WO2020118932A1 - 带有光场相机的有机发光二极管显示面板 - Google Patents

带有光场相机的有机发光二极管显示面板 Download PDF

Info

Publication number
WO2020118932A1
WO2020118932A1 PCT/CN2019/077905 CN2019077905W WO2020118932A1 WO 2020118932 A1 WO2020118932 A1 WO 2020118932A1 CN 2019077905 W CN2019077905 W CN 2019077905W WO 2020118932 A1 WO2020118932 A1 WO 2020118932A1
Authority
WO
WIPO (PCT)
Prior art keywords
graded
index
emitting diode
organic light
light emitting
Prior art date
Application number
PCT/CN2019/077905
Other languages
English (en)
French (fr)
Inventor
杨汉宁
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/466,647 priority Critical patent/US11271189B2/en
Publication of WO2020118932A1 publication Critical patent/WO2020118932A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the invention relates to a camera lens, in particular to an organic light-emitting diode display panel with a light field camera, which is suitable for smart phones or tablet computers and other electronic devices that require both a display panel and a mobile phone, and has Light field camera without focusing.
  • a prior art camera provided in a smartphone includes at least one lens 91 and an image sensor 92, and external light passing through the lens 91 is focused on a position of the image sensor 92 so that The light sensor unit receives light signals to form pixels.
  • This imaging method needs to fix the focal plane before imaging, and the captured image has a depth of field limitation, which cannot achieve the effect that each part of the image in the depth direction is clear and not blurred.
  • the prior art camera does not have to include a focusing module to focus on the subject. If the subject is not accurately focused, the image of the subject generated by the camera will be blurred.
  • the present invention provides an organic light emitting diode display panel with a light field camera.
  • the glass cover of the organic light emitting diode display panel has a graded index lens
  • the organic light emitting diode pixel layer of the organic light emitting diode display panel has a plurality of graded index microlenses, the graded index lens, the Multiple graded-index microlenses and image sensors are matched with each other to form a light field camera without focusing.
  • the main object of the present invention is to provide an organic light emitting diode display panel with a light field camera, including:
  • a glass cover plate, a graded index lens is formed on the glass cover plate, and the refractive index of the graded index lens gradually changes from the center of the graded index lens to the outer periphery in the radial direction;
  • An organic light emitting diode pixel layer is provided on the bottom surface of the glass cover plate, and includes a plurality of organic light emitting diode pixel units, and a micro lens array is embedded on the organic light emitting diode pixel layer, and the micro lens array corresponds to the A graded-index lens, and includes a plurality of graded-index microlenses, the refractive index of each of the graded-index microlenses gradually changes from the center to the outer periphery of each of the graded-index microlenses; and
  • the image sensor is disposed on the bottom surface of the pixel layer of the organic light emitting diode and corresponds to the microlens array.
  • the refractive index of the graded index lens gradually decreases from the center to the outer periphery of the graded index lens, so that the graded index lens acts as an equivalent convex lens.
  • the refractive index of the graded-index lens gradually increases from the center to the outer periphery of the graded-index lens, so that the graded-index lens acts as an equivalent concave lens.
  • the refractive index of each of the graded-index microlenses gradually decreases from the center to the outer periphery of each of the graded-index microlenses, so that each of the graded-index microlenses acts as a first-class Effective convex lens.
  • the refractive index of each of the graded-index microlenses gradually increases from the center to the outer periphery of each of the graded-index microlenses, so that each of the graded-index microlenses acts as a first-class Effective concave lens.
  • the top surface of the graded index lens is a flat surface
  • the bottom surface of the graded index lens is a flat surface
  • each graded-index microlens is a flat surface
  • the bottom surface of each graded-index microlens is a flat surface
  • a part of the plurality of organic light emitting diode pixel units is a blue organic light emitting diode pixel unit, another part is a red organic light emitting diode pixel unit, and the remaining part is a green organic light emitting diode pixel unit.
  • the glass cover, the organic light-emitting diode pixel layer, and the image sensor are sequentially arranged along an optical axis, and the refractive index of the graded index lens is graded along The radial direction is perpendicular to the optical axis, and the refractive index of each graded index microlens along the graded radial direction is perpendicular to the optical axis.
  • Another object of the present invention is to provide an organic light emitting diode display panel with a light field camera, including:
  • a glass cover plate, a graded index lens is formed on the glass cover plate, and the refractive index of the graded index lens gradually changes from the center of the graded index lens to the outer periphery in the radial direction;
  • An organic light emitting diode pixel layer is provided on the bottom surface of the glass cover plate, and includes a plurality of organic light emitting diode pixel units, and a micro lens array is embedded on the organic light emitting diode pixel layer, and the micro lens array corresponds to the A graded-index lens, and includes a plurality of graded-index microlenses, the refractive index of each of the graded-index microlenses gradually changes from the center to the outer periphery of each of the graded-index microlenses; and
  • the image sensor is arranged on the bottom surface of the pixel layer of the organic light emitting diode and corresponds to the microlens array;
  • the top surface of the gradient index lens is a flat surface
  • the bottom surface of the gradient index lens is a flat surface
  • each graded index microlens is a flat surface
  • the bottom surface of each graded index microlens is a flat surface
  • the glass cover plate, the organic light emitting diode pixel layer, and the image sensor are sequentially arranged along an optical axis, and the refractive index of the graded index lens is perpendicular to the graded radial direction
  • the optical axis, and the refractive index of each graded index microlens along the radial direction of the grade is perpendicular to the optical axis.
  • the refractive index of the graded index lens gradually decreases from the center to the outer periphery of the graded index lens, so that the graded index lens acts as an equivalent convex lens.
  • the refractive index of the graded-index lens gradually increases from the center to the outer periphery of the graded-index lens, so that the graded-index lens acts as an equivalent concave lens.
  • the refractive index of each of the graded-index microlenses gradually decreases from the center to the outer periphery of each of the graded-index microlenses, so that each of the graded-index microlenses acts as a first-class Effective convex lens.
  • the refractive index of each of the graded-index microlenses gradually increases from the center to the outer periphery of each of the graded-index microlenses, so that each of the graded-index microlenses acts as a first-class Effective concave lens.
  • a part of the plurality of organic light emitting diode pixel units is a blue organic light emitting diode pixel unit, another part is a red organic light emitting diode pixel unit, and the remaining part is a green organic light emitting diode pixel unit.
  • the glass cover of the organic light emitting diode display panel of the present invention has a graded index lens
  • the organic light emitting diode pixel layer of the organic light emitting diode display panel has a plurality of graded index microlenses.
  • a graded index lens, the plurality of graded index microlenses and the image sensor are matched with each other to form a light field camera without focusing, and each graded index microlens generates a sub-image and projects the sub-image onto Image sensor surface.
  • Each sub-image includes multiple pixels, and the light intensity recorded by each pixel comes from the narrow beam limited between a microlens and a sub-aperture area of the lens.
  • the light field camera uses a micro lens array to control the extra light, record the depth of field of each image, and then project the tiny sub-image onto the surface of the image sensor, so it can reduce the shooting time without sacrificing the depth of field, and no additional focus module is needed .
  • the organic light emitting diode display panel of the present invention is tightly integrated with a light field camera to form a module with a compact structure. Therefore, a mobile phone or a tablet computer using the organic light emitting diode display panel of the present invention can further reduce the thickness.
  • FIG. 1 is a schematic side view of a conventional camera.
  • FIG. 2 is a schematic side view of an organic light emitting diode display panel with a light field camera of the present invention.
  • FIG. 3 is a schematic side view of the glass cover plate of the present invention.
  • FIG. 4 is a schematic plan view of the glass cover plate of the present invention.
  • FIG. 5 is a schematic side view of the pixel layer of the organic light emitting diode of the present invention.
  • FIG. 6 is a schematic top view of a partial light-emitting diode pixel unit of the organic light-emitting diode pixel layer of the present invention.
  • FIG. 7 is a schematic top view of a partially graded index microlens of an organic light emitting diode pixel layer of the present invention.
  • the organic light emitting diode display panel 1 with a light field camera of the present invention includes: a glass cover 10, an organic light emitting diode pixel layer 20, and an image sensor 30.
  • a gradient index lens 11 is formed on the glass cover 10, and the refractive index of the gradient index lens 11 is radially from the center 111 of the gradient index lens 11 to the outer periphery 112 Gradient.
  • the refractive index of the graded-index lens 11 gradually decreases from the center 111 of the graded-index lens 11 toward the outer periphery 112 radially, so that the graded-index lens 11 acts as an equivalent Convex lens; or, in an embodiment of the present invention, the refractive index of the graded index lens 11 gradually increases from the center 111 of the graded index lens 11 radially toward the outer periphery 112, so that the graded index lens 11 As an equivalent concave lens.
  • the top surface 115 of the graded index lens 11 is a flat surface
  • the bottom surface 116 of the graded index lens 11 is a flat surface.
  • the ion concentration gradient can be achieved in a specific area of the glass cover plate 10 by methods such as ion exchange and ion filling, and then the area becomes the graded index lens 11.
  • the organic light emitting diode pixel layer 20 is disposed on the bottom surface 102 of the glass cover 10 and includes a plurality of organic light emitting diode pixel units 21.
  • a microlens array 23 is embedded on the pixel layer 20 of the organic light emitting diode.
  • the microlens array 23 corresponds to the graded index lens 11 and includes a plurality of graded index microlenses 230.
  • the refractive index of each of the graded-index microlenses 230 gradually changes from the center 231 of each of the graded-index microlenses 230 toward the outer periphery 232, as shown in FIG. 7.
  • the refractive index of each graded-index microlens 230 gradually decreases from the center 231 of each graded-index microlens 230 to the outer periphery 232 radially, so that each graded-index microlens
  • the lens 230 serves as an equivalent convex lens; or, in an embodiment of the present invention, the refractive index of each of the graded-index microlenses 230 gradually increases from the center 231 of each of the graded-index microlenses 230 toward the outer periphery 232 Increasingly, each of the graded-index microlenses 230 is used as an equivalent concave lens.
  • the top surface 235 of each graded index microlens 230 is a flat surface
  • the bottom surface 236 of each graded index microlens 230 is a flat surface.
  • each graded index microlens 230 of the microlens array 23 can be processed to form the graded index microlens by means of diffusion method, optical copolymerization method, etc. 230.
  • the image sensor 30 is disposed on the bottom surface 202 of the OLED pixel layer 20 and corresponds to the microlens array 23.
  • the glass cover 10, the organic light emitting diode pixel layer 20, and the image sensor 30 are sequentially arranged along an optical axis 100, and the refractive index of the graded index lens 11
  • the radial direction along the gradient is perpendicular to the optical axis 100
  • the refractive index of each gradient index microlens 230 along the gradient is perpendicular to the optical axis 100.
  • a part of the plurality of organic light emitting diode pixel units 21 is a blue organic light emitting diode pixel unit 21, another part is a red organic light emitting diode pixel unit 21, and the rest is a green organic light emitting diode Pixel unit 21.
  • the glass cover 10 of the organic light emitting diode display panel 1 of the present invention has a graded index lens 11, and the organic light emitting diode pixel layer 20 of the organic light emitting diode display panel 1 has a plurality of graded index
  • the micro lens 230, the graded index lens 11, the plurality of graded index micro lenses 230 and the image sensor 30 are matched with each other to form a light field camera without focusing, and each graded index micro lens 230 generates a sub Image, and project the sub-image onto the surface of the image sensor 30.
  • Each sub-image includes multiple pixels, and the light intensity recorded by each pixel comes from the narrow beam limited between a microlens and a sub-aperture area of the lens.
  • the light field camera uses the microlens array 23 to control the extra light, record the depth of field of each image, and then project the tiny sub-image onto the surface of the image sensor 30, so it can reduce the shooting time without sacrificing the depth of field and without additional focus Module.
  • the organic light emitting diode display panel 1 of the present invention closely integrates the light field camera to form a module with a compact structure, so the mobile phone or tablet computer using the organic light emitting diode display panel 1 of the present invention can further reduce the thickness dimension .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种带有光场相机的有机发光二极管显示面板,包括:玻璃盖板、有机发光二极管像素层、以及影像传感器。所述玻璃盖板上形成一渐变折射率透镜,所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘渐变。所述有机发光二极管像素层设置在所述玻璃盖板的底面,且包括多个有机发光二极管像素单元,在所述有机发光二极管像素层上镶嵌一微透镜阵列,且包括有多个渐变折射率微透镜,各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘渐变。所述影像传感器设置在所述有机发光二极管像素层的底面。所述光场相机无须对焦即可获得清晰影像。

Description

[根据细则37.2由ISA制定的发明名称] 带有光场相机的有机发光二极管显示面板 技术领域
本发明是有关于一种相机镜头,特别是有关于一种带有光场相机的有机发光二极管显示面板,其适用于智慧手机或是平板电脑等同时需要显示面板与手机的电子装置,且具有无须对焦的光场相机。
背景技术
请参照图1,设置在智能手机的现有技术相机,包括至少一透镜91以及影像传感器92,穿过所述透镜91的外部光线汇聚在所述影像传感器92的一个位置上,使所述处的光传感单元接收光讯号而形成像素。此种成像方式需要先固定焦平面才能进行成像,拍摄的影像具有景深的限制,无法达到影像在深度方向的每个部分均为清楚而不模糊的效果。换言之,现有技术相机无必须包括一对焦模组以对拍摄主体进行对焦,若未准确对焦,则导致相机所生成的拍摄主体的影像模糊。
此外,现有技术的智能手机的显示面板与相机是完全不同的组件,并未被良好的整合。
故,有必要提供一种带有光场相机的有机发光二极管显示面板,以解决现有技术所存在的问题。
技术问题
有鉴于现有技术的相机需要对焦模组来对焦,且现有技术的智能手机显示面板并未与相机良好整合的技术问题,本发明提出一种带有光场相机的有机发光二极管显示面板。所述有机发光二极管显示面板的玻璃盖板具有渐变折射率透镜,且所述有机发光二极管显示面板的有机发光二极管像素层具有多个渐变折射率微透镜,所述有渐变折射率透镜、所述多个渐变折射率微透镜以及影像传感器相互匹配组成一无须对焦的光场相机。
技术解决方案
本发明的主要目的在于提供一种带有光场相机的有机发光二极管显示面板,包括:
玻璃盖板,所述玻璃盖板上形成一渐变折射率透镜,所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘渐变;
有机发光二极管像素层,设置在所述玻璃盖板的底面,且包括多个有机发光二极管像素单元,在所述有机发光二极管像素层上镶嵌设置有一微透镜阵列,所述微透镜阵列对应所述渐变折射率透镜,且包括有多个渐变折射率微透镜,各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘渐变;以及
影像传感器,设置在所述有机发光二极管像素层的底面,且对应所述微透镜阵列。
在本发明一实施例中,所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘逐渐递减,使所述渐变折射率透镜作为一等效凸透镜。
在本发明一实施例中,所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘逐渐递增,使所述渐变折射率透镜作为一等效凹透镜。
在本发明一实施例中,各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘逐渐递减,使各所述渐变折射率微透镜作为一等效凸透镜。
在本发明一实施例中,各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘逐渐递增,使各所述渐变折射率微透镜作为一等效凹透镜。
在本发明一实施例中,所述渐变折射率透镜的顶面为平坦面,且所述渐变折射率透镜的底面为平坦面。
在本发明一实施例中,各所述渐变折射率微透镜的顶面为平坦面,且各所述渐变折射率微透镜的底面为平坦面。
在本发明一实施例中,所述多个有机发光二极管像素单元的一部分为蓝色有机发光二极管像素单元、另一部分为红色有机发光二极管像素单元,其余部分为绿色有机发光二极管像素单元。
在本发明一实施例中,所述玻璃盖板、所述有机发光二极管像素层、以及所述影像传感器是沿一光轴依序排列,所述渐变折射率透镜的折射率所沿着渐变的径向方向是垂直所述光轴,且各所述渐变折射率微透镜的折射率所沿着渐变的径向方向是垂直所述光轴。
本发明的另一目的在于提供一种带有光场相机的有机发光二极管显示面板,包括:
玻璃盖板,所述玻璃盖板上形成一渐变折射率透镜,所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘渐变;
有机发光二极管像素层,设置在所述玻璃盖板的底面,且包括多个有机发光二极管像素单元,在所述有机发光二极管像素层上镶嵌设置有一微透镜阵列,所述微透镜阵列对应所述渐变折射率透镜,且包括有多个渐变折射率微透镜,各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘渐变;以及
影像传感器,设置在所述有机发光二极管像素层的底面,且对应所述微透镜阵列;
其中,所述渐变折射率透镜的顶面为平坦面,且所述渐变折射率透镜的底面为平坦面;
其中,各所述渐变折射率微透镜的顶面为平坦面,且各所述渐变折射率微透镜的底面为平坦面;
其中,所述玻璃盖板、所述有机发光二极管像素层、以及所述影像传感器是沿一光轴依序排列,所述渐变折射率透镜的折射率所沿着渐变的径向方向是垂直所述光轴,且各所述渐变折射率微透镜的折射率所沿着渐变的径向方向是垂直所述光轴。
在本发明一实施例中,所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘逐渐递减,使所述渐变折射率透镜作为一等效凸透镜。
在本发明一实施例中,所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘逐渐递增,使所述渐变折射率透镜作为一等效凹透镜。
在本发明一实施例中,各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘逐渐递减,使各所述渐变折射率微透镜作为一等效凸透镜。
在本发明一实施例中,各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘逐渐递增,使各所述渐变折射率微透镜作为一等效凹透镜。
在本发明一实施例中,所述多个有机发光二极管像素单元的一部分为蓝色有机发光二极管像素单元、另一部分为红色有机发光二极管像素单元,其余部分为绿色有机发光二极管像素单元。
有益效果
与现有技术相比较,本发明的有机发光二极管显示面板的玻璃盖板具有渐变折射率透镜,且所述有机发光二极管显示面板的有机发光二极管像素层具有多个渐变折射率微透镜,所述有渐变折射率透镜、所述多个渐变折射率微透镜以及影像传感器相互匹配组成一无须对焦的光场相机,每个渐变折射率微透镜都会生成一个子影像,并将所述子影像投影到影像传感器表面。每个子影像包括多个像素,各像素所记录的光线强度来自于一个微透镜和镜头的一个子孔径区域之间所限制的细光束。所述光场相机以微透镜阵列控制额外光线,记录每个影像的景深,再将微小的子影像投影到影像传感器表面,故可减少拍照时间,且不用牺牲景深,且无须额外的对焦模组。此外,本发明的有机发光二极管显示面板紧密地整合了光场相机而形成一具有紧密结构的模组,因此使用本发明的有机发光二极管显示面板的手机或是平板电脑可进一步减少厚度尺寸。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,且配合所附图式,作详细说明如下:
附图说明
图1是一现有的相机的侧面示意图。
图2是本发明带有光场相机的有机发光二极管显示面板的侧面示意图。
图3是本发明的玻璃盖板的侧面示意图。
图4是本发明的玻璃盖板的俯视示意图。
图5是本发明有机发光二极管像素层的侧面示意图。
图6是本发明有机发光二极管像素层的部分机发光二极管像素单元的俯视示意图。
图7是本发明有机发光二极管像素层的部分渐变折射率微透镜的俯视示意图。
本发明的实施方式
请参照图2,本发明带有光场相机的有机发光二极管显示面板1包括:玻璃盖板10、有机发光二极管像素层20、以及影像传感器30。
请参照图3及图4,所述玻璃盖板10上形成一渐变折射率透镜11,所述渐变折射率透镜11的折射率从所述渐变折射率透镜11的中心111径向向外周缘112渐变。在本发明一实施例中,所述渐变折射率透镜11的折射率从所述渐变折射率透镜11的中心111径向向外周缘112逐渐递减,使所述渐变折射率透镜11作为一等效凸透镜;或者,在本发明一实施例中,所述渐变折射率透镜11的折射率从所述渐变折射率透镜11的中心111径向向外周缘112逐渐递增,使所述渐变折射率透镜11作为一等效凹透镜。在本发明一实施例中,所述渐变折射率透镜11的顶面115为平坦面,且所述渐变折射率透镜11的底面116为平坦面。
对于无机的所述玻璃盖板10而言,通过离子交换、离子填充等方法可在所述玻璃盖板10的特定区域实现离子浓度渐变,进而使所述区域成为渐变折射率透镜11。
请参照图5至图7,所述有机发光二极管像素层20设置在所述玻璃盖板10的底面102,且包括多个有机发光二极管像素单元21。在所述有机发光二极管像素层20上镶嵌设置有一微透镜阵列23。所述微透镜阵列23对应所述渐变折射率透镜11,且包括有多个渐变折射率微透镜230。各所述渐变折射率微透镜230的折射率从各所述渐变折射率微透镜230的中心231径向向外周缘232渐变,如图7所示。在本发明一实施例中,各所述渐变折射率微透镜230的折射率从各所述渐变折射率微透镜230的中心231径向向外周缘232逐渐递减,使各所述渐变折射率微透镜230作为一等效凸透镜;或者,在本发明一实施例中,各所述渐变折射率微透镜230的折射率从各所述渐变折射率微透镜230的中心231径向向外周缘232逐渐递增,使各所述渐变折射率微透镜230作为一等效凹透镜。在本发明一实施例中,各所述渐变折射率微透镜230的顶面235为平坦面,且各所述渐变折射率微透镜230的底面236为平坦面。
对于有机的所述有机发光二极管像素层20而言,可微透镜阵列23的各所述渐变折射率微透镜230的位置利用扩散法、光共聚法等手段以加工形成所述渐变折射率微透镜230。
所述影像传感器30设置在所述有机发光二极管像素层20的底面202,且对应所述微透镜阵列23。
在本发明一实施例中,所述玻璃盖板10、所述有机发光二极管像素层20、以及所述影像传感器30是沿一光轴100依序排列,所述渐变折射率透镜11的折射率所沿着渐变的径向方向是垂直所述光轴100,且各所述渐变折射率微透镜230的折射率所沿着渐变的径向方向是垂直所述光轴100。
此外,在本发明一实施例中,所述多个有机发光二极管像素单元21的一部分为蓝色有机发光二极管像素单元21、另一部分为红色有机发光二极管像素单元21,其余部分为绿色有机发光二极管像素单元21。
与现有技术相比较,本发明的有机发光二极管显示面板1的玻璃盖板10具有渐变折射率透镜11,且所述有机发光二极管显示面板1的有机发光二极管像素层20具有多个渐变折射率微透镜230,所述有渐变折射率透镜11、所述多个渐变折射率微透镜230以及影像传感器30相互匹配组成一无须对焦的光场相机,每个渐变折射率微透镜230都会生成一个子影像,并将所述子影像投影到影像传感器30表面。每个子影像包括多个像素,各像素所记录的光线强度来自于一个微透镜和镜头的一个子孔径区域之间所限制的细光束。所述光场相机以微透镜阵列23控制额外光线,记录每个影像的景深,再将微小的子影像投影到影像传感器30表面,故可减少拍照时间,且不用牺牲景深,且无须额外的对焦模组。此外,本发明的有机发光二极管显示面板1紧密地整合了光场相机而形成一具有紧密结构的模组,因此使用本发明的有机发光二极管显示面板1的手机或是平板电脑可进一步减少厚度尺寸。

Claims (15)

  1. 一种带有光场相机的有机发光二极管显示面板,包括:
    玻璃盖板,所述玻璃盖板上形成一渐变折射率透镜,所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘渐变;
    有机发光二极管像素层,设置在所述玻璃盖板的底面,且包括多个有机发光二极管像素单元,在所述有机发光二极管像素层上镶嵌设置有一微透镜阵列,所述微透镜阵列对应所述渐变折射率透镜,且包括有多个渐变折射率微透镜,各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘渐变;以及
    影像传感器,设置在所述有机发光二极管像素层的底面,且对应所述微透镜阵列。
  2. 如权利要求1所述的带有光场相机的有机发光二极管显示面板,其中:所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘逐渐递减,使所述渐变折射率透镜作为一等效凸透镜。
  3. 如权利要求1所述的带有光场相机的有机发光二极管显示面板,其中:所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘逐渐递增,使所述渐变折射率透镜作为一等效凹透镜。
  4. 如权利要求1所述的带有光场相机的有机发光二极管显示面板,其中:各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘逐渐递减,使各所述渐变折射率微透镜作为一等效凸透镜。
  5. 如权利要求1所述的带有光场相机的有机发光二极管显示面板,其中:各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘逐渐递增,使各所述渐变折射率微透镜作为一等效凹透镜。
  6. 如权利要求1所述的带有光场相机的有机发光二极管显示面板,其中:所述渐变折射率透镜的顶面为平坦面,且所述渐变折射率透镜的底面为平坦面。
  7. 如权利要求1所述的带有光场相机的有机发光二极管显示面板,其中:各所述渐变折射率微透镜的顶面为平坦面,且各所述渐变折射率微透镜的底面为平坦面。
  8. 如权利要求1所述的带有光场相机的有机发光二极管显示面板,其中:所述多个有机发光二极管像素单元的一部分为蓝色有机发光二极管像素单元、另一部分为红色有机发光二极管像素单元,其余部分为绿色有机发光二极管像素单元。
  9. 如权利要求1所述的带有光场相机的有机发光二极管显示面板,其中:所述玻璃盖板、所述有机发光二极管像素层、以及所述影像传感器是沿一光轴依序排列,所述渐变折射率透镜的折射率所沿着渐变的径向方向是垂直所述光轴,且各所述渐变折射率微透镜的折射率所沿着渐变的径向方向是垂直所述光轴。
  10. 一种带有光场相机的有机发光二极管显示面板,包括:
    玻璃盖板,所述玻璃盖板上形成一渐变折射率透镜,所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘渐变;
    有机发光二极管像素层,设置在所述玻璃盖板的底面,且包括多个有机发光二极管像素单元,在所述有机发光二极管像素层上镶嵌设置有一微透镜阵列,所述微透镜阵列对应所述渐变折射率透镜,且包括有多个渐变折射率微透镜,各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘渐变;以及
    影像传感器,设置在所述有机发光二极管像素层的底面,且对应所述微透镜阵列;
    其中,所述渐变折射率透镜的顶面为平坦面,且所述渐变折射率透镜的底面为平坦面;
    其中,各所述渐变折射率微透镜的顶面为平坦面,且各所述渐变折射率微透镜的底面为平坦面;
    其中,所述玻璃盖板、所述有机发光二极管像素层、以及所述影像传感器是沿一光轴依序排列,所述渐变折射率透镜的折射率所沿着渐变的径向方向是垂直所述光轴,且各所述渐变折射率微透镜的折射率所沿着渐变的径向方向是垂直所述光轴。
  11. 如权利要求10所述的带有光场相机的有机发光二极管显示面板,其中:所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘逐渐递减,使所述渐变折射率透镜作为一等效凸透镜。
  12. 如权利要求10所述的带有光场相机的有机发光二极管显示面板,其中:所述渐变折射率透镜的折射率从所述渐变折射率透镜的中心径向向外周缘逐渐递增,使所述渐变折射率透镜作为一等效凹透镜。
  13. 如权利要求10所述的带有光场相机的有机发光二极管显示面板,其中:各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘逐渐递减,使各所述渐变折射率微透镜作为一等效凸透镜。
  14. 如权利要求10所述的带有光场相机的有机发光二极管显示面板,其中:各所述渐变折射率微透镜的折射率从各所述渐变折射率微透镜的中心径向向外周缘逐渐递增,使各所述渐变折射率微透镜作为一等效凹透镜。
  15. 如权利要求10所述的带有光场相机的有机发光二极管显示面板,其中:所述多个有机发光二极管像素单元的一部分为蓝色有机发光二极管像素单元、另一部分为红色有机发光二极管像素单元,其余部分为绿色有机发光二极管像素单元。
PCT/CN2019/077905 2018-12-13 2019-03-13 带有光场相机的有机发光二极管显示面板 WO2020118932A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/466,647 US11271189B2 (en) 2018-12-13 2019-03-13 Organic light emitting diode display panel with a light field camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811526358.2 2018-12-13
CN201811526358.2A CN109494244B (zh) 2018-12-13 2018-12-13 带有光场相机的有机发光二极管显示面板

Publications (1)

Publication Number Publication Date
WO2020118932A1 true WO2020118932A1 (zh) 2020-06-18

Family

ID=65710102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077905 WO2020118932A1 (zh) 2018-12-13 2019-03-13 带有光场相机的有机发光二极管显示面板

Country Status (3)

Country Link
US (1) US11271189B2 (zh)
CN (1) CN109494244B (zh)
WO (1) WO2020118932A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079304B (zh) * 2021-04-25 2023-01-31 维沃移动通信有限公司 摄像模组和电子设备
CN113114913B (zh) * 2021-04-27 2023-02-03 维沃移动通信有限公司 摄像头及电子设备
CN113163092A (zh) * 2021-04-30 2021-07-23 维沃移动通信(杭州)有限公司 感光芯片及摄像头模组
CN113556418B (zh) * 2021-07-22 2024-04-30 维沃移动通信有限公司 电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103019021A (zh) * 2012-12-27 2013-04-03 Tcl集团股份有限公司 一种3d光场相机及其拍摄图像的处理方法
CN103582948A (zh) * 2011-06-01 2014-02-12 全球Oled科技有限责任公司 用于显示和感测图像的设备
CN106910754A (zh) * 2015-12-22 2017-06-30 力晶科技股份有限公司 半导体元件及其制造方法
US9876197B2 (en) * 2015-11-11 2018-01-23 Samsung Display Co., Ltd Display device including fresnel lens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378163B2 (ja) * 2009-11-09 2013-12-25 富士フイルム株式会社 投写用ズームレンズおよび投写型表示装置
KR20120080845A (ko) * 2011-01-10 2012-07-18 삼성전자주식회사 광 감지 기능을 구비한 oled 디스플레이 장치
US9588263B2 (en) * 2012-08-17 2017-03-07 Corning Incorporated Display element having buried scattering anti-glare layer
KR102217098B1 (ko) * 2014-04-17 2021-02-18 엘지이노텍 주식회사 카메라 모듈
US9823694B2 (en) * 2015-10-30 2017-11-21 Essential Products, Inc. Camera integrated into a display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582948A (zh) * 2011-06-01 2014-02-12 全球Oled科技有限责任公司 用于显示和感测图像的设备
CN103019021A (zh) * 2012-12-27 2013-04-03 Tcl集团股份有限公司 一种3d光场相机及其拍摄图像的处理方法
US9876197B2 (en) * 2015-11-11 2018-01-23 Samsung Display Co., Ltd Display device including fresnel lens
CN106910754A (zh) * 2015-12-22 2017-06-30 力晶科技股份有限公司 半导体元件及其制造方法

Also Published As

Publication number Publication date
US20210384472A1 (en) 2021-12-09
CN109494244A (zh) 2019-03-19
CN109494244B (zh) 2020-10-13
US11271189B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2020118932A1 (zh) 带有光场相机的有机发光二极管显示面板
CN210721493U (zh) 屏下指纹认证用的传感器模块及屏下指纹认证装置
US10331932B2 (en) Optical sensor device and a fingerprint sensor apparatus
US9647150B2 (en) Monolithic integration of plenoptic lenses on photosensor substrates
CN105612619B (zh) 成像器件、制造装置、制造方法以及电子装置
US20110096213A1 (en) Wafer-shaped optical apparatus and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module,sensor module, and electronic information device
US20090225405A1 (en) Wide-Angle Lens, Optical Device Using the Wide-Angle Lens, and Method for Fabricating the Wide-Angle Lens
CN1922510A (zh) 光学设备和光束分离器
TWI748580B (zh) 近眼光場顯示裝置
WO2021042806A1 (zh) 指纹感测模块与电子装置
WO2014129968A1 (en) Optical imaging apparatus, in particular for computational imaging, having further functionality
US10025135B2 (en) Lens array substrate, optoelectronic device, and electronic apparatus
CN101308858A (zh) 固态图像捕获器件、固态图像捕获装置和电子信息装置
WO2020113396A1 (zh) 光学镜头及其制作方法、指纹识别模组、移动终端
TWI753571B (zh) 屏內光學生物特徵感測裝置
TW201340302A (zh) 光學裝置及光電模組及其製造方法
WO2021036326A1 (zh) 指纹感测模块与电子装置
TW201519423A (zh) 固體攝像裝置及其製造方法
CN210691343U (zh) 生物特征成像装置及电子装置
WO2019223449A1 (zh) 图像采集设备、图像采集方法、电子设备及成像装置
WO2021022830A1 (zh) 指纹感测模块
US11954937B2 (en) Fingerprint sensing system
TWI724873B (zh) 光學成像鏡頭
WO2020181939A1 (zh) 显示装置及其显示方法
TWM602668U (zh) 具有抗雜光干擾結構的光學生物特徵感測器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896352

Country of ref document: EP

Kind code of ref document: A1