WO2020118923A1 - 显示模组的驱动方法、驱动系统和驱动装置 - Google Patents

显示模组的驱动方法、驱动系统和驱动装置 Download PDF

Info

Publication number
WO2020118923A1
WO2020118923A1 PCT/CN2019/077600 CN2019077600W WO2020118923A1 WO 2020118923 A1 WO2020118923 A1 WO 2020118923A1 CN 2019077600 W CN2019077600 W CN 2019077600W WO 2020118923 A1 WO2020118923 A1 WO 2020118923A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
color
ave
light source
average
Prior art date
Application number
PCT/CN2019/077600
Other languages
English (en)
French (fr)
Inventor
康志聪
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811510600.7A external-priority patent/CN109509436B/zh
Priority claimed from CN201811511896.4A external-priority patent/CN109461417B/zh
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US17/040,974 priority Critical patent/US11138942B2/en
Publication of WO2020118923A1 publication Critical patent/WO2020118923A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/06Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using colour palettes, e.g. look-up tables
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • G09G2300/0447Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present application relates to the technical field of display panels, in particular to a driving method, a driving system and a driving device for a display module.
  • liquid crystal display which include a liquid crystal panel and a backlight module (Backlight Module).
  • Backlight Module The working principle of the liquid crystal panel is to place liquid crystal molecules in two parallel glass substrates, and apply a driving voltage on the two glass substrates to control the rotation direction of the liquid crystal molecules, so as to refract the light of the backlight module to generate a picture.
  • VA Very Alignment, vertical alignment technology
  • the present application provides a driving method, a driving system and a display device for a display module to improve the color deviation and maintain the color saturation rendering effect.
  • the present application provides a driving method for a display module, which includes: a driving process of a display panel driven synchronously, and a driving process of a backlight module: the display module includes a plurality of independently provided first Color light source, second color light source and third color light source;
  • the display panel driving process includes steps:
  • the driving process of the backlight module includes: receiving the first color signal corresponding to the display panel and obtaining the second color signal, and obtaining the first light source adjustment coefficient and the second light source adjustment coefficient according to the first color signal and the second color signal; Obtain the main-tone interval light source and the sub-tone interval light source among the first color light source, the second color light source, and the third color light source; use the first light source adjustment coefficient to adjust the first brightness value corresponding to the main tone interval light source to obtain the second brightness Value; use the second light source adjustment coefficient to adjust the first brightness value corresponding to the sub-tone interval light source to obtain a third brightness value; use the second brightness value and the third brightness value to drive the main tone interval light source and the sub-tone interval light source respectively .
  • the present application also provides a display module driving system, including: a display panel driving circuit driven synchronously, and a backlight module driving circuit; the display module includes a plurality of independently arranged first color light sources and second colors Light source and third color light source;
  • the display panel drive circuit includes: a color saturation adjustment circuit and a first drive circuit
  • the color saturation adjustment circuit receives the first color signal corresponding to the display panel, adjusts the color saturation of the first color signal to obtain a second color signal; the first driving circuit uses the second color signal to drive the display panel;
  • the backlight module driving circuit includes: a light source adjustment calculation circuit, an adjustment light source determination circuit, a second light source adjustment circuit and a second drive circuit; the light source adjustment calculation circuit receives the first color signal corresponding to the display panel and obtains the second A color signal, the first light source adjustment coefficient and the second light source adjustment coefficient are obtained according to the first color signal and the second color signal; the adjusted light source determination circuit calculates the first color light source, the second color light source, and the third color light source The main tone interval light source and the sub-tone interval light source; the first light source adjustment circuit uses the first light source adjustment coefficient to adjust the first brightness value corresponding to the main tone interval light source to obtain the second brightness value; the second light source adjustment circuit uses the second The light source adjustment coefficient adjusts the first brightness value corresponding to the sub-tone interval light source to obtain a third brightness value; the second driving circuit uses the second brightness value and the third brightness value to perform the main-tone interval light source and the sub-tone interval light source respectively drive.
  • the present application also provides a display device including the drive system of the above display module.
  • the first color signal is first converted into the HSV system Under the first color space signal, adjust the color saturation (usually lower the color saturation value), the second color space signal obtained in this way, and then re-converted to the second color signal to drive the display panel, so that the color deviation can It has been improved very well; however, due to the adjustment of the color saturation value, the color saturation of the image becomes worse; the second brightness value is to adjust the intensity of the light source while adjusting the color saturation, from The color saturation signal with damaged color saturation is returned from the unsaturated color point to the saturated hue, while reducing the color deviation, especially the large-vision role deviation, while maintaining the good presentation of the color saturation and achieving good color pure color performance ;
  • the second brightness value is calculated to drive the primary hue light source
  • the third brightness value is calculated to drive the secondary hue light source.
  • the color shift is also different.
  • the color shift corresponding to the main tone light source is serious, and the color shift corresponding to the sub-tone light source is lighter. Therefore, the corresponding color saturation adjustment range is also different, and it may not even be adjusted.
  • the main-tone light source performs large-scale compensation
  • the sub-tone light source performs small-scale compensation, which can well compensate for the loss of color saturation due to improved color shift, and achieve the corresponding compensation effect. While improving color shift, there are It is beneficial to improve the color saturation presentation, achieve the balance of color shift and color saturation, and enhance the display effect of the display panel.
  • FIG. 1 is a schematic diagram showing the change of the character deviation of the large angle of view and frontal view of various representative color systems of a liquid crystal display
  • FIG. 2 is a first schematic diagram of dividing an original pixel into a primary and secondary pixel in an exemplary solution
  • FIG. 3 is a second schematic diagram of dividing an original pixel into a primary and secondary pixel in an exemplary solution
  • FIG. 4 is a flowchart of a driving process of a display panel according to an embodiment of the present application.
  • FIG. 5 is a flowchart of a driving process of a backlight module according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a direct-type display module according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a correlation function of a second preset adjustment coefficient H2 according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of color difference changes of the current color saturation signal and the second color saturation signal according to an embodiment of the present application
  • FIG. 11 is a schematic diagram of a driving system of a display panel according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a driving circuit of a display panel according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a driving circuit of a backlight module according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a display device according to an embodiment of the present application.
  • VA Multi-domain Vertica Alignment, multi-quadrant vertical alignment technology
  • Figure 1 is a schematic diagram of the large angle of view and the frontal view of the deviation of the role of the front view of the various representative color systems of the liquid crystal display.
  • the ordinate indicates the degree of color shift. Partial situation is serious with other colors.
  • An exemplary solution is to subdivide the RGB (Red, Green, Blue) sub-pixels into main/sub pixels, so that the overall large viewing angle brightness changes with voltage to close to frontal.
  • FIG. 2 is a first comparison diagram that does not distinguish between primary and secondary pixels and distinguishes between primary and secondary pixels
  • FIG. 3 is a second comparison diagram that does not distinguish between primary and secondary pixels and distinguishes between primary and secondary pixels.
  • the The x-coordinate, y-coordinate and z-coordinate respectively represent the three directions of the three-dimensional space; the ⁇ A represents the pretilt angle at which the main pixel is under a large voltage, and the ⁇ B represents the pretilt angle at which the subpixel is under a small voltage.
  • the abscissa in FIG. 3 is a gray-scale signal, and the ordinate is a luminance signal. At a large viewing angle, the luminance quickly saturates with the signal, causing a large visual role deviation (FIG. 3, the arc segment on the left), and Distinguishing between primary and secondary pixels can improve this to some extent.
  • the original signal is divided into primary and secondary pixels of large voltage + small voltage. Face the large voltage plus small voltage to maintain the original face-to-face signal changes with brightness.
  • the side-view brightness seen by the large voltage changes with gray scale as shown in Figure 3. PartA, the side-view brightness seen with small voltage changes with gray scale as shown in Part B in Figure 3.
  • the brightness of the side-view synthesis changes with the gray scale like the green line.
  • the relationship between the brightness of the frontal view and the gray scale is close to the red line. Therefore, the relationship between the brightness of the viewing angle and the signal is close to that of the original signal.
  • This kind of solution uses the different driving voltages of the primary and secondary pixels in space to solve the defect of visual role bias.
  • Such pixel design often requires the design of metal traces or thin film transistor (TFT) devices to drive the secondary Pixels cause sacrifices in the light-transmissive opening area, affect the panel transmittance, and directly increase the backlight cost.
  • TFT thin film transistor
  • FIG. 4 is a flowchart of a driving process of a display panel according to an embodiment of the present application
  • FIG. 5 is a flowchart of a driving process of a backlight module according to an embodiment of the present application
  • a driving method of a display module includes: a driving process of a synchronously driven display panel, and a driving process of a backlight module:
  • the display module includes a plurality of independently arranged first color light sources, second color light sources and third color light sources;
  • the display panel driving process includes steps:
  • S11 Receive the first color signal corresponding to the display panel, adjust the color saturation of the first color signal to obtain the second color signal;
  • the driving process of the backlight module includes:
  • S21 Receive the first color signal corresponding to the display panel and obtain the second color signal, and obtain the first light source adjustment coefficient and the second light source adjustment coefficient according to the first color signal and the second color signal;
  • S22 Calculate the primary and secondary tone light sources among the first color light source, the second color light source, and the third color light source;
  • S25 Use the second brightness value and the third brightness value to drive the light source in the primary tone interval and the light source in the secondary tone interval, respectively.
  • the driving system for using the driving method can be set at the front end and in the timing control chip of the display panel, and the timing control chip also stores preset adjustments related to the performance of the display panel corresponding to the driving system Coefficients lookup table and other parameters.
  • the color deviation is different under different hue and different color saturation values. Therefore, first convert the first color signal to HSV ( Hue, Saturation, Value) the first color space signal, adjust the color saturation (usually lower the color saturation value), the second color space signal obtained in this way, and then re-converted to the second color signal to drive Display panel, so that the color shift can be improved very well; however, due to the adjustment of the color saturation value, the color saturation of the image becomes worse; the second brightness value is at the same time as the color saturation adjustment , Adjust the intensity of the light source, and return the color saturation signal with damaged color saturation from the unsaturated color point to the saturated hue from the side, while reducing the color deviation, especially the large-vision role deviation, while maintaining the good appearance of the color saturation , To achieve good color solid color performance;
  • HSV Hue, Saturation, Value
  • the second brightness value is calculated to drive the primary hue light source
  • the third brightness value is calculated to drive the secondary hue light source.
  • the color shift is also different.
  • the color shift corresponding to the main tone light source is serious, and the color shift corresponding to the sub-tone light source is lighter. Therefore, the corresponding color saturation adjustment range is also different, and it may not even be adjusted.
  • the main-tone light source performs large-scale compensation
  • the sub-tone light source performs small-scale compensation, which can well compensate for the loss of color saturation due to improved color shift, and achieve the corresponding compensation effect. While improving color shift, there are It is beneficial to improve the color saturation presentation, achieve the balance of color shift and color saturation, and enhance the display effect of the display panel.
  • the display-display module is a direct-lit backlight display module, and the direct-lit backlight display
  • the module includes a plurality of backlight zones, and each of the backlight zones includes a plurality of independently controlled first color light sources and second color light sources;
  • the backlight partition also includes a plurality of independently controlled third color light sources.
  • the backlight module includes a plurality of backlight partitions, and each backlight partition can include three independently controlled light sources as shown in FIG. 6, and can also be applied to other architectures.
  • the step of obtaining the first light source adjustment coefficient and the second light source adjustment coefficient according to the first color space signal and the second color space signal includes:
  • the first light source adjustment coefficient and the second light source adjustment coefficient are calculated according to the first average color saturation signal and the second average color saturation signal.
  • the intensity of the light source is adjusted in units of one backlight partition, first through the first average color saturation signal Sn_ave corresponding to the first color space signal, and the second average color saturation signal S'corresponding to the second color space signal n_ave to measure the difference between the color saturation of the first color signal and the second color signal before and after the color saturation adjustment operation, and then calculate the light source adjustment coefficient based on the difference between the two to enable the display While improving the color deviation, the backlight partition of the panel takes the backlight partition as a whole, and each backlight partition independently compensates the color saturation to maintain good color pure color performance.
  • the first color signal is an RGB primary color signal under the RGB system, and the first color signal includes a red sub-pixel signal, a green sub-pixel signal, and a blue sub-pixel signal;
  • the second light source adjustment coefficient x is calculated according to the first light source adjustment coefficient y, so that the second light source adjustment coefficient x satisfies the following formula:
  • x (min'n_ave*midn_ave)/(minn_ave*mid'n_ave).
  • the calculation step of the first average color saturation signal Sn_ave includes: acquiring the first color signals Rn_i,j, Gn_i,j, Bn_i,j, and converting the grayscale signals of each group of RGB three primary color sub-pixels Normalized luminance signals r, g, b into three primary colors; complete conversion to get the first normalized luminance signals rn_i, j, gn_i, j, bn_i, j;
  • Calculate the average signal rn_ave, the average signal gn_ave of the green subpixel and the average signal bn_ave of the blue subpixel for all pixels in the current backlight partition corresponding to the current frame; calculate the maximum average signal maxn_ave, intermediate average signal mid_nave and minimum for the three subpixels Average signal minn_ave; the first average color saturation signal calculated according to the maximum average signal and the minimum average signal Sn_ave 1-minn_ave/maxn_ave;
  • rn_ave Average(rn_1,1,rn_1,2,...,rn_i,j);
  • gn_ave Average(gn_1,1,gn_1,2,...,gn_i,j);
  • bn_ave Average(bn_1,1,bn_1, 2...., bn_i,j);
  • the calculation step of the second average color saturation signal S’n_ave includes:
  • r'n_ave Average(r'n_1,1, r'n_1,2,..., r'n_i,j)
  • g'n_ave Average(g'n_1,1,g'n_1,2,...,g 'n_i,j)
  • b'n_ave Average(b'n_1,1, b'n_1,2,..., b'n_i,j).
  • all R, G, B sub-pixels in the backlight partition are converted into a group of unit pixels from the RGB system to the HSV system, that is, according to the stimulus value signals Rn_i, j, Gn_i, j, Bn_i, j, after normalization operation
  • Obtain the first normalized luminance signal rn_i,j, gn_i,j, bn_i,j and calculate the first color space signal based on the first normalized luminance signal; then adjust the color saturation signal of the first color space signal Processing, and then based on the adjusted second color space signal, and the second color space signal undergoes the process of the second normalized luminance signal, and the corresponding stimulation function r'n_i,j,g'n_i j, b'n_i,j; and calculated based on the original stimulation functions rn_i,j, gn_i,j, bn_i,j, and the new stimulation value signals r'n_i,j,g'n_
  • the step of receiving the first color signal corresponding to the display panel and adjusting the color saturation of the first color signal to obtain the second color signal includes:
  • Receive the first color signal under the RGB system convert the first color signal into the first color space signal under the HSV system; obtain the current color saturation signal of the first color space signal, and the corresponding color saturation signal corresponding to the current color saturation signal Preset adjustment factor;
  • Use the preset adjustment coefficient to reduce the color saturation value of the current color saturation signal; complete the color saturation signal adjustment process to obtain the second color space signal under the HSV system; convert the second color space signal to The second color signal under the RGB system; the step of obtaining the first light source adjustment coefficient and the second light source adjustment coefficient according to the first color signal and the second color signal includes:
  • the first light source adjustment coefficient and the second light source adjustment coefficient are calculated based on the first average color saturation signal Sn_ave and the second average color saturation signal S'n_ave.
  • the step of converting the first color signal into the first color space signal under the HSV system includes:
  • the preset adjustment coefficient is used to lower the color saturation value of the current color saturation signal; the process of completing the color saturation signal adjustment process to obtain the second color space signal under the HSV system includes:
  • r (R/255) ⁇ r
  • g (G/255) ⁇ g
  • b (B/255) ⁇ b
  • ⁇ r, ⁇ g, ⁇ b are the gamma signals of the first color signal
  • R, G, and B refer to the RGB three-color gray-scale digital signals corresponding to the first color signal.
  • the first color space signal corresponding to the first color signal and the second color space signal corresponding to the second color signal calculate the average value of all the color saturation signals in the backlight partition to obtain the first average color saturation
  • the signal and the second average color saturation signal are used to reflect the difference in color saturation before and after the backlight partition is adjusted for color saturation (in order to improve the color shift), and to use this to calculate the adjustment factor of the light source.
  • the calculation procedure is simple,
  • the overall display effect is the benchmark, which improves the production efficiency, and helps to maintain the overall uniformity of the color saturation of the backlight partition, and avoids the local color saturation being too high or too low, which is conducive to improving the display effect.
  • the step of calculating the first light source adjustment coefficient and the second light source adjustment coefficient based on the first average color saturation signal Sn_ave and the second average color saturation signal S’n_ave includes:
  • the first light source adjustment coefficient y satisfies the following formula:
  • the second light source adjustment coefficient x is calculated according to the first light source adjustment coefficient y, where the second light source adjustment coefficient x satisfies the following formula:
  • maxn_ave is also the maximum average signal among the red sub-pixel average signal, green sub-pixel average signal and blue sub-pixel average signal of the second color signal of all pixels in the backlight frame corresponding to the current frame; mid'n_ave is the current frame The average signal of the red sub-pixel, the green sub-pixel and the blue sub-pixel of the second color signal corresponding to all the pixels in the backlight partition; the middle average signal of the average signal of the blue sub-pixel; min'n_ave is all the pixels in the backlight partition corresponding to the current frame The smallest average signal among the red sub-pixel average signal, the green sub-pixel average signal and the blue sub-pixel average signal of the second color signal.
  • the step of adjusting the color saturation of the first color signal to obtain the second color signal includes:
  • the first color signal under the RGB system and convert it into the first color space signal under the HSV system; obtain the current color saturation signal of the first color space signal to detect whether the current color saturation signal meets the preset color saturation threshold , And whether it is in the adjusted hue interval, if both are satisfied, the corresponding preset adjustment coefficient is obtained based on the color saturation signal and the corresponding color saturation value and hue interval;
  • the preset adjustment coefficient is calculated according to a preset calculation formula based on the color saturation signal or obtained by searching through a preset adjustment coefficient lookup table based on the color saturation signal.
  • the adjustment coefficient lookup table may be a lookup table directly recording the preset adjustment coefficient, or a lookup table recording the coefficient of the preset calculation formula.
  • the second color space signal and the first color space signal may conform to the following formula:
  • S is the current color saturation signal corresponding to the first color space signal, and S'is the color saturation signal corresponding to the second color space signal;
  • the a, b, c, d, and e are constants, and the a, b, c, d, e can be obtained through the preset formula coefficient look-up table according to the different color saturation value and hue interval.
  • the preset adjustment coefficient can be calculated according to the preset calculation formula. Although the calculation formulas are different, in general, they can be satisfied with the fourth-degree polynomial.
  • the color saturation threshold may be 0.5, and if the color saturation value of the current color saturation signal is greater than 0.5, it is determined that the color saturation threshold is satisfied; or it may be an interval, such as 0.5-1 (excluding 0.5 and 1), that is When the current color saturation is greater than 0.5 and less than 1, the color saturation adjustment is performed, and the current color saturation is equal to 0.5 or 1, the color saturation adjustment may not be performed.
  • the color shift is not obvious and belongs to the acceptable range; through the hue interval and the preset threshold, it is possible to filter out the color saturation signal that is extremely serious.
  • the process of reducing the color saturation value can improve the color shift at the same time, and can Avoid unnecessary processing of signals that do not require color shift adjustment, such as reducing the color saturation value, which is beneficial to improve the display effect of the display panel.
  • the color saturation signal may be divided into at least a first hue interval, a second hue interval, and a third hue interval according to different hue; in the step of obtaining the preset adjustment coefficient corresponding to the current color saturation signal: corresponding For the same hue, the larger the color saturation value of the current color saturation signal, the larger the adjustment range of the adjustment process.
  • this solution since the same color tone interval, especially in the same color tone, the higher the color saturation value of the color saturation signal, the more severe the corresponding color shift; therefore, this solution has a large adjustment range for signals with high color saturation,
  • the adjustment range of the signal with low color saturation value is small; among them, the color saturation value is generally processed to reduce the color saturation value, so that the color saturation gap of each signal can be reduced and the color saturation is too high At the same time, it avoids the color shift caused by excessive color saturation difference, and achieves a better effect of improving color shift.
  • the color saturation signal with a low color saturation value may also be adjusted up, so that different color saturation signals are more uniform, and the effect of color shift can also be improved to a certain extent.
  • the adjustment amplitude here mainly refers to lowering the amplitude of the color saturation signal.
  • the first tone interval, the second tone interval and the third tone interval are respectively a red tone interval, a green tone interval and a blue tone interval;
  • the current color saturation signal having the same color saturation value, the adjustment range of the preset adjustment coefficient corresponding to the blue hue interval to the current color saturation signal is greater than the current adjustment value corresponding to the red hue interval to the current color
  • the adjustment amplitude of the saturation signal; the adjustment amplitude of the preset adjustment coefficient corresponding to the red hue interval to the current color saturation signal is greater than the adjustment amplitude of the preset adjustment coefficient corresponding to the green hue interval to the current color saturation signal.
  • the degree of color shift of the color saturation signals based on different hue intervals is different.
  • the adjustment coefficient may be smaller than the preset adjustment coefficient corresponding to the red hue interval, and the preset adjustment coefficient corresponding to the red hue interval may be smaller than the preset adjustment coefficient corresponding to the green hue interval. In this case, the smaller the preset adjustment coefficient, the greater the adjustment amplitude.
  • the preset adjustment coefficient corresponding to the blue tone interval is the largest and the adjustment range is the largest, and the preset adjustment coefficient corresponding to the green tone interval is the smallest and the adjustment range is the smallest ;
  • the color saturation signal of the blue hue interval has the largest reduction range, and the color saturation signal of the green hue interval has the minimum reduction range, which not only reduces the excessive color saturation value Bringing the color shift, and making the color saturation of the color saturation signal more uniform, to a certain extent, is also helpful to improve the color shift, so as to achieve a good effect of improving color shift.
  • the color saturation signal is divided into a red hue interval, a green hue interval, a blue hue interval and a non-adjusted hue interval according to different hue intervals;
  • the range of the hue value Hue is: 0-360, corresponding to 0-360 degrees, where:
  • the hue interval whose hue value satisfies the following formula is the red hue interval: 0 ⁇ Hue ⁇ 40, or 320 ⁇ Hue ⁇ 360; the hue interval where the hue value satisfies the following formula is the green hue interval: 80 ⁇ Hue ⁇ 160; the hue value satisfies the following formula
  • the tonal interval is divided into blue tonal interval: 200 ⁇ Hue ⁇ 280; the tonal interval whose tone value satisfies the following formula is the non-adjusted tonal interval: 40 ⁇ Hue ⁇ 80, or 160 ⁇ Hue ⁇ 200, or 280 ⁇ Hue ⁇ 320.
  • 0 degrees is defined as a red hue, 120 degrees as a green hue, and 240 degrees as a blue hue.
  • the green hue is divided into the green hue interval and will be close to
  • the blue hue is divided into the blue hue interval, and the red hue is divided into the red hue interval; and the blue hue away from the red, green and blue hue is divided into the non-adjustment interval, so that it can correspond to the same color saturation value, and the color deviation is the most
  • the severe blue hue interval corresponds to setting the largest preset adjustment coefficient; the lighter green hue interval corresponds to setting a smaller preset adjustment coefficient; and for the non-adjustment interval where there is almost no color deviation, no adjustment or Set the preset adjustment coefficient to 1, so as to improve the
  • the step of adjusting the current color saturation signal using a preset adjustment coefficient to obtain the second color space signal under the HSV system :
  • the second color space signal it is converted into a second color signal under the RGB system to drive the display panel.
  • FIG. 7 is a schematic diagram of a correlation function of a second preset adjustment coefficient H2 according to an embodiment of the present application.
  • the second preset adjustment coefficient H2 satisfies the following formula:
  • H2 2*ABS(sin((Hue/360*3-1/2)* ⁇ )-1.
  • the second preset adjustment coefficient H2 is an adjustment coefficient used to adjust the second color saturation signal to the third color saturation signal; under the RGB system, 0 degrees is defined as a pure red color hue, 120 The degree is a green solid color hue, 240 degrees is a blue solid color hue, the closer to the solid color hue, the more severe the color deviation (under the same color saturation value); based on the second preset adjustment coefficient H2, the closer to the solid color hue's color saturation The degree signal will get a larger second adjustment, and the color saturation signal far from the pure color hue will get a small second adjustment; thus, the saturation signal near the pure color hue can achieve better improvement in color shift. As for the saturation signal far from the pure color hue, it can reduce the damage caused by improving color shift to the overall color saturation, so as to achieve the balance of color shift and color saturation, which is conducive to improving the display effect of the display panel.
  • FIG. 8 is a schematic diagram of changes in the current color saturation signal and the second color saturation signal according to an embodiment of the present application
  • FIG. 9 is a color difference curve of the current color saturation signal and the second color saturation signal in the embodiment of the present application
  • FIG. 10 is a schematic diagram of color difference changes of the current color saturation signal and the second color saturation signal according to an embodiment of the present application.
  • the chromatic aberration change chart of FIG. 9 may be in the case of a positive viewing angle. Of course, it can also be in the case of a side view.
  • the dotted line in FIG. 10 is the corresponding color difference change of the current color saturation signal under various color systems
  • the solid line is the corresponding color difference change of the second color saturation signal under various color systems.
  • the display's input signal RGB three primary color signals if the display is driven with 8-bit color resolution, the tone of the RGB three primary color input signal can be decomposed into 0,1,2...255 gray-scale drive signals.
  • This application converts RGB three primary color input signals into HSV color space signals, and adjusts the color saturation according to different hue and color saturation values in the HSV color space to achieve the effect of improving color shift.
  • R is the red grayscale digital signal
  • G is the green grayscale digital signal
  • B is the blue grayscale digital signal
  • min is the minimum value of r, g, b
  • max is the maximum value of r, g, b .
  • r, g, b normalize the conversion relationship between the luminance signal and the hue h and saturation signal s, satisfying the following formula:
  • a detection step can be added, for example, to convert the color saturation signal to a CIE Lu'v' color space signal (CIE, Commission Internationale L'Eclairage, International Lighting Commission), where L is the luminance coordinate, u'and v'are the chromaticity coordinate.
  • CIE Commission Internationale L'Eclairage, International Lighting Commission
  • L the luminance coordinate
  • the color saturation adjustment processes the current color saturation signal to reduce the color saturation value, but if it is to minimize the loss of color saturation, the pure color changes from the current color saturation signal S to the second
  • the change of the color saturation signal S' that is, the purity change or the color difference ⁇ uv, should satisfy:
  • ⁇ uv ⁇ ((u_1-u_2) ⁇ 2+(v_1-v_2) ⁇ 2) ⁇ 0.02.
  • u_1 and v_1 are the chromaticity coordinates of the current color saturation signal
  • u_2 and v_2 are the chromaticity coordinates of the second color saturation signal, that is, the color saturation signal after the color saturation adjustment.
  • FIG. 11 is a schematic diagram of a driving system for a display panel of the present application
  • FIG. 12 is a schematic diagram of a driving circuit of a display panel according to an embodiment of the present application
  • FIG. 13 is a schematic diagram of a driving circuit of a backlight module according to an embodiment of the present application
  • 11-13 with reference to FIGS. 1-10, it can be seen that the present application also provides a driving system 100 for a display module.
  • the driving method using any of the above display modules includes:
  • the display module includes a plurality of independently arranged first color light sources 130, second color light sources 140 and third color light sources 150; the display panel driving circuit 110 includes:
  • the color saturation adjustment circuit 111 receives the first color signal corresponding to the display panel, adjusts the color saturation of the first color signal to obtain a second color signal;
  • the first driving circuit 112 drives the display panel using the second color signal
  • the backlight module driving circuit 120 includes:
  • the light source adjustment calculation circuit 121 receives the first color signal corresponding to the display panel and obtains the second color signal, and obtains the first light source adjustment coefficient and the second light source adjustment coefficient according to the first color signal and the second color signal;
  • Adjust the light source determination circuit 122 to calculate the primary and secondary tone light sources among the first color light source, the second color light source, and the third color light source;
  • the first light source adjustment circuit 123 adjusts the first brightness value corresponding to the main tone interval light source using the first light source adjustment coefficient to obtain a second brightness value;
  • the second light source adjustment circuit 124 that is, the second light source adjustment circuit, is used to The second light source adjustment coefficient adjusts the first brightness value corresponding to the light source in the sub-tone interval to obtain a third brightness value;
  • the second driving circuit 125 uses the second brightness value and the third brightness value to drive the light source in the primary tone interval and the light source in the secondary tone interval, respectively.
  • FIG. 14 is a schematic diagram of a display device of the present application. Referring to FIG. 14 in combination with FIGS. 1 to 13, it can be seen that the present application also provides a display device 200 including a display module driving system as described in the present application 100.
  • the technical solution of the present application can be widely used in various display panels, such as TN type display panel (full name Twisted Nematic, namely twisted nematic panel), IPS type display panel (In-Plane Switching, plane conversion), VA type display Panel (Vertical Alignment, vertical alignment technology), MVA type display panel (Multi-domain Vertical Alignment, multi-quadrant vertical alignment technology), of course, can also be other types of display panels, such as organic light-emitting display panel (organic light-emitting diode) , Referred to as OLED display panel), can apply the above solutions.
  • TN type display panel full name Twisted Nematic, namely twisted nematic panel
  • IPS type display panel In-Plane Switching, plane conversion
  • VA type display Panel Vertical Alignment, vertical alignment technology
  • MVA type display panel Multi-domain Vertical Alignment, multi-quadrant vertical alignment technology
  • OLED display panel organic light-emitting diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示模组的驱动方法、驱动系统和显示装置,包括:同步驱动的显示面板驱动过程,以及背光模组驱动过程;显示面板驱动过程包括色饱和度调整得到第二颜色信号以驱动显示面板(S11-S12);背光模组驱动过程包括得到第一光源调整系数和第二光源调整系数(S21);得到第二亮度值和第三亮度值(S22-S24);使用第二亮度值和第三亮度值分别对主色调区间光源和次色调区间光源进行驱动(S25)。

Description

显示模组的驱动方法、驱动系统和驱动装置
本申请要求于2018年12月11日提交中国专利局,申请号为CN201811510600.7,申请名称为“一种显示面板的驱动方法、驱动装置和显示装置”以及于2018年12月11日提交中国专利局,申请号为CN201811511896.4,申请名称为“一种显示面板的驱动方法、驱动系统和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示面板技术领域,尤其涉及一种显示模组的驱动方法、驱动系统和驱动装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着科技的发展和进步,液晶显示器由于具备机身薄、省电和辐射低等热点而成为显示器的主流产品,得到了广泛应用。市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶面板及背光模组(Backlight Module)。液晶面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,并在两片玻璃基板上施加驱动电压来控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面。
大尺寸液晶显示面板,特别是VA(Vertica Alignment,垂直配向技术)型液晶显示面板,色偏严重。
发明内容
本申请提供一种显示模组的驱动方法、驱动系统和显示装置以改善色偏的同时,维持色饱和度呈现效果。
为实现上述目的,本申请提供了一种显示模组的驱动方法,其中,包括:同步驱动的显示面板驱动过程,以及背光模组驱动过程:所述显示模组包括多个独立设置的第一颜色光源、第二颜色光源和第三颜色光源;
所述显示面板驱动过程包括步骤:
接收显示面板对应的第一颜色信号,对第一颜色信号进行色饱和度调整得到第二颜色信号;使用第二颜色信号驱动显示面板;
所述背光模组驱动过程包括:接收显示面板对应的第一颜色信号,并获得第二颜色信号,根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数;计算得到第一颜色光源、第二颜色光源和第三颜色光源中的主色调区间光源和次色调区间光源;使用第一光源调整系数对主色调区间光源对应的第 一亮度值进行调整得到第二亮度值;使用第二光源调整系数对次色调区间光源对应的第一亮度值进行调整得到第三亮度值;使用第二亮度值和第三亮度值分别对主色调区间光源和次色调区间光源进行驱动。
本申请还提供了一种显示模组的驱动系统,包括:同步驱动的显示面板驱动电路,以及背光模组驱动电路;所述显示模组包括多个独立设置的第一颜色光源、第二颜色光源和第三颜色光源;
所述显示面板驱动电路包括:色饱和度调整电路和第一驱动电路;
所述色饱和度调整电路接收显示面板对应的第一颜色信号,对第一颜色信号进行色饱和度调整得到第二颜色信号;所述第一驱动电路使用第二颜色信号驱动显示面板;
所述背光模组驱动电路包括:光源调整计算电路、调整光源确定电路、第二光源调整电路和第二驱动电路;所述光源调整计算电路接收显示面板对应的第一颜色信号,并获得第二颜色信号,根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数;所述调整光源确定电路计算得到第一颜色光源、第二颜色光源和第三颜色光源中的主色调区间光源和次色调区间光源;第一光源调整电路使用第一光源调整系数对主色调区间光源对应的第一亮度值进行调整得到第二亮度值;所述第二光源调整电路使用第二光源调整系数对次色调区间光源对应的第一亮度值进行调整得到第三亮度值;所述第二驱动电路使用第二亮度值和第三亮度值分别对主色调区间光源和次色调区间光源进行驱动。
本申请还提供了一种显示装置,包括上述显示模组的驱动系统。
本申请中,在一种申请人知晓且未公开的技术中,由于RGB体系,不同的色调和不同的色饱和度值下,色偏不同,因而,先将第一颜色信号,转换为HSV体系下的第一色彩空间信号,进行色饱和度调整(一般是调低色饱和度值),这样得到的第二色彩空间信号,再重新转换为第二颜色信号以驱动显示面板,这样色偏能够得到很好的改善;但是,由于对色饱和度值进行了调整,因而图像的色饱和度体现变差;该第二亮度值,则是在色饱和度调整的同时,调节光源的强度,从旁将色饱和度受到损伤的色饱和度信号从不饱和色点重新返回到饱和色调,在降低色偏特别是大视角色偏的同时,维持色饱和度的良好呈现,达到良好的色彩纯色表现;
而计算得到第二亮度值对主色调光源进行驱动,同时,计算得到第三亮度值对次色调光源进行驱动,这是因为,在色饱和度调整阶段,由于色调不同,色饱和度值不同时,色偏也不同,一般对应主色调光源的色偏严重,而对应次色调光源的色偏轻,因而,对应的色饱和度调整幅度也不同,甚至可能不进行调整;此时反过来,对主色调光源进行大幅度补偿,而对次色调光源进行小幅度补偿,则能够好的对应补偿色饱和度由于改善色偏而受到的损失,达到对应的补偿效果,在改善色偏的同时,有利于改善色饱和度呈现,达到色偏和色饱和度的平衡,提升显示面板的显示效果。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的 附图。在附图中:
图1是液晶显示器各种代表性色系的大视角与正视视角色偏变化示意图;
图2是示例性方案中,将原像素划分为主次像素的第一示意图;
图3是示例性方案中,将原像素划分为主次像素的第二示意图;
图4是本申请实施例一种显示面板的驱动过程流程图;
图5是本申请实施例一种背光模组的驱动过程流程图;
图6是本申请实施例直下式显示模组的示意图;
图7是本申请实施例第二预设调整系数H2的相关函数示意图;
图8是本申请实施例的当前色饱和度信号和第二色饱和度信号的变化示意图;
图9是本申请实施例的当前色饱和度信号和第二色饱和度信号的色差变化曲线图;
图10是本申请实施例的当前色饱和度信号和第二色饱和度信号的色差变化示意图;
图11是本申请实施例一种显示面板的驱动系统示意图;
图12是本申请实施例一种显示面板的驱动电路示意图;
图13是本申请实施例一种背光模组的驱动电路示意图;
图14是本申请实施例一种显示装置的示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步说明。
大尺寸液晶显示面板,特别是VA(Multi-domain Vertica Alignment,多象限垂直配向技术)型液晶显示面板,对应的大视角亮度随电压快速饱和,造成视角画质对比及色偏相比于正视画质品质恶化严重。
图1是液晶显示器各种代表性色系的大视角与正视视角色偏变化示意图,参考图1,纵坐标表示色偏程度,可以明显发现,偏R、G、B色相的色系大视角色偏情况均其他色系来得严重。示范性的解决方案是通过将将RGB(Red、Green、Blue)各子像素再划分为主/次像素(Main/Sub),使得整体大视角亮度随电压变化为接近正视。
图2是不区分主次像素和区别主次像素的第一对比示意图,图3是是不区分主次像素和区别主次像素的第二对比示意图,参考图2和图3可知,其中,该x坐标,y坐标和z坐标,分别代表三维空间的三个方向;该θA表示其中主像素大电压下的预倾导角,该θB表示其中次像素小电压下的预倾导角。其中,该图3中的横坐标为灰阶信号,而纵坐标为亮度信号,在大视角下,亮度随信号快速饱和,造成大视角色偏(图3,左侧的弧线段),而区分主次像素可以在一定程度上改善这一。
具体的,将原信号分成大电压+小电压的主次像素,正视大电压加上小电压要维持原正视信号随亮度变化,大电压看到的侧视亮度随灰阶变化如图3中的PartA,小电压看到的侧视亮度随灰阶变化如图3中的Part B。这样侧视合成看起来的亮度随灰阶变化就如绿线,为贴近红线正视亮度随灰阶变化的关系,所以视角亮度随信号变化关系接近正视原信号亮度随信号变化,使得视角获得改善。
这种藉由空间上主次像素给予不同的驱动电压来解决视角色偏得缺陷,这样的像素(pixel)设计往往需要再设计金属走线或薄膜晶体管(Thin Film  Transistor,TFT)元件来驱动次像素,造成可透光开口区牺牲,影响面板透率,直接造成背光成本的提升。
因而,本申请基于不同的技术构思,改进得到如下的方案:
图4是本申请实施例一种显示面板的驱动过程流程图;图5是本申请实施例一种背光模组的驱动过程流程图;如图4和图5所示,本申请实施例公布了一种显示模组的驱动方法,包括:同步驱动的显示面板驱动过程,以及背光模组驱动过程:
所述显示模组包括多个独立设置的第一颜色光源、第二颜色光源和第三颜色光源;
所述显示面板驱动过程包括步骤:
S11:接收显示面板对应的第一颜色信号,对第一颜色信号进行色饱和度调整得到第二颜色信号;
S12:使用第二颜色信号驱动显示面板;
所述背光模组驱动过程包括:
S21:接收显示面板对应的第一颜色信号,并获得第二颜色信号,根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数;
S22:计算得到第一颜色光源、第二颜色光源和第三颜色光源中的主色调区间光源和次色调区间光源;
S23:使用第一光源调整系数对主色调区间光源对应的第一亮度值进行调整得到第二亮度值;
S24:使用第二光源调整系数对次色调区间光源对应的第一亮度值进行调整得到第三亮度值;
S25:使用第二亮度值和第三亮度值分别对主色调区间光源和次色调区间光源进行驱动。
其中,该用于使用该驱动方法的驱动系统,可以设置在前端,设置在显示面板的时序控制芯片内,时序控制芯片内还存储有与该驱动系统对应的显示面板的性能相关的预设调整系数查找表等参数。
本申请中,在一种发明人知晓且未公开的技术中,由于RGB体系,不同的色调和不同的色饱和度值下,色偏不同,因而,先将第一颜色信号,转换为HSV(Hue,Saturation,Value)体系下的第一色彩空间信号,进行色饱和度调整(一般是调低色饱和度值),这样得到的第二色彩空间信号,再重新转换为第二颜色信号以驱动显示面板,这样色偏能够得到很好的改善;但是,由于对色饱和度值进行了调整,因而图像的色饱和度体现变差;该第二亮度值,则是在色饱和度调整的同时,调节光源的强度,从旁将色饱和度受到损伤的色饱和度信号从不饱和色点重新返回到饱和色调,在降低色偏特别是大视角色偏的同时,维持色饱和度的良好呈现,达到良好的色彩纯色表现;
而计算得到第二亮度值对主色调光源进行驱动,同时,计算得到第三亮度值对次色调光源进行驱动,这是因为,在色饱和度调整阶段,由于色调不同,色饱和度值不同时,色偏也不同,一般对应主色调光源的色偏严重,而对应次色调光源的色偏轻,因而,对应的色饱和度调整幅度也不同,甚至可能不进行调整;此时反过来,对主色调光源进行大幅度补偿,而对次色调光源进行小幅度补偿,则能够好的对应补偿色饱和度由于改善色偏而受到的损失,达到对应的补偿效果,在改善色偏的同时,有利于改善色饱和度呈现,达到色偏和色饱和度的平衡,提升显示面板的显示效果。
图6是一种直下式背光显示模组的示意图,参考图6,结合图4和图5可知,在一实施例,该显示显示模组为直下式背光显示模组,所述直下式背光显示模组包括多个背光分区,每个所述背光分区分别包括多个独立控制的所述第一颜色光源和第二颜色光源;
所述背光分区还包括多个独立控制的第三颜色光源。
其中,该背光模组包括多个背光分区,每个背光分区可以如图6所示包括三种独立控制的光源,也可以适用于其他架构。
在一实施例中,该根据第一色彩空间信号和第二色彩空间信号得到第一光源调整系数和第二光源调整系数的步骤包括:
获取当前帧对应当前背光分区内的所有像素的第一色彩空间信号和第二色彩空间信号,分别计算第一色彩空间信号对应的第一平均色饱和度信号,以及第二色彩空间信号对应的第二平均色饱和度信号;
根据第一平均色饱和度信号和第二平均色饱和度信号计算得到第一光源调整系数和第二光源调整系数。
本方案中,光源强度的调整以一个背光分区为单位,先通过第一色彩空间信号对应的第一平均色饱和度信号Sn_ave,和第二色彩空间信号对应的第二平均色饱和度信号S’n_ave来衡量色饱和度调整操作之前和色饱和度调整操作之后,第一颜色信号和第二颜色信号的色饱和度呈现之间的差异,再基于两者的差异计算光源调整系数,能够使得显示面板的背光分区在改善色偏的同时,以背光分区为整体,每个背光分区分别独立补偿色饱和度,来维持良好的色彩纯色表现。
在一实施例中,该第一颜色信号是RGB体系下的RGB三原色信号,所述第一颜色信号包括红色子像素信号、绿色子像素信号和蓝色子像素信号;
所述根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数的步骤包括:获取当前帧对应当前背光分区内的所有像素第一颜色信号,计算对应的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最大平均信号maxn_ave、中间平均信号mid_nave和最小平均信号minn_ave;根据最大平均信号和最小平均信号计算的得到第一平均色饱和度信号Sn_ave=1-minn_ave/maxn_ave;
计算第二颜色信号的最大平均信号max’n_ave、中间平均信号mid’nave及最小平均信号min’n_ave;根据最大平均信号和最小平均信号计算的得到第二平均色饱和度信号S’n_ave=1-min’n_ave/max’n_ave;根据第一平均色饱和度信号和第二平均色饱和度信号计算所述第一光源调整系数y,使得第一光源调整系数y满足如下公式:
Sn_ave=1-minn_ave/maxn_ave=1-min’n_ave/(max’n_ave*y);
即,y=(min’n_ave*maxn_ave)/(minn_ave*max’n_ave);
根据第一光源调整系数y计算第二光源调整系数x,使得第二光源调整系数x满足如下公式:
maxn_ave/midn_ave=max’n_ave*y/mid’n_ave*x;
即,x=(min’n_ave*midn_ave)/(minn_ave*mid’n_ave)。
在一实施例中,该第一平均色饱和度信号Sn_ave的计算步骤包括:获取第一颜色信号Rn_i,j、Gn_i,j、Bn_i,j,并将每一组RGB三原色子像素灰阶信号转换成三原色归一化亮度信号r、g、b;完成转换得到第一归一化亮度信号rn_i,j、gn_i,j、bn_i,j;
计算当前帧对应当前背光分区内的所有像素的红色子像素平均信号rn_ave、 绿色子像素平均信号gn_ave和蓝色子像素平均信号bn_ave;计算三种子像素的最大平均信号maxn_ave、中间平均信号mid_nave和最小平均信号minn_ave;根据最大平均信号和最小平均信号计算的达到第一平均色饱和度信号Sn_ave=1-minn_ave/maxn_ave;
其中,r=(R/255)^γr、g=(G/255)^γg、b=(B/255)^γb,其中γr、γg、γb为第一颜色信号的伽马信号;其中,R,G,B指的是第一颜色信号对应的RGB三原色灰阶数位信号;其中,maxn_ave=Max(rn_ave、gn_ave、bn_ave)、中间平均信号mid_nave=Mid(rn_ave、gn_ave、bn_ave)及最小平均信号minn_ave=Min(rn_ave、gn_ave、bn_ave);
其中,rn_ave=Average(rn_1,1、rn_1,2、…、rn_i,j);gn_ave=Average(gn_1,1、gn_1,2、…、gn_i,j);bn_ave=Average(bn_1,1、bn_1,2、…、bn_i,j);
所述第二平均色饱和度信号S’n_ave的计算步骤包括:
获取第二颜色信号R’n_i,j、G’n_i,j、B’n_i,j,并将每一组RGB三原色子像素灰阶信号转换成三原色归一化亮度r’、g’、b’,完成转换得到第二归一化亮度信号r’n_i,j、g’n_i,j、b’n_i,j;
计算当前帧对应当前背光分区内的所有像素的红色子像素平均信号r’n_ave、绿色子像素平均信号g’n_ave和蓝色子像素平均信号b’n_ave;计算三种子像素的最大平均信号max’n_ave、中间平均信号mid’_nave及最小平均信号min’n_av;
根据最大平均信号和最小平均信号计算的达到第二平均色饱和度信号S’n_ave=1-min’n_ave/max’n_ave;其中,r’=(R’/255)^γr、g’=(G’/255)^γg、b’=(B’/255)^γb,其中γ’r、γ’g、γ’b为第二颜色信号的伽马信号;其中,R’,G’,B’指的是第二颜色信号对应的RGB三原色灰阶数位信号;
其中,max’n_ave=Max(r’n_ave、g’n_ave、b’n_ave)、中间平均信号mid’_nave=Mid(r’n_ave、g’n_ave、b’n_ave)及最小平均信号min’n_ave=Min(r’n_ave、g’n_ave、b’n_ave);
其中,r’n_ave=Average(r’n_1,1、r’n_1,2、…、r’n_i,j),g’n_ave=Average(g’n_1,1、g’n_1,2、…、g’n_i,j),b’n_ave=Average(b’n_1,1、b’n_1,2、…、b’n_i,j)。
具体的,背光分区内的所有R,G,B子像素为一组单位像素由RGB体系换算成HSV体系,即根据刺激值信号Rn_i,j、Gn_i,j、Bn_i,j,经过归一化操作得到第一归一化亮度信号rn_i,j、gn_i,j、bn_i,j,并基于第一归一化亮度信号推算第一色彩空间信号;然后对第一色空间信号的色饱和度信号进行调整处理,然后基于调整之后的第二色彩空间信号,并且将第二色彩空间信号经过第二归一化亮度信号的过程,并反推换算得到对应的刺激函数r’n_i,j、g’n_i,j、b’n_i,j;并基于原来的刺激函数rn_i,j、gn_i,j、bn_i,j,以及新的刺激值信号r’n_i,j、g’n_i,j、b’n_i,j计算第一平均色饱和度信号和第二平均色饱和度信号,由于计算过程中,实际推算出各单位像素的亮度刺激值,因而最终计算得到的光源调整系数将是基于每个实际像素的呈现情况进行比较计算得到的,因而计算得到的光源调整系数y准确性高,将使得色饱和度的补偿效果更佳,有利于在改善色偏的同时,更好的补偿色饱和度的损失。
在一实施例中,该接收显示面板对应的第一颜色信号,对第一颜色信号进行 色饱和度调整得到第二颜色信号的步骤包括:
接收在RGB体系下的第一颜色信号,将第一颜色信号转换为在HSV体系下的第一色彩空间信号;获取第一色彩空间信号的当前色饱和度信号,以及当前色饱和度信号对应的预设调整系数;
使用预设调整系数对当前色饱和度信号进行色饱和度值调低处理;完成色饱和度信号的调整处理,得到在HSV体系下的第二色彩空间信号;将第二色彩空间信号转换为在RGB体系下的第二颜色信号;所述根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数的步骤包括:
获取当前帧对应当前背光分区内的所有像素的第一色彩空间信号和第二色彩空间信号,分别计算第一色彩空间信号对应的第一平均色饱和度信号,以及第二色彩空间信号对应的第二平均色饱和度信号;
根据第一平均色饱和度信号和第二平均色饱和度信号计算得到第一光源调整系数和第二光源调整系数;
所述第一光源调整系数和第二光源调整系数的计算包括如下步骤:使用公式Sn_ave=Average(Sn_1,1、Sn_1,2、…、Sn_i,j),计算第一色彩空间信号对应的第一平均色饱和度信号;
使用公式S’n_ave=Average(S’n_1,1、S’n_1,2、…、S’n_i,j)计算第二色彩空间信号对应的第二平均色饱和度信号;
根据第一平均色饱和度信号Sn_ave和第二平均色饱和度信号S’n_ave计算得到第一光源调整系数和第二光源调整系数。
在一实施例中,该将第一颜色信号转换为在HSV体系下的第一色彩空间信号的步骤包括:
获取第一颜色信号Rn_i,j、Gn_i,j、Bn_i,j,并将每一组RGB三原色子像素灰阶信号转换成三原色归一化亮度信号r、g、b;完成转换得到第一归一化亮度信号rn_i,j、gn_i,j、bn_i,j;
根据第一归一化亮度信号将第一颜色信号转换为第一色彩空间信号S=1-mini,j/maxi,j;
使用预设调整系数对当前色饱和度信号进行色饱和度值调低处理;完成色饱和度信号的调整处理,得到在HSV体系下的第二色彩空间信号的步骤包括:
在保持maxi,j不变的情况下,使用预设调整系数H对mini,j进行调整;完成色饱和度信号的调整处理,得到在HSV体系下的第二色彩空间信号S’=1-mini,j*H/maxi,j;
其中,mini,j=min(rn_i,j、gn_i,j、bn_i,j),其中,maxi,j=max(rn_i,j、gn_i,j、bn_i,j)。
其中:Sn_i,j=1-minn_i,j/maxn_i,j;
其中,minn_i,j=min(r,g,b);maxn_i,j=max(r,g,b);
其中,r=(R/255)^γr、g=(G/255)^γg、b=(B/255)^γb;
其中,γr、γg、γb为第一颜色信号的伽马信号;
其中,R,G,B指的是第一颜色信号对应的RGB三原色灰阶数位信号。本方案中,对应第一颜色信号的第一色彩空间信号,和对应第二颜色信号的第二色彩空间信号,分别计算背光分区内所有色饱和度信号的平均值,得到第一平均色饱和度信号和第二平均色饱和度信号,并以此反应背光分区进行色饱和度调整前后(为了改善色偏)的色饱和度呈现差异,并以此来推算光源你调整系数,计算步骤简单,以整体的显示效果为基准,提高了生产效率,并有利于保持背光分区的 色饱和度的整体均匀性,避免局部色饱和度过高或者过低,有利于提升显示效果。
在一实施例中,该根据第一平均色饱和度信号Sn_ave和第二平均色饱和度信号S’n_ave计算得到第一光源调整系数和第二光源调整系数的步骤包括:
计算第一平均色饱和度信号Sn_ave=1-minn_ave/maxn_ave;
计算第二平均色饱和度信号S’n_ave=1-min’n_ave/maxn_ave;
使用第一光源调整系数对第二平均色饱和度信号得到第三平均色饱和度信号S”n_ave;
其中,第一光源调整系数y满足如下公式:
S”n_ave=Sn_ave,即:
1-minn_ave/maxn_ave=1-min’n_ave/(maxn_ave*y),
因而,y=(S’n_ave-1)/(Sn_ave-1);
根据第一光源调整系数y计算第二光源调整系数x,其中,第二光源调整系数x满足如下公式:
maxn_ave/midn_ave=maxn_ave*y/mid’n_ave*x;
即,x=(min’n_ave*midn_ave)/(minn_ave*mid’n_ave);
其中,maxn_ave是当前帧对应背光分区内的所有像素的第一颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最大平均信号;midn_ave是当前帧对应背光分区内的所有像素的第一颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的中间平均信号;minn_ave是当前帧对应背光分区内的所有像素的第一颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最小平均信号;
其中,maxn_ave同时是当前帧对应背光分区内的所有像素的第二颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最大平均信号;mid’n_ave是当前帧对应背光分区内的所有像素的第二颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的中间平均信号;min’n_ave是当前帧对应背光分区内的所有像素的第二颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最小平均信号。
在一实施例中,该对第一颜色信号进行色饱和度调整得到第二颜色信号的步骤包括:
获取RGB体系下的第一颜色信号,并转换成HSV体系下的第一色彩空间信号;获取第一色彩空间信号的当前色饱和度信号,检测当前色饱和度信号是否满足预设色饱和度阈值,以及是否位于调整色调区间,若均满足,则基于色饱和度信号、根据对应的色饱和度值和色调区间获取对应的预设调整系数;
使用预设调整系数对当前色饱和度信号进行调整,得到HSV体系下的第二色彩空间信号;
所述预设调整系数是基于色饱和度信号根据预设的计算公式计算得到或基于色饱和度信号通过预设调整系数查找表查找得到的。
具体的,接收在RGB体系下的第一颜色信号;
获取第一颜色信号Rn_i,j、Gn_i,j、Bn_i,j,并将每一组RGB三原色子像素灰阶信号转换成三原色归一化亮度信号r、g、b;完成转换得到第一归一化亮度信号rn_i,j、gn_i,j、bn_i,j;
根据第一归一化亮度信号计算当前色饱和度信号S=1-mini,j/maxi,j,获取当前色饱和度信号S对应的预设调整系数H;
保持maxi,j不变,使用预设调整系数H对mini,j进行调整处理,得到第二 色饱和度信号S’=1-mini,j*H/maxi,j;
根据第二色饱和度信号S’转换得到RGB体系下的第二颜色信号以驱动显示面板;其中,mini,j=min(rn_i,j、gn_i,j、bn_i,j),其中,maxi,j=max(rn_i,j、gn_i,j、bn_i,j)。
其中,该调整系数查找表可以是直接记载有预设调整系数的查找表,也可以是记录预设的计算公式的系数的查找表。
其中,第二色彩空间信号和第一色彩空间信号可以符合如下公式:
S’=a*S4+b*S3+c*S2+d*S+e;
其中,S为第一色彩空间信号对应的当前色饱和度信号,S’为第二色彩空间信号对应的色饱和度信号;所述a,b,c,d,e为常数,所述a,b,c,d,e根据色饱和度值和色调区间不同,通过预设的公式系数查找表查找得到。本方案中,该预设调整系数可以根据预设的计算公式计算得到,计算公式虽然不同,但是一般来说可以满足于四次多项式当然,其他的计算公式也是适用的,例如,当色饱和度值S满足一定条件时,预设调整系数等于根号S;当色饱和度值S满足另一条件时,预设调整系数等于三次根号S等公式也是可以的。
其中,该色饱和度阈值可以为0.5,当前色饱和度信号的色饱和度值大于0.5的则判定满足色饱和度阈值;或者可以是区间,例如0.5-1(不包括0.5和1),即当当前色饱和度大于0.5小于1时,进行色饱和度调整,而当前色饱和度等于0.5或1,可以不进行色饱和度调整。
本方案中,在RGB色系下,信号的色饱和度越高,色偏越严重;如此,在某些色饱和度值情况下,色偏很严重,而某些色饱和度值情况下,色偏不明显,属于可以接受的范围;通过色调区间和预设阈值,能够筛选出色偏为严重的色饱和度信号,例如降低色饱和度值的处理,可以在改善色偏的同时,而且可以避免对不需要进行色偏调整的信号进行不必要的如降低色饱和度值等处理,有利于提高显示面板的显示效果。
具体的,该色饱和度信号可以根据色调不同至少拆分为第一色调区间、第二色调区间和第三色调区间;所述获取当前色饱和度信号对应的预设调整系数的步骤中:对应同一个色调,所述当前色饱和度信号的色饱和度值越大,调整处理的调整幅度越大。
本方案中,由于同一色调区间,特别是同一色调下,色饱和度信号的色饱和度值越高,对应的色偏越严重;因而,本方案对色饱和度高的信号的调整幅度大,而色饱和度值低的信号的调整幅度小;其中,一般是对色饱和度信号进行色饱和度值的调低处理,如此,便能够减少各个信号的色饱和差距,避免色饱和度太高带来的色偏,同时,避免色饱和度差异过大带来的色偏,达到更好的改善色偏的效果。当然,该色饱和度值低的色饱和度信号进行调高处理也是可以的,以使得不同的色饱和度信号之间更均匀,也能够在一定程度上改善色偏的效果。
另外,这里的调整幅度主要指的是调低色饱和度信号的幅度,根据计算公式的不同,色饱和度值越大,对应的预设调整系数也可能越小也可能越大,但是调整幅度越大的效果是不变的;举例,如果该预设调整系数是整个色饱和度信号的系数,例如S’=S*H(其中,S为当前色饱和度信号,S’第二为色饱和度信号,H为预设调整系数),则调低幅度越大时,预设调整系数的值越小;如果预设调整系数是色饱和度信号其中某个参数的系数时,则调低幅度越大,对应的系数也可能是越大的,例如S’=1-min*H/max(其中,S为当前色饱和度信号,S’第二为色饱和度信号,H为预设调整系数)时,此时的预设调整系数越大,对应的调 低幅度越大。
其中,该第一色调区间、第二色调区间和第三色调区间分别为红色色调区间、绿色色调区间和蓝色色调区间;
具有同一色饱和度值的当前色饱和度信号,对应蓝色色调区间的所述预设调整系数对当前色饱和度信号的调整幅度,大于对应红色色调区间的所述预设调整系数对当前色饱和度信号的调整幅度;对应红色色调区间的所述预设调整系数对当前色饱和度信号的调整幅度,大于对应绿色色调区间的所述预设调整系数对当前色饱和度信号的调整幅度。本方案中,基于不同色调区间的色饱和度信号的色偏程度不同,在同一色饱和度值情况下,其中部分色调区间的色偏严重,而部分色调区间的色偏轻;在RGB体系下,蓝色色调区间的色饱和度信号的色偏最严重,绿色色调区间的色饱和度信号的色偏最轻;本方案,以S’=S*H为例,对应蓝色色调区间的预设调整系数可以小于对应红色色调区间的预设调整系数,对应红色色调区间的预设调整系数可以小于对应绿色色调区间的预设调整系数,此时预设调整系数越小,调整的幅度越大;对应的,以S’=1-min*H/max为例,此时对应蓝色色调区间的预设调整系数最大且调整幅度最大,对应绿色色调区间的预设调整系数最小且调整幅度最小;如此同一色饱和度值下,该蓝色色调区间的色饱和度信号的调低幅度最大,而该绿色色调区间的色饱和度信号调低幅度最小,不仅能够减少了色饱和度值过大带来的色偏,而且使得色饱和度信号的色饱和度更均匀,在一定程度上也有利于改善色偏,从而达到良好的改善色偏的效果。
在一实施例中,该色饱和度信号根据色调区间不同拆分为红色色调区间、绿色色调区间、蓝色色调区间和非调整色调区间;
所述色调值Hue的范围为:0-360,对应0-360度,其中:
色调值满足如下公式的色调区间为红色色调区间:0≤Hue<40,或320<Hue≤360;色调值满足如下公式的色调区间为绿色色调区间:80<Hue<160;色调值满足如下公式的色调区间划分为蓝色色调区间:200<Hue<280;色调值满足如下公式的色调区间为非调整色调区间:40≤Hue≤80,或160≤Hue≤200,或280≤Hue≤320。本方案,鉴于RGB体系下,定义0度为红色色调,120度为绿色色调,240度为蓝色色调,在同一色饱和度值的前提下,越靠近红绿蓝色色调,则色偏越严重,而越远离红绿蓝色色调的饱和度信号色偏越轻,甚至符合色偏的标准而不需要进行色偏调节;本方案中,将靠近绿色色调的划分为绿色色调区间、将靠近蓝色色调的划分为蓝色色调区间、将靠近红色色调的划分为红色色调区间;而对远离红绿蓝色色调则划分为非调整区间,如此,可以对应同一色饱和度值,色偏最严重的蓝色色调区间,对应设置最大的预设调整系数;色偏轻的绿色色调区间,对应设置小的预设调整系数;而对几乎不存在色偏的非调整区间,则不进行调整或者设置预设调整系数为1,如此,在改善色偏的同时,尽量避免色饱和度值的降低,有利于提高显示面板的显示效果。
在一实施例中,使用预设调整系数对当前色饱和度信号进行调整,得到HSV体系下的第二色彩空间信号的步骤中:
根据当前色饱和度信号S和第二色饱和度信号S’,计算得到第三色饱和度信号S”;
完成两次色饱和度值调整,基于第三色饱和度信号S”,得到在HSV体系下的第二色彩空间信号;
根据第二色彩空间信号转换为RGB体系下的第二颜色信号以驱动显示面板。
图7是本申请实施例第二预设调整系数H2的相关函数示意图,参考图7, 结合图4至图6可知,具体的,第三色饱和度信号S”符合如下公式:S”=S-(S-S’)*H2;
所述第二预设调整系数H2满足如下公式:
H2=2*ABS(sin((Hue/360*3-1/2)*π)-1。
本方案中,其中,第二预设调整系数H2是用于将第二色饱和度信号调整为第三色饱和度信号所用的调整系数;在RGB体系下,定义0度为红色纯色色调,120度为绿色纯色色调,240度为蓝色纯色色调,越靠近纯色色调,则色偏越严重(同一色饱和度值下);基于该第二预设调整系数H2,越靠近纯色色调的色饱和度信号将得到更大幅度的二次调整,而远离纯色色调的色饱和度信号,则得到小幅度的二次调整;如此,对于靠近纯色色调的饱和度信号能够达到更好的改善色偏的效果,而对于远离纯色色调的饱和度信号则能够达到减少改善色偏对整体色饱和度呈现的损伤,以达到色偏和色饱和度的平衡,有利于提升显示面板的显示效果。
在色饱和度调整的阶段:
图8是本申请实施例的当前色饱和度信号和第二色饱和度信号的变化示意图,图9是本申请实施例的当前色饱和度信号和第二色饱和度信号的色差变化曲线图,图10是本申请实施例的当前色饱和度信号和第二色饱和度信号的色差变化示意图。
其中,该图9的色差变化图,可以是正视角情况下的。当然,也可以是侧视角情况下的。该图10中的虚线是当前色饱和度信号在各种色系下对应的色差变化,实线是第二色饱和度信号在各种色系下对应的色差变化。具体的,显示器的输入信号RGB三原色信号,如果显示器的驱动采用8bit颜色解析度,则RGB三原色输入信号的阶调即可分解为0,1,2…255灰阶驱动信号。本申请将RGB三原色输入信号转换成HSV色彩空间信号,在HSV的色彩空间下根据不同的色调和色饱和度值调整色饱和度来达到色偏改善的效果。
其中,R为红色灰阶数位信号,G为绿色灰阶数位信号,B为蓝色灰阶数位信号;min为r,g,b中的最小值,max为r,g,b中的最大值。
r,g,b规一化亮度信号与色调h及饱和度信号s的转换关系,满足如下公式:
Figure PCTCN2019077600-appb-000001
Figure PCTCN2019077600-appb-000002
综上可发现,当色调接近R、G、B纯色色调时,存在视角观赏的色偏劣化为明显,同时当色调接近R、G、B纯色色调时色饱和度s越大则色偏现象越明显。可以透过降低R、G、B纯色色调时色饱和度s,即越接近纯色色调,色饱和度调 整幅度越大,让大视角观赏的颜色相比于正视观察的颜色改善彭或消除色偏。
另外,在完成色饱和度调整之后,还可以增加一个检测步骤,例如,将色饱和度信号转换为CIE Lu’v’色彩空间信号(CIE,Commission Internationale de L'Eclairage,国际照明委员会),其中L是亮度坐标,u’和v’是色度坐标。为了改善色偏,色饱和度调整对当前色饱和度信号进行降低色饱和度值的处理,但是若是为了尽量减少色饱和度损失的话,纯色变化,即从当前色饱和度信号S,到第二色饱和度信号S’的变化,即纯度变化或色差Δuv,应当满足:
Δuv=√((u_1-u_2)^2+(v_1-v_2)^2)≤0.02。其中,u_1和v_1是当前色饱和度信号的色度坐标,该u_2和v_2是第二色饱和度信号的色度坐标,即色饱和度调整之后的色饱和度信号。
图11是本申请一种显示面板的驱动系统的示意图,图12是本申请实施例一种显示面板的驱动电路示意图;图13是本申请实施例一种背光模组的驱动电路示意图;参考图11-13,结合图1-图10可知:本申请还提供了一种显示模组的驱动系统100,使用上述任一一种显示模组的驱动方法,包括:
同步驱动的显示面板驱动电路110,以及背光模组驱动电路120;
所述显示模组包括多个独立设置的第一颜色光源130、第二颜色光源140和第三颜色光源150;所述显示面板驱动电路110包括:
色饱和度调整电路111,接收显示面板对应的第一颜色信号,对第一颜色信号进行色饱和度调整得到第二颜色信号;
第一驱动电路112,使用第二颜色信号驱动显示面板;
所述背光模组驱动电路120包括:
光源调整计算电路121,接收显示面板对应的第一颜色信号,并获得第二颜色信号,根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数;
调整光源确定电路122,计算得到第一颜色光源、第二颜色光源和第三颜色光源中的主色调区间光源和次色调区间光源;
第一光源调整电路123,使用第一光源调整系数对主色调区间光源对应的第一亮度值进行调整得到第二亮度值;第二光源调整电路124,即第二光源调整电路,用于使用第二光源调整系数对次色调区间光源对应的第一亮度值进行调整得到第三亮度值;
第二驱动电路125,使用第二亮度值和第三亮度值分别对主色调区间光源和次色调区间光源进行驱动.
图14是本申请一种显示装置的示意图,参考图14,结合图1-图13可知:本申请还提供了一种显示装置200,包括如本申请所述的一种显示模组的驱动系统100。
需要说明的是,本方案中涉及到的各步骤的限定,在不影响具体方案实施的前提下,并不认定为对步骤先后顺序做出限定,写在前面的步骤可以是在先执行的,也可以是在后执行的,甚至也可以是同时执行的,只要能实施本方案,都应当视为属于本申请的保护范围。
本申请的技术方案可以广泛用于各种显示面板,如TN型显示面板(全称为Twisted Nematic,即扭曲向列型面板)、IPS型显示面板(In-Plane Switching,平面转换)、VA型显示面板(Vertical Alignment,垂直配向技术)、MVA型显示面板(Multi-domain Vertical Alignment,多象限垂直配向技术),当然,也可 以是其他类型的显示面板,如有机发光显示面板(organic light-emitting diode,简称OLED显示面板),均可适用上述方案。
以上内容是结合具体的优选实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (18)

  1. 一种显示模组的驱动方法,包括:同步驱动的显示面板驱动过程,以及背光模组驱动过程:所述显示模组包括多个独立设置的第一颜色光源、第二颜色光源和第三颜色光源;
    所述显示面板驱动过程包括步骤:
    接收显示面板对应的第一颜色信号,对第一颜色信号进行色饱和度调整得到第二颜色信号;
    使用第二颜色信号驱动显示面板;
    所述背光模组驱动过程包括:
    接收显示面板对应的第一颜色信号,并获得第二颜色信号,根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数;
    计算得到第一颜色光源、第二颜色光源和第三颜色光源中的主色调区间光源和次色调区间光源;
    使用第一光源调整系数对主色调区间光源对应的第一亮度值进行调整得到第二亮度值;
    使用第二光源调整系数对次色调区间光源对应的第一亮度值进行调整得到第三亮度值;
    使用第二亮度值和第三亮度值分别对主色调区间光源和次色调区间光源进行驱动。
  2. 如权利要求1所述的一种显示模组的驱动方法,其中,所述根据第一色彩空间信号和第二色彩空间信号得到第一光源调整系数和第二光源调整系数的步骤包括:
    获取当前帧对应当前背光分区内的所有像素的第一色彩空间信号和第二色彩空间信号,分别计算第一色彩空间信号对应的第一平均色饱和度信号,以及第二色彩空间信号对应的第二平均色饱和度信号;
    根据第一平均色饱和度信号和第二平均色饱和度信号计算得到第一光源调整系数和第二光源调整系数。
  3. 如权利要求1所述的一种显示模组的驱动方法,其中,所述第一颜色信号是RGB体系下的RGB三原色信号,所述第一颜色信号包括红色子像素信号、绿色子像素信号和蓝色子像素信号;
    所述根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数的步骤包括:
    获取当前帧对应当前背光分区内的所有像素第一颜色信号,计算对应的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最大平均信号maxn_ave、中间平均信号mid_nave和最小平均信号minn_ave;
    根据最大平均信号和最小平均信号计算的得到第一平均色饱和度信号Sn_ave=1-minn_ave/maxn_ave;
    计算第二颜色信号的最大平均信号max’n_ave、中间平均信号mid’nave及最小平均信号min’n_ave;
    根据最大平均信号和最小平均信号计算的得到第二平均色饱和度信号S’n_ave=1-min’n_ave/max’n_ave;
    根据第一平均色饱和度信号和第二平均色饱和度信号计算所述第一光源调整系数y,使得第一光源调整系数y满足如下公式:
    Sn_ave=1-minn_ave/maxn_ave=1-min’n_ave/(max’n_ave*y)
    即,y=(min’n_ave*maxn_ave)/(minn_ave*max’n_ave);
    根据第一光源调整系数y计算第二光源调整系数x,使得第二光源调整系数x满足如下公式:
    maxn_ave/midn_ave=max’n_ave*y/mid’n_ave*x;
    即,x=(min’n_ave*midn_ave)/(minn_ave*mid’n_ave)。
  4. 如权利要求3所述的一种显示模组的驱动方法,其中,所述第一平均色饱和度信号 Sn_ave的计算步骤包括:
    获取第一颜色信号Rn_i,j、Gn_i,j、Bn_i,j,并将每一组RGB三原色子像素灰阶信号转换成三原色归一化亮度信号r、g、b;完成转换得到第一归一化亮度信号rn_i,j、gn_i,j、bn_i,j;
    计算当前帧对应当前背光分区内的所有像素的红色子像素平均信号rn_ave、绿色子像素平均信号gn_ave和蓝色子像素平均信号bn_ave;
    计算三种子像素的最大平均信号maxn_ave、中间平均信号mid_nave和最小平均信号minn_ave;
    根据最大平均信号和最小平均信号计算的达到第一平均色饱和度信号Sn_ave=1-minn_ave/maxn_ave;
    其中,r=(R/255)^γr、g=(G/255)^γg、b=(B/255)^γb,其中γr、γg、γb为第一颜色信号的伽马信号;
    其中,R,G,B指的是第一颜色信号对应的RGB三原色灰阶数位信号;
    其中,maxn_ave=Max(rn_ave、gn_ave、bn_ave)、中间平均信号mid_nave=Mid(rn_ave、gn_ave、bn_ave)及最小平均信号minn_ave=Min(rn_ave、gn_ave、bn_ave);
    其中,rn_ave=Average(rn_1,1、rn_1,2、…、rn_i,j);gn_ave=Average(gn_1,1、gn_1,2、…、gn_i,j);bn_ave=Average(bn_1,1、bn_1,2、…、bn_i,j);
    所述第二平均色饱和度信号S’n_ave的计算步骤包括:
    获取第二颜色信号R’n_i,j、G’n_i,j、B’n_i,j,并将每一组RGB三原色子像素灰阶信号转换成三原色归一化亮度r’、g’、b’,完成转换得到第二归一化亮度信号r’n_i,j、g’n_i,j、b’n_i,j;
    计算当前帧对应当前背光分区内的所有像素的红色子像素平均信号r’n_ave、绿色子像素平均信号g’n_ave和蓝色子像素平均信号b’n_ave;
    计算三种子像素的最大平均信号max’n_ave、中间平均信号mid’_nave及最小平均信号min’n_av;
    根据最大平均信号和最小平均信号计算的达到第二平均色饱和度信号S’n_ave=1-min’n_ave/max’n_ave;
    其中,r’=(R’/255)^γr、g’=(G’/255)^γg、b’=(B’/255)^γb,其中γ’r、γ’g、γ’b为第二颜色信号的伽马信号;
    其中,R’,G’,B’指的是第二颜色信号对应的RGB三原色灰阶数位信号;
    其中,max’n_ave=Max(r’n_ave、g’n_ave、b’n_ave)、中间平均信号mid’_nave=Mid(r’n_ave、g’n_ave、b’n_ave)及最小平均信号min’n_ave=Min(r’n_ave、g’n_ave、b’n_ave);
    其中,r’n_ave=Average(r’n_1,1、r’n_1,2、…、r’n_i,j),g’n_ave=Average(g’n_1,1、g’n_1,2、…、g’n_i,j),b’n_ave=Average(b’n_1,1、b’n_1,2、…、b’n_i,j)。
  5. 如权利要求2所述的一种显示模组的驱动方法,其中,所述接收显示面板对应的第一颜色信号,对第一颜色信号进行色饱和度调整得到第二颜色信号的步骤包括:
    接收在RGB体系下的第一颜色信号,将第一颜色信号转换为在HSV体系下的第一色彩空间信号;
    获取第一色彩空间信号的当前色饱和度信号,以及当前色饱和度信号对应的预设调整系数;
    使用预设调整系数对当前色饱和度信号进行色饱和度值调低处理;完成色饱和度信号的调整处理,得到在HSV体系下的第二色彩空间信号;
    将第二色彩空间信号转换为在RGB体系下的第二颜色信号;
    所述根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数的步骤包括:
    获取当前帧对应当前背光分区内的所有像素的第一色彩空间信号和第二色彩空间信号,分别计算第一色彩空间信号对应的第一平均色饱和度信号,以及第二色彩空间信号对应的第二平均色饱和度信号;
    根据第一平均色饱和度信号和第二平均色饱和度信号计算得到第一光源调整系数和第二光源调整系数;
    所述第一光源调整系数和第二光源调整系数的计算包括如下步骤:
    使用公式Sn_ave=Average(Sn_1,1、Sn_1,2、…、Sn_i,j),计算第一色彩空间信号对应的第一平均色饱和度信号;
    使用公式S’n_ave=Average(S’n_1,1、S’n_1,2、…、S’n_i,j)计算第二色彩空间信号对应的第二平均色饱和度信号;
    根据第一平均色饱和度信号Sn_ave和第二平均色饱和度信号S’n_ave计算得到第一光源调整系数和第二光源调整系数。
  6. 如权利要求5所述的一种显示模组的驱动方法,其中,所述将第一颜色信号转换为在HSV体系下的第一色彩空间信号的步骤包括:
    获取第一颜色信号Rn_i,j、Gn_i,j、Bn_i,j,并将每一组RGB三原色子像素灰阶信号转换成三原色归一化亮度信号r、g、b;完成转换得到第一归一化亮度信号rn_i,j、gn_i,j、bn_i,j;
    根据第一归一化亮度信号将第一颜色信号转换为第一色彩空间信号S=1-mini,j/maxi,j;
    使用预设调整系数对当前色饱和度信号进行色饱和度值调低处理;完成色饱和度信号的调整处理,得到在HSV体系下的第二色彩空间信号的步骤包括:
    在保持maxi,j不变的情况下,使用预设调整系数H对mini,j进行调整;
    完成色饱和度信号的调整处理,得到在HSV体系下的第二色彩空间信号S’=1-mini,j*H/maxi,j;
    其中,mini,j=min(rn_i,j、gn_i,j、bn_i,j),其中,maxi,j=max(rn_i,j、gn_i,j、bn_i,j)。
  7. 如权利要求6所述的一种显示模组的驱动方法,其中,所述使用预设调整系数第一色彩空间信号的进行色饱和度调整
    所述根据第一平均色饱和度信号Sn_ave和第二平均色饱和度信号S’n_ave计算得到第一光源调整系数和第二光源调整系数的步骤包括:
    计算第一平均色饱和度信号Sn_ave=1-minn_ave/maxn_ave;
    计算第二平均色饱和度信号S’n_ave=1-min’n_ave/maxn_ave;
    使用第一光源调整系数对第二平均色饱和度信号得到第三平均色饱和度信号S”n_ave;
    其中,第一光源调整系数y满足如下公式:
    S”n_ave=Sn_ave,即:
    1-minn_ave/maxn_ave=1-min’n_ave/(maxn_ave*y),因而,y=(S’n_ave-1)/(Sn_ave-1);
    根据第一光源调整系数y计算第二光源调整系数x,其中,第二光源调整系数x满足如下公式:
    maxn_ave/midn_ave=maxn_ave*y/mid’n_ave*x;
    即,x=(min’n_ave*midn_ave)/(minn_ave*mid’n_ave);
    其中,maxn_ave是当前帧对应背光分区内的所有像素的第一颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最大平均信号;midn_ave是当前帧对应背光分区内的所有像素的第一颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的中间平均信号;minn_ave是当前帧对应背光分区内的所有像素的第一颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最小平均信号;
    其中,maxn_ave同时是当前帧对应背光分区内的所有像素的第二颜色信号的红色子像 素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最大平均信号;mid’n_ave是当前帧对应背光分区内的所有像素的第二颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的中间平均信号;min’n_ave是当前帧对应背光分区内的所有像素的第二颜色信号的红色子像素平均信号、绿色子像素平均信号和蓝色子像素平均信号中的最小平均信号。
  8. 如权利要求1所述的一种显示模组的驱动方法,其中,所述对第一颜色信号进行色饱和度调整得到第二颜色信号的步骤包括:
    获取RGB体系下的第一颜色信号,并转换成HSV体系下的第一色彩空间信号;
    获取第一色彩空间信号的当前色饱和度信号,检测当前色饱和度信号是否满足预设色饱和度阈值,以及是否位于调整色调区间,若均满足,则基于色饱和度信号、根据对应的色饱和度值和色调区间获取对应的预设调整系数;
    使用预设调整系数对当前色饱和度信号进行调整,得到HSV体系下的第二色彩空间信号;
    根据第二色彩空间信号转换得到RGB体系下的第二颜色信号。
  9. 如权利要求8所述的一种显示模组的驱动方法,其中,所述预设调整系数是基于色饱和度信号根据预设的计算公式计算得到或基于色饱和度信号通过预设调整系数查找表查找得到的。
  10. 如权利要求9所述的一种显示模组的驱动方法,其中,所述调整系数查找表是直接记载有预设调整系数的查找表,或是记录预设的计算公式的系数的查找表。
  11. 如权利要求8所述的一种显示模组的驱动方法,其中,所述第二色彩空间信号和第一色彩空间信号符合如下公式:
    S’=a*S4+b*S3+c*S2+d*S+e;
    其中,S为第一色彩空间信号对应的当前色饱和度信号,S’为第二色彩空间信号对应的色饱和度信号;所述a,b,c,d,e为常数,所述a,b,c,d,e根据色饱和度值和色调区间不同,通过预设的公式系数查找表查找得到。
  12. 如权利要求8所述的一种显示模组的驱动方法,其中,所述色饱和度阈值为0.5,当前色饱和度信号的色饱和度值大于0.5的则判定满足色饱和度阈值。
  13. 如权利要求12所述的一种显示模组的驱动方法,其中,所述色饱和度阈值为0.5-1,不包括0.5和1。
  14. 如权利要求8所述的一种显示模组的驱动方法,其中,对应同一个色调,所述当前色饱和度信号的色饱和度值越大,调整处理的调整幅度越大。
  15. 如权利要求14所述的一种显示模组的驱动方法,其中,所述第一色调区间、第二色调区间和第三色调区间分别为红色色调区间、绿色色调区间和蓝色色调区间;
    具有同一色饱和度值的当前色饱和度信号,对应蓝色色调区间的所述预设调整系数对当前色饱和度信号的调整幅度,大于对应红色色调区间的所述预设调整系数对当前色饱和度信号的调整幅度;对应红色色调区间的所述预设调整系数对当前色饱和度信号的调整幅度,大于对应绿色色调区间的所述预设调整系数对当前色饱和度信号的调整幅度。
  16. 如权利要求14所述的一种显示模组的驱动方法,其中,所述色调值Hue的范围为:0-360,对应0-360度,其中:
    色调值满足如下公式的色调区间为红色色调区间:0≤Hue<40,或320<Hue≤360;色调值满足如下公式的色调区间为绿色色调区间:80<Hue<160;色调值满足如下公式的色调区间划分为蓝色色调区间:200<Hue<280;色调值满足如下公式的色调区间为非调整色调区间:40≤Hue≤80,或160≤Hue≤200,或280≤Hue≤320。
  17. 一种显示模组的驱动系统,包括:
    同步驱动的显示面板驱动电路,以及背光模组驱动电路;
    所述显示模组包括多个独立设置的第一颜色光源、第二颜色光源和第三颜色光源;
    所述显示面板驱动电路包括:
    色饱和度调整电路,接收显示面板对应的第一颜色信号,对第一颜色信号进行色饱和度调整得到第二颜色信号;
    第一驱动电路,使用第二颜色信号驱动显示面板;
    所述背光模组驱动电路包括:
    光源调整计算电路,接收显示面板对应的第一颜色信号,并获得第二颜色信号,根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数;
    调整光源确定电路,计算得到第一颜色光源、第二颜色光源和第三颜色光源中的主色调区间光源和次色调区间光源;
    第一光源调整电路,使用第一光源调整系数对主色调区间光源对应的第一亮度值进行调整得到第二亮度值;
    第二光源调整电路,使用第二光源调整系数对次色调区间光源对应的第一亮度值进行调整得到第三亮度值;
    第二驱动电路,使用第二亮度值和第三亮度值分别对主色调区间光源和次色调区间光源进行驱动。
  18. 一种显示装置,包括一种显示模组的驱动系统,所述驱动系统包括:
    同步驱动的显示面板驱动电路,以及背光模组驱动电路;
    所述显示模组包括多个独立设置的第一颜色光源、第二颜色光源和第三颜色光源;
    所述显示面板驱动电路包括:
    色饱和度调整电路,接收显示面板对应的第一颜色信号,对第一颜色信号进行色饱和度调整得到第二颜色信号;
    第一驱动电路,使用第二颜色信号驱动显示面板;
    所述背光模组驱动电路包括:
    光源调整计算电路,接收显示面板对应的第一颜色信号,并获得第二颜色信号,根据第一颜色信号和第二颜色信号得到第一光源调整系数和第二光源调整系数;
    调整光源确定电路,计算得到第一颜色光源、第二颜色光源和第三颜色光源中的主色调区间光源和次色调区间光源;
    第一光源调整电路,使用第一光源调整系数对主色调区间光源对应的第一亮度值进行调整得到第二亮度值;
    第二光源调整电路,使用第二光源调整系数对次色调区间光源对应的第一亮度值进行调整得到第三亮度值;
    第二驱动电路,使用第二亮度值和第三亮度值分别对主色调区间光源和次色调区间光源进行驱动。
PCT/CN2019/077600 2018-12-11 2019-03-11 显示模组的驱动方法、驱动系统和驱动装置 WO2020118923A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/040,974 US11138942B2 (en) 2018-12-11 2019-03-11 Driving method of display module, driving system thereof, and driving device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811510600.7A CN109509436B (zh) 2018-12-11 2018-12-11 一种显示面板的驱动方法、驱动装置和显示装置
CN201811511896.4 2018-12-11
CN201811511896.4A CN109461417B (zh) 2018-12-11 2018-12-11 一种显示面板的驱动方法、驱动系统和显示装置
CN201811510600.7 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020118923A1 true WO2020118923A1 (zh) 2020-06-18

Family

ID=71075708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077600 WO2020118923A1 (zh) 2018-12-11 2019-03-11 显示模组的驱动方法、驱动系统和驱动装置

Country Status (2)

Country Link
US (1) US11138942B2 (zh)
WO (1) WO2020118923A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564490B (zh) * 2017-10-25 2019-07-12 惠科股份有限公司 一种显示装置的驱动方法及显示装置
US20220134209A1 (en) * 2020-11-02 2022-05-05 Etone Motion Analysis Gmbh Fitness Device With a Stand

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010045098A (ko) * 1999-11-02 2001-06-05 윤종용 명도 성분에 기반한 칼라 화상의 윤곽선 강조 방법
US20090009539A1 (en) * 2007-06-22 2009-01-08 Lg Display Co., Ltd. Color gamut mapping and liquid crystal display device using the same
CN108010492A (zh) * 2017-12-20 2018-05-08 惠科股份有限公司 一种显示面板的背光调节方法、背光调节装置及显示装置
CN108231017A (zh) * 2017-12-21 2018-06-29 惠科股份有限公司 显示装置的驱动方法及其驱动装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102194571B1 (ko) * 2014-10-23 2020-12-24 엘지디스플레이 주식회사 데이터 변환부와 데이터 변환부의 데이터 변환 방법
DE102016123195A1 (de) * 2015-12-15 2017-06-22 Canon Kabushiki Kaisha Bildanzeigevorrichtung und umwandlungsinformationserzeugungsverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010045098A (ko) * 1999-11-02 2001-06-05 윤종용 명도 성분에 기반한 칼라 화상의 윤곽선 강조 방법
US20090009539A1 (en) * 2007-06-22 2009-01-08 Lg Display Co., Ltd. Color gamut mapping and liquid crystal display device using the same
CN108010492A (zh) * 2017-12-20 2018-05-08 惠科股份有限公司 一种显示面板的背光调节方法、背光调节装置及显示装置
CN108231017A (zh) * 2017-12-21 2018-06-29 惠科股份有限公司 显示装置的驱动方法及其驱动装置

Also Published As

Publication number Publication date
US20210090511A1 (en) 2021-03-25
US11138942B2 (en) 2021-10-05

Similar Documents

Publication Publication Date Title
US10446095B2 (en) Image processing method of display device, image processing structure, and display device
WO2020118925A1 (zh) 显示模组的驱动方法、驱动系统和显示装置
CN109559692B (zh) 一种显示模组的驱动方法、驱动系统和显示装置
CN109559693B (zh) 一种显示面板的驱动方法、驱动系统和显示装置
CN110189717B (zh) 一种显示模组的驱动方法、驱动系统和显示装置
TWI547931B (zh) 控制顯示器的方法
US20210319760A1 (en) Method and apparatus for compensating view chromatic aberration of display device and display device
WO2020118924A1 (zh) 显示模组的驱动方法、驱动系统和驱动装置
CN109461417B (zh) 一种显示面板的驱动方法、驱动系统和显示装置
CN109658872B (zh) 一种显示模组的驱动方法和驱动装置
WO2020118923A1 (zh) 显示模组的驱动方法、驱动系统和驱动装置
US11335282B2 (en) Driving method for display panel and driving device thereof
WO2020207169A1 (zh) 显示面板的驱动方法、驱动系统和显示装置
CN109509436B (zh) 一种显示面板的驱动方法、驱动装置和显示装置
CN110111744B (zh) 一种显示模组的驱动方法、驱动系统和显示装置
WO2020118926A1 (zh) 显示面板的驱动方法、驱动系统和显示装置
CN110010087A (zh) 一种显示面板的驱动方法、驱动系统和显示装置
CN109658884B (zh) 一种显示面板的驱动方法、驱动系统和显示装置
CN109637472B (zh) 一种显示面板的驱动方法、驱动系统和显示装置
CN109671399B (zh) 一种显示模组的驱动方法、驱动系统和显示装置
WO2020207168A1 (zh) 显示模组的驱动方法、驱动系统和显示装置
CN109637471B (zh) 一种显示面板的驱动方法、驱动系统和显示装置
KR20080045387A (ko) 액정 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19895009

Country of ref document: EP

Kind code of ref document: A1