WO2020116437A1 - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
WO2020116437A1
WO2020116437A1 PCT/JP2019/047196 JP2019047196W WO2020116437A1 WO 2020116437 A1 WO2020116437 A1 WO 2020116437A1 JP 2019047196 W JP2019047196 W JP 2019047196W WO 2020116437 A1 WO2020116437 A1 WO 2020116437A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
resin layer
adhesive
layer
glass plate
Prior art date
Application number
PCT/JP2019/047196
Other languages
French (fr)
Japanese (ja)
Inventor
玲美 川上
寛 坂本
純一 ▲角▼田
徹 上村
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020559215A priority Critical patent/JPWO2020116437A1/en
Publication of WO2020116437A1 publication Critical patent/WO2020116437A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to a laminate having a glass plate and an adhesive layer.
  • Patent Document 1 discloses a transparent laminate used for windows such as automobiles and buildings, or for displaying displays such as liquid crystal displays.
  • the laminated body of Patent Document 1 uses an optically transparent pressure-sensitive adhesive (OCA) as an adhesive layer for adhering a glass plate and a resin plate, and the adhesive layer has a predetermined viscoelastic property.
  • OCA optically transparent pressure-sensitive adhesive
  • the laminated body of Patent Document 1 is not assumed to be a large-sized laminated body (for example, a diagonal length of 0.5 m or more), and for example, a home door of a railway station, an automobile, a railway, etc.
  • a large-sized opening member such as a vehicle window
  • the laminate of Patent Document 1 can secure the adhesive force between the pressure-sensitive adhesive layer and the resin plate if the size is small, but if the size is large, the adhesive force is insufficient especially at the end portion of the laminate. To do. As a result, the flat shape cannot be maintained or the adhesive force at the end cannot be secured, so that the above-mentioned problem occurs.
  • the adhesion force here means a force including an adhesive force and an adhesive force.
  • the present invention has been made in view of the above circumstances, and in a laminated body in which a glass plate and a resin layer are laminated at room temperature via an adhesive layer, the adhesive layer and the resin layer are formed at the end of the laminated body. It is an object of the present invention to provide a laminate capable of enhancing the adhesion.
  • One embodiment of a laminate according to the present invention is a laminate having a glass plate and an adhesive layer in order to achieve the object of the present invention, wherein a resin layer is adhered to the glass plate via an adhesive layer.
  • the adhesive strength between the adhesive layer and the resin layer at that time, the 90-degree peeling adhesive strength obtained by the peeling test method based on JIS Z0237:2009 is 4 N/25 mm or more, and the resin layer was adhered.
  • the glass plate and the resin layer were moved at a speed of 5 mm/min.
  • the adhesive layer and the resin layer By applying a load to the bonding interface between the adhesive layer and the resin layer by separating the adhesive layer and the resin layer, the adhesive layer and the resin layer when the maximum value of the test force for peeling the bonding interface is obtained.
  • the relative shear displacement is 3 mm or more, and the adhesive layer is an optically transparent adhesive.
  • a laminate according to the present invention is, in order to achieve the object of the present invention, a glass plate, an adhesive layer and a resin layer is a laminate configured by laminating in order, an adhesive layer and a resin layer
  • the adhesive strength of 90 degrees peeling adhesive strength obtained by the peeling test method based on JIS Z0237:2009 is 4 N/25 mm or more, and the laminate cut into a size of 20 mm ⁇ 30 mm, The glass plate and the resin layer were placed at a speed of 5 mm/min.
  • the relative shear displacement is 3 mm or more, and the adhesive layer is an optically transparent adhesive.
  • one embodiment of the laminated body according to the present invention is configured by laminating a first glass plate, a first adhesive layer, a resin layer, a second adhesive layer and a second glass plate in order. And the adhesive force between the first adhesive layer and the resin layer and the adhesive force between the second adhesive layer and the resin layer, which were obtained by the peel test method according to JIS Z0237:2009.
  • the first glass plate and the resin layer were moved at a speed of 5 mm/min in the long side direction of the laminate.
  • the resin layer have a relative shear displacement amount of 3 mm or more, and in the test body, the second glass plate and the resin layer were moved at a speed of 5 mm/min.
  • the relative shear displacement between the resin layer and the resin layer is 3 mm or more, and the first adhesive layer and the second adhesive layer are optical transparent pressure-sensitive adhesives.
  • an embodiment of a laminate according to the present invention is configured by sequentially laminating a first resin layer, a first adhesive layer, a glass plate, a second adhesive layer and a second resin layer. And the adhesive force between the first adhesive layer and the first resin layer and the adhesive force between the second adhesive layer and the second resin layer, which are in accordance with JIS Z0237:2009.
  • the 90 degree peeling adhesive strength obtained in the peeling test method is both 4 N/25 mm or more, and in the test body obtained by cutting out the laminate to a size of 20 mm ⁇ 30 mm, the glass plate and the first resin layer are A speed of 5 mm/min.
  • the relative shear displacement between the first adhesive layer and the first resin layer is 3 mm or more, and in the test body, the glass plate and the second resin layer are arranged in the long side direction of the laminate. Speed 5 mm/min.
  • the relative shear displacement between the second adhesive layer and the second resin layer is 3 mm or more, and the first adhesive layer and the second adhesive layer are optical transparent pressure-sensitive adhesives.
  • the adhesion between the adhesive layer and the resin layer can be increased.
  • FIG. 1 is an enlarged cross-sectional view of a main part of the laminated body according to the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the laminated body according to the second and third embodiments.
  • FIG. 3 is a side view of the evaluation sample reinforced by the support film.
  • FIG. 4 is a schematic diagram of a peeling test method based on JISZ0237:2009.
  • FIG. 5 is a table showing various physical properties of the laminates according to each example and comparative example.
  • FIG. 6 is a schematic view of a shear adhesive strength test method.
  • FIG. 7 is a graph showing the correlation between the peeling stress and the shear shift amount of the laminates according to each example and comparative example.
  • FIG. 8 is an enlarged cross-sectional view of a main part of a laminated body having a five-layer structure.
  • FIG. 9 is an enlarged cross-sectional view of a main part of a laminated body having a three-
  • FIG. 1 is an enlarged cross-sectional view of a main part of the laminated body 10 according to the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the laminated body 12 according to the second and third embodiments.
  • a laminated body 10 of Example 1 shown in FIG. 1 is a laminated body having a glass plate 14 and one adhesive layer 16, and a resin layer 18 is adhered to the glass plate 14 via the adhesive layer 16. ..
  • the laminated body 12 of Example 2 and Example 3 shown in FIG. 2 is a laminated body having two layers of adhesive layers 20 and 22 in addition to the glass plate 14, and a resin layer with the adhesive layers 20 and 22 interposed therebetween. 18 is adhered to the glass plate 14.
  • Examples of the glass plate 14 include unstrengthened soda-lime glass, chemically strengthened glass, or air-cooled tempered glass (also referred to as physical tempered glass).
  • the resin layer 18 examples include highly transparent resins such as polycarbonate, acrylic, polypropylene, polyethylene, and cycloolefin polymer (COP). Further, the material is not limited to a transparent material and may be a non-transparent material such as CFRP (carbon fiber reinforced resin).
  • CFRP carbon fiber reinforced resin
  • the laminated body is not limited to a flat plate, and includes a 3D shape such as a curved surface.
  • the adhesive force between the adhesive layer 16 and the resin layer 18 when the resin layer 18 is adhered to the glass plate 14 via the adhesive layer 16, the JIS Z0237: Relative shearing between the adhesive layer 16 and the resin layer 18 when the 90-degree peeling adhesive force obtained by the peel test method based on 2009 is 4 N/25 mm or more and the maximum value of the peel stress is obtained.
  • the deviation amount is set to 3 mm or more.
  • the maximum value of the peeling stress means a glass plate and a resin layer in a long side direction of the laminate at a speed of 5 mm/min.
  • the load is applied to the bonding interface between the adhesive layer and the resin layer and the maximum value of the test force applied to the peeling of the bonding interface is caused by the relative separation.
  • the glass plate and the resin layer were moved at a speed of 10 mm/min.
  • the adhesive layer 20 when the peeling test method based on JIS Z0237:2009 has a peeling adhesive strength of 4 N/25 mm or more and the maximum value of peeling stress is obtained.
  • 22 and the resin layer 18 have a relative shear displacement amount of 3 mm or more.
  • the maximum value of the peeling stress means that a glass plate and a resin layer were cut at a speed of 5 mm/min.
  • the load is applied to the bonding interface between the adhesive layer and the resin layer and the maximum value of the test force applied to the peeling of the bonding interface is caused by the relative separation.
  • the glass plate and the resin layer were moved at a speed of 10 mm/min.
  • each adhesive layer is an optically transparent adhesive
  • the adhesive layer 16 of Example 1 is manufactured by AGC
  • the adhesive layer 20 of Example 2 is manufactured by AGC, product.
  • the adhesive layer 16 and the adhesive layer 20 are acrylic pressure-sensitive adhesives obtained by ultraviolet curing a raw material containing a reactive oligomer having a molecular weight of 10,000 or more as a curable component in a considerable amount (30% or more), and its gel fraction is It was 40%.
  • the adhesive layer 22 and the adhesive layer of Comparative Example 1 were made of a monofunctional (meth)acrylate component having a molecular weight of 200 or less as a raw material, and were made into a (meth)acrylic acid ester-based copolymer by solution polymerization, and then three-dimensionalized by a crosslinking agent. It was an acrylic pressure-sensitive adhesive, and its gel fraction was 60% or more.
  • the adhesive layer of Comparative Example 4 was a thermoplastic interlayer film made of an ethylene vinyl acetate copolymer having a molecular weight of 1,000,000 or more.
  • 90-degree peeling adhesive strength is measured by the peel test method according to JIS Z0237:2009. The details of the method are shown below.
  • a total of seven types of adhesive layers corresponding to the adhesive layer 16 of Example 1, the adhesive layers 20 and 22 of Examples 2 and 3 and the adhesive layers of Comparative Examples 1 to 4 were prepared.
  • the evaluation sample 24 was prepared. This evaluation sample 24 is cut into a size of 25 mm in width and 50 mm in length.
  • the EVA film serving as the adhesive layer of Comparative Example 4 was sandwiched between the support film 28 and the polycarbonate substrate 26, placed in a vacuum pack, and preliminarily degassed. A uniform laminate was obtained by holding the mixture under a pressure of 1.3 MPa for about 1 hour.
  • An evaluation sample 24 was obtained by cutting this laminated body into a width of 25 mm and a length of 50 mm.
  • the pressure-sensitive adhesive surface of each of the evaluation samples 24 was pressure-bonded to the surface 26A of a polycarbonate substrate (Carbograss (registered trademark) polish manufactured by AGC, Inc.) 26 having a thickness of 5 mm shown in FIG.
  • the polycarbonate base material 26 corresponds to a resin layer.
  • a polycarbonate substrate (Carbograss (registered trademark) polish manufactured by AGC Co., Ltd.) having a hard coat layer containing an acrylic component on the surface was used as the resin layer.
  • the adhesive layers 20 and 22 of Examples 2 and 3 were so arranged that the adhesive layer 22 was in contact with the polycarbonate substrate 26.
  • a supporting film made by Mitsubishi Plastics Co., Ltd., DIAFOIL S-100, made of polyethylene terephthalate (PET) having a thickness of 38 ⁇ m
  • PET polyethylene terephthalate
  • the evaluation sample is obtained by pulling the support film 28 (see FIG. 4) pressure-bonded to the evaluation sample 24 against the surface 26A of the polycarbonate substrate 26 in the direction of arrow A forming 90 degrees at a peeling speed of 50 mm/min.
  • the adhesive surface 24 to be measured is peeled off from the surface 26A of the polycarbonate substrate 26.
  • the tensile strength at this time was measured with a load cell, and the 90-degree peeling adhesive strength of the evaluation sample 24 was measured. The results are shown in "Adhesion" in the table of FIG.
  • the 90-degree peeling adhesive force of the evaluation sample 24 corresponding to the adhesive layer 16 of Example 1 is 5.6 N/25 mm, and the evaluation sample corresponding to the adhesive layers 20 and 22 of Example 2 is shown.
  • the 90-degree peeling adhesive force of 24 was 15.2 N/25 mm, and the 90-degree peeling adhesive force of the evaluation sample 24 corresponding to the adhesive layers 20 and 22 of Example 3 was 15.6 N/25 mm.
  • the 90-degree peeling adhesion of the evaluation sample 24 corresponding to the adhesive layer of Comparative Example 1 was 10.3 N/25 mm, and the 90-degree peeling of the evaluation sample 24 corresponding to the adhesive layer of Comparative Example 2 was removed.
  • the adhesive force was 15.2 N/25 mm, and the 90-degree peeling adhesive force of the evaluation sample 24 corresponding to the adhesive layer of Comparative Example 3 was 3.2 N/25 mm, which corresponds to the adhesive layer of Comparative Example 4.
  • the peeling adhesive strength of the evaluation sample 24 was 60 N/25 mm.
  • Example 3 As the polycarbonate, a polycarbonate substrate (Carbograss (registered trademark) polish manufactured by AGC Co., Ltd.) having a hard coat layer containing an acrylic component on the surface was used for evaluation. I got a sample.
  • the evaluation sample of Comparative Example 4 an EVA film of the same size was sandwiched between the glass plate and the polycarbonate plate cut into the size of 20 mm ⁇ 30 mm, and the evaluation sample was obtained under the above heating and laminating conditions.
  • the polycarbonate plate 34 is bonded to the soda-lime glass plate 36 via the evaluation sample 32.
  • the same reference numeral (32) is attached to the evaluation sample for convenience.
  • a metal fixture (not shown) placed on the upper part of the measuring instrument grips the upper end surface of the polycarbonate plate 34 shown in FIG. At this time, the entire upper surface of the polycarbonate plate 34 is held by the upper fixture so that the load is uniformly applied to the upper surface of the polycarbonate plate 34.
  • a metal fixture (not shown) arranged in the lower part of the measuring instrument is made to grip the lower end surface of the soda lime glass plate 36 shown in FIG. At this time, the entire lower end surface of the soda lime glass plate 36 is held by the lower fixture so that the load is uniformly applied to the lower end surface of the soda lime glass plate 36.
  • the polycarbonate plate 34 and the soda lime glass plate 36 are relatively separated from each other, that is, the long side direction of the laminated body 30, and the upper and lower fixtures are moved at a speed of 5 mm/min. Move relatively. By such movement, a load is applied to the bonding interface between the evaluation sample 32 and the polycarbonate plate 34, and the relative value between the evaluation sample 32 and the polycarbonate plate 34 when the maximum value of the test force for peeling at the bonding interface is obtained. The amount of shear displacement is measured. The results are shown in the graph of FIG.
  • the load is also applied to the joint interface between the soda lime glass plate 36 and the evaluation sample 32, but the element for solving the problem of the present invention is the evaluation sample 32 and the evaluation sample 32. Since the test force is related to the peeling of the bonding interface with the polycarbonate plate 34, the test force will be described here.
  • the vertical axis of the graph in FIG. 7 represents the peeling stress (N/mm 2 ) which is the test force for peeling the polycarbonate plate 34 from the evaluation sample 32, and the horizontal axis represents the relative strength between the evaluation sample 32 and the polycarbonate plate 34.
  • the shear shift amount (mm) is shown.
  • the test force applied to the peeling means the peeling stress applied to the bonding interface between the evaluation sample 32 and the polycarbonate plate 34.
  • the relative shear displacement amount (mm) between the evaluation sample 32 and the polycarbonate plate 34 when the maximum value of the test force (N) for peeling is obtained. It is shown.
  • the shear shift amount of the evaluation sample 32 corresponding to the adhesive layer 16 of Example 1 is 8.4 mm, and the evaluation sample 32 corresponding to the adhesive layers 20 and 22 of Example 2 and Example 3 is shown.
  • the amount of shear deviation was 4.2 mm and 13.2 mm, respectively.
  • the shear shift amount of the evaluation sample 32 corresponding to the adhesive layer of Comparative Example 1 is 1.4 mm, and the shear shift amount of the evaluation sample 32 corresponding to the adhesive layer of Comparative Example 2 is 1.9 mm.
  • the amount of shear deviation of the evaluation sample 32 corresponding to the adhesive layer of Comparative Example 3 was 4.2 mm, and the amount of shear deviation of the evaluation sample 32 corresponding to the adhesive layer of Comparative Example 4 was 1.2 mm.
  • a rectangular glass plate having a length of 998 mm, a width of 998 mm, and a thickness of 0.55 mm was prepared as in Example 1 and A pair of first glass plate 42 and second glass plate 50 was prepared for each of all five types of laminates of Example 2 and Comparative Examples 1 to 3.
  • a resin layer sandwiched between the pair of glass plates a rectangular polycarbonate plate 46 having a length of 1000 mm, a width of 1000 mm and a thickness of 5 mm was prepared.
  • the polycarbonate plate used was one that had been previously dried in an oven at 80° C. for about 12 hours.
  • a first adhesive layer 44 having a length of 996 mm and a width of 996 mm was attached to one surface of the polycarbonate plate 46 by a roll laminator machine, and a glass plate corresponding to the first glass plate 42 was also attached thereon.
  • the first adhesive layer 44 corresponds to the adhesive layer 16 of Example 1, the adhesive layers 20 and 22 of Example 2, and all five types of adhesive layers of Comparative Examples 1 to 3, and their thicknesses are As shown in FIG. Thereafter, this is reversed, and the second adhesive layer 48 and another glass plate corresponding to the second glass plate 50 are attached to the other surface of the polycarbonate plate 46 in the same manner as described above, and the result shown in FIG.
  • a laminated body 40 having a layered structure was manufactured.
  • the second adhesive layer 48 corresponds to the adhesive layer 16 of Example 1, the adhesive layers 20 and 22 of Example 2, and all five types of adhesive layers of Comparative Examples 1 to 3, and their thickness is as shown in FIG. As shown in.
  • the first glass plate 42, the first adhesive layer 44, the polycarbonate plate 46, the second adhesive layer 48, and the second glass plate 50 are laminated in this order. Further, in FIG. 8, for convenience, the same reference numeral (40) is attached to the laminated body, the same reference numeral (44) is attached to the first adhesive layer, and the same reference numeral (48) is attached to the second adhesive layer. ing.
  • the first glass plate 62 that constitutes such laminated body.
  • a rectangular polycarbonate plate 66 having the same dimensions as this and a thickness of 1.5 mm was prepared.
  • a polycarbonate substrate (Carboglass (registered trademark) polish manufactured by AGC Co., Ltd.) having a hard coat layer containing an acrylic component on its surface was used.
  • the polycarbonate plate used was one that had been previously dried in an oven at 80° C. for about 12 hours.
  • Example 3 the first adhesive layer 64 having a length of 298 mm and a width of 298 mm was attached by a roll laminator machine in the same process as in Examples 1 and 2, and the first glass plate 62 was further formed thereon. Corresponding glass plates were also stuck together to obtain a laminate 60 having a three-layer structure shown in FIG.
  • Comparative Example 4 an EVA film corresponding to the first adhesive layer 64 having a length of 298 mm and a width of 298 mm was sandwiched between the glass plate corresponding to the 300 mm square first glass plate 62 and the polycarbonate plate 66, and the heating was performed. Under the combined condition, a laminate 60 having a three-layer structure shown in FIG. 9 was obtained.
  • a heating test (conditions: standing in a constant temperature bath at 60° C. for 24 hours) was performed on the above-described seven types of laminates 40 and 60, and as the first adhesive layer 44 and the second adhesive layer 48, In the laminated body 40 using the adhesive layers of Comparative Examples 1 to 3, it was confirmed that the polycarbonate plate 46 was separated from the first adhesive layer 44 and the second adhesive layer 48 at the end portion of the laminated body 40. On the other hand, in the laminated body 40 using the adhesive layer 16 of Example 1 and the adhesive layers 20 and 22 of Example 2 as the first adhesive layer 44 and the second adhesive layer 48, the above-mentioned edge peeling does not occur. I could not confirm.
  • the edge of the laminate 60 warped with respect to the center. It was confirmed that the value was as large as 3.8 mm.
  • the laminated body 60 using the adhesive layer of Example 3 as the first adhesive layer 64 no edge peeling was confirmed, and the warpage was 0.2 mm, which was suppressed to a level having almost no influence.
  • the warp is a thread from the one long side of the test piece to the other long side on the concave side of the test piece, with the long side of the test piece standing horizontally and the short side of the test piece standing vertically. It is the distance from the center of the concave surface of the test body to the thread when the yarn is crossed.
  • Example 4 since the amount of shear deviation was large and the 90-degree peeling adhesive strength was also high, it is considered that the warp could be suppressed even in the asymmetrical laminated structure having the three-layer structure as shown in FIG. ..
  • the peeling phenomenon of the resin layer with respect to the adhesive layer is controlled not only by the 90 degree peeling adhesive force (N/25 mm) but also by the shear shift amount (mm). It turned out to be Further, the shear shift amount can also be expressed as elongation force. Further, it is preferable that the 90-degree peeling adhesive strength (N/25 mm) is 4 N/25 mm or more, and the shear displacement is 3 mm or more, which are suitable values for achieving the object of the present invention. found.
  • the laminated body has a configuration in which the first glass, the first adhesive layer, the resin layer, the second adhesive layer, and the second glass plate are sequentially laminated as described above, the first resin layer, the first resin layer, and the first resin layer Similarly, in the case where the adhesive layer, the glass plate, the second adhesive layer, and the second resin layer are laminated in this order, the 90-degree peeling adhesive force (N/25 mm) between the adhesive layer and the resin layer is 4 N/ A value of 25 mm or more and a shear displacement amount of 3 mm or more are suitable numerical values for achieving the object of the present invention.
  • the 90-degree peeling adhesive force means the 90-degree peeling adhesive force between the first adhesive layer and the first resin layer, and the 90-degree peeling adhesive force between the second adhesive layer and the second resin layer. Both are 4 N/25 mm or more.
  • the shear displacement amount means that the relative shear displacement amount between the first adhesive layer and the first resin layer and the relative shear displacement amount between the second adhesive layer and the second resin layer are both 3 mm or more. Means there is.
  • the 90-degree peeling adhesive force (N/25 mm) is 4 N/25 mm or more, Moreover, since the shear displacement amount (mm) is set to 3 mm or more, in a laminated body in which a glass plate and a resin layer are laminated at room temperature via an adhesive layer, an adhesive layer is formed at an end portion of the laminated body. It is possible to enhance the adhesion with the resin layer. As a result, the present invention can be applied to home doors, windows of vehicles such as automobiles and railroads, etc. as a large-sized opening member that requires a diagonal length of 0.5 m or more, particularly 1 m or more.
  • the 90-degree peeling adhesive strength (N/25 mm) is preferably 5 N/25 mm or more, more preferably 10 N/25 mm or more, still more preferably 15 N/25 mm or more.
  • the upper limit of the 90-degree peeling adhesive strength (N/25 mm) is not particularly limited, but may be 50 N/25 mm or less.
  • the shear displacement (mm) is preferably 4 mm or more, more preferably 8 mm or more.
  • the upper limit of the shear displacement (mm) is not particularly limited, but may be 15 mm or less. Further, the speed of relatively separating is 10 mm/min.
  • the shear displacement amount is preferably 3 mm or more, more preferably 4.5 mm or more, further preferably 8 mm or more, and particularly preferably 12 mm or more.
  • the speed of relatively separating is 10 mm/min.
  • the upper limit of the shear displacement amount is not particularly limited, but may be 25 mm or less.
  • the adhesive layer 16 of the laminate 10 of Example 1 or the adhesive layers 20 and 22 of the laminate 12 of Example 2 are applied to the laminate 40.
  • the above 90 degree peeling adhesive strength (N/25 mm) is 4 N/25 mm or more and the shear displacement amount (mm) is set to 3 mm or more
  • the glass plate at room temperature is In the laminated body in which the resin layer and the resin layer are laminated via the adhesive layer, the adhesion between the adhesive layer and the resin layer can be increased. Thereby, the same effects as those of the laminated body 10 of the first embodiment and the laminated body 12 of the second embodiment can be obtained.
  • the content of the component having a low glass transition point Tg in the adhesive layer is preferably 5% or more with respect to the entire adhesive layer. Thereby, the adhesive force of the resin layer and the glass plate to the adhesive layer can be improved.
  • the content of the component having a low glass transition point Tg in the adhesive layer is preferably 8% or more, more preferably 10% or more, based on the entire adhesive layer.
  • the upper limit of the content of the component having a low glass transition point Tg in the adhesive layer is not particularly limited, but may be 40% or less.
  • the content of the plasticizer component in the adhesive layer is preferably 40% or less with respect to the entire adhesive layer.
  • the content of the plasticizer component in the adhesive layer is more preferably 20% or less with respect to the entire adhesive layer.
  • the upper limit of the content of the plasticizer component in the adhesive layer is not particularly limited, but may be 1% or less.
  • the adhesive layer of the present embodiment is not limited to the acrylic adhesive, and for example, a silicone adhesive, a rubber adhesive, or a urethane adhesive can be used.
  • the adhesive layer of the present embodiment preferably contains a silane coupling agent.
  • the adhesive layer containing a silane coupling agent means that the adhesive layer is mixed with the silane coupling agent, the surface layer of the adhesive layer is coated with the silane coupling agent, and the adhesive layer is adhered to the adhesive layer. It includes a form in which a silane coupling agent is applied to the surface layer of the resin layer.
  • the silane coupling agent acrylic silane having a functional group capable of reacting with the adhesive layer is preferable.
  • the adhesive force at the interface between the resin layer and the adhesive layer can be improved and peeling at the bonded interface can be suppressed.
  • a method of surface treatment without using a silane coupling agent there is a treatment of forming a thin film of silicon oxide through an oxidative flame by a frame burner.
  • the adhesive layer of this embodiment may further contain an additive such as an ultraviolet absorber.
  • an additive such as an ultraviolet absorber.
  • Any material can be used as the ultraviolet absorber, but in consideration of the transparency of the laminate, the transmittance of the entire laminate is 70% or more at a wavelength of 420 to 700 nm. It is preferably designed as follows. In this case, it is preferable that the deviation of the transmittance value is less than 10% in the wavelength region.
  • a complementary color agent to the resin layer.
  • the laminated body of this embodiment may have two or more adhesive layers.
  • the 90-degree peeling adhesive force between the adhesive layer arranged on the resin layer side and the resin layer is 4 N/25 mm or more, and the shear peel strength between the adhesive layer arranged on the resin layer side and the resin layer is high.
  • the shear displacement amount may be 3 mm or more.
  • the adhesive force between the two adhesive layers has physical properties higher than the adhesive force between the adhesive layer and the resin layer.
  • the laminate of the present embodiment may have a thermoplastic interlayer film between the adhesive layer and the glass plate or the resin layer.
  • thermoplastic interlayer film examples include polyvinyl butyral (PVB), EVA or COP, thermal polyurethane, thermoplastic polyurethane, and ionomer-based films which are used for general laminated glass. This makes it possible to impart properties such as impact resistance, ultraviolet resistance, and penetration resistance.
  • the glass plate of the present embodiment preferably has a thickness of 3 mm or less.
  • the thickness of the glass plate is preferably 70% or less with respect to the total thickness of the laminate. Further, the thickness of the glass plate is preferably thinner than the thickness of the resin layer. Since this makes it possible to reduce the weight of the laminated body, it is also applicable to the movable opening member such as the above-mentioned platform doors, windows of vehicles such as automobiles and railroads.
  • the thickness of the glass plate is preferably 3 mm or less, more preferably 1.1 mm or less, and particularly preferably 0.7 mm or less. By doing so, the weight of the glass single plate having the same thickness can be reduced to about 60% or less.
  • the thickness of the glass plate is preferably 2 mm or more.
  • strong impact may be applied to the laminated body due to strong wind pressure when passing through a tunnel or when vehicles pass each other. Also in that case, the influence of warpage and cracks can be suppressed by maintaining the rigidity of the laminated body.
  • the thickness of the glass plate can be arbitrarily set depending on the application.
  • the thickness of the adhesive layer is preferably 50 ⁇ m or more, and preferably less than 3 mm.
  • the thickness is 50 ⁇ m or more, even if bubbles remain at the interface with the glass plate or the resin layer during bonding, they are likely to disappear.
  • the thickness is less than 3 mm, the rigidity of the laminate can be ensured. In particular, when the laminated body becomes large, handling becomes easy.
  • the thickness of the adhesive layer is more preferably 100 ⁇ m or more, and particularly preferably 200 ⁇ m or more. Further, the thickness of the adhesive layer is more preferably 2 mm or less, and particularly preferably 1 mm or less. Within the above range, it is possible to alleviate internal stress applied to the adhesive layer due to the dimensional difference generated between the glass plate and the resin layer in a high temperature environment, and to ensure bubble extinction during bonding and rigidity of the laminate. It is possible.
  • a value obtained by dividing the shear displacement (unit: mm) by the thickness of the adhesive layer (unit: mm) is preferably 10 mm/mm or more. If the value obtained by dividing the shear displacement (unit: mm) by the thickness of the adhesive layer (unit: mm) is 10 mm/mm or more, the adhesion between the adhesive layer and the resin layer at the end of the laminate can be increased. it can.
  • the value obtained by dividing the shear displacement (unit: mm) by the thickness of the adhesive layer (unit: mm) is more preferably 20 mm/mm or more, further preferably 30 mm/mm or more.
  • the upper limit of the value obtained by dividing the shear displacement (unit: mm) by the thickness of the adhesive layer (unit: mm) is not particularly limited, but may be 50 mm/mm or less.
  • the shape of the laminated body of the present embodiment is not particularly limited, but may be a quadrangle, preferably a rectangle.
  • the rectangular shape is easy to apply to an opening member such as a home door of a railway station, a window of a vehicle such as an automobile or a railroad.
  • the glass plate and the resin layer may have a notch at a part of a corner between the end surface and the main surface when the respective sections are viewed in cross section. For example, the presence of the notch allows the surface of the laminate to be fitted so as to be flush with the surface of the vehicle when it is incorporated into the vehicle, which leads to improved fuel efficiency.
  • a pair of glass plates in the outermost layer a five-layer structure in which a resin layer is arranged inside via an adhesive layer, or a pair of resin layers in the outermost layer, via an adhesive layer
  • a symmetric structure such as a five-layer structure in which a glass plate is arranged inside can be mentioned.
  • the symmetrical structure is preferable because the stress applied to the adhesive layer can be canceled by the dimensional difference between the glass plate and the resin layer caused by heating even when a large opening member is assumed.
  • the configuration of this embodiment causes warpage and peeling at the end. It is preferable since it can be suppressed and can be stably used even in a high temperature environment.
  • a functional film or film having heat ray reflection, a screen, and dimming performance may be further enclosed.
  • the functional film as described above include a PET substrate provided with a sputtered film or a functional layer capable of selectively reflecting an arbitrary wavelength with a liquid crystal polymer. It is also possible to directly form the functional layer on the adhesive layer without using the PET base material.
  • the diagonal length is preferably 0.5 m or more, more preferably 1 m or more. If the diagonal length is 0.5 m or more, it can be applied to large-sized opening members such as platform doors of railway stations, windows of vehicles such as automobiles and railways.
  • the laminate of the present embodiment preferably has a short side length of 300 mm or more, and more preferably 700 mm or more. If the length of the short side is 300 mm or more, it can be applied to large-sized opening members such as platform doors of railway stations, windows of vehicles such as automobiles and railways.
  • the resin layer of the present embodiment it is preferable to use a resin layer provided with a hard coat layer as a surface treatment.
  • the material for forming the hard coat layer include acrylic compounds including urethane, epoxy, and polyester compounds, epoxy resins, vinyl ether compounds, and oxetane compounds.
  • the SP value solubility parameter
  • the SP value becomes close to that of the adhesive layer component, or both react to increase the adhesive force between layers, resulting in high temperature. Edge peeling in the environment can be suppressed.
  • a component with a low glass transition point Tg in order to secure 90-degree peeling adhesive strength to the base material, it is desirable to contain a component with a low glass transition point Tg as a raw material.
  • the component having a low glass transition point Tg include monomers having a molecular weight of 125 to 600.
  • the component having a low glass transition point Tg is a component having a glass transition point Tg of 0° C. or lower.
  • (meth)acrylic acid alkyl ester having an alkyl group having 4 to 12 carbon atoms
  • methoxymethyl (meth)acrylate methoxymethyl (meth)acrylate
  • ethoxymethyl (meth)acrylate methoxyethyl (meth)acrylate
  • alkoxyalkyl (meth)acrylates such as ethoxyethyl (meth)acrylate, and one or more of them can be used.
  • (meth)acrylic acid means at least one of acrylic acid and methacrylic acid.
  • the storage shear modulus G′ (also referred to as storage modulus) at an environmental temperature of 25° C. and a frequency of 1 Hz is in the range of 5 ⁇ 10 3 to 5 ⁇ 10 5 Pa.
  • the cohesive force of the adhesive layer can be maintained at a level that can withstand a practical use environment.
  • the practical use environment may be a cycle of high temperature, high humidity, low temperature to high temperature, or the like.
  • the content ratio of the component having a low glass transition point Tg is preferably 30% or less with respect to all the curable components contained in the adhesive layer.
  • the storage shear elastic modulus of the adhesive layer in the above range, it can be applied to a window member having a large opening.
  • the storage shear elastic modulus G′ is 2 ⁇ 10 4 to 3 ⁇ 10 5 Pa. Accordingly, even when assuming that the adhesive layer is a thick film having a thickness of 1 mm or the like, the adhesive layer alone can be stably handled, and the rigidity of the laminated body can be secured.
  • ⁇ It is also important to make the SP values of the adhesive layer and resin layer close to each other as a method of increasing the 90-degree peeling adhesive strength.
  • the difference between the SP values of the both is preferably 5 or less.
  • the storage shear modulus G′ of each evaluation sample 32 is shown in the table of FIG.
  • the storage shear modulus evaluation sample 32 is measured as follows.
  • the storage shear modulus evaluation sample 32 of each adhesive layer was measured using a rheometer (Physica MCR301 manufactured by Anton Paar).
  • An OCA film to be each adhesive layer was sandwiched between a stage made of soda lime glass and a measuring spindle, a dynamic shear strain of 1% was applied, the measurement frequency was set to 1 Hz, and measurement was performed in an environment of 25°C ..
  • the shear displacement amount (mm) specified in the present embodiment will be described.
  • a design guideline for obtaining an adhesive layer having a large amount of shear displacement it is common to use a resin design that has a relatively low crosslink density and a three-dimensional structure with a large gel fraction.
  • the gel fraction is preferably 20% or more and 50% or less.
  • the crosslinking density is prevented from becoming too high and the shear shift amount is insufficient, and peeling failure occurs even in the state where the laminate is heated by sunlight or the like. Can be suppressed.
  • the adhesive force can be enhanced without curing the adhesive layer by ultraviolet irradiation.
  • the elastic modulus of the adhesive layer is prevented from becoming too low, and it becomes easy to handle it as a self-supporting film.
  • a polymer using a reactive component having a large molecular weight such as a urethane oligomer as a raw material is particularly effective.
  • the reactive oligomer preferably has a number average molecular weight of 1,000 to 100,000, more preferably 10,000 or more, and further preferably 70,000 or less. From the viewpoint of mechanical properties of the adhesive layer, it is preferable that one molecule has an average of 1.8 to 4 reactive functional groups.
  • examples of the reactive oligomer include poly(meth)acrylate of polyoxyalkylene polyol and poly(meth)acrylate of polyester polyol.
  • the (meth)acrylate means at least one of acrylate and methacrylate.
  • plasticizer As another method for obtaining the shear displacement amount (mm) specified in this embodiment.
  • the plasticizer include esterified products, polyols, esterified products thereof, soft acrylic resins, elastomers, and the like. Tackifiers such as terpene resin are generally known.
  • the content of the plasticizer component in the adhesive layer is preferably 40% or less.
  • the use of supramolecules such as slide ring materials is also effective in obtaining an adhesive layer having a large shear displacement amount.
  • the difference in the content of the plasticizer with respect to the entire composition constituting the adhesive layer between the adhesive layers is less than 40%. Is preferable, and less than 20% is more preferable.
  • the plasticizer component migrates from the adhesive layer having a large content of plasticizer to the side of the adhesive layer having a small content of the plasticizer, particularly the resin layer and the adhesive layer. It may cause a decrease in adhesion with.
  • the haze of the adhesive layer may increase, which may affect the transparency of the laminate.

Abstract

The present invention pertains to a laminate which has a glass plate and an adhesive layer and in which: the adhesiveness force (according to JISZ0237:2009) between the adhesive layer and a resin layer is at least 4N/25 mm when the resin layer is adhered to the glass plate via the adhesive layer; a load is gradually applied to an adhesive interface between the adhesive layer and the resin layer by causing the resin layer to be relatively spaced apart, at a speed of 5 mm/min, from the laminate to which the resin layer is adhered; a relative shear offset amount between the adhesive layer and the resin layer is at least 3 mm when the maximum value of a test force required for peeling the adhesive interface has been obtained; and the adhesive layer is an optically transparent adhesive.

Description

積層体Laminate
 本発明は、ガラス板と接着層とを有する積層体に関する。 The present invention relates to a laminate having a glass plate and an adhesive layer.
 特許文献1には、自動車、建築等の窓あるいは液晶表示等のディスプレイ表示用に用いられる透明積層体が開示されている。特許文献1の積層体は、ガラス板と樹脂板とを粘着する粘着剤層として光学透明粘着シート(OCA:Optically Clear pressure-sensitive Adhesive)が用いられており、粘着剤層に所定の粘弾性特性を備えさせることにより、オートクレーブによる高温高圧処理を必要とすることなく、室温での積層体の製造を可能としている。 Patent Document 1 discloses a transparent laminate used for windows such as automobiles and buildings, or for displaying displays such as liquid crystal displays. The laminated body of Patent Document 1 uses an optically transparent pressure-sensitive adhesive (OCA) as an adhesive layer for adhering a glass plate and a resin plate, and the adhesive layer has a predetermined viscoelastic property. By providing the above, it is possible to manufacture a laminate at room temperature without the need for high temperature and high pressure treatment by an autoclave.
日本国特開2012-31059号公報Japanese Patent Laid-Open No. 2012-31059
 しかしながら、特許文献1の積層体は、大サイズ(例えば、対角線の長さが0.5m以上のサイズ)の積層体を想定しておらず、例えば、鉄道駅のホームドアや自動車、鉄道等の車両の窓等の大サイズの開口部材に適用しようとした場合には、以下の問題があった。 However, the laminated body of Patent Document 1 is not assumed to be a large-sized laminated body (for example, a diagonal length of 0.5 m or more), and for example, a home door of a railway station, an automobile, a railway, etc. When it is applied to a large-sized opening member such as a vehicle window, there are the following problems.
 すなわち、日射等によって積層体が加温された際に、サイズの大きさ、及びガラスと樹脂との熱膨張係数の違いにより、ガラス板と樹脂板との間に寸法差が生じる。その結果として積層体に反りが生じて積層体の端部に剥離が生じるという問題があった。つまり、特許文献1の積層体は、小サイズであれば、粘着剤層と樹脂板との密着力を担保することができるが、大サイズになるとかかる密着力が特に積層体の端部において不足する。その結果、平坦な形状を維持、または端部での密着力を担保することができないため、上記の問題が発生した。なお、ここでの密着力とは、接着力と粘着力とを含む力を意味する。 That is, when the laminate is heated by sunlight or the like, a dimensional difference occurs between the glass plate and the resin plate due to the size and the difference in the coefficient of thermal expansion between the glass and the resin. As a result, there is a problem that the laminated body warps and peels off at the end portions of the laminated body. That is, the laminate of Patent Document 1 can secure the adhesive force between the pressure-sensitive adhesive layer and the resin plate if the size is small, but if the size is large, the adhesive force is insufficient especially at the end portion of the laminate. To do. As a result, the flat shape cannot be maintained or the adhesive force at the end cannot be secured, so that the above-mentioned problem occurs. The adhesion force here means a force including an adhesive force and an adhesive force.
 本発明は、このような事情に鑑みてなされたもので、室温でガラス板と樹脂層とを接着層を介して積層される積層体において、積層体の端部において接着層と樹脂層との密着力を高めることができる積層体を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in a laminated body in which a glass plate and a resin layer are laminated at room temperature via an adhesive layer, the adhesive layer and the resin layer are formed at the end of the laminated body. It is an object of the present invention to provide a laminate capable of enhancing the adhesion.
 本発明に係る積層体の一実施形態は、本発明の目的を達成するために、ガラス板と接着層とを有する積層体であって、接着層を介して樹脂層をガラス板に接着させたときの接着層と樹脂層との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が4N/25mm以上であり、かつ、樹脂層が接着された積層体を20mm×30mmサイズに切り出した試験体において、ガラス板と樹脂層とを積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、接着層と樹脂層との接合界面に荷重を印加していき、接合界面の剥離にかかる試験力の最大値を得たときの接着層と樹脂層との相対的なせん断ズレ量が3mm以上であり、接着層が光学透明粘着剤である。 One embodiment of a laminate according to the present invention is a laminate having a glass plate and an adhesive layer in order to achieve the object of the present invention, wherein a resin layer is adhered to the glass plate via an adhesive layer. The adhesive strength between the adhesive layer and the resin layer at that time, the 90-degree peeling adhesive strength obtained by the peeling test method based on JIS Z0237:2009 is 4 N/25 mm or more, and the resin layer was adhered. In a test body obtained by cutting the laminated body into a size of 20 mm×30 mm, the glass plate and the resin layer were moved at a speed of 5 mm/min. By applying a load to the bonding interface between the adhesive layer and the resin layer by separating the adhesive layer and the resin layer, the adhesive layer and the resin layer when the maximum value of the test force for peeling the bonding interface is obtained. The relative shear displacement is 3 mm or more, and the adhesive layer is an optically transparent adhesive.
 本発明に係る積層体の一実施形態は、本発明の目的を達成するために、ガラス板、接着層及び樹脂層が順に積層されて構成された積層体であって、接着層と樹脂層との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が4N/25mm以上であり、かつ、積層体を20mm×30mmサイズに切り出した試験体において、ガラス板と樹脂層とを積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、接着層と樹脂層との接合界面に荷重を印加していき、接合界面の剥離にかかる試験力の最大値を得たときの接着層と樹脂層との相対的なせん断ズレ量が3mm以上であり、接着層が光学透明粘着剤である。 One embodiment of a laminate according to the present invention is, in order to achieve the object of the present invention, a glass plate, an adhesive layer and a resin layer is a laminate configured by laminating in order, an adhesive layer and a resin layer The adhesive strength of 90 degrees peeling adhesive strength obtained by the peeling test method based on JIS Z0237:2009 is 4 N/25 mm or more, and the laminate cut into a size of 20 mm×30 mm, The glass plate and the resin layer were placed at a speed of 5 mm/min. By applying a load to the bonding interface between the adhesive layer and the resin layer by separating the adhesive layer and the resin layer, the adhesive layer and the resin layer when the maximum value of the test force for peeling the bonding interface is obtained. The relative shear displacement is 3 mm or more, and the adhesive layer is an optically transparent adhesive.
 本発明に係る積層体の一実施形態は、本発明の目的を達成するために、第1ガラス板、第1接着層、樹脂層、第2接着層及び第2ガラス板が順に積層されて構成された積層体であって、第1接着層と樹脂層との接着力、及び第2接着層と樹脂層との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が共に4N/25mm以上であり、かつ、積層体を20mm×30mmサイズに切り出した試験体において、第1ガラス板と樹脂層とを積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、第1接着層と樹脂層との接合界面に荷重を印加していき、接合界面の剥離にかかる試験力の最大値を得たときの第1接着層と樹脂層との相対的なせん断ズレ量が3mm以上であり、前記試験体において、第2ガラス板と樹脂層とを積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、第2接着層と樹脂層との接合界面に荷重を印加していき、接合界面の剥離にかかる試験力の最大値を得たときの第2接着層と樹脂層との相対的なせん断ズレ量が3mm以上であり、第1接着層及び第2接着層が光学透明粘着剤である。 In order to achieve the object of the present invention, one embodiment of the laminated body according to the present invention is configured by laminating a first glass plate, a first adhesive layer, a resin layer, a second adhesive layer and a second glass plate in order. And the adhesive force between the first adhesive layer and the resin layer and the adhesive force between the second adhesive layer and the resin layer, which were obtained by the peel test method according to JIS Z0237:2009. In a test body having both peeling and peeling adhesive strengths of 4 N/25 mm or more, and a laminate cut into a size of 20 mm×30 mm, the first glass plate and the resin layer were moved at a speed of 5 mm/min in the long side direction of the laminate. . By applying a load to the bonding interface between the first adhesive layer and the resin layer by relatively separating the first adhesive layer and the resin layer, and obtaining the maximum value of the test force for peeling the bonding interface. And the resin layer have a relative shear displacement amount of 3 mm or more, and in the test body, the second glass plate and the resin layer were moved at a speed of 5 mm/min. By applying a load to the joint interface between the second adhesive layer and the resin layer by relatively separating the second adhesive layer and the resin layer, and obtaining the maximum value of the test force for peeling the joint interface. The relative shear displacement between the resin layer and the resin layer is 3 mm or more, and the first adhesive layer and the second adhesive layer are optical transparent pressure-sensitive adhesives.
 本発明に係る積層体の一実施形態は、本発明の目的を達成するために、第1樹脂層、第1接着層、ガラス板、第2接着層及び第2樹脂層が順に積層されて構成された積層体であって、前記第1接着層と前記第1樹脂層との接着力、及び前記第2接着層と前記第2樹脂層との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が共に4N/25mm以上であり、かつ、前記積層体を20mm×30mmサイズに切り出した試験体において、前記ガラス板と前記第1樹脂層とを前記積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、前記第1接着層と前記第1樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第1接着層と前記第1樹脂層との相対的なせん断ズレ量が3mm以上であり、前記試験体において、前記ガラス板と前記第2樹脂層とを前記積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、前記第2接着層と前記第2樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第2接着層と前記第2樹脂層との相対的なせん断ズレ量が3mm以上であり、前記第1接着層及び前記第2接着層が光学透明粘着剤である。 In order to achieve an object of the present invention, an embodiment of a laminate according to the present invention is configured by sequentially laminating a first resin layer, a first adhesive layer, a glass plate, a second adhesive layer and a second resin layer. And the adhesive force between the first adhesive layer and the first resin layer and the adhesive force between the second adhesive layer and the second resin layer, which are in accordance with JIS Z0237:2009. The 90 degree peeling adhesive strength obtained in the peeling test method is both 4 N/25 mm or more, and in the test body obtained by cutting out the laminate to a size of 20 mm×30 mm, the glass plate and the first resin layer are A speed of 5 mm/min. By applying a load to the joint interface between the first adhesive layer and the first resin layer by separating them relatively with each other, and when the maximum value of the test force for peeling the joint interface is obtained. The relative shear displacement between the first adhesive layer and the first resin layer is 3 mm or more, and in the test body, the glass plate and the second resin layer are arranged in the long side direction of the laminate. Speed 5 mm/min. By applying a load to the joint interface between the second adhesive layer and the second resin layer by relatively separating them with each other to obtain the maximum value of the test force for peeling the joint interface. The relative shear displacement between the second adhesive layer and the second resin layer is 3 mm or more, and the first adhesive layer and the second adhesive layer are optical transparent pressure-sensitive adhesives.
 本発明によれば、室温でガラス板と樹脂層とを接着層を介して積層される積層体において、接着層と樹脂層との密着力を高めることができる。 According to the present invention, in a laminated body in which a glass plate and a resin layer are laminated at room temperature via an adhesive layer, the adhesion between the adhesive layer and the resin layer can be increased.
図1は、実施例1に係る積層体の要部拡大断面図である。FIG. 1 is an enlarged cross-sectional view of a main part of the laminated body according to the first embodiment. 図2は、実施例2及び実施例3に係る積層体の要部拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a main part of the laminated body according to the second and third embodiments. 図3は、支持フィルムによって補強された評価サンプルの側面図である。FIG. 3 is a side view of the evaluation sample reinforced by the support film. 図4は、JISZ0237:2009に準拠した剥離試験方法の概略図である。FIG. 4 is a schematic diagram of a peeling test method based on JISZ0237:2009. 図5は、各実施例及び比較例に係る積層体の諸物性を示した表図である。FIG. 5 is a table showing various physical properties of the laminates according to each example and comparative example. 図6は、せん断接着強さ試験方法の概略図である。FIG. 6 is a schematic view of a shear adhesive strength test method. 図7は、各実施例及び比較例に係る積層体の剥離応力とせん断ズレ量との相関を示したグラフである。FIG. 7 is a graph showing the correlation between the peeling stress and the shear shift amount of the laminates according to each example and comparative example. 図8は、5層構造の積層体の要部拡大断面図である。FIG. 8 is an enlarged cross-sectional view of a main part of a laminated body having a five-layer structure. 図9は、3層構造の積層体の要部拡大断面図である。FIG. 9 is an enlarged cross-sectional view of a main part of a laminated body having a three-layer structure.
 以下、添付図面に従って本発明に係る積層体の好ましい実施形態を説明する。 Hereinafter, preferred embodiments of the laminate according to the present invention will be described with reference to the accompanying drawings.
 図1は、実施例1に係る積層体10の要部拡大断面図である。図2は、実施例2及び実施例3に係る積層体12の要部拡大断面図である。 FIG. 1 is an enlarged cross-sectional view of a main part of the laminated body 10 according to the first embodiment. FIG. 2 is an enlarged cross-sectional view of a main part of the laminated body 12 according to the second and third embodiments.
 図1に示す実施例1の積層体10は、ガラス板14と一層の接着層16とを有する積層体であり、接着層16を介して樹脂層18がガラス板14に接着されるものである。また、図2に示す実施例2及び実施例3の積層体12は、ガラス板14の他、二層の接着層20、22を有する積層体であり、接着層20、22を介して樹脂層18がガラス板14に接着されるものである。なお、上記のガラス板14としては、ソーダライムガラスの未強化ガラス、化学強化ガラスまたは風冷強化ガラス(物理強化ガラスともいう。)を例示することができる。また、上記の樹脂層18としては、ポリカーボネート、アクリル、ポリプロピレン、ポリエチレン、またはシクロオレフィンポリマー(COP)などの高透明樹脂を例示することができる。また、透明なものに限らず、CFRP(炭素繊維強化樹脂)などの非透明なものであってもよい。積層体としては平板に限らず、曲面などの3D形状も含まれる。 A laminated body 10 of Example 1 shown in FIG. 1 is a laminated body having a glass plate 14 and one adhesive layer 16, and a resin layer 18 is adhered to the glass plate 14 via the adhesive layer 16. .. The laminated body 12 of Example 2 and Example 3 shown in FIG. 2 is a laminated body having two layers of adhesive layers 20 and 22 in addition to the glass plate 14, and a resin layer with the adhesive layers 20 and 22 interposed therebetween. 18 is adhered to the glass plate 14. Examples of the glass plate 14 include unstrengthened soda-lime glass, chemically strengthened glass, or air-cooled tempered glass (also referred to as physical tempered glass). Examples of the resin layer 18 include highly transparent resins such as polycarbonate, acrylic, polypropylene, polyethylene, and cycloolefin polymer (COP). Further, the material is not limited to a transparent material and may be a non-transparent material such as CFRP (carbon fiber reinforced resin). The laminated body is not limited to a flat plate, and includes a 3D shape such as a curved surface.
 図1に示す実施例1の積層体10においては、接着層16を介して樹脂層18をガラス板14に接着させたときの接着層16と樹脂層18との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が4N/25mm以上であり、かつ、剥離応力の最大値を得たときの接着層16と樹脂層18との相対的なせん断ズレ量が3mm以上に設定されている。なお、剥離応力の最大値とは、樹脂層が接着された積層体を20mm×30mmサイズに切り出した試験体において、ガラス板と樹脂層とを積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、接着層と樹脂層との接合界面に荷重を印加していき、接合界面の剥離にかかる試験力の最大値を意味する。
 また、樹脂層が接着された積層体を20mm×30mmサイズに切り出した試験体において、ガラス板と樹脂層とを積層体の長辺方向に速度10mm/min.で相対的に離間させていくことにより、接着層と樹脂層との接合界面に荷重を印加していき、接合界面の剥離にかかる試験力の最大値を得たときの接着層と樹脂層との相対的なせん断ズレ量は、3mm以上が好ましく、4.5mm以上がより好ましい。
In the laminated body 10 of Example 1 shown in FIG. 1, the adhesive force between the adhesive layer 16 and the resin layer 18 when the resin layer 18 is adhered to the glass plate 14 via the adhesive layer 16, the JIS Z0237: Relative shearing between the adhesive layer 16 and the resin layer 18 when the 90-degree peeling adhesive force obtained by the peel test method based on 2009 is 4 N/25 mm or more and the maximum value of the peel stress is obtained. The deviation amount is set to 3 mm or more. In addition, the maximum value of the peeling stress means a glass plate and a resin layer in a long side direction of the laminate at a speed of 5 mm/min. It means that the load is applied to the bonding interface between the adhesive layer and the resin layer and the maximum value of the test force applied to the peeling of the bonding interface is caused by the relative separation.
In addition, in a test body obtained by cutting out a laminated body to which a resin layer is adhered to a size of 20 mm×30 mm, the glass plate and the resin layer were moved at a speed of 10 mm/min. By applying a load to the bonding interface between the adhesive layer and the resin layer by separating the adhesive layer and the resin layer, the adhesive layer and the resin layer when the maximum value of the test force for peeling the bonding interface is obtained. 3 mm or more is preferable, and 4.5 mm or more is more preferable as the relative shear shift amount.
 図2に示す実施例2及び実施例3の積層体12においても同様に、接着層20、22を介して樹脂層18をガラス板14に接着させたときの接着層20、22と樹脂層18との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が4N/25mm以上であり、かつ、剥離応力の最大値を得たときの接着層20、22と樹脂層18との相対的なせん断ズレ量が3mm以上に設定されている。なお、剥離応力の最大値とは、積層体を20mm×30mmサイズに切り出した試験体において、ガラス板と樹脂層とを積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、接着層と樹脂層との接合界面に荷重を印加していき、接合界面の剥離にかかる試験力の最大値を意味する。
 また、樹脂層が接着された積層体を20mm×30mmサイズに切り出した試験体において、ガラス板と樹脂層とを積層体の長辺方向に速度10mm/min.で相対的に離間させていくことにより、接着層と樹脂層との接合界面に荷重を印加していき、接合界面の剥離にかかる試験力の最大値を得たときの接着層と樹脂層との相対的なせん断ズレ量は、3mm以上が好ましく、4.5mm以上がより好ましい。
Similarly, in the laminated bodies 12 of Example 2 and Example 3 shown in FIG. 2, the adhesive layers 20 and 22 and the resin layer 18 when the resin layer 18 is adhered to the glass plate 14 via the adhesive layers 20 and 22. The adhesive layer 20 when the peeling test method based on JIS Z0237:2009 has a peeling adhesive strength of 4 N/25 mm or more and the maximum value of peeling stress is obtained. , 22 and the resin layer 18 have a relative shear displacement amount of 3 mm or more. In addition, the maximum value of the peeling stress means that a glass plate and a resin layer were cut at a speed of 5 mm/min. It means that the load is applied to the bonding interface between the adhesive layer and the resin layer and the maximum value of the test force applied to the peeling of the bonding interface is caused by the relative separation.
In addition, in a test body obtained by cutting out a laminated body to which a resin layer is adhered to a size of 20 mm×30 mm, the glass plate and the resin layer were moved at a speed of 10 mm/min. By applying a load to the bonding interface between the adhesive layer and the resin layer by separating the adhesive layer and the resin layer, the adhesive layer and the resin layer when the maximum value of the test force for peeling the bonding interface is obtained. 3 mm or more is preferable, and 4.5 mm or more is more preferable as the relative shear shift amount.
 以下、実施例1の接着層16と、実施例2及び実施例3の接着層20、22と、比較例1~比較例4の全7種類の接着層とを用いて、上記の接着力とせん断ズレ量とを比較した試験について説明する。なお、いずれの接着層も光学透明粘着剤であり、実施例1の接着層16はAGC社製、製品名:CCF(型番:AD24)を、実施例2の接着層20はAGC社製、製品名:CCF(型番:AD20)を、実施例2の接着層22は三菱ケミカル社製、製品名:クリアフィット(型番:G6.0)を、比較例1の接着層は日東電工社製、製品名:LUCIACS CS9867USを、比較例4の接着層は東ソー社製、エチレン-酢酸ビニル共重合体(EVA)膜、製品名:メルセン(型番:G7050)を用いた。また、実施例3の接着層20、22は共に、実施例1の接着層16と同一部材であり、比較例2の接着層は、実施例2の接着層22と同一部材であり、比較例3の接着層は、実施例2の接着層20と同一部材である。 Hereinafter, using the adhesive layer 16 of Example 1, the adhesive layers 20 and 22 of Examples 2 and 3, and all seven types of adhesive layers of Comparative Examples 1 to 4, the above-mentioned adhesive force was obtained. The test comparing the shear shift amount will be described. Each adhesive layer is an optically transparent adhesive, the adhesive layer 16 of Example 1 is manufactured by AGC, product name: CCF (model number: AD24), and the adhesive layer 20 of Example 2 is manufactured by AGC, product. Name: CCF (model number: AD20), adhesive layer 22 of Example 2 manufactured by Mitsubishi Chemical Co., product name: ClearFit (model number: G6.0), adhesive layer of Comparative Example 1 manufactured by Nitto Denko Corporation, product Name: LUCIACS CS9867US, the adhesive layer of Comparative Example 4 was Tosoh Corporation, ethylene-vinyl acetate copolymer (EVA) film, product name: Mersen (model number: G7050). The adhesive layers 20 and 22 of Example 3 are both the same member as the adhesive layer 16 of Example 1, and the adhesive layer of Comparative Example 2 is the same member as the adhesive layer 22 of Example 2. The adhesive layer 3 is the same member as the adhesive layer 20 of the second embodiment.
 接着層16及び接着層20は、分子量が10000以上の反応性オリゴマーを硬化性成分として相当量(30%以上)含有した原料を紫外線硬化によって得られるアクリル系粘着剤であり、そのゲル分率は40%であった。 The adhesive layer 16 and the adhesive layer 20 are acrylic pressure-sensitive adhesives obtained by ultraviolet curing a raw material containing a reactive oligomer having a molecular weight of 10,000 or more as a curable component in a considerable amount (30% or more), and its gel fraction is It was 40%.
 接着層22及び比較例1の接着層は分子量200以下の単官能(メタ)アクリレート成分を原料とし、溶液重合にて(メタ)アクリル酸エステル系共重合体としたのち、架橋剤により3次元化したアクリル系粘着剤であり、そのゲル分率は60%以上であった。 The adhesive layer 22 and the adhesive layer of Comparative Example 1 were made of a monofunctional (meth)acrylate component having a molecular weight of 200 or less as a raw material, and were made into a (meth)acrylic acid ester-based copolymer by solution polymerization, and then three-dimensionalized by a crosslinking agent. It was an acrylic pressure-sensitive adhesive, and its gel fraction was 60% or more.
 比較例4の接着層は、分子量が1000000以上のエチレン酢酸ビニル共重合体より成る熱可塑系中間膜であった。 The adhesive layer of Comparative Example 4 was a thermoplastic interlayer film made of an ethylene vinyl acetate copolymer having a molecular weight of 1,000,000 or more.
 90度引きはがし接着力の測定は、JISZ0237:2009に準拠した剥離試験方法にて実施する。方法の詳細を以下に示す。 90-degree peeling adhesive strength is measured by the peel test method according to JIS Z0237:2009. The details of the method are shown below.
 まず、図3に示すように、実施例1の接着層16、実施例2及び実施例3の接着層20、22、及び比較例1~比較例4の接着層に相当する、全7種類の評価サンプル24を用意した。この評価サンプル24は、裁断して幅25mm、長さ50mmの大きさとしたものである。
 なお、比較例4の評価サンプル24においては、上記支持フィルム28とポリカーボネート基材26との間に比較例4の接着層となるEVA膜を挟持し、真空パックに入れ予備脱気した後、120℃、1.3MPaの加圧下に1時間程度保持することで均一な積層体を得た。この積層体を、幅25mm、長さ50mmに裁断することで、評価サンプル24を得た。
First, as shown in FIG. 3, a total of seven types of adhesive layers corresponding to the adhesive layer 16 of Example 1, the adhesive layers 20 and 22 of Examples 2 and 3 and the adhesive layers of Comparative Examples 1 to 4 were prepared. The evaluation sample 24 was prepared. This evaluation sample 24 is cut into a size of 25 mm in width and 50 mm in length.
In the evaluation sample 24 of Comparative Example 4, the EVA film serving as the adhesive layer of Comparative Example 4 was sandwiched between the support film 28 and the polycarbonate substrate 26, placed in a vacuum pack, and preliminarily degassed. A uniform laminate was obtained by holding the mixture under a pressure of 1.3 MPa for about 1 hour. An evaluation sample 24 was obtained by cutting this laminated body into a width of 25 mm and a length of 50 mm.
 それらの評価サンプル24の被測定粘着面を、図4に示す厚さ5mmのポリカーボネート基材(AGC社製、カーボグラス(登録商標)ポリッシュ)26の表面26Aに圧着した。このポリカーボネート基材26は樹脂層に相当する。ただし、実施例3においては、樹脂層として、表面にアクリル系の成分を含有するハードコート層を形成したポリカーボネート基材(AGC社製、カーボグラス(登録商標)ポリッシュ)を用いた。なお、実施例2及び実施例3の接着層20、22は、接着層22がポリカーボネート基材26に接するようにした。
 圧着条件としては、室温に相当する23℃、65%RHの環境下にて0.2MPaの圧力で5秒間ロール圧着した。なお、図3及び図4では、便宜上、評価サンプルに同一の符号(24)を付している。
The pressure-sensitive adhesive surface of each of the evaluation samples 24 was pressure-bonded to the surface 26A of a polycarbonate substrate (Carbograss (registered trademark) polish manufactured by AGC, Inc.) 26 having a thickness of 5 mm shown in FIG. The polycarbonate base material 26 corresponds to a resin layer. However, in Example 3, as the resin layer, a polycarbonate substrate (Carbograss (registered trademark) polish manufactured by AGC Co., Ltd.) having a hard coat layer containing an acrylic component on the surface was used. The adhesive layers 20 and 22 of Examples 2 and 3 were so arranged that the adhesive layer 22 was in contact with the polycarbonate substrate 26.
As pressure-bonding conditions, roll pressure-bonding was performed for 5 seconds at a pressure of 0.2 MPa in an environment of 23° C. and 65% RH corresponding to room temperature. Note that, in FIGS. 3 and 4, the same reference numeral (24) is attached to the evaluation samples for convenience.
 次に、剥離試験時において評価サンプル24の伸びを抑制するために、評価サンプル24の非測定粘着面に支持フィルム(三菱樹脂株式会社製 ダイアホイルS-100 厚さ38μmのポリエチレンテレフタレート(PET)製フィルム)28をロール圧着し、1日静置養生した。 Next, in order to suppress the elongation of the evaluation sample 24 during the peeling test, a supporting film (made by Mitsubishi Plastics Co., Ltd., DIAFOIL S-100, made of polyethylene terephthalate (PET) having a thickness of 38 μm) is attached to the non-measurement adhesive surface of the evaluation sample 24 The film) 28 was roll-pressed and left standing and cured for 1 day.
 次に、強度測定器(島津製作所社製、製品名:精密万能試験機「オートグラフAG-X plus」)を用いて全7種類の評価サンプル24の90度引きはがし接着力を測定した。具体的には、評価サンプル24に圧着された支持フィルム28(図4参照)を、ポリカーボネート基材26の表面26Aに対し、90度をなす矢印A方向に剥離速度50mm/minで引っ張りながら評価サンプル24の被測定粘着面をポリカーボネート基材26の表面26Aから剥離していく。そして、このときの引っ張り強度をロードセルにて測定することにより評価サンプル24の90度引きはがし接着力を測定した。その結果を図5の表図における「接着力」に示す。 Next, using a strength measuring instrument (manufactured by Shimadzu Corporation, product name: precision universal testing machine "Autograph AG-X plus"), 90 degrees peeling adhesion of all seven types of evaluation samples 24 was measured. Specifically, the evaluation sample is obtained by pulling the support film 28 (see FIG. 4) pressure-bonded to the evaluation sample 24 against the surface 26A of the polycarbonate substrate 26 in the direction of arrow A forming 90 degrees at a peeling speed of 50 mm/min. The adhesive surface 24 to be measured is peeled off from the surface 26A of the polycarbonate substrate 26. Then, the tensile strength at this time was measured with a load cell, and the 90-degree peeling adhesive strength of the evaluation sample 24 was measured. The results are shown in "Adhesion" in the table of FIG.
 図5によれば、実施例1の接着層16に相当する評価サンプル24の90度引きはがし接着力は、5.6N/25mmであり、実施例2の接着層20、22に相当する評価サンプル24の90度引きはがし接着力は、15.2N/25mmであり、実施例3の接着層20、22に相当する評価サンプル24の90度引きはがし接着力は15.6N/25mmであった。これに対し、比較例1の接着層に相当する評価サンプル24の90度引きはがし接着力は、10.3N/25mmであり、比較例2の接着層に相当する評価サンプル24の90度引きはがし接着力は、15.2N/25mmであり、比較例3の接着層に相当する評価サンプル24の90度引きはがし接着力は、3.2N/25mmであり、比較例4の接着層に相当する評価サンプル24の引きはがし接着力は60N/25mmであった。 According to FIG. 5, the 90-degree peeling adhesive force of the evaluation sample 24 corresponding to the adhesive layer 16 of Example 1 is 5.6 N/25 mm, and the evaluation sample corresponding to the adhesive layers 20 and 22 of Example 2 is shown. The 90-degree peeling adhesive force of 24 was 15.2 N/25 mm, and the 90-degree peeling adhesive force of the evaluation sample 24 corresponding to the adhesive layers 20 and 22 of Example 3 was 15.6 N/25 mm. On the other hand, the 90-degree peeling adhesion of the evaluation sample 24 corresponding to the adhesive layer of Comparative Example 1 was 10.3 N/25 mm, and the 90-degree peeling of the evaluation sample 24 corresponding to the adhesive layer of Comparative Example 2 was removed. The adhesive force was 15.2 N/25 mm, and the 90-degree peeling adhesive force of the evaluation sample 24 corresponding to the adhesive layer of Comparative Example 3 was 3.2 N/25 mm, which corresponds to the adhesive layer of Comparative Example 4. The peeling adhesive strength of the evaluation sample 24 was 60 N/25 mm.
 せん断ズレ量の測定は、次のように実施する。 ㆍMeasure the shear displacement as follows.
 まず、実施例1の接着層16、実施例2及び実施例3の接着層20、22、及び比較例1~比較例4の接着層に相当する全7種類の評価サンプル、基材のガラス板となるソーダライムガラス板及び樹脂層に相当するポリカーボネート板をあらかじめ20mm×30mmサイズに切り出し、23℃、65%RHの環境下にて0.2MPaの圧力で5秒間ロール圧着し、試験体となる図6に示す積層体30を得た。
 なお、実施例3の評価サンプルにおいては、前記ポリカーボネートとして、表面にアクリル系の成分を含有するハードコート層を形成したポリカーボネート基材(AGC社製、カーボグラス(登録商標)ポリッシュ)を用い、評価サンプルを得た。比較例4の評価サンプルにおいては、前記20mm×30mmサイズに切り出したガラス板とポリカーボネート板の間に、同寸法のEVA膜を挟持し、前記加熱合わせ条件にて評価サンプルを得た。
 図6の積層体30によれば、評価サンプル32を介してポリカーボネート板34がソーダライムガラス板36に接着されている。なお、図6では、便宜上、評価サンプルに同一の符号(32)を付している。
First, all seven types of evaluation samples corresponding to the adhesive layer 16 of Example 1, the adhesive layers 20 and 22 of Examples 2 and 3, and the adhesive layers of Comparative Examples 1 to 4 and the glass plate of the base material. The soda-lime glass plate and the polycarbonate plate corresponding to the resin layer are cut into a size of 20 mm×30 mm in advance and roll-pressed for 5 seconds at a pressure of 0.2 MPa in an environment of 23° C. and 65% RH to form a test body. The laminated body 30 shown in FIG. 6 was obtained.
In the evaluation sample of Example 3, as the polycarbonate, a polycarbonate substrate (Carbograss (registered trademark) polish manufactured by AGC Co., Ltd.) having a hard coat layer containing an acrylic component on the surface was used for evaluation. I got a sample. In the evaluation sample of Comparative Example 4, an EVA film of the same size was sandwiched between the glass plate and the polycarbonate plate cut into the size of 20 mm×30 mm, and the evaluation sample was obtained under the above heating and laminating conditions.
According to the laminated body 30 of FIG. 6, the polycarbonate plate 34 is bonded to the soda-lime glass plate 36 via the evaluation sample 32. In FIG. 6, the same reference numeral (32) is attached to the evaluation sample for convenience.
 次に、測定器(株式会社島津製作所製 製品名:精密万能試験機「オートグラフAG-X plus」)を用い、上記工程にて作製した積層体30のせん断ズレ量を、25℃の環境下にて測定する。 Next, using a measuring instrument (manufactured by Shimadzu Corporation, product name: precision universal testing machine "Autograph AG-X plus"), the shear displacement of the laminate 30 produced in the above process was measured under an environment of 25°C. Measure at.
 まず、測定器の上部に配置された金属製の固定具(不図示)に、図6に示すポリカーボネート板34の紙面上側の20mmの上端面を把持させる。このとき、ポリカーボネート板34の上端面に荷重が均一に印加するように、ポリカーボネート板34の上端面全面を上部の固定具に把持させる。同様に、測定器の下部に配置された金属製の固定具(不図示)に、図6に示すソーダライムガラス板36の紙面下側の20mmの下端面を把持させる。このとき、ソーダライムガラス板36の下端面に荷重が均一に印加するように、ソーダライムガラス板36の下端面全面を下部の固定具に把持させる。 First, a metal fixture (not shown) placed on the upper part of the measuring instrument grips the upper end surface of the polycarbonate plate 34 shown in FIG. At this time, the entire upper surface of the polycarbonate plate 34 is held by the upper fixture so that the load is uniformly applied to the upper surface of the polycarbonate plate 34. Similarly, a metal fixture (not shown) arranged in the lower part of the measuring instrument is made to grip the lower end surface of the soda lime glass plate 36 shown in FIG. At this time, the entire lower end surface of the soda lime glass plate 36 is held by the lower fixture so that the load is uniformly applied to the lower end surface of the soda lime glass plate 36.
 次に、矢印B、Cで示すように、ポリカーボネート板34とソーダライムガラス板36とを相対的に離間させる方向、すなわち、積層体30の長辺方向に上下の固定具を速度5mm/minで相対的に移動させる。かかる移動により、評価サンプル32とポリカーボネート板34との接合界面に荷重を印加していき、その接合界面の剥離にかかる試験力の最大値を得たときの評価サンプル32とポリカーボネート板34との相対的なせん断ズレ量を測定する。結果を図7のグラフに示す。なお、測定器を用いた試験中においては、ソーダライムガラス板36と評価サンプル32との接合界面にも荷重が印加されるが、本発明の課題を解決するための要素は、評価サンプル32とポリカーボネート板34との接合界面の剥離にかかる試験力であるので、ここでは、その試験力に着目して説明する。 Next, as indicated by arrows B and C, the polycarbonate plate 34 and the soda lime glass plate 36 are relatively separated from each other, that is, the long side direction of the laminated body 30, and the upper and lower fixtures are moved at a speed of 5 mm/min. Move relatively. By such movement, a load is applied to the bonding interface between the evaluation sample 32 and the polycarbonate plate 34, and the relative value between the evaluation sample 32 and the polycarbonate plate 34 when the maximum value of the test force for peeling at the bonding interface is obtained. The amount of shear displacement is measured. The results are shown in the graph of FIG. During the test using the measuring instrument, the load is also applied to the joint interface between the soda lime glass plate 36 and the evaluation sample 32, but the element for solving the problem of the present invention is the evaluation sample 32 and the evaluation sample 32. Since the test force is related to the peeling of the bonding interface with the polycarbonate plate 34, the test force will be described here.
 図7のグラフの縦軸は、評価サンプル32に対するポリカーボネート板34の剥離に係る試験力である剥離応力(N/mm)を示し、横軸は、評価サンプル32とポリカーボネート板34の相対的なせん断ズレ量(mm)を示している。ここで、剥離に掛かる試験力とは、評価サンプル32とポリカーボネート板34との接合界面にかかる剥離応力のことである。また、図5の表図には、各評価サンプル32において、剥離に掛かる試験力(N)の最大値を得たときの評価サンプル32とポリカーボネート板34との相対的なせん断ズレ量(mm)が示されている。 The vertical axis of the graph in FIG. 7 represents the peeling stress (N/mm 2 ) which is the test force for peeling the polycarbonate plate 34 from the evaluation sample 32, and the horizontal axis represents the relative strength between the evaluation sample 32 and the polycarbonate plate 34. The shear shift amount (mm) is shown. Here, the test force applied to the peeling means the peeling stress applied to the bonding interface between the evaluation sample 32 and the polycarbonate plate 34. Further, in the table of FIG. 5, in each evaluation sample 32, the relative shear displacement amount (mm) between the evaluation sample 32 and the polycarbonate plate 34 when the maximum value of the test force (N) for peeling is obtained. It is shown.
 図5によれば、実施例1の接着層16に相当する評価サンプル32のせん断ズレ量は、8.4mmであり、実施例2と実施例3の接着層20、22に相当する評価サンプル32のせん断ズレ量は、それぞれ4.2mmと13.2mmであった。これに対し、比較例1の接着層に相当する評価サンプル32のせん断ズレ量は、1.4mmであり、比較例2の接着層に相当する評価サンプル32のせん断ズレ量は、1.9mmであり、比較例3の接着層に相当する評価サンプル32のせん断ズレ量は、4.2mmであり、比較例4の接着層に相当する評価サンプル32のせん断ズレ量は1.2mmであった。 According to FIG. 5, the shear shift amount of the evaluation sample 32 corresponding to the adhesive layer 16 of Example 1 is 8.4 mm, and the evaluation sample 32 corresponding to the adhesive layers 20 and 22 of Example 2 and Example 3 is shown. The amount of shear deviation was 4.2 mm and 13.2 mm, respectively. On the other hand, the shear shift amount of the evaluation sample 32 corresponding to the adhesive layer of Comparative Example 1 is 1.4 mm, and the shear shift amount of the evaluation sample 32 corresponding to the adhesive layer of Comparative Example 2 is 1.9 mm. The amount of shear deviation of the evaluation sample 32 corresponding to the adhesive layer of Comparative Example 3 was 4.2 mm, and the amount of shear deviation of the evaluation sample 32 corresponding to the adhesive layer of Comparative Example 4 was 1.2 mm.
 〔加温試験〕
 次に、積層体が日射等によって加温された状態を再現するために、加温試験を実施した。
[Heat test]
Next, a heating test was performed in order to reproduce a state in which the laminated body was heated by sunlight or the like.
 図8に示す5層構造の積層体40を再現した加温試験用の積層体を構成するガラス板として、縦998mm、横998mm、厚み0.55mmの矩形状のガラス板を、実施例1及び実施例2と比較例1~比較例3の全5種類の積層体ごとに、第1ガラス板42及び第2ガラス板50に相当する一対を用意した。上記一対のガラス板に挟持される樹脂層として、縦1000mm、横1000mm、厚み5mmの矩形状のポリカーボネート板46を用意した。なお、ポリカーボネート板としては、事前に80℃のオーブンで約12時間乾燥処理したものを用いた。 As a glass plate constituting a laminate for a heating test that reproduces the laminate 40 having a five-layer structure shown in FIG. 8, a rectangular glass plate having a length of 998 mm, a width of 998 mm, and a thickness of 0.55 mm was prepared as in Example 1 and A pair of first glass plate 42 and second glass plate 50 was prepared for each of all five types of laminates of Example 2 and Comparative Examples 1 to 3. As a resin layer sandwiched between the pair of glass plates, a rectangular polycarbonate plate 46 having a length of 1000 mm, a width of 1000 mm and a thickness of 5 mm was prepared. The polycarbonate plate used was one that had been previously dried in an oven at 80° C. for about 12 hours.
 次に、ポリカーボネート板46の片面に、縦996mm、横996mmの第1接着層44をロールラミネーター機で貼り合わせ、さらにその上に第1ガラス板42に相当するガラス板を同じく貼り合わせた。なお、第1接着層44は、実施例1の接着層16、実施例2の接着層20、22、及び比較例1~比較例3の全5種類の接着層に相当し、それらの厚みは図5に示すとおりである。
 この後、これを反転させ、ポリカーボネート板46のもう片面に上記と同じ要領で第2接着層48及び、第2ガラス板50に相当するもう一つのガラス板を貼り合わせて、図8に示す5層構造の積層体40を製造した。なお、第2接着層48は、実施例1の接着層16、実施例2の接着層20、22、及び比較例1~3の全5種類の接着層に相当し、それらの厚みは図5に示すとおりである。
Next, a first adhesive layer 44 having a length of 996 mm and a width of 996 mm was attached to one surface of the polycarbonate plate 46 by a roll laminator machine, and a glass plate corresponding to the first glass plate 42 was also attached thereon. The first adhesive layer 44 corresponds to the adhesive layer 16 of Example 1, the adhesive layers 20 and 22 of Example 2, and all five types of adhesive layers of Comparative Examples 1 to 3, and their thicknesses are As shown in FIG.
Thereafter, this is reversed, and the second adhesive layer 48 and another glass plate corresponding to the second glass plate 50 are attached to the other surface of the polycarbonate plate 46 in the same manner as described above, and the result shown in FIG. A laminated body 40 having a layered structure was manufactured. The second adhesive layer 48 corresponds to the adhesive layer 16 of Example 1, the adhesive layers 20 and 22 of Example 2, and all five types of adhesive layers of Comparative Examples 1 to 3, and their thickness is as shown in FIG. As shown in.
 図8の積層体40によれば、第1ガラス板42、第1接着層44、ポリカーボネート板46、第2接着層48、及び第2ガラス板50が順に積層されて構成されている。また、図8では、便宜上、積層体に同一の符号(40)を付し、第1接着層に同一の符号(44)を付し、第2接着層に同一の符号(48)を付している。 According to the laminated body 40 of FIG. 8, the first glass plate 42, the first adhesive layer 44, the polycarbonate plate 46, the second adhesive layer 48, and the second glass plate 50 are laminated in this order. Further, in FIG. 8, for convenience, the same reference numeral (40) is attached to the laminated body, the same reference numeral (44) is attached to the first adhesive layer, and the same reference numeral (48) is attached to the second adhesive layer. ing.
 図9に示す3層構造の積層体60を再現した加温試験用であり、実施例3と比較例4に対応する全2種類の積層体について、かかる積層体を構成する第1ガラス板62として、縦300mm、横300mm、厚み3.0mmの矩形状のガラス板を用意した。また、これと同寸法であり、厚みが1.5mmの矩形上のポリカーボネート板66を用意した。実施例4のポリカーボネート板として、表面にアクリル系の成分を含有するハードコート層を形成したポリカーボネート基材(AGC社製、カーボグラス(登録商標)ポリッシュ)を用いた。なお、ポリカーボネート板としては、事前に80℃のオーブンで約12時間乾燥処理したものを用いた。 It is for a heating test that reproduces the laminated body 60 having the three-layer structure shown in FIG. 9, and for all two types of laminated bodies corresponding to Example 3 and Comparative Example 4, the first glass plate 62 that constitutes such laminated body. A rectangular glass plate having a length of 300 mm, a width of 300 mm and a thickness of 3.0 mm was prepared. In addition, a rectangular polycarbonate plate 66 having the same dimensions as this and a thickness of 1.5 mm was prepared. As the polycarbonate plate of Example 4, a polycarbonate substrate (Carboglass (registered trademark) polish manufactured by AGC Co., Ltd.) having a hard coat layer containing an acrylic component on its surface was used. The polycarbonate plate used was one that had been previously dried in an oven at 80° C. for about 12 hours.
 実施例3においては、実施例1―及び実施例2と同様のプロセスにて、縦298mm、横298mmの第1接着層64をロールラミネーター機で貼り合わせ、さらにその上に第1ガラス板62に相当するガラス板を同じく貼り合わせ、図9に示す3層構造の積層体60を得た。 In Example 3, the first adhesive layer 64 having a length of 298 mm and a width of 298 mm was attached by a roll laminator machine in the same process as in Examples 1 and 2, and the first glass plate 62 was further formed thereon. Corresponding glass plates were also stuck together to obtain a laminate 60 having a three-layer structure shown in FIG.
 比較例4においては、縦298mm、横298mmの第1接着層64に相当するEVA膜を前記300mm角の第1ガラス板62に相当するガラス板とポリカーボネート板66との間に挟持し、前記加熱合わせ条件にて、図9に示す3層構造の積層体60を得た。 In Comparative Example 4, an EVA film corresponding to the first adhesive layer 64 having a length of 298 mm and a width of 298 mm was sandwiched between the glass plate corresponding to the 300 mm square first glass plate 62 and the polycarbonate plate 66, and the heating was performed. Under the combined condition, a laminate 60 having a three-layer structure shown in FIG. 9 was obtained.
 上記の7種類の積層体40、60に対し、加温試験(条件:60℃の恒温槽内で24時間静置した)を実施したところ、第1接着層44及び第2接着層48として、比較例1~比較例3の接着層を使用した積層体40では、積層体40の端部において、第1接着層44及び第2接着層48からポリカーボネート板46が剥離したことを確認できた。これに対し、第1接着層44及び第2接着層48として、実施例1の接着層16及び実施例2の接着層20、22を使用した積層体40では、上記のような端部剥離は確認できなかった。
 また、図9に示す第1接着層64として、比較例4の接着層を使用した積層体60では、前記端部剥離は確認されなかったものの、積層体60の中央に対し端部にて反りが3.8mmと大きく発生したことを確認できた。これに対し、第1接着層64として、実施例3の接着層を使用した積層体60では、端部剥離は確認されず、かつ、反りは0.2mmであり、ほとんど影響ないレベルに抑えられていた。
 反りは、試験体の長辺を水平方向に、試験体の短辺を鉛直方向となるように立てた状態にて、試験体の一方の長辺から他方の長辺へ試験体凹面側に糸を渡らせた際に、試験体凹面の中央から糸までの距離である。
A heating test (conditions: standing in a constant temperature bath at 60° C. for 24 hours) was performed on the above-described seven types of laminates 40 and 60, and as the first adhesive layer 44 and the second adhesive layer 48, In the laminated body 40 using the adhesive layers of Comparative Examples 1 to 3, it was confirmed that the polycarbonate plate 46 was separated from the first adhesive layer 44 and the second adhesive layer 48 at the end portion of the laminated body 40. On the other hand, in the laminated body 40 using the adhesive layer 16 of Example 1 and the adhesive layers 20 and 22 of Example 2 as the first adhesive layer 44 and the second adhesive layer 48, the above-mentioned edge peeling does not occur. I could not confirm.
In addition, in the laminate 60 using the adhesive layer of Comparative Example 4 as the first adhesive layer 64 shown in FIG. 9, although the peeling at the edge was not confirmed, the edge of the laminate 60 warped with respect to the center. It was confirmed that the value was as large as 3.8 mm. On the other hand, in the laminated body 60 using the adhesive layer of Example 3 as the first adhesive layer 64, no edge peeling was confirmed, and the warpage was 0.2 mm, which was suppressed to a level having almost no influence. Was there.
The warp is a thread from the one long side of the test piece to the other long side on the concave side of the test piece, with the long side of the test piece standing horizontally and the short side of the test piece standing vertically. It is the distance from the center of the concave surface of the test body to the thread when the yarn is crossed.
 ここで、90度引きはがし接着力及びせん断ズレ量の試験結果に基づき、上記の加温試験の結果を検証すると、90度引きはがし接着力(N/25mm)の高い比較例1、2の接着層を使用した場合であっても、せん断ズレ量(mm)が小さいため、ポリカーボネート板46の熱膨張に接着層が追従して伸びることができず、上記の剥離が発生したものと考えられる。また、比較例3の接着層を使用した場合は、比較例1、2に対してせん断ズレ量(mm)が大きいが、90度引きはがし接着力(N/25mm)が小さいため、ポリカーボネート板の熱膨張時に生じる応力に負けて上記の剥離が発生したものと考えられる。
 比較例4においては、90度引きはがし接着力(N/25mm)が高いため剥離は抑制されているものの、接着層にかかる応力によって積層体が大きく反ってしまったものと考えられる。
Here, when the results of the above-mentioned heating test are verified based on the test results of the 90-degree peeling adhesive force and the shear shift amount, the adhesion of Comparative Examples 1 and 2 having high 90-degree peeling adhesive force (N/25 mm) Even if a layer is used, the amount of shear displacement (mm) is small, and therefore the adhesive layer cannot follow the thermal expansion of the polycarbonate plate 46 and expand, and it is considered that the above peeling occurred. When the adhesive layer of Comparative Example 3 was used, the shear deviation amount (mm) was larger than that of Comparative Examples 1 and 2, but the 90-degree peeling adhesive force (N/25 mm) was small. It is considered that the peeling occurred due to the stress generated during the thermal expansion.
In Comparative Example 4, the 90° peeling adhesive strength (N/25 mm) was high, and thus peeling was suppressed, but it is considered that the laminate was largely warped due to the stress applied to the adhesive layer.
 これに対して、実施例1の接着層16を使用した場合は、比較例1、2と比較して90度引きはがし接着力(N/25mm)は小さいが、せん断ズレ量(mm)が大きいため、ポリカーボネート板46の熱膨張に接着層が追従して伸びることができ、上記の剥離が発生しなかったものと考えられる。また、実施例2の接着層20、22を使用した場合は、比較例3のせん断ズレ量(mm)と同値であるが、90度引きはがし接着力(N/25mm)が大きいため、ポリカーボネートの熱膨張時に生じる応力に勝って上記の剥離が発生しなかったものと考えられる。また、実施例4においても、せん断ズレ量が大きく、90度引きはがし接着力も高いため、図9のような3層構造である非対称型の積層構成においても反りを抑制することができたと考えられる。 On the other hand, when the adhesive layer 16 of Example 1 is used, the 90-degree peeling adhesive force (N/25 mm) is small as compared with Comparative Examples 1 and 2, but the shear displacement amount (mm) is large. Therefore, it is considered that the adhesive layer was able to follow the thermal expansion of the polycarbonate plate 46 and expand, and the above peeling did not occur. Further, when the adhesive layers 20 and 22 of Example 2 were used, the shear displacement amount (mm) was the same as that of Comparative Example 3, but the 90-degree peeling adhesive force (N/25 mm) was large, so that It is considered that the above peeling did not occur due to the stress generated during thermal expansion. Further, also in Example 4, since the amount of shear deviation was large and the 90-degree peeling adhesive strength was also high, it is considered that the warp could be suppressed even in the asymmetrical laminated structure having the three-layer structure as shown in FIG. ..
 上記の検証結果に基づけば、接着層に対する樹脂層の剥離現象は、90度引きはがし接着力(N/25mm)のみに支配されるのではなく、せん断ズレ量(mm)によっても支配されるものであることが判明した。また、せん断ズレ量とは、伸び力とも表現できる。また、90度引きはがし接着力(N/25mm)は4N/25mm以上であり、かつ、せん断ズレ量は3mm以上であることが、本発明の目的を達成するための好適な数値であることも判明した。 Based on the above verification results, the peeling phenomenon of the resin layer with respect to the adhesive layer is controlled not only by the 90 degree peeling adhesive force (N/25 mm) but also by the shear shift amount (mm). It turned out to be Further, the shear shift amount can also be expressed as elongation force. Further, it is preferable that the 90-degree peeling adhesive strength (N/25 mm) is 4 N/25 mm or more, and the shear displacement is 3 mm or more, which are suitable values for achieving the object of the present invention. found.
 積層体が、上記のように、第1ガラス、第1接着層、樹脂層、第2接着層及び第2ガラス板が順に積層された構成である場合のみならず、第1樹脂層、第1接着層、ガラス板、第2接着層及び第2樹脂層が順に積層された構成である場合についても同様に、接着層と樹脂層との90度引きはがし接着力(N/25mm)が4N/25mm以上、かつせん断ズレ量が3mm以上であることが、本発明の目的を達成するための好適な数値である。
 なお、この場合の90度引きはがし接着力とは、第1接着層と第1樹脂層との90度引きはがし接着力、及び第2接着層と第2樹脂層との90度引きはがし接着力が、共に4N/25mm以上であることを意味する。また、せん断ズレ量とは、第1接着層と第1樹脂層との相対的なせん断ズレ量、及び第2接着層と第2樹脂層との相対的なせん断ズレ量が、共に3mm以上であることを意味する。
Not only when the laminated body has a configuration in which the first glass, the first adhesive layer, the resin layer, the second adhesive layer, and the second glass plate are sequentially laminated as described above, the first resin layer, the first resin layer, and the first resin layer Similarly, in the case where the adhesive layer, the glass plate, the second adhesive layer, and the second resin layer are laminated in this order, the 90-degree peeling adhesive force (N/25 mm) between the adhesive layer and the resin layer is 4 N/ A value of 25 mm or more and a shear displacement amount of 3 mm or more are suitable numerical values for achieving the object of the present invention.
In this case, the 90-degree peeling adhesive force means the 90-degree peeling adhesive force between the first adhesive layer and the first resin layer, and the 90-degree peeling adhesive force between the second adhesive layer and the second resin layer. Both are 4 N/25 mm or more. In addition, the shear displacement amount means that the relative shear displacement amount between the first adhesive layer and the first resin layer and the relative shear displacement amount between the second adhesive layer and the second resin layer are both 3 mm or more. Means there is.
 したがって、実施例1の積層体10、実施例2の積層体12及び実施例3の積層体60によれば、上記の90度引きはがし接着力(N/25mm)が4N/25mm以上であり、かつ、上記のせん断ズレ量(mm)が3mm以上に設定されているので、室温でガラス板と樹脂層とを接着層を介して積層される積層体において、積層体の端部において接着層と樹脂層との密着力を高めることができる。これにより、対角線の長さが0.5m以上、特に1m以上必要とする大サイズの開口部材としてホームドアや自動車、鉄道等の車両の窓等に適用することができる。
 上記の90度引きはがし接着力(N/25mm)は、5N/25mm以上が好ましく、10N/25mm以上がより好ましく、15N/25mm以上がさらに好ましい。90度引きはがし接着力(N/25mm)の上限は特に限定されないが、50N/25mm以下であってもよい。
 上記のせん断ズレ量(mm)は4mm以上が好ましく、8mm以上がより好ましい。せん断ズレ量(mm)の上限は特に限定されないが、15mm以下であってもよい。また、相対的に離間させていく速度を10mm/min.とした場合には、せん断ズレ量は3mm以上が好ましく、4.5mm以上がより好ましく、8mm以上がさらに好ましく、12mm以上が特に好ましい。相対的に離間させていく速度を10mm/min.とした場合のせん断ズレ量の上限は特に限定されないが、25mm以下であってもよい。
Therefore, according to the laminated body 10 of Example 1, the laminated body 12 of Example 2, and the laminated body 60 of Example 3, the 90-degree peeling adhesive force (N/25 mm) is 4 N/25 mm or more, Moreover, since the shear displacement amount (mm) is set to 3 mm or more, in a laminated body in which a glass plate and a resin layer are laminated at room temperature via an adhesive layer, an adhesive layer is formed at an end portion of the laminated body. It is possible to enhance the adhesion with the resin layer. As a result, the present invention can be applied to home doors, windows of vehicles such as automobiles and railroads, etc. as a large-sized opening member that requires a diagonal length of 0.5 m or more, particularly 1 m or more.
The 90-degree peeling adhesive strength (N/25 mm) is preferably 5 N/25 mm or more, more preferably 10 N/25 mm or more, still more preferably 15 N/25 mm or more. The upper limit of the 90-degree peeling adhesive strength (N/25 mm) is not particularly limited, but may be 50 N/25 mm or less.
The shear displacement (mm) is preferably 4 mm or more, more preferably 8 mm or more. The upper limit of the shear displacement (mm) is not particularly limited, but may be 15 mm or less. Further, the speed of relatively separating is 10 mm/min. In such a case, the shear displacement amount is preferably 3 mm or more, more preferably 4.5 mm or more, further preferably 8 mm or more, and particularly preferably 12 mm or more. The speed of relatively separating is 10 mm/min. In this case, the upper limit of the shear displacement amount is not particularly limited, but may be 25 mm or less.
 また、図8の第1接着層44及び第2接着層48として、実施例1の積層体10の接着層16、または実施例2の積層体12の接着層20、22を適用した積層体40であっても、上記の90度引きはがし接着力(N/25mm)が4N/25mm以上であり、かつ、上記のせん断ズレ量(mm)が3mm以上に設定されているので、室温でガラス板と樹脂層とを接着層を介して積層される積層体において、接着層と樹脂層との密着力を高めることができる。これにより、実施例1の積層体10及び実施例2の積層体12と同様の効果を得ることができる。 Further, as the first adhesive layer 44 and the second adhesive layer 48 of FIG. 8, the adhesive layer 16 of the laminate 10 of Example 1 or the adhesive layers 20 and 22 of the laminate 12 of Example 2 are applied to the laminate 40. However, since the above 90 degree peeling adhesive strength (N/25 mm) is 4 N/25 mm or more and the shear displacement amount (mm) is set to 3 mm or more, the glass plate at room temperature is In the laminated body in which the resin layer and the resin layer are laminated via the adhesive layer, the adhesion between the adhesive layer and the resin layer can be increased. Thereby, the same effects as those of the laminated body 10 of the first embodiment and the laminated body 12 of the second embodiment can be obtained.
 また、本実施形態においては、接着層におけるガラス転移点Tgが低い成分の含有量が接着層全体に対して5%以上であることが好ましい。これにより、接着層に対する樹脂層、およびガラス板の接着力を向上させることができる。接着層におけるガラス転移点Tgが低い成分の含有量は、接着層全体に対して8%以上がより好ましく、10%以上がさらに好ましい。接着層におけるガラス転移点Tgが低い成分の含有量の上限は特に限定されないが、40%以下であってもよい。 Further, in the present embodiment, the content of the component having a low glass transition point Tg in the adhesive layer is preferably 5% or more with respect to the entire adhesive layer. Thereby, the adhesive force of the resin layer and the glass plate to the adhesive layer can be improved. The content of the component having a low glass transition point Tg in the adhesive layer is preferably 8% or more, more preferably 10% or more, based on the entire adhesive layer. The upper limit of the content of the component having a low glass transition point Tg in the adhesive layer is not particularly limited, but may be 40% or less.
 また、本実施形態においては、接着層における可塑剤成分の含有量が接着層全体に対して40%以下であることが好ましい。接着層における可塑剤成分の含有量が少ないほど、接着層と樹脂層との90度引きはがし接着力とせん断ズレ量を大きくすることができる。接着層における可塑剤成分の含有量は、接着層全体に対して20%以下であることがより好ましい。接着層における可塑剤成分の含有量の上限は特に限定されないが、1%以下であってもよい。 Further, in this embodiment, the content of the plasticizer component in the adhesive layer is preferably 40% or less with respect to the entire adhesive layer. The smaller the content of the plasticizer component in the adhesive layer, the greater the 90-degree peeling adhesive strength and the shear deviation between the adhesive layer and the resin layer. The content of the plasticizer component in the adhesive layer is more preferably 20% or less with respect to the entire adhesive layer. The upper limit of the content of the plasticizer component in the adhesive layer is not particularly limited, but may be 1% or less.
 また、本実施形態の接着層は、アクリル系粘着剤に限らず、例えばシリコーン系粘着剤、ゴム系粘着剤、ウレタン系粘着剤も用いることができる。 In addition, the adhesive layer of the present embodiment is not limited to the acrylic adhesive, and for example, a silicone adhesive, a rubber adhesive, or a urethane adhesive can be used.
 また、本実施形態の接着層はシランカップリング剤を含むことが好ましい。これにより、積層体の機械的強度を向上させることができる。なお、接着層がシランカップリング剤を含むとは、接着層にシランカップリング剤が混合された形態、及び接着層の表層にシランカップリング剤が塗布された形態、及び接着層に接着される樹脂層の表層にシランカップリング剤が塗布された形態を含むものである。シランカップリング剤として、接着層と反応可能な官能基を有するアクリルシラン等が好ましい。これにより、樹脂層と接着層の界面の接着力を向上させ、接合界面での剥離を抑制することができる。また、シランカップリング剤を用いない表面処理の方法として、フレームバーナーによる酸化炎を介して酸化ケイ素の薄膜を形成する処理等が挙げられる。 Also, the adhesive layer of the present embodiment preferably contains a silane coupling agent. Thereby, the mechanical strength of the laminate can be improved. The adhesive layer containing a silane coupling agent means that the adhesive layer is mixed with the silane coupling agent, the surface layer of the adhesive layer is coated with the silane coupling agent, and the adhesive layer is adhered to the adhesive layer. It includes a form in which a silane coupling agent is applied to the surface layer of the resin layer. As the silane coupling agent, acrylic silane having a functional group capable of reacting with the adhesive layer is preferable. As a result, the adhesive force at the interface between the resin layer and the adhesive layer can be improved and peeling at the bonded interface can be suppressed. Further, as a method of surface treatment without using a silane coupling agent, there is a treatment of forming a thin film of silicon oxide through an oxidative flame by a frame burner.
 本実施形態の接着層は紫外線吸収剤などの添加剤をさらに含んでいてもよい。これにより、屋外など日射に暴露されるような環境での積層体の使用において、太陽光に含まれる短波長の光によって樹脂層が分解することで誘発される脆性低下や黄変などの品質低下を抑制することができる。紫外線吸収剤としては任意の材料を使用することができるが、積層体としての透明性を考慮すると、420~700nmの領域波長にて積層体全体の透過率として70%以上の透過率を保持するように設計されることが好ましい。この場合、前記波長領域にて透過率値の偏差が10%未満であることが好ましい。前記を実現する手段として、樹脂層に補色剤を添加することも可能である。 The adhesive layer of this embodiment may further contain an additive such as an ultraviolet absorber. As a result, when the laminate is used in an environment where it is exposed to sunlight, such as outdoors, deterioration of quality such as brittleness and yellowing caused by decomposition of the resin layer due to short wavelength light contained in sunlight Can be suppressed. Any material can be used as the ultraviolet absorber, but in consideration of the transparency of the laminate, the transmittance of the entire laminate is 70% or more at a wavelength of 420 to 700 nm. It is preferably designed as follows. In this case, it is preferable that the deviation of the transmittance value is less than 10% in the wavelength region. As a means for achieving the above, it is also possible to add a complementary color agent to the resin layer.
 また、本実施形態の積層体は、接着層が2層以上であってもよい。その場合、樹脂層側に配置される接着層と樹脂層との90度引きはがし接着力が4N/25mm以上であり、かつ、樹脂層側に配置される接着層と樹脂層とのせん断剥離強度評価にてせん断ズレ量が3mm以上であればよい。また、この場合、上記2層の接着層の間の接着力は接着層と樹脂層との接着力よりも高い物性を有することが好ましい。これにより、高温環境にて樹脂層が膨張した際に、樹脂層と接着層の接着状態を維持したまま、ガラス板側に配置した接着層の緩和効果により端部剥離を抑制することができる。
 また、本実施形態の積層体は接着層とガラス板または樹脂層との間に熱可塑系中間膜を介していてもよい。熱可塑系中間膜としては、一般的な合わせガラスに用いられるポリビニルブチラール(PVB)やEVAまたはCOP、サーマルポリウレタン、熱可塑径ポリウレタン、アイオノマー系のものが挙げられる。これによって、耐衝撃性や耐紫外線、耐貫通性といった性能を付与させることができる。
Moreover, the laminated body of this embodiment may have two or more adhesive layers. In that case, the 90-degree peeling adhesive force between the adhesive layer arranged on the resin layer side and the resin layer is 4 N/25 mm or more, and the shear peel strength between the adhesive layer arranged on the resin layer side and the resin layer is high. In the evaluation, the shear displacement amount may be 3 mm or more. In this case, it is preferable that the adhesive force between the two adhesive layers has physical properties higher than the adhesive force between the adhesive layer and the resin layer. Thereby, when the resin layer expands in a high temperature environment, the peeling of the end portion can be suppressed by the relaxing effect of the adhesive layer arranged on the glass plate side while maintaining the adhesive state between the resin layer and the adhesive layer.
Further, the laminate of the present embodiment may have a thermoplastic interlayer film between the adhesive layer and the glass plate or the resin layer. Examples of the thermoplastic interlayer film include polyvinyl butyral (PVB), EVA or COP, thermal polyurethane, thermoplastic polyurethane, and ionomer-based films which are used for general laminated glass. This makes it possible to impart properties such as impact resistance, ultraviolet resistance, and penetration resistance.
 また、軽量化という観点では本実施形態のガラス板の厚さは、3mm以下であることが好ましい。また、ガラス板の厚さは、積層体の総厚に対し70%以下であることが好ましい。また、ガラス板の厚さは、樹脂層の厚さより薄い方が好ましい。これにより、積層体を軽量化することができるので、前述したホームドアや自動車、鉄道等の車両の窓等の可動式の開口部材にも適用可能である。ガラス板の厚さは、好ましくは3mm以下、より好ましくは1.1mm以下、特に好ましくは0.7mm以下である。そうすることで同厚のガラス単板に対し、重量比で約60%以下に軽量化することができる。
 また、積層体の剛性という観点においては、ガラス板の厚さは2mm以上であることが好ましい。例えば移動体の開口部として用いることを想定した場合、トンネル通過や車両同士のすれ違いの際に強い風圧により積層体に強い衝撃が加わることがある。その際にも、積層体の剛性が維持されることで反りや割れの影響を抑制することができる。このように、ガラス板の厚みに関しては、用途によって任意に設定することができる。
From the viewpoint of weight reduction, the glass plate of the present embodiment preferably has a thickness of 3 mm or less. The thickness of the glass plate is preferably 70% or less with respect to the total thickness of the laminate. Further, the thickness of the glass plate is preferably thinner than the thickness of the resin layer. Since this makes it possible to reduce the weight of the laminated body, it is also applicable to the movable opening member such as the above-mentioned platform doors, windows of vehicles such as automobiles and railroads. The thickness of the glass plate is preferably 3 mm or less, more preferably 1.1 mm or less, and particularly preferably 0.7 mm or less. By doing so, the weight of the glass single plate having the same thickness can be reduced to about 60% or less.
Further, from the viewpoint of the rigidity of the laminate, the thickness of the glass plate is preferably 2 mm or more. For example, when it is supposed to be used as an opening of a moving body, strong impact may be applied to the laminated body due to strong wind pressure when passing through a tunnel or when vehicles pass each other. Also in that case, the influence of warpage and cracks can be suppressed by maintaining the rigidity of the laminated body. Thus, the thickness of the glass plate can be arbitrarily set depending on the application.
 また、接着層の厚さとしては、50μm以上が好ましく、また、3mm未満であることが好ましい。厚さが50μm以上であれば、貼合時にガラス板または樹脂層との界面に気泡が残存しても消失し易くなる。また、厚さが3mm未満であれば、積層体の剛性を確保することができる。特に、積層体が大型化した場合、ハンドリングが容易となる。なお、接着層の厚さは、100μm以上がより好ましく、200μm以上が特に好ましい。また、接着層の厚さは、2mm以下がより好ましく、1mm以下が特に好ましい。前記範囲であると、高温環境におけるガラス板と樹脂層の間に発生する寸法差によって接着層にかかる内部応力を緩和するとともに、貼合時の気泡消失性や積層体の剛性確保をすることが可能である。 Also, the thickness of the adhesive layer is preferably 50 μm or more, and preferably less than 3 mm. When the thickness is 50 μm or more, even if bubbles remain at the interface with the glass plate or the resin layer during bonding, they are likely to disappear. Moreover, if the thickness is less than 3 mm, the rigidity of the laminate can be ensured. In particular, when the laminated body becomes large, handling becomes easy. The thickness of the adhesive layer is more preferably 100 μm or more, and particularly preferably 200 μm or more. Further, the thickness of the adhesive layer is more preferably 2 mm or less, and particularly preferably 1 mm or less. Within the above range, it is possible to alleviate internal stress applied to the adhesive layer due to the dimensional difference generated between the glass plate and the resin layer in a high temperature environment, and to ensure bubble extinction during bonding and rigidity of the laminate. It is possible.
 せん断ズレ量(単位:mm)を接着層の厚み(単位:mm)で除した値は、10mm/mm以上が好ましい。せん断ズレ量(単位:mm)を接着層の厚み(単位:mm)で除した値が10mm/mm以上であれば、積層体の端部において接着層と樹脂層との密着力を高めることができる。せん断ズレ量(単位:mm)を接着層の厚み(単位:mm)で除した値は、20mm/mm以上がより好ましく、30mm/mm以上がさらに好ましい。せん断ズレ量(単位:mm)を接着層の厚み(単位:mm)で除した値の上限は特に限定されないが、50mm/mm以下であってもよい。 A value obtained by dividing the shear displacement (unit: mm) by the thickness of the adhesive layer (unit: mm) is preferably 10 mm/mm or more. If the value obtained by dividing the shear displacement (unit: mm) by the thickness of the adhesive layer (unit: mm) is 10 mm/mm or more, the adhesion between the adhesive layer and the resin layer at the end of the laminate can be increased. it can. The value obtained by dividing the shear displacement (unit: mm) by the thickness of the adhesive layer (unit: mm) is more preferably 20 mm/mm or more, further preferably 30 mm/mm or more. The upper limit of the value obtained by dividing the shear displacement (unit: mm) by the thickness of the adhesive layer (unit: mm) is not particularly limited, but may be 50 mm/mm or less.
 本実施形態の積層体の形状は特に限定されないが、四角形であってもよく、矩形が好ましい。矩形であれば、鉄道駅のホームドアや自動車、鉄道等の車両の窓等の開口部材に適用しやすい。また、ガラス板と樹脂層はそれぞれを断面視した際に端面と主面との角の一部に切り欠きがあってもよい。例えば、切り欠きがあることで車両への組み込みの際に積層体の表面を車両表面と同一面になるようにはめ込むことができ、燃費向上につながる。 The shape of the laminated body of the present embodiment is not particularly limited, but may be a quadrangle, preferably a rectangle. The rectangular shape is easy to apply to an opening member such as a home door of a railway station, a window of a vehicle such as an automobile or a railroad. Further, the glass plate and the resin layer may have a notch at a part of a corner between the end surface and the main surface when the respective sections are viewed in cross section. For example, the presence of the notch allows the surface of the laminate to be fitted so as to be flush with the surface of the vehicle when it is incorporated into the vehicle, which leads to improved fuel efficiency.
 本実施形態の積層体の構成として、最外層に一対のガラス板、接着層を介して内部に樹脂層を配置させた5層構成、もしくは、最外層に一対の樹脂層、接着層を介して内部にガラス板を配置させた5層構成のような対称型の構成が挙げられる。対称型の構成であると大型の開口部材を想定した場合においても加熱によって生じるガラス板と樹脂層との寸法差によって接着層にかかる応力をキャンセルすることができるため好ましい。
 また、一方の最外層にガラス板、もう一方の最外層に接着層を介して樹脂層を配置した非対称型の構成であっても、本実施形態の構成であれば反りとともに端部での剥離を抑制することができ、高温環境においても安定的に使用することができるため好ましい。
As the structure of the laminate of the present embodiment, a pair of glass plates in the outermost layer, a five-layer structure in which a resin layer is arranged inside via an adhesive layer, or a pair of resin layers in the outermost layer, via an adhesive layer A symmetric structure such as a five-layer structure in which a glass plate is arranged inside can be mentioned. The symmetrical structure is preferable because the stress applied to the adhesive layer can be canceled by the dimensional difference between the glass plate and the resin layer caused by heating even when a large opening member is assumed.
Even with an asymmetrical configuration in which a glass plate is disposed on one outermost layer and a resin layer is disposed on the other outermost layer via an adhesive layer, the configuration of this embodiment causes warpage and peeling at the end. It is preferable since it can be suppressed and can be stably used even in a high temperature environment.
 本実施形態の積層体の構成中には、さらに熱線反射やスクリーン、調光性能を有する機能膜またはフィルムを封入してもよい。前記のような機能膜としては、PET基材上にスパッタ膜や液晶ポリマーで任意の波長を選択的に反射するような機能層を付与したものが挙げられる。また、PET基材を用いず、接着層に直接機能層を形成することも可能である。 In the structure of the laminated body of the present embodiment, a functional film or film having heat ray reflection, a screen, and dimming performance may be further enclosed. Examples of the functional film as described above include a PET substrate provided with a sputtered film or a functional layer capable of selectively reflecting an arbitrary wavelength with a liquid crystal polymer. It is also possible to directly form the functional layer on the adhesive layer without using the PET base material.
 また、本実施形態の積層体は、矩形の場合に対角線の長さが0.5m以上であることが好ましく、1m以上であることがより好ましい。対角線の長さが0.5m以上であれば、鉄道駅のホームドアや自動車、鉄道等の車両の窓等の大サイズの開口部材に適用できる。 Further, in the case of the laminate of the present embodiment having a rectangular shape, the diagonal length is preferably 0.5 m or more, more preferably 1 m or more. If the diagonal length is 0.5 m or more, it can be applied to large-sized opening members such as platform doors of railway stations, windows of vehicles such as automobiles and railways.
 また、本実施形態の積層体は、矩形の場合に短辺の長さが300mm以上であることが好ましく、700mm以上であることがより好ましい。短辺の長さが300mm以上であれば、鉄道駅のホームドアや自動車、鉄道等の車両の窓等の大サイズの開口部材に適用できる。 Further, in the case of a rectangular shape, the laminate of the present embodiment preferably has a short side length of 300 mm or more, and more preferably 700 mm or more. If the length of the short side is 300 mm or more, it can be applied to large-sized opening members such as platform doors of railway stations, windows of vehicles such as automobiles and railways.
 また、本実施形態の樹脂層は、表面処理としてハードコート層が付与されたものを用いることが好ましい。ハードコート層を形成するための材料としては、ウレタン、エポキシ、ポリエステル化物を含むアクリル化合物やエポキシ樹脂、ビニルエーテル化合物、オキセタン化合物などを例示することができる。特にハードコート剤として、アクリル化合物などの反応性成分を有する材料を含有する場合、接着層成分とSP値(溶解度パラメータ)が近くなる、または両者で反応して層間の密着力が高くなり、高温環境での端部剥離を抑制することができる。 Further, as the resin layer of the present embodiment, it is preferable to use a resin layer provided with a hard coat layer as a surface treatment. Examples of the material for forming the hard coat layer include acrylic compounds including urethane, epoxy, and polyester compounds, epoxy resins, vinyl ether compounds, and oxetane compounds. In particular, when a material having a reactive component such as an acrylic compound is contained as a hard coating agent, the SP value (solubility parameter) becomes close to that of the adhesive layer component, or both react to increase the adhesive force between layers, resulting in high temperature. Edge peeling in the environment can be suppressed.
 ここで、本実施形態にて規定した90度引きはがし接着力(N/25mm)を得るための一例を説明する。 Here, an example for obtaining the 90-degree peeling adhesive strength (N/25 mm) specified in this embodiment will be described.
 基材に対する90度引きはがし接着力を確保するために、ガラス転移点Tgが低い成分を原料として含有することが望ましい。ガラス転移点Tgが低い成分としては、分子量が125~600のモノマーが挙げられる。ここで、ガラス転移点Tgが低い成分とは、ガラス転移点Tgが0℃以下の成分のことである。例えば、アクリルモノマーであると炭素数4~12のアルキル基を有する(メタ)アクリル酸アルキルエステル、並びに(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル等の(メタ)アクリル酸アルコキシアルキル等を挙げることができ、これらの内の1種又は2種以上を使用することができる。なお、(メタ)アクリル酸とは、アクリル酸及びメタクリル酸の少なくともいずれか一方を意味する。  In order to secure 90-degree peeling adhesive strength to the base material, it is desirable to contain a component with a low glass transition point Tg as a raw material. Examples of the component having a low glass transition point Tg include monomers having a molecular weight of 125 to 600. Here, the component having a low glass transition point Tg is a component having a glass transition point Tg of 0° C. or lower. For example, as an acrylic monomer, a (meth)acrylic acid alkyl ester having an alkyl group having 4 to 12 carbon atoms, methoxymethyl (meth)acrylate, ethoxymethyl (meth)acrylate, methoxyethyl (meth)acrylate, Examples thereof include alkoxyalkyl (meth)acrylates such as ethoxyethyl (meth)acrylate, and one or more of them can be used. Note that (meth)acrylic acid means at least one of acrylic acid and methacrylic acid.
 また、環境温度25℃、周波数1Hzにおける貯蔵せん断弾性率G’(貯蔵弾性率ともいう。)が5×10~5×10Paの範囲であることが重要である。接着層が上記物性範囲を有することで、接着層の凝集力も実用上の使用環境に耐え得るレベルで保持できる。なお、実用上の使用環境とは、高温、多湿、低温から高温のサイクルなどが考えられる。
 貯蔵せん断弾性率を上記範囲とするために、ガラス転移点Tgが低い成分の含有割合は、接着層中に含まれる硬化性成分の全成分に対し、30%以下で含有することが好ましい。30%以下とすることで、貯蔵せん断弾性率が5×10Pa超となるのを防ぎ、ガラス板もしくは樹脂層と積層した際に界面に気泡が残存して欠陥となるのを防ぐことができる。また、接着層の貯蔵せん断弾性率を上記範囲に設定することでの別の利点として、60度などの高温環境下での積層体の反りを抑制できるという効果がある。特に、積層体としてガラス板と樹脂層をそれぞれ最外層に配したような非対称の構成を想定した場合、高温環境ではガラス板と樹脂層の間で生じる寸法差によって反りが生じやすい。その場合にも、接着層の貯蔵せん断弾性率を上記範囲に設定することで大開口の窓部材にも適用することが可能になる。特に好ましくは貯蔵せん断弾性率G’が2×10~3×10Paであることが好ましい。これにより、接着層の厚みが1mmなどの厚膜である場合を想定した際にも、接着層単体で安定的にハンドリングできるとともに、積層体にした際の剛性も確保することができる。
Further, it is important that the storage shear modulus G′ (also referred to as storage modulus) at an environmental temperature of 25° C. and a frequency of 1 Hz is in the range of 5×10 3 to 5×10 5 Pa. When the adhesive layer has the above physical properties, the cohesive force of the adhesive layer can be maintained at a level that can withstand a practical use environment. The practical use environment may be a cycle of high temperature, high humidity, low temperature to high temperature, or the like.
In order to keep the storage shear modulus within the above range, the content ratio of the component having a low glass transition point Tg is preferably 30% or less with respect to all the curable components contained in the adhesive layer. By setting it to 30% or less, it is possible to prevent the storage shear elastic modulus from exceeding 5×10 5 Pa and prevent bubbles from remaining at the interface and becoming a defect when laminated with a glass plate or a resin layer. it can. Another advantage of setting the storage shear elastic modulus of the adhesive layer in the above range is that the warpage of the laminate in a high temperature environment such as 60 degrees can be suppressed. In particular, in the case of assuming an asymmetrical structure in which a glass plate and a resin layer are respectively arranged as outermost layers as a laminated body, warpage is likely to occur in a high temperature environment due to a dimensional difference generated between the glass plate and the resin layer. Even in that case, by setting the storage shear elastic modulus of the adhesive layer in the above range, it can be applied to a window member having a large opening. Particularly preferably, the storage shear elastic modulus G′ is 2×10 4 to 3×10 5 Pa. Accordingly, even when assuming that the adhesive layer is a thick film having a thickness of 1 mm or the like, the adhesive layer alone can be stably handled, and the rigidity of the laminated body can be secured.
 また、90度引きはがし接着力を高める手法として、接着層と樹脂層のSP値を近いものにすることも重要である。好ましい範囲として、両者のSP値の差を5以下とすることが好ましい。また、タッキファイアーなどの改質剤を含有する接着層を用いることで規定した90度引きはがし接着力を有することができる。図2のような異なる2種類の接着層を積層した場合、上記貯蔵せん断弾性率G’は2層積層した構成でのバルクの物性を示す。 ▽It is also important to make the SP values of the adhesive layer and resin layer close to each other as a method of increasing the 90-degree peeling adhesive strength. As a preferable range, the difference between the SP values of the both is preferably 5 or less. Further, it is possible to have a 90-degree peeling adhesive force defined by using an adhesive layer containing a modifier such as tackifier. When two different kinds of adhesive layers as shown in FIG. 2 are laminated, the storage shear elastic modulus G'indicates bulk physical properties in a structure in which two layers are laminated.
 図5の表図には、各評価サンプル32における貯蔵せん断弾性率G’が示されている。貯蔵せん断弾性率評価サンプル32の測定は、次のように実施する。
 各接着層の貯蔵せん断弾性率評価サンプル32は、レオメーター(アントンパール社製、Physica MCR301)を用いて、測定した。ソーダライムガラス製のステージと測定スピンドルの間に各接着層となるOCAフィルムを挟持し、1%の動的せん断ひずみを印加して測定周波数を1Hzに設定して、25℃環境下で測定した。
The storage shear modulus G′ of each evaluation sample 32 is shown in the table of FIG. The storage shear modulus evaluation sample 32 is measured as follows.
The storage shear modulus evaluation sample 32 of each adhesive layer was measured using a rheometer (Physica MCR301 manufactured by Anton Paar). An OCA film to be each adhesive layer was sandwiched between a stage made of soda lime glass and a measuring spindle, a dynamic shear strain of 1% was applied, the measurement frequency was set to 1 Hz, and measurement was performed in an environment of 25°C ..
 また、本実施形態にて規定したせん断ズレ量(mm)を得るための一例を説明する。せん断ズレ量の大きい特性を有する接着層を得るための設計指針として、比較的架橋密度が低く、またゲル分率の大きい3次元構造をとりうる樹脂設計にすることが一般的であり、接着層のゲル分率は20%以上50%以下が好ましい。接着層のゲル分率が50%以下であると、架橋密度が高くなりすぎてせん断ズレ量が不足するのを防ぎ、積層体が日射等によって加温された状態においても、剥離不良が発生するのを抑制できる。また、ゲル分率が50%以下であると、接着層を紫外線照射により硬化せずに密着力を高めることもできる。一方、ゲル分率が20%以上であると、粘着層の弾性率が低くなりすぎるのを防ぎ、自立膜として扱うことが容易となる。
 例えばウレタンオリゴマーなどの分子量の大きい反応性成分を原料として用いた重合体は特に有効である。反応性を有するオリゴマーとしては、数平均分子量が1000~100000であるのが好ましく、特に10000以上がより好ましく、また、70000以下がより好ましい。
 また、接着層の機械的特性の観点から、反応性官能基は1分子あたり平均1.8~4個有するものが好ましい。また、反応性を有するオリゴマーとしては、ウレタンオリゴマーのほかに、ポリオキシアルキレンポリオールのポリ(メタ)アクリレート、ポリエステルポリオールのポリ(メタ)アクリレートが挙げられる。ここで(メタ)アクリレートとは、アクリレート及びメタクリレートの少なくとも一方を意味する。
Further, an example for obtaining the shear displacement amount (mm) specified in the present embodiment will be described. As a design guideline for obtaining an adhesive layer having a large amount of shear displacement, it is common to use a resin design that has a relatively low crosslink density and a three-dimensional structure with a large gel fraction. The gel fraction is preferably 20% or more and 50% or less. When the gel fraction of the adhesive layer is 50% or less, the crosslinking density is prevented from becoming too high and the shear shift amount is insufficient, and peeling failure occurs even in the state where the laminate is heated by sunlight or the like. Can be suppressed. Further, when the gel fraction is 50% or less, the adhesive force can be enhanced without curing the adhesive layer by ultraviolet irradiation. On the other hand, when the gel fraction is 20% or more, the elastic modulus of the adhesive layer is prevented from becoming too low, and it becomes easy to handle it as a self-supporting film.
For example, a polymer using a reactive component having a large molecular weight such as a urethane oligomer as a raw material is particularly effective. The reactive oligomer preferably has a number average molecular weight of 1,000 to 100,000, more preferably 10,000 or more, and further preferably 70,000 or less.
From the viewpoint of mechanical properties of the adhesive layer, it is preferable that one molecule has an average of 1.8 to 4 reactive functional groups. In addition to the urethane oligomer, examples of the reactive oligomer include poly(meth)acrylate of polyoxyalkylene polyol and poly(meth)acrylate of polyester polyol. Here, the (meth)acrylate means at least one of acrylate and methacrylate.
 本実施形態にて規定したせん断ズレ量(mm)を得るための他の手法として可塑剤を含有させることも有効である。可塑剤としては、エステル化物、ポリオール類、およびこれらのエステル化物、軟質アクリル樹脂、エラストマーなど。テルペン樹脂などのタッキファイアー類などが一般的に知られている。可塑剤の使用に関する弊害としては、ガラス板または樹脂層にあたる基材との密着力を低下させてしまうことがある。これを防止するには、接着層の可塑剤成分の含有率は40%以下が好ましい。また、スライドリングマテリアルなどの超分子の使用もせん断ズレ量の大きい特性を有する接着層を得る点で有効である。 It is also effective to add a plasticizer as another method for obtaining the shear displacement amount (mm) specified in this embodiment. Examples of the plasticizer include esterified products, polyols, esterified products thereof, soft acrylic resins, elastomers, and the like. Tackifiers such as terpene resin are generally known. As an adverse effect on the use of the plasticizer, there is a case where the adhesion to the glass plate or the base material corresponding to the resin layer is reduced. To prevent this, the content of the plasticizer component in the adhesive layer is preferably 40% or less. Further, the use of supramolecules such as slide ring materials is also effective in obtaining an adhesive layer having a large shear displacement amount.
 本実施形態の接着層が2層以上の接着層の積層体から構成されている場合、各接着層間で接着層を構成する組成物全体に対する可塑剤の含有量の差が40%未満であることが好ましく、20%未満であることがより好ましい。2層の接着層の間で可塑剤の含有量の差が大きいと、可塑剤含有量が多い接着層から少ない接着層の側へと可塑剤成分が移行してしまい、特に樹脂層と接着層との密着力の低下を引き起こしてしまう場合がある。また、場合によっては接着層のヘイズが上昇してしまい、積層体の透明性に影響を引き起こしてしまう可能性がある。 When the adhesive layer of the present embodiment is composed of a laminate of two or more adhesive layers, the difference in the content of the plasticizer with respect to the entire composition constituting the adhesive layer between the adhesive layers is less than 40%. Is preferable, and less than 20% is more preferable. When the difference in the content of the plasticizer between the two adhesive layers is large, the plasticizer component migrates from the adhesive layer having a large content of plasticizer to the side of the adhesive layer having a small content of the plasticizer, particularly the resin layer and the adhesive layer. It may cause a decrease in adhesion with. In addition, in some cases, the haze of the adhesive layer may increase, which may affect the transparency of the laminate.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2018年12月6日出願の日本特許出願(特願2018-229153)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on the Japanese patent application filed on Dec. 6, 2018 (Japanese Patent Application No. 2018-229153), the contents of which are incorporated herein by reference.
10…積層体、12…積層体、14…ガラス板、16…接着層、18…樹脂層、20…接着層、22…接着層、24…評価サンプル、26…ポリカーボネート基材、28…支持フィルム、30…積層体、32…評価サンプル、34…ポリカーボネート板、36…ソーダライムガラス板、40…積層体、42…第1ガラス板、44…第1接着層、46…ポリカーボネート板、48…第2接着層、50…第2ガラス板、60…積層体、62…第1ガラス板、64…第1接着層、66…ポリカーボネート板 10... Laminated body, 12... Laminated body, 14... Glass plate, 16... Adhesive layer, 18... Resin layer, 20... Adhesive layer, 22... Adhesive layer, 24... Evaluation sample, 26... Polycarbonate base material, 28... Support film , 30... Laminated body, 32... Evaluation sample, 34... Polycarbonate plate, 36... Soda-lime glass plate, 40... Laminated body, 42... First glass plate, 44... First adhesive layer, 46... Polycarbonate plate, 48... 2 adhesive layer, 50... 2nd glass plate, 60... laminated body, 62... 1st glass plate, 64... 1st adhesive layer, 66... Polycarbonate plate

Claims (25)

  1.  ガラス板と接着層とを有する積層体であって、
     前記接着層を介して樹脂層を前記ガラス板に接着させたときの前記接着層と前記樹脂層との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が4N/25mm以上であり、
     かつ、前記樹脂層が接着された前記積層体を20mm×30mmサイズに切り出した試験体において、前記ガラス板と前記樹脂層とを前記積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、前記接着層と前記樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記接着層と前記樹脂層との相対的なせん断ズレ量が3mm以上であり、
     前記接着層が光学透明粘着剤である、積層体。
    A laminate having a glass plate and an adhesive layer,
    It is the adhesive force between the adhesive layer and the resin layer when the resin layer is adhered to the glass plate via the adhesive layer, and the 90-degree peeling obtained in the peel test method according to JIS Z0237:2009. Adhesive force is 4N/25mm or more,
    In addition, in the test body obtained by cutting the laminated body to which the resin layer is adhered into a size of 20 mm×30 mm, the glass plate and the resin layer are moved at a speed of 5 mm/min. By applying a load to the bonding interface between the adhesive layer and the resin layer by relatively separating the adhesive layer and the adhesive layer when the maximum value of the test force for peeling the bonding interface is obtained. And the relative shear displacement between the resin layer and the resin layer is 3 mm or more,
    A laminate, wherein the adhesive layer is an optically transparent pressure-sensitive adhesive.
  2.  前記樹脂層が接着された前記積層体を20mm×30mmサイズに切り出した試験体において、前記ガラス板と前記樹脂層とを前記積層体の長辺方向に速度10mm/min.で相対的に離間させていくことにより、前記接着層と前記樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記接着層と前記樹脂層との相対的なせん断ズレ量が3mm以上である、請求項1に記載の積層体。 In a test body obtained by cutting the laminated body to which the resin layer is adhered into a size of 20 mm×30 mm, the glass plate and the resin layer are moved in the longitudinal direction of the laminated body at a speed of 10 mm/min. By applying a load to the bonding interface between the adhesive layer and the resin layer by relatively separating the adhesive layer and the adhesive layer when the maximum value of the test force for peeling the bonding interface is obtained. The laminate according to claim 1, wherein the relative shear displacement between the resin layer and the resin layer is 3 mm or more.
  3.  ガラス板、接着層及び樹脂層が順に積層されて構成された積層体であって、
     前記接着層と前記樹脂層との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が4N/25mm以上であり、
     かつ、前記積層体を20mm×30mmサイズに切り出した試験体において、前記ガラス板と前記樹脂層とを前記積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、前記接着層と前記樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記接着層と前記樹脂層との相対的なせん断ズレ量が3mm以上であり、
     前記接着層が光学透明粘着剤である、積層体。
    A laminated body constituted by laminating a glass plate, an adhesive layer and a resin layer in order,
    The adhesive force between the adhesive layer and the resin layer, the 90-degree peeling adhesive force obtained by the peeling test method based on JIS Z0237:2009 is 4 N/25 mm or more,
    In addition, in a test body obtained by cutting the laminated body into a size of 20 mm×30 mm, the glass plate and the resin layer were moved in the long side direction of the laminated body at a speed of 5 mm/min. By applying a load to the bonding interface between the adhesive layer and the resin layer by relatively separating the adhesive layer and the adhesive layer when the maximum value of the test force for peeling the bonding interface is obtained. And the relative shear displacement between the resin layer and the resin layer is 3 mm or more,
    A laminate, wherein the adhesive layer is an optically transparent pressure-sensitive adhesive.
  4.  前記積層体を20mm×30mmサイズに切り出した試験体において、前記ガラス板と前記樹脂層とを前記積層体の長辺方向に速度10mm/min.で相対的に離間させていくことにより、前記接着層と前記樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記接着層と前記樹脂層との相対的なせん断ズレ量が3mm以上である、請求項3に記載の積層体。 In a test body obtained by cutting the laminate into a size of 20 mm×30 mm, the glass plate and the resin layer were moved at a speed of 10 mm/min in the long side direction of the laminate. By applying a load to the bonding interface between the adhesive layer and the resin layer by relatively separating the adhesive layer and the adhesive layer when the maximum value of the test force for peeling the bonding interface is obtained. The laminate according to claim 3, wherein the relative shear displacement between the resin layer and the resin layer is 3 mm or more.
  5.  前記せん断ズレ量(単位:mm)を前記接着層の厚み(単位:mm)で除した値は、10mm/mm以上である、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein a value obtained by dividing the shear displacement amount (unit: mm) by the thickness of the adhesive layer (unit: mm) is 10 mm/mm or more.
  6.  前記接着層のゲル分率が20%以上50%以下である、請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the gel fraction of the adhesive layer is 20% or more and 50% or less.
  7.  前記接着層における可塑剤成分の含有量が40%以下である、請求項1~6のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the content of the plasticizer component in the adhesive layer is 40% or less.
  8.  前記接着層はシランカップリング剤を含む、請求項1~7のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the adhesive layer contains a silane coupling agent.
  9.  前記接着層は2層以上で構成される、請求項1~8のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the adhesive layer is composed of two or more layers.
  10.  前記ガラス板の厚さは3mm以下である、請求項1~9のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 9, wherein the glass plate has a thickness of 3 mm or less.
  11.  前記積層体は、矩形状であって対角線の長さが0.5m以上である、請求項1~10のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 10, wherein the laminate has a rectangular shape and a diagonal length of 0.5 m or more.
  12.  第1ガラス板、第1接着層、樹脂層、第2接着層及び第2ガラス板が順に積層されて構成された積層体であって、
     前記第1接着層と前記樹脂層との接着力、及び前記第2接着層と前記樹脂層との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が共に4N/25mm以上であり、
     かつ、前記積層体を20mm×30mmサイズに切り出した試験体において、前記第1ガラス板と前記樹脂層とを前記積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、前記第1接着層と前記樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第1接着層と前記樹脂層との相対的なせん断ズレ量が3mm以上であり、
     前記試験体において、前記第2ガラス板と前記樹脂層とを前記積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、前記第2接着層と前記樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第2接着層と前記樹脂層との相対的なせん断ズレ量が3mm以上であり、
     前記第1接着層及び前記第2接着層が光学透明粘着剤である、積層体。
    A laminated body configured by laminating a first glass plate, a first adhesive layer, a resin layer, a second adhesive layer and a second glass plate in order,
    90 degree peeling adhesion obtained by a peeling test method based on JIS Z0237:2009, which is the adhesive force between the first adhesive layer and the resin layer and the adhesive force between the second adhesive layer and the resin layer. Both forces are 4N/25mm or more,
    In addition, in a test body obtained by cutting the laminated body into a size of 20 mm×30 mm, the first glass plate and the resin layer were moved at a speed of 5 mm/min. By applying a load to the joint interface between the first adhesive layer and the resin layer by relatively separating the joint layer from each other, and obtaining the maximum value of the test force for peeling the joint interface. The relative shear displacement between the first adhesive layer and the resin layer is 3 mm or more,
    In the test body, the second glass plate and the resin layer were moved at a speed of 5 mm/min. By applying a load to the bonding interface between the second adhesive layer and the resin layer by relatively separating the two bonding layers with each other to obtain the maximum value of the test force for peeling the bonding interface. The relative shear displacement between the second adhesive layer and the resin layer is 3 mm or more,
    A laminated body, wherein the first adhesive layer and the second adhesive layer are optical transparent pressure-sensitive adhesives.
  13.  前記積層体を20mm×30mmサイズに切り出した試験体において、前記第1ガラス板と前記樹脂層とを前記積層体の長辺方向に速度10mm/min.で相対的に離間させていくことにより、前記第1接着層と前記樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第1接着層と前記樹脂層との相対的なせん断ズレ量が3mm以上であり、
     前記試験体において、前記第2ガラス板と前記樹脂層とを前記積層体の長辺方向に速度10mm/min.で相対的に離間させていくことにより、前記第2接着層と前記樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第2接着層と前記樹脂層との相対的なせん断ズレ量が3mm以上である、請求項12に記載の積層体。
    In a test body obtained by cutting the laminate into a size of 20 mm×30 mm, the first glass plate and the resin layer were moved at a speed of 10 mm/min. By applying a load to the joint interface between the first adhesive layer and the resin layer by relatively separating the joint layer from each other, and obtaining the maximum value of the test force for peeling the joint interface. The relative shear displacement between the first adhesive layer and the resin layer is 3 mm or more,
    In the test body, the second glass plate and the resin layer were moved at a speed of 10 mm/min. By applying a load to the bonding interface between the second adhesive layer and the resin layer by relatively separating the two bonding layers with each other to obtain the maximum value of the test force for peeling the bonding interface. The laminate according to claim 12, wherein a relative shear displacement amount between the second adhesive layer and the resin layer is 3 mm or more.
  14.  前記第1ガラス板及び前記第2ガラス板の厚さは3mm以下である、請求項12又は13に記載の積層体。 The laminated body according to claim 12 or 13, wherein the thickness of the first glass plate and the second glass plate is 3 mm or less.
  15.  前記第1ガラス板及び前記第2ガラス板の厚さは、前記樹脂層の厚さよりも薄い、請求項12~14のいずれか1項に記載の積層体。 The laminate according to any one of claims 12 to 14, wherein the first glass plate and the second glass plate have a thickness smaller than that of the resin layer.
  16.  第1樹脂層、第1接着層、ガラス板、第2接着層及び第2樹脂層が順に積層されて構成された積層体であって、
     前記第1接着層と前記第1樹脂層との接着力、及び前記第2接着層と前記第2樹脂層との接着力であって、JISZ0237:2009に準拠した剥離試験方法において得られた90度引きはがし接着力が共に4N/25mm以上であり、
     かつ、前記積層体を20mm×30mmサイズに切り出した試験体において、前記ガラス板と前記第1樹脂層とを前記積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、前記第1接着層と前記第1樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第1接着層と前記第1樹脂層との相対的なせん断ズレ量が3mm以上であり、
     前記試験体において、前記ガラス板と前記第2樹脂層とを前記積層体の長辺方向に速度5mm/min.で相対的に離間させていくことにより、前記第2接着層と前記第2樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第2接着層と前記第2樹脂層との相対的なせん断ズレ量が3mm以上であり、
     前記第1接着層及び前記第2接着層が光学透明粘着剤である、積層体。
    A laminated body configured by laminating a first resin layer, a first adhesive layer, a glass plate, a second adhesive layer, and a second resin layer in order,
    The adhesive force between the first adhesive layer and the first resin layer and the adhesive force between the second adhesive layer and the second resin layer, which were obtained by a peel test method according to JIS Z0237:2009. Both the peeling and peeling adhesive strength is 4N/25mm or more,
    In addition, in a test body obtained by cutting the laminated body into a size of 20 mm×30 mm, the glass plate and the first resin layer were moved in the long side direction of the laminated body at a speed of 5 mm/min. By applying a load to the joint interface between the first adhesive layer and the first resin layer by separating them relatively with each other, and when the maximum value of the test force for peeling the joint interface is obtained. The relative shear displacement between the first adhesive layer and the first resin layer is 3 mm or more,
    In the test body, the glass plate and the second resin layer were moved at a speed of 5 mm/min. By applying a load to the joint interface between the second adhesive layer and the second resin layer by relatively separating them with each other to obtain the maximum value of the test force for peeling the joint interface. The relative shear displacement between the second adhesive layer and the second resin layer is 3 mm or more,
    A laminated body, wherein the first adhesive layer and the second adhesive layer are optical transparent pressure-sensitive adhesives.
  17.  前記積層体を20mm×30mmサイズに切り出した試験体において、前記ガラス板と前記第1樹脂層とを前記積層体の長辺方向に速度10mm/min.で相対的に離間させていくことにより、前記第1接着層と前記第1樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第1接着層と前記第1樹脂層との相対的なせん断ズレ量が3mm以上であり、
     前記試験体において、前記ガラス板と前記第2樹脂層とを前記積層体の長辺方向に速度10mm/min.で相対的に離間させていくことにより、前記第2接着層と前記第2樹脂層との接合界面に荷重を印加していき、前記接合界面の剥離にかかる試験力の最大値を得たときの前記第2接着層と前記第2樹脂層との相対的なせん断ズレ量が3mm以上である、請求項16に記載の積層体。
    In a test body obtained by cutting out the laminate to a size of 20 mm×30 mm, the glass plate and the first resin layer were moved at a speed of 10 mm/min. By applying a load to the joint interface between the first adhesive layer and the first resin layer by separating them relatively with each other, and when the maximum value of the test force for peeling the joint interface is obtained. The relative shear displacement between the first adhesive layer and the first resin layer is 3 mm or more,
    In the test body, the glass plate and the second resin layer were moved at a speed of 10 mm/min. By applying a load to the joint interface between the second adhesive layer and the second resin layer by relatively separating them with each other to obtain the maximum value of the test force for peeling the joint interface. 17. The laminate according to claim 16, wherein the relative shear displacement between the second adhesive layer and the second resin layer is 3 mm or more.
  18.  前記ガラス板の厚さは3mm以下である、請求項16又は17に記載の積層体。 The laminate according to claim 16 or 17, wherein the glass plate has a thickness of 3 mm or less.
  19.  前記ガラス板の厚さは、前記第1樹脂層及び前記第2樹脂層の厚さよりも薄い、請求項16~18のいずれか1項に記載の積層体。 The laminate according to any one of claims 16 to 18, wherein the glass plate has a thickness smaller than that of the first resin layer and the second resin layer.
  20.  前記せん断ズレ量(単位:mm)を前記接着層の厚み(単位:mm)で除した値は、10mm/mm以上である、請求項12~19のいずれか1項に記載の積層体。 The laminate according to any one of claims 12 to 19, wherein a value obtained by dividing the shear displacement (unit: mm) by the thickness of the adhesive layer (unit: mm) is 10 mm/mm or more.
  21.  前記第1接着層及び前記第2接着層における可塑剤成分の含有量が共に40%以下である、請求項12~20のいずれか1項に記載の積層体。 The laminate according to any one of claims 12 to 20, wherein the content of the plasticizer component in each of the first adhesive layer and the second adhesive layer is 40% or less.
  22.  前記第1接着層及び前記第2接着層はシランカップリング剤を含む、請求項12~21のいずれか1項に記載の積層体。 The laminate according to any one of claims 12 to 21, wherein the first adhesive layer and the second adhesive layer contain a silane coupling agent.
  23.  前記第1接着層及び前記第2接着層の少なくともいずれか一方は2層以上で構成される、請求項12~22のいずれか1項に記載の積層体。 The laminate according to any one of claims 12 to 22, wherein at least one of the first adhesive layer and the second adhesive layer is composed of two or more layers.
  24.  前記2層以上で構成される接着層は、各接着層間で接着層を構成する組成物全体に対する可塑剤の含有量の差が40%未満である、請求項23に記載の積層体。 The laminate according to claim 23, wherein the adhesive layer composed of two or more layers has a plasticizer content difference of less than 40% with respect to the entire composition forming the adhesive layer between the adhesive layers.
  25.  前記積層体は、矩形状であって対角線の長さが0.5m以上である、請求項12~24のいずれか1項に記載の積層体。 The laminate according to any one of claims 12 to 24, wherein the laminate has a rectangular shape and a diagonal length of 0.5 m or more.
PCT/JP2019/047196 2018-12-06 2019-12-03 Laminate WO2020116437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559215A JPWO2020116437A1 (en) 2018-12-06 2019-12-03 Laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-229153 2018-12-06
JP2018229153 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020116437A1 true WO2020116437A1 (en) 2020-06-11

Family

ID=70973894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047196 WO2020116437A1 (en) 2018-12-06 2019-12-03 Laminate

Country Status (2)

Country Link
JP (1) JPWO2020116437A1 (en)
WO (1) WO2020116437A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096009A (en) * 1998-09-18 2000-04-04 Teijin Ltd Laminated film for sticking on window and laminated body consisting of the same
JP2004262957A (en) * 2003-01-30 2004-09-24 Mitsubishi Plastics Ind Ltd Hot melt ultraviolet-crosslinkable transparent pressure-sensitive adhesive, transparent pressure-sensitive adhesive sheet and laminate
WO2014171504A1 (en) * 2013-04-19 2014-10-23 コニカミノルタ株式会社 Glass laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096009A (en) * 1998-09-18 2000-04-04 Teijin Ltd Laminated film for sticking on window and laminated body consisting of the same
JP2004262957A (en) * 2003-01-30 2004-09-24 Mitsubishi Plastics Ind Ltd Hot melt ultraviolet-crosslinkable transparent pressure-sensitive adhesive, transparent pressure-sensitive adhesive sheet and laminate
WO2014171504A1 (en) * 2013-04-19 2014-10-23 コニカミノルタ株式会社 Glass laminate

Also Published As

Publication number Publication date
JPWO2020116437A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP5415658B2 (en) Intermediate film adhesive sheet and transparent laminate
JP4791467B2 (en) Double-sided adhesive sheet and panel laminate
KR101628435B1 (en) Adhesive film, adhesive composition for the same and display member comprising the same
JP4951515B2 (en) Method for producing laminated glass partly made of plastic plate, and laminated glass
US4683172A (en) Method for making safety or impact resistant laminates
JP4937327B2 (en) Method for producing pressure-sensitive adhesive composition, method for producing pressure-sensitive adhesive film, raw material composition for pressure-sensitive adhesive, and pressure-sensitive adhesive film
KR20110068972A (en) Cloud point-resistant adhesives and laminates
TW202136462A (en) Photosetting adhesive sheet, adhesive sheet and image display device
JP5405758B2 (en) Adhesive sheet
US10280337B2 (en) Method for recycling optical device constituent members and method for evaluating reworkability of optical device constituent laminate
JP2004359808A (en) Transparent gel pressure sensitive adhesive, transparent gel pressure sensitive adhesive sheet and impact-absorbing layered product
JP5801148B2 (en) Method for producing transparent laminate
WO2020116437A1 (en) Laminate
TWI812726B (en) Single-sided protective polarizing film with adhesive layer, image display device and continuous manufacturing method thereof
JPH0699547A (en) Novel laminate
JP2013039833A (en) Adhesive sheet for intermediate film and transparent laminate
JP5793610B2 (en) Transparent laminate for display
JP4879919B2 (en) Laminated body
TW202130503A (en) Intermediate film for laminated glass and laminated glass
JP2012031417A (en) Adhesive sheet with mold release film for interlayer, and transparent laminate
KR100912631B1 (en) Double-side adhesive tape having multilayer structure and method for manufacturing thereof
JP5731330B2 (en) Double-sided adhesive sheet for touch panel
JP2016190758A (en) Glass laminate and light control component for the same
KR20160120601A (en) Optical Clear Adhesive Sheet
KR20090003843A (en) Transparent adhesive composition, transparent adhesive sheet, optical filter for pdp and method of preparing adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893397

Country of ref document: EP

Kind code of ref document: A1