WO2020117867A1 - Darinaparsine et composés d'acide rétinoïque pour le traitement de troubles associés à l'idh - Google Patents
Darinaparsine et composés d'acide rétinoïque pour le traitement de troubles associés à l'idh Download PDFInfo
- Publication number
- WO2020117867A1 WO2020117867A1 PCT/US2019/064326 US2019064326W WO2020117867A1 WO 2020117867 A1 WO2020117867 A1 WO 2020117867A1 US 2019064326 W US2019064326 W US 2019064326W WO 2020117867 A1 WO2020117867 A1 WO 2020117867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- retinoic acid
- leukemia
- cells
- darinaparsin
- acid compound
- Prior art date
Links
- 229950004846 darinaparsin Drugs 0.000 title claims abstract description 104
- 108700041071 darinaparsin Proteins 0.000 title claims abstract description 104
- JGDXFQORBMPJGR-YUMQZZPRSA-N (2S)-2-amino-5-[[(2R)-1-(carboxymethylamino)-3-(dimethylarsinothio)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound OC(=O)CNC(=O)[C@H](CS[As](C)C)NC(=O)CC[C@H](N)C(O)=O JGDXFQORBMPJGR-YUMQZZPRSA-N 0.000 title claims abstract description 103
- 238000011282 treatment Methods 0.000 title claims abstract description 87
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical class OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 title claims description 205
- 208000032839 leukemia Diseases 0.000 claims abstract description 309
- 229930002330 retinoic acid Natural products 0.000 claims abstract description 307
- -1 retinoic acid compound Chemical class 0.000 claims abstract description 152
- 229960001727 tretinoin Drugs 0.000 claims abstract description 148
- 238000000034 method Methods 0.000 claims abstract description 96
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 49
- 102100037845 Isocitrate dehydrogenase [NADP], mitochondrial Human genes 0.000 claims description 110
- 101000599886 Homo sapiens Isocitrate dehydrogenase [NADP], mitochondrial Proteins 0.000 claims description 101
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 claims description 96
- 230000000694 effects Effects 0.000 claims description 95
- 150000001875 compounds Chemical class 0.000 claims description 84
- 208000031261 Acute myeloid leukaemia Diseases 0.000 claims description 75
- HWXBTNAVRSUOJR-UHFFFAOYSA-N 2-hydroxyglutaric acid Chemical compound OC(=O)C(O)CCC(O)=O HWXBTNAVRSUOJR-UHFFFAOYSA-N 0.000 claims description 59
- 108700028369 Alleles Proteins 0.000 claims description 55
- 230000001717 pathogenic effect Effects 0.000 claims description 54
- 230000014509 gene expression Effects 0.000 claims description 52
- 101001042041 Bos taurus Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial Proteins 0.000 claims description 49
- 101000960234 Homo sapiens Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 claims description 49
- 102100039905 Isocitrate dehydrogenase [NADP] cytoplasmic Human genes 0.000 claims description 49
- 230000004069 differentiation Effects 0.000 claims description 49
- 230000037396 body weight Effects 0.000 claims description 36
- 239000003112 inhibitor Substances 0.000 claims description 33
- 239000003642 reactive oxygen metabolite Substances 0.000 claims description 32
- 201000011510 cancer Diseases 0.000 claims description 31
- 239000003550 marker Substances 0.000 claims description 28
- 102000005591 NIMA-Interacting Peptidylprolyl Isomerase Human genes 0.000 claims description 27
- 108010059419 NIMA-Interacting Peptidylprolyl Isomerase Proteins 0.000 claims description 26
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 claims description 14
- QGNJRVVDBSJHIZ-QHLGVNSISA-N retinyl acetate Chemical compound CC(=O)OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C QGNJRVVDBSJHIZ-QHLGVNSISA-N 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 claims description 11
- 230000003247 decreasing effect Effects 0.000 claims description 11
- 229960005280 isotretinoin Drugs 0.000 claims description 11
- 231100000252 nontoxic Toxicity 0.000 claims description 11
- 230000003000 nontoxic effect Effects 0.000 claims description 11
- 108020004999 messenger RNA Proteins 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 8
- 229960000342 retinol acetate Drugs 0.000 claims description 8
- 235000019173 retinyl acetate Nutrition 0.000 claims description 8
- 239000011770 retinyl acetate Substances 0.000 claims description 8
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 claims description 7
- 229930002945 all-trans-retinaldehyde Natural products 0.000 claims description 7
- 235000020945 retinal Nutrition 0.000 claims description 7
- 239000011604 retinal Substances 0.000 claims description 7
- 230000002207 retinal effect Effects 0.000 claims description 7
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 claims description 7
- NCYCYZXNIZJOKI-HWCYFHEPSA-N 13-cis-retinal Chemical compound O=C/C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-HWCYFHEPSA-N 0.000 claims description 6
- 229960003471 retinol Drugs 0.000 claims description 6
- 239000011607 retinol Substances 0.000 claims description 6
- 235000020944 retinol Nutrition 0.000 claims description 6
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 4
- 229960003957 dexamethasone Drugs 0.000 claims description 4
- 101001050886 Homo sapiens Lysine-specific histone demethylase 1A Proteins 0.000 claims 6
- 102100024985 Lysine-specific histone demethylase 1A Human genes 0.000 claims 6
- 239000012636 effector Substances 0.000 claims 1
- 150000001495 arsenic compounds Chemical class 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 323
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 142
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 description 84
- 108090000623 proteins and genes Proteins 0.000 description 64
- 241000699670 Mus sp. Species 0.000 description 60
- 229960002594 arsenic trioxide Drugs 0.000 description 56
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 55
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 55
- 241000282414 Homo sapiens Species 0.000 description 52
- 239000003795 chemical substances by application Substances 0.000 description 40
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 39
- 210000001185 bone marrow Anatomy 0.000 description 39
- 201000010099 disease Diseases 0.000 description 35
- 230000035772 mutation Effects 0.000 description 34
- 241000699666 Mus <mouse, genus> Species 0.000 description 33
- 239000003981 vehicle Substances 0.000 description 33
- 230000035945 sensitivity Effects 0.000 description 30
- 210000001519 tissue Anatomy 0.000 description 26
- 101710096379 Lysine-specific histone demethylase 1 Proteins 0.000 description 25
- 230000001965 increasing effect Effects 0.000 description 25
- 102000004169 proteins and genes Human genes 0.000 description 25
- 125000001424 substituent group Chemical group 0.000 description 25
- 125000003118 aryl group Chemical group 0.000 description 24
- 235000018102 proteins Nutrition 0.000 description 23
- 238000011002 quantification Methods 0.000 description 23
- 238000004458 analytical method Methods 0.000 description 21
- 208000035475 disorder Diseases 0.000 description 20
- 238000000684 flow cytometry Methods 0.000 description 20
- KQPYUDDGWXQXHS-UHFFFAOYSA-N juglone Chemical compound O=C1C=CC(=O)C2=C1C=CC=C2O KQPYUDDGWXQXHS-UHFFFAOYSA-N 0.000 description 20
- 241001529936 Murinae Species 0.000 description 19
- 230000037361 pathway Effects 0.000 description 19
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 18
- 230000009467 reduction Effects 0.000 description 18
- 102000004190 Enzymes Human genes 0.000 description 17
- 108090000790 Enzymes Proteins 0.000 description 17
- 101100178928 Mus musculus Hoxa9 gene Proteins 0.000 description 17
- 125000000217 alkyl group Chemical group 0.000 description 17
- 229940088598 enzyme Drugs 0.000 description 17
- 125000001072 heteroaryl group Chemical group 0.000 description 17
- 238000001727 in vivo Methods 0.000 description 17
- 230000004083 survival effect Effects 0.000 description 17
- 230000008685 targeting Effects 0.000 description 17
- 238000002560 therapeutic procedure Methods 0.000 description 17
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 16
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 16
- 238000003556 assay Methods 0.000 description 15
- 108010027263 homeobox protein HOXA9 Proteins 0.000 description 15
- 239000002207 metabolite Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 15
- 230000001332 colony forming effect Effects 0.000 description 14
- 230000001419 dependent effect Effects 0.000 description 14
- 230000000144 pharmacologic effect Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 208000024891 symptom Diseases 0.000 description 14
- 229920000609 methyl cellulose Polymers 0.000 description 13
- 239000001923 methylcellulose Substances 0.000 description 13
- 238000010186 staining Methods 0.000 description 13
- 102000043136 MAP kinase family Human genes 0.000 description 12
- 108091054455 MAP kinase family Proteins 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 230000004075 alteration Effects 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 238000000338 in vitro Methods 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 101710102690 Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 description 11
- 101710175291 Isocitrate dehydrogenase [NADP], mitochondrial Proteins 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 238000011284 combination treatment Methods 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 210000000952 spleen Anatomy 0.000 description 11
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 10
- VYTBDSUNRJYVHL-UHFFFAOYSA-N beta-Hydrojuglone Natural products O=C1CCC(=O)C2=C1C=CC=C2O VYTBDSUNRJYVHL-UHFFFAOYSA-N 0.000 description 10
- 230000004060 metabolic process Effects 0.000 description 10
- 210000005259 peripheral blood Anatomy 0.000 description 10
- 239000011886 peripheral blood Substances 0.000 description 10
- 238000000513 principal component analysis Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 230000002103 transcriptional effect Effects 0.000 description 10
- 102000003896 Myeloperoxidases Human genes 0.000 description 9
- 108090000235 Myeloperoxidases Proteins 0.000 description 9
- 125000003342 alkenyl group Chemical group 0.000 description 9
- 125000000304 alkynyl group Chemical group 0.000 description 9
- 238000013459 approach Methods 0.000 description 9
- DYLUUSLLRIQKOE-UHFFFAOYSA-N enasidenib Chemical compound N=1C(C=2N=C(C=CC=2)C(F)(F)F)=NC(NCC(C)(O)C)=NC=1NC1=CC=NC(C(F)(F)F)=C1 DYLUUSLLRIQKOE-UHFFFAOYSA-N 0.000 description 9
- 229950010133 enasidenib Drugs 0.000 description 9
- 230000002068 genetic effect Effects 0.000 description 9
- 210000003734 kidney Anatomy 0.000 description 9
- 238000007747 plating Methods 0.000 description 9
- 229940124597 therapeutic agent Drugs 0.000 description 9
- 239000013598 vector Substances 0.000 description 9
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 8
- 102000003951 Erythropoietin Human genes 0.000 description 8
- 108090000394 Erythropoietin Proteins 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 229940105423 erythropoietin Drugs 0.000 description 8
- 229960003180 glutathione Drugs 0.000 description 8
- 230000002503 metabolic effect Effects 0.000 description 8
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 8
- 230000011664 signaling Effects 0.000 description 8
- 230000005945 translocation Effects 0.000 description 8
- 102000010400 1-phosphatidylinositol-3-kinase activity proteins Human genes 0.000 description 7
- 108010024636 Glutathione Proteins 0.000 description 7
- 108091007960 PI3Ks Proteins 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 7
- 238000002648 combination therapy Methods 0.000 description 7
- 238000006731 degradation reaction Methods 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 210000004185 liver Anatomy 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- 230000003827 upregulation Effects 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- 238000011529 RT qPCR Methods 0.000 description 6
- 102100026144 Transferrin receptor protein 1 Human genes 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 125000000753 cycloalkyl group Chemical group 0.000 description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 108010089558 erythroid Kruppel-like factor Proteins 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 238000003364 immunohistochemistry Methods 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 230000037353 metabolic pathway Effects 0.000 description 6
- 230000011987 methylation Effects 0.000 description 6
- 238000007069 methylation reaction Methods 0.000 description 6
- 231100000590 oncogenic Toxicity 0.000 description 6
- 230000002246 oncogenic effect Effects 0.000 description 6
- 230000002018 overexpression Effects 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 101000835093 Homo sapiens Transferrin receptor protein 1 Proteins 0.000 description 5
- 102100022248 Krueppel-like factor 1 Human genes 0.000 description 5
- XJLXINKUBYWONI-NNYOXOHSSA-O NADP(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-O 0.000 description 5
- 102100026375 Protein PML Human genes 0.000 description 5
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 5
- 101150066717 Rara gene Proteins 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 235000005911 diet Nutrition 0.000 description 5
- 230000037213 diet Effects 0.000 description 5
- 229960003722 doxycycline Drugs 0.000 description 5
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 5
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 239000006187 pill Substances 0.000 description 5
- 230000002062 proliferating effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000002054 transplantation Methods 0.000 description 5
- 210000001835 viscera Anatomy 0.000 description 5
- 238000007482 whole exome sequencing Methods 0.000 description 5
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 4
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 4
- 101001066265 Homo sapiens Endothelial transcription factor GATA-2 Proteins 0.000 description 4
- 101000708766 Homo sapiens Structural maintenance of chromosomes protein 3 Proteins 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 108090001005 Interleukin-6 Proteins 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 102000043276 Oncogene Human genes 0.000 description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 4
- 238000003559 RNA-seq method Methods 0.000 description 4
- 102100032723 Structural maintenance of chromosomes protein 3 Human genes 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- XCCTYIAWTASOJW-XVFCMESISA-N Uridine-5'-Diphosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 XCCTYIAWTASOJW-XVFCMESISA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 230000001028 anti-proliverative effect Effects 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 4
- 230000024245 cell differentiation Effects 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 238000001516 cell proliferation assay Methods 0.000 description 4
- 238000013270 controlled release Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 229930004069 diterpene Natural products 0.000 description 4
- 150000004141 diterpene derivatives Chemical class 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010199 gene set enrichment analysis Methods 0.000 description 4
- 231100000024 genotoxic Toxicity 0.000 description 4
- 230000001738 genotoxic effect Effects 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 125000004404 heteroalkyl group Chemical group 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 238000011532 immunohistochemical staining Methods 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 229930182817 methionine Natural products 0.000 description 4
- 230000000877 morphologic effect Effects 0.000 description 4
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 4
- 230000036542 oxidative stress Effects 0.000 description 4
- 230000026731 phosphorylation Effects 0.000 description 4
- 238000006366 phosphorylation reaction Methods 0.000 description 4
- 230000004481 post-translational protein modification Effects 0.000 description 4
- 230000003244 pro-oxidative effect Effects 0.000 description 4
- 230000035755 proliferation Effects 0.000 description 4
- 108090000064 retinoic acid receptors Proteins 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 208000011580 syndromic disease Diseases 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 108090000672 Annexin A5 Proteins 0.000 description 3
- 102000004121 Annexin A5 Human genes 0.000 description 3
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 3
- 206010061818 Disease progression Diseases 0.000 description 3
- 102100031785 Endothelial transcription factor GATA-2 Human genes 0.000 description 3
- 238000002738 Giemsa staining Methods 0.000 description 3
- 108010033040 Histones Proteins 0.000 description 3
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 3
- 108010075869 Isocitrate Dehydrogenase Proteins 0.000 description 3
- 102000012011 Isocitrate Dehydrogenase Human genes 0.000 description 3
- 108010020437 Ki-67 Antigen Proteins 0.000 description 3
- 102100020880 Kit ligand Human genes 0.000 description 3
- 101710177504 Kit ligand Proteins 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- 101100069868 Lilium longiflorum gH2A gene Proteins 0.000 description 3
- 229940123628 Lysine (K)-specific demethylase 1A inhibitor Drugs 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 3
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 3
- 108700020796 Oncogene Proteins 0.000 description 3
- 102000009658 Peptidylprolyl Isomerase Human genes 0.000 description 3
- 108010020062 Peptidylprolyl Isomerase Proteins 0.000 description 3
- 102100034836 Proliferation marker protein Ki-67 Human genes 0.000 description 3
- 102100023606 Retinoic acid receptor alpha Human genes 0.000 description 3
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000003021 clonogenic effect Effects 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 230000005750 disease progression Effects 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 108700014844 flt3 ligand Proteins 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000003394 haemopoietic effect Effects 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 238000006317 isomerization reaction Methods 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 102100031622 mRNA decay activator protein ZFP36 Human genes 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- 210000000066 myeloid cell Anatomy 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- PXQPEWDEAKTCGB-UHFFFAOYSA-N orotic acid Chemical compound OC(=O)C1=CC(=O)NC(=O)N1 PXQPEWDEAKTCGB-UHFFFAOYSA-N 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 102000003702 retinoic acid receptors Human genes 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 125000000547 substituted alkyl group Chemical group 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000002626 targeted therapy Methods 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- CCAWRGNYALGPQH-UHFFFAOYSA-N 1-[5-(cyclopropylsulfamoyl)-2-thiophen-3-ylphenyl]-3-[3-(trifluoromethyl)phenyl]urea Chemical compound FC(F)(F)C1=CC=CC(NC(=O)NC=2C(=CC=C(C=2)S(=O)(=O)NC2CC2)C2=CSC=C2)=C1 CCAWRGNYALGPQH-UHFFFAOYSA-N 0.000 description 2
- 102100036612 ATP-binding cassette sub-family A member 6 Human genes 0.000 description 2
- 102100025339 ATP-dependent DNA helicase DDX11 Human genes 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 102100040036 Adhesion G-protein coupled receptor G4 Human genes 0.000 description 2
- ZAINTDRBUHCDPZ-UHFFFAOYSA-M Alexa Fluor 546 Chemical compound [H+].[Na+].CC1CC(C)(C)NC(C(=C2OC3=C(C4=NC(C)(C)CC(C)C4=CC3=3)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=C2C=3C(C(=C(Cl)C=1Cl)C(O)=O)=C(Cl)C=1SCC(=O)NCCCCCC(=O)ON1C(=O)CCC1=O ZAINTDRBUHCDPZ-UHFFFAOYSA-M 0.000 description 2
- 201000004384 Alopecia Diseases 0.000 description 2
- 101000798762 Anguilla anguilla Troponin C, skeletal muscle Proteins 0.000 description 2
- 102100036818 Ankyrin-2 Human genes 0.000 description 2
- 102100040202 Apolipoprotein B-100 Human genes 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 102100021256 BCL-6 corepressor-like protein 1 Human genes 0.000 description 2
- 102100025985 BMP/retinoic acid-inducible neural-specific protein 3 Human genes 0.000 description 2
- 102100033742 BPI fold-containing family C protein Human genes 0.000 description 2
- 102100022045 BTB/POZ domain-containing protein 10 Human genes 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 102100029892 Bromodomain and WD repeat-containing protein 1 Human genes 0.000 description 2
- 102100034808 CCAAT/enhancer-binding protein alpha Human genes 0.000 description 2
- 102100021975 CREB-binding protein Human genes 0.000 description 2
- 102100040750 CUB and sushi domain-containing protein 1 Human genes 0.000 description 2
- 102100040807 CUB and sushi domain-containing protein 3 Human genes 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 102100027473 Cartilage oligomeric matrix protein Human genes 0.000 description 2
- 102100033619 Cholesterol transporter ABCA5 Human genes 0.000 description 2
- 208000005243 Chondrosarcoma Diseases 0.000 description 2
- 102100035595 Cohesin subunit SA-2 Human genes 0.000 description 2
- 102100027442 Collagen alpha-1(XII) chain Human genes 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 2
- 108010043471 Core Binding Factor Alpha 2 Subunit Proteins 0.000 description 2
- 108010060313 Core Binding Factor beta Subunit Proteins 0.000 description 2
- 102000008147 Core Binding Factor beta Subunit Human genes 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- 102100034126 Cytoglobin Human genes 0.000 description 2
- 102100024812 DNA (cytosine-5)-methyltransferase 3A Human genes 0.000 description 2
- 108010024491 DNA Methyltransferase 3A Proteins 0.000 description 2
- 230000005778 DNA damage Effects 0.000 description 2
- 231100000277 DNA damage Toxicity 0.000 description 2
- 101100202237 Danio rerio rxrab gene Proteins 0.000 description 2
- 101100309320 Danio rerio rxrga gene Proteins 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 102100035347 DmX-like protein 2 Human genes 0.000 description 2
- 102100029952 Double-strand-break repair protein rad21 homolog Human genes 0.000 description 2
- 102100032299 Dynein axonemal heavy chain 10 Human genes 0.000 description 2
- 102100032300 Dynein axonemal heavy chain 11 Human genes 0.000 description 2
- 102100031644 Dynein axonemal heavy chain 3 Human genes 0.000 description 2
- 102100031636 Dynein axonemal heavy chain 9 Human genes 0.000 description 2
- 102100022409 E3 ubiquitin-protein ligase LNX Human genes 0.000 description 2
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 description 2
- 102100030281 Ectopic P granules protein 5 homolog Human genes 0.000 description 2
- 102100035441 FRAS1-related extracellular matrix protein 2 Human genes 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 102000017702 GABRG3 Human genes 0.000 description 2
- 102100030708 GTPase KRas Human genes 0.000 description 2
- 102100039788 GTPase NRas Human genes 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- 102100022765 Glutamate receptor ionotropic, kainate 4 Human genes 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 102100028893 Hemicentin-1 Human genes 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 102100028716 Hermansky-Pudlak syndrome 3 protein Human genes 0.000 description 2
- 102100038885 Histone acetyltransferase p300 Human genes 0.000 description 2
- 102100022103 Histone-lysine N-methyltransferase 2A Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101500025651 Homo sapiens ADAM10-processed FasL form Proteins 0.000 description 2
- 101000929676 Homo sapiens ATP-binding cassette sub-family A member 6 Proteins 0.000 description 2
- 101000722210 Homo sapiens ATP-dependent DNA helicase DDX11 Proteins 0.000 description 2
- 101000959604 Homo sapiens Adhesion G-protein coupled receptor G4 Proteins 0.000 description 2
- 101000928344 Homo sapiens Ankyrin-2 Proteins 0.000 description 2
- 101000889953 Homo sapiens Apolipoprotein B-100 Proteins 0.000 description 2
- 101000894688 Homo sapiens BCL-6 corepressor-like protein 1 Proteins 0.000 description 2
- 101000933354 Homo sapiens BMP/retinoic acid-inducible neural-specific protein 3 Proteins 0.000 description 2
- 101000871782 Homo sapiens BPI fold-containing family C protein Proteins 0.000 description 2
- 101000896834 Homo sapiens BTB/POZ domain-containing protein 10 Proteins 0.000 description 2
- 101000794040 Homo sapiens Bromodomain and WD repeat-containing protein 1 Proteins 0.000 description 2
- 101000945515 Homo sapiens CCAAT/enhancer-binding protein alpha Proteins 0.000 description 2
- 101000896987 Homo sapiens CREB-binding protein Proteins 0.000 description 2
- 101000892017 Homo sapiens CUB and sushi domain-containing protein 1 Proteins 0.000 description 2
- 101000892045 Homo sapiens CUB and sushi domain-containing protein 3 Proteins 0.000 description 2
- 101000725508 Homo sapiens Cartilage oligomeric matrix protein Proteins 0.000 description 2
- 101000801660 Homo sapiens Cholesterol transporter ABCA5 Proteins 0.000 description 2
- 101000642968 Homo sapiens Cohesin subunit SA-2 Proteins 0.000 description 2
- 101000861874 Homo sapiens Collagen alpha-1(XII) chain Proteins 0.000 description 2
- 101000919645 Homo sapiens Collagen alpha-2(IX) chain Proteins 0.000 description 2
- 101000919644 Homo sapiens Collagen alpha-3(IX) chain Proteins 0.000 description 2
- 101000804534 Homo sapiens DmX-like protein 2 Proteins 0.000 description 2
- 101000584942 Homo sapiens Double-strand-break repair protein rad21 homolog Proteins 0.000 description 2
- 101001016205 Homo sapiens Dynein axonemal heavy chain 10 Proteins 0.000 description 2
- 101001016208 Homo sapiens Dynein axonemal heavy chain 11 Proteins 0.000 description 2
- 101000866366 Homo sapiens Dynein axonemal heavy chain 3 Proteins 0.000 description 2
- 101000866325 Homo sapiens Dynein axonemal heavy chain 9 Proteins 0.000 description 2
- 101000620132 Homo sapiens E3 ubiquitin-protein ligase LNX Proteins 0.000 description 2
- 101000807547 Homo sapiens E3 ubiquitin-protein ligase UBR4 Proteins 0.000 description 2
- 101000938359 Homo sapiens Ectopic P granules protein 5 homolog Proteins 0.000 description 2
- 101000877894 Homo sapiens FRAS1-related extracellular matrix protein 2 Proteins 0.000 description 2
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 2
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 description 2
- 101000926819 Homo sapiens Gamma-aminobutyric acid receptor subunit gamma-3 Proteins 0.000 description 2
- 101000903333 Homo sapiens Glutamate receptor ionotropic, kainate 4 Proteins 0.000 description 2
- 101000839060 Homo sapiens Hemicentin-1 Proteins 0.000 description 2
- 101000985492 Homo sapiens Hermansky-Pudlak syndrome 3 protein Proteins 0.000 description 2
- 101000882390 Homo sapiens Histone acetyltransferase p300 Proteins 0.000 description 2
- 101001045846 Homo sapiens Histone-lysine N-methyltransferase 2A Proteins 0.000 description 2
- 101000913082 Homo sapiens IgGFc-binding protein Proteins 0.000 description 2
- 101001010835 Homo sapiens Intraflagellar transport protein 74 homolog Proteins 0.000 description 2
- 101001008857 Homo sapiens Kelch-like protein 7 Proteins 0.000 description 2
- 101001008951 Homo sapiens Kinesin-like protein KIF15 Proteins 0.000 description 2
- 101000971697 Homo sapiens Kinesin-like protein KIF1B Proteins 0.000 description 2
- 101000984620 Homo sapiens Low-density lipoprotein receptor-related protein 1B Proteins 0.000 description 2
- 101001043562 Homo sapiens Low-density lipoprotein receptor-related protein 2 Proteins 0.000 description 2
- 101000636209 Homo sapiens Matrix-remodeling-associated protein 5 Proteins 0.000 description 2
- 101000653374 Homo sapiens Methylcytosine dioxygenase TET2 Proteins 0.000 description 2
- 101000623681 Homo sapiens Mitochondrial fission regulator 2 Proteins 0.000 description 2
- 101000573451 Homo sapiens Msx2-interacting protein Proteins 0.000 description 2
- 101000623901 Homo sapiens Mucin-16 Proteins 0.000 description 2
- 101000623904 Homo sapiens Mucin-17 Proteins 0.000 description 2
- 101001099460 Homo sapiens Myeloperoxidase Proteins 0.000 description 2
- 101001000104 Homo sapiens Myosin-11 Proteins 0.000 description 2
- 101000624947 Homo sapiens Nesprin-1 Proteins 0.000 description 2
- 101001112222 Homo sapiens Neural cell adhesion molecule L1-like protein Proteins 0.000 description 2
- 101000775053 Homo sapiens Neuroblast differentiation-associated protein AHNAK Proteins 0.000 description 2
- 101000634545 Homo sapiens Neuronal PAS domain-containing protein 3 Proteins 0.000 description 2
- 101001109719 Homo sapiens Nucleophosmin Proteins 0.000 description 2
- 101000692980 Homo sapiens PHD finger protein 6 Proteins 0.000 description 2
- 101001091365 Homo sapiens Plasma kallikrein Proteins 0.000 description 2
- 101000728236 Homo sapiens Polycomb group protein ASXL1 Proteins 0.000 description 2
- 101000605534 Homo sapiens Prostate-specific antigen Proteins 0.000 description 2
- 101000718497 Homo sapiens Protein AF-10 Proteins 0.000 description 2
- 101000775052 Homo sapiens Protein AHNAK2 Proteins 0.000 description 2
- 101000573199 Homo sapiens Protein PML Proteins 0.000 description 2
- 101000934826 Homo sapiens Protein bassoon Proteins 0.000 description 2
- 101000931682 Homo sapiens Protein furry homolog-like Proteins 0.000 description 2
- 101000613615 Homo sapiens Protein mono-ADP-ribosyltransferase PARP14 Proteins 0.000 description 2
- 101000609959 Homo sapiens Protein piccolo Proteins 0.000 description 2
- 101000736906 Homo sapiens Protein prune homolog 2 Proteins 0.000 description 2
- 101100078258 Homo sapiens RUNX1T1 gene Proteins 0.000 description 2
- 101000926083 Homo sapiens Rab GDP dissociation inhibitor beta Proteins 0.000 description 2
- 101000580036 Homo sapiens Ras-specific guanine nucleotide-releasing factor RalGPS2 Proteins 0.000 description 2
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 2
- 101001112293 Homo sapiens Retinoic acid receptor alpha Proteins 0.000 description 2
- 101000684514 Homo sapiens Sentrin-specific protease 6 Proteins 0.000 description 2
- 101000651890 Homo sapiens Slit homolog 2 protein Proteins 0.000 description 2
- 101000651893 Homo sapiens Slit homolog 3 protein Proteins 0.000 description 2
- 101000822448 Homo sapiens Sodium channel and clathrin linker 1 Proteins 0.000 description 2
- 101000654381 Homo sapiens Sodium channel protein type 8 subunit alpha Proteins 0.000 description 2
- 101000707567 Homo sapiens Splicing factor 3B subunit 1 Proteins 0.000 description 2
- 101000808799 Homo sapiens Splicing factor U2AF 35 kDa subunit Proteins 0.000 description 2
- 101000689224 Homo sapiens Src-like-adapter 2 Proteins 0.000 description 2
- 101000633429 Homo sapiens Structural maintenance of chromosomes protein 1A Proteins 0.000 description 2
- 101000666340 Homo sapiens Tenascin Proteins 0.000 description 2
- 101000645320 Homo sapiens Titin Proteins 0.000 description 2
- 101000723938 Homo sapiens Transcription factor HIVEP3 Proteins 0.000 description 2
- 101000823316 Homo sapiens Tyrosine-protein kinase ABL1 Proteins 0.000 description 2
- 101001087416 Homo sapiens Tyrosine-protein phosphatase non-receptor type 11 Proteins 0.000 description 2
- 101000667110 Homo sapiens Vacuolar protein sorting-associated protein 13B Proteins 0.000 description 2
- 101000976569 Homo sapiens Zinc finger CCHC-type and RNA-binding motif-containing protein 1 Proteins 0.000 description 2
- 101000667267 Homo sapiens von Willebrand factor A domain-containing protein 3B Proteins 0.000 description 2
- 101150104906 Idh2 gene Proteins 0.000 description 2
- 102100026103 IgGFc-binding protein Human genes 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- 108010002386 Interleukin-3 Proteins 0.000 description 2
- 102100029997 Intraflagellar transport protein 74 homolog Human genes 0.000 description 2
- 102100027789 Kelch-like protein 7 Human genes 0.000 description 2
- 102100027630 Kinesin-like protein KIF15 Human genes 0.000 description 2
- 102100021524 Kinesin-like protein KIF1B Human genes 0.000 description 2
- 102100038269 Large neutral amino acids transporter small subunit 3 Human genes 0.000 description 2
- 102100027121 Low-density lipoprotein receptor-related protein 1B Human genes 0.000 description 2
- 102100021922 Low-density lipoprotein receptor-related protein 2 Human genes 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 101150051655 Lyz2 gene Proteins 0.000 description 2
- 108091007877 MYCBP2 Proteins 0.000 description 2
- 102100030776 Matrix-remodeling-associated protein 5 Human genes 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102100030803 Methylcytosine dioxygenase TET2 Human genes 0.000 description 2
- 102100023199 Mitochondrial fission regulator 2 Human genes 0.000 description 2
- 102100025272 Monocarboxylate transporter 2 Human genes 0.000 description 2
- 102100026285 Msx2-interacting protein Human genes 0.000 description 2
- 102100023123 Mucin-16 Human genes 0.000 description 2
- 102100023125 Mucin-17 Human genes 0.000 description 2
- 101100335081 Mus musculus Flt3 gene Proteins 0.000 description 2
- 102100036639 Myosin-11 Human genes 0.000 description 2
- 102100023306 Nesprin-1 Human genes 0.000 description 2
- 102100031837 Neuroblast differentiation-associated protein AHNAK Human genes 0.000 description 2
- 102000007530 Neurofibromin 1 Human genes 0.000 description 2
- 108010085793 Neurofibromin 1 Proteins 0.000 description 2
- 102100029051 Neuronal PAS domain-containing protein 3 Human genes 0.000 description 2
- 102100025372 Nuclear pore complex protein Nup98-Nup96 Human genes 0.000 description 2
- 102100022678 Nucleophosmin Human genes 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102100026365 PHD finger protein 6 Human genes 0.000 description 2
- 102100037019 PML-RARA-regulated adapter molecule 1 Human genes 0.000 description 2
- 102100024894 PR domain zinc finger protein 1 Human genes 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 206010061332 Paraganglion neoplasm Diseases 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- 108010089430 Phosphoproteins Proteins 0.000 description 2
- 102000007982 Phosphoproteins Human genes 0.000 description 2
- 102100034869 Plasma kallikrein Human genes 0.000 description 2
- 102100029799 Polycomb group protein ASXL1 Human genes 0.000 description 2
- 108010009975 Positive Regulatory Domain I-Binding Factor 1 Proteins 0.000 description 2
- 102100021191 Probable G-protein coupled receptor 179 Human genes 0.000 description 2
- 108091011158 Probable G-protein coupled receptor 179 Proteins 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 102100026286 Protein AF-10 Human genes 0.000 description 2
- 102100031838 Protein AHNAK2 Human genes 0.000 description 2
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 2
- 102100025364 Protein bassoon Human genes 0.000 description 2
- 102100020916 Protein furry homolog-like Human genes 0.000 description 2
- 102100040848 Protein mono-ADP-ribosyltransferase PARP14 Human genes 0.000 description 2
- 102100039154 Protein piccolo Human genes 0.000 description 2
- 102100036040 Protein prune homolog 2 Human genes 0.000 description 2
- 108700020978 Proto-Oncogene Proteins 0.000 description 2
- 102000052575 Proto-Oncogene Human genes 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 2
- 108700040655 RUNX1 Translocation Partner 1 Proteins 0.000 description 2
- 101150050070 RXRA gene Proteins 0.000 description 2
- 102000004914 RYR3 Human genes 0.000 description 2
- 108060007242 RYR3 Proteins 0.000 description 2
- 102100034328 Rab GDP dissociation inhibitor beta Human genes 0.000 description 2
- 102100027535 Ras-specific guanine nucleotide-releasing factor RalGPS2 Human genes 0.000 description 2
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- 102100025373 Runt-related transcription factor 1 Human genes 0.000 description 2
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 2
- 108091006604 SLC16A7 Proteins 0.000 description 2
- 108091006993 SLC43A1 Proteins 0.000 description 2
- 102100023713 Sentrin-specific protease 6 Human genes 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 2
- 102100022483 Sodium channel and clathrin linker 1 Human genes 0.000 description 2
- 102100031711 Splicing factor 3B subunit 1 Human genes 0.000 description 2
- 102100038501 Splicing factor U2AF 35 kDa subunit Human genes 0.000 description 2
- 102100024510 Src-like-adapter 2 Human genes 0.000 description 2
- 102100029538 Structural maintenance of chromosomes protein 1A Human genes 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 102100038126 Tenascin Human genes 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- 102100026260 Titin Human genes 0.000 description 2
- 102100028336 Transcription factor HIVEP3 Human genes 0.000 description 2
- 102100022596 Tyrosine-protein kinase ABL1 Human genes 0.000 description 2
- 102100033019 Tyrosine-protein phosphatase non-receptor type 11 Human genes 0.000 description 2
- 102000003442 UBR4 Human genes 0.000 description 2
- KYOBSHFOBAOFBF-UHFFFAOYSA-N UMP Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1C(O)=O KYOBSHFOBAOFBF-UHFFFAOYSA-N 0.000 description 2
- 102100039113 Vacuolar protein sorting-associated protein 13B Human genes 0.000 description 2
- 229930003316 Vitamin D Natural products 0.000 description 2
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 102000040856 WT1 Human genes 0.000 description 2
- 108700020467 WT1 Proteins 0.000 description 2
- 101150084041 WT1 gene Proteins 0.000 description 2
- 101150108009 ZFP36 gene Proteins 0.000 description 2
- 102100023585 Zinc finger CCHC-type and RNA-binding motif-containing protein 1 Human genes 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 2
- 229960000473 altretamine Drugs 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 229910052964 arsenopyrite Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 2
- 230000037429 base substitution Effects 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 210000003969 blast cell Anatomy 0.000 description 2
- 208000034158 bleeding Diseases 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000023555 blood coagulation Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000002798 bone marrow cell Anatomy 0.000 description 2
- 238000010322 bone marrow transplantation Methods 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 230000000453 cell autonomous effect Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 208000006990 cholangiocarcinoma Diseases 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 230000005757 colony formation Effects 0.000 description 2
- 201000010989 colorectal carcinoma Diseases 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010201 enrichment analysis Methods 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 238000013265 extended release Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 101150064107 fosB gene Proteins 0.000 description 2
- 230000003676 hair loss Effects 0.000 description 2
- 208000024963 hair loss Diseases 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 2
- 231100000086 high toxicity Toxicity 0.000 description 2
- 102000051251 human MPO Human genes 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 235000013902 inosinic acid Nutrition 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 230000037041 intracellular level Effects 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 125000002462 isocyano group Chemical group *[N+]#[C-] 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000029226 lipidation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 208000030883 malignant astrocytoma Diseases 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 231100000324 minimal toxicity Toxicity 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 239000012120 mounting media Substances 0.000 description 2
- 238000007481 next generation sequencing Methods 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 235000021590 normal diet Nutrition 0.000 description 2
- 108010054452 nuclear pore complex protein 98 Proteins 0.000 description 2
- 238000001668 nucleic acid synthesis Methods 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 108091008819 oncoproteins Proteins 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 208000007312 paraganglioma Diseases 0.000 description 2
- 238000011422 pharmacological therapy Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000001686 pro-survival effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000092 prognostic biomarker Substances 0.000 description 2
- 238000011536 re-plating Methods 0.000 description 2
- 229910052957 realgar Inorganic materials 0.000 description 2
- 230000008672 reprogramming Effects 0.000 description 2
- 238000012106 screening analysis Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 201000000849 skin cancer Diseases 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000023895 stem cell maintenance Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000005737 synergistic response Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 238000011285 therapeutic regimen Methods 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- DJJCXFVJDGTHFX-XVFCMESISA-N uridine 5'-monophosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-XVFCMESISA-N 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 235000019166 vitamin D Nutrition 0.000 description 2
- 239000011710 vitamin D Substances 0.000 description 2
- 150000003710 vitamin D derivatives Chemical class 0.000 description 2
- 229940046008 vitamin d Drugs 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- 102100039132 von Willebrand factor A domain-containing protein 3B Human genes 0.000 description 2
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- 125000006823 (C1-C6) acyl group Chemical group 0.000 description 1
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 1
- 125000006710 (C2-C12) alkenyl group Chemical group 0.000 description 1
- 125000006711 (C2-C12) alkynyl group Chemical group 0.000 description 1
- 125000006763 (C3-C9) cycloalkyl group Chemical group 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical compound C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- HTJMXYRLEDBSLT-UHFFFAOYSA-N 1,2,4,5-tetrazine Chemical compound C1=NN=CN=N1 HTJMXYRLEDBSLT-UHFFFAOYSA-N 0.000 description 1
- YGTAZGSLCXNBQL-UHFFFAOYSA-N 1,2,4-thiadiazole Chemical compound C=1N=CSN=1 YGTAZGSLCXNBQL-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- 102100030492 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 Human genes 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- 101150006159 3b gene Proteins 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 102000015936 AP-1 transcription factor Human genes 0.000 description 1
- 108050004195 AP-1 transcription factor Proteins 0.000 description 1
- 239000012114 Alexa Fluor 647 Substances 0.000 description 1
- 102100027935 Attractin-like protein 1 Human genes 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 101100342337 Caenorhabditis elegans klf-1 gene Proteins 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 101150087701 DOK3 gene Proteins 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 101000960235 Dictyostelium discoideum Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 description 1
- 101100477411 Dictyostelium discoideum set1 gene Proteins 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 102100037813 Focal adhesion kinase 1 Human genes 0.000 description 1
- LRULVYSBRWUVGR-FCHUYYIVSA-N GSK2879552 Chemical compound C1=CC(C(=O)O)=CC=C1CN1CCC(CN[C@H]2[C@@H](C2)C=2C=CC=CC=2)CC1 LRULVYSBRWUVGR-FCHUYYIVSA-N 0.000 description 1
- 101150112014 Gapdh gene Proteins 0.000 description 1
- 102100031132 Glucose-6-phosphate isomerase Human genes 0.000 description 1
- 108010053070 Glutathione Disulfide Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 101150043239 HSPA8 gene Proteins 0.000 description 1
- 101000993443 Haemophilus influenzae Hemoglobin and hemoglobin-haptoglobin-binding protein A Proteins 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 102100034533 Histone H2AX Human genes 0.000 description 1
- 101710195517 Histone H2AX Proteins 0.000 description 1
- 102100021090 Homeobox protein Hox-A9 Human genes 0.000 description 1
- 101001126442 Homo sapiens 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 Proteins 0.000 description 1
- 101000697938 Homo sapiens Attractin-like protein 1 Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000878536 Homo sapiens Focal adhesion kinase 1 Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101001002695 Homo sapiens Integrin-linked protein kinase Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101000979575 Homo sapiens NLR family CARD domain-containing protein 3 Proteins 0.000 description 1
- 101001095089 Homo sapiens PML-RARA-regulated adapter molecule 1 Proteins 0.000 description 1
- 101100137534 Homo sapiens PRAM1 gene Proteins 0.000 description 1
- 101001091538 Homo sapiens Pyruvate kinase PKM Proteins 0.000 description 1
- 101150003028 Hprt1 gene Proteins 0.000 description 1
- 238000009015 Human TaqMan MicroRNA Assay kit Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRSZFWQUAKGDAV-KQYNXXCUSA-N IMP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(NC=NC2=O)=C2N=C1 GRSZFWQUAKGDAV-KQYNXXCUSA-N 0.000 description 1
- 102100022338 Integrin alpha-M Human genes 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 101150087807 Itgam gene Proteins 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 101150095872 LILRA5 gene Proteins 0.000 description 1
- 102100025574 Leukocyte immunoglobulin-like receptor subfamily A member 5 Human genes 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 101710132699 Lysozyme 2 Proteins 0.000 description 1
- 102100026848 Lysozyme-like protein 2 Human genes 0.000 description 1
- 108060004872 MIF Proteins 0.000 description 1
- 101150047731 MTDH gene Proteins 0.000 description 1
- 238000000719 MTS assay Methods 0.000 description 1
- 231100000070 MTS assay Toxicity 0.000 description 1
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 102000010909 Monoamine Oxidase Human genes 0.000 description 1
- 108010062431 Monoamine oxidase Proteins 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100010166 Mus musculus Dok3 gene Proteins 0.000 description 1
- 101100153533 Mus musculus Ltbr gene Proteins 0.000 description 1
- 101000931491 Mus musculus Protein FosB Proteins 0.000 description 1
- 101000861456 Mus musculus Protein c-Fos Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-L NADH(2-) Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP([O-])(=O)OP([O-])(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-L 0.000 description 1
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 description 1
- 102100023382 NLR family CARD domain-containing protein 3 Human genes 0.000 description 1
- 101710153129 Neutrophilic granule protein Proteins 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 101150089088 PRAM1 gene Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102100036197 Prosaposin Human genes 0.000 description 1
- 101710152403 Prosaposin Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108091008611 Protein Kinase B Proteins 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 101150002602 Psap gene Proteins 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 102100034911 Pyruvate kinase PKM Human genes 0.000 description 1
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 1
- 101710141955 RAF proto-oncogene serine/threonine-protein kinase Proteins 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 238000013381 RNA quantification Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000032464 Retinoic acid syndrome Diseases 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- QOLYAJSZHIJCTO-VQVTYTSYSA-N Thr-Pro Chemical group C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(O)=O QOLYAJSZHIJCTO-VQVTYTSYSA-N 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108010033576 Transferrin Receptors Proteins 0.000 description 1
- 108010065850 Tristetraprolin Proteins 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 101710187830 Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 1
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 1
- DJJCXFVJDGTHFX-UHFFFAOYSA-N Uridinemonophosphate Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-UHFFFAOYSA-N 0.000 description 1
- 102000013127 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229960001570 ademetionine Drugs 0.000 description 1
- LNQVTSROQXJCDD-UHFFFAOYSA-N adenosine monophosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(CO)C(OP(O)(O)=O)C1O LNQVTSROQXJCDD-UHFFFAOYSA-N 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000004419 alkynylene group Chemical group 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- LULLIKNODDLMDQ-UHFFFAOYSA-N arsenic(3+) Chemical compound [As+3] LULLIKNODDLMDQ-UHFFFAOYSA-N 0.000 description 1
- MJLGNAGLHAQFHV-UHFFFAOYSA-N arsenopyrite Chemical compound [S-2].[Fe+3].[As-] MJLGNAGLHAQFHV-UHFFFAOYSA-N 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- DVQHYTBCTGYNNN-UHFFFAOYSA-N azane;cyclobutane-1,1-dicarboxylic acid;platinum Chemical compound N.N.[Pt].OC(=O)C1(C(O)=O)CCC1 DVQHYTBCTGYNNN-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N biotin Natural products N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000007963 capsule composition Substances 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 230000006860 carbon metabolism Effects 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 230000023359 cell cycle switching, meiotic to mitotic cell cycle Effects 0.000 description 1
- 239000008004 cell lysis buffer Substances 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 238000012054 celltiter-glo Methods 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000007697 cis-trans-isomerization reaction Methods 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 238000004163 cytometry Methods 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009274 differential gene expression Effects 0.000 description 1
- DZHFTEDSQFPDPP-QTNFYWBSSA-L disodium;(2s)-2-hydroxypentanedioate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](O)CCC([O-])=O DZHFTEDSQFPDPP-QTNFYWBSSA-L 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 230000037437 driver mutation Effects 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- ADFOJJHRTBFFOF-RBRWEJTLSA-N estramustine phosphate Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)OP(O)(O)=O)[C@@H]4[C@@H]3CCC2=C1 ADFOJJHRTBFFOF-RBRWEJTLSA-N 0.000 description 1
- 229960004750 estramustine phosphate Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 108091008053 gene clusters Proteins 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 230000023266 generation of precursor metabolites and energy Effects 0.000 description 1
- 238000011773 genetically engineered mouse model Methods 0.000 description 1
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 229940093920 gynecological arsenic compound Drugs 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 229940025294 hemin Drugs 0.000 description 1
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000037417 hyperactivation Effects 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000009319 interchromosomal translocation Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000008810 intracellular oxidative stress Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- ODBLHEXUDAPZAU-UHFFFAOYSA-N isocitric acid Chemical compound OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 108700025907 jun Genes Proteins 0.000 description 1
- 230000002122 leukaemogenic effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 150000002669 lysines Chemical class 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 231100000782 microtubule inhibitor Toxicity 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 230000008600 mitotic progression Effects 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 229950006238 nadide Drugs 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000037360 nucleotide metabolism Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000005959 oncogenic signaling Effects 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 229960005010 orotic acid Drugs 0.000 description 1
- FKCRAVPPBFWEJD-XVFCMESISA-N orotidine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1C(O)=O FKCRAVPPBFWEJD-XVFCMESISA-N 0.000 description 1
- FKCRAVPPBFWEJD-UHFFFAOYSA-N orotidine Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1C(O)=O FKCRAVPPBFWEJD-UHFFFAOYSA-N 0.000 description 1
- KYOBSHFOBAOFBF-ZAKLUEHWSA-N orotidine-5'-monophosphate Chemical compound O[C@@H]1[C@@H](O)[C@H](COP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1C(O)=O KYOBSHFOBAOFBF-ZAKLUEHWSA-N 0.000 description 1
- 229910052958 orpiment Inorganic materials 0.000 description 1
- 238000005895 oxidative decarboxylation reaction Methods 0.000 description 1
- YPZRWBKMTBYPTK-UHFFFAOYSA-N oxidized gamma-L-glutamyl-L-cysteinylglycine Natural products OC(=O)C(N)CCC(=O)NC(C(=O)NCC(O)=O)CSSCC(C(=O)NCC(O)=O)NC(=O)CCC(N)C(O)=O YPZRWBKMTBYPTK-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 101150037009 pin1 gene Proteins 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000004144 purine metabolism Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000004147 pyrimidine metabolism Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- NCYCYZXNIZJOKI-OVSJKPMPSA-N retinal group Chemical group C\C(=C/C=O)\C=C\C=C(\C=C\C1=C(CCCC1(C)C)C)/C NCYCYZXNIZJOKI-OVSJKPMPSA-N 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000001743 silencing effect Effects 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 125000004426 substituted alkynyl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 101150056627 tcp gene Proteins 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 125000006169 tetracyclic group Chemical group 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 125000005296 thioaryloxy group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 238000012301 transgenic model Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- XSPDXZISEYDDMJ-UHFFFAOYSA-N triazine;1,2,4-triazine Chemical compound C1=CN=NN=C1.C1=CN=NC=N1 XSPDXZISEYDDMJ-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000006168 tricyclic group Chemical group 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000005760 tumorsuppression Effects 0.000 description 1
- 230000002100 tumorsuppressive effect Effects 0.000 description 1
- 238000009424 underpinning Methods 0.000 description 1
- 231100000747 viability assay Toxicity 0.000 description 1
- 238000003026 viability measurement method Methods 0.000 description 1
- 210000005048 vimentin Anatomy 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/28—Compounds containing heavy metals
- A61K31/285—Arsenic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/203—Retinoic acids ; Salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/36—Arsenic; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
Definitions
- Isocitrate dehydrogenase enzymes are key metabolic enzymes. Mutations to IDH1 and IDH2 have been identified as important early events in a variety of tumor types. For example, IDH enzymes are mutated in approximately 20% of human acute myeloid leukemias (AMLs). Pathogenic mutants of IDH enzymes have been identified that give rise to 2-hydroxyglutarate (2-HG), an oncometabolite that contributes to the oncogenic phenotype. Accordingly, 2-HG is a predictive biomarker in cancers having a pathogenic IDH1 or IDH2 allele.
- 2-HG 2-hydroxyglutarate
- IDH2-targeting Enasidenib AG-221
- mIDH2 mutant form of IDH2
- mIDH i.e., mIDHI and mIDH2
- leukemias may adjust and evolve in response to treatment. Therefore, there is a need to identify common vulnerabilities in mIDH leukemias, and to develop rational therapies capable of preventing or overcoming resistance that arises in response to therapy.
- the present invention is based on the discovery of common vulnerabilities in mIDH leukemia.
- mIDH leukemia exhibits sensitivity to reactive oxygen species (ROS)-producing compounds, such as arsenic trioxide (ATO) and Darinaparsin.
- ROS reactive oxygen species
- ATO arsenic trioxide
- ATRA retinoic acid compound-induced differentiation
- the inventors have further shown that treatment of leukemia with the combination of a ROS promoting compound (e.g., arsenic trioxide and Darinaparsin) and a compound that promotes differentiation (e.g., a Pinl inhibitor, such as ATRA) provides a synergistic, powerful, and well-tolerated targeted therapy in both mouse and human models of AML.
- a ROS promoting compound e.g., arsenic trioxide and Darinaparsin
- a compound that promotes differentiation e.g., a Pinl inhibitor, such as ATRA
- the present invention therefore features methods of treating cancer by contacting the cells of the cancer with a pharmaceutical compound.
- the pharmaceutical compound can be Darinaparsin, a retinoic acid compound (e.g., ATRA), or a combination of Darinaparsin and a retinoic acid compound (e.g., Darinaparsin and ATRA).
- the cancer can be a leukemia (e.g., mIDHl/mIDH2 leukemia) or a solid tumor (e.g., an IDH1- or IDH2-associated solid tumor).
- a leukemia e.g., mIDHl/mIDH2 leukemia
- a solid tumor e.g., an IDH1- or IDH2-associated solid tumor.
- the solid tumors include, but are not limited to, glioma, paraganglioma, astroglioma, colorectal carcinoma, melanoma, cholangiocarcinoma, chondrosarcoma, thyroid carcinomas, prostate cancers, and non-small cell lung cancer.
- the invention features a method of treating leukemia in a subject.
- the method includes contacting the cells of said leukemia with (e.g., by administering to said subject) an effective amount of a pharmaceutical compound, the pharmaceutical compound being Darinaparsin, a retinoic acid compound, or a combination thereof, wherein one or more cells of the leukemia has a pathogenic IDH2 allele or has elevated 2- hydroxyglutarate (2-HG) levels; and wherein contacting said cells of said leukemia with said pharmaceutical compound treats said leukemia in said subject.
- the invention features a method of treating leukemia in a subject, wherein one or more cells of the leukemia has a pathogenic IDH1 allele or has elevated 2-HG levels.
- the method includes contacting the cells of said leukemia with (e.g., by administering to said subject) an effective amount of a pharmaceutical compound, the pharmaceutical compound being Darinaparsin, a retinoic acid compound, or a combination thereof, wherein contacting said cells of said leukemia with said pharmaceutical compound treats said leukemia in said subject.
- Elevated 2-HG levels may be considered to include detection of any 2-HG at all.
- a pathological level of 2-HG associated with an IDH1/IDH2 cancer may be determined by levels of 2-HG at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater than the 2-HG levels measured in a normal (e.g., wild-type and/or disease fee) subject, tissue, or cell.
- a normal e.g., wild-type and/or disease fee
- Elevated 2-HG levels can be determined via (i) the detection of D-2-HG in biological fluids detected by LC-MS/MS; (ii) the detection of total 2-HG (including both L-2-HG and D-2- HG) in the serum above 2mM; or (iii) the detection of the presence of mutant variants of IDH1/IDH2.
- Darinaparsin and the retinoic acid compound results in the remission of the leukemia in the subject (e.g., the symptoms of the leukemia are reduced). In some embodiments, contacting said cells of said leukemia with the Darinaparsin and the retinoic acid compound results in the complete remission of the leukemia (e.g., all signs and symptoms of the leukemia are absent). In some embodiments, contacting said cells of said leukemia with the Darinaparsin and the retinoic acid compound cures the leukemia in the subject (e.g., all signs and symptoms of the leukemia are absent for 1 year or more, for 2 years or more, for 3 years or more, for 4 years or more, or for 5 years or more).
- the Darinaparsin and the retinoic acid compound operate synergistically to treat said leukemia. In some embodiments, the Darinaparsin and the retinoic acid compound is more effective for treating said leukemia than the same quantities of either said Darinaparsin or said retinoic acid compound alone.
- Darinaparsin and the retinoic acid compound increases the production of reactive oxygen species (ROS) in one or more cells of said leukemia, e.g., increases the production of ROS by at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to production of ROS prior to treatment with the Darinaparsin and the retinoic acid compound.
- contacting said cells of said leukemia with of the Darinaparsin and the retinoic acid compound increases the production of ROS by at least about 10%.
- Darinaparsin and the retinoic acid compound promotes differentiation of one or more cells of said leukemia.
- contacting said cells of said leukemia with of the combination of Darinaparsin and a retinoic acid compound is sufficient to inhibit and/or degrade Pinl in the subject.
- this may include an increase in degradation of Pinl of at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to Pinl activity prior to treatment with the Darinaparsin and the retinoic acid compound.
- Darinaparsin and the retinoic acid compound increases the degradation of Pinl of at least about 10%.
- this may include a reduction in Pinl activity of at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to Pinl activity prior to treatment with the Darinaparsin and the retinoic acid compound.
- the contacting said cells of said leukemia with of Darinaparsin and a retinoic acid compound is more effective for inhibiting and/or degrading Pinl in the subject than administration of the same quantities of either the Darinaparsin or the retinoic acid compound alone.
- contacting said cells of said leukemia with the Darinaparsin and the retinoic acid compound is more effective for treating the leukemia than contacting said cells of said leukemia with of the same quantities of either the Darinaparsin or the retinoic acid compound alone.
- the Darinaparsin and the retinoic acid compound may be administered concurrently (e.g., within about lmin, 2min, 5min, lOmin, 20min, 30min, or 60min) or separately.
- the Darinaparsin may be administered either prior to or after the retinoic acid compound.
- the invention features a method of treating leukemia in a subject.
- the method includes contacting the cells of the leukemia with an effective amount of the Darinaparsin to said subject, wherein one or more cells of the leukemia have a pathogenic IDH1/IDH2 allele or have been previously determined to have elevated 2-hydroxy glutarate (2-HG) levels; and wherein contacting said cells of said leukemia with the Darinaparsin treats the leukemia in the subject.
- Elevated 2-HG levels may be considered to include levels of 2-HG at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater than the 2-HG levels measured in a normal (e.g., wild-type and/or disease fee) subject, tissue, or cell.
- a normal e.g., wild-type and/or disease fee
- Darinaparsin increases the production of reactive oxygen species (ROS) in one or more cells of said leukemia (e.g., increases the production of ROS by at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to production of ROS prior to treatment with the Darinaparsin).
- ROS reactive oxygen species
- Darinaparsin is sufficient to inhibit and/or degrade Pinl in the subject. In some embodiments, this may include an increase in degradation of Pinl of at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to Pinl activity prior to treatment with the Darinaparsin.
- this may include a reduction in Pinl activity of at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to Pinl activity prior to treatment with the Darinaparsin.
- contacting said cells of said leukemia with of the Darinaparsin increases the degradation of Pinl of at least about 5%.
- the invention features a method of treating leukemia in a subject.
- the method includes contacting the cells of the leukemia with an effective amount of a retinoic acid compound to the subject, wherein the subject has a pathogenic IDH1/IDH2 allele or wherein one or more cells of the leukemia have been previously determined to have elevated 2-hydroxyglutarate (2-HG) levels; and wherein contacting said cells of said leukemia with the retinoic acid compound treats the leukemia in the subject.
- Elevated 2-HG levels may be considered to include levels of 2-HG at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater than the 2-HG levels measured in a normal (e.g., wild-type and/or disease fee) subject, tissue, or cell.
- a normal e.g., wild-type and/or disease fee
- contacting said cells of said leukemia with the retinoic acid compound promotes differentiation of one or more cells of the leukemia.
- contacting said cells of said leukemia with the retinoic acid compound is sufficient to inhibit and/or degrade Pinl in the subject.
- this may include an increase in degradation of Pinl of at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to Pinl activity prior to treatment with retinoic acid compound.
- this may include a reduction in Pinl activity of at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to Pinl activity prior to treatment with the retinoic acid compound.
- contacting said cells of said leukemia with of the retinoic acid compound increases the degradation of Pinl of at least about 5%.
- the subject has elevated levels of Pinl activity (e.g., has previously been determined to have elevated levels of Pinl activity in one or more cells of the leukemia).
- Levels of Pinl activity in the subject may be determined by measuring the levels of at least one Pinl marker, wherein elevated levels of the Pinl marker is indicative of elevated Pinl activity.
- Non-limiting examples of Pinl markers include nucleic acid molecules (e.g., mRNA, DNA) that correspond to some or all of a Pinl gene, peptide sequences (e.g., amino acid sequences) that correspond to some or all of a Pinl protein, nucleic acid sequences which are homologous to Pinl gene sequences, peptide sequences which are homologous to Pinl peptide sequences, alteration of Pinl protein, antibodies to Pinl protein, substrates of Pinl protein, binding partners of Pinl protein, alteration of Pinl binding partners, and activity of Pinl.
- nucleic acid molecules e.g., mRNA, DNA
- peptide sequences e.g., amino acid sequences
- alteration of a Pinl protein may include a post-translational modification (e.g., phosphorylation, acetylation, methylation, lipidation, or any other post-translational modification known in the art) of Pinl.
- a Pinl marker is the level of Pin expression (e.g., Pinl protein expression levels and/or Pinl mRNA expression levels) in a subject.
- Elevated levels of a Pinl marker include, for example, levels at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater than the marker levels measured in a normal (e.g., wild-type and/or disease fee) subject, tissue, or cell.
- elevated levels of a Pinl marker include levels at least about 3% or greater than the marker levels measured in a normal subject, tissue, or cell.
- the method further comprises contacting said cells of said leukemia with a compound that inhibits Pinl activity (e.g., in combination with the retinoic acid and the Darinaparsin).
- a compound that inhibits Pinl activity e.g., in combination with the retinoic acid and the Darinaparsin.
- the subject has decreased levels of lysine-specific demethylase (LSD1) activity.
- LSD1 activity can be determined by methods known to one of skill in the art, including determining the levels of lysine histone methylation (e.g., H3K4me2 and/or H3K9me2).
- Decreased levels of LSD 1 activity include, for example, a reduction of LSD1 activity of about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater than the marker levels measured in a normal (e.g., wild- type and/or disease fee) subject, tissue, or cell.
- decreased levels of LSD1 activity include a reduction of LSD1 activity of about 20% or greater than the marker levels measured in a normal subject, tissue, or cell.
- the method further comprises contacting said cells of said leukemia with a compound that inhibits LSD1 activity (e.g., reduced LSD1 activity by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to LSD1 activity prior to treatment).
- a compound that inhibits LSD1 activity e.g., reduced LSD1 activity by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to LSD1 activity prior to treatment.
- the method further comprises contacting said cells of said leukemia with an inhibitor of IDH1/IDH2.
- the inhibitor of IDH1/IDH2 may reduce IDH1/IDH2 activity (e.g., as measured by a reduction in 2-HG levels) by about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater relative to IDH1/IDH2 activity prior to treatment.
- the inhibitor of IDH1/IDH2 may be specific for a pathogenic mutant form of IDH1/IDH2. When such an inhibitor targets a mutant form of IDH1/IDH2, it may reduce the aberrant activity of the enzyme by about 20%.
- the pathogenic IDH1 allele is IDH1 R132C and the pathogenic IDH2 allele is IDH2 R140Q .
- the method further includes contacting said cells of said leukemia with an effective amount of dexamethasone.
- the invention features a kit for treating leukemia in a subject, wherein the kit includes: (a) an effective amount of Darinaparsin, (b) an effective amount of a retinoic acid compound, and (c) instructions for the use of the Darinaparsin in combination with the retinoic acid compound for treating the leukemia in the subject, wherein one or more cells of said leukemia has a pathogenic IDH1/IDH2 allele or wherein the subject has been previously determined to have elevated 2-hydroxyglutarate (2-HG) levels.
- the kit includes: (a) an effective amount of Darinaparsin, (b) an effective amount of a retinoic acid compound, and (c) instructions for the use of the Darinaparsin in combination with the retinoic acid compound for treating the leukemia in the subject, wherein one or more cells of said leukemia has a pathogenic IDH1/IDH2 allele or wherein the subject has been previously determined to have elevated 2-hydroxyglutarate (2-HG) levels.
- Elevated 2-HG levels may be considered to include levels of 2-HG at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater than the 2-HG levels measured in a normal (e.g., wild-type and/or disease fee) subject, tissue, or cell.
- the kit further includes an effective amount of a compound that inhibits Pinl activity and instructions for the use of the compound that inhibits Pinl activity in combination with the Darinaparsin and the retinoic acid compound.
- the kit further includes an effective amount of a compound that inhibits LSD1 activity and instructions for the use of the compound that inhibits LSD1 activity in combination with the Darinaparsin and said retinoic acid compound.
- the kit further includes an effective amount of a compound that inhibits Pinl activity, an effective amount of a compound that inhibits LSD1 activity, and instructions for the use of the compound that inhibits Pinl activity and the compound that inhibits LSD1 activity in combination with the Darinaparsin and the retinoic acid compound.
- the retinoic acid compound is administered in a low dose such as about 5 mg/kg body weight or less (e.g., about 0.1, 0.2, 0.5, 0.75, 1, 2, 3, 4, or 5 mg/kg body weight or less), 1.5 ug/g body weight or less (e.g., about 0.1, 0.2, 0.5, 0.75, 1, or 1.5 ug/g body weight or less), less than about 25 mg/m 2 (e.g., less than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 mg/m 2 ), or between 25 mg/m 2 and 45 mg/m 2 (e.g., 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 mg/m 2 ).
- a low dose such as about 5 mg/kg body weight or less (e.g., about 0.1, 0.2, 0.5, 0.75, 1, 2, 3, 4, or 5 mg/kg
- the low dose of the retinoic acid compound is a nontoxic dose of the retinoic acid compound. In some embodiments, the low dose of the retinoic acid compound is administered in combination with a low dose of retinoic acid. In some embodiments the low dose of the retinoic acid compound and the low dose of the retinoic acid are nontoxic.
- a low dose of a retinoic acid compound related to in vivo treatments is 1.5 mg/g/day or lower. In some embodiments, a low dose of the retinoic acid compound comprises a dose of about 30 mg/m 2 body surface area or less. For example, a low dose of a retinoic acid compound related to treating a human with leukemia is 10-22.5 mg/m 2 (PO administration, BID). In some embodiments, a low dose of the retinoic acid compound comprises a dose of about 10 mg/m 2 body surface area or less.
- the Darinaparsin is administered in a low dose, such as 2 mg/kg body weight or less (e.g., about 0.01, 0.02, 0.03, 0.032, 0.04, 0.05, 0.06, 0.07,
- a low dose of the Darinaparsin is about 0.15, about 0.16, or about 0.032 mg/kg body weight. In some embodiments, the low dose of the Darinaparsin is a nontoxic dose of the Darinaparsin.
- a low dose of Darinaparsin related to in vitro treatments of leukemia cells is 0.25 mM or lower.
- a low dose of Darinaparsin related to in vivo treatments e.g., in mice treatments
- a low dose of Darinaparsin comprises a dose of about 2.5 mg/kg body weight or less (e.g., a dose of between about 0.05 mg/kg body weight and about 2.5 mg/kg body weight).
- a low dose of Darinaparsin related to treating a human with leukemia is 0.075-0.15 mg/kg (IV administration, QD).
- a low dose of Darinaparsin comprises a dose of about 0.05 mg/kg body weight or less.
- the low dose of the Darinaparsin is administered in combination with a low dose of a retinoic acid compound. In some embodiments the low dose of the Darinaparsin and the low dose of retinoic acid compound are nontoxic.
- the retinoic acid compound is all-trans retinoic acid (ATRA), 13-cis-retinoic acid, retinol, retinyl acetate, retinal, or AC-55640, or is a compound structurally similar to retinoic acid.
- the retinoic acid compound is a compound selected from Table 1 or Table 2.
- the retinoic acid compound is ATRA.
- the leukemia is acute myeloid leukemia (AML).
- AML acute myeloid leukemia
- the acute myeloid leukemia may be either relapsed acute myeloid leukemia or refractory acute myeloid leukemia.
- the leukemia is an IDH1/IDH2 independent (e.g., resistant) leukemia.
- An IDH2 independent leukemia includes, for example, a leukemia having a pathogenic IDH2 allele which has developed resistance to IDH2- targeting therapies (e.g., Enasidenib).
- the leukemia described above can be acute promyelocytic leukemia (APL). In some embodiments, the leukemia is not acute promyelocytic leukemia APL.
- one or more cells of said leukemia has a pathogenic IDH1/IDH2 allele and elevated 2-hydroxyglutarate (2-HG) levels.
- one or more cells of the leukemia comprise a pathogenic IDH1 or IDH2 allele in combination with one or more other mutants.
- the other mutants include, but are not limited to, FLT3, NPM1, DNMT3A, RUNX1, TET2, IDH2, CEBPA, TP53, IDH1, NRAS, RARA, PML, TTN, WT1, MYH11, BPIFC, CBFB, KIT, KRAS, KMT2A, PTPN11, MUC16, SMC1A, RUNX1T1, MPO, U2AF1, ABCA6, DMXL2, DNAH3, KLK3, FBX07, SMC3, MXRA5, MUC17, SF3B1, HPS3, PHF6, ASXL1, AHNAK, SENP6, MYCBP2, NF1, PCLO, CSMD3, LRP1B, MED 12, RAD21, AHNAK2, GDI2, PARP14
- MLLT10 DNAH11, SLIT2, DNAH9, BRINP3, HMCN1, SYNE1, GABRG3, NPAS3, CSMD1, GATA2, ZCRB1, MTFR2, SLC43A1, SLA2, APOB, PRDM1, BTBD10, ABCA5, EP300, TNC, ADGRG4, BSN, IFT74, COL12A1, NUP98, CREBBP, EPG5, KIF1B, ABL1, SLC16A7, RALGPS2, CHL1, SCLT1, LRP2, VWA3B, FRYL, PRUNE2, PLCE1, GRIK4, HIVEP3, RYR3, ANK2, ATRNL1, VPS13B, GPR179, FCGBP, KIF15, and DNAH10.
- Two exemplary mutants are NPMc+ and FLT3-ITD.
- one or more cells of the leukemia comprise a pathogenic IDH1 allele in combination with NPMc+, FLT3-ITD, or both.
- An exemplary pathogenic IDH1 allele is IDH1 R132C .
- one or more cells of the leukemia comprise a pathogenic IDH2 allele in combination with NPMc+, FLT3-ITD, or both.
- An exemplary pathogenic IDH2 allele is IDH2 R140Q .
- the effective amount of the Darinaparsin is a low dose of about 2.5 mg/kg body weight or less
- the effective amount of the retinoic acid compound is a low dose of about 30 mg/m 2 body surface area or less
- the retinoic acid compound is selected from the group consisting of all-trans retinoic acid (ATRA), 13-cis-retinoic acid, retinol, retinyl acetate, retinal, and AC-55640.
- the effective amount of the Darinaparsin is a low dose of between about 0.05 mg/kg body weight and about 2.5 mg/kg body weight
- the effective amount of the retinoic acid compound is a low dose of about 10 mg/m 2 body surface area or less
- the retinoic acid compound is ATRA.
- one or more cells of the leukemia comprise a pathogenic IDH1 or IDH2 allele in combination with NPMc+, FLT3-ITD, or both, in which said pathogenic IDH1 allele is IDH1 R132C and said pathogenic IDH2 allele is IDH2 R140Q .
- Fig. 1A is an image depicting the approach used to model in vivo independence from mIDH2 (IDH2R140Q) in AML.
- Mouse model is based on serial transplantation of leukemia cells derived form Tg(M2rt-TA) transgenic mice and overexpressing HoxA9 and Meisla oncoproteins. Red boxes: leukemia. Blue boxes: healthy state.
- Fig. IB is a series of images depicting Flow cytometry plots of bone marrow samples.
- X- axis fluorescence Intensity (0 - 105), Y-axis, cell counts.
- Fig. 1C is a graph depicting the percentage of Leukemic cells in the bone marrow ( BM) of 2 nd and 3 rd recipients maintained on DOX ON or DOX OFF diet. Quantitation is expressed as percentage of leukemic cells showing positivity for GFP and YFP fluorescence.
- Fig. ID is a series of images showing May-Griinwald-Giemsa staining of peripheral blood (PB) smears at euthanization (6- 9 weeks after transplant).
- PB peripheral blood
- Fig. IE is a graph depicting the percentage of blasts in peripheral blood ( PB) in of 2 nd and 3 rd recipients maintained on DOX ON or DOX OFF diet.
- Fig. IF is a graph depicting the LC- MS quantification of the 2-HG peripheral blood ( PB) in of 2 nd and 3 rd recipients maintained on DOX ON or DOX OFF diet.
- Fig. 1G is a graph depicting real time quantitative PCR analyses for the expression of mIDH2 (IDH2 R140Q ) in leukemia cells.
- Fig. 1H is a graph depicting real time quantitative PCR analyses for the expression of HoxA9 in leukemia cells.
- Fig. II is a graph depicting real time quantitative PCR analyses for the expression of Meisl A in leukemia cells.
- IDH2R140Q inhibitor IDHi
- IDHi AGI-6780
- ImM vehicle
- Fig. IK is a series of images depicting representative magnification of methylcellulose colonies generated by blasts at 3rd plating.
- Fig. 1L is a graph depicting the relative LC- MS quantification of the 2-HG from colonies pooled and extracted for metabolites at 3rd-plating.
- Fig. 2A is an image depicting Hierarchical clustering of leukemia cells’ metabolites isolated from Dox+ cohorts. Rows: metabolites; columns: samples; color key indicates metabolite abundance level (blue: lowest; red: highest). Clustering generated by MetaboAnalyst’ s annotation tool.
- Fig. 2B is an image depicting the Pathway enrichment analysis of altered metabolic pathways between sensitive (2nd RECIPIENT - derived cells) and resistant (3rd RECIPIENT - derived) leukemia cells.
- Fig. 2C is an image depicting the bar chart showing metabolic pathways enriched in resistant leukemia cells isolated from 3rd RECIPIENTS.
- Fig. 2D is a graph depicting Fold changes of Cysteine (CYS) and Glutathione (GSH) metabolites in resistant leukemia cells compared with sensitive leukemia cells.
- CYS Cysteine
- GSH Glutathione
- Fig. 2E is a graph depicting Fold change of the NAD+/NADH and
- NADP+/NADPH ratio in resistant leukemia cells compared with sensitive leukemia cells NAD+: nicotinamide adenine dinucleotide oxidized, NADP+: nicotinamide adenine dinucleotide phosphate oxidized, NADH: nicotinamide adenine dinucleotide reduced, NADPH: nicotinamide adenine dinucleotide phosphate reduced.
- X- axis Fluorescence intensity levels;
- Y-axis percentage of cell counts.
- Fig. 2G is a graph depicting the percentage of cells showing high levels of ROS (ROSHi) in sensitive (derived from 2nd RECIPIENTS) and resistant (derived from 3rd RECIPIENT) cells shown in (2F).
- ROS ROS
- Fig. 21 is a series of images depicting IHC for gH2A.C in mouse spleen sections and percentage of infiltrating blasts showing positivity for the gH2A.C marker.
- Fig. 2J(a-e) a series of graphs showing the transcriptional rewiring of mIDH leukaemia at early (sensitive) stage, characterized by altered MAPK and ATRA associated pathways a. Bar chart showing the most significantly up-regulated KEGG pathways in HoxA9/Meisla/mIDH2 cells. The pathways are ranked on the basis of the gene set size indicating activation b-c.
- GSE Gene Set Enrichment
- GSE Gene Set Enrichment plots of Tretinoin related Signature in HoxA9/Meisla/mIDH2 vs HoxA9/Meisla.
- d-e Gene Set Enrichment (GSE) plots of LSD1 Signature in HoxA9/Meisla/mIDH2 vs HoxA9/Meisla.
- Fig. 3A is an image depicting the heat map of differentially expressed genes (P ⁇ 0.05) in sensitive and resistant samples or Hoxa9/Meisla leukemia, not primed by mIDH2.
- the columns represent the samples and the rows represent the genes.
- Gene expression is shown with pseudocolor scale (-3 to 3) with upregulated genes shown as a shade of blue and downregulated genes as a shade of red.
- Fig. 3B is an image depicting the bar chart showing the most significantly up- regulated pathways (multiple test corrected p-value ⁇ 0.05) in resistant leukemia cells. The pathways are ranked on the basis of Z score indicating activation.
- Fig. 3C is an image depicting Gene Set Enrichment (GSE) plots of MAPK
- TNFcr TNFcr
- Fig. 3D is an image depicting the Venn Plot showing shared genes between mouse mIDH2 leukemia and Schenken et ak; 2013 gene sets.
- Fig. 3E is an image depicting the Heat map showing shared genes shown in (3D) are regulated concordantly in Resistant and Sensitive clone with respect to ATRA+TCP gene sets reported by Schenken et ak; 2013.
- the figure legend ( right panel) describes representative images of leukemia cells at different stages of differentiation ( blasts, intermediate, differentiated)
- Fig. 3G is a graph depicting relative LC-MS/MS quantitation of 2-HG in TF1 cells overexpressing IDH2R140Q or respective controls
- Fig. 3H is a series of images and graphs depicting Cytospin images and quantitation of human TF1 cell line stably overexpressing the mutant variant R140Q of IDH2 (mIDH2) to the respective controls (CTRL) that have been treated with pharmacological concentrations of ATRA (10-6M) or vehicle (DMSO).
- Fig. 3J is a series of images depicting different culture media color of TF1 cell line stably overexpressing mIDH2 or respective control (CTRL).
- the asterisks indicate mIDH2-TFl leukemia cells treated with treated with ATRA (10-6M).
- 1-4 flasks show cultured TF1 cell line (CTRL)
- 5-8 flasks show cultured TF1 cell line overexpressing the mutant variant R140Q of IDH2 (mIDH2).
- Fig. 3K(a-e) a series of graphs showing mouse HoxA9/Meisla/ mIDH2 leukaemia at early (sensitive) stage, marked by switching to One-Carbon metabolism and increased oxidative stress a.
- Hierarchical clustering of leukaemia cells’ metabolites isolated from Dox-i- cohorts. Rows: metabolites; columns: samples; colour key indicates metabolite abundance level (blue: lowest; red: highest). Clustering generated by
- MetaboAnalyst’ s annotation tool.
- Pathway enrichment analysis shows altered metabolic pathways between HoxA9/Meisla/mIDH2 and respective HoxA9/Meisla control cells
- c. LC-MS/MS fold change levels of precursors for One-Carbon metabolism isolated from HoxA9/Meisla/mIDH2 and respective HoxA9/Meisla control cells. Data are mean ⁇ SD.
- Fig. 4A is an image depicting Western blot analysis for ATRA targets (Pinl), ATRA receptors (RARcr,RXRcr), and factors associated with ATRA - related differentiation pathway in hematopoietic cells (c/EBPer, c/EBRe).
- Fig. 4B is an image depicting the Western blot analysis for factors associated with ATRA-related pathway in TF1 cell line, stably overexpressing the mIDH2) or the empty vector (CTRL).
- Fig. 4C is an image depicting the Western blot analysis for factors associated with ATRA-related pathway in U937 cell line, stably overexpressing the mIDH2) or the empty vector (CTRL).
- Fig. 4D is a graph depicting Percentage of the transferrin receptor (CD71+) positive TF1 cells overexpressing the mIDH2 or respective control (CTRL). Each cell line was treated with the Pinl Inhibitor (Juglone) or vehicle (DMSO) for 3 days.
- Fig. 4E is a graph depicting the Colony forming assay of TF1 cells overexpressing the mIDH2 or respective control (CTRL) treated with Juglone or vehicle. Colonies were quantitated after 7 days from plating.
- Fig. 4F is a graph depicting the quantification of the relative transcriptional expression levels of Hemoglobin (HBG) in TF1 cells silenced for Pinl and
- Fig. 4G is a graph depicting the quantification of the relative transcriptional expression levels of KLF1 in TF1 cells silenced for Pinl and overexpressing the mIDH2 or respective controls (CTRL).
- Fig. 4H is a graph depicting the quantification of the relative transcriptional expression levels of GATA2 in TF1 cells silenced for Pinl and overexpressing the mIDH2 or respective controls (CTRL).
- Fig. 41 is a graph depicting the Fold Induction of CD71 in TF1 cells
- Fig. 4J is a series of graphs depicting the Quantification of the relative transcriptional expression levels of Hemoglobin (HBG), Kruppel like factor 1 (KLF1), in TF1 cells silenced for Pinl and overexpressing the mIDH2 or respective controls (CTRL).
- HBG Hemoglobin
- KLF1 Kruppel like factor 1
- Fig. 4K is an image depicting the scheme of ATO/ ATRA treatments performed in vivo on BL6J recipient mice transplanted with resistant leukemia
- Fig. 4L is an image deciphering the percent of survival of recipient mice
- Fig. 4M is an image deciphering the inhibition of LSD 1 contributes to increase intracellular levels of oxidative stress. Histogram reporting the intracellular oxidative stress of TF1 cells treated for 3 weeks with the LSD1 inhibitor (LSDli; GSK2879552, ImM) or DMSO (VHL) as respective control. Measurements were performed by flow cytometry analyses after incubation of TF1 cells with the CellROX molecular probe. Data are mean ⁇ SD.
- Fig. 5A is a series of images and graphs depicting methylcellulose colony forming assay quantification of human primary AML blasts treated in vitro with pharmacological concentration of ATRA, ATO, a combination of both, or vehicles as control. Treatments were performed in either the presence of mIDH2 or absence of the mutation (CTRL).
- Data are means ⁇ SD of duplicates.
- Fig. 5B is an image depicting the Experimental approach to generate PDX for human AML harboring the mutation R140Qin the IDH2 gene
- Fig. 5C is an image depicting the Scheme of the pharmacological therapy for PDX resembles therapeutic regimen of human APL patients. Treatment regimen was performed in cycles for a total of 65 days resembling APL0406 protocol (Lo-Coco et al; NEJM 2013).
- Fig. 5E is a series of images depicting the cytospins of cells isolated from BM of PDX mice treated with ATRA and ATO.
- Fig. 5F is a graph depicting the percentage of morphologically screened human cells isolated from BM of PDX generated by using IDH2R140Q AML.
- Fig. 5G is an image depicting the scheme of leukemia evolution from mIDH dependent to mIDH2 independent states (e.g. acquisition of resistance to mIDH inhibition). Multiple alterations including genetic mutations, metabolic reprogramming, and transcriptional rewiring are acquired during progression and co-exist in the mIDH2 independent stage.
- MapK/PI3K pathways upregulated pro-survival and proliferation programs
- ATRA pro-differenting
- sensitivity to ATO and ATRA is a vulnerability already present at an early stage in mIDH2 dependent leukemia, which is mantained in later stages of the disease progression.
- Fig. 6B is a series of images depicting Haemotoxylin and Eosin (H&E) staining of internal organs (spleen, liver, and kidney) from 3rd RECIPIENTS showing infiltrating blasts.
- H&E Haemotoxylin and Eosin
- Enlarged images (40x) show perivascular accumulation of infiltrating blasts in spleen, liver, and kidney.
- Fig. 6C is a series of images depicting H&E and immunohistochemistry (IHC) staining of kidney sections derived from 3 rd RECIPIENTS.
- the IHC staining shows infiltrating blasts are positive for the antigen Ki-67, a cellular marker for proliferation.
- Fig. 6D is a series of images depicting H&E staining of internal organs (spleen, liver, and kidney) from 2nd RECIPIENTS. High resolution images show absence or limited infiltrating blasts.
- Fig. 6E is a series of images depicting H&E and IHC staining of kidney sections derived from 2 nd RECIPIENTS.
- the IHC staining for the antigen Ki-67 is mostly negative across the examined tissue.
- Fig. 6H is a graph depicting a methylcellulose colony forming assay of in vitro cultured blasts, derived from 2nd and 3rd RECIPIENTS.
- mIDH2 IDH2R140Q.
- Fig. 7 A is an image depicting the scheme of the experiment for metabolites’ analysis
- Fig. 7B is an image depicting the One-Carbon metabolism pathway. The image is from Locasale J.W. Nature Reviews Cancerl3, 572-583 (2013).
- Fig. 7C is a graph depicting Fold change of key metabolites in the Methionine pathway in resistant leukemia cells compared to sensitive cells.
- MET Methionine
- SAM S-adenosylmethionine
- SAH Sadenosylhomomocysteine
- hCYS homocysteine d
- Fig. 7D is an image depicting the Representative scheme of the De-novo synthesis of Purine (Adenine and Guanine) and Pyrimidine (Thymine, Cytosine and Uracil).
- Fig. 7E is an image depicting the Fold change of the precursors for Purine biosynthesis in resistant leukemia cells compared with sensitive leukemia cell.
- IMP inosine monophosphate
- AMP adenosine monophosphate
- GMP guanosine
- Fig. 7F is an image depicting the Fold change of the precursors for Pyrimidine biosynthesis in resistant leukemia cells compared with sensitive leukemia cells.
- Orotate orotic acid
- OMP orotidine monophoshate
- UMP uridine monophosphate
- UDP uridine diphosphate
- Fig. 7G is a series of images and graphs depicting Flow cytometry plots and quantitation of the percentage of cells showing high levels of mitochondrial ROS (ROSHi) in blast cells overexpressing HoxA9/Meisl alone (HoxA9/Meisla mIDH2 OFF) or in combination with mutant IDH2 (HoxA9/Meisla mIDH2 ON).
- ROSHi mitochondrial ROS
- Fig. 8A is a scheme depicting samples processed for the Whole Exome
- Fig. 8B is a pie-chart showing frequencies of transversion (2nd_07).
- mIDH2 IDH2R140Q or transition mutations responsible for non-synonymous mutations in resistant genomes.
- Pairs of nucleotide indicate different possible transversion (G>T, OA, A>C, T>G, G>C, C>G, A >T, T >A) and transition mutations targeting T or A (A>G, T>C) and C or G (G>A, OT).
- Fig. 8C is a principal component analysis (PCA) plot showing clustering of WES samples using single nucleotide coverage of sensitive and resistant cells.
- Fig. 8D is a venn diagram showing the number of mutated genes overlapping between resistant leukemia cells (3rd_08, 3rd_09, 3rd_ll). Mutations in Spl40 gene are shared between all analyzed resistant clones, but not found in the parental sensitive leukemia.
- Fig. 8E is a series of circular plots of the expression of CNV and fusion genes for sensitive (2nd_07) and resistant (3rd_08, 3rd_09, 3rd_ll) leukemia cells.
- Circular tracks from inside to outside Trackl: genome positions by chromosomes (black lines are cytobands) that are arranged circularly end to end.
- Track 2 lines plot (red: positive; blue: negative) showing gene expression data represented as normalized read counts.
- Track 3 Barplot showing segmented data (CNVs).
- Track 4 Barplot with positive (gain: blue) and negative values (purple: loss) of called CNVs. Amplifications or deletion of relevant oncogenes such as Flt3, Dok genes, and Trp53 are highlighted.
- Track 5 Track 5:
- Interchromosomal translocations are plotted with lines connecting chromosome segments.
- Fig. 9A is a scheme depicting the samples processed through RNA-Sequencing analysis to characterize the transcriptional changes associated with leukemia progression.
- Resistant leukemia cells 3rd_09 and 3rd_13 were generated from the parental sensitive 2nd _9A.
- Resistant leukemia cells 3rd_l l, 3rd_12, 3rd_08, and 3rd_10 were generated from the parental sensitive 2nd_7A.
- mIDH2 IDH2R140Q.
- Fig. 9B is a principal component analysis (PCA) plot showing the genes that are the sources with the majority of the variance in resistant leukemia cells, compared with sensitive leukemia cells.
- the genes are represented by black dots.
- Mpo myeloperoxidase
- Lyz2 lysozyme 2
- Rn45s 45s-pre-ribosomal RNA
- Ngp neutrophilic granule protein
- Psap prosaposin
- Ftll ferritin light polypeptide 1
- Zfp36 zinc finger protein 36
- Hspa8 heat shock protein 8
- Vim vimentin
- Fosb FBJ osteosarcoma oncogene B
- Fos FBJ osteosarcoma oncogene
- Jun jun proto-oncogene.
- Fig. 9C is a table showing the variance and associated statistical significance of major relevant genes for the Principal Component Analysis (PCA) plot shown in Fig. 9B.
- Fig. 9D is an image showing the top altered networks in resistant cells generated by Ingenuity Pathways Analysis tool (www.ingenuity.com). The intensity of the node color indicates the degree of up-regulation (red) and down-regulation (green), while white nodes indicate non-modified genes that may be affected in a non-transcriptional manner. All networks shown were significantly affected, with a score >29.
- Fig. 9E is a series of graph showing the quantification of intracellular flow staining for p-P44/42 (T201, Y204) and p-Akt (T308) in mouse leukemia cells.
- Fig. 9F is a graph showing an increase in 2-HG levels in a human leukemia U937 cell line stably overexpressing the mutant variant R140Q of IDH2 (mIDH2) compared to a U937 control cell line (CTRL).
- Fig. 9G is a series of images showing the representative cytospins images of blasts, intermediates, and differentiated cells used as reference for the screening.
- Fig. 9H is a graph showing the quantification of human leukemia U937 cell line stably overexpressing the mutant variant R140Q of IDH2 (mIDH2) to the respective U937 controls (CTRL).
- Fig. 91 is a graph showing the quantification of flow cytometry analysis for the percentage of CD 14 positive cells (CD14+).
- Fig. 10A is a series of images depicting a western blot assay on TF1 cells overexpressing mutant IDH2 (TF1 IDH2R140Q) or respective control vector (TF1 CTRL) stably silenced for PIN1 expression (shPINl).
- Non targeting (shSCR) was used as control for non-specific silencing effects.
- Fig. 10B is a series of images depicting a western blot assay on TF1 cells overexpressing mutant IDH2 (TF1 IDH2R140Q) or respective control vector (TF1 CTRL) treated with the Pinl Inhibitor Juglone for 72h.
- Fig. IOC is a series of images depicting a western blot assay on TF1 cells stably overexpressing mutant IDH2 (TF1 IDH2R140Q) and Pinl or respective control vector vectors (TF1 CTRL, CTRL).
- Fig. 11A is a series of images depicting a methylcellulose colony forming assay and colony quantifications of mouse leukemia cells derived from 2 nd RECIPIENTS or leukemia cells overexpressing Hoxa9/Meisla.
- Fig. 1 IB is a series of images depicting a methylcellulose colony forming assay and colony quantifications of mouse leukemia cells derived from 3 rd RECIPIENTS or leukemia cells overexpressing Hoxa9/Meisla.
- Fig. llC is a scheme of the in vivo approach to evaluate combination arsenic trioxide (ATO) and ATRA treatment on mIDH2 leukemic cells in C57BL/6J mice.
- ATO arsenic trioxide
- Fig. 1 ID is a graph depicting Kaplan- Meier survival curves derived from the experiment shown in Fig. 11C.
- Fig. 11E is a series of images depicting May-Grunwald-Giemsa staining of BM blasts sorted from recipients treated with ATO and ATRA as shown in Fig. 11C.
- Fig. 1 IF is a series of images depicting H&E staining of lung tissues. Arrowheads indicate perivascular leukemia cells infiltrates.
- Fig. 11G is a series of images depicting IHC of lung tissues for myeloperoxidase (MPO), a marker of myeloid cell differentiation. Arrowheads indicate strongly MPO positive cells in perivascular infiltrates.
- MPO myeloperoxidase
- Fig. 12A is a scheme of the in vivo experimental approach to evaluate combination ATO and ATRA treatment on mIDH2 U937 human leukemic cell lines.
- Fig. 12B is a series of graphs depicting Kaplan- Meier survival curves of NSG mice transplanted with mIDH2-U937 or CTRL-U937 leukemia cells and treated with ATO, ATRA or a combination of both.
- Fig. 12C is a series of graphs showing the percentage of leukemia cells in bone marrow (BM) of NSG mice. Data are means ⁇ SD of samples isolated from different mice.
- Fig. 12D is a series of images showing morphological screening analysis of U937 cells isolated as GFP+ cells from NSG mice treated with retinoic acid (ATRA), Arsenic Trioxide (ATO), a combination of both, or respective vehicle solution. Arrowheads show cells displaying differentiated morphology
- Fig. 12E is a series of graphs and images depicting cytospins of mIDH2-U937 or CTRL-U937 leukemia cells isolated as GFP+ cells from BM of NSG mice.
- Fig. 12F is a series of flow cytometry plots showing CDl lb expression levels in mIDH2-U937 or CTRLU937 leukemia cells.
- Fig. 12G is a series of graphs showing the quantification of flow cytometry analysis for the percentage of CDl lb positive cells (CDl lb+).
- U937 cell line stably overexpressing the mutant variant R140Q of IDH2 (mIDH2) show about 30% reduced percentage of CD1 lb+ cells compared to the control (CTRL).
- Fig. 12H is a series of graphs showing the quantification of spleen weight dissected from NSG mice transplanted with mIDH2-U937 or CTRL-U937 leukemia cells and treated with ATO, ATRA or a combination of both.
- Fig. 13 a- 13k a series of graphs showing the sensitivity of mIDH2 leukaemia to ATRA and ATO.
- Colonies were quantitated after 12 days from plating g, Colony forming assay of TF1 cells overexpressing the mIDH2 or respective control (CTRL) and treated with the PIN1 inhibitor (Juglone, 1 pM) or respective vehicle (VHL). Colonies were quantitated after 7 days from plating h, Fold induction of cell death (Annexin V/ 7AAD positive cells) in mouse leukaemia cells isolated from 2 nd or 3 rd recipients and in vitro treated with ATO (0.5 pM) for 96h.
- Data are means ⁇ SD of duplicates k, Quantification of colony forming ability of mouse leukaemia cells harbouring mutations in IDH2 (IDH2 R140Q ) or IDH1 (IDH1 R132C ) in association with different genetic mutant backgrounds such as NPMc+ or FLT3ITD and treated with pharmacological concentrations of ATRA (1 mM), ATO (0.5 mM), a combination of both (ATRA+ATO), or vehicles (VHL) as control.
- Non mutant IDH2 cells such as MLL-AF9 or NPMc+/ FLT3ITD were also included.
- Fig. 14a-14h a series of graphs showing the combination of ATO and ATRA targeting mIDH2 human leukaemia cells a, Scheme of the in vivo experimental approach b, Kaplan- Meier survival curves of NSG mice transplanted with mIDH2-U937 or CTRL-U937 leukaemia cells and treated with ATO, ATRA or a combination of both c, Percentage of leukaemia cells in bone marrow (BM) of NSG mice. Data are means ⁇
- U937 cell line stably overexpressing the mutant variant R140Q of IDH2 show about 30% reduced percentage of CDllb-i- cells compared to the control (CTRL).
- DS differentiation syndrome
- VEHICLE solutions Accumulation of human MPO positive cells is a major characteristic of DS.
- Fig. 15h-15j a series of graphs showing the effect of ATO and ATRA
- Fig. 16 a schematic depiction of ATO and ATRA targeting mIDH leukaemia.
- Scheme of leukaemia evolution from mIDH dependent to mIDH2 independent states e.g. acquisition of resistance to mIDH inhibition.
- Multiple alterations including metabolic reprogramming, and transcriptional rewiring are acquired during progression and co-exist in the mIDH2 independent stage.
- PIN1, deregulated LSD1 signaling and high ROS levels as key factors of upregulated pro survival and proliferation programs (MAPK/PI3K pathways), alterations to functional ATRA signalling, and altered metabolic state (One-Carbon metabolism and increased nucleic acid synthesis).
- mIDH2 IDH2 R140Q ; BM: bone marrow; ATRA: Retinoic acid; ATO: Arsenic Trioxide.
- the term“about” refers to a value that is within 10% above or below the value being described.
- any values provided in a range of values include both the upper and lower bounds, and any values contained within the upper and lower bounds.
- Arsenic trioxide and“an arsenic trioxide compound” refer to a compound having the formula AS2O3 and derivatives thereof.
- Arsenic trioxide generally has the following structure:
- arsenic trioxide may include, for example, arsenic ores, such as, e.g., arsenopyrite (grey arsenic; FeAsS), realgar (also known as sandarach or red arsenic;
- arsenic trioxide exhibits high toxicity in mammals, such as humans.
- arsenic trioxide ingestion can result in severe side effects, including vomiting, abdominal pain, diarrhea, bleeding, convulsions, cardiovascular disorders, inflammation of the liver and kidneys, abnormal blood coagulation, hair loss, and death.
- arsenic trioxide poisoning may rapidly lead to death. Chronic exposure to even low levels of arsenic trioxide can result in arsenicosis and skin cancer.
- Arsenic trioxide is therefore desirably administered to a subject at low enough doses to minimize toxicity.
- arsenic trioxide and derivatives thereof may be effective at treating leukemia.
- administration of arsenic trioxide to a subject having leukemia may increase the production of reactive oxygen species in one or more leukemic cells of said subject.
- organic arsenic compounds are converted to inorganic compounds when absorbed in a biological system (see, e.g., Frith, J. Military Vet. Health 21(4): 11-17, 2013).
- Arsenic derivatives and uses thereof are described, for example, in Wax man et al. (Oncologist 6: 3-10, 2001).
- Darinaparsin and“a Darinaparsin compound” refer to dimethylarsinic glutathione having the formula C12H22ASN3O6S and derivatives thereof.
- Darinaparsin generally has the following structure:
- exemplary retinoic acid compounds described herein include, without limitation, all-trans retinoic acid (ATRA), 13-cis retinoic acid (13cRA), and retinoic acid compounds, and derivatives thereof, e.g., as described herein. Examples of retinoic acid compounds include those shown in Tables 1 and 2 below.
- retinoic acid compounds include any retinoic acid compounds, or derivatives thereof, known in the art, including those described in PCT Publication Nos. WO 2013/185055, WO 2015/143190, and WO 2016/145186, each of which is incorporated herein with respect to the compounds described therein.
- the term“diterpene retinoic acid” encompasses any stereoisomer of retinoic acid (e.g., the retinoic acid may be in the all-trans configuration (ATRA) or one or more of the double bonds may be in the cis configuration, for example, 13cRA.
- Derivatives of the diterpene retinoic acid include reduced forms such as retinal, retinol, and retinyl acetate.
- each of Ar 1 and Ar 2 is, independently, optionally substituted aryl or an optionally substituted heteroaryl;
- R 1 is H, an optionally substituted alkyl group, an optionally substituted alkenyl group, or an optionally substituted alkynyl group;
- C1-C6 alkoxy represents a chemical substituent of formula -OR, where R is an optionally substituted C1-C6 alkyl group, unless otherwise specified.
- the alkyl group can be substituted, e.g., the alkoxy group can have 1, 2, 3, 4, 5 or 6 substituent groups as defined herein.
- alkyl As used herein, the term“alkyl,”“alkenyl” and“alkynyl” include straight-chain, branched-chain and cyclic monovalent substituents, as well as combinations of these, containing only C and H when unsubstituted. Examples include methyl, ethyl, isobutyl, cyclohexyl, cyclopentylethyl, 2 propenyl, 3 butynyl, and the like.
- cycloalkyl represents a monovalent saturated or unsaturated non-aromatic cyclic alkyl group having between three to nine carbons (e.g., a C3-C9 cycloalkyl), unless otherwise specified, and is exemplified by cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, bicyclo[2.2.1.]heptyl, and the like.
- the cycloalkyl is a polycyclic (e.g., adamantyl).
- Cycloalkyl groups may be unsubstituted or substituted with, e.g., 1, 2, 3, or 4 substituent groups as defined herein.
- the cycloalkyl group can be referred to as a“cycloalkenyl” group.
- Exemplary cycloalkenyl groups include
- the alkyl, alkenyl and alkynyl groups contain 1-12 carbons (e.g., Cl- C12 alkyl) or 2-12 carbons (e.g., C2-C12 alkenyl or C2-C12 alkynyl).
- the alkyl groups are C1-C8, C1-C6, C1-C4, C1-C3, or C1-C2 alkyl groups; or C2-C8, C2-C6, C2-C4, or C2-C3 alkenyl or alkynyl groups.
- any hydrogen atom on one of these groups can be replaced with a substituent as described herein.
- aryl represents a mono- or bicyclic C6-C14 group with [4 n + 2] p electrons in conjugation and where n is 1, 2, or 3.
- Aryl groups also include ring systems where the ring system having [4 n + 2] p electrons is fused to a non-aromatic cycloalkyl or a non-aromatic heterocyclyl.
- Phenyl is an aryl group where n is 1.
- Aryl groups may be unsubstituted or substituted with, e.g., 1, 2, 3, or 4 substituent groups as defined herein.
- Still other exemplary aryl groups include, but are not limited to, naphthyl, 1,2-dihydronaphthyl, 1,2,3,4-tetrahydronaphthyl, fluorenyl, indanyl, and indenyl.
- heteroaryl represents an aromatic (i.e., containing An+2 pi electrons within the ring system) 5- or 6-membered ring containing one, two, three, or four heteroatoms independently selected from the group consisting of nitrogen, oxygen, and sulfur, as well as bicyclic, tricyclic, and tetracyclic groups in which any of the aromatic ring is fused to one, two, or three heterocyclic or carbocyclic rings (e.g., an aryl ring).
- heteroaryls include, but are not limited to, furan, thiophene, pyrrole, thiadiazole (e.g., 1,2,3-thiadiazole or 1,2,4-thiadiazole), oxadiazole (e.g., 1,2,3-oxadiazole or 1,2,5-oxadiazole), oxazole, isoxazole, isothiazole, pyrazole, thiazole, triazole (e.g., 1,2,4-triazole or 1,2,3-triazole), pyridine, pyrimidine, pyrazine, pyrazine, triazine (e.g, 1,2,3-triazine 1,2,4-triazine, or 1,3,5-triazine), 1,2,4,5-tetrazine, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzothiazolyl, and benzoxazolyl.
- Heteroaryls may be unsubstituted or substituted with, e.g., 1, 2, 3, or 4 substituents groups as defined herein.
- the term“heterocyclyl,” as used herein represents a non-aromatic 5-, 6- or 7- membered ring, unless otherwise specified, containing one, two, three, or four heteroatoms independently selected from the group consisting of nitrogen, oxygen, and sulfur.
- Heterocyclyl groups may be unsubstituted or substituted with, e.g., 1, 2, 3, or 4 substituent groups as defined herein.
- aryloxy refers to aromatic or heteroaromatic systems which are coupled to another residue through an oxygen atom.
- O-aryl A typical example of an O-aryl is phenoxy.
- thioaryloxy refers to aromatic or heteroaromatic systems which are coupled to another residue through a sulfur atom.
- a halogen is selected from F, Cl, Br, and I, and more particularly it is fluoro or chloro.
- each R or R’ is selected, independently, from H, Ci- 6 alkyl, C2-6 alkenyl, C2-6 alkynyl, aryl, or heteroaryl.
- a substituent group e.g., alkyl, alkenyl, alkynyl, or aryl (including all heteroforms defined above) may itself optionally be substituted by additional substituents.
- additional substituents e.g., alkyl, alkenyl, alkynyl, or aryl (including all heteroforms defined above
- alkyl may optionally be substituted by the remaining substituents listed as substituents where this makes chemical sense, and where this does not undermine the size limit of alkyl per se; e.g., alkyl substituted by alkyl or by alkenyl would simply extend the upper limit of carbon atoms for these embodiments, and is not included.
- Typical optional substituents on aromatic or heteroaromatic groups include independently halo, CN, N02, CF3, OCF3, COOR’, CONR’2, OR’, SR’, SOR’, S02R’, NR’2, NR’ (CO)R’ ,NR’ C(0)OR’ , NR’C(0)NR’2, NR’S02NR’2, or NR’S02R ⁇ wherein each R’ is independently H or an optionally substituted group selected from alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, heteroaryl, and aryl (all as defined above); or the substituent may be an optionally substituted group selected from alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, aryl, heteroaryl, O-aryl, O-heteroaryl and arylalkyl.
- non-aromatic groups e.g., alkyl, alkenyl, and alkynyl groups
- cancer refers to a proliferative disease in a subject (e.g., a human) having a pathogenic IDH1/IDH2 allele or having elevated 2- hydroxyglutarate (2-HG) levels.
- a subject e.g., a human
- IDHl/IDH2-associated leukemias IDHl/IDH2-associated solid tumors.
- An IDHl/IDH2-associated leukemia can contain one or more mutants selected from FLT3, NPM1, DNMT3A, RUNX1, TET2, IDH2, CEBPA, TP53, IDH1, NRAS, RARA, PML, TTN, WT1, MYH11, BPIFC, CBFB, KIT, KRAS, KMT2A, PTPN11, MUC16, SMC1A, RUNX1T1, MPO, U2AF1, ABCA6, DMXL2, DNAH3, KLK3, FBX07, SMC3, MXRA5, MUC17, SF3B1, HPS3, PHF6, ASXL1, AHNAK, SENP6, MYCBP2, NF1, PCLO, CSMD3, LRP1B, MED 12, RAD21, AHNAK2, GDI2, PARP14, KLHL7, BCORL1, SPEN, BRWD1,UBR4, STAG2, LNX1, FREM2, MLLT10, DNAH11,
- An IDHl/IDH2-associated solid tumor can be glioma, paraganglioma, astroglioma, colorectal carcinoma, melanoma, cholangiocarcinoma, chondrosarcoma, thyroid carcinomas, prostate cancers, or non-small cell lung cancer.
- pathogenic IDH2 allele is meant to include any allele encoding an IDH2 protein having a mutation associated with increased cellular proliferation, associated with increased likelihood or severity of cancer, associated with increased likelihood or severity of leukemia, or associated with increased levels of the oncometabolite, 2-hydroxyglutarate (2-HG) compared with a wild-type cell, tissue, or subject.
- Pathogenic alleles of IDH2 may encode, for example, any of the following mutations in the corresponding IDH2 protein: R140Q, R140W, R172K, R172M, R172G, or R172W.
- the term“IDH2 inhibitor” is meant to include any compound that reduces the level of IDH2 activity or expression in a cell, tissue, or subject.
- a reduction in IDH2 expression or activity may be measured by methods known to one of skill in the art, including the reduction in corresponding IDH2 mRNA or protein levels in a cell (e.g., a reduction of about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater) or the reduction of 2-HG levels in a cell (e.g., a reduction of about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater).
- the IDH2 inhibitor may include the reduction in
- Pinl activity refers to binding of the protein Pinl to a substrate (e.g., a substrate protein) and Pinl -catalyzed isomerization of the substrate.
- Pinl generally acts as a peptidyl-prolyl isomerase (PPIase) that catalyzes prolyl isomerization of the substrate (e.g., conversion of a peptidyl-prolyl group on the substrate from a trans conformation to a cis conformation, or vice versa).
- PPIase peptidyl-prolyl isomerase
- “Elevated Pinl activity” or“elevated levels of Pinl activity,” as used herein, generally refer to an increase in Pinl-catalyzed isomerization of one or more Pinl substrates, for example, relative to a reference level of Pinl activity.
- the reference level of Pinl activity is the level of Pinl activity in a wild-type cell (e.g., a wild-type cell of the same cell type as a cell of interest). In some embodiments, the reference level of Pinl activity is the level of Pinl activity in a wild-type subject (e.g., a subject not having leukemia), such that an increase in Pinl activity in a subject of interest relative to a wild-type subject indicates that the subject of interest has elevated Pinl activity. In some embodiments, alteration in Pinl activity can be assessed by determining the levels of a Pinl marker in a cell and/or a subject of interest, relative to a reference cell or subject (e.g., a wild-type cell or subject).
- Elevated levels of Pinl activity include, for example, Pinl activity levels at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater than the activity level measured in a normal (e.g., wild-type and/or disease fee) subject, tissue, or cell.
- a normal e.g., wild-type and/or disease fee
- a decrease in Pinl activity includes a reduction of at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000% in the Pinl activity of a subject, tissue, or cell (e.g., after treatment by any of the
- Pinl marker refers to a marker which is capable of being indicative of Pinl activity levels (e.g., in a sample obtained from a cell or subject of interest).
- Non-limiting examples of Pinl markers include nucleic acid molecules (e.g., mRNA, DNA) that correspond to some or all of a Pinl gene, peptide sequences (e.g., amino acid sequences) that correspond to some or all of a Pinl protein, nucleic acid sequences which are homologous to Pinl gene sequences, peptide sequences which are homologous to Pinl peptide sequences, alteration of Pinl protein, antibodies to Pinl protein, substrates of Pinl protein, binding partners of Pinl protein, alteration of Pinl binding partners, and activity of Pinl.
- nucleic acid molecules e.g., mRNA, DNA
- peptide sequences e.g., amino acid sequences
- alteration of a Pinl protein may include a post-translational modification (e.g., phosphorylation, acetylation, methylation, lipidation, or any other post- translational modification known in the art) of Pinl.
- a Pinl marker is the level of Pin expression (e.g., Pinl protein expression levels and/or Pinl mRNA expression levels) in a subject.
- elevated levels of a Pinl marker is meant a level of Pinl marker that is altered, which may, in some instances, indicate the presence of elevated Pinl activity.
- Elevated levels of a Pinl marker include, for example, levels at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater than, or about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% less than the marker levels measured in a normal (e.g., wild-type and/or disease fee) subject, tissue, or cell.
- a normal e.g., wild-type and/or disease fee
- the terms“compound that inhibits LSD1” or“LSD1 inhibitor” are meant to include any compound that reduces the level of LSD1 activity or expression in a cell, tissue, or subject.
- a reduction in LSD1 expression or activity may be measured by methods known to one of skill in the art, including the reduction in corresponding LSD1 mRNA or protein levels in a cell (e.g., a reduction of about 1%, 2%, 3%, 4%, 5%, 6%,
- LSD 1- specific histone methylation such as H3K4me2 and/or H3K9me2 histone methylation (e.g., a reduction of about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 500%, 1000%, or greater).
- “synergy” or“synergistic,” as used herein, refers to an improved effect when two agents are administered that is greater than the additive effects of each of the two agents when administered alone.
- administration of an arsenic trioxide and a retinoic acid compound (e.g., ATRA) to a subject may result in a greater than additive effect on the subject than administration of either arsenic trioxide or the retinoic acid compound alone.
- a“low dose” or“low dosage” is meant a dosage of at least 5% less (e.g., at least 5%, 10%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%,
- a low dosage of an agent formulated for oral administration may differ from a low dosage of the agent formulated for intravenous administration.
- a low dosage of an agent may be selected to be a nontoxic dosage of the agent.
- a low dosage may be selected as a dosage that minimizes particular side effects of an agent, but which may still retain some side effects.
- a dosage may be selected that minimizes or eliminates side effects that can lead to significant mortality or severe illness among subjects while still permitting more tolerable side effects, such as headache.
- a low dose of arsenic trioxide is a dose of about 2 mg/kg body weight or less (e.g., about 0.01, 0.02, 0.03, 0.032, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.16, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1,75, or 2 mg/kg).
- a low dose of arsenic trioxide is about 0.15, about 0.16, or about 0.032 mg/kg body weight. In other instances, a low dose of arsenic trioxide is a dose between about 0.5 mg/kg and about 12 mg/kg body weight (e.g., about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 mg/kg). In some instances, a low dose of a retinoic acid compound is a dose of about 5 mg/kg body weight or less (e.g., about 0.1, 0.2, 0.5, 0.75, 1, 2, 3, 4, or 5 mg/kg).
- a low dose of a retinoic acid compound is a dose of about 25 mg/m 2 or less (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 mg/m 2 ). In other instances, the low dose of the retinoic acid compound is a dose of between 25 mg/m 2 and 45 mg/m 2 (e.g.,
- A“nontoxic” dose of an agent is a dosage low enough to minimize or eliminate toxic side effects of the agent on the subject to which the agent is administered.
- a nontoxic dosage may be achieved by reducing the quantity of the agent administered per dose and/or increasing the length of time between deliveries of individual doses.
- the term“effective amount” or an amount“sufficient to” as used interchangeably herein, refers to a quantity of an agent that, when administered alone or with one or more additional therapeutic agents, induces a desired response or confers a therapeutic effect on the treated subject.
- the desired response may be a therapeutic response.
- the desired response is decreasing the signs or symptoms of a disorder described herein (e.g., leukemia).
- the desired response is decreasing the risk of developing or decreasing the risk of recurrence of a disorder described herein (e.g., leukemia).
- An effective amount of an agent may desirably provide a therapeutic effect without causing substantial toxicity in the subject.
- an effective amount of a composition administered to a human subject will vary depending upon a number of factors associated with that subject, for example, the overall health of the subject, the condition to be treated, and/or the severity of the condition.
- An effective amount of a composition can be determined by varying the dosage of the product and measuring the resulting therapeutic response. The effective amount can be dependent, for example, on the source applied, the subject being treated, the severity and type of the condition being treated, and the manner of administration.
- “treat”,“treating”, or“treatment” refers to application or administration of a pharmaceutical compound by any route, e.g., orally, topically, or by inhalation to a subject with the purpose to cure, alleviate, relieve, alter, remedy, improve, or affect the disease, the symptom, or the predisposition.
- the compound can be administered alone or in combination with one or more additional compounds. Treatments may be sequential, with a compound being administered before or after the administration of other agents. Alternatively, compounds may be administered concurrently.
- the subject e.g., a patient, can be one having a disorder (e.g., a leukemia), a symptom of a disorder, or a disorder (e.g., a leukemia), a symptom of a disorder, or a
- Treatment is not limited to curing or complete healing, but can result in one or more of alleviating, relieving, altering, partially remedying, ameliorating, improving or affecting the disorder, reducing one or more symptoms of the disorder or the predisposition toward the disorder.
- the treatment at least partially) alleviates or relieves symptoms related to a fibrotic disease.
- the treatment at least partially alleviates or relieves symptoms related to an inflammatory disease.
- the treatment reduces at least one symptom of the disorder or delays onset of at least one symptom of the disorder. The effect is beyond what is seen in the absence of treatment.
- Treatment of leukemia may be considered to include administration of any of the compounds described herein resulting in the remission of the leukemia in the subject (e.g., the symptoms of the leukemia are reduced). Treatment of the leukemia may further be considered to include administration of any of the compounds described herein resulting in the complete remission of the leukemia (e.g., all signs and symptoms of the leukemia are absent). Treatment of the leukemia may further be considered to include administration of any of the compounds described herein, wherein the treatment cures the leukemia in the subject (e.g., all signs and symptoms of the leukemia are absent for 1 year or more, for 2 years or more, for 3 years or more, for 4 years or more, or for 5 years or more).
- subject refers to any organism or portion thereof to be administered a composition as described herein (e.g., arsenic trioxide, a retinoic acid compound, and combinations or derivatives thereof).
- a subject may be an animal, such as a mammal (e.g., a human, mouse, rat, rabbit, dog, cat, goat, pig, and horse).
- the subject is human.
- administering may also be considered to include contacting.
- a compound is administered to a cell, it may be considered to be equivalent to contacting the cell with the compound.
- the term“contacting one or more cells” with a compound of the invention is meant to include administering a compound of the invention to a subject, such that the compound contacts one or more cells of the subject.
- the present invention is based on the discovery of common vulnerabilities in mIDH2 leukemia.
- mIDH2 leukemia exhibits sensitivity to reactive oxygen species (ROS)-producing compounds, such as arsenic trioxide (ATO).
- ROS reactive oxygen species
- ATO arsenic trioxide
- mIDH2 leukemia exhibits sensitivity to retinoic acid compound- induced differentiation (e.g., ATRA-induce differentiation).
- a ROS-promoting compound e.g., arsenic trioxide
- a compound that promotes differentiation e.g., a Pinl inhibitor, such as ATRA
- the present invention therefore features methods, compositions, and kits relating to the treatment of mIDH2 leukemia by administering an arsenic trioxide compound (e.g., ATO), a retinoic acid compound (e.g., ATRA), or a combination of an arsenic trioxide and a retinoic acid compound (ATO and ATRA).
- an arsenic trioxide compound e.g., ATO
- a retinoic acid compound e.g., ATRA
- ATO and ATRA retinoic acid compound
- Isocitrate dehydrogenases are enzymes (IDH enzymes) are metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate.
- the protein encoded by the IDH2 gene is the NADP(+) -dependent isocitrate dehydrogenase found in the mitochondria. It plays a role in intermediary metabolism and energy production.
- IDH enzymes have been identified as important early events in a variety of tumor types. For example, IDH enzymes are mutated in approximately 20% of human acute myeloid leukemias (AMLs). Pathogenic mutants of IDH2 enzymes have been identified that give rise to 2-hydroxyglutarate (2-HG), an oncometabolite that contributes to the oncogenic phenotype. Accordingly, 2-HG is a predictive biomarker in cancers having a pathogenic IDH2 allele. In some embodiments of the invention, the methods described herein are used to treat a subject having a disorder associated with a mutation in the IDH2 enzyme
- the mIDH2 disorder is associated with a pathogenic IDH2 allele, wherein a pathogenic IDH2 allele is meant to include any allele encoding an IDH2 protein having a mutation associated with increased cellular proliferation, associated with increased likelihood or severity of cancer, associated with increased likelihood or severity of leukemia, or associated with increased levels of the oncometabolite, 2-hydroxyglutarate (2-HG) compared with a wild-type cell, tissue, or subject.
- Pathogenic alleles of IDH2 may encode, for example, any of the following mutations in the corresponding IDH2 protein: R140Q, R140W, R172K, R172M, R172G, or R172W.
- the methods described herein are used to a subject having a leukemia, wherein the leukemia is associated with a mutation in the IDH2 enzyme.
- the subject having a leukemia has a pathogenic IDH2 allele and/or has elevated 2-hydroxyglutarate (2-HG) levels (e.g., in one or more cells of the leukemia).
- the leukemia is an IDH2 sensitive leukemia (e.g., a leukemia that is responsive to IDH2 inhibitors).
- the leukemia is an IDH2 independent or resistant leukemia (e.g., leukemia resistant to known IDH2 inhibitors, such as, Enasidenib).
- the present invention features methods of treating leukemia (e.g., mIDH2- associated leukemia) using arsenic trioxide and/or a retinoic acid compounds, and derivatives thereof.
- leukemia e.g., mIDH2- associated leukemia
- subject is treated with arsenic trioxide in combination with a retinoic acid compound (e.g., as described herein).
- Arsenic trioxide generally has the following structure:
- Arsenic trioxide exhibits high toxicity in subjects of the invention, including mammals (e.g., humans).
- subjects of the invention including mammals (e.g., humans).
- arsenic trioxide ingestion can result in severe side effects, including vomiting, abdominal pain, diarrhea, bleeding, convulsions, cardiovascular disorders, inflammation of the liver and kidneys, abnormal blood coagulation, hair loss, and death.
- Chronic exposure to even low levels of arsenic trioxide can result in arsenicosis and skin cancer.
- Arsenic trioxide is therefore desirably administered to a subject at low enough doses to minimize toxicity.
- Arsenic trioxide and derivatives thereof may be effective at increasing the production of reactive oxygen species in a cell, tissue, or subject.
- Arsenic trioxide and derivatives thereof may also be effective in reducing Pinl activity in a cell, tissue, or subject.
- arsenic trioxide may operate synergistically with a retinoic acid compound to treat a disorder described herein.
- the combination of arsenic trioxide and the retinoic acid compound are administered in amounts that result in minimal toxicity.
- Retinoic acid compounds are generally derivatives of the diterpene retinoic acid (e.g., as described herein). Retinoic acid compounds may be effective in promoting differentiation in a cell (e.g., a leukemic cell). Retinoic acid compounds may also be effective in reducing Pinl activity in a cell, tissue, or subject. Exemplary retinoic acid compounds of the invention include all-trans retinoic acid (ATRA), 13-cis retinoic acid (13cRA), and retinoic acid compounds, and derivatives thereof, e.g., as described herein. Retinoic acid compounds of the invention may be a y compound selected from Table 1 or Table 2. In some instances, a retinoic acid compound is administered in combination with arsenic trioxide. In certain instances, the combination of arsenic trioxide and the retinoic acid compound are administered in amounts that result in minimal toxicity.
- ATRA all-trans retinoic acid
- 13cRA 13
- Certain embodiments of the invention feature a deuterated retinoic acid compound that is made by replacing some or all hydrogen with deuterium using state of the art techniques (e.g., as described herein and at www.concertpharma.com).
- arsenic trioxide and/or retinoic acid compound(s) of the invention may be further combined with additional therapeutic agents for treatment of any of the disorders described herein (e.g., leukemia).
- such compounds may act synergistically with arsenic trioxide and/or a retinoic acid compound to treat the disorder (e.g., leukemia). Additionally, co administration with arsenic trioxide and/or a retinoic acid compound may result in the efficacy of the additional therapeutic agent at lower and safer doses (e.g., at least 5% less, for example, at least 10%, 20%, 50%, 80%, 90%, or even 95% less) than when the additional therapeutic agent is administered alone.
- the additional therapeutic agent e.g., leukemia
- the arsenic trioxide and/or retinoic acid compounds may be combined with anti-proliferative and other anti-cancer compounds (e.g., anti- angiogenic compounds) for treating a disorder (e.g., leukemia).
- anti-proliferative agents that can be used in combination with a retinoic acid compound include, without limitation, microtubule inhibitors, topoisomerase inhibitors, platins, alkylating agents, and anti metabolites.
- anti-proliferative agents that are useful in the methods and compositions of the invention include, without limitation, paclitaxel, gemcitabine, doxorubicin, vinblastine, etoposide, 5-fluorouracil, carboplatin, altretamine,
- Pinl is an enzyme that catalyzed the cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs and which has been shown to be involved in an increasing number of diseases. Elevated Pinl activity has been associated with the development and progression of cancer. For example, Pinl is overexpressed in some human cancer samples and the levels of Pinl are correlated with the aggressiveness of tumors. Moreover, inhibition of Pinl by various approaches, including the Pinl inhibitor, Pinl antisense polynucleotides, or genetic depletion, kills human and yeast dividing cells by inducing premature mitotic entry and apoptosis.
- Pinl upon phosphorylation, Pinl latches onto phosphoproteins and twists the peptide bond next to the proline, which regulates the function of phosphoproteins and participates in controlling the timing of mitotic progression.
- Pinl has been shown to regulate the expression and/or activity of a diverse array of proteins associated with cancer progression.
- known Pinl substrates include, without limitation, Her2, PKM2, FAK, Raf-1, AKT, b-catenin, c-Myc, p53, and numerous other proteins known to play roles in cancer progression.
- the arsenic trioxide and/or retinoic acid compounds may be combined with a compound that inhibits Pinl activity or expression.
- the arsenic trioxide and/or retinoic acid compounds may be combined with a compound known to interact with other proteins implicated in Pinl signaling pathways (see, e.g., the targets and compounds in Table 3).
- Table 3 Exemplary Additional Therapeutic Agents
- Lysine-specific histone demethylase 1 is a flavin-dependent monoamine oxidase, which can demethylate mono- and di-methylated lysines, specifically H3K4 and H3K9).
- the LSD1 enzyme has roles critical in embryogenesis and tissue-specific differentiation, as well as oocyte growth.
- the inventors have also identified a shared set of ATRA responsive genes previously reported to be regulated by inhibition of the demethylase LSD1 and associated with ATRA sensitivity.
- the arsenic trioxide and/or retinoic acid compounds may be combined with a compound that inhibits LSD1 activity or expression.
- Treatment may be performed alone or in conjunction with another therapy and may be provided at home, the doctor’s office, a clinic, a hospital’s outpatient department, or a hospital. Treatment optionally begins at a hospital so that the doctor can observe the therapy’s effects closely and make any adjustments that are needed, or it may begin on an outpatient basis.
- the duration of the therapy depends on the type of disease or disorder being treated, the age and condition of the patient, the stage and type of the patient’s disease, and how the patient responds to the treatment.
- Routes of administration for the various embodiments include, but are not limited to, topical, transdermal, nasal, and systemic administration (such as, intravenous, intramuscular, subcutaneous, inhalation, rectal, buccal, vaginal, intraperitoneal, intraarticular, ophthalmic, otic, or oral administration).
- systemic administration refers to all nondermal routes of administration, and specifically excludes topical and transdermal routes of administration ⁇
- each component of the combination can be controlled independently.
- one or more of the compounds may be administered three times per day, while another compound or compounds may be administered once per day.
- one compound may be administered earlier and another compound may be administered later.
- Combination therapy may be given in on-and-off cycles that include rest periods so that the patient’s body has a chance to recover from any as yet unforeseen side effects.
- the compounds may also be formulated together such that one administration delivers both compounds.
- Each compound of the combination may be formulated in a variety of ways that are known in the art.
- a plurality of therapeutic agents e.g., arsenic trioxide, a retinoic acid compound, and/or an additional therapeutic agent, as described herein
- multiple agents are formulated together for the simultaneous or near simultaneous administration of the agents.
- co-formulated compositions can include the drugs together in the same pill, ointment, cream, foam, capsule, liquid, etc.
- the formulation technology employed is also useful for the formulation of the individual agents of the combination, as well as other combinations of the invention.
- the pharmacokinetic profiles for each agent can be suitably matched.
- Certain embodiments of the invention feature formulations of arsenic trioxide and/or a retinoic acid compound for, e.g., controlled or extended release.
- Many strategies can be pursued to obtain controlled and/or extended release in which the rate of release outweighs the rate of metabolism of the therapeutic compound.
- controlled release can be obtained by the appropriate selection of formulation parameters and ingredients (e.g., appropriate controlled release compositions and coatings). Examples include single or multiple unit tablet or capsule compositions, oil solutions, suspensions, emulsions, microcapsules, microspheres, nanoparticles, patches, and liposomes.
- the release mechanism can be controlled such that the arsenic trioxide and/or retinoic acid compound is released at period intervals, the release could be simultaneous, or a delayed release of one of the agents of the combination can be affected, when the early release of one particular agent is preferred over the other.
- kits that contain, e.g., a plurality of pills (e.g., two pills or three pills), a pill and a powder, a suppository and a liquid in a vial, two topical creams, ointments, foams etc.
- the kit can include optional components that aid in the administration of the unit dose to patients, such as vials for reconstituting powder forms, syringes for injection, customized IV delivery systems, inhalers, etc.
- the unit dose kit can contain instructions for preparation and administration of the compositions.
- the kit may be manufactured as a single use unit dose for one patient, multiple uses for a particular patient (at a constant dose or in which the individual compounds may vary in potency as therapy progresses), or the kit may contain multiple doses suitable for administration to multiple patients (“bulk packaging”).
- the kit components may be assembled in cartons, blister packs, bottles, tubes, and the like.
- the Hoxa9-Meisl- IDH2R140Q model of murine leukaemia cells was generated by the retroviral transduction of KSL (c-Kit+, Sca-1+, Lin-) cells as reported in Quek et a , Nat. Med., 2018, 24: 1167-1177.
- the generation of murine leukaemia cells showing independence by the mutant IDH2 was casually generated after three serial bone marrow transplantations of murine leukaemia cells.
- Serial bone marrow transplantation experiments were started by harvesting leukemic bone marrow cells from a single donor mouse and transplanting 5-10 * 10 4 cells into 8-10 recipients. The recipients were age- matched, female C57BL/6J (6-8 weeks old).
- hematopoietic stem cells LSK were isolated from the bone marrow of a single Tg (M2rt/TA, IDH2R140Q) donor (3-5 months old) maintained on doxycycline diet.
- Tg M2rt/TA, IDH2R140Q
- PBS medium containing bone marrow extracts was filtered and purified from red blood cells by incubation on ACK Lysing Buffer (Gibco).
- Lineage negative cells were immunostained using Lineage Cell Detection Cocktail- Biotin, mouse (Miltenyi Biotec) and streptavidin - APC-Cy7.
- LSK cells Lineage-, cKit+, Sca-1+
- BD FACSAria II high speed cell sorters Becton Dickinson
- IL3 25ng/ml
- IL6 25ng/ml
- TPO 50 ng/ml
- SCF 50ng/ml
- FLT3Ligand 50ng/ml
- Sorted LSK were transduced by spinoculation with Hoxa9-IRES-GFP and Meisla-IRES-YFP retroviruses and maintained in culture for no more than 72 hours before transplantation on a primary host (1 st RECIPIENT, C57BL/6J females).
- Age-matched C57BL/6J recipient female mice (age 8-10 weeks, Jackson Laboratories) were injected intravenously (tail vein) or retro-orbitally with 5-10 x 10 5 leukaemia cells in a volume of 200 pi of sterile PBS. All recipient animals received 650 cGy of radiation 24 hours prior to injection of leukemic cells.
- Leukemic bone marrow cells harvested from 2 nd and 3 rd RECIPIENTS were ex vivo expanded in RPMI media (Gibco) supplemented with murine SCF, FLT3 Ligand, IL-3, and IL-6 (2.5 ng/mL) for subsequent studies.
- Intravenous Xenograft Leukaemia model Intravenous Xenograft Leukaemia model.
- mice 6-8 weeks of age Female NSG (NOD.CgPrkde scld I12 lslni 1 W
- Cells 25 x 10 4 ) were introduced intravenously by tail vein injection.
- Mice were treated with ATRA (lOmg/mouse) by subcutaneous implantation of ATRA pellets (5mg/pellet /21 days release), Arsenic trioxide (2.5 mg/Kg/day), or respective vehicle solutions via intraperitoneal injection. The experiment, as well as all treatments, were stopped after 21 days following the exhaustion of ATRA pellets.
- AML patient - derived xenograft (PDX) model AML patient - derived xenograft (PDX) model.
- NSG mice engrafted with human AML blasts were purchased from Jackson Laboratories (NOD scid gamma, NOD -scid IL2Rg nu11 , NOD3 scid IL2Rgamma nu11 ).
- Female NSG mice (age: 4-5 weeks old) were irradiated (400 cGy) 24 hours prior to the retro-orbital transplantation of sorted human AML blasts. Engraftment and disease progression was detected as evidence of human CD45- positive cells in the peripheral blood. Mice were randomly divided into groups before starting of the treatments.
- Treatment regimen was performed in cycles for a total of 65 days resembling APL0406 protocol (Lo-Coco et al; NEJM 2013). Accordingly, each cycle (65-71 days) was as follows: 15-21 days combination of ATO and ATRA, 10 days no therapy administered (off period) followed by two rounds of single drug administration: 10 days of ATO therapy before 10 days of ATRA therapy. Before the starting of a new cycle, no therapy was administered for 10 days.
- ATO 2.5 pg/g
- ATRA 1.5 pg/g
- the Hoxa9/Meisla/IDH2R140Q murine primary leukaemia cells were cultured and expanded in RPMI media supplemented with murine SCF (2.4 ng/mL), FLT3 Ligand (5ng/mL), IL-3 (2 ng / mL), and IL6 (2.5 ng/mL) (PeproTech).
- murine SCF 2.4 ng/mL
- FLT3 Ligand 5ng/mL
- IL-3 2 ng / mL
- IL6 2.5 ng/mL
- doxycycline Sigma
- Conditioned media (1:2) was used for serial re-plating.
- Methylcellulose colony assay Methylcellulose colony assay.
- Methocult M3434 medium MethoCult H4434 Classic (Stem Cell Technologies). According to specific conditions, methylcellulose medium was supplemented with Doxycycline (Gibco), Arsenic Trioxide (Sigma), Tretinoin (Sigma), AGI-6780 or AG-221 (Cay
- Mouse leukaemia cells were isolated from bone marrow as GFP+ cells and plated at 5000 cells / dish. Then, 2500 cells/dish were used for serial plating. Human AML blasts (1.5 -2.5 *104 cells/dish) were plated in 35-mm Petri dishes and incubated in a humidified CO2 incubator. Colonies were counted as units of at least 30 cells were generated after plating (2 - 4 weeks).
- KLF1, PIN1, ITGAM, LILRA5, RARA, PRAM1 and GAPDH gene expression were measured using the Taqman assay (Invitrogen) according to manufacturer’s instruction. 2HG treatments.
- Human TF1 cells TF-1 cells were treated with vehicle (0.1% EtoH) or 0.1 mM (2R)-Octyl-2-HG and harvested at indicated time for Western blot analyses.
- Cell Proliferation and viability Assay Cells (TF1 or U937, 8-10 *10 3 cells) were plated in complete medium on multiwell plates and treated with ATRA and/or ATO for 4 days. Cells were assayed every 24h for cell viability or proliferation by using CellTiter Glo, MTS Assay (Promega) according with manufacturer protocols.
- mice were euthanized and single-cell suspensions from the bone marrow were generated by bone crushing in PBS supplemented with 2% FBS.
- Cell suspensions were passed through IOOmM cell strainers, centrifuged, and then re- suspended in 1-2 ml ACK red cell lysis buffer (GIBCO). Red blood cells were lysed on ice for lmin. Cell suspension were then washed in 2%FBS/PBS, centrifuged, and then re-suspended in 1ml of 2%FBS in PBS1X.
- Cells were subsequently processed for GFP+/YFP+ sorting, KLS isolation, or intracellular flow staining. Staining with specific antibodies (1:100) or Annexin V/ 7AAD was performed for 15 - 30 minutes at room temperature in the dark, following the protocol reported in Carracedo et ak, Nat Rev Cancer 2013, 13:227-232. For intracellular phosphoflow cytometry on mouse leukaemia blasts, the cells were fixed in 4% PFA at
- Human AML blasts (2-5*10 4 cells) were fixed in 4%PFA for 5 minutes at 37 °C, washed twice with cold PBS and permeabilized with 90% methanol ( ice-cold). Pellets were washed twice in ice cold PBS and resuspended in Staining buffer (0.5%BSA in PBS1X) and incubated (at 4 °C) with anti - PIN1 antibody ( Rb mAh to PIN1, ab76309, abeam) or respective IgG control (Rb IgG monoclonal isotype control, abl72730, abeam). Cells were washed twice and incubated with Donkey anti - rabbit Alexa Fluor 647 for 1 hour at room temperature. Pellets were washed three times before flow analysis.
- Tissues were fixed in 4% paraformaldehyde overnight, paraffin embedded, and then sectioned at 5 pm. After deparaffinization and rehydration, antigen retrieval was performed in a pressure cooker with sodium citrate buffer at 95 °C for 25 minutes. Sections were incubated in a 0.3% H2O2 solution in lx PBS, and then a 10% serum solution in lx PBS for 30 minutes each solution was used to block endogenous peroxidase and background from the secondary antibody, respectively.
- the sections were stained with the primary antibodies: Ki67 (1:200, Thermo Fisher Scientific, #MA5-14520) or Anti-Myeloperoxidase antibody (1:50, abeam #ab9535), or Phospho- Histone H2A.X (1:200, Cell Signalling #9718S) and incubated in a biotinylated secondary antibody in lx PBS (1:500-1:1000) at room temperature for 30 minutes.
- the Vectastain ABC Elite kit was used to enhance specific staining, and the staining was visualized using a 3’-diaminobenzidine (DAB) substrate.
- DAB 3’-diaminobenzidine
- Blocking was performed for one hour using a 5% bovine serum albumin solution in lx PBS.
- the sections were stained with the P-Histone H2A.X primary antibody (1:200) in a 2% bovine serum albumin and lx PBS solution at 4 °C overnight, and then incubated with a goat anti-rabbit IgG Alexa Fluor 546 conjugate (1:1000) in PBS IX at room temperature for 1 hour before staining with DAPI (1: 1000) in lx PBS for 10 minutes.
- Cells were washed with lx PBS and milli-Q water before being sealed with a coverslip with Fluorescence Mounting Medium.
- RNA derived from resistant and sensitive leukaemia cells was subjected to next- generation sequencing (NGS) to generate deep coverage RNASeq data.
- NGS next- generation sequencing
- Sequencing libraries of Poly A selected mRNA were generated from the double- stranded cDNA, using the Illumina TruSeq kit according to the manufacturer's protocol. Library quality control was checked using the Agilent DNA High Sensitivity Chip and qRT-PCR. High quality libraries were sequenced on an Illumina HiSeq 4000. To achieve comprehensive coverage for each sample, we generated about 30-35 million single end reads.
- the raw sequencing data was processed to remove any adaptors, PCR primers, and low quality transcripts using FASTQC and fastx. These provided a very comprehensive estimate of sample quality on the basis of read quality, read length, GC content, uncalled based, ratio of bases called, sequence duplication, adaptors, and PCR primer contamination.
- These high quality, cleaned reads were aligned against the mouse transcriptome (mmlO) using bowtiel with parameters: p 12 -q -n 2 -m 1 -S -best.
- Gene expression measurement was performed from aligned reads by counting the unique reads using htseq-count (vO.6.1) with parameters: -a 10 -m intersection_strict.
- the read count based gene expression data was normalized and analyzed using the“DESEq2 R package”.
- the differentially expressed genes were identified on the basis of FDR value and fold change. Genes were considered significantly differentially expressed if the multiple hypothesis test-t corrected p-value was ⁇ 0.05.
- the resulting gene expression matrix was subsequently subjected to gene set enrichment analysis (F-GSEA, https://bioconductor.org/packages/release/bioc/html/fgsea.html) and then visualized through the R pheatmap package. WES sequencing and read alignment.
- SNPs and indels were identified using the SAMtools mpileup function and variants were called using VarScan suite (v.2, varscan.sourceforge.net). Variants were filtered using an in-house Perl script, to account for SNVs and indels not included in the control sample (wild type), for mapping quality, number of mismatches, read depth, and known variants (Mouse genome project, mgp v.3). Finally, variants were annotated using Annovar (http://annovar.openbioinformatics.org, v.20150322)
- Copy number variations were called using the binary segmentation algorithm implemented in the“DNACopy R package”.
- the default parameters and segmented data were merged suing mergeSegments.pl from VarScan suite.
- mIDH2 R140Q mIDH2 dependent AML model was used to predict mechanisms promoting resistance to mIDH2 inhibitors in patients.
- mIDH2 dependency was manipulated in a model of mouse bone marrow (BM) cells overexpressing mIDH2 transduced with Hoxa9-GFP and Meisla-IRES-YFP retroviruses transplanted in a primary host in the presence or absence of doxycycline to induce mIDH2 expression.
- BM mouse bone marrow
- Meisla-IRES-YFP retroviruses transplanted in a primary host in the presence or absence of doxycycline to induce mIDH2 expression.
- Dependence on mIDH2 in secondary transplanted disease was confirmed (Figs.
- Example 2 De novo resistance is associated with a distinct metabolic switch to one- carbon metabolism and altered redox balance
- mIDH2 Since the expression of mIDH2 directly impacts cellular metabolism, polar metabolites were extracted from sensitive and resistant AML cells from both 2 nd and 3 rd transplanted mice (Fig. 7A). Comparison of metabolite abundance established multiple metabolic processes altered between the mIDH2 leukemic states (Fig. 2A and 2B). Resistant cells were significantly enriched in glycerophospholipid, pyrimidine, purine, cysteine and methionine metabolism pathways (Fig. 2B). These pathways can be fueled by one-carbon metabolism, which consists of both the folate and the methionine cycles (Figs. 7B and 1C).
- one-carbon metabolism is a main cellular engine contributing to nucleotide metabolism and global methylation, as well as cellular redox status. Similar to recent findings for purine metabolism in cancer, a general increase in purine precursors in 3 rd compared to 2 nd recipient AMLs was observed (Figs. 7D-F).
- Glutathione metabolism was the most significant and highly enriched metabolic pathway in resistant AML cells (Fig. 2C). 3 rd recipient AML cells demonstrated high levels of glutathione and cysteine, glutathione’s major precursor (Fig. 2D), suggesting that these cells may have an altered redox balance. Indeed, altered NADPH/NADP+ and NADH/NAD+ ratios confirm this oxidative stress (Fig. 2E), and excessive ROS levels were visualized using MitoSOXTM Red staining (Figs. 2F-G), especially relative to Hoxa9/Meisla driven leukemias lacking mIDH2 (Fig. 7G).
- HoxA9/Meisla/mIDH2 leukemia at early (sensitive) stage were marked by the same features of late (resistant) leukemia. See Figs. 2J(a-e) and 3K(a-e). This evidenced that the mutant IDH leukemia at early stage show the same characteristics/features of the late stage leukemia, when using ATO combined with ATRA, providing a rational for the utilization of ATO and ATRA not only in mutant IDH2 leukemia at late sage (when cells became resistant to the inhibitor), but also at early stage (when cells are sensitive to the inhibitor).
- Fig. 8A To determine if such genotoxic stress may contribute to AML evolution through targeted mutation whole exome sequencing (WES) of a 2 nd recipient and three of its derived 3 rd recipient‘daughter’ leukemias was performed (Fig. 8A).
- WES targeted mutation whole exome sequencing
- Fig. 8B Non-synonymous base substitutions and both G>A:C>T and A>G:T>C transitions accounted for two- thirds of the single base substitutions (SBS) observed, as is frequently found in cancers without biased substitution
- PCA principal component analysis
- translocations involve known hematopoietic genes including Rael ( Rael;Pappa t(4;2)), Meisl ( EeahMeis P, t(l 1 ; 10)), and both Ppplrl3b (Asppl) and Cadps2 (Ppplrl 3b:Cadps2 t(6;12)) (Fig. 8E).
- Rael Rael;Pappa t(4;2)
- Meisl EeahMeis P, t(l 1 ; 10)
- Ppplrl3b Asppl
- Cadps2 Ppplrl 3b:Cadps2 t(6;12)
- RNAseq analysis was performed to create a global picture of leukemia progression from a state of mIDH2 dependence to independence (Fig. 9A).
- Primary leukemias derived from Hoxa9;Meisl overexpression without mIDH2 was used for comparison.
- PCA analysis identified distinct clusters of 2 nd and 3 rd recipient leukemias (Fig. 9B). Differential gene expression patterns highlighted clear differences between sensitive and resistant leukemias (Fig. 3A), suggestive of common pathways leading to independence from mIDH2.
- a gene-centric PCA identified genes associated with the Jun/Fos AP-1 transcription factor family (Jim, Fos, Fosb), granulopoiesis and myeloid differentiation ( My a, Lyz2, Ngp ), and inflammation ( Zfp36 ) as differential (Fig. 9C). Altered expression status of myeloid granule components also suggested that 2 nd and 3 rd recipient leukemias may represent different stages of myeloid development (Fig. 9C).
- GSEA Gene set enrichment analysis identified similar pathways altered in resistant AMLs, including enrichment of Kras, MAPK, TNF signaling and response to Tretinoin (aka. all-trans retinoic acid; ATRA) (Fig. 3C), while an interactive network of all differentially regulated genes highlighted the central role of Erk/MAPK signaling in defining the signatures associated with resistant disease (Fig. 8C) consistent with previously published data, suggesting that the present model recapitulates mechanisms relevant to human AML. Indeed, cancer signaling pathway activation was confirmed by flow cytometry analysis (Fig. 8E).
- ATRA has been recently established as a specific inhibitor of the PIN 1 proto-oncogene.
- PIN 1 has been reported to be upregulated by C/EBPa-p30, and can promote activation of MAPK. Similarly, it promotes PI3K activity and regulates AKT’s stability and phosphorylation.
- ATRA is a specific inhibitor of PIN1, it is also important to note that PIN1 itself can be a negative regulator of ATRA, and there is an expanding role for PIN 1 as a negative regulator of hematopoietic differentiation.
- PIN 1 may contribute to proliferative signaling (MAPK and PI3K dependent), increased survival to ROS-mediated apoptosis, and the ATRA mediated differentiation block observed.
- a marked upregulation of Pin 1 protein in both Dox ON and OFF mIDH2 leukemias at late stages of progression Fig. 4A, Lanes 5-8. This suggested that 3 rd recipient leukemias may be sensitized to ATRA and that targeting PIN 1 may relieve both the oncogenic signaling and the differentiation block in these cells.
- ATRA-sensitive retinoic acid receptors were upregulated in mIDH2 2 nd recipient AML, as well as increased C/EBRa and C/EBRe (Fig. 4A, Lanes 3 and 4).
- PIN1 itself, the negative regulator of the pathway, was also concomitantly induced (Fig. 4A, Lanes 3 and 4).
- validated Rara/Rxra responsive genes were not transcriptionally activated, suggesting that RARs are transcriptionally inactive.
- mIDH2 overexpressing TF- 1 and U937 cell lines were used to understand if the same was true for human leukemia. Indeed, both TF- 1 (Fig. 4B) and U937 (Fig. 4C) lines demonstrated upregulation of PIN1 in the presence of mIDH2, along with retinoic acid receptors and C/EBRa. Inhibition of PIN1 by using a specific inhibitor (Juglone) clearly demonstrated PIN 1 to be required for blocking differentiation driven by erythropoietin (EPO) (Fig. 4D) and reduced their clonogenic ability (Figs. 4E, 10A, and 10B).
- EPO erythropoietin
- a mIDH2 independent (e.g, resistant) mouse AML was transplanted into BL6 (Fig. 11C) and placed mice on a treatment regime as outlined in Fig. 4K. Both single agent and combination treatments demonstrated efficacy as measured by increase in mean survival of mice treated (Fig. 11D). Strikingly, a number of mice treated with the ATO/ ATRA combination demonstrated a strong differentiation response in the leukemic blasts associated with an excessive infiltration of mature myeloid cells in the lung (Fig. 11E-G). Thus, steroid dexamethasone was also administered. As outlined in Figs. 4K-L, dexamethasone treatment successfully overcame the differentiation syndrome, and enabled extensive survival benefits upon treatment with the ATO/ ATRA combination.
- a panel of human primary AMLs was treated with ATO/ATRA to evaluate their potential for clinical efficacy, as measured by colony formation in methylcellulose.
- AML harboring mIDH2 showed a significantly reduced number of colonies upon treatment, and strong synergy was observed in combination treatments (Fig. 5A).
- NSG mice transplanted with human primary mIDH2 positive AML (Fig. 5B) were subjected to the treatment protocol as outlined in Fig. 5C to evaluate in vivo efficacy. To minimize onset of DS a metronomic dosing schedule was utilized.
- mIDH2- overexpression in TF1 cells inhibited the induction of the differentiation marker CD71 upon differentiation driven by erythropoietin (EPO), while specific targeting of PIN 1 with Juglone restored the upregulation of this marker. Also similarly, these findings were mimicked by genetic targeting of PIN 1 in mIDH2- overexpressing TF1 cells, with up-regulation of the CD71 and CD44 markers detected by flow cytometry and the differentiation associated HGB and KLF1 genes
- the therapeutic opportunity afforded by ROS induction was evaluated in this model through the use of arsenic trioxide, hypothesizing that the pro oxidant activity of ATO could cause genotoxic stress and cell death.
- the murine AML model demonstrated increased apoptosis in both a sensitive mIDH2 dependent and resistant mIDH2 independent setting (Fig. 13h), while the expression of mIDH2 in TF1 cells conferred sensitivity to induction of apoptosis upon treatment with ATO that was not observed in control infected cells (Fig. 13i).
- Example 9 ATRA and ATO combination for treatment of mIDH AML
- Fig. 14a 21 days after initiating treatment mice engrafted with mIDH2- overexpressing U937 treated with the ATO/ATRA combination remained alive, while all control mice had succumbed to disease (Fig. 14b).
- Bone marrow (BM) analysis demonstrated a significant decrease in the percentage of human leukemic blasts, and increased differentiation, in both the ATRA and ATO/ATRA treated cohorts of mice transplanted with mIDH2-overexpressing cells (Fig. 14c-14e).
- mIDH2 expressing U937 cells treated with the combination therapy demonstrated the mature myeloid CDllb marker amongst all the cohorts analysed (Fig. 14f and 14g).
- Reduced spleen weights were observed in mice transplanted with mIDH2-expressing U937 cells treated with ATO/ATRA, demonstrating the power of this treatment combination to impact the severity of disease (Fig. 14h).
- NSG mice transplanted with human primary mIDH2 positive AML were subjected to the treatment protocol, and to minimize onset of differentiation syndrome (DS), we utilized a metronomic dosing schedule, as for APL patients’ treatment protocols.
- DS onset of differentiation syndrome
- the ATRA/ ATO combination selectively targets the PINl-PML-RARa oncogenic node, while in mIDH-leukemia, the ATRA/ ATO combination treatment selectively targets the oncogenic mIDH-PINl-RARa node.
- mIDH-leukemia a cohort of primary human AML cells that harbor either mIDHI or mIDH2
- Our analysis points to the ability of these oncogenes to sensitize to the effects of ATRA plus ATO.
- the combination of these agents with specific mIDH targeting agents may in turn potentiate and extend the efficacy of these inhibitors.
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Inorganic Chemistry (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
La présente invention concerne des méthodes et des kits se rapportant au traitement de la leucémie mIDH1, la leucémie mIDH2 et de tumeurs solides associées à mIDH par l'administration de darinaparsine, d'un composé d'acide rétinoïque ou d'une association d'un composé d'arsenic et d'un composé d'acide rétinoïque.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862774709P | 2018-12-03 | 2018-12-03 | |
US62/774,709 | 2018-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020117867A1 true WO2020117867A1 (fr) | 2020-06-11 |
Family
ID=70975518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/064326 WO2020117867A1 (fr) | 2018-12-03 | 2019-12-03 | Darinaparsine et composés d'acide rétinoïque pour le traitement de troubles associés à l'idh |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020117867A1 (fr) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040146575A1 (en) * | 1997-11-10 | 2004-07-29 | Memorial Sloan-Kettering Cancer Center | Process for producing arsenic trioxide formulations and methods for treating cancer using arsenic trioxide or melarsoprol |
WO2017146794A1 (fr) * | 2016-02-26 | 2017-08-31 | Celgene Corporation | Inhibiteurs d'idh2 pour le traitement de tumeurs solides et malignes hématologiques |
-
2019
- 2019-12-03 WO PCT/US2019/064326 patent/WO2020117867A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040146575A1 (en) * | 1997-11-10 | 2004-07-29 | Memorial Sloan-Kettering Cancer Center | Process for producing arsenic trioxide formulations and methods for treating cancer using arsenic trioxide or melarsoprol |
WO2017146794A1 (fr) * | 2016-02-26 | 2017-08-31 | Celgene Corporation | Inhibiteurs d'idh2 pour le traitement de tumeurs solides et malignes hématologiques |
Non-Patent Citations (7)
Title |
---|
KOZONO ET AL.: "Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving ' pathways and tumor-initiating cells", NAT COMMUN, vol. 9, no. 1, 9 August 2018 (2018-08-09), pages 1 - 17, XP055716637 * |
MATULIS ET AL.: "Darinaparsin induces a unique cellular response and is active in an arsenic - trioxide-resistant myeloma cell line", MOL CANCER THER, vol. 8, no. 5, 1 May 2009 (2009-05-01), pages 1197 - 1206, XP055716640 * |
MUGONI ET AL.: "Vulnerabilities in mlDH2 AML confer sensitivity to APL-like targeted combination therapy", CELL RES, vol. 29, no. 6, 25 April 2019 (2019-04-25), pages 446 - 459, XP036847134, DOI: 10.1038/s41422-019-0162-7 * |
OGAWARA ET AL.: "IDH2 and NPM1 Mutations Cooperate to Activate Hoxa9/Meis1 and Hypoxia Pathways in Acute Myeloid Leukemia", CANCER RES, vol. 75, no. 10, 15 May 2015 (2015-05-15), pages 2005 - 2016, XP055716639 * |
SCHENK ET AL.: "Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic . acid differentiation pathway in acute myeloid leukemia", NAT MED, vol. 18, no. 4, 11 March 2012 (2012-03-11), pages 605 - 611, XP055372818, DOI: 10.1038/nm.2661 * |
WANG ET AL.: "NADPH oxidase-derived reactive oxygen species are responsible for the high susceptibility to arsenic cytotoxicity in acute promyelocytic leukemia cells", LEUK RES, vol. 32, no. 3, 4 September 2007 (2007-09-04), pages 429 - 436, XP022498997, DOI: 10.1016/j.leukres.2007.06.006 * |
WARD ET AL.: "The common feature of leukemia-associated IDH1 and IDH2 mutations is a . neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate", CANCER CEL L, vol. 17, no. 3, 18 February 2010 (2010-02-18), pages 225 - 234, XP055007472, DOI: 10.1016/j.ccr.2010.01.020 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wienert et al. | Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair | |
Souroullas et al. | An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation | |
Yu et al. | Targeting GLS1 to cancer therapy through glutamine metabolism | |
Salloum et al. | Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide | |
Harrison et al. | Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets | |
Chen et al. | Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms | |
Lucena-Cacace et al. | NAMPT as a dedifferentiation-inducer gene: NAD+ as core axis for glioma cancer stem-like cells maintenance | |
Wang et al. | Riboflavin attenuates myocardial injury via LSD1-mediated crosstalk between phospholipid metabolism and histone methylation in mice with experimental myocardial infarction | |
Patra et al. | Mechanisms governing metabolic heterogeneity in breast cancer and other tumors | |
Kim et al. | Transferrin receptor‐mediated iron uptake promotes colon tumorigenesis | |
Zwifelhofer et al. | GATA factor-regulated solute carrier ensemble reveals a nucleoside transporter-dependent differentiation mechanism | |
Lee et al. | Eukaryotic initiation factor 4F: a vulnerability of tumor cells | |
US20220125814A1 (en) | Cancer combination therapies utilizing a nicotinamide phosphoribosyltransferase inhibitor in combination with a nicotinamide adenine dinucleotide salvage pathway precursor | |
Kushwaha et al. | MicroRNA targeting nicotinamide adenine dinucleotide phosphate oxidases in cancer | |
Chai et al. | Isoprenylcysteine carboxylmethyltransferase is required for the impact of mutant KRAS on TAZ protein level and cancer cell self-renewal | |
Guerreiro et al. | Response of preantral follicles exposed to quinoxaline: A new compound with anticancer potential | |
Gu et al. | IL-6 derived from therapy-induced senescence facilitates the glycolytic phenotype in glioblastoma cells | |
Tabnak et al. | Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics | |
der Maur et al. | N-acetylcysteine overcomes NF1 loss-driven resistance to PI3Kα inhibition in breast cancer | |
Pace et al. | Role of prostaglandin E2 in the invasiveness, growth and protection of cancer cells in malignant pleuritis | |
KR20240121720A (ko) | 메닌-mll 후성유전학적 복합체 파괴에 의한 위장관 기질 종양(gist)의 치료 표적화 | |
WO2020117867A1 (fr) | Darinaparsine et composés d'acide rétinoïque pour le traitement de troubles associés à l'idh | |
WO2020117868A1 (fr) | Composés d'arsenic et composés d'acide rétinoïque pour le traitement de troubles associés à l'idh | |
WO2019109095A1 (fr) | Trioxyde d'arsenic et composés d'acide rétinoïque pour le traitement de troubles associés à l'idh2 | |
WO2020069187A1 (fr) | Polythérapie pour le traitement de la leucémie aiguë myéloïde |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19892034 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19892034 Country of ref document: EP Kind code of ref document: A1 |