WO2020116427A1 - Injection control device for internal combustion engine - Google Patents

Injection control device for internal combustion engine Download PDF

Info

Publication number
WO2020116427A1
WO2020116427A1 PCT/JP2019/047167 JP2019047167W WO2020116427A1 WO 2020116427 A1 WO2020116427 A1 WO 2020116427A1 JP 2019047167 W JP2019047167 W JP 2019047167W WO 2020116427 A1 WO2020116427 A1 WO 2020116427A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
lift
valve
fuel
speed
Prior art date
Application number
PCT/JP2019/047167
Other languages
French (fr)
Japanese (ja)
Inventor
柱成 尹
淳 川村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020116427A1 publication Critical patent/WO2020116427A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type

Definitions

  • the present disclosure relates to an injection control device for an internal combustion engine.
  • Patent Document 1 discloses that the valve opening speed and the valve closing speed of the nozzle needle are improved by increasing the out-orifice flow rate.
  • the opening speed and closing speed of the nozzle needle are simply increased, the nozzle needle will reach the maximum lift position or the closing position in a short time after the drive command. In this case, there is a concern that the amount of fuel that can be injected by the fuel injection valve will decrease.
  • a main object of the present invention is to provide an injection control device for an internal combustion engine that is capable of performing the above.
  • the present disclosure relates to an injection control device for an internal combustion engine that controls a fuel injection amount by the fuel injection valve by changing a lift amount of a nozzle needle that opens and closes the fuel injection valve.
  • the disclosure according to claim 1 includes a drive control unit that variably controls a lift speed of the nozzle needle based on a drive signal, and the drive control unit includes the nozzle needle in response to a valve opening command of the fuel injection valve.
  • the nozzle needle is fully lifted.
  • the lift speed of the nozzle needle is controlled to be slower in a period in which the lift amount of the nozzle needle is large at least at one of the injection start and the injection end of the fuel injection than in the period in which the lift amount is small.
  • the timing at which the nozzle needle reaches the maximum lift position or the valve closing position can be delayed, and the valve opening period of the fuel injection valve can be made as long as possible. Therefore, according to the above configuration, it is possible to increase the amount of fuel injected from the fuel injection valve by one fuel injection while ensuring the responsiveness of the nozzle needle to the drive command of the fuel injection valve.
  • FIG. 1 is a diagram showing a schematic configuration of a fuel injection system
  • FIG. 2 is a diagram showing an example of an injection rate pattern of the fuel injection valve
  • FIG. 3 is a diagram showing a fuel injection valve when the valve is closed
  • FIG. 4 is a diagram for explaining the operation of the fuel injection valve in the high speed valve opening mode
  • FIG. 5 is a diagram for explaining the operation of the fuel injection valve when shifting from the high speed valve opening mode to the high speed valve closing mode
  • FIG. 6 is a diagram for explaining the operation of the fuel injection valve in the high speed valve closing mode
  • FIG. 1 is a diagram showing a schematic configuration of a fuel injection system
  • FIG. 2 is a diagram showing an example of an injection rate pattern of the fuel injection valve
  • FIG. 3 is a diagram showing a fuel injection valve when the valve is closed
  • FIG. 4 is a diagram for explaining the operation of the fuel injection valve in the high speed valve opening mode
  • FIG. 5 is a diagram for explaining the operation of the fuel injection valve when shifting from the high
  • FIG. 7 is a diagram for explaining the operation of the fuel injection valve in the low speed valve opening mode
  • FIG. 8 is a diagram for explaining the operation of the fuel injection valve when shifting from the low speed valve opening mode to the low speed valve closing mode
  • FIG. 9 is a diagram for explaining the operation of the fuel injection valve in the low speed valve closing mode
  • FIG. 10 is a diagram showing a pressure reducing operation by the second opening/closing valve
  • FIG. 11 is a diagram showing a specific mode of lift speed control at the start of injection and at the end of injection.
  • FIG. 12 is a diagram for explaining the lift speed control according to the injection pressure
  • FIG. 13 is a diagram for explaining the lift speed control according to the fuel temperature
  • FIG. 14 is a diagram for explaining the lift speed control according to the individual difference of the fuel injection valve
  • FIG. 15 is a diagram for explaining lift speed control according to the injection interval
  • FIG. 16 is a flowchart showing a processing procedure of lift speed control
  • FIG. 17 is a functional block diagram showing the calculation processing of the speed switching time.
  • the present embodiment is embodied in a fuel injection system applied to an in-vehicle multi-cylinder diesel engine which is an internal combustion engine.
  • an electronic control unit hereinafter, referred to as "ECU" is the center for controlling the fuel injection of the engine.
  • the fuel injection system 10 includes a common rail 11, a fuel injection valve 20, and an ECU 90.
  • the common rail 11 is connected to the downstream side of a high-pressure pump (not shown), and fuel pressurized by the high-pressure pump (hereinafter referred to as “high-pressure fuel”) is supplied.
  • high-pressure fuel fuel pressurized by the high-pressure pump
  • a rail pressure sensor 73 that detects the fuel pressure inside the common rail 11 (hereinafter referred to as “rail pressure”) is attached to the common rail 11. The detection signal of the rail pressure sensor 73 is input to the ECU 90.
  • a fuel injection valve 20 is connected to the common rail 11 via a high-pressure pipe 12.
  • the fuel injection valve 20 is a direct injection type that directly injects fuel into the combustion chamber of the engine 70, and one fuel injection valve is attached to each of a plurality of cylinders (four cylinders in this embodiment). It should be noted that FIG. 1 shows only the fuel injection valve 20 of one cylinder, and the description of the fuel injection valve 20 is omitted for the remaining cylinders.
  • the ECU 90 is a microcomputer including a CPU, ROM, RAM, drive circuit, input/output interface, and the like. Detection signals are sequentially input to the ECU 90 from various sensors such as a crank angle sensor that detects a rotation speed of the engine 70 and an accelerator sensor that detects an accelerator operation amount. The ECU 90 calculates an optimum fuel injection amount and injection timing based on engine operation information such as engine rotation speed and accelerator operation amount, and outputs a corresponding energization pulse (injection signal) to the fuel injection valve 20. As a result, fuel injection by the fuel injection valve 20 is controlled in each cylinder.
  • the fuel injection valve 20 includes first to fourth main body portions 21 to 24, and the first to fourth main body portions 21 to 24 are integrated to form an injection valve main body.
  • the first to fourth main body portions 21 to 24 are arranged in this order in the axial direction of the fuel injection valve 20, and the fuel supplied from the common rail 11 to the first main body portion 21 is provided in the fourth main body portion 24. It injects from the injection hole 34.
  • the axial direction of the fuel injection valve 20 will be referred to as “vertical direction”
  • the first body portion 21 side of the fuel injection valve 20 will be referred to as “upward direction”
  • the fourth body portion 24 side will be referred to as “downward direction”. ..
  • the first main body 21 is provided with a first high pressure passage 13 and a low pressure chamber 57.
  • the first high-pressure passage 13 is formed across the first body portion 21, the second body portion 22, and the third body portion 23, and penetrates the first to third body portions 21 to 23.
  • the first high-pressure passage 13 is connected to the high-pressure pipe 12 at the end opposite to the second main body 22 side.
  • a fuel temperature sensor 74 that detects the temperature of the fuel in the first high pressure passage 13 and a fuel pressure sensor 75 that detects the fuel pressure are attached to the first high pressure passage 13.
  • the detection signals of the fuel temperature sensor 74 and the fuel pressure sensor 75 are input to the ECU 90.
  • the pressure of the high-pressure fuel supplied to the fuel injection valve 20 (hereinafter, also referred to as “injection pressure”) is detected by the fuel pressure sensor 75.
  • the low-pressure chamber 57 is formed at the boundary between the first main body 21 and the second main body 22 by denting the surface facing the second main body 22 upward.
  • the high-pressure fuel in the first high-pressure passage 13 passes through the second main body portion 22, the third main body portion 23, and the fourth main body portion 24, and the low-pressure chamber 57 stores the fuel whose pressure has been reduced.
  • the low pressure chamber 57 is connected to the return pipe 65 via the low pressure passage 58, and further connected to the fuel tank 61. As a result, part of the high pressure fuel supplied to the fuel injection valve 20 is returned from the low pressure chamber 57 to the fuel tank 61 through the return pipe 65.
  • An opening/closing valve 50 that controls the fuel injection state of the fuel injection valve 20 is provided inside the low pressure chamber 57.
  • the on-off valve 50 is of an electromagnetic drive type, and the opening and closing of the valve is controlled by the ECU 90.
  • the second main body 22 is provided with a second high pressure passage 14, an intermediate chamber 26, a first passage 25, and a second passage 27.
  • the second high-pressure passage 14 is a branch passage that branches from the first high-pressure passage 13, and is a fuel passage to which the high-pressure fuel from the common rail 11 is supplied.
  • the second high pressure passage 14 is provided with a pressure rising orifice 14a.
  • the boost orifice 14a limits the flow rate of the fuel flowing through the second high pressure passage 14.
  • an annular chamber 14b is formed at the end portion on the side opposite to the first high pressure passage 13.
  • the annular chamber 14b is a fuel passage portion formed in an annular shape in the boundary portion of the second main body portion 22 with the third main body portion 23.
  • the high pressure fuel from the first high pressure passage 13 is introduced into the annular chamber 14b through the second high pressure passage 14.
  • the intermediate chamber 26 is a cylindrical chamber, and is formed at the boundary between the second main body 22 and the third main body 23.
  • the first passage 25 extends in the axial direction (vertical direction) of the fuel injection valve 20 inside the second main body portion 22 and penetrates the second main body portion 22.
  • the first passage 25 has one end communicating with the low pressure chamber 57 and the other end communicating with the intermediate chamber 26. As a result, the intermediate chamber 26 communicates with the low pressure chamber 57 via the first passage 25.
  • the second passage 27 is formed inside the second main body portion 22 and extends in the same direction (vertical direction) as the first passage 25.
  • the second passage 27 penetrates through the second main body 22, one end of which communicates with the low-pressure chamber 57, and the other end of which communicates with the first control chamber 46 of the third main body 23. ..
  • a decompression orifice 27 a is provided in the second passage 27 at a position close to the first main body portion 21. The pressure reducing orifice 27a limits the flow rate of the fuel flowing through the second passage 27.
  • the first body 23 is provided with a first control chamber 46 and a connection passage 47.
  • the first control chamber 46 is a chamber formed inside the injection valve body by denting the surface facing the second body portion 22 downward, and is in communication with the annular chamber 14b.
  • the high pressure fuel from the first high pressure passage 13 is supplied to the first control chamber 46 via the second high pressure passage 14.
  • the driven valve 41 which is displaceable in the axial direction (vertical direction) of the fuel injection valve 20 is arranged.
  • the driven valve 41 has a cylindrical shape, and has a third passage 42 formed in the center thereof so as to penetrate therethrough in the axial direction.
  • the third passage 42 has an opening on the side of the second main body 22 that is open to the intermediate chamber 26, and an opening on the side of the fourth main body 24 that is open to the inside of the first control chamber 46.
  • the third passage 42 is provided with a decompression orifice 42a.
  • the flow rate of the fuel flowing through the third passage 42 is limited by the pressure reducing orifice 42a.
  • the fuel flow rate on the outlet side of the pressure reducing orifice 27a included in the second passage 27 is set to be smaller than the fuel flow rate on the outlet side of the pressure reducing orifice 42a.
  • a spring 45 is attached to the driven valve 41 to bias the driven valve 41 toward the second main body portion 22 (upward).
  • the driven valve 41 is in contact with the lower surface of the second main body portion 22 by the upward force due to the fuel pressure inside the first control chamber 46 and the biasing force of the spring 45.
  • the driven valve 41 blocks the communication between the annular chamber 14b and the first control chamber 46, while the intermediate chamber 26 communicates with the first control chamber 46 through the third passage 42.
  • the fuel in the first control chamber 46 can flow into the low pressure chamber 57 via the third passage 42, the intermediate chamber 26 and the first passage 25.
  • the driven valve 41 In the state where the driven valve 41 is in contact with the lower surface of the second body portion 22, the fuel pressure inside the first control chamber 46 decreases, and the upward force due to the fuel pressure inside the first control chamber 46 and When the biasing force of the spring 45 falls below the downward force due to the fuel pressure inside the annular chamber 14b and the intermediate chamber 26, the driven valve 41 is displaced in the direction away from the lower surface of the second main body portion 22. As a result, the intermediate chamber 26 communicates with the first control chamber 46 without passing through the third passage 42, and the annular chamber 14b communicates with the first control chamber 46.
  • the second passage 27 directly connects the low pressure chamber 57 and the first control chamber 46. That is, the first control chamber 46 communicates with the low pressure chamber 57 via the second passage 27 regardless of the position (lifted state) of the driven valve 41. Further, a connection passage 47 extending from the first control chamber 46 to the fourth body portion 24 is formed in the third body portion 23. The connection passage 47 is provided with an orifice 47a, and the orifice 47a limits the flow rate of the fuel flowing through the connection passage 47.
  • the fourth body 24 is provided with a cylinder 35, a nozzle needle 31, a high pressure chamber 33, and a second control chamber 36.
  • a plurality of injection holes 34 for injecting fuel toward the outside are formed at the tip of the cylinder 35.
  • the nozzle needle 31 is housed inside the cylinder 35 so as to be capable of reciprocating in the vertical direction.
  • a spring 32 that biases the nozzle needle 31 downward is attached to the upper surface of the nozzle needle 31.
  • the high pressure chamber 33 is provided in the middle of the passage that connects the first high pressure passage 13 and the injection hole 34. Inside the high pressure chamber 33, the tip of the nozzle needle 31 is arranged.
  • the second control chamber 36 is provided inside the cylinder 35 on the side opposite to the injection hole 34 (above the nozzle needle 31).
  • the second control chamber 36 communicates with the first control chamber 46 via a connection passage 47.
  • the high-pressure fuel from the first high-pressure passage 13 is supplied to the second control chamber 36 via the first control chamber 46 and the connection passage 47.
  • the fuel pressure inside the second control chamber 36 and the urging force of the spring 32 attached to the nozzle needle 31 act on the nozzle needle 31, whereby the nozzle needle 31 is displaced downward, and fuel is injected from the injection hole 34.
  • the fuel is not injected, that is, the fuel injection valve 20 is closed.
  • the nozzle needle 31 is displaced upward and the fuel injection valve 20 is opened.
  • the fuel injection valve 20 is opened, the high pressure fuel in the high pressure chamber 33 is injected from the injection hole 34.
  • the on-off valve 50 is arranged inside the low pressure chamber 57 in the fuel passage that connects the first control chamber 46 and the low pressure chamber 57.
  • the on-off valve 50 regulates the fuel pressure inside the first control chamber 46 by allowing and blocking the outflow of fuel from the first control chamber 46 to the low pressure chamber 57 under drive control by the ECU 90.
  • the opening/closing valve 50 has a first opening/closing valve 51 and a second opening/closing valve 52.
  • the first opening/closing valve 51 is arranged on the first passage 25, and the open/close state thereof is controlled to switch between communication and cutoff between the low pressure chamber 57 and the first passage 25.
  • the second opening/closing valve 52 is arranged on the second passage 27, and the open/close state of the second opening/closing valve 52 is controlled to switch the communication between the low pressure chamber 57 and the second passage 27 and the disconnection thereof.
  • the ECU 90 independently controls the open/closed state of the first open/close valve 51 and the open/closed state of the second open/close valve 52 by energizing the first solenoid 53 and the second solenoid 54 independently of each other.
  • the first opening/closing valve 51 when the first solenoid 53 is not energized, the first opening/closing valve 51 is in contact with the second body portion 22 by the urging force of the first spring 55. In this abutting state, the first on-off valve 51 blocks the communication between the low pressure chamber 57 and the first passage 25 (valve closed state).
  • the first solenoid 53 When the first solenoid 53 is energized while the first opening/closing valve 51 is closed, the first opening/closing valve 51 moves upward against the biasing force of the first spring 55 and is separated from the second main body portion 22. To do. In this state, the low pressure chamber 57 and the first passage 25 are in communication with each other (valve open state), and the fuel is allowed to flow from the first passage 25 into the low pressure chamber 57.
  • the second opening/closing valve 52 when the second solenoid 54 is not energized, the second opening/closing valve 52 is in contact with the second body portion 22 by the urging force of the second spring 56. In this abutting state, the communication between the low pressure chamber 57 and the second passage 27 is blocked by the second opening/closing valve 52 (valve closed state). Further, when the second solenoid 54 is energized in the closed state of the second opening/closing valve 52, the second opening/closing valve 52 moves upward against the biasing force of the second spring 56 and is separated from the second main body portion 22. To do. In this state, the low pressure chamber 57 and the second passage 27 are in communication with each other (valve open state), and the inflow of fuel from the second passage 27 into the low pressure chamber 57 is allowed.
  • the ECU 90 moves the nozzle needle 31 to the valve opening position and valve closing position by switching the valve opening and closing of the first opening/closing valve 51.
  • the ECU 90 variably controls the speed at which the nozzle needle 31 moves in the axial direction, that is, the needle speed, by switching the open/closed state of the second open/close valve 52 in accordance with the drive control of the first open/close valve 51.
  • the ECU 90 independently controls the opening/closing of the first opening/closing valve 51 and the second opening/closing valve 52 to control the inclination of the fuel injection rate, more specifically, the rising speed and the falling speed of the injection rate, respectively. To do.
  • FIG. 2 shows an example of the injection rate pattern of the fuel injection valve 20.
  • the first opening/closing valve 51 is opened at the start of fuel injection by the fuel injection valve 20, and the first opening/closing valve 51 is closed at the end of fuel injection.
  • the open/close state of the second on-off valve 52 is controlled according to the rising speed and the falling speed of the injection rate.
  • the second opening/closing valve 52 is opened (see FIGS. 2A and 2C), and the injection rate In the low speed valve opening mode in which the rising speed is slow, the second opening/closing valve 52 is closed (see FIGS. 2B and 2D). Further, in the high-speed valve closing mode in which the falling rate of the injection rate at the end of fuel injection is made steep, the second opening/closing valve 52 is closed (see FIGS. 2A and 2B), and the injection rate falls. In the low speed valve closing mode in which the speed is slowed, the second opening/closing valve 52 is opened (see FIGS. 2C and 2D).
  • the first control chamber 46 communicates with the low pressure chamber 57 via the first passage 25, the third passage 42, and the second passage 27.
  • the fuel inside the first control chamber 46 and the second control chamber 36 passes through two routes, a route passing through the first passage 25 and the third passage 42 and a route passing through the second passage 27. Flow into the low pressure chamber 57.
  • the fuel pressure inside the first control chamber 46 and the second control chamber 36 decreases at high speed, and the nozzle needle 31 is displaced at high speed in the valve opening direction (upward direction). As a result, fuel is injected from the injection hole 34. In this case, the injection rate rises at a high speed as shown in FIG.
  • a differential pressure is generated before and after the decompression orifice 42a, and the sum of the upward force due to the fuel pressure inside the first control chamber 46 and the biasing force of the spring 45 is the inside of the intermediate chamber 26 and the annular chamber 14b. It is higher than the downward force due to fuel pressure. Therefore, the driven valve 41 is kept in contact with the second main body portion 22 when both the first opening/closing valve 51 and the second opening/closing valve 52 are open (see FIG. 4 ).
  • the fuel in the first control chamber 46 flows into the intermediate chamber 26 via the third passage 42, so that the inside of the intermediate chamber 26 The fuel pressure rises (see FIG. 5). Further, by closing the second opening/closing valve 52, the communication between the low pressure chamber 57 and the first control chamber 46 is cut off. In this case, the downward force due to the fuel pressure inside the intermediate chamber 26 and the annular chamber 14b becomes larger than the total of the upward force due to the fuel pressure inside the first control chamber 46 and the biasing force of the spring 45. As a result, the driven valve 41 moves downward (see FIG. 6). The downward movement of the driven valve 41 causes the high-pressure fuel in the first high-pressure passage 13 to flow into the first control chamber 46.
  • the fuel pressure inside the first control chamber 46 rises at a high speed.
  • the nozzle needle 31 starts to descend and the valve is closed. The operation shifts (see FIG. 6). In this case, as shown in FIG. 2A, the injection rate falls at a high speed. Thereafter, the nozzle needle 31 is seated on the seat portion (not shown), so that the fuel injection by the fuel injection valve 20 is stopped.
  • the second opening/closing valve 52 is maintained in the closed state as shown in FIG.
  • the on-off valve 51 is opened, the fuel inside the first control chamber 46 flows into the intermediate chamber 26 via the third passage 42 and the first passage 25.
  • a differential pressure is generated before and after the decompression orifice 42a, and the sum of the upward force due to the fuel pressure inside the first control chamber 46 and the urging force of the spring 45 is the intermediate chamber 26 and the annular chamber 14b. It is higher than the downward force due to the internal fuel pressure. Therefore, the driven valve 41 is maintained in a state of being in contact with the second main body portion 22.
  • the injection rate rises at a low speed. That is, the rate of increase (inclination) of the injection rate when the first opening/closing valve 51 is open and the second opening/closing valve 52 is closed is the injection rate when the first opening/closing valve 51 and the second opening/closing valve 52 are both open. Is smaller than the rising speed (slope) of. After the injection rate reaches the maximum, the operation is the same as the operation at the time of high speed fall shown in FIG.
  • the operation at high speed startup is similar to the operation at high speed startup shown in FIG.
  • the injection rate reaches the maximum, as shown in FIG. 8, when the second opening/closing valve 52 is maintained in the open state and the first opening/closing valve 51 is closed, the fuel in the first control chamber 46 passes through the third passage. It flows into the intermediate chamber 26 via 42, and the fuel pressure inside the intermediate chamber 26 rises. Further, since the second opening/closing valve 52 is in the open state, the fuel inside the first control chamber 46 flows into the low pressure chamber 57 via the second passage 27.
  • the fuel pressure inside the intermediate chamber 26 rises, and the downward force due to the fuel pressure inside the intermediate chamber 26 and the annular chamber 14b increases the upward force due to the fuel pressure inside the first control chamber 46 and the spring 45.
  • the driven valve 41 moves downward (see FIG. 9). The downward movement of the driven valve 41 causes the high-pressure fuel in the first high-pressure passage 13 to flow into the first control chamber 46.
  • the fuel pressure inside the first control chamber 46 rises at a low speed.
  • the nozzle needle 31 starts to descend and the valve is closed.
  • the operation shifts (see FIG. 9).
  • the injection rate falls at a low speed. That is, the rate of decrease (inclination) of the injection rate when the first opening/closing valve 51 is closed and the second opening/closing valve 52 is open is the injection rate when both the first opening/closing valve 51 and the second opening/closing valve 52 are closed. Is smaller than the decreasing speed (slope) of. After that, the nozzle needle 31 is seated on the seat portion, so that fuel is not injected from the injection hole 34.
  • FIG. 10 is a diagram showing an operation in the pressure reducing valve mode in which the second on-off valve 52 reduces the fuel pressure in the common rail 11 without injecting fuel from the fuel injection valve 20.
  • the fuel pressure inside the second control chamber 36, the first control chamber 46, and the intermediate chamber 26 is equal to that of the first high-pressure passage 13.
  • the fuel pressure is equal to the internal fuel pressure
  • the driven valve 41 is in contact with the second body portion 22 (see FIG. 3 ).
  • the second opening/closing valve 52 is opened from this state.
  • the fuel in the first control chamber 46 is discharged to the low pressure chamber 57 via the second passage 27, and the driven valve 41 is lowered as the pressure inside the first control chamber 46 decreases. Move in the direction.
  • the flow rate of fuel through the pressure increasing orifice 14a is larger than the flow rate of fuel through the pressure reducing orifice 27a. It is set. Therefore, when the first opening/closing valve 51 is closed and the second opening/closing valve 52 is opened, the pressure loss of the fuel discharged from the inside of the first control chamber 46 through the second passage 27 in the second passage 27 is reduced. In this case, the pressure loss of the fuel flowing from the second high pressure passage 14 into the first control chamber 46 becomes larger than the pressure loss in the second high pressure passage 14.
  • the nozzle needle 31 blocks the high pressure chamber 33 from the injection hole 34, that is, the fuel is injected from the injection hole 34. The state that is not done is maintained.
  • the fuel pressure inside the common rail 11 decreases. That is, the fuel pressure in the common rail 11 is reduced in a state where fuel is not injected from the fuel injection valve 20. Therefore, the fuel injection valve 20 has a function as a pressure reducing valve that reduces the fuel pressure in the common rail 11.
  • the driven valve 41 blocks communication between the annular chamber 14b and the first control chamber 46.
  • the opening area and the biasing force of the spring 45 are set.
  • the first control chamber 46 and the intermediate chamber 26 are communicated with each other by the driven valve 41 via the third passage 42. This is achieved by limiting the fuel flow rate by the decompression orifice 42a, the exposed area of the driven valve 41 to the intermediate chamber 26, the exposed area of the driven valve 41 to the first high pressure passage 13, and the biasing force set by the spring 45. ing.
  • the ECU 90 controls the fuel injection rate of the fuel injection valve 20 based on the operating state of the engine 70 in which the fuel injection valve 20 is mounted (for example, engine speed, engine load, etc.) and rail pressure. Specifically, the ECU 90 selects one of the high-speed valve opening mode and the low-speed valve opening mode as the injection rate pattern at the start of injection, and selects the high-speed valve closing mode and the low-speed valve closing mode as the injection rate pattern at the time of injection end. Select one (see FIG. 2). Then, the open/closed states of the first opening/closing valve 51 and the second opening/closing valve 52 are controlled according to the selected modes.
  • the ECU 90 causes the injection rate at the start of fuel injection (that is, the rising rate of the injection rate) and the injection rate at the end of fuel injection (that is, the fall of the injection rate) according to the engine operating state and the rail pressure. Injection control is performed in which at least one of (speed) is changed during the time until the injection rate becomes maximum.
  • the nozzle needle 31 is moved at high speed at the start or end of fuel injection. In this case, at the start of injection, the nozzle needle 31 reaches the full lift limit early (see the broken line R in FIG. 11), and at the end of injection, the nozzle needle 31 reaches the valve closing position early. Therefore, there is a concern that the amount of fuel injected from the fuel injection valve 20 by one time of fuel injection will decrease and the degree of freedom of injection will decrease.
  • the nozzle needle 31 reaches the maximum lift position from the closed position or the maximum lift position to the closed position.
  • the control for changing the lift speed is to be executed on the way to the point of reaching. Specifically, a lift increasing period in which the lift amount is changed to the increasing side in response to the valve opening command of the fuel injection valve 20 and a lift decreasing period in which the lift amount is changed to the decreasing side in response to the valve closing command of the fuel injection valve 20.
  • the needle speed is controlled at a high speed during a period in which the lift amount of the nozzle needle 31 is relatively small, thereby ensuring responsiveness to the drive command. Further, during a period in which the lift amount of the nozzle needle 31 is relatively large, the needle speed is controlled at a low speed to realize a large injection amount by the fuel injection valve 20.
  • the speed change control of the nozzle needle 31 will be described with reference to the time chart of FIG.
  • (a) is a transition of the valve opening command and valve closing command (INJ drive command) of the fuel injection valve 20
  • (b) is a transition of the needle speed command
  • (c) is a transition of the lift amount of the nozzle needle 31.
  • (D) shows the transition of the injection rate
  • (e) shows the transition of the pressure detected by the fuel pressure sensor 75.
  • the microcomputer of the ECU 90 controls the open/closed states of the first opening/closing valve 51 and the second opening/closing valve 52 according to the injection rate mode in response to the valve opening command of the fuel injection valve 20.
  • the high speed valve opening mode and the high speed valve closing mode are selected as the injection rate mode. Therefore, the ECU 90 opens both the first opening/closing valve 51 and the second opening/closing valve 52 according to the valve opening command of the fuel injection valve 20.
  • both the first opening/closing valve 51 and the second opening/closing valve 52 are opened, the nozzle needle 31 is displaced at the first speed V1 in the direction of increasing the lift amount.
  • the nozzle needle 31 starts to be displaced toward the valve opening side of the injection hole 34 (that is, the direction in which the lift amount is increased). Further, the injection rate gradually increases with the displacement of the nozzle needle 31. Then, at a timing (time t52) when the speed switching time T1 has elapsed from time t51, the second opening/closing valve 52 is closed while the first opening/closing valve 51 is opened. In the state where the first opening/closing valve 51 is opened and the second opening/closing valve 52 is closed, the nozzle needle 31 is displaced in the direction of increasing the lift amount at the second speed V2 lower than the first speed V1. .. Therefore, at time t52, the lift speed of the nozzle needle 31 is switched from the high speed first speed V1 to the low speed second speed V2.
  • the speed switching time T1 is the time required for the injection rate to change from zero to the maximum injection rate Dmax when both the first opening/closing valve 51 and the second opening/closing valve 52 are opened.
  • the speed switching time T1 is calculated based on the engine operating state (specifically, the engine rotation speed and the engine load) and the injection pressure.
  • the nozzle needle 31 is located at the intermediate position LTH between the valve closing position and the full lift limit.
  • the microcomputer of the ECU 90 causes the microcomputer of the first opening/closing valve 51 and the second opening/closing valve 52 to operate according to the injection rate mode.
  • the open/closed state is controlled (time t53).
  • the first opening/closing valve 51 is closed while the second opening/closing valve 52 is open in accordance with the closing command of the fuel injection valve 20.
  • the nozzle needle 31 is displaced at the third speed V3 in the direction of decreasing the lift amount.
  • the needle closing command time T2 is a value calculated based on the engine operating state (engine speed, engine load) and rail pressure (or injection pressure), and is injected by the fuel injection valve 20 by one fuel injection. It is the time corresponding to the required value of the fuel amount (hereinafter, also referred to as “required injection amount”). The larger the required injection amount, the longer the needle closing valve command time T2 is set.
  • the second on-off valve 52 is closed while the first on-off valve 51 is closed. ..
  • the nozzle needle 31 is displaced in the direction of decreasing the lift amount at the fourth speed V4 which is higher than the third speed V3. Therefore, at time t52, the lift speed of the nozzle needle 31 is switched from the low third speed V3 to the high fourth speed V4.
  • the third speed V3 and the fourth speed V4 represent deceleration, and the third speed V3 is a value on the lower speed side (small deceleration) than the fourth speed V4.
  • the speed switching time T3 is until the nozzle needle 31 reaches the intermediate position LTH when the first opening/closing valve 51 is closed and the second opening/closing valve 52 is opened in accordance with the closing command of the fuel injection valve 20. Is a total time of the time required for and the needle closing command time T2.
  • the speed switching time T3 is calculated based on the engine operating state (specifically, the engine rotation speed and the engine load) and the injection pressure. After that, the nozzle needle 31 returns to the seat portion (valve closing position), so that the fuel injection from the fuel injection valve 20 is stopped.
  • the flexibility of fuel injection can be improved if the upper limit of the amount of fuel that can be injected by a single fuel injection from the fuel injection valve 20 can be expanded.
  • the period of the injection hole throttle region can be made as long as possible. it can.
  • the region where the lift amount is larger than the intermediate position LTH corresponds to the “first lift region”, and the region where the lift amount is smaller than the intermediate position LTH corresponds to the “second lift region”.
  • the lift speed of the nozzle needle 31 changes according to various parameters.
  • the switching timing TL for switching the lift speed between the high speed and the low speed that is, the speed switching times T1, T3 based on the correlation parameter that correlates with the lift speed of the nozzle needle 31.
  • the following elements (1) and (2) are used as correlation parameters.
  • the lift speed of the nozzle needle 31 has a variation factor
  • the switching timing TL is variably controlled based on the following elements (3) to (5). .. (3) Velocity variation due to individual difference of fuel injection valve (4) Velocity variation due to difference in injection interval (5) Velocity variation due to deterioration over time and engine operating conditions
  • the lift speed of the nozzle needle 31 changes according to the injection pressure. Specifically, at the start of fuel injection, the higher the injection pressure, the higher the lift speed. This is because the higher the injection pressure is, the greater the force with which the high pressure fuel supplied from the common rail 11 to the high pressure chamber 33 pushes up the nozzle needle 31, and the easier it is for the nozzle needle 31 to move upward.
  • the nozzle needle 31 reaches the full lift limit at an early timing (see the broken line R in FIG. 12). Further, the higher the injection pressure is, the more easily the nozzle needle 31 is displaced upward and the easier it is to reach the full lift limit. Therefore, at the start of fuel injection, the higher the injection pressure, the earlier the lift speed switching timing TL is set. Specifically, as shown in FIG. 12, when there is a command to open the fuel injection valve 20 at time t11, if the injection pressure is relatively low, as shown by the alternate long and short dash line in FIG. Switch the lift speed from high speed to low speed. On the other hand, when the injection pressure is relatively high, as shown by the solid line in FIG. 12, the lift speed is switched from high speed to low speed at a timing earlier than time t13 (time t12). The injection pressure may be detected by either the rail pressure sensor 73 or the fuel pressure sensor 75.
  • the lift speed is switched from low speed to high speed at the timing when the nozzle needle 31 reaches the intermediate position LTH.
  • the higher the injection pressure the greater the force with which the nozzle needle 31 is pushed up by the high-pressure fuel supplied from the common rail 11 to the high-pressure chamber 33, and the nozzle needle 31 moves downward. It gets harder. That is, the lower the injection pressure is, the easier the nozzle needle 31 is to move downward. In this case, the lower the injection pressure, the earlier the nozzle needle 31 reaches the intermediate position LTH.
  • the lift speed switching timing TL is set such that the lift speed is switched in a shorter time from the valve closing command of the fuel injection valve 20 as the injection pressure is lower.
  • the valve closing response is ensured while increasing the fuel injection amount that can be injected from the fuel injection valve 20 by one fuel injection.
  • the lift speed of the nozzle needle 31 changes according to the temperature of the fuel supplied to the fuel injection valve 20. Specifically, at the start of fuel injection, the higher the fuel temperature, the lower the fuel viscosity and the higher the lift speed. Focusing on this point, in the present embodiment, the higher the fuel temperature is, the earlier the switching timing TL of the lift speed is set. Specifically, as shown in FIG. 13, when there is a valve opening command for the injection hole 34 at time t31, when the fuel temperature detected by the fuel temperature sensor 74 is relatively low, the chain line in FIG. As shown by, the lift speed is switched from high speed to low speed at time t33. On the other hand, when the fuel temperature detected by the fuel temperature sensor 74 is relatively high, as shown by the solid line in FIG. 13, the lift speed is changed from high speed to low speed at a timing (time t32) earlier than time t33. Switch to.
  • the lift speed switching timing TL is set such that the lift speed is switched in a shorter time from the valve closing command of the fuel injection valve 20 as the fuel temperature becomes higher.
  • the lift speed of the nozzle needle 31 has individual difference, and varies depending on each fuel injection valve 20.
  • the switching timing TL is set with reference to the fuel injection valve 20 having a slow lift speed
  • the fuel injection valve 20 having a high lift speed changes the lift position at the start of fuel injection before the lift speed is switched from the high speed to the low speed.
  • the full lift limit will be reached. Therefore, in the present embodiment, the injection characteristic information of each fuel injection valve 20 is stored in the storage unit in advance, and the stored injection characteristic information is read out and utilized to meet the individual difference of each fuel injection valve 20. The lift speed variation is corrected.
  • FIG. 14 when there is a command to open the fuel injection valve 20 at time t21, one point is shown in FIG. 14 for an individual having an injection characteristic in which the lift speed at the start of injection is relatively slow. As indicated by the chain line, the lift speed is switched from high speed to low speed at time t23. On the other hand, as shown by the solid line in FIG. 14, the individual having the injection characteristic with the relatively high lift speed switches the lift speed from the high speed to the low speed at a timing earlier than the time t23 (time t22).
  • the injection characteristic information of each fuel injection valve 20 is read and the switching timing TL is set according to the individual difference in lift speed. Specifically, for an individual having an injection characteristic with a relatively high lift speed at the end of injection, an individual having an injection characteristic with a relatively low lift speed can be processed in a shorter time from the valve closing command of the fuel injection valve 20.
  • the lift speed switching timing TL is set so that the lift speed can be switched.
  • the lift timing switching timing TL at the start of injection is corrected to reflect the speed variation due to the difference in injection interval.
  • the amplitude of the pressure pulsation at the injection interval is calculated according to the elapsed time from the end timing of the preceding injection, and the larger the calculated amplitude is on the positive side, the more the fuel injection starts and the fuel injection end.
  • the lift speed switching timing TL is set to an early timing.
  • the time from when the fuel injection valve 20 reaches the injection hole restriction area and the time from when the fuel injection valve 20 is instructed to close the valve until the fuel injection valve 20 exits the injection hole restriction area are acquired. Then, the obtained value is used to perform feedback correction of the lift speed switching timing TL.
  • step S101 it is determined based on the engine operating state (engine speed and engine load) whether or not there is a demand for a high rectangle to increase the rectangularity of the injection rate waveform. If there is a high rectangle request, the process proceeds to step S102, and the needle speed command value is set to "high speed".
  • step S103 it is determined whether the required injection amount of the fuel injection valve 20 is larger than the first threshold TH1.
  • the process proceeds to step S104, and it is determined whether the required injection amount is greater than the second threshold TH2.
  • the second threshold TH2 is set to a value on the side where the required injection amount is larger than the first threshold TH1.
  • the lift speed is changed from the high speed to the low speed in the middle of the change of the lift amount from the increasing side to the decreasing side at the time of starting the fuel injection. Switch.
  • the required injection amount is larger than the second threshold value TH2
  • the lift speed is switched from the high speed to the low speed during the change of the lift amount not only at the start of injection but also at the end of fuel injection.
  • step S104 the needle closing valve command time T2 is calculated based on the required injection amount and the rail pressure. As the needle closing command time T2, a longer time is set as the required injection amount is larger, and a shorter time is set as the rail pressure is higher.
  • step S106 speed switching times T1 and T3 are calculated.
  • FIG. 17 is a functional block diagram showing the calculation process of the speed switching times T1 and T3.
  • the microcomputer of the ECU 90 first calculates the base time Tb as the basic amount of the speed switching times T1 and T3 based on the required injection amount and the injection pressure.
  • the base period setting map stored in advance is used to calculate the base time Tb by reading the time corresponding to the injection pressure detected by the fuel pressure sensor 75 and the required injection amount from the base period setting map.
  • As the base time Tb a base time Tb1 at the start of injection and a base time Tb3 at the end of injection are calculated.
  • the microcomputer of the ECU 90 corrects the base times Tb1 and Tb3 based on the injection characteristic information indicating the individual difference of each fuel injection valve 20, the fuel temperature, and the injection interval. Specifically, the correction value Ka of the speed switching time read from the injection characteristic information of each fuel injection valve 20, the correction value Kb read from the fuel temperature correction map using the fuel temperature detected by the fuel temperature sensor 74, and The base times Tb1 and Tb3 are corrected by the correction value Kc read from the injection interval correction map. Further, the microcomputer of the ECU 90 acquires the actual values of the speed switching times T1 and T3 from the detected injection rate waveform, and corrects the base times Tb1 and Tb3 with the feedback correction value Kd calculated based on the acquired actual values. Then, the values after correction by these correction values are set as speed switching times T1 and T3.
  • a valve opening command is output to the fuel injection valve 20 at a predetermined injection start timing.
  • the injection start timing is calculated based on the engine operating state each time.
  • step S108 it is determined whether or not the speed switching time T1 has elapsed from the valve opening command of the fuel injection valve 20.
  • the process proceeds to step S109, and the command value of the needle speed is set to "low speed".
  • the second opening/closing valve 52 is closed, and the needle speed is switched from the first speed V1 to the second speed V2.
  • step S110 it is determined whether or not the needle closing command time T2 has elapsed from the valve opening command of the fuel injection valve 20, and the process proceeds to step S111 on the condition that the affirmative judgment is made in step S110.
  • step S111 the command value of the needle speed is set to "low speed", and in step S112, a command to close the fuel injection valve 20 is output.
  • energization of the first solenoid 53 is stopped and energization of the first opening/closing valve 51 is closed while continuing energization of the second solenoid 54 (that is, with the second opening/closing valve 52 open). Be done.
  • the nozzle needle 31 is displaced at the third speed V3 toward the direction of closing the injection hole 34.
  • step S113 it is determined whether or not the speed switching time T3 has elapsed from the opening command of the fuel injection valve 20.
  • the process proceeds to step S114, and the command value of the needle speed is set to "high speed".
  • the second opening/closing valve 52 is closed and the needle speed is switched from the third speed V3 to the fourth speed V4.
  • the nozzle needle 31 moves to the valve closing position, the fuel injection from the fuel injection valve 20 is stopped.
  • step S104 If the required injection amount is greater than the first threshold TH1 and less than or equal to the second threshold TH2, a negative determination is made in step S104 and the process proceeds to step S115.
  • the control for switching the needle speed from the high speed to the low speed on the way is performed only at the time of starting the fuel injection among the start and end of the fuel injection.
  • step S115 the needle closing command time T2 is calculated based on the required injection amount and the rail pressure.
  • step S116 the speed switching time T1 is calculated in the same manner as the processing of step S106.
  • steps S117 to S120 the same processing as steps S107 to S110 is executed.
  • step S121 the command value of the needle speed is set to "high speed", and the valve closing command of the fuel injection valve 20 is output in step S122. Then, this routine is finished.
  • step S103 If the required injection amount is less than or equal to the first threshold value TH1, a negative determination is made in step S103 and the process proceeds to step S123. In this case, the speed change control is not executed at the time of starting and ending the fuel injection, and the needle speed is controlled at a high speed.
  • step S123 the needle closing command time T2 is calculated based on the required injection amount and the rail pressure.
  • step S124 a valve opening command is output to the fuel injection valve 20 at a predetermined injection start timing.
  • step S125 it is determined whether or not the needle closing command time T2 has elapsed from the valve opening command of the fuel injection valve 20, and the process proceeds to step S126 on the condition that the affirmative judgment is made in step S125.
  • step S126 the command value of the needle speed is set to "high speed", and when the predetermined injection end timing is reached, the valve closing command of the fuel injection valve 20 is output in step S127. As a result, the energization of the first opening/closing valve 51 and the second opening/closing valve 52 is stopped.
  • step S101 When there is no request for a high rectangular injection rate, a negative determination is made in step S101 and the process proceeds to step S128.
  • step S129 the needle valve closing command time T2 is calculated based on the required injection amount and the rail pressure, and when the predetermined injection start timing is reached, the valve opening command of the fuel injection valve 20 is output in step S130. As a result, the first opening/closing valve 51 is opened while the second opening/closing valve 52 is closed. In subsequent steps S131 to S133, the same processing as steps S125 to S127 is executed, and this routine is finished.
  • the lift speed of the nozzle needle 31 is controlled to be slower than during the period when the lift amount is small.
  • the timing at which the nozzle needle 31 reaches the maximum lift position or the valve closing position can be delayed, and the valve opening period of the fuel injection valve 20 can be made as long as possible. Therefore, according to the above configuration, it is possible to increase the amount of fuel injected from the fuel injection valve 20 by one fuel injection while ensuring the responsiveness of the nozzle needle 31 to the drive command of the fuel injection valve 20.
  • speed change control is performed to switch the lift speed from high speed to low speed at least at one of injection start and injection end.
  • the required injection amount is larger than the first threshold value TH1
  • the lift speed is switched from the high speed to the low speed during the injection start.
  • the fuel injection control can be performed so as to satisfy the required injection amount.
  • the required injection amount is less than or equal to the first threshold TH1
  • the control for switching the lift speed during the injection start and the injection end is not performed. Therefore, when the required injection amount is not so large and it is not necessary to increase the injection amount, the valve opening response and the valve closing response of the nozzle needle 31 can be prioritized.
  • the lift speed is switched midway at both the injection start and the injection end. Fuel injection can be performed so as to satisfy the injection amount.
  • the transition waveform of the injection rate is calculated using the pressure detected by the fuel pressure sensor 75, and the lift speed switching timing TL is feedback-corrected based on the calculated transition waveform of the injection rate.
  • a lift sensor that detects the lift amount of the nozzle needle 31 is attached, and from the lift amount detected by the lift sensor, the time from when the fuel injection valve 20 is instructed to open the valve until it actually reaches the injection hole throttle region, and the fuel The time from when the injection valve 20 is instructed to close the valve to when it actually passes through the injection hole restriction region may be acquired, and the lift timing switching timing TL may be feedback-corrected using the acquired value.
  • the switching timing TL is variably controlled based on the speed variation due to the engine operating conditions, the switching timing TL may be variably controlled based on some of these (1) to (5).
  • the configuration of the fuel injection valve 20 is not limited to the configuration shown in FIG.
  • the second passage 27 is formed inside the driven valve 41 and the third passage 27 is formed. It may be configured to communicate with the first control chamber 46 via a passage different from the passage 42.
  • the second passage 27 communicates with the intermediate chamber 26 and the driven valve 41 blocks the first high pressure passage 13 and the first control chamber 46
  • the second passage 27 connects the intermediate chamber 26 and the third passage 42. It may be configured to communicate with the first control chamber 46 via the.
  • the second opening/closing valve 52 for adjusting the moving speed of the nozzle needle 31, and opening/closing of these two or more opening/closing valves are individually controlled.
  • the moving speed of the nozzle needle 31 may be adjusted with higher accuracy.
  • the flow rate of fuel through the pressure increasing orifice 14a is set to be larger than the total flow rate of fuel through the pressure reducing orifices provided in the fuel passages of the two or more on-off valves.
  • the fuel injection valve 20 may be any fuel injection valve capable of variably controlling the lift speed of the nozzle needle 31 based on the drive signal. Therefore, as a fuel injection system to which the present disclosure can be applied, a fuel including a plurality of valves (first opening/closing valve 51 and second opening/closing valve 52) as a pressure adjusting valve for adjusting the fuel pressure inside the first control chamber 46. It is not limited to the case of using the injection valve 20.
  • an opening/closing valve whose opening/closing state is controlled by energization control for the piezo actuator is provided, and the lift amount of the opening/closing valve is continuously controlled by energization control for the piezo actuator.
  • the lift speed of the nozzle needle 31 may be variably controlled.
  • a plurality of discharge orifices are provided, and the fuel pressure in the control chamber is adjusted by switching the discharge of the fuel through the plurality of discharge orifices, whereby the lift speed of the nozzle needle 31 is variably controlled. It may be one.
  • control unit and the method described in the present disclosure are provided by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program, May be realized.
  • control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • control unit and the method thereof described in the present disclosure are based on a combination of a processor and a memory programmed to execute one or a plurality of functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more configured dedicated computers.
  • the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by a computer.

Abstract

An injection control device for an internal combustion engine (70) controls a fuel injection amount from a fuel injection valve (20) by changing a lift amount of a nozzle needle (31). The injection control device includes a drive control unit that controls a lift speed of the nozzle needle (31) in a variable manner, on the basis of a drive signal. In at least one of a lift increasing period during which the lift amount of the nozzle needle (31) is changed to an increasing side in response to a valve opening command for the fuel injection valve (20) and a lift decreasing period during which the lift amount of the nozzle needle (31) is changed to a decreasing side in response to a valve closing command for the fuel injection valve (20), the drive control unit performs speed change control in which the lift speed of the nozzle needle (31) is controlled at a lower speed in a period during which the nozzle needle (31) is located in a first lift region close to a full lift position than in a period during which the nozzle needle (31) is located in a second lift region in which the lift amount is less than in the first lift region.

Description

内燃機関の噴射制御装置Injection control device for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年12月5日に出願された日本特許出願番号2018-228190号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-228190 filed on December 5, 2018, the content of which is incorporated herein by reference.
 本開示は、内燃機関の噴射制御装置に関する。 The present disclosure relates to an injection control device for an internal combustion engine.
 ディーゼルエンジンの燃料噴射弁としては、ノズルニードルの上部に配置された制御室の内部の燃料圧力をオリフィスで制御することにより、ノズルニードルを燃料噴射弁の開弁方向及び閉弁方向に移動させるものが一般に知られている(例えば、特許文献1参照)。特許文献1には、アウトオリフィス流量を拡大することによりノズルニードルの開弁速度及び閉弁速度を向上させることが開示されている。 As a fuel injection valve for a diesel engine, a nozzle needle is moved in the opening direction and the closing direction of the fuel injection valve by controlling the fuel pressure inside a control chamber arranged above the nozzle needle with an orifice. Is generally known (for example, refer to Patent Document 1). Patent Document 1 discloses that the valve opening speed and the valve closing speed of the nozzle needle are improved by increasing the out-orifice flow rate.
特開2016-53354号公報JP, 2016-53354, A
 しかしながら、ノズルニードルの開弁速度及び閉弁速度を単に速くした場合、駆動指令後にノズルニードルが最大リフト位置又は閉弁位置に短時間で到達してしまう。この場合、燃料噴射弁により噴射可能な燃料量が少なくなってしまうことが懸念される。 However, if the opening speed and closing speed of the nozzle needle are simply increased, the nozzle needle will reach the maximum lift position or the closing position in a short time after the drive command. In this case, there is a concern that the amount of fuel that can be injected by the fuel injection valve will decrease.
 本開示は、上記課題に鑑みてなされたものであり、燃料噴射弁の駆動指令に対するノズルニードルの応答性を確保しつつ、1回の燃料噴射により燃料噴射弁から噴射される燃料量を増大することができる内燃機関の噴射制御装置を提供することを主たる目的とする。 The present disclosure has been made in view of the above problems, and increases the amount of fuel injected from the fuel injection valve by one fuel injection while ensuring the responsiveness of the nozzle needle to the drive command of the fuel injection valve. A main object of the present invention is to provide an injection control device for an internal combustion engine that is capable of performing the above.
 上記課題を解決するために、以下の手段を採用した。 The following means have been adopted to solve the above problems.
 本開示は、燃料噴射弁の開弁及び閉弁を行うノズルニードルのリフト量を変更することにより、前記燃料噴射弁による燃料噴射量を制御する内燃機関の噴射制御装置に関する。請求項1に記載の開示は、駆動信号に基づいて前記ノズルニードルのリフト速度を可変に制御する駆動制御部を備え、前記駆動制御部は、前記燃料噴射弁の開弁指令に伴い前記ノズルニードルのリフト量を増大側に変更するリフト増大期間、及び前記燃料噴射弁の閉弁指令に伴い前記ノズルニードルのリフト量を減少側に変更するリフト減少期間のうち少なくとも一方において、前記ノズルニードルがフルリフト位置に近い側の第1リフト領域にある期間では、前記第1リフト領域に対しリフト量が小さい側の第2リフト領域にある期間よりも、前記ノズルニードルのリフト速度を低速で制御する速度変更制御を実施する。 The present disclosure relates to an injection control device for an internal combustion engine that controls a fuel injection amount by the fuel injection valve by changing a lift amount of a nozzle needle that opens and closes the fuel injection valve. The disclosure according to claim 1 includes a drive control unit that variably controls a lift speed of the nozzle needle based on a drive signal, and the drive control unit includes the nozzle needle in response to a valve opening command of the fuel injection valve. In at least one of a lift increasing period for changing the lift amount of the nozzle needle to the increasing side and a lift decreasing period for changing the lift amount of the nozzle needle to the decreasing side in response to a valve closing command of the fuel injection valve, the nozzle needle is fully lifted. A speed change for controlling the lift speed of the nozzle needle at a lower speed in a period in the first lift region closer to the position than in a period in the second lift region on the smaller lift amount side with respect to the first lift region. Take control.
 上記構成では、燃料噴射の噴射開始時及び噴射終了時の少なくとも一方において、ノズルニードルのリフト量が大きい期間では、リフト量が小さい期間よりもノズルニードルのリフト速度を低速で制御する。これにより、ノズルニードルが最大リフト位置又は閉弁位置に到達するタイミングを遅くすることができ、燃料噴射弁の開弁期間をできるだけ長くすることができる。よって、上記構成によれば、燃料噴射弁の駆動指令に対するノズルニードルの応答性を確保しつつ、1回の燃料噴射により燃料噴射弁から噴射される燃料量を増大することができる。 In the above configuration, the lift speed of the nozzle needle is controlled to be slower in a period in which the lift amount of the nozzle needle is large at least at one of the injection start and the injection end of the fuel injection than in the period in which the lift amount is small. Thereby, the timing at which the nozzle needle reaches the maximum lift position or the valve closing position can be delayed, and the valve opening period of the fuel injection valve can be made as long as possible. Therefore, according to the above configuration, it is possible to increase the amount of fuel injected from the fuel injection valve by one fuel injection while ensuring the responsiveness of the nozzle needle to the drive command of the fuel injection valve.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、燃料噴射システムの概略構成を示す図であり、 図2は、燃料噴射弁の噴射率パターンの一例を示す図であり、 図3は、閉弁時の燃料噴射弁を表す図であり、 図4は、高速開弁モードの燃料噴射弁の動作を説明する図であり、 図5は、高速開弁モードから高速閉弁モードへ移行するときの燃料噴射弁の動作を説明する図であり、 図6は、高速閉弁モードの燃料噴射弁の動作を説明する図であり、 図7は、低速開弁モードの燃料噴射弁の動作を説明する図であり、 図8は、低速開弁モードから低速閉弁モードへ移行するときの燃料噴射弁の動作を説明する図であり、 図9は、低速閉弁モードの燃料噴射弁の動作を説明する図であり、 図10は、第2開閉弁による減圧動作を示す図であり、 図11は、噴射開始時及び噴射終了時のリフト速度制御の具体的態様を示す図であり、 図12は、噴射圧に応じたリフト速度制御を説明する図であり、 図13は、燃料温度に応じたリフト速度制御を説明する図であり、 図14は、燃料噴射弁の個体差に応じたリフト速度制御を説明する図であり、 図15は、噴射インターバルに応じたリフト速度制御を説明する図であり、 図16は、リフト速度制御の処理手順を示すフローチャートであり、 図17は、速度切替時間の算出処理を表す機能ブロック図である。
The above and other objects, features and advantages of the present disclosure will become more apparent by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a diagram showing a schematic configuration of a fuel injection system, FIG. 2 is a diagram showing an example of an injection rate pattern of the fuel injection valve, FIG. 3 is a diagram showing a fuel injection valve when the valve is closed, FIG. 4 is a diagram for explaining the operation of the fuel injection valve in the high speed valve opening mode, FIG. 5 is a diagram for explaining the operation of the fuel injection valve when shifting from the high speed valve opening mode to the high speed valve closing mode, FIG. 6 is a diagram for explaining the operation of the fuel injection valve in the high speed valve closing mode, FIG. 7 is a diagram for explaining the operation of the fuel injection valve in the low speed valve opening mode, FIG. 8 is a diagram for explaining the operation of the fuel injection valve when shifting from the low speed valve opening mode to the low speed valve closing mode, FIG. 9 is a diagram for explaining the operation of the fuel injection valve in the low speed valve closing mode, FIG. 10 is a diagram showing a pressure reducing operation by the second opening/closing valve, FIG. 11 is a diagram showing a specific mode of lift speed control at the start of injection and at the end of injection. FIG. 12 is a diagram for explaining the lift speed control according to the injection pressure, FIG. 13 is a diagram for explaining the lift speed control according to the fuel temperature, FIG. 14 is a diagram for explaining the lift speed control according to the individual difference of the fuel injection valve, FIG. 15 is a diagram for explaining lift speed control according to the injection interval, FIG. 16 is a flowchart showing a processing procedure of lift speed control, FIG. 17 is a functional block diagram showing the calculation processing of the speed switching time.
 以下、実施形態について図面を参照しつつ説明する。なお、以下の各実施形態の相互において、互いに同一又は均等である部分には図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。 Embodiments will be described below with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the portions having the same reference numerals is cited.
 本実施形態は、内燃機関である車載多気筒ディーゼルエンジンに適用される燃料噴射システムに具体化している。この燃料噴射システムでは、電子制御ユニット(以下、「ECU」という。)を中枢としてエンジンの燃料噴射を制御している。図1に示すように、燃料噴射システム10は、コモンレール11、燃料噴射弁20及びECU90を備える。 The present embodiment is embodied in a fuel injection system applied to an in-vehicle multi-cylinder diesel engine which is an internal combustion engine. In this fuel injection system, an electronic control unit (hereinafter, referred to as "ECU") is the center for controlling the fuel injection of the engine. As shown in FIG. 1, the fuel injection system 10 includes a common rail 11, a fuel injection valve 20, and an ECU 90.
 図1において、コモンレール11は、図示しない高圧ポンプの下流側に接続されており、高圧ポンプで高圧化された燃料(以下「高圧燃料」という。)が供給される。コモンレール11の内部には、高圧ポンプから圧送された高圧燃料が高圧状態で保持される。コモンレール11には、コモンレール11の内部の燃料圧力(以下「レール圧」という。)を検出するレール圧センサ73が取り付けられている。レール圧センサ73の検出信号はECU90に入力される。 In FIG. 1, the common rail 11 is connected to the downstream side of a high-pressure pump (not shown), and fuel pressurized by the high-pressure pump (hereinafter referred to as “high-pressure fuel”) is supplied. Inside the common rail 11, the high-pressure fuel pumped from the high-pressure pump is held in a high pressure state. A rail pressure sensor 73 that detects the fuel pressure inside the common rail 11 (hereinafter referred to as “rail pressure”) is attached to the common rail 11. The detection signal of the rail pressure sensor 73 is input to the ECU 90.
 コモンレール11には、高圧配管12を介して燃料噴射弁20が接続されている。燃料噴射弁20は、エンジン70の燃焼室内に燃料を直接噴射する直噴式であり、複数の気筒(本実施形態では4気筒)のそれぞれに1本ずつ取り付けられている。なお、図1には、1つの気筒の燃料噴射弁20のみを示し、残りの気筒については燃料噴射弁20の記載を省略している。 A fuel injection valve 20 is connected to the common rail 11 via a high-pressure pipe 12. The fuel injection valve 20 is a direct injection type that directly injects fuel into the combustion chamber of the engine 70, and one fuel injection valve is attached to each of a plurality of cylinders (four cylinders in this embodiment). It should be noted that FIG. 1 shows only the fuel injection valve 20 of one cylinder, and the description of the fuel injection valve 20 is omitted for the remaining cylinders.
 ECU90は、CPU、ROM、RAM、駆動回路、入出力インターフェース等を含むマイクロコンピュータである。ECU90には、エンジン70の回転速度を検出するクランク角センサ、アクセル操作量を検出するアクセルセンサ等の各種センサから検出信号が逐次入力される。ECU90は、エンジン回転速度やアクセル操作量等のエンジン運転情報に基づいて最適な燃料噴射量及び噴射時期を算出し、それに応じた通電パルス(噴射信号)を燃料噴射弁20に出力する。これにより、各気筒において燃料噴射弁20による燃料噴射が制御される。 The ECU 90 is a microcomputer including a CPU, ROM, RAM, drive circuit, input/output interface, and the like. Detection signals are sequentially input to the ECU 90 from various sensors such as a crank angle sensor that detects a rotation speed of the engine 70 and an accelerator sensor that detects an accelerator operation amount. The ECU 90 calculates an optimum fuel injection amount and injection timing based on engine operation information such as engine rotation speed and accelerator operation amount, and outputs a corresponding energization pulse (injection signal) to the fuel injection valve 20. As a result, fuel injection by the fuel injection valve 20 is controlled in each cylinder.
 次に、燃料噴射弁20の構成について詳細に説明する。燃料噴射弁20は、第1~第4本体部21~24を備え、これら第1~第4本体部21~24が一体化されることにより噴射弁本体が構成されている。第1~第4本体部21~24は、燃料噴射弁20の軸方向にこの順に並べて配置されており、コモンレール11から第1本体部21に供給された燃料を、第4本体部24に設けられた噴射孔34から噴射する。なお、以下の説明では、燃料噴射弁20の軸方向を「上下方向」、燃料噴射弁20における第1本体部21側を「上方向」、第4本体部24側を「下方向」とする。 Next, the configuration of the fuel injection valve 20 will be described in detail. The fuel injection valve 20 includes first to fourth main body portions 21 to 24, and the first to fourth main body portions 21 to 24 are integrated to form an injection valve main body. The first to fourth main body portions 21 to 24 are arranged in this order in the axial direction of the fuel injection valve 20, and the fuel supplied from the common rail 11 to the first main body portion 21 is provided in the fourth main body portion 24. It injects from the injection hole 34. In the following description, the axial direction of the fuel injection valve 20 will be referred to as “vertical direction”, the first body portion 21 side of the fuel injection valve 20 will be referred to as “upward direction”, and the fourth body portion 24 side will be referred to as “downward direction”. ..
 第1本体部21には、第1高圧通路13と、低圧室57とが設けられている。第1高圧通路13は、第1本体部21、第2本体部22及び第3本体部23に亘って形成されており、第1~第3本体部21~23を貫通している。第1高圧通路13は、第2本体部22側とは反対側の端部が高圧配管12に連通されている。これにより、コモンレール11からの高圧燃料が高圧配管12を介して第1高圧通路13に供給される。第1高圧通路13には、第1高圧通路13内の燃料の温度を検出する燃温センサ74、及び燃料圧力を検出する燃圧センサ75が取り付けられている。燃温センサ74及び燃圧センサ75の検出信号はECU90に入力される。燃圧センサ75により、燃料噴射弁20に供給される高圧燃料の圧力(以下、「噴射圧」ともいう。)が検出される。 The first main body 21 is provided with a first high pressure passage 13 and a low pressure chamber 57. The first high-pressure passage 13 is formed across the first body portion 21, the second body portion 22, and the third body portion 23, and penetrates the first to third body portions 21 to 23. The first high-pressure passage 13 is connected to the high-pressure pipe 12 at the end opposite to the second main body 22 side. As a result, the high-pressure fuel from the common rail 11 is supplied to the first high-pressure passage 13 via the high-pressure pipe 12. A fuel temperature sensor 74 that detects the temperature of the fuel in the first high pressure passage 13 and a fuel pressure sensor 75 that detects the fuel pressure are attached to the first high pressure passage 13. The detection signals of the fuel temperature sensor 74 and the fuel pressure sensor 75 are input to the ECU 90. The pressure of the high-pressure fuel supplied to the fuel injection valve 20 (hereinafter, also referred to as “injection pressure”) is detected by the fuel pressure sensor 75.
 低圧室57は、第2本体部22を向いた面が上方向に凹むことにより、第1本体部21において第2本体部22との境界部に形成されている。低圧室57には、第1高圧通路13内の高圧燃料が第2本体部22、第3本体部23及び第4本体部24を経由し、これにより低圧化された燃料が収容されている。低圧室57は、低圧通路58を介してリターン配管65に接続されており、更に燃料タンク61に接続されている。これにより、燃料噴射弁20に供給される高圧燃料の一部は、低圧室57からリターン配管65を通じて燃料タンク61に戻される。低圧室57の内部には、燃料噴射弁20の燃料の噴射状態を制御する開閉弁50が設けられている。開閉弁50は電磁駆動式であり、ECU90により開弁及び閉弁が制御される。 The low-pressure chamber 57 is formed at the boundary between the first main body 21 and the second main body 22 by denting the surface facing the second main body 22 upward. The high-pressure fuel in the first high-pressure passage 13 passes through the second main body portion 22, the third main body portion 23, and the fourth main body portion 24, and the low-pressure chamber 57 stores the fuel whose pressure has been reduced. The low pressure chamber 57 is connected to the return pipe 65 via the low pressure passage 58, and further connected to the fuel tank 61. As a result, part of the high pressure fuel supplied to the fuel injection valve 20 is returned from the low pressure chamber 57 to the fuel tank 61 through the return pipe 65. An opening/closing valve 50 that controls the fuel injection state of the fuel injection valve 20 is provided inside the low pressure chamber 57. The on-off valve 50 is of an electromagnetic drive type, and the opening and closing of the valve is controlled by the ECU 90.
 第2本体部22には、第2高圧通路14と、中間室26と、第1通路25と、第2通路27とが設けられている。第2高圧通路14は、第1高圧通路13から分岐する分岐路であり、コモンレール11からの高圧燃料が供給される燃料通路である。第2高圧通路14には、昇圧オリフィス14aが設けられている。この昇圧オリフィス14aにより、第2高圧通路14を流れる燃料の流量が制限される。第2高圧通路14において、第1高圧通路13とは反対側の端部には環状室14bが形成されている。環状室14bは、第2本体部22において第3本体部23との境界部に環状に形成された燃料通路部である。環状室14bには、第1高圧通路13からの高圧燃料が第2高圧通路14を通じて導入される。 The second main body 22 is provided with a second high pressure passage 14, an intermediate chamber 26, a first passage 25, and a second passage 27. The second high-pressure passage 14 is a branch passage that branches from the first high-pressure passage 13, and is a fuel passage to which the high-pressure fuel from the common rail 11 is supplied. The second high pressure passage 14 is provided with a pressure rising orifice 14a. The boost orifice 14a limits the flow rate of the fuel flowing through the second high pressure passage 14. In the second high pressure passage 14, an annular chamber 14b is formed at the end portion on the side opposite to the first high pressure passage 13. The annular chamber 14b is a fuel passage portion formed in an annular shape in the boundary portion of the second main body portion 22 with the third main body portion 23. The high pressure fuel from the first high pressure passage 13 is introduced into the annular chamber 14b through the second high pressure passage 14.
 中間室26は、円柱状に形成されたチャンバであり、第2本体部22と第3本体部23との境界部に形成されている。第1通路25は、第2本体部22の内部において燃料噴射弁20の軸方向(上下方向)に延びており、第2本体部22を貫通している。第1通路25は、その一方の端部が低圧室57に連通され、他方の端部が中間室26に連通されている。これにより、中間室26は、第1通路25を介して低圧室57に連通されている。 The intermediate chamber 26 is a cylindrical chamber, and is formed at the boundary between the second main body 22 and the third main body 23. The first passage 25 extends in the axial direction (vertical direction) of the fuel injection valve 20 inside the second main body portion 22 and penetrates the second main body portion 22. The first passage 25 has one end communicating with the low pressure chamber 57 and the other end communicating with the intermediate chamber 26. As a result, the intermediate chamber 26 communicates with the low pressure chamber 57 via the first passage 25.
 第2通路27は、第2本体部22の内部に形成されており、第1通路25と同じ方向(上下方向)に延びている。第2通路27は第2本体部22を貫通しており、その一方の端部が低圧室57に連通され、他方の端部が第3本体部23の第1制御室46に連通されている。第2通路27には、第1本体部21に近い位置に減圧オリフィス27aが設けられている。減圧オリフィス27aにより第2通路27を流れる燃料の流量が制限される。 The second passage 27 is formed inside the second main body portion 22 and extends in the same direction (vertical direction) as the first passage 25. The second passage 27 penetrates through the second main body 22, one end of which communicates with the low-pressure chamber 57, and the other end of which communicates with the first control chamber 46 of the third main body 23. .. A decompression orifice 27 a is provided in the second passage 27 at a position close to the first main body portion 21. The pressure reducing orifice 27a limits the flow rate of the fuel flowing through the second passage 27.
 第3本体部23には、第1制御室46と、接続通路47とが設けられている。第1制御室46は、第2本体部22を向いた面が下方向に凹むことにより噴射弁本体の内部に形成されたチャンバであり、環状室14bに連通されている。第1制御室46には、第1高圧通路13からの高圧燃料が第2高圧通路14を介して供給される。 The first body 23 is provided with a first control chamber 46 and a connection passage 47. The first control chamber 46 is a chamber formed inside the injection valve body by denting the surface facing the second body portion 22 downward, and is in communication with the annular chamber 14b. The high pressure fuel from the first high pressure passage 13 is supplied to the first control chamber 46 via the second high pressure passage 14.
 第1制御室46の内部には、燃料噴射弁20の軸方向(上下方向)に変位可能な従動弁41が配置されている。従動弁41は円柱状であり、その中央部において軸方向に貫通する第3通路42が形成されている。第3通路42は、第2本体部22側の開口部が中間室26に開放されており、第4本体部24側の開口部が第1制御室46の内部に開放されている。第3通路42には減圧オリフィス42aが設けられている。減圧オリフィス42aによって第3通路42を流れる燃料の流量が制限される。減圧オリフィス42aの出口側の燃料流量よりも、第2通路27が有する減圧オリフィス27aの出口側の燃料流量の方が小さく設定されている。 Inside the first control chamber 46, a driven valve 41 which is displaceable in the axial direction (vertical direction) of the fuel injection valve 20 is arranged. The driven valve 41 has a cylindrical shape, and has a third passage 42 formed in the center thereof so as to penetrate therethrough in the axial direction. The third passage 42 has an opening on the side of the second main body 22 that is open to the intermediate chamber 26, and an opening on the side of the fourth main body 24 that is open to the inside of the first control chamber 46. The third passage 42 is provided with a decompression orifice 42a. The flow rate of the fuel flowing through the third passage 42 is limited by the pressure reducing orifice 42a. The fuel flow rate on the outlet side of the pressure reducing orifice 27a included in the second passage 27 is set to be smaller than the fuel flow rate on the outlet side of the pressure reducing orifice 42a.
 従動弁41には、従動弁41を第2本体部22に向かう方向(上方向)へ付勢するスプリング45が取り付けられている。従動弁41は、第1制御室46の内部の燃料圧力による上方向の力及びスプリング45の付勢力により第2本体部22の下面に当接している。この当接状態では、従動弁41によって環状室14bと第1制御室46との連通は遮断される一方、中間室26は第3通路42を介して第1制御室46に連通された状態となる。この状態では、第1制御室46内の燃料は、第3通路42、中間室26及び第1通路25を介して低圧室57に流入可能である。 A spring 45 is attached to the driven valve 41 to bias the driven valve 41 toward the second main body portion 22 (upward). The driven valve 41 is in contact with the lower surface of the second main body portion 22 by the upward force due to the fuel pressure inside the first control chamber 46 and the biasing force of the spring 45. In this contact state, the driven valve 41 blocks the communication between the annular chamber 14b and the first control chamber 46, while the intermediate chamber 26 communicates with the first control chamber 46 through the third passage 42. Become. In this state, the fuel in the first control chamber 46 can flow into the low pressure chamber 57 via the third passage 42, the intermediate chamber 26 and the first passage 25.
 従動弁41が第2本体部22の下面に当接している状態において、第1制御室46の内部の燃料圧力が低下して、第1制御室46の内部の燃料圧力による上方向の力及びスプリング45の付勢力が、環状室14b及び中間室26の内部の燃料圧力による下方向の力を下回ると、従動弁41が第2本体部22の下面から離間する方向に変位する。これにより、中間室26が第3通路42を介さずに第1制御室46に連通されるとともに、環状室14bが第1制御室46に連通される。 In the state where the driven valve 41 is in contact with the lower surface of the second body portion 22, the fuel pressure inside the first control chamber 46 decreases, and the upward force due to the fuel pressure inside the first control chamber 46 and When the biasing force of the spring 45 falls below the downward force due to the fuel pressure inside the annular chamber 14b and the intermediate chamber 26, the driven valve 41 is displaced in the direction away from the lower surface of the second main body portion 22. As a result, the intermediate chamber 26 communicates with the first control chamber 46 without passing through the third passage 42, and the annular chamber 14b communicates with the first control chamber 46.
 第2通路27は、低圧室57と第1制御室46とを直接連通している。つまり、第1制御室46は、従動弁41の位置(リフト状態)に依らずに第2通路27を介して低圧室57に連通されている。また、第3本体部23には、第1制御室46から第4本体部24へ延びる接続通路47が形成されている。接続通路47にはオリフィス47aが設けられており、オリフィス47aによって接続通路47を流れる燃料の流量が制限される。 The second passage 27 directly connects the low pressure chamber 57 and the first control chamber 46. That is, the first control chamber 46 communicates with the low pressure chamber 57 via the second passage 27 regardless of the position (lifted state) of the driven valve 41. Further, a connection passage 47 extending from the first control chamber 46 to the fourth body portion 24 is formed in the third body portion 23. The connection passage 47 is provided with an orifice 47a, and the orifice 47a limits the flow rate of the fuel flowing through the connection passage 47.
 第4本体部24には、シリンダ35と、ノズルニードル31と、高圧室33と、第2制御室36とが設けられている。シリンダ35の先端部には、外部に向かって燃料が噴射される噴射孔34が複数形成されている。ノズルニードル31は、シリンダ35の内部において上下方向に往復動可能に収容されている。ノズルニードル31の上面には、ノズルニードル31を下方向へ付勢するスプリング32が取り付けられている。 The fourth body 24 is provided with a cylinder 35, a nozzle needle 31, a high pressure chamber 33, and a second control chamber 36. A plurality of injection holes 34 for injecting fuel toward the outside are formed at the tip of the cylinder 35. The nozzle needle 31 is housed inside the cylinder 35 so as to be capable of reciprocating in the vertical direction. A spring 32 that biases the nozzle needle 31 downward is attached to the upper surface of the nozzle needle 31.
 高圧室33は、第1高圧通路13と噴射孔34とを連通する通路の途中に設けられている。この高圧室33の内部に、ノズルニードル31の先端部が配置されている。第2制御室36は、シリンダ35の内部において噴射孔34とは反対側(ノズルニードル31の上方)に設けられている。第2制御室36は、接続通路47を介して第1制御室46に連通されている。これにより、第1高圧通路13からの高圧燃料が、第1制御室46及び接続通路47を介して第2制御室36に供給される。第2制御室36の内部の燃料圧力と、ノズルニードル31に取り付けられたスプリング32の付勢力とがノズルニードル31に作用することによりノズルニードル31が下方向に変位し、噴射孔34から燃料が噴射されない状態、すなわち燃料噴射弁20が閉弁状態となる。 The high pressure chamber 33 is provided in the middle of the passage that connects the first high pressure passage 13 and the injection hole 34. Inside the high pressure chamber 33, the tip of the nozzle needle 31 is arranged. The second control chamber 36 is provided inside the cylinder 35 on the side opposite to the injection hole 34 (above the nozzle needle 31). The second control chamber 36 communicates with the first control chamber 46 via a connection passage 47. As a result, the high-pressure fuel from the first high-pressure passage 13 is supplied to the second control chamber 36 via the first control chamber 46 and the connection passage 47. The fuel pressure inside the second control chamber 36 and the urging force of the spring 32 attached to the nozzle needle 31 act on the nozzle needle 31, whereby the nozzle needle 31 is displaced downward, and fuel is injected from the injection hole 34. The fuel is not injected, that is, the fuel injection valve 20 is closed.
 また、高圧室33の内部の燃料圧力が、第2制御室36の内部の燃料圧力及びスプリング32の付勢力の合計の力よりも大きくなると、ノズルニードル31が上方向に変位し、燃料噴射弁20が開弁状態となる。燃料噴射弁20が開弁状態となることにより、高圧室33内の高圧燃料が噴射孔34から噴射される。 Further, when the fuel pressure inside the high pressure chamber 33 becomes larger than the total force of the fuel pressure inside the second control chamber 36 and the urging force of the spring 32, the nozzle needle 31 is displaced upward and the fuel injection valve 20 is opened. When the fuel injection valve 20 is opened, the high pressure fuel in the high pressure chamber 33 is injected from the injection hole 34.
 次に、開閉弁50の構成について説明する。開閉弁50は、低圧室57の内部において、第1制御室46と低圧室57とを接続する燃料通路に配置されている。開閉弁50は、ECU90により駆動制御により第1制御室46から低圧室57への燃料の流出を許容及び遮断することにより、第1制御室46の内部の燃料圧力を調整する。 Next, the structure of the on-off valve 50 will be described. The on-off valve 50 is arranged inside the low pressure chamber 57 in the fuel passage that connects the first control chamber 46 and the low pressure chamber 57. The on-off valve 50 regulates the fuel pressure inside the first control chamber 46 by allowing and blocking the outflow of fuel from the first control chamber 46 to the low pressure chamber 57 under drive control by the ECU 90.
 開閉弁50は、第1開閉弁51と、第2開閉弁52とを有している。第1開閉弁51は、第1通路25上に配置されており、その開閉状態が制御されることにより低圧室57と第1通路25との連通及び遮断を切り替える。第2開閉弁52は、第2通路27上に配置されており、その開閉状態が制御されることにより低圧室57と第2通路27との連通及び遮断を切り替える。ECU90は、第1ソレノイド53と第2ソレノイド54とを互いに独立して通電することにより、第1開閉弁51の開閉状態と第2開閉弁52の開閉状態とを互いに独立して制御する。 The opening/closing valve 50 has a first opening/closing valve 51 and a second opening/closing valve 52. The first opening/closing valve 51 is arranged on the first passage 25, and the open/close state thereof is controlled to switch between communication and cutoff between the low pressure chamber 57 and the first passage 25. The second opening/closing valve 52 is arranged on the second passage 27, and the open/close state of the second opening/closing valve 52 is controlled to switch the communication between the low pressure chamber 57 and the second passage 27 and the disconnection thereof. The ECU 90 independently controls the open/closed state of the first open/close valve 51 and the open/closed state of the second open/close valve 52 by energizing the first solenoid 53 and the second solenoid 54 independently of each other.
 具体的には、第1ソレノイド53の非通電時には、第1開閉弁51は、第1スプリング55の付勢力により第2本体部22に当接している。この当接状態では、第1開閉弁51により低圧室57と第1通路25との連通が遮断された状態(閉弁状態)となる。また、第1開閉弁51の閉弁状態において第1ソレノイド53に通電すると、第1スプリング55の付勢力に抗して第1開閉弁51が上方向に移動し、第2本体部22から離間する。この状態では、低圧室57と第1通路25とが連通された状態(開弁状態)となり、第1通路25から低圧室57への燃料の流入が許容される。 Specifically, when the first solenoid 53 is not energized, the first opening/closing valve 51 is in contact with the second body portion 22 by the urging force of the first spring 55. In this abutting state, the first on-off valve 51 blocks the communication between the low pressure chamber 57 and the first passage 25 (valve closed state). When the first solenoid 53 is energized while the first opening/closing valve 51 is closed, the first opening/closing valve 51 moves upward against the biasing force of the first spring 55 and is separated from the second main body portion 22. To do. In this state, the low pressure chamber 57 and the first passage 25 are in communication with each other (valve open state), and the fuel is allowed to flow from the first passage 25 into the low pressure chamber 57.
 また、第2ソレノイド54の非通電時には、第2開閉弁52は、第2スプリング56の付勢力により第2本体部22に当接している。この当接状態では、第2開閉弁52により低圧室57と第2通路27との連通が遮断された状態(閉弁状態)となる。また、第2開閉弁52の閉弁状態において第2ソレノイド54に通電すると、第2スプリング56の付勢力に抗して第2開閉弁52が上方向に移動し、第2本体部22から離間する。この状態では、低圧室57と第2通路27とが連通された状態(開弁状態)となり、第2通路27から低圧室57への燃料の流入が許容される。 Further, when the second solenoid 54 is not energized, the second opening/closing valve 52 is in contact with the second body portion 22 by the urging force of the second spring 56. In this abutting state, the communication between the low pressure chamber 57 and the second passage 27 is blocked by the second opening/closing valve 52 (valve closed state). Further, when the second solenoid 54 is energized in the closed state of the second opening/closing valve 52, the second opening/closing valve 52 moves upward against the biasing force of the second spring 56 and is separated from the second main body portion 22. To do. In this state, the low pressure chamber 57 and the second passage 27 are in communication with each other (valve open state), and the inflow of fuel from the second passage 27 into the low pressure chamber 57 is allowed.
 燃料噴射制御において、ECU90は、第1開閉弁51の開弁及び閉弁を切り替えることにより、ノズルニードル31を開弁位置及び閉弁位置に移動させる。これにより、燃料噴射弁20において、噴射孔34から燃料が噴射される噴射動作と、燃料の噴射が停止される噴射停止動作とが切り替わる。また、ECU90は、第1開閉弁51の駆動制御に併せて第2開閉弁52の開閉状態を切り替えることにより、ノズルニードル31が軸方向に移動する速度、すなわちニードル速度を可変制御する。ECU90は、第1開閉弁51及び第2開閉弁52の開閉を独立して制御することにより、燃料の噴射率の傾き、より具体的には、噴射率の立ち上がり速度及び立ち下がり速度をそれぞれ制御する。 In the fuel injection control, the ECU 90 moves the nozzle needle 31 to the valve opening position and valve closing position by switching the valve opening and closing of the first opening/closing valve 51. As a result, in the fuel injection valve 20, the injection operation of injecting the fuel from the injection hole 34 and the injection stop operation of stopping the injection of the fuel are switched. Further, the ECU 90 variably controls the speed at which the nozzle needle 31 moves in the axial direction, that is, the needle speed, by switching the open/closed state of the second open/close valve 52 in accordance with the drive control of the first open/close valve 51. The ECU 90 independently controls the opening/closing of the first opening/closing valve 51 and the second opening/closing valve 52 to control the inclination of the fuel injection rate, more specifically, the rising speed and the falling speed of the injection rate, respectively. To do.
 図2に、燃料噴射弁20の噴射率パターンの例を示している。いずれの噴射率パターンにおいても、燃料噴射弁20による燃料噴射の開始時には第1開閉弁51を開弁状態とし、燃料噴射の終了時には第1開閉弁51を閉弁状態にする。第2開閉弁52については、噴射率の立ち上がり速度、立ち下がり速度に応じてその開閉状態が制御される。 FIG. 2 shows an example of the injection rate pattern of the fuel injection valve 20. In any of the injection rate patterns, the first opening/closing valve 51 is opened at the start of fuel injection by the fuel injection valve 20, and the first opening/closing valve 51 is closed at the end of fuel injection. The open/close state of the second on-off valve 52 is controlled according to the rising speed and the falling speed of the injection rate.
 具体的には、燃料噴射の開始時における噴射率の立ち上がり速度を急峻にする高速開弁モードでは第2開閉弁52を開弁し(図2(a)及び(c)参照)、噴射率の立ち上がり速度を緩慢にする低速開弁モードでは第2開閉弁52を閉弁する(図2(b)及び(d)参照)。また、燃料噴射の終了時における噴射率の立ち下がり速度を急峻にする高速閉弁モードでは第2開閉弁52を閉弁し(図2(a)及び(b)参照)、噴射率の立ち下がり速度を緩慢にする低速閉弁モードでは第2開閉弁52を開弁する(図2(c)及び(d)参照)。 Specifically, in the high-speed valve opening mode in which the rising rate of the injection rate at the start of fuel injection is made steep, the second opening/closing valve 52 is opened (see FIGS. 2A and 2C), and the injection rate In the low speed valve opening mode in which the rising speed is slow, the second opening/closing valve 52 is closed (see FIGS. 2B and 2D). Further, in the high-speed valve closing mode in which the falling rate of the injection rate at the end of fuel injection is made steep, the second opening/closing valve 52 is closed (see FIGS. 2A and 2B), and the injection rate falls. In the low speed valve closing mode in which the speed is slowed, the second opening/closing valve 52 is opened (see FIGS. 2C and 2D).
 第1開閉弁51及び第2開閉弁52の開閉状態と燃料噴射弁20の動作との関係について図3~8を用いて説明する。噴射開始前は、第1ソレノイド53及び第2ソレノイド54を非通電とすることにより、図3に示すように、第1開閉弁51及び第2開閉弁52は共に閉じており、ノズルニードル31によって高圧室33と噴射孔34との連通が遮断されている。 The relationship between the open/closed states of the first opening/closing valve 51 and the second opening/closing valve 52 and the operation of the fuel injection valve 20 will be described with reference to FIGS. 3 to 8. Before the start of injection, by deenergizing the first solenoid 53 and the second solenoid 54, both the first opening/closing valve 51 and the second opening/closing valve 52 are closed as shown in FIG. The communication between the high pressure chamber 33 and the injection hole 34 is blocked.
 高速開弁モード且つ高速閉弁モードの噴射パターン(図2(a)参照)の場合について、図3~6を用いて説明する。噴射開始前において、第1開閉弁51及び第2開閉弁52が閉弁した状態では、第1高圧通路13からの高圧燃料が導入されることにより、第2~第4本体部22~24に形成された燃料貯留部(環状室14b、中間室26、第1制御室46、第2制御室36、高圧室33)及び燃料通路(第1通路25、第2通路27、第3通路42、接続通路47)は、第1高圧通路13内の燃料圧力と同等の高圧状態で保持されている(図3参照)。 The case of the injection pattern in the high speed valve opening mode and the high speed valve closing mode (see FIG. 2A) will be described with reference to FIGS. Before the start of injection, when the first on-off valve 51 and the second on-off valve 52 are closed, high-pressure fuel is introduced from the first high-pressure passage 13 to the second to fourth body portions 22 to 24. The formed fuel storage portion (annular chamber 14b, intermediate chamber 26, first control chamber 46, second control chamber 36, high pressure chamber 33) and fuel passage (first passage 25, second passage 27, third passage 42, The connection passage 47) is maintained at a high pressure state equivalent to the fuel pressure in the first high pressure passage 13 (see FIG. 3).
 第1開閉弁51及び第2開閉弁52が閉じられた状態において、第1ソレノイド53及び第2ソレノイド54への通電により第1開閉弁51及び第2開閉弁52を共に開弁すると、図4に示すように、第1制御室46が、第1通路25、第3通路42及び第2通路27を介して低圧室57に連通される。これにより、第1制御室46及び第2制御室36の内部の燃料が、第1通路25及び第3通路42を通過する経路と、第2通路27を通過する経路との2つの経路を介して低圧室57へ流入される。このため、第1制御室46及び第2制御室36の内部の燃料圧力が高速で低下し、ノズルニードル31が高速で開弁方向(上方向)に変位する。これにより噴射孔34から燃料が噴射される。この場合、図2(a)に示すように噴射率が高速で立ち上がる。 When the first opening/closing valve 51 and the second opening/closing valve 52 are both closed by energizing the first solenoid 53 and the second solenoid 54 in the state where the first opening/closing valve 51 and the second opening/closing valve 52 are closed, as shown in FIG. As shown in, the first control chamber 46 communicates with the low pressure chamber 57 via the first passage 25, the third passage 42, and the second passage 27. As a result, the fuel inside the first control chamber 46 and the second control chamber 36 passes through two routes, a route passing through the first passage 25 and the third passage 42 and a route passing through the second passage 27. Flow into the low pressure chamber 57. Therefore, the fuel pressure inside the first control chamber 46 and the second control chamber 36 decreases at high speed, and the nozzle needle 31 is displaced at high speed in the valve opening direction (upward direction). As a result, fuel is injected from the injection hole 34. In this case, the injection rate rises at a high speed as shown in FIG.
 なお、減圧オリフィス42aの前後には差圧が生じており、第1制御室46の内部の燃料圧力による上方向の力及びスプリング45の付勢力の合計が、中間室26及び環状室14bの内部の燃料圧力による下方向の力よりも高くなっている。このため、従動弁41は、第1開閉弁51及び第2開閉弁52を共に開いた状態において、第2本体部22に当接している状態に維持されている(図4参照)。 A differential pressure is generated before and after the decompression orifice 42a, and the sum of the upward force due to the fuel pressure inside the first control chamber 46 and the biasing force of the spring 45 is the inside of the intermediate chamber 26 and the annular chamber 14b. It is higher than the downward force due to fuel pressure. Therefore, the driven valve 41 is kept in contact with the second main body portion 22 when both the first opening/closing valve 51 and the second opening/closing valve 52 are open (see FIG. 4 ).
 噴射率が最大になった後、第1開閉弁51を閉弁すると、第1制御室46内の燃料が第3通路42を介して中間室26へ流入することにより、中間室26の内部の燃料圧力が上昇する(図5参照)。また、第2開閉弁52を閉弁することにより、低圧室57と第1制御室46との連通が遮断される。この場合、中間室26及び環状室14bの内部の燃料圧力による下方向の力が、第1制御室46の内部の燃料圧力による上方向の力及びスプリング45の付勢力の合計よりも大きくなることにより、従動弁41が下方向へ移動する(図6参照)。この従動弁41の下方向への移動により、第1高圧通路13の高圧燃料が第1制御室46に流入する。 When the first opening/closing valve 51 is closed after the injection rate reaches the maximum, the fuel in the first control chamber 46 flows into the intermediate chamber 26 via the third passage 42, so that the inside of the intermediate chamber 26 The fuel pressure rises (see FIG. 5). Further, by closing the second opening/closing valve 52, the communication between the low pressure chamber 57 and the first control chamber 46 is cut off. In this case, the downward force due to the fuel pressure inside the intermediate chamber 26 and the annular chamber 14b becomes larger than the total of the upward force due to the fuel pressure inside the first control chamber 46 and the biasing force of the spring 45. As a result, the driven valve 41 moves downward (see FIG. 6). The downward movement of the driven valve 41 causes the high-pressure fuel in the first high-pressure passage 13 to flow into the first control chamber 46.
 このとき、第1開閉弁51及び第2開閉弁52が共に閉弁しているため、第1制御室46の内部の燃料圧力は高速で上昇する。第1制御室46から接続通路47を介して第2制御室36へ燃料が流入し、第2制御室36の内部の燃料圧力が所定圧力よりも高くなると、ノズルニードル31が下降し始めて閉弁動作に移行する(図6参照)。この場合、図2(a)に示すように、噴射率が高速で立ち下がる。その後、ノズルニードル31がシート部(図示略)に着座することにより、燃料噴射弁20による燃料噴射が停止される。 At this time, since the first opening/closing valve 51 and the second opening/closing valve 52 are both closed, the fuel pressure inside the first control chamber 46 rises at a high speed. When the fuel flows from the first control chamber 46 into the second control chamber 36 through the connection passage 47 and the fuel pressure inside the second control chamber 36 becomes higher than a predetermined pressure, the nozzle needle 31 starts to descend and the valve is closed. The operation shifts (see FIG. 6). In this case, as shown in FIG. 2A, the injection rate falls at a high speed. Thereafter, the nozzle needle 31 is seated on the seat portion (not shown), so that the fuel injection by the fuel injection valve 20 is stopped.
 次に、低速開弁モード且つ高速閉弁モードの噴射パターン(図2(b)参照)の場合について説明する。噴射開始前において、第1開閉弁51及び第2開閉弁52が閉じられた状態(図3参照)において、図7に示すように、第2開閉弁52を閉じた状態で維持し、第1開閉弁51を開くと、第1制御室46の内部の燃料が第3通路42及び第1通路25を介して中間室26に流入する。このとき、減圧オリフィス42aの前後には差圧が生じており、第1制御室46の内部の燃料圧力による上方向の力及びスプリング45の付勢力の合計が、中間室26及び環状室14bの内部の燃料圧力による下方向の力よりも高くなっている。このため、従動弁41は、第2本体部22に当接している状態に維持される。 Next, the case of the injection pattern in the low speed valve opening mode and the high speed valve closing mode (see FIG. 2B) will be described. Before the start of injection, in the state where the first opening/closing valve 51 and the second opening/closing valve 52 are closed (see FIG. 3 ), the second opening/closing valve 52 is maintained in the closed state as shown in FIG. When the on-off valve 51 is opened, the fuel inside the first control chamber 46 flows into the intermediate chamber 26 via the third passage 42 and the first passage 25. At this time, a differential pressure is generated before and after the decompression orifice 42a, and the sum of the upward force due to the fuel pressure inside the first control chamber 46 and the urging force of the spring 45 is the intermediate chamber 26 and the annular chamber 14b. It is higher than the downward force due to the internal fuel pressure. Therefore, the driven valve 41 is maintained in a state of being in contact with the second main body portion 22.
 第2開閉弁52が閉じられた状態では、第2通路27を介した燃料の流通が許容されていないため、第1制御室46の内部の燃料圧力は低速で低下し、ノズルニードル31は低速で開弁方向に変位する。この場合、図2(b)に示すように、噴射率が低速で立ち上がる。つまり、第1開閉弁51が開き、かつ第2開閉弁52が閉じた状態における噴射率の上昇速度(傾き)は、第1開閉弁51及び第2開閉弁52が共に開いた状態における噴射率の上昇速度(傾き)よりも小さくなる。噴射率が最大となった後は、図2(a)に示す高速立下げ時の動作と同様である。 When the second opening/closing valve 52 is closed, the flow of fuel through the second passage 27 is not permitted, so the fuel pressure inside the first control chamber 46 decreases at a low speed, and the nozzle needle 31 moves at a low speed. Displaces in the valve opening direction. In this case, as shown in FIG. 2B, the injection rate rises at a low speed. That is, the rate of increase (inclination) of the injection rate when the first opening/closing valve 51 is open and the second opening/closing valve 52 is closed is the injection rate when the first opening/closing valve 51 and the second opening/closing valve 52 are both open. Is smaller than the rising speed (slope) of. After the injection rate reaches the maximum, the operation is the same as the operation at the time of high speed fall shown in FIG.
 次に、高速開弁モード且つ低速閉弁モードの噴射パターン(図2(c)参照)の場合について説明する。まず、高速立上げ時の動作は、図2(a)に示す高速立上げ時の動作と同様である。噴射率が最大になった後、図8に示すように、第2開閉弁52を開いた状態で維持し、第1開閉弁51を閉じると、第1制御室46内の燃料が第3通路42を介して中間室26へ流入し、中間室26の内部の燃料圧力が上昇する。また、第2開閉弁52は開いた状態であるため、第1制御室46の内部の燃料は、第2通路27を介して低圧室57に流入する。中間室26の内部の燃料圧力が上昇し、中間室26及び環状室14bの内部の燃料圧力による下方向の力が、第1制御室46の内部の燃料圧力による上方向の力及びスプリング45の付勢力の合計よりも大きくなると、従動弁41が下方向へ移動する(図9参照)。この従動弁41の下方向への移動により、第1高圧通路13の高圧燃料が第1制御室46に流入する。 Next, the case of the injection pattern in the high speed valve opening mode and the low speed valve closing mode (see FIG. 2C) will be described. First, the operation at high speed startup is similar to the operation at high speed startup shown in FIG. After the injection rate reaches the maximum, as shown in FIG. 8, when the second opening/closing valve 52 is maintained in the open state and the first opening/closing valve 51 is closed, the fuel in the first control chamber 46 passes through the third passage. It flows into the intermediate chamber 26 via 42, and the fuel pressure inside the intermediate chamber 26 rises. Further, since the second opening/closing valve 52 is in the open state, the fuel inside the first control chamber 46 flows into the low pressure chamber 57 via the second passage 27. The fuel pressure inside the intermediate chamber 26 rises, and the downward force due to the fuel pressure inside the intermediate chamber 26 and the annular chamber 14b increases the upward force due to the fuel pressure inside the first control chamber 46 and the spring 45. When it becomes larger than the total of the urging forces, the driven valve 41 moves downward (see FIG. 9). The downward movement of the driven valve 41 causes the high-pressure fuel in the first high-pressure passage 13 to flow into the first control chamber 46.
 このとき、第2開閉弁52は開いた状態で維持されているため、第1制御室46の内部の燃料圧力は低速で上昇する。第1制御室46から接続通路47を介して第2制御室36に燃料が流入し、第2制御室36の内部の燃料圧力が所定圧力よりも高くなると、ノズルニードル31が下降し始めて閉弁動作に移行する(図9参照)。この場合、図2(c)に示すように、噴射率が低速で立ち下がる。つまり、第1開閉弁51が閉じ、かつ第2開閉弁52が開いた状態における噴射率の低下速度(傾き)は、第1開閉弁51及び第2開閉弁52が共に閉じた状態における噴射率の低下速度(傾き)よりも小さくなる。その後、ノズルニードル31がシート部に着座することにより、噴射孔34から燃料が噴射されなくなる。 At this time, since the second opening/closing valve 52 is maintained in the open state, the fuel pressure inside the first control chamber 46 rises at a low speed. When the fuel flows from the first control chamber 46 into the second control chamber 36 through the connection passage 47 and the fuel pressure inside the second control chamber 36 becomes higher than a predetermined pressure, the nozzle needle 31 starts to descend and the valve is closed. The operation shifts (see FIG. 9). In this case, as shown in FIG. 2C, the injection rate falls at a low speed. That is, the rate of decrease (inclination) of the injection rate when the first opening/closing valve 51 is closed and the second opening/closing valve 52 is open is the injection rate when both the first opening/closing valve 51 and the second opening/closing valve 52 are closed. Is smaller than the decreasing speed (slope) of. After that, the nozzle needle 31 is seated on the seat portion, so that fuel is not injected from the injection hole 34.
 図10は、第2開閉弁52により、燃料噴射弁20から燃料を噴射させずにコモンレール11内の燃料圧力を減圧させる減圧弁モードの動作を示す図である。 FIG. 10 is a diagram showing an operation in the pressure reducing valve mode in which the second on-off valve 52 reduces the fuel pressure in the common rail 11 without injecting fuel from the fuel injection valve 20.
 上述したように、第1開閉弁51及び第2開閉弁52が共に閉じた状態では、第2制御室36、第1制御室46及び中間室26の内部の燃料圧力は第1高圧通路13の内部の燃料圧力と同等であり、従動弁41は第2本体部22に当接している(図3参照)。減圧動作では、この状態から第2開閉弁52を開く。これにより、図10に示すように、第1制御室46内の燃料が第2通路27を介して低圧室57へ排出され、第1制御室46の内部の圧力低下に伴い従動弁41が下方向へ移動する。 As described above, when both the first on-off valve 51 and the second on-off valve 52 are closed, the fuel pressure inside the second control chamber 36, the first control chamber 46, and the intermediate chamber 26 is equal to that of the first high-pressure passage 13. The fuel pressure is equal to the internal fuel pressure, and the driven valve 41 is in contact with the second body portion 22 (see FIG. 3 ). In the pressure reducing operation, the second opening/closing valve 52 is opened from this state. As a result, as shown in FIG. 10, the fuel in the first control chamber 46 is discharged to the low pressure chamber 57 via the second passage 27, and the driven valve 41 is lowered as the pressure inside the first control chamber 46 decreases. Move in the direction.
 燃料噴射弁20では、第1開閉弁51が閉じられ且つ第2開閉弁52が開かれた状態において、昇圧オリフィス14aを介した燃料の流量が、減圧オリフィス27aを介した燃料の流量よりも大きく設定されている。このため、第1開閉弁51が閉じられ且つ第2開閉弁52が開かれた状態では、第1制御室46の内部から第2通路27を通じて排出される燃料の第2通路27における圧力損失の方が、第2高圧通路14から第1制御室46へ流入する燃料の第2高圧通路14における圧力損失よりも大きくなる。これにより、第1開閉弁51が閉じられ且つ第2開閉弁52が開かれた状態では、ノズルニードル31により高圧室33と噴射孔34とが遮断された状態、つまり噴射孔34から燃料が噴射されない状態が維持される。 In the fuel injection valve 20, in the state where the first opening/closing valve 51 is closed and the second opening/closing valve 52 is opened, the flow rate of fuel through the pressure increasing orifice 14a is larger than the flow rate of fuel through the pressure reducing orifice 27a. It is set. Therefore, when the first opening/closing valve 51 is closed and the second opening/closing valve 52 is opened, the pressure loss of the fuel discharged from the inside of the first control chamber 46 through the second passage 27 in the second passage 27 is reduced. In this case, the pressure loss of the fuel flowing from the second high pressure passage 14 into the first control chamber 46 becomes larger than the pressure loss in the second high pressure passage 14. As a result, when the first opening/closing valve 51 is closed and the second opening/closing valve 52 is opened, the nozzle needle 31 blocks the high pressure chamber 33 from the injection hole 34, that is, the fuel is injected from the injection hole 34. The state that is not done is maintained.
 また、コモンレール11から第1高圧通路13及び第2高圧通路14を介して第1制御室46へ燃料が流入し、その流入した燃料が第1制御室46から低圧室57へ排出され、燃料噴射システムの上流側(低圧側)へ戻されることにより、コモンレール11の内部の燃料圧力が低下する。すなわち、燃料噴射弁20から燃料を噴射させない状態で、コモンレール11内の燃料圧力が減圧される。このため、燃料噴射弁20は、コモンレール11内の燃料圧力を減圧する減圧弁としての機能を有する。 In addition, fuel flows from the common rail 11 into the first control chamber 46 via the first high pressure passage 13 and the second high pressure passage 14, and the inflow fuel is discharged from the first control chamber 46 to the low pressure chamber 57 to inject fuel. By returning to the upstream side (low pressure side) of the system, the fuel pressure inside the common rail 11 decreases. That is, the fuel pressure in the common rail 11 is reduced in a state where fuel is not injected from the fuel injection valve 20. Therefore, the fuel injection valve 20 has a function as a pressure reducing valve that reduces the fuel pressure in the common rail 11.
 なお、燃料噴射弁20においては、第1開閉弁51により第1通路25と低圧室57とが連通された場合に、従動弁41により環状室14bと第1制御室46との連通が遮断されるように、減圧オリフィス42aの流路面積、中間室26の第3本体部23(第1制御室46)側の開口面積、環状室14bの第3本体部23(第1制御室46)側の開口面積、及びスプリング45による付勢力が設定されている。すなわち、第1開閉弁51により第1通路25と低圧室57とが連通された場合に、従動弁41により第1制御室46と中間室26とを第3通路42を介して連通した状態となることが、減圧オリフィス42aによる燃料流量の制限、中間室26への従動弁41の露出面積、第1高圧通路13への従動弁41の露出面積、及びスプリング45による付勢力の設定により実現されている。 In the fuel injection valve 20, when the first passage 25 and the low pressure chamber 57 communicate with each other by the first opening/closing valve 51, the driven valve 41 blocks communication between the annular chamber 14b and the first control chamber 46. As described above, the flow passage area of the decompression orifice 42a, the opening area of the intermediate chamber 26 on the side of the third main body portion 23 (first control chamber 46), and the side of the third main body portion 23 (first control chamber 46) of the annular chamber 14b. The opening area and the biasing force of the spring 45 are set. That is, when the first passage 25 and the low pressure chamber 57 are communicated with each other by the first opening/closing valve 51, the first control chamber 46 and the intermediate chamber 26 are communicated with each other by the driven valve 41 via the third passage 42. This is achieved by limiting the fuel flow rate by the decompression orifice 42a, the exposed area of the driven valve 41 to the intermediate chamber 26, the exposed area of the driven valve 41 to the first high pressure passage 13, and the biasing force set by the spring 45. ing.
 ECU90は、燃料噴射弁20が搭載されるエンジン70の運転状態(例えばエンジン回転速度やエンジン負荷等)やレール圧に基づいて、燃料噴射弁20による燃料の噴射率を制御する。具体的には、ECU90は、噴射開始時の噴射率パターンとして高速開弁モード及び低速開弁モードの一方を選択するとともに、噴射終了時の噴射率パターンとして高速閉弁モード及び低速閉弁モードの一方を選択する(図2参照)。そして、それら選択した各モードに応じて、第1開閉弁51及び第2開閉弁52の開閉状態を制御する。あるいは、ECU90は、エンジン運転状態やレール圧に応じて、燃料噴射の開始時の噴射率(すなわち、噴射率の立ち上がり速度)、及び燃料噴射の終了時の噴射率(すなわち、噴射率の立ち下がり速度)の少なくとも一方を、噴射率が最大になるまでの途中で変更する噴射制御を実施する。 The ECU 90 controls the fuel injection rate of the fuel injection valve 20 based on the operating state of the engine 70 in which the fuel injection valve 20 is mounted (for example, engine speed, engine load, etc.) and rail pressure. Specifically, the ECU 90 selects one of the high-speed valve opening mode and the low-speed valve opening mode as the injection rate pattern at the start of injection, and selects the high-speed valve closing mode and the low-speed valve closing mode as the injection rate pattern at the time of injection end. Select one (see FIG. 2). Then, the open/closed states of the first opening/closing valve 51 and the second opening/closing valve 52 are controlled according to the selected modes. Alternatively, the ECU 90 causes the injection rate at the start of fuel injection (that is, the rising rate of the injection rate) and the injection rate at the end of fuel injection (that is, the fall of the injection rate) according to the engine operating state and the rail pressure. Injection control is performed in which at least one of (speed) is changed during the time until the injection rate becomes maximum.
 ここで、燃料噴射弁20の駆動指令に対するノズルニードル31の応答性を向上させるためには、噴射率波形の矩形度を高くすることが望ましい。しかしながら、噴射率波形の矩形度を高くしようとすると、燃料の噴射開始時又は噴射終了時においてノズルニードル31を高速で移動させることになる。この場合、噴射開始時にはノズルニードル31が早期にフルリフト限界に到達し(図11の破線R参照)、噴射終了時では、ノズルニードル31が早期に閉弁位置に到達する。このため、燃料噴射弁20から1回の燃料噴射により噴射される燃料量が少なくなり、噴射の自由度が低下することが懸念される。 Here, in order to improve the response of the nozzle needle 31 to the drive command of the fuel injection valve 20, it is desirable to increase the rectangularity of the injection rate waveform. However, in order to increase the rectangularity of the injection rate waveform, the nozzle needle 31 is moved at high speed at the start or end of fuel injection. In this case, at the start of injection, the nozzle needle 31 reaches the full lift limit early (see the broken line R in FIG. 11), and at the end of injection, the nozzle needle 31 reaches the valve closing position early. Therefore, there is a concern that the amount of fuel injected from the fuel injection valve 20 by one time of fuel injection will decrease and the degree of freedom of injection will decrease.
 そこで本実施形態では、燃料噴射弁20による燃料の噴射開始時及び噴射終了時の少なくとも一方において、ノズルニードル31が閉弁位置から最大リフト位置に到達するまでの途中又は最大リフト位置から閉弁位置に到達するまでの途中でリフト速度を変更する制御(速度変更制御)を実施することとしている。具体的には、燃料噴射弁20の開弁指令に伴いリフト量を増大側に変更するリフト増大期間、及び燃料噴射弁20の閉弁指令に伴いリフト量を減少側に変更するリフト減少期間のうち少なくとも一方において、ノズルニードル31のリフト量が比較的小さい期間ではニードル速度を高速で制御し、これにより駆動指令に対する応答性を確保する。また、ノズルニードル31のリフト量が比較的大きい期間では、ニードル速度を低速で制御することにより、燃料噴射弁20による大噴射量を実現することとしている。 Therefore, in the present embodiment, at least one of the start and the end of fuel injection by the fuel injection valve 20, the nozzle needle 31 reaches the maximum lift position from the closed position or the maximum lift position to the closed position. The control for changing the lift speed (speed change control) is to be executed on the way to the point of reaching. Specifically, a lift increasing period in which the lift amount is changed to the increasing side in response to the valve opening command of the fuel injection valve 20 and a lift decreasing period in which the lift amount is changed to the decreasing side in response to the valve closing command of the fuel injection valve 20. In at least one of them, the needle speed is controlled at a high speed during a period in which the lift amount of the nozzle needle 31 is relatively small, thereby ensuring responsiveness to the drive command. Further, during a period in which the lift amount of the nozzle needle 31 is relatively large, the needle speed is controlled at a low speed to realize a large injection amount by the fuel injection valve 20.
 ノズルニードル31の速度変更制御について図11のタイムチャートを用いて説明する。図11中、(a)は燃料噴射弁20の開弁指令及び閉弁指令(INJ駆動指令)の推移、(b)はニードル速度指令の推移、(c)はノズルニードル31のリフト量の推移、(d)は噴射率の推移、(e)は燃圧センサ75の検出圧力の推移をそれぞれ示している。 The speed change control of the nozzle needle 31 will be described with reference to the time chart of FIG. In FIG. 11, (a) is a transition of the valve opening command and valve closing command (INJ drive command) of the fuel injection valve 20, (b) is a transition of the needle speed command, and (c) is a transition of the lift amount of the nozzle needle 31. , (D) shows the transition of the injection rate, and (e) shows the transition of the pressure detected by the fuel pressure sensor 75.
 燃料噴射弁20の開弁指令に伴い、ECU90のマイコンは、噴射率モードに応じて第1開閉弁51及び第2開閉弁52の開閉状態を制御する。ここでは、噴射率モードとして高速開弁モード及び高速閉弁モードが選択されている。したがって、ECU90は、燃料噴射弁20の開弁指令に伴い、第1開閉弁51及び第2開閉弁52を共に開弁させる。第1開閉弁51及び第2開閉弁52が共に開弁された状態では、ノズルニードル31は、リフト量を増大させる方向へ第1速度V1で変位する。 The microcomputer of the ECU 90 controls the open/closed states of the first opening/closing valve 51 and the second opening/closing valve 52 according to the injection rate mode in response to the valve opening command of the fuel injection valve 20. Here, the high speed valve opening mode and the high speed valve closing mode are selected as the injection rate mode. Therefore, the ECU 90 opens both the first opening/closing valve 51 and the second opening/closing valve 52 according to the valve opening command of the fuel injection valve 20. When both the first opening/closing valve 51 and the second opening/closing valve 52 are opened, the nozzle needle 31 is displaced at the first speed V1 in the direction of increasing the lift amount.
 燃料噴射弁20の開弁指令タイミング(時刻t51)から所定の遅れ時間が経過すると、ノズルニードル31が噴射孔34を開弁する側(すなわち、リフト量を増大させる方向)へ変位し始める。また、ノズルニードル31の変位に伴い噴射率が徐々に大きくなる。そして、時刻t51から速度切替時間T1が経過したタイミング(時刻t52)で、第1開閉弁51を開弁させたまま第2開閉弁52を閉弁させる。第1開閉弁51が開かれ、かつ第2開閉弁52が閉じられた状態では、ノズルニードル31は、第1速度V1よりも低速の第2速度V2で、リフト量を増大させる方向へ変位する。このため、時刻t52では、ノズルニードル31のリフト速度が、高速の第1速度V1から低速の第2速度V2へ切り替えられる。 When a predetermined delay time elapses from the valve opening command timing (time t51) of the fuel injection valve 20, the nozzle needle 31 starts to be displaced toward the valve opening side of the injection hole 34 (that is, the direction in which the lift amount is increased). Further, the injection rate gradually increases with the displacement of the nozzle needle 31. Then, at a timing (time t52) when the speed switching time T1 has elapsed from time t51, the second opening/closing valve 52 is closed while the first opening/closing valve 51 is opened. In the state where the first opening/closing valve 51 is opened and the second opening/closing valve 52 is closed, the nozzle needle 31 is displaced in the direction of increasing the lift amount at the second speed V2 lower than the first speed V1. .. Therefore, at time t52, the lift speed of the nozzle needle 31 is switched from the high speed first speed V1 to the low speed second speed V2.
 速度切替時間T1は、第1開閉弁51及び第2開閉弁52を共に開弁状態とした場合に噴射率がゼロから最大噴射率Dmaxになるまでに要する時間である。速度切替時間T1は、エンジン運転状態(具体的には、エンジン回転速度及びエンジン負荷)と噴射圧とに基づいて算出される。噴射率が最大噴射率Dmaxに到達した時点(時刻t52)では、ノズルニードル31は、閉弁位置とフルリフト限界との間の中間位置LTHに位置している。 The speed switching time T1 is the time required for the injection rate to change from zero to the maximum injection rate Dmax when both the first opening/closing valve 51 and the second opening/closing valve 52 are opened. The speed switching time T1 is calculated based on the engine operating state (specifically, the engine rotation speed and the engine load) and the injection pressure. At the time when the injection rate reaches the maximum injection rate Dmax (time t52), the nozzle needle 31 is located at the intermediate position LTH between the valve closing position and the full lift limit.
 その後、時刻t51からニードル閉弁指令時間T2が経過し、燃料噴射弁20の閉弁指令を入力すると、ECU90のマイコンは、噴射率モードに応じて第1開閉弁51及び第2開閉弁52の開閉状態を制御する(時刻t53)。ここでは、燃料噴射弁20の閉弁指令に伴い、第2開閉弁52を開いたまま第1開閉弁51を閉弁させる。第1開閉弁51が閉じられ、かつ第2開閉弁52が開かれた状態では、ノズルニードル31は、リフト量を減少させる方向へ第3速度V3で変位する。 After that, when the needle closing command time T2 has elapsed from the time t51 and the valve closing command of the fuel injection valve 20 is input, the microcomputer of the ECU 90 causes the microcomputer of the first opening/closing valve 51 and the second opening/closing valve 52 to operate according to the injection rate mode. The open/closed state is controlled (time t53). Here, the first opening/closing valve 51 is closed while the second opening/closing valve 52 is open in accordance with the closing command of the fuel injection valve 20. In the state where the first opening/closing valve 51 is closed and the second opening/closing valve 52 is opened, the nozzle needle 31 is displaced at the third speed V3 in the direction of decreasing the lift amount.
 ニードル閉弁指令時間T2は、エンジン運転状態(エンジン回転速度、エンジン負荷)及びレール圧(又は噴射圧)に基づいて算出される値であり、燃料噴射弁20から1回の燃料噴射により噴射させる燃料量の要求値(以下、「要求噴射量」ともいう。)に対応する時間である。要求噴射量が多いほど、ニードル閉弁指令時間T2としては長い時間が設定される。 The needle closing command time T2 is a value calculated based on the engine operating state (engine speed, engine load) and rail pressure (or injection pressure), and is injected by the fuel injection valve 20 by one fuel injection. It is the time corresponding to the required value of the fuel amount (hereinafter, also referred to as “required injection amount”). The larger the required injection amount, the longer the needle closing valve command time T2 is set.
 その後、燃料噴射弁20の開弁指令タイミング(時刻t51)から速度切替時間T3が経過した時点(時刻t53)で、第1開閉弁51を閉弁させたまま第2開閉弁52を閉弁させる。第1開閉弁51及び第2開閉弁52が共に閉じられた状態では、ノズルニードル31は、第3速度V3よりも高速の第4速度V4で、リフト量を減少させる方向へ変位する。このため、時刻t52では、ノズルニードル31のリフト速度が、低速の第3速度V3から高速の第4速度V4へ切り替えられる。なお、第3速度V3及び第4速度V4は減速度を表し、第3速度V3は第4速度V4よりも低速側(減速度小)の値である。 After that, when the speed switching time T3 has elapsed from the valve opening command timing (time t51) of the fuel injection valve 20 (time t53), the second on-off valve 52 is closed while the first on-off valve 51 is closed. .. In a state where both the first opening/closing valve 51 and the second opening/closing valve 52 are closed, the nozzle needle 31 is displaced in the direction of decreasing the lift amount at the fourth speed V4 which is higher than the third speed V3. Therefore, at time t52, the lift speed of the nozzle needle 31 is switched from the low third speed V3 to the high fourth speed V4. The third speed V3 and the fourth speed V4 represent deceleration, and the third speed V3 is a value on the lower speed side (small deceleration) than the fourth speed V4.
 速度切替時間T3は、燃料噴射弁20の閉弁指令に伴い第1開閉弁51を閉弁し、かつ第2開閉弁52を開弁させた場合にノズルニードル31が中間位置LTHに到達するまでに要する時間と、ニードル閉弁指令時間T2との合計の時間である。速度切替時間T3は、エンジン運転状態(具体的には、エンジン回転速度及びエンジン負荷)と噴射圧とに基づいて算出される。その後、ノズルニードル31がシート部(閉弁位置)に戻ることにより、燃料噴射弁20からの燃料噴射が停止される。 The speed switching time T3 is until the nozzle needle 31 reaches the intermediate position LTH when the first opening/closing valve 51 is closed and the second opening/closing valve 52 is opened in accordance with the closing command of the fuel injection valve 20. Is a total time of the time required for and the needle closing command time T2. The speed switching time T3 is calculated based on the engine operating state (specifically, the engine rotation speed and the engine load) and the injection pressure. After that, the nozzle needle 31 returns to the seat portion (valve closing position), so that the fuel injection from the fuel injection valve 20 is stopped.
 燃料噴射弁20からの1回の燃料噴射により噴射可能な燃料量の上限を拡大することができれば、燃料噴射の自由度を向上できるといえる。そのためには、燃料噴射弁20から燃料が噴射されている期間において、噴射率が最大噴射率Dmaxで制御されている噴孔絞り領域の期間をできるだけ長くすることが望ましい(図11参照)。この点、燃料の噴射開始時においてリフト速度を高速から低速に切り替えるか、又は噴射終了時においてリフト速度を低速から高速に切り替える上記制御によれば、噴孔絞り領域の期間をできるだけ長くすることができる。これにより、燃料噴射弁20からの1回の燃料噴射による噴射量の増大を図ることができる。なお、中間位置LTHよりもリフト量が大きい側の領域が「第1リフト領域」に相当し、中間位置LTHよりもリフト量が小さい側の領域が「第2リフト領域」に相当する。 It can be said that the flexibility of fuel injection can be improved if the upper limit of the amount of fuel that can be injected by a single fuel injection from the fuel injection valve 20 can be expanded. For that purpose, it is desirable to lengthen the period of the injection hole throttle region in which the injection rate is controlled at the maximum injection rate Dmax as long as possible while the fuel is being injected from the fuel injection valve 20 (see FIG. 11 ). In this respect, according to the above control for switching the lift speed from high speed to low speed at the start of fuel injection or switching the lift speed from low speed to high speed at the end of injection, the period of the injection hole throttle region can be made as long as possible. it can. As a result, it is possible to increase the injection amount by one fuel injection from the fuel injection valve 20. The region where the lift amount is larger than the intermediate position LTH corresponds to the “first lift region”, and the region where the lift amount is smaller than the intermediate position LTH corresponds to the “second lift region”.
 ここで、ノズルニードル31のリフト速度は、種々のパラメータに応じて変化する。この点を考慮し、さらに本実施形態では、ノズルニードル31のリフト速度に相関する相関パラメータに基づいて、リフト速度を高速と低速との間で切り替える切替タイミングTL(すなわち、速度切替時間T1、T3)を可変に制御している。本実施形態では、相関パラメータとして以下の要素(1)及び(2)を用いている。
(1)燃料噴射弁20に供給される高圧燃料の圧力(噴射圧)
(2)燃料温度
Here, the lift speed of the nozzle needle 31 changes according to various parameters. In consideration of this point, further, in the present embodiment, the switching timing TL for switching the lift speed between the high speed and the low speed (that is, the speed switching times T1, T3) based on the correlation parameter that correlates with the lift speed of the nozzle needle 31. ) Is variably controlled. In this embodiment, the following elements (1) and (2) are used as correlation parameters.
(1) Pressure of high-pressure fuel supplied to the fuel injection valve 20 (injection pressure)
(2) Fuel temperature
 また、さらに本実施形態では、ノズルニードル31のリフト速度にはばらつき要因があることに着目し、以下の(3)~(5)の各要素に基づいて切替タイミングTLを可変に制御している。
(3)燃料噴射弁20の個体差による速度ばらつき
(4)噴射インターバルの相違による速度ばらつき
(5)経時劣化やエンジン運転条件による速度ばらつき
以下、各要素と切替タイミングTLとの関係について、燃料の噴射開始時を例に挙げて図11~図15を用いて説明する。
Further, in the present embodiment, it is noted that the lift speed of the nozzle needle 31 has a variation factor, and the switching timing TL is variably controlled based on the following elements (3) to (5). ..
(3) Velocity variation due to individual difference of fuel injection valve (4) Velocity variation due to difference in injection interval (5) Velocity variation due to deterioration over time and engine operating conditions Below, regarding the relationship between each element and switching timing TL, The injection start time will be described as an example with reference to FIGS. 11 to 15.
 (1)噴射圧
 ノズルニードル31のリフト速度は噴射圧に応じて変化する。具体的には、燃料の噴射開始時では、噴射圧が高圧であるほどリフト速度は高速になる。これは、噴射圧が高圧であるほど、コモンレール11から高圧室33に供給される高圧燃料によってノズルニードル31が押し上げられる力が大きくなり、ノズルニードル31が上方向に移動しやすくなるためである。
(1) Injection pressure The lift speed of the nozzle needle 31 changes according to the injection pressure. Specifically, at the start of fuel injection, the higher the injection pressure, the higher the lift speed. This is because the higher the injection pressure is, the greater the force with which the high pressure fuel supplied from the common rail 11 to the high pressure chamber 33 pushes up the nozzle needle 31, and the easier it is for the nozzle needle 31 to move upward.
 ノズルニードル31のリフト速度を高速のままとした場合、ノズルニードル31が早いタイミングでフルリフト限界に到達する(図12中の破線R参照)。また、噴射圧が高圧側の値であるほどノズルニードル31が上方向に変位しやすく、フルリフト限界に到達しやすくなる。そこで、燃料の噴射開始時では、噴射圧が高圧であるほど、リフト速度の切替タイミングTLを早い時期に設定する。具体的には、図12に示すように、時刻t11で燃料噴射弁20の開弁指令があった場合、噴射圧が比較的低圧であれば、図12に一点鎖線で示すように、時刻t13でリフト速度を高速から低速に切り替える。これに対し、噴射圧が比較的高圧である場合には、図12に実線で示すように、時刻t13よりも早いタイミング(時刻t12)でリフト速度を高速から低速に切り替える。なお、噴射圧については、レール圧センサ73及び燃圧センサ75のいずれの検出圧力を用いてもよい。 If the lift speed of the nozzle needle 31 is kept high, the nozzle needle 31 reaches the full lift limit at an early timing (see the broken line R in FIG. 12). Further, the higher the injection pressure is, the more easily the nozzle needle 31 is displaced upward and the easier it is to reach the full lift limit. Therefore, at the start of fuel injection, the higher the injection pressure, the earlier the lift speed switching timing TL is set. Specifically, as shown in FIG. 12, when there is a command to open the fuel injection valve 20 at time t11, if the injection pressure is relatively low, as shown by the alternate long and short dash line in FIG. Switch the lift speed from high speed to low speed. On the other hand, when the injection pressure is relatively high, as shown by the solid line in FIG. 12, the lift speed is switched from high speed to low speed at a timing earlier than time t13 (time t12). The injection pressure may be detected by either the rail pressure sensor 73 or the fuel pressure sensor 75.
 燃料の噴射終了時には、ノズルニードル31が中間位置LTHに到達するタイミングでリフト速度を低速から高速に切り替える。ここで、燃料の噴射終了時には、噴射圧が高圧であるほど、コモンレール11から高圧室33に供給される高圧燃料によってノズルニードル31が押し上げられる力が大きくなり、ノズルニードル31は下方向へ移動しにくくなる。つまり、噴射圧が低圧であるほどノズルニードル31は下方向へ移動しやすくなる。この場合、噴射圧が低圧であるほど、ノズルニードル31は早期に中間位置LTHに到達する。そこで、燃料の噴射終了時には、噴射圧が低圧であるほど、燃料噴射弁20の閉弁指令からより短い時間でリフト速度が切り替えられるようにリフト速度の切替タイミングTLを設定する。これにより、1回の燃料噴射により燃料噴射弁20から噴射可能な燃料噴射量を増大させつつ、閉弁応答性を確保している。 At the end of fuel injection, the lift speed is switched from low speed to high speed at the timing when the nozzle needle 31 reaches the intermediate position LTH. Here, at the end of fuel injection, the higher the injection pressure, the greater the force with which the nozzle needle 31 is pushed up by the high-pressure fuel supplied from the common rail 11 to the high-pressure chamber 33, and the nozzle needle 31 moves downward. It gets harder. That is, the lower the injection pressure is, the easier the nozzle needle 31 is to move downward. In this case, the lower the injection pressure, the earlier the nozzle needle 31 reaches the intermediate position LTH. Therefore, at the end of fuel injection, the lift speed switching timing TL is set such that the lift speed is switched in a shorter time from the valve closing command of the fuel injection valve 20 as the injection pressure is lower. As a result, the valve closing response is ensured while increasing the fuel injection amount that can be injected from the fuel injection valve 20 by one fuel injection.
 (2)燃料温度
 ノズルニードル31のリフト速度は、燃料噴射弁20に供給される燃料の温度に応じて変化する。具体的には、燃料の噴射開始時には、燃料温度が高温であるほど燃料の粘性が低く、リフト速度は高速になる。この点に着目し本実施形態では、燃料温度が高温であるほど、リフト速度の切替タイミングTLを早い時期に設定する。具体的には、図13に示すように、時刻t31で噴射孔34の開弁指令があった場合、燃温センサ74により検出された燃料温度が比較的低温であるときには、図13に一点鎖線で示すように、時刻t33でリフト速度を高速から低速に切り替える。これに対し、燃温センサ74により検出された燃料温度が比較的高温である場合には、図13に実線で示すように、時刻t33よりも早いタイミング(時刻t32)でリフト速度を高速から低速に切り替える。
(2) Fuel Temperature The lift speed of the nozzle needle 31 changes according to the temperature of the fuel supplied to the fuel injection valve 20. Specifically, at the start of fuel injection, the higher the fuel temperature, the lower the fuel viscosity and the higher the lift speed. Focusing on this point, in the present embodiment, the higher the fuel temperature is, the earlier the switching timing TL of the lift speed is set. Specifically, as shown in FIG. 13, when there is a valve opening command for the injection hole 34 at time t31, when the fuel temperature detected by the fuel temperature sensor 74 is relatively low, the chain line in FIG. As shown by, the lift speed is switched from high speed to low speed at time t33. On the other hand, when the fuel temperature detected by the fuel temperature sensor 74 is relatively high, as shown by the solid line in FIG. 13, the lift speed is changed from high speed to low speed at a timing (time t32) earlier than time t33. Switch to.
 燃料の噴射終了時については、燃料温度が高温であるほど、ノズルニードル31は高速で下方向に変位する。そこで、燃料の噴射終了時には、燃料温度が高温であるほど、燃料噴射弁20の閉弁指令からより短い時間でリフト速度が切り替えられるようにリフト速度の切替タイミングTLを設定する。 At the end of fuel injection, the higher the fuel temperature, the faster the nozzle needle 31 is displaced downward. Therefore, at the end of fuel injection, the lift speed switching timing TL is set such that the lift speed is switched in a shorter time from the valve closing command of the fuel injection valve 20 as the fuel temperature becomes higher.
 (3)燃料噴射弁20の個体差による速度ばらつき
 ノズルニードル31のリフト速度には個体差があり、燃料噴射弁20ごとに応じて異なる。リフト速度が遅い燃料噴射弁20を基準にして切替タイミングTLを設定した場合、リフト速度が速い燃料噴射弁20では、燃料の噴射開始時において、リフト速度を高速から低速に切り替える前にリフト位置がフルリフト限界に到達してしまうことが懸念される。そこで本実施形態では、各燃料噴射弁20の噴射特性情報を予め記憶手段に記憶しておき、その記憶された噴射特性情報を読み出して利用することにより、各燃料噴射弁20の個体差に応じたリフト速度のばらつき補正を行う。
(3) Speed Variation Due to Individual Difference of Fuel Injection Valve 20 The lift speed of the nozzle needle 31 has individual difference, and varies depending on each fuel injection valve 20. When the switching timing TL is set with reference to the fuel injection valve 20 having a slow lift speed, the fuel injection valve 20 having a high lift speed changes the lift position at the start of fuel injection before the lift speed is switched from the high speed to the low speed. There is concern that the full lift limit will be reached. Therefore, in the present embodiment, the injection characteristic information of each fuel injection valve 20 is stored in the storage unit in advance, and the stored injection characteristic information is read out and utilized to meet the individual difference of each fuel injection valve 20. The lift speed variation is corrected.
 具体的には、図14に示すように、時刻t21で燃料噴射弁20の開弁指令があった場合、噴射開始時のリフト速度が比較的遅い噴射特性を有する個体については、図14に一点鎖線で示すように、時刻t23でリフト速度を高速から低速に切り替える。これに対し、リフト速度が比較的速い噴射特性を有する個体では、図14に実線で示すように、時刻t23よりも早いタイミング(時刻t22)でリフト速度を高速から低速に切り替える。 Specifically, as shown in FIG. 14, when there is a command to open the fuel injection valve 20 at time t21, one point is shown in FIG. 14 for an individual having an injection characteristic in which the lift speed at the start of injection is relatively slow. As indicated by the chain line, the lift speed is switched from high speed to low speed at time t23. On the other hand, as shown by the solid line in FIG. 14, the individual having the injection characteristic with the relatively high lift speed switches the lift speed from the high speed to the low speed at a timing earlier than the time t23 (time t22).
 燃料の噴射終了時についても同様に、各燃料噴射弁20の噴射特性情報を読み出し、リフト速度の個体差に応じて切替タイミングTLを設定する。具体的には、噴射終了時のリフト速度が比較的早い噴射特性を有する個体については、リフト速度が比較的遅い噴射特性を有する個体に対し、燃料噴射弁20の閉弁指令からより短時間でリフト速度が切り替えられるようにリフト速度の切替タイミングTLを設定する。 Similarly, at the end of fuel injection, the injection characteristic information of each fuel injection valve 20 is read and the switching timing TL is set according to the individual difference in lift speed. Specifically, for an individual having an injection characteristic with a relatively high lift speed at the end of injection, an individual having an injection characteristic with a relatively low lift speed can be processed in a shorter time from the valve closing command of the fuel injection valve 20. The lift speed switching timing TL is set so that the lift speed can be switched.
 (4)噴射インターバルの相違による速度ばらつき
 エンジン70の1燃焼サイクル中に燃料噴射弁20により複数回の燃料噴射を実施する場合、噴射インターバル、すなわち、多段噴射時の前段噴射の終了から後段噴射の開始までの期間が相違することにより、噴射開始時の燃料の圧力脈動の振幅が異なる。また、噴射開始時の燃圧脈動の振幅が相違することに起因して、噴射開始時におけるノズルニードル31のリフト速度が変化する。具体的には、噴射開始時において燃圧脈動の振幅が正側に大きいほど、リフト速度は高速になる。そこで本実施形態では、噴射インターバルの相違による速度ばらつきを反映させるべく、噴射開始時のリフト速度の切替タイミングTLを補正している。本実施形態では、前段噴射の終了タイミングからの経過時間に応じて、噴射インターバルでの圧力脈動の振幅を算出し、その算出した振幅が正側に大きいほど、燃料の噴射開始時及び噴射終了時におけるリフト速度の切替タイミングTLを早い時期に設定する。
(4) Speed variation due to difference in injection interval When fuel injection is performed a plurality of times by the fuel injection valve 20 during one combustion cycle of the engine 70, the injection interval, that is, from the end of the pre-stage injection in the multi-stage injection to the post-stage injection. Due to the difference in the period up to the start, the amplitude of the fuel pressure pulsation at the start of injection differs. Further, the lift speed of the nozzle needle 31 at the time of injection start changes due to the difference in the amplitude of the fuel pressure pulsation at the time of injection start. Specifically, the lift speed becomes higher as the amplitude of the fuel pressure pulsation increases toward the positive side at the start of injection. Therefore, in the present embodiment, the lift timing switching timing TL at the start of injection is corrected to reflect the speed variation due to the difference in injection interval. In the present embodiment, the amplitude of the pressure pulsation at the injection interval is calculated according to the elapsed time from the end timing of the preceding injection, and the larger the calculated amplitude is on the positive side, the more the fuel injection starts and the fuel injection end. The lift speed switching timing TL is set to an early timing.
 具体的には、図15に示すように、時刻t41で燃料噴射弁20の開弁指令があった場合、噴射開始時の燃圧脈動の振幅が比較的小さいときには、図15に一点鎖線で示すように、時刻t43でリフト速度を高速から低速に切り替える。これに対し、噴射開始時の燃圧脈動の振幅が比較的大きい場合には、図15に実線で示すように、時刻t43よりも早いタイミング(時刻t42)でリフト速度を高速から低速に切り替える。 Specifically, as shown in FIG. 15, when there is a command to open the fuel injection valve 20 at time t41, and when the amplitude of the fuel pressure pulsation at the start of injection is relatively small, as shown by the alternate long and short dash line in FIG. Then, at time t43, the lift speed is switched from high speed to low speed. On the other hand, when the amplitude of the fuel pressure pulsation at the start of injection is relatively large, as shown by the solid line in FIG. 15, the lift speed is switched from high speed to low speed at a timing earlier than time t43 (time t42).
 (5)経時劣化、エンジン運転条件による速度ばらつき
 経時劣化やエンジン運転条件によってノズルニードル31のリフト速度のずれが生じた場合、そのずれは噴射率に現れる。具体的には、経時変化等によりリフト速度が遅くなった場合には、燃料噴射弁20に開弁指令してから噴孔絞り領域に到達するまでの時間や、燃料噴射弁20に閉弁指令してから噴孔絞り領域を抜けるまでの時間が長くなる。そこで本実施形態では、燃圧センサ75の検出圧力(図11(e)参照)を用いて噴射率の推移波形を算出し、その算出した噴射率の推移波形から、燃料噴射弁20に開弁指令してから噴孔絞り領域に到達するまでの時間、及び燃料噴射弁20に閉弁指令してから噴孔絞り領域を抜けるまでの時間を取得する。そして、その取得した値を用いて、リフト速度の切替タイミングTLをフィードバック補正している。
(5) Deterioration with time and speed variation due to engine operating conditions When the lift speed of the nozzle needle 31 is deviated due to deterioration with time or engine operating conditions, the deviation appears in the injection rate. Specifically, when the lift speed becomes slow due to a change with time or the like, the time from when the fuel injection valve 20 is instructed to open the valve until it reaches the injection hole throttle region, and when the fuel injection valve 20 is instructed to close the valve After that, it takes a long time to pass through the injection hole restriction region. Therefore, in the present embodiment, a transition waveform of the injection rate is calculated using the pressure detected by the fuel pressure sensor 75 (see FIG. 11E), and a valve opening command is issued to the fuel injection valve 20 from the calculated transition waveform of the injection rate. After that, the time from when the fuel injection valve 20 reaches the injection hole restriction area and the time from when the fuel injection valve 20 is instructed to close the valve until the fuel injection valve 20 exits the injection hole restriction area are acquired. Then, the obtained value is used to perform feedback correction of the lift speed switching timing TL.
 次に、燃料噴射の開始時及び終了時におけるノズルニードル31の速度変更制御の処理手順について、図16のフローチャートを用いて説明する。この処理は、ECU90のマイコンにより所定周期ごと(例えば180℃Aごと)に実行される。 Next, the processing procedure of speed change control of the nozzle needle 31 at the start and end of fuel injection will be described using the flowchart of FIG. This processing is executed by the microcomputer of the ECU 90 every predetermined cycle (for example, every 180°C).
 図16において、ステップS101では、エンジン運転状態(エンジン回転速度及びエンジン負荷)に基づいて、噴射率波形の矩形度を高くする高矩形要求が有るか否かを判定する。高矩形要求が有る場合にはステップS102へ進み、ニードル速度の指令値を「高速」に設定する。 In FIG. 16, in step S101, it is determined based on the engine operating state (engine speed and engine load) whether or not there is a demand for a high rectangle to increase the rectangularity of the injection rate waveform. If there is a high rectangle request, the process proceeds to step S102, and the needle speed command value is set to "high speed".
 続くステップS103では、燃料噴射弁20の要求噴射量が第1閾値TH1よりも多いか否かを判定する。要求噴射量が第1閾値TH1よりも多い場合にはステップS104へ進み、要求噴射量が第2閾値TH2よりも多いか否かを判定する。ここで、第2閾値TH2は、第1閾値TH1よりも要求噴射量が多い側の値に設定されている。本実施形態では、要求噴射量が第1閾値TH1よりも多い場合には、燃料の噴射開始時において、リフト量の変化が増大側から減少側に転じるまでの途中でリフト速度を高速から低速に切り替える。また、要求噴射量が第2閾値TH2よりも多い場合には、噴射開始時だけでなく燃料の噴射終了時にも、リフト量変化の途中でリフト速度を高速から低速に切り替える。 Next, in step S103, it is determined whether the required injection amount of the fuel injection valve 20 is larger than the first threshold TH1. When the required injection amount is greater than the first threshold TH1, the process proceeds to step S104, and it is determined whether the required injection amount is greater than the second threshold TH2. Here, the second threshold TH2 is set to a value on the side where the required injection amount is larger than the first threshold TH1. In the present embodiment, when the required injection amount is larger than the first threshold value TH1, the lift speed is changed from the high speed to the low speed in the middle of the change of the lift amount from the increasing side to the decreasing side at the time of starting the fuel injection. Switch. Further, when the required injection amount is larger than the second threshold value TH2, the lift speed is switched from the high speed to the low speed during the change of the lift amount not only at the start of injection but also at the end of fuel injection.
 要求噴射量が第2閾値TH2よりも多い場合には、ステップS104で肯定判定されてステップS105へ進む。ステップS105では、要求噴射量及びレール圧に基づいてニードル閉弁指令時間T2を算出する。ニードル閉弁指令時間T2としては、要求噴射量が大きいほど長い時間が設定され、レール圧が高いほど短い時間が設定される。 If the required injection amount is greater than the second threshold TH2, an affirmative decision is made in step S104 and the operation proceeds to step S105. In step S105, the needle closing valve command time T2 is calculated based on the required injection amount and the rail pressure. As the needle closing command time T2, a longer time is set as the required injection amount is larger, and a shorter time is set as the rail pressure is higher.
 ステップS106では、速度切替時間T1,T3を算出する。図17に、速度切替時間T1,T3の算出処理を表す機能ブロック図を示す。ECU90のマイコンはまず、要求噴射量及び噴射圧に基づいて、速度切替時間T1,T3の基本量としてベース時間Tbをそれぞれ算出する。ここでは、予め記憶されているベース期間設定用マップを用い、燃圧センサ75により検出した噴射圧と要求噴射量とに対応する時間をベース期間設定用マップから読み出すことによりベース時間Tbを算出する。ベース時間Tbとしては、噴射開始時のベース時間Tb1と噴射終了時のベース時間Tb3とを算出する。 In step S106, speed switching times T1 and T3 are calculated. FIG. 17 is a functional block diagram showing the calculation process of the speed switching times T1 and T3. The microcomputer of the ECU 90 first calculates the base time Tb as the basic amount of the speed switching times T1 and T3 based on the required injection amount and the injection pressure. Here, the base period setting map stored in advance is used to calculate the base time Tb by reading the time corresponding to the injection pressure detected by the fuel pressure sensor 75 and the required injection amount from the base period setting map. As the base time Tb, a base time Tb1 at the start of injection and a base time Tb3 at the end of injection are calculated.
 続いて、ECU90のマイコンは、各燃料噴射弁20の個体差を表す噴射特性情報、燃料温度、及び噴射インターバルに基づいてベース時間Tb1、Tb3を補正する。具体的には、各燃料噴射弁20の噴射特性情報から読み出した速度切替時間の補正値Ka、燃温センサ74により検出した燃料温度を用いて燃温補正用マップから読み出した補正値Kb、及び噴射インターバルの補正用マップから読み出した補正値Kcによりベース時間Tb1、Tb3を補正する。また、ECU90のマイコンは、検出した噴射率波形から速度切替時間T1,T3の実際値を取得し、その取得した実際値に基づき算出したフィードバック補正値Kdによりベース時間Tb1、Tb3を補正する。そして、これら各補正値による補正後の値を速度切替時間T1、T3とする。 Subsequently, the microcomputer of the ECU 90 corrects the base times Tb1 and Tb3 based on the injection characteristic information indicating the individual difference of each fuel injection valve 20, the fuel temperature, and the injection interval. Specifically, the correction value Ka of the speed switching time read from the injection characteristic information of each fuel injection valve 20, the correction value Kb read from the fuel temperature correction map using the fuel temperature detected by the fuel temperature sensor 74, and The base times Tb1 and Tb3 are corrected by the correction value Kc read from the injection interval correction map. Further, the microcomputer of the ECU 90 acquires the actual values of the speed switching times T1 and T3 from the detected injection rate waveform, and corrects the base times Tb1 and Tb3 with the feedback correction value Kd calculated based on the acquired actual values. Then, the values after correction by these correction values are set as speed switching times T1 and T3.
 図16の説明に戻り、ステップS107では、所定の噴射開始タイミングで、燃料噴射弁20に開弁指令を出力する。噴射開始タイミングは、都度のエンジン運転状態に基づいて算出される。この開弁指令により、第1ソレノイド53への通電が開始されて第1開閉弁51が開弁した状態になるとともに、第2ソレノイド54への通電が開始されて第2開閉弁52が開弁した状態になる。これにより、ノズルニードル31が、噴射孔34を開く方向に向けて第1速度V1で変位する。 Returning to the description of FIG. 16, in step S107, a valve opening command is output to the fuel injection valve 20 at a predetermined injection start timing. The injection start timing is calculated based on the engine operating state each time. By this valve opening command, energization of the first solenoid 53 is started and the first opening/closing valve 51 is opened, and energization of the second solenoid 54 is started and the second opening/closing valve 52 is opened. It will be in the state of doing. As a result, the nozzle needle 31 is displaced at the first speed V1 toward the direction of opening the injection hole 34.
 続くステップS108では、燃料噴射弁20の開弁指令から速度切替時間T1が経過したか否かを判定する。燃料噴射弁20の開弁指令から速度切替時間T1が経過したと判定されたことを条件にステップS109へ進み、ニードル速度の指令値を「低速」に設定する。これにより、第2開閉弁52が閉じられた状態になり、ニードル速度が第1速度V1から第2速度V2へ切り替わる。 Next, in step S108, it is determined whether or not the speed switching time T1 has elapsed from the valve opening command of the fuel injection valve 20. On the condition that it is determined that the speed switching time T1 has elapsed from the valve opening command of the fuel injection valve 20, the process proceeds to step S109, and the command value of the needle speed is set to "low speed". As a result, the second opening/closing valve 52 is closed, and the needle speed is switched from the first speed V1 to the second speed V2.
 ステップS110では、燃料噴射弁20の開弁指令からニードル閉弁指令時間T2が経過したか否かを判定し、ステップS110で肯定判定されたことを条件にステップS111へ進む。ステップS111では、ニードル速度の指令値を「低速」に設定し、ステップS112で燃料噴射弁20の閉弁指令を出力する。この閉弁指令に伴い、第2ソレノイド54への通電を継続したまま(すなわち、第2開閉弁52を開いたまま)、第1ソレノイド53への通電が停止されて第1開閉弁51が閉じられる。これにより、ノズルニードル31が、噴射孔34を閉じる方向に向けて第3速度V3で変位する。 In step S110, it is determined whether or not the needle closing command time T2 has elapsed from the valve opening command of the fuel injection valve 20, and the process proceeds to step S111 on the condition that the affirmative judgment is made in step S110. In step S111, the command value of the needle speed is set to "low speed", and in step S112, a command to close the fuel injection valve 20 is output. In accordance with this valve closing command, energization of the first solenoid 53 is stopped and energization of the first opening/closing valve 51 is closed while continuing energization of the second solenoid 54 (that is, with the second opening/closing valve 52 open). Be done. As a result, the nozzle needle 31 is displaced at the third speed V3 toward the direction of closing the injection hole 34.
 続くステップS113では、燃料噴射弁20の開弁指令から速度切替時間T3が経過したか否かを判定する。燃料噴射弁20の開弁指令から速度切替時間T3が経過したことを条件にステップS114へ進み、ニードル速度の指令値を「高速」に設定する。これにより、第2開閉弁52が閉じられた状態になり、ニードル速度が第3速度V3から第4速度V4へ切り替わる。ノズルニードル31が閉弁位置まで移動すると、燃料噴射弁20からの燃料噴射が停止される。 Next, in step S113, it is determined whether or not the speed switching time T3 has elapsed from the opening command of the fuel injection valve 20. On the condition that the speed switching time T3 has elapsed from the valve opening command of the fuel injection valve 20, the process proceeds to step S114, and the command value of the needle speed is set to "high speed". As a result, the second opening/closing valve 52 is closed and the needle speed is switched from the third speed V3 to the fourth speed V4. When the nozzle needle 31 moves to the valve closing position, the fuel injection from the fuel injection valve 20 is stopped.
 さて、要求噴射量が第1閾値TH1よりも大きく、かつ第2閾値TH2以下である場合には、ステップS104で否定判定されてステップS115へ進む。この場合には、燃料の噴射開始時及び噴射終了時のうち燃料の噴射開始時のみ、ニードル速度を途中で高速から低速に切り替える制御を実施する。 If the required injection amount is greater than the first threshold TH1 and less than or equal to the second threshold TH2, a negative determination is made in step S104 and the process proceeds to step S115. In this case, the control for switching the needle speed from the high speed to the low speed on the way is performed only at the time of starting the fuel injection among the start and end of the fuel injection.
 すなわち、ステップS115では、要求噴射量及びレール圧に基づいてニードル閉弁指令時間T2を算出する。続くステップS116では、ステップS106の処理と同様にして速度切替時間T1を算出する。その後、ステップS117~S120では、ステップS107~S110と同様の処理を実行する。続くステップS121では、ニードル速度の指令値を「高速」に設定し、ステップS122で燃料噴射弁20の閉弁指令を出力する。そして本ルーチンを終了する。 That is, in step S115, the needle closing command time T2 is calculated based on the required injection amount and the rail pressure. In the following step S116, the speed switching time T1 is calculated in the same manner as the processing of step S106. Then, in steps S117 to S120, the same processing as steps S107 to S110 is executed. In the following step S121, the command value of the needle speed is set to "high speed", and the valve closing command of the fuel injection valve 20 is output in step S122. Then, this routine is finished.
 要求噴射量が第1閾値TH1以下である場合には、ステップS103で否定判定されてステップS123へ進む。この場合には、燃料の噴射開始時及び噴射終了時では速度変更制御を実施せず、ニードル速度を高速で制御する。 If the required injection amount is less than or equal to the first threshold value TH1, a negative determination is made in step S103 and the process proceeds to step S123. In this case, the speed change control is not executed at the time of starting and ending the fuel injection, and the needle speed is controlled at a high speed.
 すなわち、ステップS123では、要求噴射量及びレール圧に基づいてニードル閉弁指令時間T2を算出する。続くステップS124では、所定の噴射開始タイミングで燃料噴射弁20に開弁指令を出力する。その後、ステップS125では、燃料噴射弁20の開弁指令からニードル閉弁指令時間T2が経過したか否かを判定し、ステップS125で肯定判定されたことを条件にステップS126へ進む。ステップS126では、ニードル速度の指令値を「高速」に設定し、所定の噴射終了タイミングとなると、ステップS127で燃料噴射弁20の閉弁指令を出力する。これにより、第1開閉弁51及び第2開閉弁52への通電が停止される。 That is, in step S123, the needle closing command time T2 is calculated based on the required injection amount and the rail pressure. In subsequent step S124, a valve opening command is output to the fuel injection valve 20 at a predetermined injection start timing. Thereafter, in step S125, it is determined whether or not the needle closing command time T2 has elapsed from the valve opening command of the fuel injection valve 20, and the process proceeds to step S126 on the condition that the affirmative judgment is made in step S125. In step S126, the command value of the needle speed is set to "high speed", and when the predetermined injection end timing is reached, the valve closing command of the fuel injection valve 20 is output in step S127. As a result, the energization of the first opening/closing valve 51 and the second opening/closing valve 52 is stopped.
 噴射率の高矩形要求がない場合には、ステップS101で否定判定されてステップS128へ進む。ステップS128では、ニードル速度の指令値を「低速」に設定する。また、ステップS129では、要求噴射量及びレール圧に基づいてニードル閉弁指令時間T2を算出し、所定の噴射開始タイミングとなると、ステップS130で燃料噴射弁20の開弁指令を出力する。これにより、第2開閉弁52を閉じたまま第1開閉弁51を開く。その後のステップS131~S133では、ステップS125~S127と同様の処理を実行し、本ルーチンを終了する。 When there is no request for a high rectangular injection rate, a negative determination is made in step S101 and the process proceeds to step S128. In step S128, the needle speed command value is set to "low speed". In step S129, the needle valve closing command time T2 is calculated based on the required injection amount and the rail pressure, and when the predetermined injection start timing is reached, the valve opening command of the fuel injection valve 20 is output in step S130. As a result, the first opening/closing valve 51 is opened while the second opening/closing valve 52 is closed. In subsequent steps S131 to S133, the same processing as steps S125 to S127 is executed, and this routine is finished.
 以上詳述した本実施形態によれば、次の優れた効果が得られる。 According to this embodiment described in detail above, the following excellent effects can be obtained.
 燃料噴射の噴射開始時及び噴射終了時の少なくとも一方において、ノズルニードル31のリフト量が大きい期間では、リフト量が小さい期間よりもノズルニードル31のリフト速度を低速で制御する構成とした。これにより、ノズルニードル31が最大リフト位置又は閉弁位置に到達するタイミングを遅くすることができ、燃料噴射弁20の開弁期間をできるだけ長くすることができる。よって、上記構成によれば、燃料噴射弁20の駆動指令に対するノズルニードル31の応答性を確保しつつ、1回の燃料噴射により燃料噴射弁20から噴射される燃料量を増大することができる。 At least at one of the start and end of the fuel injection, during the period when the lift amount of the nozzle needle 31 is large, the lift speed of the nozzle needle 31 is controlled to be slower than during the period when the lift amount is small. As a result, the timing at which the nozzle needle 31 reaches the maximum lift position or the valve closing position can be delayed, and the valve opening period of the fuel injection valve 20 can be made as long as possible. Therefore, according to the above configuration, it is possible to increase the amount of fuel injected from the fuel injection valve 20 by one fuel injection while ensuring the responsiveness of the nozzle needle 31 to the drive command of the fuel injection valve 20.
 また、上記構成によれば、燃料噴射弁20を大型化しなくても、燃料噴射弁20から噴射される1回の燃料噴射当たりの燃料量を増大させることができる。 Further, according to the above configuration, it is possible to increase the amount of fuel per fuel injection injected from the fuel injection valve 20 without increasing the size of the fuel injection valve 20.
 要求噴射量に基づいて、噴射開始時及び噴射終了時のうち少なくとも一方においてリフト速度を高速から低速に切り替える速度変更制御を実施する構成とした。具体的には、要求噴射量が第1閾値TH1よりも多い場合に、噴射開始時の途中でリフト速度を高速から低速に切り替える構成とした。これにより、要求噴射量が比較的多い場合にその要求噴射量を満たすように燃料噴射制御を実施できる。一方、要求噴射量が第1閾値TH1以下である場合には、噴射開始時及び噴射終了時の途中でリフト速度を切り替える制御を実施しない構成とした。このため、要求噴射量がさほど多くなく、大噴射量とする必要がない場合にはノズルニードル31の開弁応答性及び閉弁応答性を優先させることができる。 Based on the required injection amount, speed change control is performed to switch the lift speed from high speed to low speed at least at one of injection start and injection end. Specifically, when the required injection amount is larger than the first threshold value TH1, the lift speed is switched from the high speed to the low speed during the injection start. Accordingly, when the required injection amount is relatively large, the fuel injection control can be performed so as to satisfy the required injection amount. On the other hand, when the required injection amount is less than or equal to the first threshold TH1, the control for switching the lift speed during the injection start and the injection end is not performed. Therefore, when the required injection amount is not so large and it is not necessary to increase the injection amount, the valve opening response and the valve closing response of the nozzle needle 31 can be prioritized.
 また、要求噴射量が第2閾値TH2よりも多い場合には、噴射開始時及び噴射終了時の両方において、リフト速度を途中で切り替える構成としたため、要求噴射量が比較的多い場合に、その要求噴射量を満たすように燃料噴射を実施することができる。 Further, when the required injection amount is larger than the second threshold value TH2, the lift speed is switched midway at both the injection start and the injection end. Fuel injection can be performed so as to satisfy the injection amount.
 (他の実施形態)
 本開示は上記実施形態に限定されず、例えば以下のように実施されてもよい。
(Other embodiments)
The present disclosure is not limited to the above embodiment and may be implemented as follows, for example.
 ・上記実施形態では、燃圧センサ75の検出圧力を用いて噴射率の推移波形を算出し、その算出した噴射率の推移波形に基づいて、リフト速度の切替タイミングTLをフィードバック補正する構成としたが、ノズルニードル31のリフト量を検出するリフトセンサを取り付け、リフトセンサにより検出したリフト量から、燃料噴射弁20に開弁指令してから実際に噴孔絞り領域に到達するまでの時間、及び燃料噴射弁20に閉弁指令してから実際に噴孔絞り領域を抜けるまでの時間を取得し、それら取得した値を用いて、リフト速度の切替タイミングTLをフィードバック補正する構成としてもよい。 In the above embodiment, the transition waveform of the injection rate is calculated using the pressure detected by the fuel pressure sensor 75, and the lift speed switching timing TL is feedback-corrected based on the calculated transition waveform of the injection rate. A lift sensor that detects the lift amount of the nozzle needle 31 is attached, and from the lift amount detected by the lift sensor, the time from when the fuel injection valve 20 is instructed to open the valve until it actually reaches the injection hole throttle region, and the fuel The time from when the injection valve 20 is instructed to close the valve to when it actually passes through the injection hole restriction region may be acquired, and the lift timing switching timing TL may be feedback-corrected using the acquired value.
 ・上記実施形態では、(1)噴射圧、(2)燃料温度、(3)燃料噴射弁20の個体差による速度ばらつき、(4)噴射インターバルの相違による速度ばらつき、及び(5)経時劣化やエンジン運転条件による速度ばらつき、に基づいて切替タイミングTLを可変に制御したが、これら(1)~(5)のうち一部の要素に基づいて切替タイミングTLを可変に制御してもよい。 In the above embodiment, (1) injection pressure, (2) fuel temperature, (3) speed variation due to individual difference of the fuel injection valve 20, (4) speed variation due to difference in injection interval, and (5) deterioration with time, Although the switching timing TL is variably controlled based on the speed variation due to the engine operating conditions, the switching timing TL may be variably controlled based on some of these (1) to (5).
 ・燃料噴射弁20の構成は、図1に示す構成に限定されない。例えば、図1の燃料噴射弁20において、従動弁41が第1高圧通路13と第1制御室46とを遮断した状態では、第2通路27が、従動弁41の内部に形成され且つ第3通路42とは別の通路を介して第1制御室46に連通される構成としてもよい。あるいは、第2通路27が中間室26に連通され、従動弁41が第1高圧通路13と第1制御室46とを遮断した状態では、第2通路27が中間室26及び第3通路42を介して第1制御室46に連通される構成としてもよい。 The configuration of the fuel injection valve 20 is not limited to the configuration shown in FIG. For example, in the fuel injection valve 20 of FIG. 1, when the driven valve 41 blocks the first high pressure passage 13 and the first control chamber 46, the second passage 27 is formed inside the driven valve 41 and the third passage 27 is formed. It may be configured to communicate with the first control chamber 46 via a passage different from the passage 42. Alternatively, when the second passage 27 communicates with the intermediate chamber 26 and the driven valve 41 blocks the first high pressure passage 13 and the first control chamber 46, the second passage 27 connects the intermediate chamber 26 and the third passage 42. It may be configured to communicate with the first control chamber 46 via the.
 また、図1の燃料噴射弁20において、ノズルニードル31の移動速度を調整する第2開閉弁52として2個以上の開閉弁を設け、これら2個以上の開閉弁の開閉を個別に制御することにより、ノズルニードル31の移動速度を更に高精度に調整するようにしてもよい。この場合、昇圧オリフィス14aを介した燃料の流量が、2個以上の開閉弁のそれぞれの燃料通路に設けられた減圧オリフィスを介した燃料の流量の合計よりも大きく設定する。 Further, in the fuel injection valve 20 of FIG. 1, two or more opening/closing valves are provided as the second opening/closing valve 52 for adjusting the moving speed of the nozzle needle 31, and opening/closing of these two or more opening/closing valves are individually controlled. Thus, the moving speed of the nozzle needle 31 may be adjusted with higher accuracy. In this case, the flow rate of fuel through the pressure increasing orifice 14a is set to be larger than the total flow rate of fuel through the pressure reducing orifices provided in the fuel passages of the two or more on-off valves.
 ・燃料噴射弁20は、駆動信号に基づいてノズルニードル31のリフト速度を可変に制御可能な燃料噴射弁であればよい。したがって、本開示を適用可能な燃料噴射システムとしては、第1制御室46の内部の燃料圧力を調整する圧力調整弁として複数の弁(第1開閉弁51及び第2開閉弁52)を備える燃料噴射弁20を用いる場合に限定されない。例えば、第1開閉弁51及び第2開閉弁52に代えて、ピエゾアクチュエータに対する通電制御により開閉状態が制御される開閉弁を備え、ピエゾアクチュエータに対する通電制御により開閉弁のリフト量を連続的に制御することにより制御室内の燃料圧力を調整し、これによりノズルニードル31のリフト速度を可変に制御するものとしてもよい。あるいは、ピエゾインジェクタにおいて、排出オリフィスを複数設け、これら複数の排出オリフィスを介した燃料の排出を切り替えることにより制御室内の燃料圧力を調整し、これにより、ノズルニードル31のリフト速度を可変に制御するものとしてもよい。 The fuel injection valve 20 may be any fuel injection valve capable of variably controlling the lift speed of the nozzle needle 31 based on the drive signal. Therefore, as a fuel injection system to which the present disclosure can be applied, a fuel including a plurality of valves (first opening/closing valve 51 and second opening/closing valve 52) as a pressure adjusting valve for adjusting the fuel pressure inside the first control chamber 46. It is not limited to the case of using the injection valve 20. For example, instead of the first opening/closing valve 51 and the second opening/closing valve 52, an opening/closing valve whose opening/closing state is controlled by energization control for the piezo actuator is provided, and the lift amount of the opening/closing valve is continuously controlled by energization control for the piezo actuator. By adjusting the fuel pressure in the control chamber, the lift speed of the nozzle needle 31 may be variably controlled. Alternatively, in the piezo injector, a plurality of discharge orifices are provided, and the fuel pressure in the control chamber is adjusted by switching the discharge of the fuel through the plurality of discharge orifices, whereby the lift speed of the nozzle needle 31 is variably controlled. It may be one.
 ・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The control unit and the method described in the present disclosure are provided by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program, May be realized. Alternatively, the control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method thereof described in the present disclosure are based on a combination of a processor and a memory programmed to execute one or a plurality of functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more configured dedicated computers. Further, the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by a computer.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described according to the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more, or less than those, also fall within the scope and spirit of the present disclosure.

Claims (10)

  1.  燃料噴射弁(20)の開弁及び閉弁を行うノズルニードル(31)のリフト量を変更することにより、前記燃料噴射弁の燃料噴射量を制御する内燃機関(70)の噴射制御装置であって、
     駆動信号に基づいて前記ノズルニードルのリフト速度を可変に制御する駆動制御部を備え、
     前記駆動制御部は、前記燃料噴射弁の開弁指令に伴い前記ノズルニードルのリフト量を増大側に変更するリフト増大期間、及び前記燃料噴射弁の閉弁指令に伴い前記ノズルニードルのリフト量を減少側に変更するリフト減少期間のうち少なくとも一方において、前記ノズルニードルがフルリフト位置に近い側の第1リフト領域にある期間では、前記第1リフト領域に対しリフト量が小さい側の第2リフト領域にある期間よりも、前記ノズルニードルのリフト速度を低速で制御する速度変更制御を実施する、内燃機関の噴射制御装置。
    An injection control device for an internal combustion engine (70), which controls a fuel injection amount of a fuel injection valve (20) by changing a lift amount of a nozzle needle (31) for opening and closing the fuel injection valve (20). hand,
    A drive control unit that variably controls the lift speed of the nozzle needle based on a drive signal,
    The drive control unit changes the lift amount of the nozzle needle according to a valve opening command of the fuel injection valve and a lift increasing period in which the lift amount of the nozzle needle is changed to an increasing side, and the lift amount of the nozzle needle with a valve closing command of the fuel injection valve. In at least one of the lift reduction periods to be changed to the reduction side, in the period in which the nozzle needle is in the first lift region on the side closer to the full lift position, the second lift region on the side where the lift amount is smaller than the first lift region. An injection control device for an internal combustion engine, which performs speed change control for controlling the lift speed of the nozzle needle at a lower speed than during a certain period.
  2.  前記内燃機関の運転状態に基づいて、前記燃料噴射弁の要求噴射量を算出する噴射量算出部と、
     前記要求噴射量が所定噴射量よりも多いか否かを判定する噴射量判定部と、
    を備え、
     前記駆動制御部は、前記噴射量判定部により前記要求噴射量が前記所定噴射量よりも多いと判定された場合に前記速度変更制御を実施する、請求項1に記載の内燃機関の噴射制御装置。
    An injection amount calculation unit that calculates the required injection amount of the fuel injection valve based on the operating state of the internal combustion engine;
    An injection amount determination unit that determines whether the required injection amount is greater than a predetermined injection amount,
    Equipped with
    The injection control device for an internal combustion engine according to claim 1, wherein the drive control unit executes the speed change control when the injection amount determination unit determines that the required injection amount is larger than the predetermined injection amount. ..
  3.  前記所定噴射量として、第1閾値と、前記第1閾値より大きい第2閾値とを有し、
     前記駆動制御部は、前記噴射量判定部により前記要求噴射量が前記第1閾値よりも多くかつ前記第2閾値よりも少ないと判定された場合に、前記リフト増大期間及び前記リフト減少期間のうち前記リフト増大期間において前記速度変更制御を実施し、前記噴射量判定部により前記要求噴射量が前記第2閾値よりも多いと判定された場合に、前記リフト増大期間及び前記リフト減少期間の両方において前記速度変更制御を実施する、請求項2に記載の内燃機関の噴射制御装置。
    As the predetermined injection amount, a first threshold value and a second threshold value larger than the first threshold value,
    The drive control unit determines whether the required injection amount is greater than the first threshold value and less than the second threshold value by the injection amount determination unit, among the lift increase period and the lift decrease period. In the lift increasing period and the lift decreasing period, when the speed change control is performed in the lift increasing period and the injection amount determining unit determines that the required injection amount is larger than the second threshold value. The injection control device for an internal combustion engine according to claim 2, which performs the speed change control.
  4.  前記リフト速度に相関する相関パラメータを検出する相関検出部を備え、
     前記駆動制御部は、前記相関パラメータに基づいて、前記速度変更制御において前記ノズルニードルのリフト速度を変更するタイミングを可変に制御する、請求項1~3のいずれか一項に記載の内燃機関の噴射制御装置。
    A correlation detector that detects a correlation parameter that correlates to the lift speed,
    The internal combustion engine according to any one of claims 1 to 3, wherein the drive control unit variably controls a timing of changing a lift speed of the nozzle needle in the speed change control based on the correlation parameter. Injection control device.
  5.  前記燃料噴射弁は、燃料が導入される制御室(33、36、46)を備え、
     前記ノズルニードルは、前記制御室内の燃料の圧力を利用して前記燃料噴射弁を開弁及び閉弁させる方向に変位し、
     前記相関パラメータとして、前記制御室に導入される燃料の圧力を含む、請求項4に記載の内燃機関の噴射制御装置。
    The fuel injection valve includes a control chamber (33, 36, 46) into which fuel is introduced,
    The nozzle needle is displaced in a direction in which the fuel injection valve is opened and closed using the pressure of fuel in the control chamber,
    The injection control device for an internal combustion engine according to claim 4, wherein a pressure of fuel introduced into the control chamber is included as the correlation parameter.
  6.  前記燃料噴射弁は、燃料が導入される制御室(33、36、46)を備え、
     前記ノズルニードルは、前記制御室内の燃料の圧力を利用して前記燃料噴射弁を開弁及び閉弁させる方向に変位し、
     前記相関パラメータとして、前記制御室に導入される燃料の温度を含む、請求項4又は5に記載の内燃機関の噴射制御装置。
    The fuel injection valve includes a control chamber (33, 36, 46) into which fuel is introduced,
    The nozzle needle is displaced in a direction for opening and closing the fuel injection valve by utilizing the pressure of fuel in the control chamber,
    The injection control device for an internal combustion engine according to claim 4, wherein the correlation parameter includes a temperature of fuel introduced into the control chamber.
  7.  前記内燃機関の1燃焼サイクル中に前記燃料噴射弁により複数回の燃料噴射を実施し、
     前記駆動制御部は、前記複数回の燃料噴射の間隔に基づいて、前記速度変更制御において前記ノズルニードルのリフト速度を変更するタイミングを可変に制御する、請求項1~6のいずれか一項に記載の内燃機関の噴射制御装置。
    Performing a plurality of fuel injections by the fuel injection valve during one combustion cycle of the internal combustion engine,
    7. The drive control unit variably controls the timing of changing the lift speed of the nozzle needle in the speed change control based on the intervals of the plurality of fuel injections. An injection control device for an internal combustion engine as described.
  8.  前記燃料噴射弁の噴射特性に関する情報である噴射特性情報を記憶する記憶部を備え、
     前記駆動制御部は、前記噴射特性情報に基づいて、前記速度変更制御において前記ノズルニードルのリフト速度を変更するタイミングを可変に制御する、請求項1~7のいずれか一項に記載の内燃機関の噴射制御装置。
    A storage unit for storing injection characteristic information which is information relating to the injection characteristic of the fuel injection valve,
    The internal combustion engine according to any one of claims 1 to 7, wherein the drive control unit variably controls a timing of changing a lift speed of the nozzle needle in the speed change control based on the injection characteristic information. Injection control device.
  9.  前記燃料噴射弁の噴射率を検出する噴射率検出部を備え、
     前記駆動制御部は、前記噴射率検出部により検出した噴射率に基づいて、前記速度変更制御において前記ノズルニードルのリフト速度を変更するタイミングを可変に制御する、請求項1~8のいずれか一項に記載の内燃機関の噴射制御装置。
    An injection rate detection unit for detecting an injection rate of the fuel injection valve is provided,
    9. The drive control unit variably controls the timing of changing the lift speed of the nozzle needle in the speed change control, based on the injection rate detected by the injection rate detection unit. An injection control device for an internal combustion engine according to item.
  10.  前記ノズルニードルのリフト量を検出するリフト量検出部を備え、
     前記駆動制御部は、前記リフト量検出部により検出したリフト量に基づいて、前記速度変更制御において前記ノズルニードルのリフト速度を変更するタイミングを可変に制御する、請求項1~9のいずれか一項に記載の内燃機関の噴射制御装置。
    A lift amount detector for detecting the lift amount of the nozzle needle,
    10. The drive control unit variably controls the timing of changing the lift speed of the nozzle needle in the speed change control based on the lift amount detected by the lift amount detection unit. An injection control device for an internal combustion engine according to item.
PCT/JP2019/047167 2018-12-05 2019-12-03 Injection control device for internal combustion engine WO2020116427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-228190 2018-12-05
JP2018228190A JP2020090928A (en) 2018-12-05 2018-12-05 Injection control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2020116427A1 true WO2020116427A1 (en) 2020-06-11

Family

ID=70975471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047167 WO2020116427A1 (en) 2018-12-05 2019-12-03 Injection control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2020090928A (en)
WO (1) WO2020116427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089652A (en) * 2014-10-30 2016-05-23 トヨタ自動車株式会社 Internal combustion engine
JP2016205277A (en) * 2015-04-24 2016-12-08 株式会社デンソー Fuel injection control device
JP2018003796A (en) * 2016-07-07 2018-01-11 株式会社Soken Injector
JP2018003794A (en) * 2016-07-07 2018-01-11 株式会社Soken Injector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089652A (en) * 2014-10-30 2016-05-23 トヨタ自動車株式会社 Internal combustion engine
JP2016205277A (en) * 2015-04-24 2016-12-08 株式会社デンソー Fuel injection control device
JP2018003796A (en) * 2016-07-07 2018-01-11 株式会社Soken Injector
JP2018003794A (en) * 2016-07-07 2018-01-11 株式会社Soken Injector

Also Published As

Publication number Publication date
JP2020090928A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US8863727B2 (en) Piezoelectric fuel injector system, method for estimating timing characteristics of a fuel injection event
JP4582191B2 (en) Fuel injection control device and fuel injection system using the same
EP1164283B1 (en) A fuel injection valve
US9945317B2 (en) Fuel injection device
WO2016042719A1 (en) Control device for high pressure pump
JP2016130496A (en) Internal combustion engine
JP4239401B2 (en) Fuel injection device for internal combustion engine
WO2020116427A1 (en) Injection control device for internal combustion engine
US11225928B2 (en) Fuel injection system
JP2009299494A (en) Device for controlling amount of fuel injected
US9423390B2 (en) Cetane number estimation device
JP7120029B2 (en) electronic controller
WO2020116426A1 (en) Fuel injection system
JP4120556B2 (en) Fuel injection device
KR101836630B1 (en) Control method of fuel pressure valve for vehicle and control system for the same
JP7459834B2 (en) Fuel injection control device for internal combustion engine
JP7413928B2 (en) Internal combustion engine fuel injection control device
WO2020184339A1 (en) Control device for high-pressure pump
JP7230776B2 (en) electronic controller
JP3952111B2 (en) Accumulated fuel injection system
JP2011144729A (en) Fuel injection control device of internal combustion engine
JP2001271720A (en) Fuel injection device for internal combustion engine
JP2004137990A (en) Accumulator fuel injection device
US20180291852A1 (en) Control device for high-pressure pump
JP2021107701A (en) Engine control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893826

Country of ref document: EP

Kind code of ref document: A1