WO2020119348A1 - 冲击电压标准波发生装置及其使用方法 - Google Patents

冲击电压标准波发生装置及其使用方法 Download PDF

Info

Publication number
WO2020119348A1
WO2020119348A1 PCT/CN2019/116541 CN2019116541W WO2020119348A1 WO 2020119348 A1 WO2020119348 A1 WO 2020119348A1 CN 2019116541 W CN2019116541 W CN 2019116541W WO 2020119348 A1 WO2020119348 A1 WO 2020119348A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
voltage
measurement
output
module
Prior art date
Application number
PCT/CN2019/116541
Other languages
English (en)
French (fr)
Inventor
李文婷
龙兆芝
张弛
刘少波
雷民
周峰
涂琛
肖凯
宗贤伟
刘高佳
余也凤
Original Assignee
中国电力科学研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2020119348A1 publication Critical patent/WO2020119348A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • G01R35/007Standards or reference devices, e.g. voltage or resistance standards, "golden references"

Definitions

  • This application relates to the standardization of the traceability of the peak value and time parameter value of the lightning full wave, full wave operation, etc., and the calibration, verification and verification of the secondary measurement device of the impulse voltage (impulse voltage digital recorder, impulse voltage peak meter and other equipment)
  • the detection field for example, relates to an impulse voltage standard wave generating device and its use method.
  • the withstand voltage test of power equipment includes three types of AC voltage, DC voltage and impulse voltage, where impulse voltage is the lightning impulse voltage suffered by the transmission line of the simulated power system and the operating impulse voltage generated when opening and closing the knife gate.
  • impulse voltage is the lightning impulse voltage suffered by the transmission line of the simulated power system and the operating impulse voltage generated when opening and closing the knife gate.
  • the test is an important part of ensuring the quality of power equipment, and the accuracy of the results directly affects the safety and economy of power equipment.
  • An effective method to ensure the accuracy and consistency of high voltage values is to trace the value, that is, through an uninterrupted chain with a prescribed uncertainty, the measurement results can be traced to national standards or international standards.
  • Impulse voltage measurement system includes high voltage divider and secondary measurement equipment such as digital recorder, oscilloscope, peak meter, etc.
  • the performance of the high-voltage divider can be verified by step wave response, linearity, short-term, long-term stability and other characteristic tests to prove the accuracy and stability of the scale factor, but the wavefront/tail time parameters and secondary measurement
  • the impact scale factor and wavefront/tail time parameters of the equipment cannot be traced to the source, and only part of the verification test can be carried out. This greatly amplifies the measurement uncertainty and cannot establish a high-accuracy standard impulse voltage measurement system.
  • the short-term stability of the impulse voltage standard wave source is excellent, but the long-term stability is poor.
  • This application proposes an impulse voltage standard wave generating device and its use method, which can further improve the standard wave source waveform parameters to ensure the accuracy and reliability of the impulse voltage measurement system in response to the situation where the long-term stability of the impulse voltage standard wave source in the related art is poor .
  • An impulse voltage standard wave generating device including a trigger circuit, a pulse forming circuit, a power supply, a measuring instrument, a measurement and control module and a temperature regulation module;
  • the trigger loop includes a trigger signal generator
  • the pulse forming loop includes a standard capacitor, a resistive element, and a trigger metal-oxide semiconductor field effect transistor switch, and the pulse forming loop is configured to generate a standard waveform with a specific time parameter;
  • the power supply includes a DC power supply
  • the measuring instruments include digital multimeters and oscilloscopes
  • the measurement and control module includes a control module and a measurement module; the control module is configured to control the DC power supply to output a DC voltage according to the difference in load and required peak voltage output; the measurement module is configured to communicate with the oscilloscope To obtain the output waveform on the measured load and calculate the time and peak parameters of the waveform;
  • the temperature regulation module is configured to maintain the constant temperature of the pulse forming loop.
  • a method for using an impulse voltage standard wave generator is the impulse voltage standard wave generator as described above, the method includes the following steps:
  • the control module controls the DC power supply to output the output voltage, and feeds back the charging voltage of the main capacitor according to the reading of the digital multimeter;
  • the trigger circuit cuts off the DC source, and at the same time sends out a trigger signal that triggers the switch of the metal-oxide semiconductor field effect transistor to turn on the switch of the triggered metal-oxide semiconductor field effect transistor;
  • FIG. 1 is an implementation block diagram of a surge voltage standard wave generating device in an embodiment of the present invention.
  • FIG. 2 is a circuit schematic diagram of a surge voltage standard wave generating device in an embodiment of the present invention.
  • FIG. 3 is a block diagram of a control module of a surge voltage standard wave generating device in an embodiment of the present invention.
  • FIG. 4 is a block diagram of the measurement module of the impulse voltage standard wave generator in the embodiment of the present invention.
  • FIG. 2 I- supply and voltmeter, II- pulse forming circuit, III- transmission cable, IV- cable, V- trigger circuit; U-1100V DC power Keithley2410, V 1 - Meter Agilent34401A, R 0 -charging resistor, R 11 -first voltage attenuator resistor, R 12 -second voltage attenuator resistor, C 1 -main capacitor (ie: charging capacitor), K-MOSFET switch (ie: main switch), L s -Loop stray inductance, R s -loop stray resistance, R t -wave tail resistance, R f -wave front resistance, C 2 -discharge capacitance, C c -coaxial cable capacitance, C L -load inlet capacitance, R L -load resistance.
  • the impulse voltage standard wave generating device is a constant temperature controlled impulse voltage standard wave generating device.
  • the device includes a control system, a power supply, a voltmeter, and a pulse. Form a loop, temperature regulation module, trigger loop, load and measurement system.
  • control system is mainly control software; power supply and voltmeter include DC power supply Keithley2410 and digital multimeter Agilent34401A; pulse forming loop includes main switch, charging capacitor, load capacitor, wave front resistance and wave tail resistance; temperature adjustment module includes temperature sensor , TEC device and controller; the trigger circuit provides the trigger signal to the main switch after the charging capacitor is charged; the load is a digital recorder, attenuator + digital oscilloscope or impact resistance voltage divider; the measurement system is a digital oscilloscope and measurement software.
  • the pulse forming loop can calculate the time and peak parameters by numerical calculation according to the equivalent circuit. This method can also be used to theoretically calculate the time and peak parameters of a low-impedance standard wave source that cannot be ignored by stray inductance.
  • the trigger circuit and the pulse forming circuit are integrated in a fully shielded metal box.
  • the power supply and the measuring instrument are connected through the port on the box.
  • the computer is used to control during use.
  • a plurality of temperature sensors are configured to collect the temperature in the metal box and occur to the controller, and the controller is configured to control the plurality of temperature sensors according to the temperature information collected by the temperature sensor
  • the TEC device works to adjust the temperature in the box (ie, the metal box) until it reaches a predetermined temperature.
  • Each component of the pulse forming loop is tested for performance to meet the accuracy requirements.
  • the layout of each component should be as compact as possible to reduce the influence of stray inductance. If the stray inductance cannot be ignored, make a reasonable estimate.
  • the control software and the measurement software are prepared in Labview language.
  • the control software and the measurement software are completely independent.
  • the measurement software is not limited to measuring the output waveform of the standard wave source. It can also measure the impulse voltage waveform in other tests.
  • the impulse voltage standard wave generating device includes a trigger circuit, a pulse forming circuit, a power supply, a measuring instrument, a measurement and control module, and a temperature adjustment module;
  • the power supply includes a DC power supply configured to output a DC voltage
  • the pulse forming loop includes a standard capacitor, a resistive element, and a trigger metal-oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET) switch; the trigger MOSFET switch is configured to receive a trigger signal Is triggered so that the trigger MOSFET switch is turned on and the DC power supply is turned off; the pulse forming loop is configured to generate a standard waveform with a specific time parameter after the trigger MOSFET switch is triggered; Standard capacitors include charging capacitors;
  • the trigger loop includes a trigger signal generator configured to provide a trigger signal to the trigger MOSFET switch after the charging capacitor is charged;
  • the measuring instrument includes a digital multimeter and an oscilloscope; the digital multimeter is configured to measure the charging voltage of the charging capacitor; the oscilloscope is configured to measure the output waveform on the load;
  • the measurement and control module includes a control module and a measurement module; the control module is configured to control the DC power supply to output a DC voltage according to the difference in load and required peak voltage output; the measurement module is configured to communicate with the oscilloscope To obtain the output waveform on the measured load and calculate the time and peak parameters of the waveform;
  • the temperature regulation module is configured to maintain the constant temperature of the pulse forming loop.
  • the trigger circuit and the pulse forming circuit are integrated in a fully shielded metal box, and the power supply and the measuring instrument are connected to the metal box through ports on the metal box.
  • the temperature adjustment module includes: multiple temperature sensors, controllers, and multiple semiconductor cooling (TEC) devices;
  • the plurality of temperature sensors are all configured to collect the temperature in the metal box and send it to the controller;
  • the plurality of TEC devices are configured to adjust the temperature in the cabinet during operation
  • the controller is configured to control the operation of the plurality of TEC devices according to the temperature information collected by the temperature sensor until the temperature in the cabinet meets a predetermined temperature.
  • impulse voltage standard wave source ie: impulse voltage standard wave generating device
  • impulse voltage standard wave generating device for tracing the magnitude of the high-voltage impulse voltage of this application are:
  • Step 1 Determine the load capacitance, resistance value and peak voltage to be output, and calculate the output voltage of the DC source (ie: DC power supply) according to the above parameters;
  • the resistance value is, the resistance value of the load resistance L R.
  • Step 2 Determine the temperature setting value in the temperature adjustment module, and adjust the temperature in the metal box according to the setting value.
  • Step 3 The control software controls the DC source to output the voltage value, and feedbacks the charging voltage of the main capacitor according to the reading of the digital multimeter;
  • Step 4 After the voltage is full, the trigger circuit cuts off the DC source and at the same time sends out a trigger signal to trigger the MOSFET switch, the switch is turned on;
  • Step 5 The measurement software communicates with the digital oscilloscope to measure the output waveform on the load and calculate the time and peak parameters of the waveform.
  • calibrating secondary measurement equipment such as digital recorders, directly measure the output waveform of the digital recorder and compare it with the peak voltage and time parameters required to determine whether the digital recorder meets the measurement requirements.
  • FIG. 2 The circuit schematic diagram of the impulse voltage standard wave generating device in the embodiment of the present invention is shown in FIG. 2, the DC voltage of U (1100V DC power supply Keithley2410) charges C 1 (main capacitor) through R 0 (charging resistor), and V 1 ( The digital multimeter Agilent34401A) detects the DC voltage on R 12 (second voltage attenuator resistor).
  • V trigger circuit
  • K MOSFET switch
  • K MOSFET switch
  • C 1 main capacitor
  • R s loop stray resistance
  • R f wavefront resistance
  • C 2 discharge Capacitance
  • C c coaxial cable capacitance
  • C L load inlet capacitance
  • C 1 (main capacitance) and C 2 discharge capacitance
  • C c coaxial capacitance
  • C L load inlet Capacitor
  • the control software flow block diagram of the impulse voltage standard wave generating device is shown in FIG. 3.
  • 1 Firstly establish communication with the DC source and digital multimeter by installing the relevant driver control software; 2 determine the load capacitance, resistance value and peak voltage to be output, and calculate the output voltage of the DC source according to the above parameters. 3 Control the DC source to output the voltage value, and feedback the charging voltage of the main capacitor according to the reading of the digital multimeter. 4 When the indication value of the digital multimeter differs from the voltage value that the DC source needs to output by a small value ⁇ , it is determined that the voltage is full. At this time, when the DC source is cut off, the trigger circuit sends out a trigger signal and the main switch is turned on. 5 Determine whether it is single trigger or repeated trigger. If it is for repeated trigger, continue to control the charging of the DC source, otherwise the program ends.
  • the flow chart of the measurement software of the impulse voltage standard wave generating device in the embodiment of the present invention is shown in FIG. 4.
  • the measurement software establishes communication with the digital oscilloscope. If the software prompts that the connection is not correct, check whether the IP addresses of the oscilloscope and the computer have been modified correctly.
  • 2 Set the measurement waveform type, positive and negative polarities, peak size and recording time in the parameter settings.
  • 3 The program selects the measurement calculation method and initializes the oscilloscope according to the parameter settings, and the oscilloscope waits for the trigger. 4After reading the data collected by the oscilloscope, process and calculate the data according to the requirements of the IEC60060 standard. 5 Output the processed waveform and waveform peak and time parameter values. 6After the acquisition is completed, the waveform and measurement results are saved, and the saving format can be excel, word, .lvm.
  • the impulse voltage standard wave generating device of the present application can generate peak value 0-1000V, specific wavefront time, half-peak time such as: (0.84/60) ⁇ s, (1.56/60) ⁇ s, (200/2500) ⁇ s Standard lightning full wave and full wave operation.
  • the impulse voltage standard wave source is divided into high-impedance standard wave source and low-impedance standard wave source according to different loads.
  • the load of high-impedance standard wave source is generally a digital recorder with an inlet resistance greater than 250k ⁇ , and the low-impedance calibrator has a stronger loading capacity. Use a 10k ⁇ surge resistor divider as the load.

Abstract

一种冲击电压标准波发生装置及其方法,装置包括触发回路(V)、脉冲形成回路(II)、电源、测量仪器、测控模块以及温度调节模块,触发回路(V)包括触发信号发生器;脉冲形成回路(II)包括标准电容、电阻元件和触发MOSFET开关(K);测控模块包括控制模块和测量模块,控制模块被配置为根据负载和要求输出的电压峰值的不同,控制直流电源输出直流电压,测量模块与示波器通讯,被配置为测量得到负载上的输出波形,并计算该波形的时间参数和峰值参数。

Description

冲击电压标准波发生装置及其使用方法
本公开要求在2018年12月10日提交中国专利局、申请号为201811503282.1的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及雷电全波、操作全波等冲击电压峰值和时间参数量值溯源标准器,及对冲击电压二次测量仪器(冲击电压数字记录仪、冲击电压峰值表等设备)的校准、检定和检测领域,例如涉及一种冲击电压标准波发生装置及其使用方法。
背景技术
电力设备的耐压试验包括交流电压、直流电压和冲击电压三种,其中冲击电压为模拟电力系统输电线路遭受的雷电冲击电压以及开合刀闸时产生的操作冲击电压。随着特高压输电技术的不断发展,冲击电压发生器及其测量装置的电压等级也大大提高以满足变压器、互感器、电容器等设备的冲击耐压试验要求。该试验是保证电力设备质量的重要组成部分,其结果的准确性直接影响电力设备的安全性和经济性。保证高电压量值准确性、一致性的有效方法就是量值溯源,即通过具有规定不确定度的不间断的锁链,使测量结果溯源到国家标准或国际标准。
国际上德国、美国、加拿大、澳大利亚、英国等均完成了冲击电压的量值溯源研究,建立了测量不确定度小于1%的冲击电压标准测量系统。在相关技术中,我国已经建立了直流、交流高电压的国家标准,但冲击电压测量设备的校验还停留在理论分析阶段,尚未建立冲击电压的测量标准和相应的检定规程。随着我国电力行业的不断发展,越来越多的单位要求其冲击测试设备能够获得权威单位的认证或溯源到国家标准。因此冲击电压标准装置的研制和溯源问题更加紧迫。
冲击电压测量系统包括高压分压器和二次测量设备如数字记录仪、示波器、峰值表等。其中高压分压器的性能可通过阶跃波响应、线性度、短时、长期稳定性等特性试验来证明其刻度因数的准确性和稳定性,但波前/波尾时间参数以及二次测量设备的冲击刻度因数、波前/波尾时间参数都无法进行溯源,只能进行部分验证试验,这样大大放大了测量不确定度,无法建立高准确度等级的冲 击电压标准测量系统。
在相关技术中,冲击电压标准波源短期稳定性能优良,但是长期稳定性欠佳。
发明内容
本申请提出了一种冲击电压标准波发生装置及其使用方法,可以针对相关技术中冲击电压标准波源长期稳定性欠佳的情况,进一步改善标准波源波形参数,以保证冲击电压测量系统的准确可靠。
本申请所采用的技术方案是:
一种冲击电压标准波发生装置,包括触发回路、脉冲形成回路、电源、测量仪器、测控模块以及温度调节模块;
所述触发回路包括触发信号发生器;
所述脉冲形成回路包括标准电容、电阻元件和触发金属-氧化物半导体场效应晶体管开关,所述脉冲形成回路被配置为产生具有特定时间参数的标准波形;
所述电源包括直流电源;
所述测量仪器包括数字多用表和示波器;
所述测控模块包括控制模块和测量模块;所述控制模块被配置为根据负载和要求输出的电压峰值的不同,控制所述直流电源输出直流电压;所述测量模块被配置为与所述示波器通讯,获取测量得到的负载上的输出波形,并计算该波形的时间参数和峰值参数;
所述温度调节模块被配置为保持所述脉冲形成回路恒温。
一种冲击电压标准波发生装置的使用方法,所述冲击电压标准波发生装置为如上所述的冲击电压标准波发生装置,所述方法包括如下步骤:
确定负载电容、电阻值和要求输出的电压峰值,根据所述负载电容、所述电阻值和所述要求输出的电压峰值计算直流源的输出电压;
确定温度调节模块中的温度设定值,根据所述温度设定值调节金属盒内的温度;
控制模块控制直流电源输出所述输出电压,并根据数字多用表的读数来反馈主电容的充电电压;
电压充满后,触发回路切断直流源的同时,发出触发金属-氧化物半导体场效应晶体管开关的触发信号,使所述触发金属-氧化物半导体场效应晶体管开关导通;
利用测量模块与数字示波器,测量负载上的输出波形,并计算该波形的时间参数和峰值参数。
附图说明
图1是本发明实施例中冲击电压标准波发生装置的实施框图。
图2是本发明实施例中冲击电压标准波发生装置的电路原理图。
图3是本发明实施例中冲击电压标准波发生装置的控制模块流程框图。
图4是本发明实施例中冲击电压标准波发生装置的测量模块流程框图。
具体实施方式
下面结合实施例进一步阐明本申请的内容,但本申请的内容不仅仅局限于下面的实施例。本领域技术人员可以对本申请作各种改动或修改,这些等价形式同样在本申请所列权利要求书限定范围之内。
图2中的标记说明:I-电源和电压表,II-脉冲形成回路,III-传输电缆,IV-电缆,V-触发回路;U-1100V直流电源Keithley2410,V 1-数字多用表Agilent34401A,R 0-充电电阻,R 11-第一电压衰减器电阻,R 12-第二电压衰减器电阻,C 1-主电容(即:充电电容),K-MOSFET开关(即:主开关),L s-回路杂散电感,R s-回路杂散电阻,R t-波尾电阻,R f-波前电阻,C 2-放电电容,C c-同轴电缆电容,C L-负载入口电容,R L-负载电阻。
本发明实施例中冲击电压标准波发生装置原理框图如图1所示,所述冲击电压标准波发生装置为恒温控制的冲击电压标准波发生装置,该装置包括控制系统、电源和电压表、脉冲形成回路、温度调节模块、触发回路、负载和测量系统。其中,控制系统主要为控制软件;电源和电压表包括直流电源Keithley2410和数字多用表Agilent34401A;脉冲形成回路包括主开关、充电电容、负载电容、波前电阻和波尾电阻;温度调节模块包括温度传感器、TEC器件和控制器;触发回路在充电电容充电完成后向主开关提供触发信号;负载为数字记录仪、衰减器+数字示波器或者冲击电阻分压器;测量系统为数字示波器和测量软件。
脉冲形成回路可根据等效电路,利用数值计算的方法计算时间和峰值参数。在杂散电感不可忽略的低阻抗标准波源,也可利用该方法理论计算时间和峰值参数。
触发回路和脉冲形成回路集成在全屏蔽的金属盒中,电源和测量仪器通过盒 上的端口相连,使用过程中采用全电脑控制。
温度调节模块中,多个温度传感器被配置为采集所述金属盒内的温度并发生至所述控制器,所述控制器被配置为根据所述温度传感器采集到的温度信息控制所述多个TEC器件工作,调节所述箱体(即:所述金属盒)内温度直至符合预定温度。
脉冲形成回路的各元器件都进行性能测试,满足精度要求。各元器件在布置上尽量紧凑,减小杂散电感的影响,如果杂散电感不能忽略,进行合理估计。
控制软件和测量软件采用Labview语言编制,控制软件和测量软件完全独立,测量软件不局限于测量标准波源的输出波形,也可在其他试验中测量冲击电压波形。
在一些实施例中,所述冲击电压标准波发生装置,包括触发回路、脉冲形成回路、电源、测量仪器、测控模块以及温度调节模块;
所述电源包括直流电源,所述直流电源被配置为输出直流电压;
所述脉冲形成回路包括标准电容、电阻元件和触发金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)开关;所述触发MOSFET开关被配置为在收到触发信号后被触发,以使所述触发MOSFET开关被导通且所述直流电源被关闭;所述脉冲形成回路被配置为在所述触发MOSFET开关被触发后,产生具有特定时间参数的标准波形;所述标准电容包括充电电容;
所述触发回路包括触发信号发生器,所述触发信号发生器被配置为在所述充电电容充电完成后,向所述触发MOSFET开关提供触发信号;
所述测量仪器包括数字多用表和示波器;所述数字多用表被配置为测量所述充电电容的充电电压;所述示波器被配置为测量负载上的输出波形;
所述测控模块包括控制模块和测量模块;所述控制模块被配置为根据负载和要求输出的电压峰值的不同,控制所述直流电源输出直流电压;所述测量模块被配置为与所述示波器通讯,获取测量得到的负载上的输出波形,并计算该波形的时间参数和峰值参数;
所述温度调节模块被配置为保持所述脉冲形成回路恒温。
在一些实施例中,所述触发回路和所述脉冲形成回路集成在全屏蔽的金属 盒中,所述电源和测量仪器通过所述金属盒上的端口与所述金属盒相连。
在一些实施例中,所述温度调节模块包括:多个温度传感器、控制器以及多个半导体制冷(Thermo Electric Cooler,TEC)器件;
所述多个温度传感器均被配置为采集所述金属盒内的温度,并发送至所述控制器;
所述多个TEC器件被配置为在工作时调节所述箱体内温度;
所述控制器被配置为根据所述温度传感器采集到的温度信息控制所述多个TEC器件工作,直至所述箱体内温度符合预定温度。
本申请的高压冲击电压量值溯源用冲击电压标准波源(即:冲击电压标准波发生装置)的使用步骤为:
步骤一,确定负载电容、电阻值和需输出的电压峰值,根据以上参数计算直流源(即:直流电源)的输出电压;
可理解的是,步骤一中,所述电阻值是指,负载电阻R L的电阻值。
步骤二:确定温度调节模块中的温度设定值,根据设定值调节所述金属盒内的温度。
步骤三,控制软件控制直流源输出该电压值,并根据数字多用表的读数来反馈主电容的充电电压;
步骤四,电压充满后,触发回路切断直流源的同时,发出触发MOSFET开关的触发信号,开关导通;
步骤五,测量软件与数字示波器通讯,测量负载上的输出波形,并计算该波形的时间和峰值参数。在校准数字记录仪等二次测量设备时,直接测量数字记录仪的输出波形,与要求输出的电压峰值和时间参数进行比对,判断数字记录仪是否满足测量要求。
本发明实施例中冲击电压标准波发生装置的电路原理图如图2所示,U(1100V直流电源Keithley2410)的直流电压通过R 0(充电电阻)对C 1(主电容)充电,V 1(数字多用表Agilent34401A)检测R 12(第二电压衰减器电阻)上的直流电压,当C 1(主电容)上的电压充满之后,V(触发回路)发出触发信号,触发主开关K(MOSFET开关,也即,主开关),K(MOSFET开关,也即,主开关)导通,C 1(主电容)通过R s(回路杂散电阻)、R f(波前电阻)对 C 2(放电电容)+C c(同轴电缆电容)+C L(负载入口电容)放电,然后C 1(主电容)和C 2(放电电容)+C c(同轴电缆电容)+C L(负载入口电容)对R t放电,在C 2(放电电容)+C c(同轴电缆电容)+C L(负载入口电容)上产生标准冲击电压波形。
本发明实施例中,冲击电压标准波发生装置的控制软件流程框图如图3所示。①通过安装相关驱动程序控制软件首先与直流源和数字多用表建立通讯,②确定负载电容、电阻值和需输出的电压峰值,根据以上参数计算直流源的输出电压。③控制直流源输出该电压值,并根据数字多用表的读数来反馈主电容的充电电压。④当数字多用表的示值与直流源需要输出的电压值相差一个较小的值δ即判定电压充满,此时切断直流源的同时,触发回路发出触发信号,主开关导通。⑤判定单次触发还是重复触发,如果为重复触发继续控制直流源充电,否则程序结束。
本发明实施例中冲击电压标准波发生装置的测量软件流程框图如图4所示。①测量软件与数字示波器建立通讯,如果软件提示没有正确连接,检查示波器和电脑的IP地址是否已经正确修改。②在参数设置中设置测量波形类型、正负极性、峰值大小和记录时间。③程序根据参数设置选择测量计算方法并初始化示波器,示波器等待触发。④读取示波器采集到的数据后,根据IEC60060标准的要求对数据进行处理和计算。⑤输出处理后的波形和波形峰值和时间参数值。⑥结束采集后,对波形和测量结果进行保存,保存格式可以为excel、word、.lvm。
本申请的冲击电压标准波发生装置,该波源可产生峰值0-1000V、特定波前时间、半峰值时间如:(0.84/60)μs、(1.56/60)μs、(200/2500)μs的标准雷电全波和操作全波。根据负载的不同该冲击电压标准波源分为高阻抗标准波源和低阻抗标准波源,高阻抗标准波源的负载一般为入口电阻大于250kΩ的数字记录仪,而低阻抗校准器带载能力更强,可使用10kΩ冲击电阻分压器作为负载。

Claims (4)

  1. 一种冲击电压标准波发生装置,包括触发回路、脉冲形成回路、电源、测量仪器、测控模块以及温度调节模块;
    所述触发回路包括触发信号发生器;
    所述脉冲形成回路包括标准电容、电阻元件和触发金属-氧化物半导体场效应晶体管开关,所述脉冲形成回路被配置为产生具有特定时间参数的标准波形;
    所述电源包括直流电源;
    所述测量仪器包括数字多用表和示波器;
    所述测控模块包括控制模块和测量模块;所述控制模块被配置为根据负载和要求输出的电压峰值的不同,控制所述直流电源输出直流电压;所述测量模块被配置为与所述示波器通讯,获取测量得到的负载上的输出波形,并计算该波形的时间参数和峰值参数;
    所述温度调节模块被配置为保持所述脉冲形成回路恒温。
  2. 根据权利要求1所述的冲击电压标准波发生装置,其中,所述触发回路和所述脉冲形成回路集成在全屏蔽的金属盒中,所述电源和测量仪器通过所述金属盒上的端口与所述金属盒相连。
  3. 根据权利要求2所述的冲击电压标准波发生装置,其中,所述温度调节模块包括:多个温度传感器、控制器以及多个半导体制冷器件;
    所述多个温度传感器均被配置为采集所述金属盒内的温度,并发送温度信息至所述控制器;
    所述控制器被配置为根据所述温度信息控制所述多个半导体制冷器件工作,调节所述金属盒内温度直至所述金属盒内温度符合预定温度。
  4. 一种冲击电压标准波发生装置的使用方法,采用如权利要求1-3任一项所述的冲击电压标准波发生装置,所述方法包括如下步骤:
    确定负载电容、电阻值和要求输出的电压峰值,根据所述负载电容、所述电阻值和所述要求输出的电压峰值计算直流源的输出电压;
    确定温度调节模块中的温度设定值,根据所述温度设定值调节金属盒内的温度;
    控制模块控制直流电源输出所述输出电压,并根据数字多用表的读数来反馈主电容的充电电压;
    电压充满后,触发回路切断直流源的同时,发出触发金属-氧化物半导体场效应晶体管开关的触发信号,使所述触发金属-氧化物半导体场效应晶体管开关导通;
    利用测量模块与数字示波器,测量负载上的输出波形,并计算该波形的时间参数和峰值参数。
PCT/CN2019/116541 2018-12-10 2019-11-08 冲击电压标准波发生装置及其使用方法 WO2020119348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811503282.1 2018-12-10
CN201811503282.1A CN109459718A (zh) 2018-12-10 2018-12-10 冲击电压标准波源

Publications (1)

Publication Number Publication Date
WO2020119348A1 true WO2020119348A1 (zh) 2020-06-18

Family

ID=65612873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116541 WO2020119348A1 (zh) 2018-12-10 2019-11-08 冲击电压标准波发生装置及其使用方法

Country Status (2)

Country Link
CN (1) CN109459718A (zh)
WO (1) WO2020119348A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459718A (zh) * 2018-12-10 2019-03-12 中国电力科学研究院有限公司 冲击电压标准波源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998645A (zh) * 2012-11-29 2013-03-27 中国电力科学研究院 高压冲击电压量值溯源用冲击电压标准波源及其使用方法
CN103954810A (zh) * 2014-04-04 2014-07-30 南京信息工程大学 一种10/700μS冲击电压发生器
CN107102182A (zh) * 2017-05-25 2017-08-29 中国电力科学研究院 用于量值溯源的集中式冲击电压标准波形发生方法及系统
WO2018083851A1 (ja) * 2016-11-01 2018-05-11 株式会社デンソー 電圧検出装置
CN108680777A (zh) * 2018-07-20 2018-10-19 中国电力科学研究院 一种冲击电压发生装置
CN109459718A (zh) * 2018-12-10 2019-03-12 中国电力科学研究院有限公司 冲击电压标准波源

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2519255Y (zh) * 2001-12-17 2002-10-30 中国科学院长春地理研究所 多波段微波辐射计信号源温度控制仪
CN203133260U (zh) * 2012-11-29 2013-08-14 中国电力科学研究院 高压冲击电压量值溯源用冲击电压标准波源
CN207133596U (zh) * 2017-06-30 2018-03-23 江汉大学 一种基于恒温的时域信号源装置
CN107911116A (zh) * 2017-12-19 2018-04-13 江汉大学 一种激光频标信号源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998645A (zh) * 2012-11-29 2013-03-27 中国电力科学研究院 高压冲击电压量值溯源用冲击电压标准波源及其使用方法
CN103954810A (zh) * 2014-04-04 2014-07-30 南京信息工程大学 一种10/700μS冲击电压发生器
WO2018083851A1 (ja) * 2016-11-01 2018-05-11 株式会社デンソー 電圧検出装置
CN107102182A (zh) * 2017-05-25 2017-08-29 中国电力科学研究院 用于量值溯源的集中式冲击电压标准波形发生方法及系统
CN108680777A (zh) * 2018-07-20 2018-10-19 中国电力科学研究院 一种冲击电压发生装置
CN109459718A (zh) * 2018-12-10 2019-03-12 中国电力科学研究院有限公司 冲击电压标准波源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAN, GUILI ET AL.: "Design of TEC High-precision Temperature Control System Based on PLC", BULLETIN OF SCIENCE AND TECHNOLOGY, vol. 33, no. 11, 30 November 2017 (2017-11-30), pages 82 - 86, DOI: 20200108175829 *

Also Published As

Publication number Publication date
CN109459718A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN102998645B (zh) 高压冲击电压量值溯源用冲击电压标准波源及其使用方法
CN106291310A (zh) 一种利用双脉冲技术测试igbt动态开关特性的测试方法及装置
CN201335860Y (zh) 绝缘油击穿电压测试仪检定装置
CN105258718A (zh) 综合测试仪计量检定系统及适配器和计量测试平台
CN203811751U (zh) 一种基于对比拟合分析的电力设备局部放电实验系统
CN204101715U (zh) 一种避雷器计数器测试仪校准装置
CN105403848A (zh) 一种新型电容型设备在线监测系统校验装置
CN104931914A (zh) 一种模拟现场的高压电能表检定系统
WO2020119348A1 (zh) 冲击电压标准波发生装置及其使用方法
CN205139349U (zh) 避雷器放电记录器及泄漏电流表校验仪
CN205079787U (zh) 一种综合测试仪计量检定系统及适配器和计量测试平台
CN203133260U (zh) 高压冲击电压量值溯源用冲击电压标准波源
CN112649652B (zh) 一种用于冲击电流量值的溯源方法及系统
US20090093987A1 (en) Method for accurate measuring stray capacitance of automatic test equipment and system thereof
CN112345992A (zh) 一种脉冲电流法局部放电复合参量的校准方法及系统
Prochazka et al. Determination of frequency characteristics of high voltage dividers in frequency domain
CN103116150A (zh) 一种氧化物避雷器绝缘在线监测设备校验装置
CN106199486A (zh) 一种电能表温度影响试验的测量系统
CN202939297U (zh) 接地电阻测试仪的检定系统
CN112378995B (zh) 电火花发生装置、能量测试装置及电火花发生系统
Hallstrom et al. Calculable impulse voltage calibrator for calibration of impulse digitizers
CN112379320A (zh) 一种基于固定电压计时法的防雷元件测试仪校准方法
CN112526433A (zh) 基于定时电压测量法的防雷元件测试仪校准方法
CN203444016U (zh) 含压敏电阻的断路器的电阻测量装置
CN201654215U (zh) 氧化锌避雷器测试仪校验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896832

Country of ref document: EP

Kind code of ref document: A1