WO2020118688A1 - 一种微流体装置及其制造和使用方法 - Google Patents

一种微流体装置及其制造和使用方法 Download PDF

Info

Publication number
WO2020118688A1
WO2020118688A1 PCT/CN2018/121194 CN2018121194W WO2020118688A1 WO 2020118688 A1 WO2020118688 A1 WO 2020118688A1 CN 2018121194 W CN2018121194 W CN 2018121194W WO 2020118688 A1 WO2020118688 A1 WO 2020118688A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic
acoustic
mixing channel
artificial structure
tube
Prior art date
Application number
PCT/CN2018/121194
Other languages
English (en)
French (fr)
Inventor
郑海荣
李飞
蔡飞燕
夏向向
肖杨
严飞
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2018/121194 priority Critical patent/WO2020118688A1/zh
Publication of WO2020118688A1 publication Critical patent/WO2020118688A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the invention relates to the field of biomedical technology, in particular to a microfluidic device and a method of manufacturing and using it.
  • the microfluidic chip has a small sample amount, can integrate multiple or all functional units of the entire analysis system into a tiny chip, which makes the sample analysis operation simple and intelligent, greatly reducing the human error caused by manual operation Therefore, it is widely used in cell screening, DNA sequencing, protein analysis and other processes.
  • microfluidic mixing unit used for microfluidic mixing is an important operating unit of the microfluidic chip.
  • the mixing effect of the microfluidic mixing unit will largely determine the reliability and credibility of the subsequent analysis work; the current microfluidic control
  • the chip, when using a microfluidic mixing unit for microfluidic mixing, is the mechanism of applying microfluidic free diffusion, so that different microfluidics are mixed with each other.
  • the different microfluidics are mixed by free diffusion, it is easy to cause the microfluidics to mix unevenly with each other.
  • the direct contact area has better mixing effect, and the non-direct contact area has less mixing effect. Therefore, the mixing effect of existing microfluidic chips needs to be improved.
  • a first aspect of the present invention provides a microfluidic device, including: a microfluidic tube provided with a microfluidic channel, the microfluidic channel for microfluidic circulation; and a microfluidic tube disposed on one side of the microfluidic tube for emitting ultrasonic waves Ultrasonic emission component; an acoustic artificial structure provided in the microfluidic tube for generating an acoustic flow vortex inside under the action of the ultrasonic emission component.
  • a microfluidic mixing channel is opened in the acoustic artificial structure. The flow mixing channel is used to contain microfluid, and the acoustic flow vortex is located in the microfluidic mixing channel.
  • a second aspect of the present invention provides a method for manufacturing a microfluidic device, including: opening a microfluidic channel for microfluidic circulation in a microfluidic tube; and providing an ultrasonic emitting component for emitting ultrasonic waves on one side of the microfluidic tube; An acoustic artificial structure for generating an acoustic flow vortex inside under the action of the ultrasonic emission component is provided in the microfluidic tube; a microfluidic mixing channel is opened in the acoustic artificial structure, and the microfluidic mixing channel is used for To accommodate the microfluid, the acoustic flow vortex is located in the microfluidic mixing channel.
  • a third aspect of the present invention provides a method for using a microfluidic device, including: filling a microfluidic channel opened in a microfluidic tube with a buffer solution, and placing an acoustic artificial structure in the microfluidic channel, the acoustic artificial structure opened There is a microfluidic mixing channel, the microfluidic mixing channel is used to contain microfluid, the acoustic flow vortex is located in the microfluidic mixing channel; the sample solution to be mixed is injected into the microfluidic mixing channel opened by the acoustic artificial structure ;
  • the ultrasonic emission component to emit ultrasonic waves to stimulate the ultrasonic field at the working frequency of the acoustic artificial structure, so that a local acoustic field is generated in the microfluidic mixing channel of the acoustic artificial structure, and the acoustic flow vortex is induced in the microfluidic mixing channel, and the sample solution is in the acoustic flow Driven by
  • the acoustic artificial structure can form an acoustic flow vortex in the microfluidic mixing channel under the action of ultrasonic waves emitted by the ultrasonic emission component.
  • different layers of microfluid can follow the rotation direction of the acoustic flow vortex
  • the flow is accelerated, and because the vortex of the microflow is in a vortex shape, the direction of the force acting on each point is different, so the flow direction of the microfluid is not fixed, so that the different microfluidic layers can be mixed more quickly, making The mixing between different microfluidics is more complete and uniform.
  • FIG. 1 is a schematic structural diagram of a microfluidic device of the present invention.
  • a first aspect of the present invention provides a microfluidic device, including: a microfluidic tube provided with a microfluidic channel, the microfluidic channel for microfluidic circulation; and a microfluidic tube disposed on one side of the microfluidic tube for emitting ultrasonic waves Ultrasonic emission component; an acoustic artificial structure provided in the microfluidic tube for generating an acoustic flow vortex inside under the action of the ultrasonic emission component.
  • a microfluidic mixing channel is opened in the acoustic artificial structure. The flow mixing channel is used to contain microfluid, and the acoustic flow vortex is located in the microfluidic mixing channel.
  • the ultrasonic wave transmitting assembly includes: a signal generator for generating an acoustic wave signal; a power amplifier provided on the signal generator side for amplifying the acoustic wave signal; and, provided on the power amplifier side An ultrasonic transducer used to convert the amplified sound wave signal into ultrasonic waves.
  • the acoustic artificial structure includes: two oppositely arranged phononic crystal plates or at least two oppositely arranged composite structures composed of phononic crystals or a combination of the phononic crystal plates and the composite structure, two The slit between the phononic crystal plates constitutes the microfluidic mixing channel, and the phononic crystal plate includes: a substrate; and a periodically distributed structured phononic crystal integrated on the substrate.
  • the acoustic artificial structure further includes: at least two convex strips arranged in parallel on the substrate at equal intervals, and the convex strips are arranged on a side of the two crystal plates away from each other.
  • the two phononic crystal plates are parallel to each other.
  • the microfluidic tube includes: a glass tube or a tube formed of polydimethylsiloxane bonded to the inner wall of the substrate.
  • the substrate includes: quartz glass or organic glass or silicon wafer or lithium niobate.
  • a second aspect of the present invention provides a method for manufacturing a microfluidic device, including: opening a microfluidic channel for microfluidic circulation in a microfluidic tube; and providing an ultrasonic emitting component for emitting ultrasonic waves on one side of the microfluidic tube; An acoustic artificial structure for generating an acoustic flow vortex inside under the action of the ultrasonic emission component is provided in the microfluidic tube; a microfluidic mixing channel is opened in the acoustic artificial structure, and the microfluidic mixing channel is used for To accommodate the microfluid, the acoustic flow vortex is located in the microfluidic mixing channel.
  • an acoustic artificial structure for generating an acoustic flow vortex inside the microfluidic tube under the action of the ultrasonic emission component includes: integrating a phononic crystal on the substrate to form a phononic crystal plate; The two phononic crystal plates are arranged oppositely and in parallel, so that the slit between the two phononic crystal plates constitutes the microfluidic mixing channel; the two phononic crystal plates are placed in the microfluidic tube.
  • a third aspect of the present invention provides a method for using a microfluidic device, including: filling a microfluidic channel opened in a microfluidic tube with a buffer solution, and placing an acoustic artificial structure in the microfluidic channel, the acoustic artificial structure opened There is a microfluidic mixing channel, the microfluidic mixing channel is used to contain microfluid, the acoustic flow vortex is located in the microfluidic mixing channel; the sample solution to be mixed is injected into the microfluidic mixing channel opened by the acoustic artificial structure ;
  • the ultrasonic emission component to emit ultrasonic waves to stimulate the ultrasonic field at the working frequency of the acoustic artificial structure, so that a local acoustic field is generated in the microfluidic mixing channel of the acoustic artificial structure, and the acoustic flow vortex is induced in the microfluidic mixing channel, and the sample solution is in the acoustic flow Driven by
  • FIG. 1 is a microfluidic device, including: a microfluidic tube 1, an ultrasonic emission component and an acoustic artificial structure; a microfluidic channel 11 is opened in the microfluidic tube 1, and the microfluidic channel 11 is for microfluidic circulation;
  • the acoustic wave emitting component is arranged outside the microfluidic tube 1 and is located on the side of the microfluidic tube 1 for emitting ultrasonic waves;
  • the acoustic artificial structure is provided in the microfluidic tube 1 and can generate an acoustic flow vortex under the action of the ultrasonic waves generated by the ultrasonic emission component.
  • a microfluidic mixing channel 7 is opened in the acoustic artificial structure, and the microfluidic mixing channel 7 is used to accommodate After the microfluid and the acoustic flow vortex are generated, the acoustic flow vortex is located in the microfluidic mixing channel 7.
  • the ultrasonic transmission component includes: a signal generator 2, an ultrasonic transducer 4 and a power amplifier 3, the signal generator 2 is used to generate an acoustic wave signal, the power amplifier 3 is used to amplify the above acoustic wave signal, and the ultrasonic transducer 4 is used to amplify The acoustic wave signal is converted into ultrasonic waves; in this embodiment, the ultrasonic transducer 4 may be one of a single-array ultrasonic transducer 4, an array transducer, and an interdigital transducer.
  • the acoustic artificial structure can resonate with the ultrasonic wave, thereby generating a local field sound field on the acoustic artificial surface, thereby further generating acoustic flow vortices, and the resonance frequency of the acoustic artificial structure determines the driving frequency of transmitting ultrasound; in the embodiment, the ultrasonic The transducer 4 uses a single-array ultrasonic transducer 4.
  • the transmission signal of the signal generator 2 can be a continuous sinusoidal signal or a pulsed sinusoidal signal; the signal generator 2 is a programmable signal generator 2 (AFG3021, Tektronix), and the power amplifier 3 is a 50 dB linear power amplifier 3 (325LA, ENI ); The signal generator 2 generates a sinusoidal continuous signal, and the sinusoidal signal excites the ultrasonic transducer 4 to generate ultrasonic waves after passing through the power amplifier 3.
  • the signal generator 2 generates a sinusoidal continuous signal, and the sinusoidal signal excites the ultrasonic transducer 4 to generate ultrasonic waves after passing through the power amplifier 3.
  • the acoustic artificial structure is composed of a single phononic crystal plate or a composite structure composed of two or more phononic crystals.
  • a single phononic crystal plate is an artificial periodic structure, including a substrate and a plurality of convex stripes 6 arranged in parallel on the substrate at equal intervals. The cross section of the convex strip 6 is rectangular, triangular, polygonal or semicircular.
  • Two phononic crystal plates 5 are placed in parallel. The period of a single phononic crystal plate 5, the density of the material, the longitudinal wave sound velocity, the shear wave sound velocity, and the distance between the plates determine the shape of the acoustic field and the acoustic flow vortex field, as well as the acoustic flow vortex field.
  • the acoustic artificial structure is composed of two oppositely arranged phononic crystal plates 5, and the fluid to be mixed passes through the slit between the two phononic crystal plates 5, and the two phononic crystal plates 5 The slit between them is the aforementioned microfluidic mixing channel 7;
  • the phononic crystal plate includes: a substrate and a structured phononic crystal.
  • the structured phononic crystal is integrated on the substrate and distributed periodically; in other embodiments, the acoustic artificial structure also It may be at least two composite structures composed of two or more phononic crystals. In other embodiments, the acoustic artificial structure may also be composed of a combination of phononic crystal plates and composite structures.
  • the working frequency of the acoustic artificial structure is determined according to the following method: based on the structural geometry and material parameters, theoretically predict and experimentally measure the ultrasonic working frequency of the local field mode generated on the surface.
  • the acoustic artificial structure was placed in water, and the resonance frequency was obtained by measuring the transmission spectrum; in this embodiment, the length of the grid of a single phononic crystal plate 5 is 50 ⁇ m, the height is 50 ⁇ m, and the thickness of the phononic crystal plate 5 is 50 ⁇ m, the period of the acoustic artificial structure is 300 ⁇ m; between the two phononic crystal plates 5, different distances have different transmission spectra, when the distance between the two phononic crystal plates 5 is 15 ⁇ m, the resonance frequency of the acoustic artificial structure The peak is 3.018MHz or 4.117MHz; when the distance between the two phononic crystal plates 5 is 50 ⁇ m, 3.69MHz is the highest peak of the resonance frequency.
  • the two phononic crystal plates 5 are arranged parallel to each other, so that the arrangement can ensure that the spatial distribution in the microfluidic mixing channel 7 is relatively uniform, and does not make the space in the microfluidic mixing channel 7 appear to be wide before and narrow or upward.
  • the narrower width makes it easier for microfluid to flow into or out of the microfluidic channel.
  • the microfluidic tube 1 is a glass tube or a tube formed by bonding polydimethylsiloxane on the inner wall of the substrate, and the substrate is quartz glass, organic glass, silicon wafer or lithium niobate.
  • the present application provides a method for manufacturing a microfluidic device, which includes: opening a microfluidic channel 11 for microfluidic circulation in a microfluidic tube 1; providing an ultrasonic emitting component for emitting ultrasonic waves on the side of the microfluidic tube 1;
  • the flow tube 1 is provided with an acoustic artificial structure for generating an internal acoustic flow vortex under the action of the ultrasonic emission component;
  • a microfluidic mixing channel 7 is provided in the acoustic artificial structure, and the microfluidic mixing channel 7 is used to accommodate microfluidic, acoustic The flow vortex is located in the microfluidic mixing channel 7.
  • Providing an ultrasonic wave transmitting component for transmitting ultrasonic waves on the side of the microfluidic tube 1 includes: a signal transmitter for generating an acoustic wave signal is provided outside the microfluidic tube 1; a power amplifier for a method acoustic wave signal is provided on the signal transmitter side 3; An ultrasonic transducer 4 for converting the amplified sound wave signal into ultrasonic waves is provided on the side of the power amplifier 3.
  • An acoustic artificial structure for generating an acoustic flow vortex inside the microfluidic tube 1 under the action of the ultrasonic emission component includes: integrating a phononic crystal on the substrate to form a phononic crystal plate 5; placing two phononic crystal plates 5 The relative and parallel arrangement is such that the slit between the two phononic crystal plates 5 constitutes a microfluidic mixing channel 7; the two phononic crystal plates 5 are placed in the microfluidic tube 1.
  • the present application provides a method for using a microfluidic device, including: filling a microfluidic channel 11 opened in a microfluidic tube 1 with a buffer solution, and placing an acoustic artificial structure in the microfluidic channel 11; placing a sample to be mixed
  • the solution is injected into the microfluidic mixing channel 7 provided by the acoustic artificial structure; the ultrasonic emission component is used to emit ultrasonic waves to excite the ultrasonic field at the operating frequency of the acoustic artificial structure, so that the localized sound field is generated in the microfluidic mixing channel 7 of the acoustic artificial structure.
  • the acoustic flow vortex is induced in the mixing channel 7, and the sample solution is accelerated and fused by the acoustic flow vortex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种微流体装置及其制造和使用方法。微流体装置包括:开设有微流体腔道(11)的微流管(1),微流体腔道(11)供微流体流通;设置在微流管(1)一侧用于发射超声波的超声波发射组件;设置在微流管(1)内用于在超声波发射组件的作用下在内部产生声流涡旋的声人工结构,声人工结构内开设有微流混合通道(7),微流混合通道(7)用于容纳微流体,声流涡旋位于微流混合通道(7)内的部位的涡旋方向垂直于微流体在微流混合通道(7)内的流动方向。用于微流体混合,解决了现有技术中的微流体在微流芯片混合时,微流体之间混合不均、混合效果较差的问题,从而实现各层微流体之间的快速混合,并且使得不同微流体之间的混合更加充分、均匀。

Description

一种微流体装置及其制造和使用方法 技术领域
本发明涉及生物医学技术领域,尤其涉及一种微流体装置及其制造和使用方法。
背景技术
微流控芯片因具有样品用量少、可集成多个或整个分析系统的各功能单元于一微小芯片中, 从而使得样品分析操作简单化、智能化, 极大地减少手工操作带来的人为误差,从而在细胞筛选、DNA测序、蛋白质分析等工序中得到的广泛的应用。
用于微流体混合的微流体混合单元是微流控芯片的重要操作单元,微流体混合单元的混合效果很大程度上将决定了后续分析工作的可靠性和可信性;目前的微流控芯片,在使用微流体混合单元进行微流体混合时,是应用微流体自由扩散的机理,使得不同的微流体之间相互混合。
技术问题
由于不同的微流体之间是通过自由扩散的方式混合的,这就容易导致微流体之间相互混合不均匀,例如,直接接触的区域混合效果较好、未直接接触的区域混合效果较差。因此,现有微流体芯片的混合效果有待提高。
技术解决方案
本发明第一方面提供一种微流体装置,包括:开设有微流体腔道的微流管,所述微流体腔道供微流体流通;设置在所述微流管一侧用于发射超声波的超声波发射组件;设置在所述微流管内用于在所述超声波发射组件的作用下在内部产生声流涡旋的声人工结构,所述声人工结构内开设有微流混合通道,所述微流混合通道用于容纳微流体,所述声流涡旋位于所述微流混合通道内。
本发明第二方面提供一种微流体装置的制造方法,包括:在微流管开设供微流体流通的微流体腔道;在所述微流管一侧设置用于发射超声波的超声波发射组件;在所述微流管内设置用于在所述超声波发射组件的作用下在内部产生声流涡旋的声人工结构;在所述声人工结构内开设微流混合通道,所述微流混合通道用于容纳微流体,所述声流涡旋位于所述微流混合通道内。
本发明第三方面提供一种微流体装置的使用方法,包括:在微流管开设的微流体腔道内填充缓冲液,并将声人工结构置于微流体腔道内,所述声人工结构内开设有微流混合通道,所述微流混合通道用于容纳微流体,所述声流涡旋位于所述微流混合通道内;将待混合的样本溶液注入声人工结构开设的微流混合通道内;使用超声波发射组件发射超声波,激发声人工结构工作频率的超声场,使得声人工结构的微流混合通道内产生局域声场,在微流混合通道内诱发声流涡旋,样本溶液在声流涡旋的带动下加速融合。
有益效果
声人工结构能够在超声波发射组件发射的超声波的作用下,在微流混合通道内形成声流旋涡,在声流旋涡产生的作用力下,不同层的微流体能够随着声流旋涡的转动方向而加速流动,并且由于微流旋涡成旋涡状,因此作用在每个点的作用力方向不同,故微流体的流动方向不固定,从而使得不同的微流体层之间能够更加快速地混合,使得不同微流体之间的混合更加充分、均匀。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明微流体装置的结构示意图。
本发明的最佳实施方式
本发明第一方面提供一种微流体装置,包括:开设有微流体腔道的微流管,所述微流体腔道供微流体流通;设置在所述微流管一侧用于发射超声波的超声波发射组件;设置在所述微流管内用于在所述超声波发射组件的作用下在内部产生声流涡旋的声人工结构,所述声人工结构内开设有微流混合通道,所述微流混合通道用于容纳微流体,所述声流涡旋位于所述微流混合通道内。
进一步地,所述超声波发射组件包括:用于产生声波信号的信号发生器;设置在所述信号发生器一侧用于放大所述声波信号的功率放大器;以及,设置在所述功率放大器一侧用于将放大后的声波信号转换为超声波的超声换能器。
进一步地,所述声人工结构包括:两相对设置的声子晶体板或至少两个相对设置的由声子晶体构成的复合结构或所述声子晶体板及所述复合结构的组合,两个所述声子晶体板之间的狭缝构成所述微流混合通道,所述声子晶体板包括:基板;集成在所述基板上的周期分布的结构声子晶体。
进一步地,所述声人工结构还包括:至少两个平行设置在所述基板上且间隔相等的凸条,所述凸条设置在两所述晶体板相互远离的一面。
进一步地,两所述声子晶体板相互平行。
进一步地,所述微流管包括:玻璃管或基底内壁上键合有聚二甲基硅氧烷形成的管道。
进一步地,所述基底包括:石英玻璃或有机玻璃或硅片或铌酸锂。
本发明第二方面提供一种微流体装置的制造方法,包括:在微流管开设供微流体流通的微流体腔道;在所述微流管一侧设置用于发射超声波的超声波发射组件;在所述微流管内设置用于在所述超声波发射组件的作用下在内部产生声流涡旋的声人工结构;在所述声人工结构内开设微流混合通道,所述微流混合通道用于容纳微流体,所述声流涡旋位于所述微流混合通道内。
进一步地,所述在所述微流管内设置用于在所述超声波发射组件的作用下在内部产生声流涡旋的声人工结构包括:在基板上集成声子晶体形成声子晶体板;将两所述声子晶体板相对且平行设置,使得两所述声子晶体板之间的狭缝构成所述微流混合通道;将两所述声子晶体板置于所述微流管内。
本发明第三方面提供一种微流体装置的使用方法,包括:在微流管开设的微流体腔道内填充缓冲液,并将声人工结构置于微流体腔道内,所述声人工结构内开设有微流混合通道,所述微流混合通道用于容纳微流体,所述声流涡旋位于所述微流混合通道内;将待混合的样本溶液注入声人工结构开设的微流混合通道内;使用超声波发射组件发射超声波,激发声人工结构工作频率的超声场,使得声人工结构的微流混合通道内产生局域声场,在微流混合通道内诱发声流涡旋,样本溶液在声流涡旋的带动下加速融合。
本发明的实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,为一种微流体装置,包括:微流管1、超声波发射组件及声人工结构;微流管1内开设有微流体腔道11,微流体腔道11供微流体流通;声波发射组件设置在微流管1外部,并位于微流管1一侧,用于发射超声波;
声人工结构设置在微流管1内,并在超声波发射组件产生的超声波的作用下能够产生声流涡旋,在声人工结构内开设有微流混合通道7,微流混合通道7用于容纳微流体,并且声流涡旋产生后,声流涡旋位于微流混合通道7内。
超声波发射组件包括:信号发生器2、超声换能器4及功率放大器3,信号发生器2用于产生声波信号,功率放大器3用于放大上述声波信号,超声换能器4用于将放大后的声波信号转换为超声波;在本实施例中,超声换能器4可以是单阵元超声换能器4、阵列换能器和叉指换能器中的一种。
声人工结构能够与超声波产生共振,从而在声人工表面产生局域场声场,从而进一步产生声流涡旋,而声人工结构的共振频率决定了发射超声的驱动频率;在实施例中,超声换能器4采用单阵元超声换能器4。信号发生器2的发射信号可以是连续正弦信号,或是脉冲正弦信号;信号发生器2为可编程信号发生器2(AFG3021,Tektronix),功率放大器3为50dB的线性功率放大器3(325LA, ENI);信号发生器2产生正弦连续信号,正弦信号经功率放大器3后激励超声换能器4产生超声波。
声人工结构由单个声子晶体板或者两个或多个声子晶体构成的复合结构构成。单个声子晶体板是一种人工周期结构,包括基板和平行设置在所述基板上且间隔相等的多个凸条6。凸条6的横截面为长方形、三角形、多边形或半圆形。两个声子晶体板5平行放置,单个声子晶体板5的周期、材料的密度、纵波声速、横波声速、板间距离决定了声场和声流涡旋场的形态,以及声流涡旋场的最大速度,从而决定了微流体的混合速度。在本实施例中,声人工结构为两相对设置的声子晶体板5构成,需要做混合处理的流体从两块声子晶体板5之间的狭缝通过,两块声子晶体板5之间的狭缝即为上述的微流混合通道7;声子晶体板包括:基板及结构声子晶体,结构声子晶体集成在基板上并呈周期分布;在其他实施例中,声人工结构还可为由至少两个由两个或两个以上的声子晶体构成的复合结构,在其他实施例中,声人工结构还可为声子晶体板及复合结构的组合构成。
在使用声人工结构时,根据以下方法确定声人工结构的工作频率:根据结构几何尺寸、材料参数,理论预测并实验测量其表面产生局域场模式的超声工作频率。实验时将声人工结构放置在水中,通过测量透射频谱获得共振频率;在本实施例中,单个声子晶体板5的栅格的长为50μm,高为50μm,声子晶体板5的厚度为50μm,声人工结构的周期为300μm;两块声子晶体板5之间,不同的距离有着不同的透射谱,当两声子晶体板5之间的距离为15μm时,声人工结构的共振频率的高峰为3.018MHz或4.117MHz;当两声子晶体板5之间的距离为50μm时,3.69MHz为共振频率的最高峰。
在本实施例中,两声子晶体板5相互平行设置,这样设置能够保证微流混合通道7内的空间分布较为均匀,不会使微流混合通道7内的空间出现前宽后窄或上宽下窄的情况,更加便于微流体的流入或流出微流通道。
在本实施例中,微流管1为玻璃管或基底内壁上键合有聚二甲基硅氧烷形成的管道,基底为石英玻璃、有机玻璃、硅片或铌酸锂。
本申请提供一种微流体装置的制造方法,包括:在微流管1开设供微流体流通的微流体腔道11;在微流管1一侧设置用于发射超声波的超声波发射组件;在微流管1内设置用于在超声波发射组件的作用下在内部产生声流涡旋的声人工结构;在声人工结构内开设微流混合通道7,微流混合通道7用于容纳微流体,声流涡旋位于微流混合通道7内。
在微流管1一侧设置用于发射超声波的超声波发射组件包括:在微流管1外设置用于产生声波信号的信号发射器;在信号发射器一侧设置用于方法声波信号的功率放大器3;在功率放大器3一侧设置用于将放大后的声波信号转换为超声波的超声换能器4。
在微流管1内设置用于在超声波发射组件的作用下在内部产生声流涡旋的声人工结构包括:在基板上集成声子晶体形成声子晶体板5;将两声子晶体板5相对且平行设置,使得两声子晶体板5之间的狭缝构成微流混合通道7;将两声子晶体板5置于微流管1内。
本申请提供一种微流体装置的使用方法,包括:在微流管1开设的微流体腔道11内填充缓冲液,并将声人工结构置于微流体腔道11内;将待混合的样本溶液注入声人工结构开设的微流混合通道7内;使用超声波发射组件发射超声波,激发声人工结构工作频率的超声场,使得声人工结构的微流混合通道7内产生局域声场,在微流混合通道7内诱发声流涡旋,样本溶液在声流涡旋的带动下加速融合。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的一种微流体装置及其制造和使用方法及使用方法的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。
工业实用性
解决了现有技术中的微流体在微流芯片混合时,容易微流体之间混合不均、混合效果较差的技术问题。

Claims (10)

  1.   一种微流体装置,其特征在于,包括:
    开设有微流体腔道的微流管,所述微流体腔道供微流体流通;
    设置在所述微流管一侧用于发射超声波的超声波发射组件;
    设置在所述微流管内用于在所述超声波发射组件的作用下在内部产生声流涡旋的声人工结构,所述声人工结构内开设有微流混合通道,所述微流混合通道用于容纳微流体,所述声流涡旋位于所述微流混合通道内。
  2.   根据权利要求1所述的微流体装置,其特征在于,
    所述超声波发射组件包括:
    用于产生声波信号的信号发生器;
    设置在所述信号发生器一侧用于放大所述声波信号的功率放大器;以及,
    设置在所述功率放大器一侧用于将放大后的声波信号转换为超声波的超声换能器。
  3.   根据权利要求1所述的微流体装置,其特征在于,
    所述声人工结构包括:
    两相对设置的声子晶体板或至少两个相对设置的由声子晶体构成的复合结构或所述声子晶体板及所述复合结构的组合,两个所述声子晶体板之间的狭缝构成所述微流混合通道,所述声子晶体板包括:
    基板;集成在所述基板上的周期分布的结构声子晶体。
  4.   根据权利要求3所述的微流体装置,其特征在于,
    所述声人工结构还包括:
    至少两个平行设置在所述基板上且间隔相等的凸条,所述凸条设置在两所述晶体板相互远离的一面。
  5.   根据权利要求3所述的微流体装置,其特征在于,
    两所述声子晶体板相互平行。
  6.   根据权利要求1所述的微流体装置,其特征在于,
    所述微流管包括:
    玻璃管或在基底内壁上键合有聚二甲基硅氧烷形成的管道。
  7.   根据权利要求6所述的微流体装置,其特征在于,
    所述基底包括:石英玻璃或有机玻璃或硅片或铌酸锂。
  8. 一种微流体装置的制造方法,其特征在于,包括:
    在微流管开设供微流体流通的微流体腔道;
    在所述微流管一侧设置用于发射超声波的超声波发射组件;
    在所述微流管内设置用于在所述超声波发射组件的作用下在内部产生声流涡旋的声人工结构;
    在所述声人工结构内开设微流混合通道,所述微流混合通道用于容纳微流体,所述声流涡旋位于所述微流混合通道内。
  9. 根据权利要求8所述的微流体装置的制造方法,其特征在于,
    所述在所述微流管内设置用于在所述超声波发射组件的作用下在内部产生声流涡旋的声人工结构包括:
    在基板上集成声子晶体形成声子晶体板;
    将两所述声子晶体板相对且平行设置,使得两所述声子晶体板之间的狭缝构成所述微流混合通道;
    将两所述声子晶体板置于所述微流管内。
  10. 一种微流体装置的使用方法,其特征在于,包括:
    在微流管开设的微流体腔道内填充缓冲液,并将声人工结构置于微流体腔道内,所述声人工结构内开设有微流混合通道,所述微流混合通道用于容纳微流体,声流涡旋位于所述微流混合通道内;
    将待混合的样本溶液注入声人工结构开设的微流混合通道内;
    使用超声波发射组件发射超声波,激发声人工结构工作频率的超声场,使得声人工结构的微流混合通道内产生局域声场,在微流混合通道内诱发声流涡旋,样本溶液在声流涡旋的带动下加速融合。
PCT/CN2018/121194 2018-12-14 2018-12-14 一种微流体装置及其制造和使用方法 WO2020118688A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121194 WO2020118688A1 (zh) 2018-12-14 2018-12-14 一种微流体装置及其制造和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121194 WO2020118688A1 (zh) 2018-12-14 2018-12-14 一种微流体装置及其制造和使用方法

Publications (1)

Publication Number Publication Date
WO2020118688A1 true WO2020118688A1 (zh) 2020-06-18

Family

ID=71076769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121194 WO2020118688A1 (zh) 2018-12-14 2018-12-14 一种微流体装置及其制造和使用方法

Country Status (1)

Country Link
WO (1) WO2020118688A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030800A2 (en) * 2002-10-03 2004-04-15 Protasis Corporation Fluid-handling apparatus and methods
WO2006051153A2 (en) * 2004-11-09 2006-05-18 Nanolab Systems Oy Methods and devices for facile fabrication of nanoparticles and their applications
CN101564659A (zh) * 2008-04-25 2009-10-28 鸿富锦精密工业(深圳)有限公司 微流体混合装置
CN103203328A (zh) * 2013-03-14 2013-07-17 深圳先进技术研究院 基于结构声场操控和筛选颗粒的系统及方法
CN105214742A (zh) * 2015-10-10 2016-01-06 中国科学院深圳先进技术研究院 基于人工结构声场的微流体系统及操控微粒的方法
CN106251925A (zh) * 2016-08-29 2016-12-21 深圳先进技术研究院 一种基于狭缝声子晶体的微粒操控系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030800A2 (en) * 2002-10-03 2004-04-15 Protasis Corporation Fluid-handling apparatus and methods
WO2006051153A2 (en) * 2004-11-09 2006-05-18 Nanolab Systems Oy Methods and devices for facile fabrication of nanoparticles and their applications
CN101564659A (zh) * 2008-04-25 2009-10-28 鸿富锦精密工业(深圳)有限公司 微流体混合装置
CN103203328A (zh) * 2013-03-14 2013-07-17 深圳先进技术研究院 基于结构声场操控和筛选颗粒的系统及方法
CN105214742A (zh) * 2015-10-10 2016-01-06 中国科学院深圳先进技术研究院 基于人工结构声场的微流体系统及操控微粒的方法
CN106251925A (zh) * 2016-08-29 2016-12-21 深圳先进技术研究院 一种基于狭缝声子晶体的微粒操控系统及方法

Similar Documents

Publication Publication Date Title
CN111318218B (zh) 一种微流体装置及其制造和使用方法
US8038337B2 (en) Method and device for blending small quantities of liquid in microcavities
US7103949B2 (en) Method for fabricating a transducer
Kurashina et al. Cell agglomeration in the wells of a 24-well plate using acoustic streaming
JP4925819B2 (ja) ミクロキャビティでの少量液体の混合方法と装置
US9410873B2 (en) Fluidics apparatus for surface acoustic wave manipulation of fluid samples, use of fluidics apparatus and process for the manufacture of fluidics apparatus
US7942568B1 (en) Active micromixer using surface acoustic wave streaming
US6244738B1 (en) Stirrer having ultrasonic vibrators for mixing a sample solution
ES2342457T3 (es) Dispositivo de mezclado y procedimiento de mezclado para el mezclado de cantidades pequeñas de liquido.
US20080260582A1 (en) Method for Displacing Small Amounts of Fluids in Micro Channels by Means of Acoustical Waves
Lindner Sensors and actuators based on surface acoustic waves propagating along solid–liquid interfaces
US20180052095A1 (en) Optical cell constructed by anodically bonding a thin metal layer between two optically clear glass windows
US20110188337A1 (en) Method and device for generating movement in a thin liquid film
WO2007128045A1 (en) Microfluidic systems using surface acoustic energy and method of use thereof
WO2017059604A1 (zh) 基于人工结构声场的微流体系统及操控微粒的方法
CN105435869B (zh) 一种微通道内微液滴分裂的装置及方法
CN112191284A (zh) 微流控超声电化学片上实验室分析平台
CN111346292B (zh) 微流体系统及其操作方法
Li et al. Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing
WO2020118688A1 (zh) 一种微流体装置及其制造和使用方法
US20070264161A1 (en) Method and Device for Generating Movement in a Thin Liquid Film
Alzuaga et al. A large scale XY positioning and localisation system of liquid droplet using SAW on LiNbO/sub 3
CN103223358B (zh) 一种声表面波实现数字微流体破裂的装置及方法
US20210308676A1 (en) Microfluidic system and operation method thereof
CN104928173B (zh) 一种适用于细胞混合与裂解的三维集成式微化学反应器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942942

Country of ref document: EP

Kind code of ref document: A1