WO2020118732A1 - 一种复合阵列电极及其制备方法和应用 - Google Patents

一种复合阵列电极及其制备方法和应用 Download PDF

Info

Publication number
WO2020118732A1
WO2020118732A1 PCT/CN2018/121354 CN2018121354W WO2020118732A1 WO 2020118732 A1 WO2020118732 A1 WO 2020118732A1 CN 2018121354 W CN2018121354 W CN 2018121354W WO 2020118732 A1 WO2020118732 A1 WO 2020118732A1
Authority
WO
WIPO (PCT)
Prior art keywords
microelectrode
conductive layer
platinum
conductive
electrode
Prior art date
Application number
PCT/CN2018/121354
Other languages
English (en)
French (fr)
Inventor
曾齐
吴天准
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2018/121354 priority Critical patent/WO2020118732A1/zh
Priority to US16/618,052 priority patent/US11401622B2/en
Publication of WO2020118732A1 publication Critical patent/WO2020118732A1/zh
Priority to US17/841,189 priority patent/US20230133153A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • B08B7/026Using sound waves
    • B08B7/028Using ultrasounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes

Definitions

  • the invention relates to the technical field of electrocatalytic materials, in particular to a composite array electrode and a preparation method and application thereof.
  • Nerve electrodes as one of the most important implantable microdevices, are used to stimulate nerve tissue or record nerve electrical signals, and are widely used in life science fields such as neurophysiology and brain science research. At present, nerve electrodes are developing towards integrated and miniaturized microelectrode arrays. However, the reduction in electrode size will cause problems such as increased electrode impedance and reduced capacitance, which will seriously affect the electrochemical performance of the electrode and limit the application of the electrode in physiological parameter detection and life science.
  • the current mature process including reducing the edge effect of copper, can be achieved by forming a metal seed layer on the substrate surface, followed by annealing treatment, and then performing electroplating (Patent 102790009A, 2012.); or changing the composition of the electroplating solution and designing the electroplating device Special spraying mechanism makes the concentration distribution of the plating solution uniform and improves the uniformity (Patent US07459892, 1990.; Patent 206109565U, 2017.); or design the electroplating baffle to block the electric field line around the edge of the baffle to eliminate the edge effect (Patent 200999265Y, 2008.); Although the edge effect can be eliminated to a certain extent, they are all used for large parts, which are not suitable for micro-nano electrodes and are inconvenient to operate. Therefore, for the surface modification of nerve electrodes, especially micro-nano-scale electrodes, the edge effect cannot be solved well.
  • the present invention provides a composite array electrode and its preparation method and application.
  • the composite array electrode effectively eliminates the influence of the edge effect.
  • the micro-electrode surface electric field distribution of the entire composite array electrode is uniform, which significantly improves the electrode The electrochemical performance and detection level of the electrode.
  • the present invention provides a composite array electrode including a microelectrode array substrate and a modified layer formed on the surface of the microelectrode of the microelectrode array substrate, the modified layer including a plurality of spaces disposed on the microelectrode A conductive layer on the surface of the electrode.
  • an insulating layer is provided on the surface of the microelectrode in an area other than the conductive layer.
  • the material of the conductive layer includes one of nano-platinum, nano-iridium, conductive polymer, carbon nanotube, etc. or Multiple.
  • the conductive polymer includes one or more of polyaniline, polypyrrole, and polythiophene.
  • the conductive polymer also includes one or more of polyaniline derivatives, polypyrrole derivatives, and polythiophene derivatives.
  • the lateral dimension of each conductive layer is 6-60 ⁇ m.
  • multiple arrays of the conductive layers are arranged on the surface of the microelectrode.
  • the total area of the plurality of conductive layers accounts for 50 to 80%.
  • the thickness of the conductive layer is 0.02-10 ⁇ m.
  • the absolute value of the allowable deviation of the thickness of the edge of the conductive layer and the intermediate region of the conductive layer is less than 0.1 ⁇ m.
  • the micro-electrode array substrate includes a flexible electrode substrate or a hard electrode substrate.
  • the composite array electrode provided in the first aspect of the present invention by further arranging several conductive layers with excellent performance on the surface of the microelectrode, disperses the electric field of the original microelectrode with uneven electric field distribution, making full use of the unevenness of the electric field, making Finally, the electric field applied to the conductive layer is relatively uniform; at the same time, the large surface area provided by the three-dimensional nanostructures of the conductive layer greatly improves the electrochemical performance of the electrode, so that the entire composite array electrode has low impedance, high charge storage capacity and Charge injection capability, good mechanical stability and electrochemical stability.
  • the composite array electrode has a wide detection range and good detection linearity, and has broad application prospects in enzyme-free glucose detection, as well as in life science fields such as neurophysiology and brain science research.
  • the present invention also provides a method for preparing a composite array electrode, including:
  • the microelectrode surface of the microelectrode array substrate is provided with an insulating layer; etching the insulating layer to form a plurality of spaced-apart deposition holes penetrating the insulating layer on the insulating layer;
  • An electrodeposition method is used to deposit a conductive material in the deposition hole to form a conductive layer on the surface of the microelectrode.
  • the conductive material includes one or more of nano-platinum, nano-iridium, conductive polymer, carbon nanotube, etc. Species.
  • the insulating layer is etched, and before the electrodeposition method is used, it also includes surface pretreatment of the etched microelectrode array substrate, and the specific steps of the surface pretreatment include :
  • the microelectrode array substrate after the etching treatment is first placed in an acetone or ethanol solution for ultrasonic cleaning for 20 to 60 minutes, then washed with deionized water, and then placed in a sulfuric acid solution for electrochemical cyclic voltammetry scanning to The CV curves are completely coincident, and then washed with deionized water for use, the scanning voltage is -0.25V ⁇ 1.2V, the scanning rate is 50 ⁇ 200mV/s, and the scanning time is 25 ⁇ 60min.
  • the step of using the electrodeposition method includes:
  • a platinum salt solution is configured, the microelectrode array substrate after the surface pretreatment is placed in the platinum salt solution for electrodeposition, and a conductive material is deposited in the deposition hole to form a conductive layer on the surface of the microelectrode
  • the conductive layer, the platinum salt in the platinum salt solution includes platinum chloride, ammonium hexachloroplatinate, potassium hexachloroplatinate, sodium hexachloroplatinate, chloroplatinic acid, platinum nitrate, platinum sulfate, tetrachloroplatinum
  • One or more of potassium acid and ammonium tetrachloroplatinate, and the pH of the platinum salt solution is 6.5-7.5.
  • the platinum salt solution further includes a buffering agent
  • the buffering agent includes one or more of a phosphate buffering agent, a Tris-HCl buffering agent, and a borate buffering agent.
  • the cross-sectional shape of the deposition hole includes one or more of a circle, a triangle, a quadrangle, and a polygon; the lateral size of the deposition hole is 6-60 ⁇ m.
  • the preparation method of the composite array electrode provided in the second aspect of the present invention can effectively eliminate the influence of the edge effect; a plurality of spaced conductive layers are formed on the surface of the microelectrode of the microelectrode array substrate; Electrochemical performance of the electrode; on the other hand, the conductive layer disperses the electric field of the original microelectrode with uneven electric field distribution, so that the newly prepared composite array electrode has a stable and uniformly distributed electric field;
  • the preparation method is simple and easy to operate, low in cost, and easy to realize industrialized production.
  • the present invention also provides an application of the composite array electrode according to the first aspect of the present invention or the composite array electrode prepared by the preparation method according to the second aspect of the present invention in the field of biochemical analysis or life sciences, For example, the application of implantable nerve electrode equipment, glucose detection or other fields of important physiological parameters.
  • the composite array electrode of the present invention has excellent and stable electrochemical performance, and because the composite array electrode has excellent detection capabilities, therefore, the application in many fields of biochemical analysis and detection or life science.
  • the application of the composite array electrode may be, but not limited to, sensing or stimulation analysis.
  • FIG. 1 is a schematic structural diagram of a composite array electrode 100 according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional structure diagram of a composite array electrode 100 provided by an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional structure diagram of a micro-electrode array provided by an embodiment of the present invention.
  • FIG. 4 is a process flow diagram of a method for preparing a composite array electrode provided by an embodiment of the present invention.
  • FIG. 5 is a comparison schematic diagram of an existing microelectrode array and a composite array electrode provided by an embodiment of the present invention
  • FIG. 5(a) is an overall schematic diagram of two electrodes
  • FIG. 5(b) is a partial schematic diagram of two electrodes
  • FIG. 5 (c) is a schematic diagram of an unmodified microelectrode on an existing microelectrode array.
  • (d) in FIG. 5 is a schematic diagram of a microelectrode containing a platinum-modified layer on the existing microelectrode array
  • (e) in FIG. 5 is an existing microelectrode The electric field distribution diagram of the microelectrode containing the platinum modified layer on the array.
  • FIG. 5 is a schematic diagram of the unmodified microelectrode on the composite array electrode, and (g) in FIG. 5 is the modified platinum electrode containing the conductive layer on the composite array electrode. Schematic diagram of the microelectrode.
  • FIG. 5(h) is the electric field distribution diagram of the microelectrode containing the nano-platinum conductive layer after modification on the composite array electrode.
  • FIG. 6 is an electron micrograph of a microelectrode of an existing microelectrode array and a composite array electrode provided by an embodiment of the present invention
  • FIG. 6(a) is an electron micrograph of a platinum modified layer of microelectrodes on the existing microelectrode array
  • FIG. 6 Middle (b) is the electron micrograph and partial enlarged view of the nano-platinum conductive layer modified by the microelectrode on the composite array electrode.
  • Figure 6 (c) is the electron micrograph of the single nano-platinum conductive layer of the composite array electrode.
  • Figure 6 (d) is A partially enlarged view of the nano-platinum conductive layer modified with microelectrodes on the composite array electrode.
  • Electrode 7 is a graph of cyclic voltammetry characteristics of different electrodes provided by an embodiment of the present invention.
  • the electrodes are: unmodified microelectrode array A, microelectrode array B containing a platinum-modified layer, and a composite array containing a nano-platinum conductive layer Electrode C.
  • FIG. 8 is a cyclic voltammetry curve diagram of a composite array electrode used for glucose detection according to an embodiment of the present invention.
  • the raw materials and other chemical reagents used in the embodiments of the present invention are commercially available products.
  • an embodiment of the present invention provides a composite array electrode 100 including a micro-electrode array substrate 10 and micro-electrodes 20 formed on the micro-electrode array substrate 10
  • the modified layer 30 includes a plurality of conductive layers 31 disposed on the surface of the microelectrode 20 at intervals.
  • an insulating layer 32 is provided on the surface of the microelectrode 20, in an area other than the conductive layer 31.
  • the material of the conductive layer 31 includes nano platinum and nano One or more of iridium, conductive polymers and carbon nanotubes.
  • a plurality of microelectrodes 20 are provided on the microelectrode array substrate 10, and the plurality of microelectrodes 20 may be arranged on the microelectrode array substrate 10 in an array, but not limited to.
  • each of the microelectrodes is further connected with a conductive wire 40 provided on the microelectrode array substrate 10.
  • the microelectrode array substrate 10 includes a flexible electrode substrate or a hard electrode substrate.
  • the material of the substrate layer of the microelectrode array substrate in the form of a flexible electrode substrate is made of a flexible material, and the metal layer also has good bendability.
  • the micro-electrode array substrate 10 may be a micro-electrode array of various structures; for example, the micro-electrode array substrate 10 includes an insulating substrate 11 on which multiple sets of micro-electrodes 20 are arranged, each micro The electrode 20 is led out by a wire 40 covered with a second insulating layer 12, wherein the micro-electrode 20 and the pad 41 of the wire 40 expose the second insulating layer 12, see FIG.
  • the lateral size of the microelectrode 20 on the microelectrode array substrate 10 is 150-300 ⁇ m.
  • the lateral dimension of the microelectrode 20 is 150-250 ⁇ m.
  • the lateral dimension of the microelectrode 20 is 150 ⁇ m, or 180 ⁇ m, or 200 ⁇ m, or 230 ⁇ m, or 250 ⁇ m.
  • the lateral dimension of the microelectrode may be regarded as the maximum distance between any two points on the edge of the cross-sectional shape of the horizontal direction of the microelectrode.
  • the lateral dimension of the microelectrode is the diameter of the circle; when the cross-sectional shape of the microelectrode is rectangular, the lateral dimension of the microelectrode is this The long side of the rectangle.
  • the insulating layer may be made of but not limited to insulating polymer materials.
  • the material of the insulating layer may be, but not limited to, plastic or rubber.
  • the material of the insulating layer may be, but not limited to, one or more of polyimide, polydimethylsiloxane, polychlorop-xylene, silica gel, polyurethane, and epoxy resin.
  • the cross-sectional shape of the conductive layer includes one or more of a circle, a triangle, a quadrangle, and a polygon.
  • the cross-sectional shape of the conductive layer includes a circle.
  • a plurality of the conductive layer arrays are arranged on the surface of the microelectrode.
  • the conductive layer may also be periodically arranged on the surface of the microelectrode.
  • the cross-sectional shape of the microelectrode may be, but not limited to, circular.
  • a plurality of the conductive layers may be regularly arranged around the center of the circular cross-sectional shape of the microelectrode.
  • the spaced-apart conductive layers can effectively improve the electric field distribution of the microelectrodes where they are located, dispersing the electric field of the original microelectrodes with non-uniform electric field distribution, so that the electric field distribution finally applied to the conductive layer is relatively uniform.
  • the lateral dimension of each conductive layer is 6-60 ⁇ m. Further, optionally, the lateral dimension of each conductive layer is 15-35 ⁇ m. For example, the lateral dimension of each conductive layer is 10 ⁇ m, or 15 ⁇ m, or 20 ⁇ m, or 25 ⁇ m, or 30 ⁇ m, or 35 ⁇ m, or 45 ⁇ m, or 50 ⁇ m, etc.
  • the total area of the plurality of conductive layers accounts for 50 to 80%.
  • the total area of the plurality of conductive layers accounts for 50 to 70%.
  • the total area ratio of the plurality of conductive layers is 50%, or 55%, or 60%, or 65%, or 70%, or 80%.
  • the proportion of the total area of the conductive layer within the preferred range can greatly improve the electrochemical performance of the entire microelectrode.
  • the surface of the microelectrode is a side surface facing away from the insulating substrate of the microelectrode array.
  • the modified layer covers the entire microelectrode; the modified layer on the round top surface of the microelectrode may include a plurality of conductive layers arranged at intervals; and The modified layer on the cylindrical side surface of the microelectrode may not include a conductive layer, and the area on the surface of the microelectrode except the conductive layer is an insulating layer.
  • a plurality of spaced conductive layers are provided on the entire circular top surface and cylindrical side surface of the cylindrical microelectrode, and the area other than the conductive layer on the surface of the microelectrode is an insulating layer.
  • the thickness of the conductive layer is 0.02 to 10 ⁇ m. Further, optionally, the thickness of the conductive layer is 0.05-5 ⁇ m. For example, the thickness of the conductive layer is 0.02 ⁇ m, 0.2 ⁇ m, or 0.3 ⁇ m, or 0.5 ⁇ m, or 0.8 ⁇ m, or 1.0 ⁇ m, or 1.5 ⁇ m, or 3.0 ⁇ m, or 4.0 ⁇ m, Or 5.0 ⁇ m, or 10 ⁇ m and so on. In the present invention, the thickness distribution of each conductive layer is uniform. Optionally, the absolute value of the allowable deviation of the thickness of the edge of the conductive layer and the intermediate region of the conductive layer is less than 0.1 ⁇ m.
  • the absolute value of the allowable deviation of the thickness of the edge of the conductive layer and the intermediate region of the conductive layer is less than 0.08 ⁇ m.
  • the uniform thickness of the entire conductive layer can eliminate the influence of edge effects.
  • the electric field of this conductive layer is evenly distributed, and the electrochemical performance of the surface of the conductive layer is also more balanced and stable.
  • the microelectrode on the composite array electrode of the present invention has more superior and stable electrochemical performance, can obtain more subtle signals, and has a very high accuracy; therefore, the composite array electrode can be used for very demanding electrodes For example, it is used as an implantable nerve electrode.
  • the thickness of the conductive layer is greater than or equal to the thickness of the insulating layer on the surface of the microelectrode.
  • the material of the conductive layer 31 of the present invention includes, but is not limited to, one or more of nano-platinum, nano-iridium, conductive polymer, carbon nanotube, and the like.
  • the material of the conductive layer may be nano platinum; or the material of the conductive layer may be nano iridium; or the material of the conductive layer may be a conductive polymer; or the material of the conductive layer may be carbon nanotubes
  • the material of the conductive layer may be a composite nano material of nano platinum and nano iridium.
  • the nano materials such as nano platinum, nano iridium, conductive polymer, carbon nano tube and the like have a very large surface area, and the performance is relatively stable, which can improve the overall electrochemical performance of the micro electrode to a certain extent.
  • the compound array electrode of the present invention disperses the electric field of the original microelectrode with uneven electric field distribution by further arranging several conductive layers with excellent performance on the surface of the microelectrode, making full use of the non-uniformity of the electric field, so that the final application to the conductive
  • the electric field distribution of the layer is relatively uniform; at the same time, the large surface area provided by the three-dimensional nanostructure of the conductive layer greatly improves the electrochemical performance of the electrode, so that the entire composite array electrode has low impedance, high charge storage capacity and charge injection capacity, Good mechanical stability and electrochemical stability.
  • the composite array electrode has a wide detection range and good detection linearity, and has broad application prospects in enzyme-free glucose detection, as well as in life science fields such as neurophysiology and brain science research.
  • another embodiment of the present invention also provides a method for preparing a composite array electrode, including;
  • micro-electrode array substrate the micro-electrode surface of the micro-electrode array substrate is provided with an insulating layer; etching the insulating layer to form a plurality of spaced-apart depositions through the insulating layer on the insulating layer hole;
  • An electrodeposition method is used to deposit a conductive material in the deposition hole to form a conductive layer on the surface of the microelectrode.
  • the conductive material includes one of nano-platinum, nano-iridium, conductive polymer, carbon nanotube, etc. Or more.
  • a plurality of microelectrodes are provided on the microelectrode array substrate, and the plurality of microelectrodes may be arranged in an array on the microelectrode array substrate.
  • the insulating layer on the surface of the microelectrode of the microelectrode array substrate can be formed by coating or spraying an insulating material on the microelectrode array substrate.
  • the insulating layer is etched through the steps of gluing, exposure, development, etching, and stripping to form a plurality of spaced-apart depositions through the insulating layer on the insulating layer Hole; the deposition hole exposes the surface of the microelectrode.
  • the method for etching the insulating layer may also be a plasma etching method or a laser processing method.
  • the insulating layer after the insulating layer is etched, and before the electrodeposition method is used, it also includes surface pretreatment of the etched microelectrode array substrate, and the specific steps of the surface pretreatment include :
  • the micro-electrode array substrate after the etching treatment is first placed in an acetone or ethanol solution for ultrasonic cleaning for 20 to 60 minutes, then washed with deionized water and then placed in a sulfuric acid solution for electrochemical cyclic voltammetry scanning Until the CV curve completely coincides, then wash with deionized water for use, the scanning voltage is -0.25V ⁇ 1.2V, the scanning rate is 50 ⁇ 200mV/s, and the scanning time is 25 ⁇ 60min.
  • the concentration of the sulfuric acid is 0.03-0.8M.
  • the concentration of the sulfuric acid is 0.03M, or 0.05M, or 0.08M, or 0.3M, or 0.8M, etc.
  • the pretreatment of the surface of the microelectrode array substrate and the nanomaterial to be deposited are more firmly bonded.
  • the cross-sectional shape of the deposition hole includes one or more of a circle, a triangle, a quadrangle, and a polygon.
  • the polygon may be a pentagon or a hexagon.
  • the lateral dimension of the deposition hole is 10-50 ⁇ m.
  • the step of using the electrodeposition method includes: configuring a platinum salt solution, and placing the microelectrode array substrate after the surface pretreatment Performing electrodeposition in the platinum salt solution to deposit a conductive material in the deposition hole to form a conductive layer on the surface of the microelectrode to form the conductive layer, and the platinum salt in the platinum salt solution includes platinum chloride and hexachloro One or more of ammonium platinum, potassium hexachloroplatinate, sodium hexachloroplatinate, chloroplatinic acid, platinum nitrate, platinum sulfate, potassium tetrachloroplatinate and ammonium tetrachloroplatinate, the platinum salt solution
  • the pH is 6.5 ⁇ 7.5.
  • the process of placing the microelectrode array substrate after the surface pretreatment in the platinum salt solution for electrodeposition also includes: placing the substrate after the surface pretreatment The substrate of the microelectrode array is first placed in the platinum salt solution and allowed to stand for 5-20mim.
  • the platinum salt in the platinum salt solution includes platinum chloride, ammonium hexachloroplatinate, potassium hexachloroplatinate, sodium hexachloroplatinate, chloroplatinic acid, platinum nitrate, platinum sulfate, potassium tetrachloroplatinate And any two of ammonium tetrachloroplatinate, the concentration of any two platinum salts
  • the platinum salt solution further includes a buffering agent, and the buffering agent includes one or more of a phosphate buffering agent, a Tris-HCl buffering agent, and a borate buffering agent.
  • the concentration of the buffer in the platinum salt solution is 0.1-100 mM.
  • the platinum salt solution contains a phosphate buffer, wherein the hydrogen phosphate ion concentration is 0.01 mM to 1 mM, and the dihydrogen phosphate ion concentration is 0.5 mM to 50 mM.
  • the solubility of platinum ions in the platinum salt solution is 5 mM to 50 mM. Further, optionally, the solubility of platinum ions in the platinum salt solution is 10 mM to 30 mM.
  • the platinum ion solubility in the platinum salt solution is 5 mM, or 10 mM, or 15 mM, or 20 mM, or 30 mM, or 40 mM, or 50 mM, etc.
  • the conductive material is electrodeposited by a constant potential or a constant current, etc., wherein the potential of the constant potential deposition is -0.5V ⁇ -0.75V; or the current of the constant current deposition is -0.25 ⁇ A ⁇ -5 ⁇ A.
  • the deposition time of the electrodeposition method is 20-60 minutes. The deposition time of the electrodeposition method is related to the size of the potential or current, and the thickness of the conductive layer.
  • the thickness of the conductive layer is 0.02-10 ⁇ m.
  • the thickness of the prepared conductive layer is uniform.
  • the absolute value of the allowable deviation of the thickness of the edge of the conductive layer and the intermediate region of the conductive layer is less than 0.1 ⁇ m.
  • the step of using the electrodeposition method includes: configuring an iridium salt solution, and placing the microelectrode array substrate after the surface pretreatment on the iridium salt Conduct electrodeposition in the solution to deposit a conductive material in the deposition hole to form a conductive layer on the surface of the microelectrode to form the conductive layer.
  • the iridium salt in the iridium salt solution includes iridium chloride, chloroiridic acid, chloroiridic acid One or more of sodium and potassium chloroiridate.
  • the pH of the iridium salt solution is 6.5-7.5.
  • the conductive polymer in the solution includes one or more of polyaniline, polypyrrole, and polythiophene.
  • the conductive polymer may also be one or more of polyaniline derivatives, polypyrrole derivatives, and polythiophene derivatives.
  • the conductive material is carbon nanotubes
  • the carbon nanotubes are single-wall or multi-wall carbon nanotubes
  • the pore diameter of the carbon nanotubes is 30-45 ⁇ m.
  • the preparation method of the present invention can effectively eliminate the influence of the edge effect, and a plurality of spaced conductive layers can be formed on the surface of the microelectrode of the microelectrode array substrate; on the one hand, the conductive layer improves the electrochemical performance of the microelectrode; On the other hand, the conductive layer disperses the electric field of the original microelectrode with uneven electric field distribution, so that the newly prepared composite array electrode has a stable and uniformly distributed electric field; the preparation method of the entire composite array electrode is simple and easy to operate , Low cost, easy to achieve industrial production.
  • a method for preparing a composite array electrode includes:
  • micro-electrode array substrate Provides a micro-electrode array substrate.
  • the micro-electrode array substrate is provided with an insulating layer on the surface of the micro-electrode array.
  • the lateral size of the micro-electrodes on the micro-electrode array substrate is about 200 ⁇ m.
  • a porous template is designed.
  • the template includes multiple arrays
  • the diameter of each through hole is about 10 ⁇ m, and a plurality of spaced-apart deposition holes are correspondingly etched on the insulating layer on the surface of the microelectrode by a photolithography machine and a porous template; wherein, the insulating layer is made of polyimide.
  • the etched microelectrode array substrate was firstly ultrasonically cleaned in acetone solution for 30 minutes, then washed with deionized water and then placed in 0.05M sulfuric acid solution for electrochemical cyclic voltammetry scanning until the CV curve completely coincided, and then used Deionized water is washed and used to obtain the surface pre-treated microelectrode array substrate; wherein, the scanning voltage of the electrochemical cyclic voltammetry scan is -0.25V ⁇ 1.2V, the scan rate is 100 ⁇ 200mV/s, and the scan time is 30min.
  • the results show that the edge thickness of the microelectrode of the existing microelectrode array is different from the middle thickness, the edge area is significantly denser than the middle area;
  • the distribution of nano-platinum is very balanced, the microstructure of the edge of the conductive layer and the middle area are similar, and all the conductive layers tend to be consistent.
  • a method for preparing a composite array electrode includes:
  • microelectrode array substrate Provides a microelectrode array substrate.
  • the microelectrode surface of the microelectrode array substrate is coated with a polydimethylsiloxane insulating layer.
  • the lateral size of the microelectrode on the microelectrode array substrate is about 200 ⁇ m; design a porous template. It includes a plurality of spaced-apart through-holes, each with a diameter of about 10 ⁇ m, and a plurality of spaced-apart deposition holes are correspondingly etched on the insulating layer on the surface of the microelectrode by a photolithography machine and a porous template;
  • the etched microelectrode array substrate was firstly ultrasonically cleaned in acetone solution for 30 minutes, then washed with deionized water and then placed in 0.05M sulfuric acid solution for electrochemical cyclic voltammetry scanning until the CV curve completely coincided, and then used Deionized water is washed and used to obtain the surface pre-treated microelectrode array substrate; wherein, the scanning voltage of the electrochemical cyclic voltammetry scan is -0.25V ⁇ 1.2V, the scan rate is 100 ⁇ 200mV/s, and the scan time is 30min.
  • iridium salt solution with a pH of 7.0 is added to a 30 mM iridium chloride solution and 20 mM phosphate is added.
  • the surface of the pre-treated microelectrode array substrate was placed in an iridium salt solution and allowed to stand for 10 minutes, then platinum was electrodeposited by a constant potential method with a potential of -0.80V and a deposition time of 15 minutes to form a nano-iridium conductive layer in the deposition hole. After the deposition is completed, deionized water is washed to obtain a composite array electrode, and the thickness of the nano-iridium conductive layer is 8 ⁇ m.
  • a method for preparing a composite array electrode includes:
  • micro-electrode array substrate is provided with a polychlorinated para-xylene insulating layer.
  • the lateral size of the micro-electrode on the micro-electrode array substrate is about 200 ⁇ m;
  • a plurality of deposition holes arranged in an array are etched on the insulating layer on the surface, and the diameter of the deposition holes is about 10 ⁇ m.
  • the etched microelectrode array substrate was first ultrasonically cleaned in acetone solution for 35 minutes, then washed with deionized water and then placed in 0.05M sulfuric acid solution for electrochemical cyclic voltammetry scanning until the CV curve completely overlapped, and then used Deionized water is washed and used to obtain the surface pre-treated microelectrode array substrate; wherein, the scanning voltage of the electrochemical cyclic voltammetry scan is -0.25V ⁇ 1.2V, the scan rate is 100 ⁇ 200mV/s, and the scan time is 30min.
  • a method for preparing a composite array electrode includes:
  • microelectrode array substrate Provides a microelectrode array substrate.
  • the microelectrode surface of the microelectrode array substrate is coated with a polydimethylsiloxane insulating layer.
  • the lateral size of the microelectrode on the microelectrode array substrate is about 250 ⁇ m; design a porous template. It includes a plurality of spaced-apart through holes, each with a diameter of about 8 ⁇ m, and a plurality of spaced-apart deposition holes are correspondingly etched on the insulating layer on the surface of the microelectrode by a photolithography machine and a porous template;
  • the etched microelectrode array substrate was first ultrasonically cleaned in ethanol solution for 30 minutes, then washed with deionized water, and then placed in 0.05M sulfuric acid solution for electrochemical cyclic voltammetry scanning until the CV curve completely overlapped, and then used Deionized water is washed and used to obtain the surface pre-treated microelectrode array substrate; wherein, the scanning voltage of the electrochemical cyclic voltammetry scan is -0.25V ⁇ 1.2V, the scan rate is 100 ⁇ 200mV/s, and the scan time is 30min.
  • the pH is adjusted to 7.0, the pore size of the carbon nanotube is 40 ⁇ m; the surface of the microelectrode array substrate after surface pretreatment is placed in the carbon nanotube solution and allowed to stand for 15min, then the constant current method is electrodeposited Platinum, current is -0.25 ⁇ A, deposition time is 20min, to form a carbon nanotube conductive layer in the deposition hole, after the deposition is completed, deionized water is washed, and a composite array electrode is obtained, the thickness of the carbon nanotube conductive layer is 8 ⁇ m.
  • the composite array electrode (C) containing the nano-platinum conductive layer prepared by the preparation method of the present invention, the micro-electrode array (B) containing the nano-platinum modified layer and the unmodified micro-electrode array (A) are the same Under the conditions of cyclic voltammetry (CV) test in PBS solution, the microelectrode array (B) containing the nano-platinum modified layer refers to the micro-electrode array modified with the nano-platinum layer on the entire surface of the microelectrode .
  • the CV area of the composite array electrode (C) prepared by the present invention is significantly increased compared to the microelectrode array (B) containing the nano-platinum modification layer, and the charge storage capacity of the composite array electrode (C) Compared to the microelectrode array (B), it is increased by about 100 times.
  • the composite array electrode containing the nano-platinum conductive layer prepared by the preparation method of the present invention is placed in glucose solutions of different concentrations for electrochemical detection, and the current-potential corresponding curve shown in FIG. 8 is obtained;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Emergency Medicine (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明提供了一种复合阵列电极,包括微电极阵列基体,以及形成在所述微电极阵列基体的微电极表面的修饰层,所述修饰层包括多个间隔设置在所述微电极表面的导电层,所述微电极表面上,所述导电层以外的区域设置绝缘层,所述导电层的材质包括纳米铂、纳米铱、导电聚合物和碳纳米管等中的一种或多种。该复合阵列电极有效消除的边缘效应的影响,整个所述复合阵列电极的微电极表面电场分布均匀,显著提高了电极的电化学性能和电极的检测能力水平。本发明还提供了复合阵列电极的制备方法和应用。

Description

一种复合阵列电极及其制备方法和应用 技术领域
本发明涉及电催化材料技术领域,具体涉及一种复合阵列电极及其制备方法和应用。
背景技术
神经电极作为最重要的植入式微器件之一,用以刺激神经组织或记录神经电信号,广泛用于神经生理、脑科学研究等生命科学领域。目前,神经电极正朝着集成化和微型化的微电极阵列发展。然而,电极尺寸的减小会造成电极阻抗增加、电容降低等的问题,严重影响电极的电化学性能,限制电极在生理参数检测以及生命科学方面的应用。
现有技术中,人们一般通过表面修饰的方式在一定程度的改善电极的电化学性能;但是由于电极边缘与中间表面的电场分布不均匀,在电镀过程中,往往会出现电极边缘电场分布密度较高,导致边缘电沉积过快,容易发生边缘效应,造成边缘与中间的镀层厚度不均匀、电极电化学性能差的情况;并且,电极尺寸越小,边缘效应越严重。目前成熟的工艺中,包括降低铜的边缘效应可通过在基底表面形成一层金属种子层,再退火处理,随后在进行电镀(Patent 102790009A,2012.);或改变电镀液成分以及在电镀装置设计特殊的喷液机构使电镀液浓度分布均匀改善均匀性(Patent US07459892,1990.;Patent 206109565U,2017.);或者设计电镀挡板来阻断绕过挡板边缘的电场线,以此消除边缘效应(Patent 200999265Y,2008.);虽然可以一定程度地消除边缘效应,但均用于大型的零件,对于微纳电极不大适用,且操作不便。所以对于神经电极,尤其是微纳米尺度电极的表面修饰方面中,边缘效应均无法得到很好的解决。
发明内容
有鉴于此,本发明提供了一种复合阵列电极及其制备方法和应用,该复合阵列电极有效消除的边缘效应的影响,整个所述复合阵列电极的微电极表面电场分布均匀,显著提高了电极的电化学性能和电极的检测能力水平。
第一方面,本发明提供了一种复合阵列电极,包括微电极阵列基体,以及形成在所述微电极阵列基体的微电极表面的修饰层,所述修饰层包括多个间隔设置在所述微电极表面的导电层,所述微电极表面上,所述导电层以外的区域设置绝缘层,所述导电层的材质包括纳米铂、纳米铱、导电聚合物和碳纳米管等中的一种或多种。
可选地,所述导电聚合物包括聚苯胺、聚吡咯和聚噻吩中的一种或多种。所述导电聚合物还包括聚苯胺衍生物、聚吡咯衍生物和聚噻吩衍生物中的一种或多种。
可选地,每个所述导电层的横向尺寸为6~60μm。
可选地,多个所述导电层阵列排布在所述微电极表面。
可选地,所述微电极表面上,多个所述导电层的总面积占比为50~80%。
可选地,所述导电层的厚度为0.02~10μm。
可选地,所述导电层的边缘与所述导电层中间区域的厚度允许偏差的绝对值小于0.1μm。
可选的,所述微电极阵列基体包括柔性电极基体或硬质电极基体。
本发明第一方面提供的复合阵列电极,通过在微电极表面进一步阵列排布若干个性能优越的导电层,将原来电场分布不均匀微电极的电场分散开,充分利用电场的不均匀性,使得最后施加到导电层的电场分布相对均匀;同时基于导电层的三维纳米结构提供的极大的表面积,大大提升电极的电化学性能,使 整个所述复合阵列电极具有低阻抗、高电荷存储能力和电荷注入能力、良好的机械稳定性和电化学稳定性。所述复合阵列电极的检测范围广、检测线性度好,在无酶葡萄糖检测、以及在神经生理、脑科学研究等生命科学领域均具有广大应用前景。
第二方面,本发明还提供了一种复合阵列电极的制备方法,包括:
提供微电极阵列基体,所述微电极阵列基体的微电极表面设有一层绝缘层;刻蚀所述绝缘层,使所述绝缘层上形成多个间隔设置的贯穿所述绝缘层的沉积孔;
采用电沉积法,在所述沉积孔内沉积导电材料以在所述微电极表面形成导电层,所述导电材料包括纳米铂、纳米铱、导电聚合物和碳纳米管等中的一种或多种。
可选地,在刻蚀所述绝缘层之后,所述采用电沉积法之前,还包括对所述刻蚀后的所述微电极阵列基体进行表面预处理,所述表面预处理的具体步骤包括:
将所述刻蚀处理后的所述微电极阵列基体先置于丙酮或乙醇溶液中超声清洗20~60min,再经去离子水洗净后置于硫酸溶液中进行电化学循环伏安扫描处理至CV曲线完全重合,然后用去离子水洗净待用,扫描电压为-0.25V~1.2V,扫描速率为50~200mV/s,扫描时间为25~60min。
可选地,当所述导电材料为纳米铂时,所述采用电沉积法的步骤包括:
配置铂盐溶液,将经所述表面预处理后的所述微电极阵列基体置于所述铂盐溶液中进行电沉积,使沉积孔内沉积导电材料以在所述微电极表面形成导电层形成所述导电层,所述铂盐溶液中的铂盐包括氯化铂、六氯铂酸铵、六氯铂酸钾、六氯铂酸钠、氯铂酸、硝酸铂、硫酸铂、四氯铂酸钾和四氯铂酸铵中的 一种或多种,所述铂盐溶液的pH为6.5~7.5。
可选地,所述铂盐溶液中还包括缓冲剂,所述缓冲剂包括磷酸盐缓冲剂、Tris~HCl缓冲剂和硼酸盐缓冲剂中的一种或多种。
可选地,所述沉积孔的截面形状包括为圆形、三角形、四边形和多边形中的一种或多种;所述沉积孔的横向尺寸为6~60μm。
本发明第二方面提供的复合阵列电极的制备方法能够有效消除边缘效应的影响;在微电极阵列基体的微电极表面形成多个间隔设置的导电层;所述导电层一方面提高的所述微电极的电化学性能;另一方面,所述导电层将原来电场分布不均匀微电极的电场分散开,使新制备得到的复合阵列电极具有稳定且均匀分布的电场;整个所述复合阵列电极的制备方法工艺简单易操作,成本低、易实现产业化生产。
第三方面,本发明还提供了一种包含本发明第一方面所述的复合阵列电极或本发明第二方面所述制备方法制得的复合阵列电极在生化分析检测或生命科学领域的应用,例如植入式神经电极设备的应用、葡萄糖检测或其他重要生理参数物质其他领域。本发明所述复合阵列电极具有优异且稳定的电化学性能,并且由于所述复合阵列电极在具有出色的检测能力,因此,所述在众多生化分析检测或生命科学领域中的应用。
可选地,所述复合阵列电极的应用可以但不限于在传感或刺激分析检测方面。
本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
为更清楚地阐述本发明的内容,下面结合附图与具体实施例来对其进行详 细说明。
图1为本发明一实施例提供的复合阵列电极100的结构示意图。
图2为本发明一实施例提供的复合阵列电极100的截面结构示意图。
图3为本发明一实施例提供的微电极阵列的截面结构示意图。
图4为本发明一实施例提供的复合阵列电极制备方法的工艺流程图。
图5为本发明一实施例提供的现有微电极阵列与复合阵列电极的对比示意图;图5中(a)为两电极整体示意图,图5中(b)为两电极局部示意图,图5中(c)为现有微电极阵列上未修饰的微电极示意图,图5中(d)为现有微电极阵列上含铂修饰层的微电极示意图;图5中(e)为现有微电极阵列上含铂修饰层的微电极电场分布图,图5中(f)为复合阵列电极上未修饰的微电极示意图,图5中(g)为复合阵列电极上修饰后含纳米铂导电层的微电极示意图,图5中(h)为复合阵列电极上修饰后含纳米铂导电层的微电极电场分布图。
图6为本发明一实施例提供的现有微电极阵列与复合阵列电极的微电极的电镜图;图6中(a)为现有微电极阵列上微电极的铂修饰层电镜图,图6中(b)为复合阵列电极上微电极修饰的纳米铂导电层电镜图和局部放大图,图6中(c)为复合阵列电极的单个纳米铂导电层电镜图,图6中(d)为复合阵列电极上微电极修饰的纳米铂导电层的局部放大图。
图7为本发明一实施例提供的不同电极的循环伏安特性曲线图;电极分别为:未修饰的微电极阵列A、含铂修饰层的微电极阵列B和含纳米铂导电层的复合阵列电极C。
图8为本发明一实施例提供的复合阵列电极用于葡萄糖检测的循环伏安曲线图。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
下面分多个实施例对本发明实施例进行进一步的说明。其中,本发明实施例不限定于以下的具体实施例。在不变主权利的范围内,可以适当的进行变更实施。
若无特别说明,本发明实施例所采用的原料及其它化学试剂皆为市售商品。
一并参见图1和图2所示,本发明一实施例提供了一种复合阵列电极100,所述复合阵列电极包括微电极阵列基体10,以及形成在微电极阵列基体10的微电极20表面的修饰层30,修饰层30包括多个间隔设置在微电极20表面的导电层31,微电极20表面上,导电层31以外的区域设置绝缘层32,导电层31的材质包括纳米铂、纳米铱、导电聚合物和碳纳米管等中的一种或多种。
其中,微电极阵列基体10上设有多个微电极20,所述多个微电极20可以但不限于阵列排布在所述微电极阵列基体10上。可选地,每个所述微电极还连接有设置在微电极阵列基体10上的导电线40。本发明所述实施方式中,所述微电极阵列基体10包括柔性电极基体或硬质电极基体。当所述微电极阵列基体包括基板层和金属层时,柔性电极基体形式的微电极阵列基体的基板层的材质由柔性材质制备,金属层也具有良好的可弯曲性能。所述微电极阵列基体10可以为各种结构的微电极阵列;例如,所述微电极阵列基体10包括在绝缘衬底11,所述绝缘衬底上排布多组微电极20,每个微电极20由导线40引出,所述导线40上覆盖有第二绝缘层12,其中,所述微电极20和所述导线40的焊盘41暴露出所述第二绝缘层12,参见图3。
可选地,所述微电极阵列基体10上的所述微电极20的横向尺寸为 150~300μm。进一步地,可选地,所述微电极20的横向尺寸为150~250μm。例如所述微电极20的横向尺寸为150μm,或为180μm,或为200μm,或为230μm,或为250μm等。所述微电极的横向尺寸可以认为是所述微电极在水平方向的截面形状边缘上任意两点之间最大距离。例如,当所述微电极的截面形状为圆形时,所述微电极的横向尺寸为该圆形的直径;当所述微电极的截面形状为矩形时,所述微电极的横向尺寸为该矩形的长边长。
本实施方式中,所述绝缘层可以但不限于由绝缘高分子材料制备而成。可选地,所述绝缘层的材质可以但不限于为塑料或橡胶。可选地,所述绝缘层的材质可以但不限于包括聚酰亚胺、聚二甲基硅氧烷、聚氯代对二甲苯、硅胶、聚氨酯和环氧树脂中的一种或多种。
可选地,所述修饰层中,所述导电层的截面形状包括为圆形、三角形、四边形和多边形中的一种或多种。优选地,所述导电层的截面形状包括为圆形。本实施方式中,多个所述导电层阵列排布在所述微电极表面。例如,相邻两个所述导电层的间隔相等。所述导电层还可以周期性排布在所述微电极表面。所述微电极的截面形状可以但不限于为圆形。当所述微电极的截面形状为圆形时,多个所述导电层可以围绕微电极的圆形截面形状的中心规则排布。间隔分布的导电层可以有效改善使所在的微电极的电场分布,将原来电场分布不均匀微电极的电场分散开,使得最后施加到导电层的电场分布相对均匀。
可选地,每个所述导电层的横向尺寸为6~60μm。进一步地,可选地,每个所述导电层的横向尺寸为15~35μm。例如,每个所述导电层的横向尺寸为10μm,或为15μm,或为20μm,或为25μm,或为30μm,或为35μm,或为45μm,或为50μm等。
可选地,所述微电极表面上,多个所述导电层的总面积占比为50~80%。进 一步地,可选地,所述微电极表面上,多个所述导电层的总面积占比为50~70%。例如,所述微电极表面上,多个所述导电层的总面积占比为50%、或为55%、或为60%、或为65%、或为70%、或为80%等。本发明所述复合阵列电极的每个微电极上,优选范围内的导电层的总面积占比可以极大地提高整个微电极的电化学性能。
本实施方式中,所述微电极表面是背离所述微电极阵列的绝缘衬底的一侧表面。若所述微电极为一突出的圆柱状电极时,所述修饰层覆盖整个所述微电极;所述微电极的圆形顶面上的修饰层可以包括多个间隔设置的导电层;而所述微电极的圆柱侧面的修饰层上可以不含导电层,所述微电极表面上除导电层之外的区域为绝缘层。或者,在所述圆柱状的微电极的整个圆形顶面和圆柱侧面上均设有多个间隔设置的导电层,所述微电极表面上除导电层之外的区域为绝缘层。
本实施方式中,所述导电层的厚度为0.02~10μm。进一步地,可选地,所述导电层的厚度为0.05~5μm。例如,所述导电层的厚度为0.02μm,0.2μm,或为0.3μm,或为0.5μm,或为0.8μm,或为1.0μm,或为1.5μm,或为3.0μm,或为4.0μm,或为5.0μm,或为10μm等。本发明每个所述导电层的厚度分布大小均一。可选地,所述导电层的边缘与所述导电层中间区域的厚度允许偏差的绝对值小于0.1μm。进一步地,可选地,所述导电层的边缘与所述导电层中间区域的厚度允许偏差的绝对值小于0.08μm。整个导电层的厚度大小均一可以消除边缘效应的影响,这个导电层的电场分布均匀,且导电层表面的电化学性能也更加平衡、稳定。本发明所述复合阵列电极上的微电极由于具有更加优越且稳定的电化学性能,可以获得更加细微的信号,具有很高地准确率;因此,所述复合阵列电极可以用于对电极要求十分苛刻的领域,例如用作于植入式神经电极等。本实施方式 中,所述导电层的厚度大于或等于所述微电极表面的绝缘层的厚度。
可选地,本发明所述导电层31的材质包括但不限于包括纳米铂、纳米铱、导电聚合物和碳纳米管等中的一种或多种。例如,所述导电层的材质可以为纳米铂;或所述导电层的材质可以为纳米铱;或所述导电层的材质可以为导电聚合物;或所述导电层的材质可以为碳纳米管;或所述导电层的材质可以为纳米铂与纳米铱的复合纳米材料。所述纳米铂、纳米铱、导电聚合物和碳纳米管等等纳米材料具有极大的表面积,且性能较稳定,可以一定程度地提高微电极的整体电化学性能。
本发明所述复合阵列电极通过在微电极表面进一步阵列排布若干个性能优越的导电层,将原来电场分布不均匀微电极的电场分散开,充分利用电场的不均匀性,使得最后施加到导电层的电场分布相对均匀;同时基于导电层的三维纳米结构提供的极大的表面积,大大提升电极的电化学性能,使整个所述复合阵列电极具有低阻抗、高电荷存储能力和电荷注入能力、良好的机械稳定性和电化学稳定性。所述复合阵列电极的检测范围广、检测线性度好,在无酶葡萄糖检测、以及在神经生理、脑科学研究等生命科学领域均具有广大应用前景。
参见图4,本发明另一实施例还提供了一种复合阵列电极的制备方法,包括;
S10、提供微电极阵列基体,所述微电极阵列基体的微电极表面设有一层绝缘层;刻蚀所述绝缘层,使所述绝缘层上形成多个间隔设置的贯穿所述绝缘层的沉积孔;
S20、采用电沉积法,在所述沉积孔内沉积导电材料以在所述微电极表面形成导电层,所述导电材料包括纳米铂、纳米铱、导电聚合物和碳纳米管等中的一种或多种。
具体地,所述步骤S10中,所述微电极阵列基体上设有多个微电极,所述 多个微电极可以但不限于阵列排布在所述微电极阵列基体上。所述微电极阵列基体的微电极表面的绝缘层可以通过在所述微电极阵列基体涂布或喷涂绝缘材料等方式形成。
可选地,通过光罩工序,经涂胶、曝光、显影、刻蚀、去胶等步骤刻蚀所述绝缘层,使所述绝缘层上形成多个间隔设置的贯穿所述绝缘层的沉积孔;所述沉积孔暴露出所述微电极的表面。可选地,所述S10中,刻蚀所述绝缘层方法还可以为等离子刻蚀法或激光加工法等方法。
可选地,在刻蚀所述绝缘层之后,所述采用电沉积法之前,还包括对所述刻蚀后的所述微电极阵列基体进行表面预处理,所述表面预处理的具体步骤包括:将所述刻蚀处理后的所述微电极阵列基体先置于丙酮或乙醇溶液中超声清洗20~60min,再经去离子水洗净后置于硫酸溶液中进行电化学循环伏安扫描处理至CV曲线完全重合,然后用去离子水洗净待用,扫描电压为-0.25V~1.2V,扫描速率为50~200mV/s,扫描时间为25~60min。可选地,所述硫酸的浓度为0.03~0.8M。例如,所述硫酸的浓度为0.03M,或为0.05M,或为0.08M,或为0.3M,或为0.8M等。本实施方式中,经过表面预处理的所述微电极阵列基体与待沉积的纳米材料之间结合更加牢固。
可选地,所述沉积孔的截面形状包括为圆形、三角形、四边形和多边形中的一种或多种。所述多边形可以为五边形或六边形等。可选地,所述沉积孔的横向尺寸为10~50μm。
具体地,所述步骤S20中,当所述导电材料为纳米铂时,所述采用电沉积法的步骤包括:配置铂盐溶液,将经所述表面预处理后的所述微电极阵列基体置于所述铂盐溶液中进行电沉积,使沉积孔内沉积导电材料以在所述微电极表面形成导电层形成所述导电层,所述铂盐溶液中的铂盐包括氯化铂、六氯铂酸铵、 六氯铂酸钾、六氯铂酸钠、氯铂酸、硝酸铂、硫酸铂、四氯铂酸钾和四氯铂酸铵中的一种或多种,所述铂盐溶液的pH为6.5~7.5。
可选地,所述将经所述表面预处理后的所述微电极阵列基体置于所述铂盐溶液中进行电沉积的过程中,还包括:将经所述表面预处理后的所述微电极阵列基体先置于所述铂盐溶液中,静置5~20mim。
其中,当所述铂盐溶液中的铂盐包括氯化铂、六氯铂酸铵、六氯铂酸钾、六氯铂酸钠、氯铂酸、硝酸铂、硫酸铂、四氯铂酸钾和四氯铂酸铵中的任意两种时,所述任意两种铂盐的浓度
可选地,所述铂盐溶液中还包括缓冲剂,所述缓冲剂包括磷酸盐缓冲剂、Tris~HCl缓冲剂和硼酸盐缓冲剂中的一种或多种。进一步地,可选地,所述铂盐溶液中,所述缓冲剂的浓度为0.1~100mM。例如,铂盐溶液含有磷酸盐缓冲剂,其中磷酸氢根离子浓度为0.01mM~1mM,磷酸二氢根离子浓度为0.5mM~50mM。
可选地,所述铂盐溶液中铂离子溶度为5mM~50mM。进一步地,可选地,所述铂盐溶液中铂离子溶度为10mM~30mM。例如,所述铂盐溶液中铂离子溶度为5mM,或为10mM,或为15mM,或为20mM,或为30mM,或为40mM,或为50mM等。
可选地,通过恒电位或恒电流等方式电沉积导电材料,其中,恒电位沉积的电位为-0.5V~-0.75V;或恒电流沉积的电流为-0.25μA~-5μA。可选地,所述电沉积法的沉积时间为20~60min。所述电沉积法的沉积时间根据电位或电流的大小,以及导电层的厚度均有关联。可选地,所述导电层的厚度为0.02~10μm。本实施方式中,制备得到的导电层的厚度均一。可选地,所述导电层的边缘与所述导电层中间区域的厚度允许偏差的绝对值小于0.1μm。
可选地,当所述导电材料为纳米铱时,所述采用电沉积法的步骤包括:配 置铱盐溶液,将经所述表面预处理后的所述微电极阵列基体置于所述铱盐溶液中进行电沉积,使沉积孔内沉积导电材料以在所述微电极表面形成导电层形成所述导电层,所述铱盐溶液中的铱盐包括氯化铱、氯铱酸、氯铱酸钠和氯铱酸钾中的一种或多种,所述铱盐溶液的pH为6.5~7.5。
可选地,当所述导电材料为导电聚合物时,所述溶液中的导电聚合物包括聚苯胺、聚吡咯和聚噻吩中的一种或多种。所述导电聚合物还可以为聚苯胺衍生物、聚吡咯衍生物和聚噻吩衍生物中的一种或多种。
可选地,当所述导电材料为碳纳米管时,所述碳纳米管为单壁或多壁碳纳米管,所述碳纳米管的孔径为30~45μm。本发明所述制备方法能够有效消除边缘效应的影响,可以在微电极阵列基体的微电极表面形成多个间隔设置的导电层;所述导电层一方面提高的所述微电极的电化学性能;另一方面,所述导电层将原来电场分布不均匀微电极的电场分散开,使新制备得到的复合阵列电极具有稳定且均匀分布的电场;整个所述复合阵列电极的制备方法工艺简单易操作,成本低、易实现产业化生产。
实施例1
一种复合阵列电极的制备方法,包括:
提供微电极阵列基体,微电极阵列基体的微电极表面设有一层绝缘层,其中,微电极阵列基体上的微电极的横向尺寸约200μm;设计多孔模板,模板中包括多个阵列排布的通孔,每个通孔的直径约10μm,通过光刻机和多孔模板,在微电极表面的绝缘层上对应刻蚀出多个间隔设置的沉积孔;其中,绝缘层材质为聚酰亚胺。
将刻蚀后的微电极阵列基体先置于丙酮溶液中超声清洗30min,再经去离子水洗净后置于0.05M硫酸溶液中进行电化学循环伏安扫描处理至CV曲线完全 重合,然后用去离子水洗净待用,得到表面预处理后的微电极阵列基体;其中,电化学循环伏安扫描的扫描电压为-0.25V~1.2V,扫描速率为100~200mV/s,扫描时间为30min。
将六氯铂酸铵和氯铂酸钠两种铂盐按体积比为1:4混合后,所述六氯铂酸铵的浓度为30mM;氯铂酸钠的浓度为5mM,加入磷酸盐,配置pH为7.0的铂盐溶液。将表面预处理后的微电极阵列基体置于铂盐溶液中静置10min,然后恒电位法电沉积铂,电位为-0.65V,沉积时间为10min,以在沉积孔内形成纳米铂导电层,沉积完成后去离子水洗净,并得到复合阵列电极,所述纳米铂导电层的厚度为5μm。
将得到复合阵列电极与现有微电极阵列进行对比,如图5所示,复合阵列电极(图5中(g))上的单个导电层上的电场分布大小十分均匀;而现有微电极阵列(图5中(d))即使设有铂修饰层,但电场在微电极的边缘和中间区域分布大小不均,见图5中(e)和图5中(h)。进一步对复合阵列电极与现有微电极阵列进行扫描电镜检测,参见图6,结果显示现有微电极阵列微电极的边缘厚度与中间厚度不同,边缘区域明显比中间区域更致密;而本发明的复合阵列电极的微电极的导电层上,纳米铂分布十分均衡,导电层的边缘和中间区域微观结构近似,所有的导电层趋向于一致。
实施例2
一种复合阵列电极的制备方法,包括:
提供微电极阵列基体,微电极阵列基体的微电极表面涂布一层聚二甲基硅氧烷绝缘层,其中,微电极阵列基体上的微电极的横向尺寸约200μm;设计多孔模板,模板中包括多个间隔设置的通孔,每个通孔的直径约10μm,通过光刻机和多孔模板,在微电极表面的绝缘层上对应刻蚀出多个间隔设置的沉积孔;
将刻蚀后的微电极阵列基体先置于丙酮溶液中超声清洗30min,再经去离子水洗净后置于0.05M硫酸溶液中进行电化学循环伏安扫描处理至CV曲线完全重合,然后用去离子水洗净待用,得到表面预处理后的微电极阵列基体;其中,电化学循环伏安扫描的扫描电压为-0.25V~1.2V,扫描速率为100~200mV/s,扫描时间为30min。
将在30mM氯化铱溶液中,加入20mM磷酸盐,配置pH为7.0的铱盐溶液。将表面预处理后的微电极阵列基体置于铱盐溶液中静置10min,然后恒电位法电沉积铂,电位为-0.80V,沉积时间为15min,以在沉积孔内形成纳米铱导电层,沉积完成后去离子水洗净,并得到复合阵列电极,所述纳米铱导电层的厚度为8μm。
实施例3
一种复合阵列电极的制备方法,包括:
提供微电极阵列基体,微电极阵列基体的微电极表面设置一层聚氯代对二甲苯绝缘层,其中,微电极阵列基体上的微电极的横向尺寸约200μm;采用等离子刻蚀法在微电极表面的绝缘层上刻蚀出多个间阵列排布的沉积孔,沉积孔的直径约10μm,
将刻蚀后的微电极阵列基体先置于丙酮溶液中超声清洗35min,再经去离子水洗净后置于0.05M硫酸溶液中进行电化学循环伏安扫描处理至CV曲线完全重合,然后用去离子水洗净待用,得到表面预处理后的微电极阵列基体;其中,电化学循环伏安扫描的扫描电压为-0.25V~1.2V,扫描速率为100~200mV/s,扫描时间为30min。
配置30mM聚苯胺溶液中,聚苯胺溶液中加入磷酸盐缓冲剂,调节pH为7.0,将表面预处理后的微电极阵列基体置于聚苯胺溶液中静置10min,然后恒电位法电沉积铂,电位为-0.80V,沉积时间为20min,以在沉积孔内形成聚苯胺导电层, 沉积完成后去离子水洗净,并得到复合阵列电极,所述聚苯胺导电层的厚度为10μm。
实施例4
一种复合阵列电极的制备方法,包括:
提供微电极阵列基体,微电极阵列基体的微电极表面涂布一层聚二甲基硅氧烷绝缘层,其中,微电极阵列基体上的微电极的横向尺寸约250μm;设计多孔模板,模板中包括多个间隔设置的通孔,每个通孔的直径约8μm,通过光刻机和多孔模板,在微电极表面的绝缘层上对应刻蚀出多个间隔设置的沉积孔;
将刻蚀后的微电极阵列基体先置于乙醇溶液中超声清洗30min,再经去离子水洗净后置于0.05M硫酸溶液中进行电化学循环伏安扫描处理至CV曲线完全重合,然后用去离子水洗净待用,得到表面预处理后的微电极阵列基体;其中,电化学循环伏安扫描的扫描电压为-0.25V~1.2V,扫描速率为100~200mV/s,扫描时间为30min。
配0.3mg/mL碳纳米管溶液,调节pH为7.0,碳纳米管的孔径为40μm;将表面预处理后的微电极阵列基体置于碳纳米管溶液中静置15min,然后恒电流法电沉积铂,电流为-0.25μA,沉积时间为20min,以在沉积孔内形成碳纳米管导电层,沉积完成后去离子水洗净,并得到复合阵列电极,所述碳纳米管导电层的厚度为8μm。
效果实施例1 评估本发明所制备的复合阵列电极的电化学性能
将经本发明所述制备方法制备得到的含有纳米铂导电层的复合阵列电极(C)、含有纳米铂修饰层的微电极阵列(B)和为未修饰的微电极阵列(A),在相同的条件下,置于PBS溶液中的进行循环伏安(CV)测试,其中,含有纳 米铂修饰层的微电极阵列(B)是指在微电极的整个表面修饰有纳米铂层的微电极阵列。
结果显示,参见图7,本发明制备得到的复合阵列电极(C)的CV面积相比含有纳米铂修饰层的微电极阵列(B)明显增大了,复合阵列电极(C)的电荷存储能力相比于微电极阵列(B)增大了约100倍。
效果实施例2 复合阵列电极在不同浓度葡萄糖溶液的检测
将经本发明所述制备方法制备得到的含有纳米铂导电层的复合阵列电极置于不同浓度葡萄糖溶液中的进行电化学检测,得到如图8所示的电流-电位相应曲线图;
结果显示,本发明所述复合阵列电极对浓度为0~30mM的葡萄糖均具有很好的线性关系;相比于传统的电极,本发明所述复合阵列电极对葡萄糖的检测范围更宽。所述葡萄糖浓度(C glu)和电流(i)之间的线性曲线为:i(μA)=0.038C glu(mM)+1.548,相关系数R 2=0.9988。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种复合阵列电极,其中,包括微电极阵列基体,以及形成在所述微电极阵列基体的微电极表面的修饰层,所述修饰层包括多个间隔设置在所述微电极表面的导电层,所述微电极表面上,所述导电层以外的区域设置绝缘层,所述导电层的材质包括纳米铂、纳米铱、导电聚合物和碳纳米管等中的一种或多种。
  2. 如权利要求1所述的复合阵列电极,其中,所述导电聚合物包括聚苯胺、聚吡咯和聚噻吩中的一种或多种。
  3. 如权利要求1所述的复合阵列电极,其中,每个所述导电层的横向尺寸为6~60μm。
  4. 如权利要求1所述的复合阵列电极,其中,多个所述导电层阵列排布在所述微电极表面。
  5. 如权利要求1所述的复合阵列电极,其中,所述微电极表面上,多个所述导电层的总面积占比为50~80%。
  6. 如权利要求1所述的复合阵列电极,其中,所述导电层的厚度为0.02~10μm。
  7. 如权利要求1所述的复合阵列电极,其中,所述导电层的边缘与所述导电层中间区域的厚度允许偏差的绝对值小于0.1μm。
  8. 如权利要求1所述的复合阵列电极,其中,所述导电层的截面形状包括为圆形、三角形、四边形和多边形中的一种或多种。
  9. 如权利要求1所述的复合阵列电极,其中,所述绝缘层的材质可以但不限于包括聚酰亚胺、聚二甲基硅氧烷、聚氯代对二甲苯、硅胶、聚氨酯、硅橡 胶和环氧树脂中的一种或多种。
  10. 如权利要求1所述的复合阵列电极,其中,所述碳纳米管为单壁或多壁碳纳米管;所述碳纳米管的孔径为30~45μm。
  11. 一种复合阵列电极的制备方法,其特征在于,包括:
    提供微电极阵列基体,所述微电极阵列基体的微电极表面设有一层绝缘层;刻蚀所述绝缘层,使所述绝缘层上形成多个间隔设置的贯穿所述绝缘层的沉积孔;
    采用电沉积法,在所述沉积孔内沉积导电材料以在所述微电极表面形成导电层,所述导电材料包括纳米铂、纳米铱、导电聚合物和碳纳米管等中的一种或多种。
  12. 如权利要求11所述的制备方法,其中,在刻蚀所述绝缘层之后,所述采用电沉积法之前,还包括对所述刻蚀后的所述微电极阵列基体进行表面预处理,所述表面预处理的具体步骤包括:
    将所述刻蚀处理后的所述微电极阵列基体先置于丙酮或乙醇溶液中超声清洗20~60min,再经去离子水洗净后置于硫酸溶液中进行电化学循环伏安扫描处理至CV曲线完全重合,然后用去离子水洗净待用,扫描电压为-0.25V~1.2V,扫描速率为50~200mV/s,扫描时间为25~60min。
  13. 如权利要求11所述的制备方法,其中,所述导电聚合物包括聚苯胺、聚吡咯和聚噻吩中的一种或多种。
  14. 如权利要求11所述的制备方法,其中,所述碳纳米管为单壁或多壁碳纳米管;所述碳纳米管的孔径为30~45μm。
  15. 如权利要求11所述的制备方法,其中,所述绝缘层的材质可以但不限于包括聚酰亚胺、聚二甲基硅氧烷、聚氯代对二甲苯、硅胶、聚氨酯、硅橡胶 和环氧树脂中的一种或多种。
  16. 如权利要求11所述的制备方法,其中,当所述导电材料为纳米铂时,所述采用电沉积法的步骤包括:
    配置铂盐溶液,将经所述表面预处理后的所述微电极阵列基体置于所述铂盐溶液中进行电沉积,使沉积孔内沉积导电材料以在所述微电极表面形成导电层形成所述导电层,所述铂盐溶液中的铂盐包括氯化铂、六氯铂酸铵、六氯铂酸钾、六氯铂酸钠、氯铂酸、硝酸铂、硫酸铂、四氯铂酸钾和四氯铂酸铵中的一种或多种,所述铂盐溶液的pH为6.5~7.5。
  17. 如权利要求11所述的制备方法,其中,当所述导电材料为纳米铱时,所述采用电沉积法的步骤包括:
    配置铱盐溶液,将经所述表面预处理后的所述微电极阵列基体置于所述铱盐溶液中进行电沉积,使沉积孔内沉积导电材料以在所述微电极表面形成导电层形成所述导电层,所述铱盐溶液中的铱盐包括氯化铱、氯铱酸、氯铱酸钠和氯铱酸钾中的一种或多种,所述铱盐溶液的pH为6.5~7.5。
  18. 如权利要求11所述的制备方法,其中,所述沉积孔的截面形状包括为圆形、三角形、四边形和多边形中的一种或多种。
  19. 如权利要求11所述的制备方法,其中,所述沉积孔的横向尺寸为6~60μm。
  20. 一种包含如权利要求1-10任意一项所述复合阵列电极或如权利要求11-19任意一项所述制备方法制得的所述复合阵列电极在生化分析检测或生命科学领域的应用。
PCT/CN2018/121354 2018-12-15 2018-12-15 一种复合阵列电极及其制备方法和应用 WO2020118732A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/121354 WO2020118732A1 (zh) 2018-12-15 2018-12-15 一种复合阵列电极及其制备方法和应用
US16/618,052 US11401622B2 (en) 2018-12-15 2018-12-15 Composite array electrode, preparation method thereof and use thereof
US17/841,189 US20230133153A1 (en) 2018-12-15 2022-06-15 Composite array electrode, preparation method thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121354 WO2020118732A1 (zh) 2018-12-15 2018-12-15 一种复合阵列电极及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020118732A1 true WO2020118732A1 (zh) 2020-06-18

Family

ID=71075309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121354 WO2020118732A1 (zh) 2018-12-15 2018-12-15 一种复合阵列电极及其制备方法和应用

Country Status (2)

Country Link
US (2) US11401622B2 (zh)
WO (1) WO2020118732A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210345928A1 (en) * 2020-05-08 2021-11-11 Heraeus Deutschland GmbH & Co. KG Recessed electrodes for flexible substrates
CN114224346B (zh) * 2021-12-16 2024-03-19 西北工业大学 一种基于混合硅胶的软性神经探针及其制备方法
CN115236163B (zh) * 2022-07-20 2024-01-16 摩尼特(武汉)智能科技有限公司 一种阵列电极体系及其在白酒品质分级的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101214149A (zh) * 2007-12-27 2008-07-09 复旦大学 一种用于三维电学互连的柔性集成互连线的制作方法
US20100233226A1 (en) * 2007-10-15 2010-09-16 Université Catholique de Louvain Drug-eluting nanowire array
KR20150095964A (ko) * 2014-02-12 2015-08-24 한국전자통신연구원 플렉시블 전극 및 그 제조방법
CN108744268A (zh) * 2018-03-29 2018-11-06 北京大学 柔性透明碳纳米管神经电极阵列在神经光电界面中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435488B2 (en) * 2004-03-23 2008-10-14 Fujifilm Corporation Fine structural body and method of producing the same
US20160195488A1 (en) * 2004-04-08 2016-07-07 Research Triangle Institute An encased polymer nanofiber-based electronic nose
US8198039B2 (en) * 2007-09-04 2012-06-12 University of Pittsburgh—of the Commonwealth System of Higher Education Biosensors and related methods
US8865402B2 (en) * 2009-08-26 2014-10-21 Clemson University Research Foundation Nanostructured substrates for surface enhanced raman spectroscopy (SERS) and detection of biological and chemical analytes by electrical double layer (EDL) capacitance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233226A1 (en) * 2007-10-15 2010-09-16 Université Catholique de Louvain Drug-eluting nanowire array
CN101214149A (zh) * 2007-12-27 2008-07-09 复旦大学 一种用于三维电学互连的柔性集成互连线的制作方法
KR20150095964A (ko) * 2014-02-12 2015-08-24 한국전자통신연구원 플렉시블 전극 및 그 제조방법
CN108744268A (zh) * 2018-03-29 2018-11-06 北京大学 柔性透明碳纳米管神经电极阵列在神经光电界面中的应用

Also Published As

Publication number Publication date
US20210102304A1 (en) 2021-04-08
US11401622B2 (en) 2022-08-02
US20230133153A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US20230133153A1 (en) Composite array electrode, preparation method thereof and use thereof
David-Pur et al. All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation
Kim et al. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording
CN102920452B (zh) 基于石墨烯的柔性冠状心电电极及其制备方法
US7452452B2 (en) Carbon nanotube nanoelectrode arrays
Gerwig et al. PEDOT–CNT composite microelectrodes for recording and electrostimulation applications: fabrication, morphology, and electrical properties
US7465494B2 (en) Density controlled carbon nanotube array electrodes
Nick et al. High aspect ratio gold nanopillars on microelectrodes for neural interfaces
Petrossians et al. Surface modification of neural stimulating/recording electrodes with high surface area platinum-iridium alloy coatings
Vafaiee et al. Carbon nanotube modified microelectrode array for neural interface
US10107792B2 (en) Cell potential measuring electrode assembly and method for measuring electric potential change of cell using the same
Márton et al. Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings
CN106108891A (zh) 一种铂纳米柱修饰的微电极阵列及其制备方法
Wang et al. Covalent bonding of YIGSR and RGD to PEDOT/PSS/MWCNT-COOH composite material to improve the neural interface
CN109700453B (zh) 一种复合阵列电极及其制备方法和应用
Zhou et al. A simple method for amino-functionalization of carbon nanotubes and electrodeposition to modify neural microelectrodes
Azim et al. Precision plating of human electrogenic cells on microelectrodes enhanced with precision electrodeposited nano-porous platinum for cell-based biosensing applications
Vajrala et al. Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing
Kim et al. Novel platinum black electroplating technique improving mechanical stability
Bauerdick et al. Substrate-integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication
Minnikanti et al. Implantable electrodes with carbon nanotube coatings
Urbanová et al. Macroporous microelectrode arrays for measurements with reduced noise
US20150112180A1 (en) Mesoporous neuronal electrode using surfactant and method of making the same
CN114366092A (zh) 基于电共沉积电子介体的微针传感器及其制备方法
US20200131655A1 (en) Procedure for the manufacturing of nanostructured platinum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18943078

Country of ref document: EP

Kind code of ref document: A1