車型移動装置。
- 請求項1から13のいずれか1項に記載の3次元計測装置であって、前記3次元画像を撮影する3次元画像センサを備える3次元計測装置が搭載され、
前記3次元計測装置で生成される計測計画に基づき、現在の位置から次の計測位置に到達するための動作指令信号を生成して出力する移動情報出力部と、
前記動作指令信号に基づき移動する駆動部と、
を備える移動ロボット。 - 計測対象の3次元画像であって、3次元空間中の物体表面の点である3次元点に関するデータの集合である3次元点群データを含む3次元画像を取得するステップと、
前記3次元画像を合成して、合成後の3次元点群データにより前記計測対象の3次元形状が表現される3次元マップを生成するステップと、
前記3次元マップを構成する3次元点群データまたは3次元マップの生成に用いられる前記3次元画像に含まれる3次元点群データから、ポリゴンを抽出するステップと、
前記ポリゴンに基づき、前記3次元マップの品質を評価するステップと、
前記3次元マップの品質の評価結果に基づき、前記3次元画像を取得すべき計測対象領域または計測位置を示す情報を含む計測計画を生成するステップと、
を含む3次元計測処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020558839A JP7006810B2 (ja) | 2018-12-11 | 2018-12-11 | 3次元計測装置、移動ロボット、手押し車型移動装置および3次元計測処理方法 |
PCT/JP2018/045498 WO2020121406A1 (ja) | 2018-12-11 | 2018-12-11 | 3次元計測装置、移動ロボット、手押し車型移動装置および3次元計測処理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/045498 WO2020121406A1 (ja) | 2018-12-11 | 2018-12-11 | 3次元計測装置、移動ロボット、手押し車型移動装置および3次元計測処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020121406A1 true WO2020121406A1 (ja) | 2020-06-18 |
Family
ID=71077183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045498 WO2020121406A1 (ja) | 2018-12-11 | 2018-12-11 | 3次元計測装置、移動ロボット、手押し車型移動装置および3次元計測処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7006810B2 (ja) |
WO (1) | WO2020121406A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020098421A (ja) * | 2018-12-17 | 2020-06-25 | 凸版印刷株式会社 | 三次元形状モデル生成装置、三次元形状モデル生成方法、及びプログラム |
CN112967400A (zh) * | 2021-04-13 | 2021-06-15 | 成都四方伟业软件股份有限公司 | 一种基于Unity3D的三维图表动态创建方法及装置 |
WO2024189879A1 (ja) * | 2023-03-16 | 2024-09-19 | 日本電気株式会社 | 測定システム、測定装置、測定方法、及び非一時的なコンピュータ可読媒体 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006064453A (ja) * | 2004-08-25 | 2006-03-09 | Fuji Xerox Co Ltd | 3次元形状入力装置および方法 |
JP2009237847A (ja) * | 2008-03-27 | 2009-10-15 | Sony Corp | 情報処理装置、および情報処理方法、並びにコンピュータ・プログラム |
JP2014063475A (ja) * | 2012-08-28 | 2014-04-10 | Canon Inc | 情報処理装置、情報処理方法、及びコンピュータプログラム |
-
2018
- 2018-12-11 JP JP2020558839A patent/JP7006810B2/ja active Active
- 2018-12-11 WO PCT/JP2018/045498 patent/WO2020121406A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006064453A (ja) * | 2004-08-25 | 2006-03-09 | Fuji Xerox Co Ltd | 3次元形状入力装置および方法 |
JP2009237847A (ja) * | 2008-03-27 | 2009-10-15 | Sony Corp | 情報処理装置、および情報処理方法、並びにコンピュータ・プログラム |
JP2014063475A (ja) * | 2012-08-28 | 2014-04-10 | Canon Inc | 情報処理装置、情報処理方法、及びコンピュータプログラム |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020098421A (ja) * | 2018-12-17 | 2020-06-25 | 凸版印刷株式会社 | 三次元形状モデル生成装置、三次元形状モデル生成方法、及びプログラム |
JP7247573B2 (ja) | 2018-12-17 | 2023-03-29 | 凸版印刷株式会社 | 三次元形状モデル生成装置、三次元形状モデル生成方法、及びプログラム |
CN112967400A (zh) * | 2021-04-13 | 2021-06-15 | 成都四方伟业软件股份有限公司 | 一种基于Unity3D的三维图表动态创建方法及装置 |
CN112967400B (zh) * | 2021-04-13 | 2022-07-15 | 成都四方伟业软件股份有限公司 | 一种基于Unity3D的三维图表动态创建方法及装置 |
WO2024189879A1 (ja) * | 2023-03-16 | 2024-09-19 | 日本電気株式会社 | 測定システム、測定装置、測定方法、及び非一時的なコンピュータ可読媒体 |
Also Published As
Publication number | Publication date |
---|---|
JP7006810B2 (ja) | 2022-01-24 |
JPWO2020121406A1 (ja) | 2021-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6560480B2 (ja) | 画像処理システム、画像処理方法、及びプログラム | |
JP6425780B1 (ja) | 画像処理システム、画像処理装置、画像処理方法及びプログラム | |
US8933965B2 (en) | Method for calculating light source information and generating images combining real and virtual images | |
CN104956404B (zh) | 具有功率有效深度传感器使用的实时三维重建 | |
CN104380338B (zh) | 信息处理器以及信息处理方法 | |
JP5093053B2 (ja) | 電子カメラ | |
CN110648274B (zh) | 鱼眼图像的生成方法及装置 | |
CN111031897A (zh) | 用于分析皮肤状况的系统和方法 | |
JP7042561B2 (ja) | 情報処理装置、情報処理方法 | |
CN110291564B (zh) | 图像生成设备和图像生成方法 | |
WO2017217296A1 (ja) | 画像処理装置 | |
WO2015142446A1 (en) | Augmented reality lighting with dynamic geometry | |
JP7182976B2 (ja) | 情報処理装置、情報処理方法、およびプログラム | |
WO2020121406A1 (ja) | 3次元計測装置、移動ロボット、手押し車型移動装置および3次元計測処理方法 | |
JP2013003848A (ja) | 仮想物体表示装置 | |
US11893705B2 (en) | Reference image generation apparatus, display image generation apparatus, reference image generation method, and display image generation method | |
CN110312111A (zh) | 用于图像装置的自动校准的装置、系统和方法 | |
WO2010038693A1 (ja) | 情報処理装置、情報処理方法、プログラム及び情報記憶媒体 | |
JP7403967B2 (ja) | 情報処理装置、映像生成装置、画像処理システム、それらの制御方法及びプログラム | |
CA3131980A1 (en) | Processing of depth maps for images | |
US11282222B2 (en) | Recording medium, object detection apparatus, object detection method, and object detection system | |
CN111742352A (zh) | 3d对象建模方法以及相关设备和计算机程序产品 | |
Du et al. | Design and evaluation of a teleoperated robotic 3-D mapping system using an RGB-D sensor | |
CN114494582A (zh) | 一种基于视觉感知的三维模型动态更新方法 | |
JP2016541042A (ja) | 車両の少なくとも1つの機能を制御するための位置又は運動情報を提供するための方法及びシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18942879 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020558839 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18942879 Country of ref document: EP Kind code of ref document: A1 |