WO2020119731A1 - Body-balanced unmanned aerial vehicle and control method therefor - Google Patents

Body-balanced unmanned aerial vehicle and control method therefor Download PDF

Info

Publication number
WO2020119731A1
WO2020119731A1 PCT/CN2019/124653 CN2019124653W WO2020119731A1 WO 2020119731 A1 WO2020119731 A1 WO 2020119731A1 CN 2019124653 W CN2019124653 W CN 2019124653W WO 2020119731 A1 WO2020119731 A1 WO 2020119731A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuselage
rotor
balancing
balance
drone
Prior art date
Application number
PCT/CN2019/124653
Other languages
French (fr)
Chinese (zh)
Inventor
杨超峰
Original Assignee
深圳市格上格创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市格上格创新科技有限公司 filed Critical 深圳市格上格创新科技有限公司
Publication of WO2020119731A1 publication Critical patent/WO2020119731A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage

Abstract

The present application discloses a body-balanced unmanned aerial vehicle and a control method therefor. In the unmanned aerial vehicle of the present application, a tilt rotor technology is used, a rotor bracket (500) is rotated by means of a rotor tilt device (400) to control the tilt angle of a rotor (220), so that the attitude of a body (100) does not need to be adjusted when making a flight attitude adjustment; in addition, body balance controllers and body balance actuators (310, 320, 330, 340) are provided to counteract tilt of the body (100) caused by wind force, and the body (100) can maintain balance during the flight, being able to improve the wind resistance capability and increase the flight stability, and being suitable as a camera platform. Compared with the conventional helicopter, said unmanned aerial vehicle has no complicated swashplate structure, and the rotor tilt device (400) with a simple structure is used to control the tilt angle of the rotor (220); compared with the multi-rotor unmanned aerial vehicle, said unmanned aerial vehicle has only one lifting device (200), and the body balance actuators (310, 320, 330, 340) used are also components with a simple structure, the whole vehicle having a simple structure and a low cost.

Description

机身平衡无人机及其控制方法Fuselage balanced drone and its control method
本申请要求于2018年12月14日在中国专利局提交的、申请号为201811534978.0、发明名称为“机身平衡无人机及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application requires the priority of the Chinese patent application filed in the China Patent Office on December 14, 2018, with the application number 201811534978.0 and the invention titled "Body Balanced UAV and Its Control Method", the entire content of which is cited by reference Incorporated in this application.
技术领域Technical field
本申请属于无人机技术领域,涉及机身平衡无人机及其控制方法。This application belongs to the technical field of unmanned aerial vehicles, and relates to a fuselage balanced unmanned aerial vehicle and its control method.
背景技术Background technique
近年来,随着微电子技术和新型材料的发展,消费级无人机(主要是直升型无人机)快速发展。早期的消费级无人机是传统直升机,主要有共轴双桨、单桨加尾桨两种构型,传统直升机的倾斜盘的结构太复杂、制造难度大、可靠性低,相应的,多旋翼无人机的结构简单,制造容易,可靠性高,目前多旋翼无人机已成为市场的主流,其中,四旋翼无人机是最流行的多旋翼无人机类型。In recent years, with the development of microelectronic technology and new materials, consumer-grade drones (mainly helicopters) have developed rapidly. Early consumer-grade drones were traditional helicopters, mainly in two configurations: coaxial twin-screw, single-screw and tail-rotor. The structure of the swash plate of the traditional helicopter is too complicated, the manufacturing is difficult, and the reliability is low. Rotor drones have a simple structure, are easy to manufacture, and have high reliability. At present, multi-rotor drones have become the mainstream of the market. Among them, quad-rotor drones are the most popular type of multi-rotor drones.
消费级无人机最主要的应用是拍摄,拍摄对无人机的机身平衡性要求很高,不然,机身不断晃动,带动相机不断晃动,会严重影响拍摄的影像效果。然而,根据传统直升机和多旋翼无人机的飞行控制原理,在飞行过程中无人机却是无法保持机身平稳不动的,在加减速、风速变化或者风向变化等情况下,无人机都需要做俯仰运动和/或滚转运动才能实现飞行控制,比如:前飞时无人机要低头使旋翼前倾产生前向的推力、而侧飞时无人机要侧倾使旋翼侧倾产生横向的推力、侧向有风时无人机要侧倾使旋翼侧倾抵抗风力,无人机的这种俯仰和滚转运动频繁并且幅度很大。The most important application of consumer-grade drones is shooting, which requires high balance of the drone's fuselage. Otherwise, the continuous shaking of the fuselage and the continuous shaking of the camera will seriously affect the image effect of the shooting. However, according to the flight control principles of traditional helicopters and multi-rotor drones, the UAV cannot keep the fuselage stable during the flight. Under conditions of acceleration and deceleration, changes in wind speed or changes in wind direction, the UAV All need to do pitching and/or rolling movements to achieve flight control. For example: when flying forward, the drone must bow to make the rotor forward to produce forward thrust, while when flying sideways, the drone must roll to make the rotor roll. When generating lateral thrust and when the wind is lateral, the drone should roll to make the rotor roll against the wind. This kind of pitch and roll motion of the drone is frequent and large.
公告号为CN106428543B、CN206243472U的专利中提出了一种倾转旋翼控制装置,该装置包含两个旋转机构,可以控制旋翼绕着两个旋转轴旋转,从而控制旋翼的倾角,实现无人机的飞行控制。采用这种控制装置的无人机与上述的传统直升机和多旋翼无人机的飞行控制器原理不同,其调整旋翼的倾角时,机身姿态不需要随着调整,因此机身在飞行姿态调整时是保持平衡的。不过,这种控制方式有个问题:旋翼的推力不能用于机身姿态的控制,决定机身姿态的主要作用力为风力(或其它外力)和机身重力,当受到风力作用时,机身会随风倾斜,倾斜角度主要由风力和重力的大小决定。对于微小型无人机,由于机身重量小,风力较大时,机身倾斜角度会很大,当风向和风速交变频繁时,甚至会触发来回震荡,影响飞行稳定性。Bulletin Nos. CN106428543B and CN206243472U propose a tilting rotor control device, which contains two rotating mechanisms, which can control the rotation of the rotor around two rotation axes, thereby controlling the inclination of the rotor and realizing the flight of the drone control. The drone using this control device is different from the above-mentioned flight controllers of traditional helicopters and multi-rotor drones. When adjusting the inclination of the rotor, the attitude of the fuselage does not need to be adjusted, so the fuselage is adjusted in flight attitude. Time is balanced. However, there is a problem with this control method: the thrust of the rotor cannot be used to control the attitude of the fuselage. The main forces that determine the attitude of the fuselage are wind (or other external forces) and gravity of the fuselage. When the wind is applied, the fuselage It will tilt with the wind, the tilt angle is mainly determined by the magnitude of wind and gravity. For micro-mini drones, due to the small weight of the fuselage and the high wind force, the tilt angle of the fuselage will be very large. When the wind direction and wind speed alternate frequently, it may even trigger back and forth oscillations, affecting flight stability.
解决无人机机身不断晃动所导致的影像不佳问题,一个简单的方法是采用数字图像防抖技术,不过数字图像防抖技术无法获得很让人满意的影像。目前中高端无人机的解决方法是将相机挂在一个云台上,由云台转动来抵消机身的晃动,可以获得比较令人满意的图像。但是,微型无人机由于机身轻,相较于较重的大型无人机,需要调整更大的俯仰角或滚转角才能产生足够的力完成同样的飞行姿态控制,这意味着云台需要更快速地、更大幅度地转动,然而,微型无人机的空间小,只能安置小型的性能较低的云台,因此,当遇到较大的风时,特别是风速和风向变化频繁时,云台仍然无法完全抵消机身的倾转运动,造成拍摄影像不佳。To solve the problem of poor image caused by the continuous shaking of the drone body, a simple method is to use digital image stabilization technology, but the digital image stabilization technology cannot obtain very satisfactory images. The current solution for mid- to high-end drones is to hang the camera on a gimbal, and use the gimbal rotation to counteract the shaking of the fuselage and obtain a more satisfactory image. However, due to the light weight of the micro UAV, compared with the heavier large UAV, it is necessary to adjust the pitch or roll angle to generate enough force to complete the same flight attitude control, which means that the gimbal needs It rotates faster and more. However, the space of the micro UAV is small, and only a small gimbal with low performance can be placed. Therefore, when encountering a large wind, especially the wind speed and direction change frequently At this time, the gimbal still cannot completely offset the tilting motion of the fuselage, resulting in poor shooting images.
近年来,AR/VR技术和应用快速发展,全景影像的拍摄是未来影像领域的一个重要方向。全景影像的拍摄需要环绕布置多个相机(360°影像至少要4个以上,720°影像至少要6个以上),所有相机同步拍摄,然后用图像算法将所有相机拍摄的影像进行拼接。目前飞行拍摄全景影像的方法是:用一个云台挂一个球形吊仓,在吊仓的四周安装多个相机进行拍摄。由于吊仓挂在无人机下面,因此无法拍摄吊仓上面的场景,无法拍摄720°影像。一个机身总是保持平衡能拍摄720°全景影像的飞行平台对于未来全景影像的发展具有很大的价值。In recent years, AR/VR technology and applications have developed rapidly, and the shooting of panoramic images is an important direction in the future imaging field. The shooting of panoramic images needs to arrange multiple cameras around (at least 4 for 360° images and at least 6 for 720° images), all cameras are shot at the same time, and then the images taken by all cameras are stitched together using image algorithms. At present, the method of shooting panoramic images in flight is to hang a spherical hanging cabin with a cloud platform, and install multiple cameras around the hanging cabin to shoot. Because the hanging cabin is hung under the drone, it is impossible to shoot the scene above the hanging cabin, and it is impossible to shoot 720° images. A flight platform that always maintains balance and can shoot 720° panoramic images is of great value for the development of panoramic images in the future.
技术问题technical problem
本申请实施例的目的之一在于:提供机身平衡无人机及其控制方法,以解决现有无人机机身不断晃动影响影像拍摄的技术问题。One of the purposes of the embodiments of the present application is to provide a fuselage balancing drone and a control method thereof to solve the technical problem that the current drone fuselage continuously affects image shooting.
技术解决方案Technical solution
为解决上述技术问题,本申请实施例采用的技术方案是:To solve the above technical problems, the technical solutions adopted in the embodiments of the present application are:
第一方面,提供了一种机身平衡无人机,包括:In the first aspect, a fuselage balancing drone is provided, including:
机身;body;
旋翼支架;Rotor support
安装在所述旋翼支架上的升力装置,所述升力装置包括旋翼;A lift device mounted on the rotor support, the lift device including a rotor;
安装于所述机身且用于使所述旋翼支架旋转以控制所述旋翼的倾角的旋翼倾转装置;A rotor tilting device mounted on the fuselage and used to rotate the rotor bracket to control the tilt angle of the rotor;
至少一个用于输出使所述机身产生倾转运动的力矩的机身平衡执行器;以及At least one fuselage balancing actuator for outputting a moment that causes the fuselage to tilt; and
用于控制所述机身平衡执行器动作以使所述机身保持平衡的机身平衡控制器。A fuselage balance controller for controlling the action of the fuselage balance actuator to keep the fuselage balanced.
在一个实施例中,所述机身平衡无人机还包括安装在所述旋翼支架上的旋翼防护框,所述旋翼防护框为中空结构,所述旋翼置于所述旋翼防护框的内部,所述旋翼防护框用于防护所述旋翼。本申请无人机的机身可以为中空的框架结构,升力装置安装在机身内部,在机身框架四周安置多个相机,用于拍摄720°全景影像。In one embodiment, the fuselage balancing drone further includes a rotor protection frame mounted on the rotor support, the rotor protection frame is a hollow structure, and the rotor is placed inside the rotor protection frame, The rotor protection frame is used to protect the rotor. The fuselage of the drone of this application can be a hollow frame structure, the lifting device is installed inside the fuselage, and multiple cameras are arranged around the fuselage frame for shooting 720° panoramic images.
第二方面,提供了一种机身平衡无人机的控制方法,包括以下步骤:In the second aspect, a method for controlling a fuselage balanced drone is provided, including the following steps:
步骤S1、给所述机身平衡无人机设置至少一个工作模式,为每个所述工作模式设置机身平衡控制目标;Step S1: Set at least one working mode for the fuselage balancing drone, and set a fuselage balancing control target for each of the working modes;
步骤S2、所述机身平衡控制器接收平衡控制所需的输入数据;Step S2: The body balance controller receives input data required for balance control;
步骤S3、所述机身平衡控制器依据所述机身平衡无人机的当前工作模式、步骤S2所述输入数据和对应当前工作模式的步骤S1所述机身平衡目标,计算所述机身平衡执行器的控制量;Step S3, the fuselage balance controller calculates the fuselage according to the current working mode of the fuselage balancing drone, the input data in step S2 and the fuselage balancing target corresponding to the current working mode in step S1 Balance the control amount of the actuator;
步骤S4、依据所述控制量,控制所述机身平衡执行器动作;Step S4: Control the action of the body balance actuator according to the control amount;
步骤S5、循环执行步骤S2至步骤S4,使所述机身姿态满足所述机身平衡控制目标。Step S5: Steps S2 to S4 are executed cyclically to make the posture of the fuselage satisfy the balance control target of the fuselage.
有益效果Beneficial effect
本申请实施例提供的机身平衡无人机及其控制方法的有益效果在于:The beneficial effects of the fuselage balancing drone and its control method provided by the embodiments of the present application are as follows:
1.本申请无人机采用倾转旋翼技术,通过旋翼倾转装置使旋翼支架旋转以控制旋翼的倾角,做飞行姿态调整时不需要调整机身姿态,同时设有机身平衡控制器和机身平衡执行器来抵消风力导致的机身倾转,飞行过程中机身能保持平衡性,适用于作为摄像平台。1. The unmanned aerial vehicle of this application adopts the tilting rotor technology, and the rotor support is rotated by the rotor tilting device to control the tilt angle of the rotor. There is no need to adjust the fuselage attitude when adjusting the flight attitude. The fuselage balance controller and the aircraft are also provided. The body balance actuator counteracts the tilting of the fuselage caused by the wind, and the fuselage can maintain balance during the flight. It is suitable for use as a camera platform.
2.公开号CN106428543B、CN206243472U专利所述的无人机微型化后,抗风能力较低,本申请无人机增设机身平衡控制器和机身平衡执行器,可以提高抗风能力,增加飞行稳定性。2. After miniaturization of the UAVs described in the patents CN106428543B and CN206243472U, the wind resistance is low. In this application, the UAV is equipped with a fuselage balance controller and fuselage balance actuator, which can improve the wind resistance and increase flight. stability.
3.相对于传统直升机,本申请无人机没有复杂的倾斜盘结构,用一个结构简单的旋翼倾转装置实现对旋翼倾角的控制,相对于多旋翼无人机,本申请无人机只有一个升力装置,另外,所用的机身平衡执行器也是结构简单的部件,整机结构简单、成本低。3. Compared with traditional helicopters, the drone of this application does not have a complicated swash plate structure, and a simple structure of the rotor tilting device is used to control the tilt angle of the rotor. Compared with the multi-rotor drone, the drone of this application has only one Lifting device, in addition, the balance actuator used in the fuselage is also a simple structural component, the whole structure is simple, and the cost is low.
附图说明BRIEF DESCRIPTION
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly explain the technical solutions in the embodiments of the present application, the following will briefly introduce the drawings needed in the embodiments or exemplary technical descriptions. Obviously, the drawings in the following description are only for the application For some embodiments, those of ordinary skill in the art can obtain other drawings based on these drawings without creative efforts.
图1为本申请一组第一实施例提供的机身平衡无人机的立体装配图;FIG. 1 is a three-dimensional assembly diagram of a fuselage balancing drone provided by a group of first embodiments of the present application;
图2为图1的机身平衡无人机的立体分解图;FIG. 2 is an exploded perspective view of the fuselage balancing UAV of FIG. 1;
图3为本申请一组第二实施例提供的机身平衡无人机的立体装配图;3 is a three-dimensional assembly diagram of a fuselage balancing drone provided by a group of second embodiments of the present application;
图4为本申请一组第三实施例提供的机身平衡无人机的立体装配图;4 is a three-dimensional assembly diagram of a fuselage balancing drone provided by a third embodiment of the present application;
图5为本申请一组第四实施例提供的机身平衡无人机的立体装配图;5 is a perspective assembly view of a fuselage balancing drone provided by a group of fourth embodiments of the present application;
图6(a)、图6(b)分别为本申请一组第五实施例提供的机身平衡无人机的立体装配图、局部放大图;6(a) and 6(b) are respectively a three-dimensional assembly drawing and a partially enlarged view of a fuselage balancing drone provided by a group of fifth embodiments of the present application;
图7(a)、图7(b)分别为本申请一组第六实施例提供的机身平衡无人机的立体装配图、局部放大图;7(a) and 7(b) are respectively a three-dimensional assembly drawing and a partially enlarged view of a fuselage balancing drone provided by a group of sixth embodiments of the present application;
图8为图1的机身平衡无人机在折叠时的结构示意图;8 is a schematic structural diagram of the fuselage balancing drone of FIG. 1 when folded;
图9为本申请二组实施例提供的机身平衡无人机的立体装配图;9 is a three-dimensional assembly diagram of a fuselage balancing drone provided by two groups of embodiments of this application;
图10为图9的机身平衡无人机在折叠时的结构示意图;10 is a schematic structural diagram of the fuselage balancing drone of FIG. 9 when folded;
图11为本申请三组第一实施例提供的机身平衡无人机的立体装配图;11 is a three-dimensional assembly drawing of a fuselage balancing drone provided by the first embodiment of three groups of this application;
图12为本申请三组第二实施例提供的机身平衡无人机的立体装配图;12 is a three-dimensional assembly diagram of a fuselage balancing drone provided by the second embodiment of three groups of this application;
图13为本申请四组实施例提供的机身平衡无人机的控制方法的流程图;13 is a flowchart of a method for controlling a fuselage balancing drone provided by four groups of embodiments of the present application;
图14为本申请四组实施例提供的针对图1所示无人机的控制方法的流程图。14 is a flowchart of a control method for the drone shown in FIG. 1 provided by four sets of embodiments of the present application.
本发明的实施方式Embodiments of the invention
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clear, the present application will be described in further detail in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present application.
在本申请实施例的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。In the description of the embodiments of the present application, it should be understood that the terms "length", "width", "upper", "lower", "front", "back", "left", "right", "vertical" ", "horizontal", "top", "bottom", "inner", "outer", etc. indicate the orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, just to facilitate the description of the embodiments of the present application and simplify The description does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation to the embodiments of the present application.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms “first” and “second” are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, the features defined as "first" and "second" may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of "plurality" is two or more, unless otherwise specifically limited.
在本申请实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。In the embodiments of the present application, unless otherwise clearly specified and limited, the terms "installation", "connected", "connected", "fixed" and other terms should be understood in a broad sense, for example, it may be fixedly connected or may be Disassembly connection or integration; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components. For those of ordinary skill in the art, the specific meaning of the above terms in the embodiments of the present application can be understood according to specific situations.
请参阅图1及图2,在本申请一个实施例中,提供一种机身平衡无人机,其包括机身100、旋翼支架500、升力装置200、旋翼倾转装置400、机身平衡执行器(310、320、330、340)和机身平衡控制器(图未示),升力装置200安装在旋翼支架500上,升力装置200包括旋翼220;旋翼倾转装置400安装于机身100,用于使旋翼支架500旋转以控制旋翼220的倾角;机身平衡执行器(310、320、330、340)用于输出使机身100产生倾转运动的力矩;机身平衡控制器用于控制机身平衡执行器(310、320、330、340)动作以使机身100保持平衡。1 and 2, in one embodiment of the present application, a fuselage balancing drone is provided, which includes a fuselage 100, a rotor support 500, a lift device 200, a rotor tilting device 400, and a fuselage balancing execution (310, 320, 330, 340) and the fuselage balance controller (not shown), the lift device 200 is installed on the rotor support 500, the lift device 200 includes the rotor 220; the rotor tilt device 400 is installed on the fuselage 100, Used to rotate the rotor bracket 500 to control the inclination of the rotor 220; the fuselage balance actuators (310, 320, 330, 340) are used to output the torque that causes the fuselage 100 to produce a tilting motion; the fuselage balance controller is used to control the aircraft The body balance actuators (310, 320, 330, 340) operate to keep the body 100 in balance.
无人机采用倾转旋翼技术,通过旋翼倾转装置400使旋翼支架500旋转以控制旋翼220的倾角,因此做飞行姿态调整时不需要调整机身100的姿态,同时设有机身平衡控制器和机身平衡执行器(310、320、330、340)来抵消风力导致的机身倾转,飞行过程中机身100能保持平衡性,并可以提高抗风能力,增加飞行稳定性,适用于作为摄像平台。相对于传统直升机,该无人机没有复杂的倾斜盘结构,用一个结构简单的旋翼倾转装置400实现对旋翼220倾角的控制,相对于多旋翼无人机,该无人机只有一个升力装置200,另外,所用的机身平衡执行器(310、320、330、340)也是结构简单的部件,可见本申请无人机的结构简单、成本低。The UAV uses tilting rotor technology, and the rotor support 500 is rotated by the rotor tilting device 400 to control the inclination angle of the rotor 220. Therefore, it is not necessary to adjust the attitude of the fuselage 100 when performing flight attitude adjustment, and a fuselage balance controller is also provided. And the fuselage balance actuator (310, 320, 330, 340) to counteract the fuselage tilt caused by wind, the fuselage 100 can maintain balance during flight, and can improve wind resistance and increase flight stability, suitable for As a camera platform. Compared with traditional helicopters, the drone does not have a complicated swash plate structure, and a simple structure of the rotor tilting device 400 is used to control the inclination of the rotor 220. Compared with the multi-rotor drone, the drone has only one lifting device 200. In addition, the fuselage balancing actuators (310, 320, 330, 340) used are also components with simple structure. It can be seen that the drone of this application has a simple structure and low cost.
需要说明的是,机身平衡控制器根据机身100姿态及其它数据,计算各个机身平衡执行器的控制量, 然后控制各个机身平衡控制器协同动作,实现机身100的平衡控制。It should be noted that the fuselage balance controller calculates the control amount of each fuselage balance actuator according to the attitude of the fuselage 100 and other data, and then controls the various fuselage balance controllers to cooperate to realize the balance control of the fuselage 100.
实施例一组:Example group:
本实施例描述一个本申请提出的无人机,如图1、图2所示,包括机身100、升力装置200、机身平衡执行器(310、320、330、340)、机身平衡控制器(图未示)、旋翼倾转装置400、旋翼支架500。This embodiment describes a drone proposed in this application, as shown in FIGS. 1 and 2, including a fuselage 100, a lift device 200, a fuselage balance actuator (310, 320, 330, 340), and a fuselage balance control Device (not shown), rotor tilting device 400, rotor support 500.
在本申请另一实施例中,机身100为“L”型结构,包括第一机体110和机臂120。第一机体110为长条形结构,机臂120设于第一机体110的一个端部,第一机体110内容置电池、光流传感器、视觉分析模块、云台、相机700等无人机功能模块,其包含无人机的大部分重量。In another embodiment of the present application, the fuselage 100 has an “L” structure, including a first body 110 and an arm 120. The first body 110 has an elongated structure, and the arm 120 is provided at one end of the first body 110. The first body 110 contains functions such as a battery, an optical flow sensor, a visual analysis module, a gimbal, and a camera 700. Module, which contains most of the weight of the drone.
在本申请另一实施例中,还包括飞行控制器(图未示),飞行控制器根据各种传感器的数据和飞行任务要求,控制无人机的飞行,这属于现有技术。包含飞行控制器的电子控制组件可以安装在无人机的任意位置,通常是安装在第一机体110内。In another embodiment of the present application, it also includes a flight controller (not shown). The flight controller controls the flight of the drone according to the data of various sensors and the requirements of the flight mission, which belongs to the prior art. The electronic control component including the flight controller can be installed at any location of the UAV, and is usually installed in the first body 110.
在本申请另一实施例中,升力装置200包含两个电机210和两个旋翼220,两个电机210一个朝上、一个朝下安装在旋翼支架500上,两个旋翼220分别安装在两个电机210输出轴上,旋转方向相反,两个旋翼220的旋转扭矩可以相互抵消。In another embodiment of the present application, the lift device 200 includes two motors 210 and two rotors 220. The two motors 210 are installed on the rotor support 500 one up and one down, and the two rotors 220 are installed on two On the output shaft of the motor 210, the rotation direction is opposite, and the rotation torque of the two rotors 220 can cancel each other.
在本申请另一实施例中,还包括旋翼防护框600,旋翼防护框600安装在旋翼支架500上,将升力装置200包裹在内部,为旋翼220提供防护和避免误伤人。图1所示的旋翼防护框600为一个中空的圆形框,圆形框可以为镂空结构以降低重量,圆形框的上下两端可加网状盖板以提高安全性。In another embodiment of the present application, a rotor protection frame 600 is also included. The rotor protection frame 600 is installed on the rotor support 500 and wraps the lift device 200 inside to provide protection for the rotor 220 and avoid accidental injury. The rotor protection frame 600 shown in FIG. 1 is a hollow circular frame. The circular frame may be a hollow structure to reduce weight, and mesh cover plates may be added to the upper and lower ends of the circular frame to improve safety.
在本申请另一实施例中,旋翼倾转装置400包括第一旋转机构410、第一旋转控制器420,转接支架430、第二旋转机构440和第二旋转控制器450。旋翼支架500通过第一旋转机构410旋转安装于转接支架430,转接支架430通过第二旋转机构440旋转安装于机臂120。在原理上,第一旋转机构410的旋转轴线R1和第二旋转机构440的旋转轴线R2只要不平行都可行,在本实施例中R1轴线和R2轴线是正交的,这是优选设计,可以简化飞行控制器的设计,如果正交设计难以实现,相互垂直的设计也可以获得较好的效果。通过第一旋转控制器420和第二旋转控制器450控制升力装置200分别绕着R1轴和R2轴旋转,继而控制旋翼220的倾角。要说明的是,第一旋转控制器420和第二旋转控制器450的灵敏度和控制精度要求较高,不然会影响无人机的操控稳定性。In another embodiment of the present application, the rotor tilting device 400 includes a first rotation mechanism 410, a first rotation controller 420, an adapter bracket 430, a second rotation mechanism 440, and a second rotation controller 450. The rotor bracket 500 is rotatably mounted on the adapter bracket 430 through the first rotation mechanism 410, and the adapter bracket 430 is rotatably mounted on the arm 120 through the second rotation mechanism 440. In principle, the rotation axis R1 of the first rotation mechanism 410 and the rotation axis R2 of the second rotation mechanism 440 are feasible as long as they are not parallel. In this embodiment, the R1 axis and the R2 axis are orthogonal. This is the preferred design. Simplify the design of the flight controller. If the orthogonal design is difficult to achieve, the mutually perpendicular design can also obtain better results. The first rotation controller 420 and the second rotation controller 450 control the lift device 200 to rotate around the R1 axis and the R2 axis, respectively, and then control the tilt angle of the rotor 220. It should be noted that the sensitivity and control accuracy requirements of the first rotary controller 420 and the second rotary controller 450 are relatively high, otherwise it will affect the handling stability of the drone.
本实施例中,第一旋转机构410采用轴系结构,轴系结构的部件很多,图2中以第一轴承411和第一传动轴412两个主要部件进行示意,在图中,转接支架430上设置第一轴承411,旋翼支架500的端部设置第一传动轴412。实际上,相反设置也是可以的,即转接支架上设置第一传动轴,旋翼支架的端部设置第一轴承。与第一旋转机构410相同,第二旋转机构440也采用轴系结构,图中以第二轴承441和第二传动轴442两个主要轴系构件进行示意,机臂上设置第二轴承441,转接支架430的端部设置第二传动轴442。实际上,相反设置也是可以的。第一旋转控制器420和第二旋转控制器450是一种伺服器,包括电机、传动减速部件和电机控制组件等部件,在图中以一个电机和齿轮组示意,用于按照控制信号来输出转动,这属于现有技术。In this embodiment, the first rotating mechanism 410 adopts a shafting structure, and there are many parts of the shafting structure. In FIG. 2, the two main components of the first bearing 411 and the first transmission shaft 412 are illustrated. In the figure, the adapter bracket A first bearing 411 is provided on the 430, and a first transmission shaft 412 is provided at the end of the rotor bracket 500. In fact, the opposite arrangement is also possible, that is, a first transmission shaft is provided on the adapter bracket, and a first bearing is provided at the end of the rotor bracket. Like the first rotating mechanism 410, the second rotating mechanism 440 also adopts a shafting structure. In the figure, two main shafting members, a second bearing 441 and a second transmission shaft 442, are used for illustration, and a second bearing 441 is provided on the arm. The end of the adapter bracket 430 is provided with a second transmission shaft 442. In fact, the opposite setting is also possible. The first rotary controller 420 and the second rotary controller 450 are servos, including motors, transmission deceleration components, and motor control components. They are illustrated by a motor and gear set in the figure, and are used to output according to control signals. Turn, this belongs to the prior art.
上述无人机的飞行控制原理为:飞行时,第一机体110处于旋翼220下方,第一机体110包含了无人机的大部分重量,基于第一机体110重力的支撑作用,通过第一旋转控制器420可以控制旋翼支架500绕着R1轴旋转;通过第二旋转控制器450可以控制转接支架430绕着R2轴旋转,因此可控制旋翼220绕着R1轴和R2轴旋转,继而控制无人机沿着X轴和Y轴向运动或抵消X轴和Y轴向的外力作用保持悬停;通过控制两个旋翼220的转速,调整两个旋翼220的旋转扭矩差,产生偏航力矩,同时控制两个旋翼220产生的总升力不变,控制无人机的偏航运动;通过控制两个旋翼220的转速,调整两个旋翼220产生的总升力,同时保持两个旋翼220的旋转扭矩相互抵消,实现无人机的升降控制。由上可见,本实施例无人机采用倾转旋翼技术,这种控制方式的优点是无人机无需调整机身100姿态就可以调整旋翼 220的倾角以实现飞行控制,也就是说无人机作飞行姿态调整时机身100仍可以保持平稳。The above-mentioned drone flight control principle is: during flight, the first body 110 is below the rotor 220, the first body 110 contains most of the weight of the drone, based on the support of gravity of the first body 110, through the first rotation The controller 420 can control the rotor bracket 500 to rotate about the R1 axis; the second rotation controller 450 can control the adapter bracket 430 to rotate about the R2 axis, so the rotor 220 can be controlled to rotate about the R1 and R2 axes, and then control the The man-machine moves along the X-axis and Y-axis or cancels the external force of the X-axis and Y-axis to maintain hovering; by controlling the rotation speed of the two rotors 220, the rotation torque difference of the two rotors 220 is adjusted to generate a yaw moment, Simultaneously control the total lift generated by the two rotors 220 unchanged, and control the yaw movement of the UAV; by controlling the rotation speed of the two rotors 220, adjust the total lift generated by the two rotors 220, while maintaining the rotation torque of the two rotors 220 Mutually offset each other to achieve the lifting control of the drone. It can be seen from the above that the drone of this embodiment adopts the tilt rotor technology. The advantage of this control method is that the drone can adjust the tilt angle of the rotor 220 to achieve flight control without adjusting the attitude of the fuselage 100, that is to say, the drone The fuselage 100 can still be stable during the flight attitude adjustment.
上述控制方式的技术特性是:旋翼220的推力不能用于机身100姿态的控制,决定机身100姿态的主要作用力为风力(或其它外力)和机身重力,当受到风力作用或加减速时,机身100会以升力中心(上下两个旋翼中心点连线的中点)为支点倾斜,倾斜角度由风力和机身重力的大小决定。对于微小型无人机,由于机身重量太轻,倾斜角度会较大,不仅影响拍摄,甚至可能触发来回震荡,影响飞行稳定性。本实施例无人机包括机身平衡控制器和四个机身平衡执行器(310、320、330、340),用于控制上述机身100的倾转运动。The technical characteristics of the above control method are: the thrust of the rotor 220 cannot be used to control the attitude of the fuselage 100. The main forces that determine the attitude of the fuselage 100 are the wind (or other external forces) and the gravity of the fuselage. At this time, the fuselage 100 will tilt with the center of lift (the midpoint of the connection between the center points of the upper and lower rotors) as the fulcrum, and the tilt angle is determined by the wind force and the gravity of the fuselage. For micro-mini drones, due to the light weight of the fuselage, the tilt angle will be larger, which not only affects the shooting, but may also trigger back and forth oscillations and affect flight stability. The drone of this embodiment includes a fuselage balance controller and four fuselage balance actuators (310, 320, 330, 340) for controlling the tilting motion of the fuselage 100 described above.
如图1所示,X轴的箭头指向设为机头方向,那么过升力中心且平行于Y轴的直线为无人机的俯仰轴,过升力中心且平行于X轴的直线为无人机的滚转轴。本实施例无人机的其中两个机身平衡执行器(310、320)设于第一机体110的两个端部,处于俯仰轴线的两边,另外两个机身平衡执行器(330、340)设于旋翼防护框600上,处于滚转轴线的两边。机身平衡执行器(310、320、330、340)的基本结构包括平衡导流片(311、321、331、341)和平衡伺服器,其工作原理是:平衡导流片(311、321、331、341)的一个表面迎向旋翼220的下洗气流,旋翼220的下洗气流在该表面产生压力,从而产生使无人机产生倾转运动的力矩;平衡伺服器控制平衡导流片旋转,调整其相对于旋翼气流的迎角,使迎向气流的面积变大或变小,从而控制所产生力矩的大小。例如,第一机体体110上的机身平衡执行器(310、320)能产生使机身100作俯仰运动的俯仰力矩。若右端的机身平衡执行器320的平衡导流片321旋转角度b向外张开,增加力矩,左端的机身平衡执行器310的平衡导流片311旋转角度a向机身靠拢,减小力矩,则产生使机身100绕着俯仰轴作顺时针旋转的俯仰力矩。若两个机身平衡执行器(310、320)的平衡导流片(311、321)往相反方向旋转,则会产生使机身100绕着俯仰轴作逆时针旋转的俯仰力矩。同样的,旋翼防护框600上的两个机身平衡执行器(330、340)能产生使机身100绕着滚转轴旋转的滚转力矩。平衡伺服器包括电机、传动减速部件和电机控制组件等部件,用于按照控制信号来输出转动,这属于现有技术。As shown in Figure 1, the arrow direction of the X axis is set to the direction of the nose, then the straight line passing the center of lift and parallel to the Y axis is the pitch axis of the drone, and the straight line passing the center of lift and parallel to the X axis is the drone Roll axis. In the drone of this embodiment, two of the fuselage balancing actuators (310, 320) are located at the two ends of the first body 110, on both sides of the pitch axis, and the other two fuselage balancing actuators (330, 340) ) Is provided on the rotor protection frame 600 on both sides of the roll axis. The basic structure of the body's balanced actuators (310, 320, 330, 340) includes balanced deflectors (311, 321, 331, 341) and balanced servos. Its working principle is: balanced deflectors (311, 321, 331, 341) a surface facing the downwash airflow of the rotor 220, the downwash airflow of the rotor 220 generates pressure on the surface, thereby generating a moment that causes the UAV to produce a tilting motion; the balance server controls the balance deflector to rotate , Adjust its angle of attack relative to the airflow of the rotor, so that the area facing the airflow becomes larger or smaller, thereby controlling the magnitude of the generated torque. For example, the fuselage balancing actuators (310, 320) on the first body 110 can generate a pitching moment that causes the fuselage 100 to make a pitching motion. If the rotation angle b of the balancing deflector 321 on the right side of the fuselage balancing actuator 320 expands outward, increasing the torque, the rotating angle a of the balancing deflector 311 on the left side of the fuselage balancing actuator 310 moves closer to the fuselage and decreases The moment produces a pitch moment that rotates the fuselage 100 clockwise around the pitch axis. If the balancing deflectors (311, 321) of the two fuselage balancing actuators (310, 320) rotate in opposite directions, a pitching moment that causes the fuselage 100 to rotate counterclockwise around the pitch axis will be generated. Similarly, the two fuselage balancing actuators (330, 340) on the rotor protection frame 600 can generate a rolling moment that rotates the fuselage 100 around the rolling axis. The balancing servo includes motors, transmission deceleration components, motor control components and other components, which are used to output rotation according to control signals, which belongs to the prior art.
本实施例中,每个机身平衡执行器可以只设置一个平衡伺服器控制两个平衡导流片同步转动。由于两个平衡导流片所受的气流会不同,导致两个张开角度相同的平衡导流片上受到的压力不同,此时机身平衡执行器所产生的力矩将使机身不只绕着一个轴旋转,比如,第一机体110上的机身平衡执行器(310、320)产生的力矩将不仅是俯仰力矩,还有部分分量是滚转力矩,同样,旋翼防护框600上的机身平衡执行器(330、340)产生的力矩也不仅是滚转力矩,还有部分分量是俯仰力矩,不过,机身平衡控制器可以控制四个机身平衡执行器(310、320、330、340)协调动作,从而控制机身的平衡。为了简化控制,每个机身平衡执行器可以设置两个平衡伺服器分别控制两个平衡导流片的角度,使单一机身平衡执行器的力矩只为俯仰力矩或滚转力矩,但所用部件更多。In this embodiment, each balancing actuator of the fuselage can be provided with only one balancing servo to control the two balancing deflectors to rotate synchronously. Due to the different airflow to the two balance deflectors, the pressure on the two balance deflectors with the same opening angle is different. At this time, the torque generated by the body balance actuator will cause the body to not only wrap around one The axis rotation, for example, the moment generated by the fuselage balancing actuators (310, 320) on the first body 110 will not only be the pitch moment, but also part of the rolling moment. Similarly, the fuselage balance on the rotor protective frame 600 The torque generated by the actuator (330, 340) is not only the rolling torque, but also some of the component is the pitch torque. However, the body balance controller can control the four body balance actuators (310, 320, 330, 340) Coordinate actions to control the balance of the fuselage. In order to simplify the control, each balance actuator can be equipped with two balance servos to control the angle of the two balance deflectors respectively, so that the torque of a single body balance actuator is only the pitch or roll torque, but the components used More.
在本申请另一实施例中,机身平衡执行器应尽可能设置在力臂较大的位置,可以提高电源效率,比如,本实施例第一机体110上的两个机身平衡执行器(310、320)设置在第一机体110的两个端部,这是俯仰力矩的力臂最大的位置。另外,机身平衡执行器的设置位置有多种实施方式,比如,图1所示无人机设于第一机体上的两个机身平衡执行器(310、320)也可以设在旋翼防护框600上;或者,如图3所示,在第一机体110上设置两个支架130用于安装机身平衡执行器330,这两个机身平衡执行器330产生滚转力矩,替代图1所示无人机安装在旋翼防护框600上的两个机身平衡执行器,两个支架130的根部可以设置铰接机构,以折叠回收无人机。In another embodiment of the present application, the fuselage balancing actuators should be set as large as possible in the position of the large arm, which can improve power efficiency. For example, the two fuselage balancing actuators on the first body 110 of this embodiment ( 310, 320) are provided at both ends of the first body 110, which is the position where the arm of the pitching moment is the largest. In addition, there are various embodiments for the installation position of the fuselage balancing actuator. For example, the two fuselage balancing actuators (310, 320) on the first body of the drone shown in FIG. 1 can also be installed in the rotor protection On frame 600; or, as shown in FIG. 3, two brackets 130 are provided on the first body 110 for mounting the fuselage balancing actuator 330, and these two fuselage balancing actuators 330 generate rolling torque, instead of FIG. The two fuselage balance actuators installed on the rotor protective frame 600 of the drone shown, the hinges of the two brackets 130 can be provided with hinged mechanisms to fold and recover the drone.
图1所示无人机在俯仰轴和滚转轴向上都设有两个机身平衡执行器。要说明的是,在本申请另一实施例中,如图4所示无人机,每个轴向上只设置一个机身平衡执行器(310、320)也是可行的。采用这种配置,结构较简单、重量较小,不过力矩较小,抗风能力下降。要注意的是,由于机身平衡执行器(310、 320)只能输出单向力矩,因此在无风悬停时它们的平衡导流片(311、321)要张开一定的角度产生一个初始力矩,与机身重力的协同作用,通过调大或调小该力矩以实现双向控制。The drone shown in Figure 1 is equipped with two fuselage balancing actuators on the pitch axis and roll axis. It should be noted that, in another embodiment of the present application, as shown in FIG. 4, it is also feasible to provide only one fuselage balancing actuator (310, 320) in each axis. With this configuration, the structure is simple and the weight is small, but the torque is small and the wind resistance is reduced. It should be noted that since the body's balanced actuators (310, 320) can only output unidirectional torque, their balance deflectors (311, 321) must be opened at a certain angle to produce an initial Torque, synergistic effect with the gravity of the fuselage, realizes bidirectional control by adjusting the torque up or down.
在本申请另一实施例中,如图5所示,其第一机体110上的机身平衡执行器310是基于导流片技术的另一种实现方式,这种机身平衡执行器310也是包括平衡导流片311和平衡伺服器,这种机身平衡执行器310的平衡导流片311的工作原理不同,其采用固定翼原理,旋翼的下洗气流在平衡导流片311的两个表面会产生压力差,从而产生力矩,平衡伺服器控制平衡导流片311旋转,调整平衡导流片与旋翼气流的迎角以调整力矩的大小,这种实现方式的电源效率高,不过易受到外界气流的影响。In another embodiment of the present application, as shown in FIG. 5, the fuselage balancing actuator 310 on the first body 110 is another implementation based on the deflector technology, and this fuselage balancing actuator 310 is also Including the balancing deflector 311 and the balancing servo. The working principle of the balancing deflector 311 of this fuselage balancing actuator 310 is different. It uses the principle of fixed wing. The downwash flow of the rotor is in the two of the balancing deflector 311. There will be a pressure difference on the surface, which will result in a torque. The balance servo controls the rotation of the balance deflector 311 and adjusts the angle of attack of the balance deflector and the rotor airflow to adjust the size of the torque. This implementation has high power efficiency, but it is vulnerable to Influence of external airflow.
在本申请另一实施例中,机身平衡执行器还有基于风扇的实现方式,如图6所示无人机的第一机体110中部的风扇350是一个机身平衡执行器,风扇350的推力可以产生滚转力矩,风扇内设置两组扇叶(351,352),两组扇叶(351,352)的出风方向相反,使风扇顺时针或逆时针旋转时可以输出大小基本相同的力矩,控制风扇350的旋转方向可以控制力矩的方向,调整风扇350的转速可以控制力矩的大小。In another embodiment of the present application, the fuselage balancing actuator also has a fan-based implementation. As shown in FIG. 6, the fan 350 in the middle of the first body 110 of the drone is a fuselage balancing actuator. Thrust can produce rolling torque. Two sets of fan blades (351, 352) are set in the fan. The wind direction of the two sets of fan blades (351, 352) is opposite, so that the fan can output the same size when rotating clockwise or counterclockwise. Torque, controlling the rotation direction of the fan 350 can control the direction of the torque, and adjusting the rotation speed of the fan 350 can control the magnitude of the torque.
在本申请另一实施例中,如图7,设于第一机体110上的风扇360是另一种基于风扇的机身平衡执行器的实现方式,该风扇360设有两个出风口361,出风口361上设有阀门,空气由上方吸入,从出风口361排出产生力矩,通过开关两个出风口361的阀门可以控制力矩的方向,调整风扇的转速可以控制力矩的大小。阀门活动安装于出风口361,并通过驱动件带动移动,实现出风口361的开关。In another embodiment of the present application, as shown in FIG. 7, the fan 360 provided on the first body 110 is another implementation of a fan-based body balance actuator. The fan 360 is provided with two air outlets 361, A valve is provided on the air outlet 361, and air is sucked in from above and discharged from the air outlet 361 to generate a torque. The direction of the torque can be controlled by switching the valves of the two air outlets 361, and the magnitude of the torque can be controlled by adjusting the fan speed. The valve is movably installed at the air outlet 361 and driven by the driving member to realize the opening and closing of the air outlet 361.
在本申请另一实施例中,机身平衡执行器的设置相关于无人机的具体应用需求,可能对俯仰轴或滚转轴的某个轴向的平衡性要求高,对另一轴向要求低,则可以只在一个轴向设置机身平衡执行器,或在某个轴向上设置一个机身平衡执行器、而在另一个轴向上设置两个机身平衡执行器。另外,机身平衡执行器的具体性能也与无人机的具体应用需求相关。In another embodiment of the present application, the setting of the fuselage balance actuator is related to the specific application requirements of the drone, and may require high balance of one axis of the pitch axis or roll axis, and another axis Low, it is possible to install the fuselage balancing actuator in only one axis, or one fuselage balancing actuator in one axis, and two fuselage balancing actuators in the other axis. In addition, the specific performance of the fuselage balanced actuator is also related to the specific application requirements of the drone.
在本申请另一实施例中,无人机的机身为“L”型结构,无人机的机臂120和第一机体110围成了一个空间,如图8所示,通过第一旋转机构410和第二旋转机构440的旋转,可将升力装置200和旋翼防护框600一体化地置入该空间内;另外,第一机体110上的机身平衡执行器(310、320)的平衡导流片(311、321)可以旋转至与第一机体110的外壳贴合,旋翼防护框600上的机身平衡执行器(330、340)的平衡导流片(331,341)可以旋转至旋翼防护框600内,从而实现无人机的折叠回收,使得无人机的回收尺寸小巧,便携性好。值得注意的是,本申请无人机的旋翼防护框600可以固定安装在旋翼支架500上,因此每次收放无人机时不需要拆卸旋翼防护框600,兼顾了无人机的易用性和安全性。In another embodiment of the present application, the body of the drone has an "L" structure, and the arm 120 and the first body 110 of the drone form a space, as shown in FIG. The rotation of the mechanism 410 and the second rotating mechanism 440 can integrally place the lift device 200 and the rotor protective frame 600 into the space; in addition, the balance of the fuselage balancing actuators (310, 320) on the first body 110 The deflectors (311, 321) can be rotated to fit the outer shell of the first body 110, and the balance deflectors (331, 341) of the fuselage balancing actuators (330, 340) on the rotor protective frame 600 can be rotated to The rotor protection frame 600 realizes the folding and recycling of the drone, which makes the recycling size of the drone compact and portable. It is worth noting that the rotor protection frame 600 of the drone of this application can be fixedly installed on the rotor support 500, so there is no need to remove the rotor protection frame 600 each time the UAV is retracted, taking into account the ease of use of the drone And security.
实施例二组:Example two groups:
本实施例描述一个本申请提出的无人机,如图9所示,包括机身100、升力装置200、机身平衡执行器310、旋翼倾转装置400、旋翼支架500和机身平衡控制器(图未示)。机身平衡控制器与实施例一组无人机相同,不再赘述。This embodiment describes a drone proposed in this application. As shown in FIG. 9, it includes a fuselage 100, a lift device 200, a fuselage balance actuator 310, a rotor tilt device 400, a rotor support 500 and a fuselage balance controller (Not shown). The fuselage balance controller is the same as the group of unmanned aerial vehicles in the embodiment, and will not be described in detail.
在本申请另一实施例中,机身100为“U”型结构,包括第一机体110和两个机臂120。第一机体110为长条形结构,两个机臂120分别设于第一机体110的两端,第一机体110内容置电池、光流传感器、视觉分析模块、云台、相机700等无人机功能模块,其包含无人机的大部分重量。In another embodiment of the present application, the fuselage 100 has a “U” shape structure, including a first body 110 and two arms 120. The first body 110 has an elongated structure, and the two arms 120 are respectively disposed at both ends of the first body 110. The first body 110 contains a battery, an optical flow sensor, a visual analysis module, a gimbal, and a camera 700. The machine function module, which contains most of the weight of the drone.
在本申请另一实施例中,升力装置200安装在旋翼支架500上,旋翼倾转装置400包括第一旋转机构410、第一旋转控制器420、转接支架430、第二旋转机构440、第二旋转控制器450和第三旋转机构460,旋翼支架500通过第一旋转机构410旋转安装于转接支架430的中部位置,转接支架430的两个端部通过第二旋转机构440和第三旋转机构460分别旋转安装于两个机臂120,第二旋转机构440和第三旋转机构460的旋转轴线重合,因此转接支架430可以相对于机身100旋转。通过第一旋转控制器420控制旋翼支架500绕着第一旋转机构410的旋转轴R1相对于转接支架430旋转,通过第二旋转控制器 450控制转接支架430绕着第二旋转机构440的旋转轴R2相对于机身100旋转。In another embodiment of the present application, the lift device 200 is installed on the rotor bracket 500, and the rotor tilting device 400 includes a first rotation mechanism 410, a first rotation controller 420, an adapter bracket 430, a second rotation mechanism 440, a first The second rotation controller 450 and the third rotation mechanism 460, the rotor bracket 500 is rotatably installed at the middle position of the adapter bracket 430 through the first rotation mechanism 410, and the two ends of the adapter bracket 430 pass through the second rotation mechanism 440 and the third The rotation mechanism 460 is rotatably mounted on the two arms 120 respectively. The rotation axes of the second rotation mechanism 440 and the third rotation mechanism 460 coincide, so the adapter bracket 430 can rotate relative to the body 100. The first rotation controller 420 controls the rotor bracket 500 to rotate relative to the adapter bracket 430 about the rotation axis R1 of the first rotation mechanism 410, and the second rotation controller 450 controls the adapter bracket 430 to rotate about the second rotation mechanism 440 The rotation axis R2 rotates relative to the body 100.
在本申请另一实施例中,本实施例的升力装置包含电机210、旋翼220、偏航导流片(230、240)和偏航伺服器。电机210安装在旋翼支架500上,旋翼220安装在电机210输出轴上。偏航导流片(230、240)安装于旋翼220的下方,利用旋翼220的下洗气流产生使无人机发生偏航运动的力矩,有两个偏航导流片230是固定安装的,另外两个偏航导流片240是可活动的,偏航伺服器控制可活动的偏航导流片240转动调整偏航力矩大小。偏航伺服器包括电机、传动减速部件和电机控制组件等部件,用于按照控制信号来输出转动,这属于现有技术。In another embodiment of the present application, the lift device of this embodiment includes a motor 210, a rotor 220, a yaw deflector (230, 240), and a yaw servo. The motor 210 is mounted on the rotor bracket 500, and the rotor 220 is mounted on the output shaft of the motor 210. The yaw deflectors (230, 240) are installed under the rotor 220, and the downwash airflow of the rotor 220 is used to generate a moment that causes the yaw to move. The two yaw deflectors 230 are fixedly installed. The other two yaw deflectors 240 are movable, and the yaw server controls the movable yaw deflector 240 to rotate to adjust the magnitude of the yaw moment. The yaw servo includes motors, transmission deceleration components, motor control components and other components for outputting rotation according to control signals, which belongs to the prior art.
本实施例无人机的飞行控制除了偏航运动控制,其它的与实施例一组无人机相同,不再赘述。本实施例无人机的偏航运动控制原理为:偏航导流片(230、240)基于固定翼原理,旋翼220的下洗气流流过偏航导流片(230、240),在偏航导流片(230、240)的两个表面会产生压力差,从而产生偏航力矩,通过偏航伺服器控制可活动的偏航导流片240旋转,调整相对于旋翼气流的迎角,可以控制所产生的力矩的大小,实现无人机的偏航运动控制。The flight control of the unmanned aerial vehicle of this embodiment is the same as that of a group of unmanned aerial vehicles of the embodiment except yaw motion control, and will not be described in detail. The yaw movement control principle of the drone in this embodiment is as follows: the yaw deflector (230, 240) is based on the fixed-wing principle, and the downwash airflow of the rotor 220 flows through the yaw deflector (230, 240). The pressure difference between the two surfaces of the yoke guide (230, 240) will generate a yaw moment. The movable yaw guide 240 is controlled by the yaw server to rotate to adjust the angle of attack relative to the rotor airflow. It can control the magnitude of the generated torque to realize the yaw movement control of the UAV.
在本申请另一实施例中,本实施例包括四个设置在机身100上的机身平衡执行器310,每个机身平衡执行器310包括一个平衡导流片311和一个平衡伺服器,其工作原理与图1所示无人机的机身平衡执行器相同。要说明的是,本实施例的每个机身平衡执行器310产生的力矩同时有俯仰力矩和滚转力矩分量,需要四个机身平衡执行器310联合作用实现机身的平衡性控制。注意,为了使滚转力矩够大,本实施例的机身平衡执行器的平衡导流片311的长度要比图1所示无人机的长,这样可以增大滚转力矩的力臂。In another embodiment of the present application, this embodiment includes four fuselage balancing actuators 310 disposed on the fuselage 100, and each fuselage balancing actuator 310 includes a balancing deflector 311 and a balancing server. The working principle is the same as that of the fuselage balance actuator shown in Fig. 1. It should be noted that the torque generated by each fuselage balancing actuator 310 of this embodiment has both pitching moment and rolling moment components, and four fuselage balancing actuators 310 are required to work together to achieve balance control of the fuselage. Note that in order to make the rolling torque large enough, the balance deflector 311 of the fuselage balancing actuator of this embodiment is longer than the unmanned aerial vehicle shown in FIG. 1, which can increase the arm of the rolling torque.
要说明的是,实施例一组无人机中论述的机身平衡执行器也都可以用于本实施例无人机。It should be noted that the fuselage balancing actuators discussed in the group of drones in the embodiments can also be used in the drones in this embodiment.
在本申请另一实施例中,本实施例无人机的“U”型机身100可以承受较重的升力装置,其两个机臂120和第一机体110所包围的空间可以容纳升力装置200和旋翼防护框600,实现无人机的折叠回收,如图10所示。In another embodiment of the present application, the U-shaped fuselage 100 of the drone of this embodiment can withstand a heavy lifting device, and the space surrounded by its two arms 120 and the first body 110 can accommodate the lifting device 200 and rotor protection frame 600, to achieve the folding recovery of the UAV, as shown in Figure 10.
实施例三组:Example three groups:
本实施例描述一个全景拍摄无人机,如图11所示,包括机身100、升力装置200、机身平衡执行器(310、320)、旋翼倾转装置400、旋翼支架500和机身平衡控制器(图未示)。本实施例无人机的机身平衡控制器、升力装置与实施例一组无人机相同,不再赘述。This embodiment describes a panoramic shooting drone, as shown in FIG. 11, including a fuselage 100, a lift device 200, a fuselage balancing actuator (310, 320), a rotor tilting device 400, a rotor support 500, and a fuselage balance Controller (not shown). The fuselage balance controller and lift device of the unmanned aerial vehicle of this embodiment are the same as the group of unmanned aerial vehicles of the embodiment, and are not repeated here.
在本申请实施例中,机身100为椭球形中空框架结构,机身100包括第一机体110,第一机体110置于下半球体中,其内部容置电池和其它电子组件,包含无人机的大部分重量。在机身框架的四周安装多个相机700,可以拍摄720°全景影像。优选是采用光学防抖的相机。In the embodiment of the present application, the fuselage 100 has an ellipsoidal hollow frame structure. The fuselage 100 includes a first body 110, which is placed in a lower hemisphere, and contains batteries and other electronic components therein, including unmanned Most of the weight of the machine. Multiple cameras 700 are installed around the frame of the fuselage, which can shoot 720° panoramic images. Preferably, an optical image stabilization camera is used.
在本申请另一实施例中,升力装置200安装在旋翼支架500上,旋翼倾转装置400包括第一旋转机构410、第一旋转控制器420、转接支架430、第二旋转机构440、第二旋转控制器450、第三旋转机构460和第四旋转机构470。转接支架430是环形结构,旋翼支架500的两个端部分别通过第一旋转机构410和第三旋转机构460旋转安装于转接支架430,第一旋转机构410的旋转轴线与第三旋转机构460的旋转轴线重合,因此旋翼支架500可相对于转接支架430旋转。转接支架430的两个端部分别通过第二旋转机构440和第四旋转机构470旋转安装于机身100,第二旋转机构440和第四旋转机构470的旋转轴线重合,因此转接支架430可以相对于机身100旋转。通过第一旋转控制器420控制旋翼支架500绕着第一旋转机构410的旋转轴相对于转接支架430旋转,通过第二旋转控制器450控制转接支架430绕着第二旋转机构440的旋转轴相对于机身100旋转。本实施例无人机的旋翼倾转装置400的结构支撑力更强,可支持较大的升力装置200。本实施例无人机的飞行控制原理与实施例一组无人机完全相同。In another embodiment of the present application, the lift device 200 is installed on the rotor bracket 500, and the rotor tilting device 400 includes a first rotation mechanism 410, a first rotation controller 420, an adapter bracket 430, a second rotation mechanism 440, a first The second rotation controller 450, the third rotation mechanism 460 and the fourth rotation mechanism 470. The adapter bracket 430 is a ring-shaped structure, and two ends of the rotor bracket 500 are rotatably mounted on the adapter bracket 430 through a first rotation mechanism 410 and a third rotation mechanism 460, respectively, the rotation axis of the first rotation mechanism 410 and the third rotation mechanism The rotation axis of 460 coincides, so the rotor bracket 500 can rotate relative to the adapter bracket 430. The two ends of the adapter bracket 430 are rotatably mounted on the body 100 through the second rotation mechanism 440 and the fourth rotation mechanism 470, respectively, the rotation axes of the second rotation mechanism 440 and the fourth rotation mechanism 470 coincide, so the adapter bracket 430 It can rotate relative to the body 100. The first rotation controller 420 controls the rotor bracket 500 to rotate relative to the adapter bracket 430 about the rotation axis of the first rotation mechanism 410, and the second rotation controller 450 controls the adapter bracket 430 to rotate about the second rotation mechanism 440 The axis rotates relative to the body 100. The rotor tilting device 400 of the unmanned aerial vehicle of this embodiment has stronger structural support and can support a larger lift device 200. The flight control principle of the unmanned aerial vehicle of this embodiment is completely the same as that of a group of unmanned aerial vehicles of the embodiment.
在本申请另一实施例中,如图11所示,本实施例无人机的机身平衡执行器采用三个风扇(310、320)。 设X轴的箭头指向为机头,则X轴是滚转轴,Y轴为俯仰轴。中间风扇310的风向平行于X轴,产生俯仰力矩,两边两个风扇320的风向平行于Y轴,产生滚转力矩。另一种实施方式可以采用两个风扇,保留中间风扇310,在中间风扇310的下方设置另一个风扇,其风向平行于Y轴,代替图11中两边的两个风扇320,不过将风扇设于该位置时力臂较短,电源效率低;一种替代实施方式是在下半球体对称于中间风扇310的位置设置一个风扇,其风向平行于Y轴,以高效率地产生滚转力矩。In another embodiment of the present application, as shown in FIG. 11, the fuselage balancing actuator of the drone of this embodiment uses three fans (310, 320). Let the arrow of the X axis point to the nose, then the X axis is the roll axis, and the Y axis is the pitch axis. The wind direction of the intermediate fan 310 is parallel to the X axis, generating a pitching moment, and the wind direction of the two fans 320 on both sides is parallel to the Y axis, generating a rolling moment. Another embodiment may use two fans, retaining the middle fan 310, and another fan below the middle fan 310, whose wind direction is parallel to the Y axis, instead of the two fans 320 on both sides in FIG. 11, but the fan is set at In this position, the arm is shorter and the power supply efficiency is low. An alternative embodiment is to place a fan in a position where the lower hemisphere is symmetrical to the middle fan 310, and the wind direction is parallel to the Y axis to generate a rolling torque with high efficiency.
要说明的是,实施例一组和实施例二组中的机身平衡执行器都可用于本实施例无人机,如图12所示为一个实施例,该无人机在下半球体上设置四个基于导流片技术的机身平衡执行器310,其它部分与图11所示无人机相同。It should be noted that the fuselage balance actuators in the first group and the second group of embodiments can be used in the drone of this embodiment, as shown in FIG. 12 is an embodiment, the drone is set on the lower hemisphere Four fuselage balancing actuators 310 based on deflector technology, other parts are the same as the UAV shown in FIG. 11.
要说明的是,本实施例无人机的机身平衡执行器的性能要更高,使机身能维持更高的平稳性,这有利于图像拼接,拍摄稳定的全景影像。It should be noted that the performance of the fuselage balancing actuator of the drone of this embodiment is higher, so that the fuselage can maintain higher stability, which is conducive to image stitching and shooting stable panoramic images.
实施例四组:Example four groups:
如图13所示,本实施例描述一个用于上述任一实施例机身平衡无人机的机身平衡控制方法,包括以下步骤:As shown in FIG. 13, this embodiment describes a fuselage balancing control method for the fuselage balancing drone of any of the above embodiments, including the following steps:
步骤S101、给机身平衡控制器设置机身平衡控制目标:首先根据无人机的应用需求为无人机的不同工作状态设定不同的工作模式,然后为每个工作模式设定不同的机身平衡控制目标。例如,由于机身平衡执行器动作需要消耗能量,要控制的机身平衡性越高,消耗的能量越大,可以为无人机没有影像拍摄任务时的工作状态设为一种工作模式,称为飞行模式,飞行模式下可以设置机身平衡性较低的控制目标;另外,为无人机处于拍摄影像的工作状态设定为另一种工作模式,称为拍摄模式,并设置机身平衡性高的控制目标;Step S101. Set the fuselage balance control target for the fuselage balance controller: first set different working modes for different working states of the drone according to the application requirements of the drone, and then set different machines for each working mode Body balance control goals. For example, because the fuselage balancing actuator action requires energy consumption, the higher the fuselage balance to be controlled, the greater the energy consumed. It can be set as a working mode for the working state of the drone when there is no image shooting task. It is a flight mode. In flight mode, you can set a control target with a low balance of the fuselage. In addition, set the drone to another working mode when it is in the working state of shooting images, called the shooting mode, and set the balance of the fuselage. Sexual control goals;
步骤S102、机身平衡控制器接收平衡控制所需的输入数据;如机身姿态数据(机身俯仰角/俯仰角速度、机身滚转角/滚转角速度)、旋翼倾转角/倾转角速度数据等。实际上,无人机的飞行控制器也需要上述数据,无人机设有机身姿态感知模块和旋翼倾转感知模块负责获取上述数据,通常的实现方式是使用IMU器件(包含加速度计和陀螺仪)感知原始的机身或旋翼的运动数据,然后使用滤波算法(如扩展卡尔曼滤波算法)消除噪声、获得准确的机身姿态数据和旋翼倾转数据,这属于现有技术;Step S102, the fuselage balance controller receives input data required for balance control; such as fuselage attitude data (fuselage pitch angle/pitch angle speed, fuselage roll angle/roll angle speed), rotor pitch angle/roll angle speed data, etc. . In fact, the UAV flight controller also requires the above data. The UAV is equipped with a fuselage attitude perception module and a rotor tilt perception module to obtain the above data. The usual implementation method is to use an IMU device (including accelerometer and gyro) Instrument) to perceive the original motion data of the fuselage or rotor, and then use a filtering algorithm (such as extended Kalman filter algorithm) to eliminate noise and obtain accurate fuselage attitude data and rotor tilt data, which belongs to the existing technology;
步骤S103、依据上述输入数据,机身平衡控制器根据无人机的当前工作模式,应用步骤S101设置的相应机身平衡控制目标,执行相应的机身平衡控制算法,根据当前机身姿态数据与机身平衡控制目标设定的目标值的偏差值,计算各个机身平衡执行器的控制量。机身平衡控制算法可以是一个基于PID的控制算法,也可以较复杂的基于数学模型的控制算法;Step S103: According to the above input data, the fuselage balance controller applies the corresponding fuselage balance control target set in step S101 according to the current working mode of the drone, executes the corresponding fuselage balance control algorithm, and according to the current fuselage attitude data and The deviation value of the target value set by the fuselage balance control target calculates the control amount of each fuselage balance actuator. The fuselage balance control algorithm can be a PID-based control algorithm or a more complex mathematical model-based control algorithm;
步骤S104、依据计算得到的控制量,控制机身平衡执行器动作;Step S104: Control the action of the body's balance actuator according to the calculated control amount;
步骤S105、循环执行步骤S102至步骤S104,使机身姿态满足机身平衡控制目标。In step S105, step S102 to step S104 are executed cyclically so that the posture of the fuselage satisfies the fuselage balance control target.
进一步地,基于上述机身平衡控制方法,针对图1和图2所示无人机为具体控制对象,下面详细描述一个基于PID的机身平衡控制方法。图1所示无人机用于个人用户的自拍,自拍应用的一个特点是:用户每次要拍摄时会发出一个拍摄指令,只要无人机在接收到该指令后一个较短的响应时间内能控制住机身使其维持平稳,就不会影响用户的拍摄体验。利用这个特点,将无人机的工作模式分为两种工作模式,分别为飞行模式(没有影像拍摄任务的工作状态)和拍摄模式(有影像拍摄任务的工作状态),为这两种模式分别设置不同的机身平衡控制目标:1.飞行模式时,机身平衡控制目标为无人机的滚转角速度低于一个滚转角速度阈值和俯仰角速度低于一个俯仰角速度阈值,该控制目标仅抑制过快的机身倾转运动,不维持机身绝对平衡,以减小电源消耗,提升续航时间;2.拍摄模式时,机身平衡控制目标为机身的俯仰角和滚转角分别等于目标俯仰角和目标滚转角,该目标俯仰角和目标滚转角分别为无人机切换 到拍摄模式时的机身俯仰角和滚转角,该控制目标使无人机的机身姿态保持在收到用户拍摄指令时的机身姿态,以拍摄稳定的影像。Further, based on the above-mentioned fuselage balance control method, the UAV shown in FIGS. 1 and 2 is a specific control object, and a PID-based fuselage balance control method is described in detail below. The drone shown in Figure 1 is used for self-portraits of individual users. One feature of the self-portrait application is that the user will issue a shooting instruction every time he wants to shoot, as long as the drone receives a short response time after receiving the instruction Can control the body to maintain stability, it will not affect the user's shooting experience. Using this feature, the working mode of the UAV is divided into two working modes, namely the flight mode (the working state without the image shooting task) and the shooting mode (the working state with the image shooting task). Set different fuselage balance control targets: 1. In flight mode, the fuselage balance control target is that the drone's roll angular velocity is below a roll angular velocity threshold and the pitch angular velocity is below a pitch angular velocity threshold, the control target is only suppressed Too fast body tilting movement does not maintain the absolute balance of the fuselage to reduce power consumption and increase battery life; 2. In shooting mode, the fuselage balance control target is the fuselage's pitch angle and roll angle respectively equal to the target pitch Angle and target roll angle, the target pitch angle and target roll angle are respectively the fuselage pitch angle and roll angle when the drone is switched to the shooting mode, the control target keeps the drone's fuselage posture when it is received by the user The attitude of the fuselage at the time of the command to shoot a stable image
为了便于描述机身平衡控制方法,先定义无人机的俯仰轴和滚转轴。如图1所示,设X轴的箭头指向为机头方向,那么平行于Y轴过旋翼升力中心的直线是俯仰轴线,平行于X轴且过旋翼升力中心的直线是滚转轴线。设A p、AR p、A r、AR r分别为机身的俯仰角、俯仰角速度、滚转角和滚转角速度,设机头绕着俯仰轴向上旋转时A p和AR p的符号为正,机身绕着滚转轴向右(Y轴箭头指向)下旋转时A r和AR r的符号为正。 In order to facilitate the description of the fuselage balance control method, first define the UAV's pitch axis and roll axis. As shown in Fig. 1, let the arrow of the X axis point to the nose direction, then the straight line parallel to the Y axis passing the rotor lift center is the pitch axis, and the straight line parallel to the X axis and passing the rotor lift center is the roll axis. Provided A p, AR p, A r , AR r respectively fuselage pitch angle, pitch rate, roll angle and roll rate, provided around the head symbol AR p and A p is the pitch in the axial direction of the rotary positive when the rotary body about the roll axis to the right (Y-axis pointing arrow) and the AR r a r is a positive sign.
如图14所示为应用于图1所示无人机的机身平衡控制方法,包括以下步骤:As shown in FIG. 14, the fuselage balance control method applied to the drone shown in FIG. 1 includes the following steps:
步骤S201、将无人的工作状态分为两种工作模式——飞行模式和拍摄模式,为每个工作模式设置机身平衡控制目标:Step S201: Divide the unmanned working state into two working modes-flight mode and shooting mode, and set the fuselage balance control target for each working mode:
R1:飞行模式时,机身平衡控制目标为机身的俯仰角速度低于俯仰角速度阈值AR_THR p,机身的滚转角速度低于滚转角速度阈值AR_THR rR1: In flight mode, the fuselage balance control target is that the fuselage's pitch angular velocity is lower than the pitch angular velocity threshold AR_THR p , and the fuselage's roll angular velocity is lower than the roll angular velocity threshold AR_THR r ;
R2:拍摄模式时,机身平衡控制目标为机身的俯仰角等于目标俯仰角A_FIT p,以及机身的滚转角等于目标滚转角A_FIT r,其中,A_FIT p和A_FIT r分别为无人机切换至拍摄模式时的俯仰角和滚转角; R2: In shooting mode, the balance control target of the fuselage is that the pitch angle of the fuselage is equal to the target pitch angle A_FIT p , and the roll angle of the fuselage is equal to the target roll angle A_FIT r , where A_FIT p and A_FIT r are respectively the UAV switching Pitch angle and roll angle when shooting mode;
步骤S202、机身平衡控制器接收控制机身平衡所需的数据,包括:Step S202: The body balance controller receives data required to control the body balance, including:
从现有的机身姿态感知模块接收机身的姿态数据,包括当前俯仰角A p、当前俯仰角速度AR p、当前滚转角A r、当前滚转角速度AR rAttitude sensing module receives data from the existing fuselage airframe attitude, including the current pitch angle A p, the current pitch rate AR p, the current roll angle A r, the current roll rate AR r.
步骤S203、机身平衡控制器根据无人机的当前工作模式,使用相应的机身平衡控制目标并执行相应的机身平衡控制算法。设当前时间点为T k,俯仰力矩机身平衡执行器(310、320)和滚转力矩机身平衡执行器(330、340)的控制量分别为C_PITCH(k)和C_ROLL(k),其中,其初始值C_PITCH(0)和C_ROLL(0)为0。机身平衡控制算法是基于PID的控制算法; Step S203: The fuselage balance controller uses the corresponding fuselage balance control target according to the current working mode of the drone and executes the corresponding fuselage balance control algorithm. Suppose the current time point is T k , the control quantities of the pitching moment body balance actuators (310, 320) and the rolling moment body balance actuators (330, 340) are C_PITCH(k) and C_ROLL(k), respectively , The initial values of C_PITCH(0) and C_ROLL(0) are 0. The fuselage balance control algorithm is a PID-based control algorithm;
步骤S203A:无人机工作模式为飞行模式时,采用机身平衡控制目标R1,根据当前俯仰角速度AR p与俯仰角速度阈值AR_THR p之间的偏差值,以及当前滚转角速度AR r与滚转角速度阈值AR_THR r之间的偏差值,使用一个对应于飞行模式的机身平衡控制算法计算机身平衡执行器的控制量,具体算法如下: Step S203A: When the drone operating mode is the flight mode, the fuselage balance control target R1 is used, according to the deviation between the current pitch angular velocity AR p and the pitch angular velocity threshold AR_THR p , and the current roll angular velocity AR r and roll angular velocity The deviation value between the threshold AR_THR r uses a fuselage balance control algorithm corresponding to the flight mode to control the amount of the computer body balance actuator. The specific algorithm is as follows:
以公式(1)计算时刻T k的机身当前俯仰角速度AR p(k)与俯仰角速度阈值AR_THR p之间的俯仰角速度偏差e_AR p(k)、机身当前滚转角速度AR r(k)与滚转角速度阈值AR_THR r之间的滚转角速度偏差e_AR r(k),其中,abs(x)是求x的绝对值函数; Calculate the pitch angular velocity deviation e_AR p (k) between the fuselage's current pitch angular velocity AR p (k) and the pitch angular velocity threshold AR_THR p at time T k , and the current fuselage's current roll angular velocity AR r (k) using equation (1) Rolling angular velocity deviation e_AR r (k) between the rolling angular velocity threshold AR_THR r , where abs(x) is the absolute value function of x;
Figure PCTCN2019124653-appb-000001
Figure PCTCN2019124653-appb-000001
若e_AR p(k)大于0,则机身当前俯仰角速度超出俯仰角速度阈值,置Tp为当前时间点,Tp为这一轮控制的起始时间点,以PID公式(2)计算俯仰力矩机身平衡执行器(310、320)的控制量C_PITCH(k);否则置C_PITCH(k)=0,停止控制; If e_AR p (k) is greater than 0, the fuselage's current pitch angular velocity exceeds the pitch angular velocity threshold, set Tp as the current time point, and Tp as the starting time point for this round of control. The control quantity C_PITCH(k) of the balance actuator (310, 320); otherwise, set C_PITCH(k)=0 and stop the control;
Figure PCTCN2019124653-appb-000002
Figure PCTCN2019124653-appb-000002
若e_AR r(k)大于0,则机身当前滚转角速度超出了滚转角速度阈值,置Tr为当前时间点,Tr为这一轮控制的起始时间点,以PID公式(3)计算滚转力矩机身平衡执行器(330、340)的控制量C_ROLL(k);否则置C_ROLL(k)=0,停止控制; If e_AR r (k) is greater than 0, the current roll angular velocity of the fuselage exceeds the roll angular velocity threshold, and Tr is the current time point, Tr is the starting time point of this round of control, and the roll is calculated using PID formula (3) The control amount C_ROLL(k) of the torque-balanced body balance actuator (330, 340); otherwise, set C_ROLL(k)=0 and stop the control;
Figure PCTCN2019124653-appb-000003
Figure PCTCN2019124653-appb-000003
其中,公式(2)、(3)中,A_K p、A_K i、A_K d分别为PID算法的比例、积分和微分控制参数;sign(x)为取x的符号函数,为C_PITCH(k)和C_ROLL(k)设置相应的符号位确定控制力矩的方向。 Among them, in formulas (2) and (3), A_K p , A_K i , and A_K d are the proportional, integral, and derivative control parameters of the PID algorithm respectively; sign(x) is the sign function of taking x, which is C_PITCH(k) and C_ROLL(k) sets the corresponding sign bit to determine the direction of the control torque.
步骤S203B、收到用户拍摄指令后,无人机工作模式切换至拍摄模式,采用机身平衡控制目标R2,机身平衡控制目标的目标俯仰角和目标滚转角分别设为无人机切换至拍摄模式时的俯仰角和滚转角,然后,根据机身的当前俯仰角/滚转角与目标俯仰角/目标滚转角之间的偏差值,使用一个对应于拍摄模式的机身平衡控制算法计算机身平衡执行器的控制量,具体算法如下:Step S203B. After receiving the user's shooting instruction, the drone's working mode is switched to the shooting mode, and the fuselage balance control target R2 is adopted. The target pitch angle and target roll angle of the fuselage balance control target are set to the drone switch to shooting, respectively The pitch angle and roll angle in the mode, and then, according to the deviation between the current pitch angle/roll angle of the fuselage and the target pitch angle/target roll angle, a body balance control algorithm corresponding to the shooting mode is used to balance the computer body The control quantity of the actuator is as follows:
置T0为无人机工作模式切换至拍摄模式的时刻,T0为这一轮控制的起始时间点,置A_FIT p为当前的机身俯仰角A p及A_FIT r为当前的机身滚转角A r,A_FIT p和A_FIT r是这一轮要控制的机身平衡目标的目标俯仰角和目标滚转角。控制算法为串级PID算法; Let T0 be the moment when the drone's working mode is switched to shooting mode, T0 be the starting time point of this round of control, and let A_FIT p be the current fuselage pitch angle A p and A_FIT r be the current fuselage roll angle A r , A_FIT p and A_FIT r are the target pitch angle and target roll angle of the fuselage balance target to be controlled in this round. The control algorithm is a cascade PID algorithm;
Figure PCTCN2019124653-appb-000004
Figure PCTCN2019124653-appb-000004
公式(4)为第1级PID公式,其中,A1_K p、A1_K i是比例、积分参数; Formula (4) is the first-level PID formula, where A1_K p and A1_K i are proportional and integral parameters;
Figure PCTCN2019124653-appb-000005
Figure PCTCN2019124653-appb-000005
公式(5)为第2级PID公式,其中,A2_K p、A2_K i、A2_K d是比例、积分、微分参数; Formula (5) is the second-level PID formula, where A2_K p , A2_K i , and A2_K d are proportional, integral, and derivative parameters;
第1级PID采用公式(4),根据机身当前俯仰角/当前滚转角与目标俯仰角/目标滚转角的偏差计算要控制的目标俯仰角速度C_AR p(k)和目标滚转角速度C_AR r(k);第2级PID采用公式(5),根据机身当前俯仰角速度/当前滚转角速度与目标俯仰角速度/目标滚转角速度的偏差计算机身平衡执行器的控制量C_PITCH(k)和C_ROLL(k); The first level PID uses formula (4) to calculate the target pitch angle speed C_AR p (k) and the target roll angle speed C_AR r (based on the deviation of the current pitch angle/current roll angle of the fuselage from the target pitch angle/target roll angle) k); The second-level PID adopts formula (5), according to the deviation of the fuselage's current pitch angular speed/current roll angular speed and the target pitch angular speed/target roll angular speed, the computer body balance actuator control variables C_PITCH(k) and C_ROLL( k);
步骤S204、依据计算得到的控制量,控制机身平衡执行器动作:若C_PITCH(k)为负数,机身平衡执行器320的导流片张开一个角度|C_PITCH(k)|;机身平衡执行器310的导流片旋转至与机身外壳贴合,抑制机身绕着俯仰轴向上的倾转运动。若为正数,则机身平衡执行器320的导流片旋转至与机身外壳贴合,机身平衡执行器310的导流片张开一个角度|C_PITCH(k)|,抑制机身绕着俯仰轴向下的倾转运动。若为0,则机身平衡执行器(310、320)的导流片都旋转至与机身外壳贴合,不输出力矩。Step S204, according to the calculated control amount, control the action of the body balance actuator: if C_PITCH(k) is a negative number, the deflector of the body balance actuator 320 opens an angle |C_PITCH(k)|; body balance The deflector of the actuator 310 rotates to fit the fuselage shell, inhibiting the tilting motion of the fuselage around the pitch axis. If it is a positive number, the deflector of the fuselage balancing actuator 320 rotates to fit the fuselage shell, and the deflector of the fuselage balancing actuator 310 opens at an angle |C_PITCH(k)| Tilt the pitch axis downward. If it is 0, the deflectors of the balancing actuators (310, 320) of the fuselage will rotate to fit the fuselage shell, and no torque will be output.
若C_ROLL(k)为负数,机身平衡执行器330的导流片张开一个角度|C_ROLL(k)|,机身平衡执行器340的导流片旋转至垂直于旋翼翼盘,抑制机身绕着滚转轴向右下(Y轴箭头指向)的倾转运动;若为正数,则机身平衡执行器330的导流片旋转至垂直于旋翼翼盘,机身平衡执行器340的导流片张开一个角度|C_ROLL(k)|,抑制机身绕着滚转轴向左下的倾转运动;若为0,机身平衡执行器(330、340)的导流片都旋转至垂直于旋翼翼盘,不输出力矩。If C_ROLL(k) is a negative number, the deflector of the fuselage balancing actuator 330 is opened at an angle |C_ROLL(k)|, the deflector of the fuselage balancing actuator 340 rotates perpendicular to the rotor wing disc, suppressing the fuselage Tilt movement around the roll axis to the lower right (pointed by the Y-axis arrow); if positive, the deflector of the fuselage balancing actuator 330 rotates to be perpendicular to the rotor wing disc, and the fuselage balancing actuator 340 The deflector is opened at an angle |C_ROLL(k)| to suppress the tilting movement of the fuselage around the roll axis to the lower left; if it is 0, the deflector of the fuselage balancing actuator (330, 340) rotates to It is perpendicular to the rotor disk and does not output torque.
其中,|X|为求X的绝对值;Among them, |X| is the absolute value of X;
步骤S205、转到第步骤S202步执行下一个控制周期。Step S205. Go to step S202 to execute the next control cycle.
可以理解地,图14所示机身平衡控制方法可应用于实施例一至三组所述的任一机身平衡无人机。具体实施时,根据不同无人机的应用领域需求,可以设置不同的工作模式和相应的机身平衡控制目标,可以只设置一个工作模式或更多的工作模式,在一种具体工作模式下,也可以只对机身的滚转运动或俯仰运动单一进行控制。例如,对于图11和图12所示的全景拍摄无人机,该无人机可用于大型活动的全景拍摄,此种应用场景下需要无人机全程拍摄稳定的全景影像,因此只设定一种工作模式,即拍摄模式,对应的机身平衡控制目标为机身的目标俯仰角和目标滚转角都为0°。对于该无人机的平衡控制方法的第S203步只有相应于拍摄模式的内容。Understandably, the fuselage balance control method shown in FIG. 14 can be applied to any fuselage balance drone described in the first to third groups. During specific implementation, according to the requirements of different UAV application fields, different working modes and corresponding fuselage balance control targets can be set, and only one working mode or more working modes can be set. In a specific working mode, It is also possible to control only the roll or pitch movement of the fuselage. For example, for the panoramic shooting drone shown in Figure 11 and Figure 12, the drone can be used for panoramic shooting of large-scale activities. In this application scenario, the drone needs to shoot a stable panoramic image throughout the process, so only set one One working mode, that is, the shooting mode, the corresponding body balance control target is that the target pitch angle and target roll angle of the body are both 0°. Step S203 of the balance control method of the drone only has content corresponding to the shooting mode.
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。The above are only the preferred embodiments of this application and are not intended to limit this application. Any modification, equivalent replacement and improvement made within the spirit and principle of this application should be included in the scope of protection of this application Inside.

Claims (16)

  1. 一种机身平衡无人机,其特征在于,包括:A fuselage balanced drone, characterized by including:
    机身;body;
    旋翼支架;Rotor support
    安装于所述旋翼支架上的升力装置,所述升力装置包括旋翼;A lift device mounted on the rotor support, the lift device including a rotor;
    安装于所述机身且用于使所述旋翼支架旋转以控制所述旋翼的倾角的旋翼倾转装置;A rotor tilting device mounted on the fuselage and used to rotate the rotor bracket to control the tilt angle of the rotor;
    至少一个用于输出使所述机身产生倾转运动的力矩的机身平衡执行器;以及At least one fuselage balancing actuator for outputting a moment that causes the fuselage to tilt; and
    用于控制所述机身平衡执行器动作以使所述机身保持平衡的机身平衡控制器。A fuselage balance controller for controlling the action of the fuselage balance actuator to keep the fuselage balanced.
  2. 如权利要求1所述的机身平衡无人机,其特征在于,所述旋翼倾转装置包括第一旋转机构、第一旋转控制器、转接支架、第二旋转机构和第二旋转控制器;所述旋翼支架通过所述第一旋转机构旋转连接于所述转接支架,所述转接支架通过所述第二旋转机构旋转连接于所述机身,所述第一旋转机构的旋转轴线和所述第二旋转机构的旋转轴线不平行;所述第一旋转控制器用于控制所述旋翼支架绕着所述第一旋转机构的旋转轴旋转,所述第二旋转控制器用于控制所述转接支架绕着所述第二旋转机构的旋转轴旋转,从而控制所述旋翼绕着所述第一旋转机构和第二旋转机构的旋转轴旋转,实现所述旋翼的倾角控制。The fuselage balanced drone according to claim 1, wherein the rotor tilting device includes a first rotation mechanism, a first rotation controller, an adapter bracket, a second rotation mechanism, and a second rotation controller The rotor bracket is rotatably connected to the adapter bracket through the first rotation mechanism, the adapter bracket is rotatably connected to the fuselage through the second rotation mechanism, and the rotation axis of the first rotation mechanism Is not parallel to the rotation axis of the second rotation mechanism; the first rotation controller is used to control the rotation of the rotor bracket around the rotation axis of the first rotation mechanism, and the second rotation controller is used to control the The adapter bracket rotates around the rotation axis of the second rotation mechanism, so as to control the rotation of the rotor around the rotation axis of the first rotation mechanism and the second rotation mechanism, so as to control the inclination of the rotor.
  3. 如权利要求2所述的机身平衡无人机,其特征在于,所述旋翼倾转装置还包括第三旋转机构,所述转接支架的两个端部分别通过所述第二旋转机构和所述第三旋转机构旋转连接于所述机身,所述第二旋转机构与和所述第三旋转机构的旋转轴线重合;The fuselage balancing drone according to claim 2, wherein the rotor tilting device further includes a third rotating mechanism, and two ends of the adapter bracket respectively pass through the second rotating mechanism and The third rotation mechanism is rotatably connected to the body, and the second rotation mechanism coincides with the rotation axis of the third rotation mechanism;
    或者,所述旋翼倾转装置还包括第三旋转机构和第四旋转机构,所述旋翼支架的两个端部分别通过所述第一旋转机构和所述第三旋转机构旋转连接于所述转接支架,所述第一旋转机构与所述第三旋转机构的旋转轴线重合;所述转接支架的两个端部分别通过所述第二旋转机构和所述第四旋转机构旋转连接于机身,所述第二旋转机构和所述第四旋转机构的旋转轴线重合。Alternatively, the rotor tilting device further includes a third rotation mechanism and a fourth rotation mechanism, and the two ends of the rotor bracket are connected to the rotor by the first rotation mechanism and the third rotation mechanism, respectively. Connected to the bracket, the first rotation mechanism coincides with the rotation axis of the third rotation mechanism; the two ends of the adapter bracket are rotatably connected to the machine through the second rotation mechanism and the fourth rotation mechanism The rotation axis of the second rotation mechanism and the fourth rotation mechanism coincide.
  4. 如权利要求1所述的机身平衡无人机,其特征在于,还包括安装在所述旋翼支架上的旋翼防护框,所述旋翼防护框为中空结构,所述旋翼置于所述旋翼防护框的内部,所述旋翼防护框用于防护所述旋翼。The fuselage balancing drone according to claim 1, further comprising a rotor protection frame mounted on the rotor support, the rotor protection frame is a hollow structure, and the rotor is placed on the rotor protection Inside the frame, the rotor protection frame is used to protect the rotor.
  5. 如权利要求1至4任一项所述的机身平衡无人机,其特征在于,至少一个所述机身平衡执行器为用于输出使所述机身发生俯仰运动的力矩的机身平衡执行器;The fuselage balancing drone according to any one of claims 1 to 4, wherein at least one of the fuselage balancing actuators is a fuselage balance for outputting a torque that causes the fuselage to perform a pitching motion Actuator;
    和/或,其中两个所述机身平衡执行器为用于输出使所述机身发生俯仰运动的力矩的机身平衡执行器,该两个机身平衡执行器分别设置在所述机身平衡无人机的俯仰轴线的两边。And/or, wherein two of the fuselage balancing actuators are fuselage balancing actuators for outputting moments that cause the fuselage to pitch, and the two fuselage balancing actuators are respectively disposed on the fuselage Balance the two sides of the drone's pitch axis.
  6. 如权利要求1至4任一项所述的机身平衡无人机,其特征在于,至少一个所述机身平衡执行器为用于输出使所述机身发生滚转运动的力矩的机身平衡执行器;The fuselage balancing drone according to any one of claims 1 to 4, wherein at least one of the fuselage balancing actuators is a fuselage for outputting a torque that causes the fuselage to roll Balanced actuator
    和/或,其中两个所述机身平衡执行器为用于输出使所述机身发生滚转运动的力矩的机身平衡执行器,该两个机身平衡执行器分别设置在所述机身平衡无人机的滚转轴线的两边。And/or, wherein two of the fuselage balancing actuators are fuselage balancing actuators for outputting a torque that causes the fuselage to roll, and the two fuselage balancing actuators are respectively provided on the machine Balance the two sides of the UAV's roll axis.
  7. 如权利要求1至4任一项所述的机身平衡无人机,其特征在于,其中至少一个所述机身平衡执行器包括平衡导流片和平衡伺服器,所述平衡导流片安装于所述旋翼下方,利用所述旋翼的下洗气流产生使所述机身发生倾转运动的力矩,所述平衡伺服器控制所述平衡导流片旋转,以调整所述平衡导流片相对于所述旋翼下洗气流的角度,控制所述平衡导流片产生的力矩大小。The fuselage balancing drone according to any one of claims 1 to 4, wherein at least one of the fuselage balancing actuators includes a balancing deflector and a balancing servo, and the balancing deflector is installed Below the rotor, the downwash airflow of the rotor is used to generate a moment that causes the fuselage to tilt, and the balance servo controls the rotation of the balance deflector to adjust the relative balance of the balance deflector The angle of the downwash airflow of the rotor controls the amount of torque generated by the balance deflector.
  8. 如权利要求7所述的机身平衡无人机,其特征在于,所述平衡导流片的一个表面朝向所述旋翼的下洗气流,利用所述旋翼的下洗气流在该表面形成的压力产生使所述机身发生倾转运动的力矩。The fuselage balancing drone according to claim 7, wherein one surface of the balancing deflector faces the downwash airflow of the rotor, and the pressure formed on the surface by the downwash airflow of the rotor is utilized A moment that causes the tilting movement of the fuselage is generated.
  9. 如权利要求7所述的机身平衡无人机,其特征在于,所述平衡导流片具有旋转至不影响所述机身平衡无人机折叠回收的位置。The fuselage balancing drone according to claim 7, wherein the balancing deflector has a position to rotate so as not to affect the folding and recovery of the fuselage balancing drone.
  10. 如权利要求1至4任一项所述的机身平衡无人机,其特征在于,其中至少一个所述机身平衡执行器为风扇,所述风扇设于所述机身上,所述风扇的推力产生使所述机身发生倾转运动的力矩,控制所述风扇转速调整力矩大小。The fuselage balancing drone according to any one of claims 1 to 4, wherein at least one of the fuselage balancing actuators is a fan, the fan is provided on the fuselage, and the fan The thrust force generates a moment that causes the body to tilt, and the fan speed is controlled to adjust the torque.
  11. 如权利要求1至4任一项所述的机身平衡无人机,其特征在于,所述机身包括第一机体和至少一个机臂,所述第一机体为长条形结构,所述机臂设于所述第一机体的端部,所述旋翼倾转装置安装于所述机臂,所述升力装置置入所述机臂和第一机体所包围的空间内以实现所述机身平衡无人机的折叠回收;The fuselage balancing drone according to any one of claims 1 to 4, wherein the fuselage includes a first body and at least one arm, and the first body is an elongated structure. The arm is provided at the end of the first body, the rotor tilting device is mounted on the arm, and the lift device is placed in the space surrounded by the arm and the first body to realize the machine Body folding drone recycling;
    或者,所述机身为中空的框架结构,所述旋翼倾转装置和升力装置置于所述机身内部,所述机身的四周设置多个相机以拍摄全景影像。Alternatively, the fuselage is a hollow frame structure, the rotor tilting device and the lift device are placed inside the fuselage, and multiple cameras are provided around the fuselage to shoot panoramic images.
  12. 一种用于如权利要求1至11任一项所述的机身平衡无人机的机身平衡控制方法,包括以下步骤:A fuselage balancing control method for a fuselage balancing drone according to any one of claims 1 to 11, comprising the following steps:
    步骤S1、给所述机身平衡无人机设置至少一个工作模式,为每个所述工作模式设置机身平衡控制目标;Step S1: Set at least one working mode for the fuselage balancing drone, and set a fuselage balancing control target for each of the working modes;
    步骤S2、所述机身平衡控制器接收平衡控制所需的输入数据;Step S2: The body balance controller receives input data required for balance control;
    步骤S3、所述机身平衡控制器依据所述机身平衡无人机的当前工作模式、步骤S2所述输入数据和对应当前工作模式的步骤S1所述机身平衡目标,计算所述机身平衡执行器的控制量;步骤S4、依据所述控制量,控制所述机身平衡执行器动作;Step S3, the fuselage balance controller calculates the fuselage according to the current working mode of the fuselage balancing drone, the input data in step S2 and the fuselage balancing target corresponding to the current working mode in step S1 The control amount of the balance actuator; Step S4, according to the control amount, control the action of the body balance actuator;
    步骤S5、循环执行步骤S2至步骤S4,使所述机身姿态满足所述机身平衡控制目标。Step S5: Steps S2 to S4 are executed cyclically to make the posture of the fuselage satisfy the balance control target of the fuselage.
  13. 如权利要求12所述的机身平衡控制方法,其特征在于,在步骤S1中,其中一个所述工作模式为飞行模式,所述飞行模式对应于所述机身平衡无人机没有影像拍摄任务的工作状态,该工作模式设置的机身平衡控制目标为所述机身的滚转角速度低于滚转角速度阈值、和/或所述机身的俯仰角速度低于俯仰角速度阈值。The fuselage balance control method according to claim 12, wherein in step S1, one of the working modes is a flight mode, and the flight mode corresponds to that the fuselage balance drone has no image shooting task The working state of the fuselage balance control set in this working mode is that the roll angular velocity of the fuselage is lower than the roll angular velocity threshold, and/or the pitch angular velocity of the fuselage is lower than the pitch angular velocity threshold.
  14. 如权利要求12所述的机身平衡控制方法,其特征在于,在步骤S1中,其中一个所述工作模式为拍摄模式,所述拍摄模式对应于所述机身平衡无人机有影像拍摄任务的工作状态,该工作模式设置的机身平衡控制目标为所述机身的俯仰角等于目标俯仰角、和/或所述机身的滚转角等于目标滚转角,其中,所述目标俯仰角和目标滚转角分别为所述机身平衡无人机切换到该工作模式时的俯仰角和滚转角。The fuselage balance control method according to claim 12, wherein in step S1, one of the working modes is a shooting mode, and the shooting mode corresponds to the fuselage balancing drone has an image shooting task The working state of the fuselage balance control set in this working mode is that the pitch angle of the fuselage is equal to the target pitch angle, and/or the roll angle of the fuselage is equal to the target roll angle, where the target pitch angle and The target roll angles are respectively the pitch angle and roll angle when the fuselage balancing UAV is switched to the working mode.
  15. 如权利要求12所述的机身平衡控制方法,其特征在于,在步骤S2中,所述输入数据包括机身姿态数据,所述机身姿态数据包括所述机身的当前俯仰角、当前俯仰角速度、当前滚转角和当前滚转角速度。The fuselage balance control method according to claim 12, wherein in step S2, the input data includes fuselage attitude data, and the fuselage attitude data includes the current pitch angle and current pitch of the fuselage Angular speed, current roll angle and current roll angle speed.
  16. 如权利要求12所述的机身平衡控制方法,其特征在于,在步骤S3中,根据所述机身平衡无人机的当前工作模式应用相应的机身平衡控制目标,执行相应的机身平衡控制算法;所述机身平衡控制算法根据所述机身姿态的当前值与所述机身平衡控制目标设定的目标值之间的偏差量,计算所述机身平衡执行器的控制量。The fuselage balance control method according to claim 12, wherein in step S3, the corresponding fuselage balance control target is applied according to the current operating mode of the fuselage balance drone, and the corresponding fuselage balance is executed Control algorithm; the fuselage balance control algorithm calculates the control amount of the fuselage balance actuator according to the deviation between the current value of the fuselage attitude and the target value set by the fuselage balance control target.
PCT/CN2019/124653 2018-12-14 2019-12-11 Body-balanced unmanned aerial vehicle and control method therefor WO2020119731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811534978.0A CN110641692A (en) 2018-12-14 2018-12-14 Fuselage balance unmanned aerial vehicle and control method thereof
CN201811534978.0 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020119731A1 true WO2020119731A1 (en) 2020-06-18

Family

ID=69009234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124653 WO2020119731A1 (en) 2018-12-14 2019-12-11 Body-balanced unmanned aerial vehicle and control method therefor

Country Status (2)

Country Link
CN (1) CN110641692A (en)
WO (1) WO2020119731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11378959B1 (en) 2020-03-28 2022-07-05 Snap Inc. Still image optimized flight paths for fixed camera UAVs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111258324B (en) * 2020-01-19 2023-08-18 沈阳无距科技有限公司 Multi-rotor unmanned aerial vehicle control method and device, multi-rotor unmanned aerial vehicle and storage medium
CN111976974A (en) * 2020-09-02 2020-11-24 深圳市道通智能航空技术有限公司 Flight control method, unmanned aerial vehicle and storage medium
CN113342026B (en) * 2021-06-30 2022-10-21 中国人民解放军军事科学院国防科技创新研究院 Intelligent balance control device of small unmanned helicopter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337243A (en) * 1999-05-25 2000-12-05 Masanobu Yatsugi Propeller rotation transmission system
CN204642152U (en) * 2015-05-22 2015-09-16 河南长空航空科技有限公司 New oil moves many rotors plant protection unmanned plane
CN105882954A (en) * 2016-05-25 2016-08-24 沈阳航空航天大学 Hybrid-power unmanned aerial vehicle with four auxiliary wings and control method thereof
CN206243472U (en) * 2016-11-11 2017-06-13 杨超峰 A kind of rotor controlling organization and DCB Specimen unmanned plane
CN108502152A (en) * 2017-02-28 2018-09-07 空客直升机德国有限公司 The multi-rotor aerocraft of cell arrangement is generated with body and thrust
CN108791868A (en) * 2018-07-31 2018-11-13 刘浩然 A kind of new transport unmanned plane of safety and stability
CN209739340U (en) * 2018-12-14 2019-12-06 深圳市格上格创新科技有限公司 fuselage balance unmanned aerial vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337243A (en) * 1999-05-25 2000-12-05 Masanobu Yatsugi Propeller rotation transmission system
CN204642152U (en) * 2015-05-22 2015-09-16 河南长空航空科技有限公司 New oil moves many rotors plant protection unmanned plane
CN105882954A (en) * 2016-05-25 2016-08-24 沈阳航空航天大学 Hybrid-power unmanned aerial vehicle with four auxiliary wings and control method thereof
CN206243472U (en) * 2016-11-11 2017-06-13 杨超峰 A kind of rotor controlling organization and DCB Specimen unmanned plane
CN108502152A (en) * 2017-02-28 2018-09-07 空客直升机德国有限公司 The multi-rotor aerocraft of cell arrangement is generated with body and thrust
CN108791868A (en) * 2018-07-31 2018-11-13 刘浩然 A kind of new transport unmanned plane of safety and stability
CN209739340U (en) * 2018-12-14 2019-12-06 深圳市格上格创新科技有限公司 fuselage balance unmanned aerial vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11378959B1 (en) 2020-03-28 2022-07-05 Snap Inc. Still image optimized flight paths for fixed camera UAVs

Also Published As

Publication number Publication date
CN110641692A (en) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2020119731A1 (en) Body-balanced unmanned aerial vehicle and control method therefor
JP6567054B2 (en) Multi-rotor with inclined wings
CN202295294U (en) Cradle head for unmanned aerial vehicle
WO2018090790A1 (en) Rotor control mechanism and dual-rotor blade unmanned aerial vehicle
US20200387173A1 (en) Flight control method and device for multi-rotor unmanned aerial vehicle, and multi-rotor unmanned aerial vehicle
EP3535963B1 (en) An unmanned aerial vehicle
CN114212242A (en) Unmanned aerial vehicle
WO2021023187A1 (en) Control method of tilt rotor unmanned aerial vehicle, and tilt rotor unmanned aerial vehicle
CN109606674A (en) Tail sitting posture vertical take-off and landing drone and its control system and control method
US10974825B2 (en) Aerial system including foldable frame architecture
EP4174612A1 (en) Method for controlling drone having multi-degree-of-freedom flight mode
WO2021190216A1 (en) Unmanned aerial vehicle capable of panoramic image capture
WO2020087349A1 (en) Unmanned aerial vehicle and gimbal control method therefor
US20200324900A1 (en) Unmanned aerial vehicle and control method for unmanned aerial vehicle
US8511602B2 (en) Differential vane vehicle control
WO2019073415A1 (en) Aerial system including foldable frame architecture
CN109455295B (en) Rotor control device and rotor craft
JP6618000B1 (en) Electronic component and flying object with the electronic component attached
JP7466217B2 (en) Take-off and Landing System
CN211167458U (en) Remote control unmanned aerial vehicle high altitude anti-wind anti-shake device
CN111240357B (en) Position tracking control method capable of avoiding singular state for micro flapping wing aircraft
CN209739340U (en) fuselage balance unmanned aerial vehicle
JP4702882B2 (en) Small rotorcraft
CN112650263B (en) Control method of combined unmanned aerial vehicle
CN212172538U (en) Panoramic camera unmanned aerial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19895777

Country of ref document: EP

Kind code of ref document: A1