WO2020116351A1 - Diagnostic assistance device and diagnostic assistance program - Google Patents

Diagnostic assistance device and diagnostic assistance program Download PDF

Info

Publication number
WO2020116351A1
WO2020116351A1 PCT/JP2019/046856 JP2019046856W WO2020116351A1 WO 2020116351 A1 WO2020116351 A1 WO 2020116351A1 JP 2019046856 W JP2019046856 W JP 2019046856W WO 2020116351 A1 WO2020116351 A1 WO 2020116351A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease
data
output
support device
diagnosis
Prior art date
Application number
PCT/JP2019/046856
Other languages
French (fr)
Japanese (ja)
Inventor
壮平 宮崎
祐輔 坂下
佳紀 熊谷
友洋 宮城
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2020559148A priority Critical patent/JPWO2020116351A1/en
Publication of WO2020116351A1 publication Critical patent/WO2020116351A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present disclosure relates to a diagnosis support device and a diagnosis support program that support diagnosis of an eye to be inspected.
  • an ophthalmologic imaging apparatus for example, an optical coherence tomography (OCT), a fundus camera, a laser scanning optometry apparatus (SLO), etc.
  • OCT optical coherence tomography
  • SLO laser scanning optometry apparatus
  • the present disclosure has a technical problem to provide a diagnostic support device and a diagnostic support program that facilitate a definitive diagnosis based on disease information.
  • the present disclosure is characterized by having the following configurations.
  • a diagnosis support apparatus for supporting diagnosis of an eye to be inspected wherein a control means of the diagnosis support apparatus acquires disease information based on at least one examination data of the eye to be inspected and uses the disease information. It is characterized in that the output means outputs information corresponding to the selected disease of interest.
  • a diagnosis support program executed in a diagnosis support apparatus for supporting diagnosis of an eye to be inspected which is executed by a processor of the diagnosis support apparatus, and is based on at least one examination data of the eye to be inspected. It is characterized in that the diagnosis support apparatus is made to perform an acquisition step of acquiring disease information and an output step of causing the output means to output information corresponding to the target disease selected using the disease information.
  • FIG. 3 is a block diagram showing a schematic configuration of a diagnosis support device 1.
  • 5 is a flowchart showing a control operation of the diagnosis support device 1. It is a figure which shows an example of the result screen of an automatic analysis. It is a figure which shows an example of a definite diagnosis screen. It is a figure which shows an example of a definite diagnosis screen.
  • the diagnosis support apparatus of the present disclosure supports diagnosis of an eye to be inspected.
  • the diagnosis support device includes, for example, a control unit (for example, the control unit 11).
  • the control unit acquires disease information (for example, information on a disease, a finding, an abnormal site, or the like) based on at least one examination data of the eye to be inspected.
  • the control unit may obtain disease information accumulated in a database or the like via the Internet, or may obtain disease information stored locally.
  • the control unit causes the output unit (for example, the display unit 15 or the like) to output information corresponding to the disease of interest selected using the disease information.
  • the diagnosis support apparatus can save the trouble of selecting and outputting the corresponding test data when the user makes a definite diagnosis for the disease of interest.
  • the disease of interest may include information such as a disease, a finding, or an abnormal site.
  • the inspection data may be a captured image of the eye to be inspected or an inspection value of the eye to be inspected.
  • Examples of the captured image include a fundus image and an anterior segment image.
  • the fundus image is an image of the fundus of the subject's eye.
  • the fundus image may be a fundus tomographic image captured by, for example, an optical coherence tomography (OCT) or a Scheimpflug camera, or may be captured by a fundus camera, SLO (SLO: Scanning Laser Ophthalmoscope), or the like.
  • OCT optical coherence tomography
  • SLO Scanning Laser Ophthalmoscope
  • the anterior segment image may be, for example, an anterior segment front image captured by an anterior segment observation camera, or an anterior segment OCT image, a toe image, a slit lamp image, a corner mirror image, and the like. May be.
  • the inspection value is, for example, an eye refractive power, a visual acuity value, an intraocular pressure value, a visual field inspection value, or the like.
  • the visual field inspection value is, for example, as a parameter on the perimeter side, an MD value (Humfree perimeter), an average value of the visual sensitivity threshold, PSD (pattern standard deviation), CPSD (corrected pattern standard deviation), SF (short-term variation). And so on.
  • control unit may output a captured image showing a disease, a finding, or an abnormal part to the output unit when outputting the captured image as information corresponding to the disease of interest.
  • the information corresponding to the disease of interest may include, for example, test data different from the test data used to obtain the disease information.
  • the diagnosis support apparatus can provide the user with additional information when the user makes a definite diagnosis for the disease of interest.
  • the control unit may cause the output unit to output a plurality of test data as information corresponding to the disease of interest.
  • control unit may accept an operation signal.
  • the operation signal is output from, for example, an operation unit (for example, the operation unit 16) operated by the user.
  • the control unit may cause the output unit to output information corresponding to the disease of interest selected based on the operation signal.
  • the control unit may display the disease information and the test data used to obtain the disease information on the display unit.
  • the user may select the disease of interest based on the disease information and the test data displayed on the display unit.
  • control unit may change or add the output of information in the output unit each time another disease of interest is selected by the user. For example, the control unit may change the type of test data displayed on the display unit based on the selection of the disease of interest.
  • the control unit may cause the output unit to output information corresponding to the disease of interest selected based on the specific condition.
  • the specific condition may be a condition set based on the certainty factor of the disease information (for example, the probability of existence of a disease, a finding, an abnormal site, etc.).
  • information corresponding to the disease of interest with high certainty may be displayed on the display unit.
  • the specific condition may be set by the user.
  • the control unit may acquire disease information by inputting test data into a mathematical model trained by a machine learning algorithm.
  • the mathematical model may be configured to output the existence probabilities of each of a plurality of diseases, findings, abnormal sites, etc. based on the input of the inspection data, for example.
  • the control unit may cause the output unit to output the transition of the similar case data that is similar to the examination data and/or the disease information among the case data accumulated in the database (for example, the data server 30). For example, the control unit may determine the degree of similarity between test data and/or disease information and past case data. At this time, the control unit may determine the degree of similarity based on the feature amount of each data. The control unit causes the output unit to output the transition of a case with a high degree of similarity.
  • the transition of the similar case data may be transition of image data, test value, treatment content, similar region, or different region, or a combination thereof.
  • a condition based on the size of the similarity for example, up to any arbitrary rank
  • a condition set by default for example, up to any arbitrary rank
  • the conditions may be set.
  • the processor (for example, the CPU 12) of the diagnostic support device may execute the diagnostic support program stored in the storage unit (for example, the storage unit 13).
  • the diagnosis support program includes, for example, an acquisition step and an output step.
  • the acquisition step is a step of acquiring disease information based on at least one examination data of the eye to be inspected.
  • the output step is a step of causing the output unit to output information corresponding to the focused disease selected using the disease information.
  • the diagnosis support apparatus assists the user in diagnosing the eye to be inspected.
  • the diagnosis support device acquires, for example, at least one examination data of the eye to be inspected, and provides the user with information for supporting the diagnosis.
  • the diagnosis support device is realized by, for example, a personal computer (hereinafter referred to as “PC”).
  • the diagnosis support device 10 includes, for example, a control unit 11 and a communication unit 14.
  • the control unit 11 controls the diagnosis support device 10.
  • the control unit 11 includes a CPU 12 that is a controller that controls the control, and a storage unit 13 that can store programs and data.
  • the storage unit 13 stores a diagnosis support program for supporting the user's diagnosis.
  • the communication unit 14 connects the diagnosis support apparatus 10 to another device (for example, the data server 30) via the network 60 (for example, the Internet).
  • the diagnosis support device 10 may include a display unit 15, an operation unit 16 and the like.
  • the display unit 15 displays inspection data, diagnosis support information, and the like.
  • the display on the display unit 15 is controlled by the control unit 11.
  • various devices capable of displaying images for example, at least one of a monitor, a display, a projector, etc.
  • the “image” in the present disclosure includes both still images and moving images.
  • the operation unit 16 is operated by the user so that the user inputs various instructions to the diagnosis support apparatus 10.
  • the operation unit 16 for example, at least one of a keyboard, a mouse, a touch panel, etc. can be used.
  • the control unit 11 can exchange test data with the ophthalmologic apparatus 20.
  • the method by which the control unit 11 exchanges the examination data with the ophthalmologic apparatus 20 can be appropriately selected.
  • the control unit 11 may exchange test data with the ophthalmologic apparatus 20 by at least one of wired communication, wireless communication, a removable storage medium (for example, a USB memory), and the like.
  • the diagnosis support device 10 is connected to the data server 30 via the network 60. Thereby, the control unit 11 can also acquire the inspection data accumulated in the data server 30.
  • the data server 30 stores (stores) examination data and the like acquired by the ophthalmologic apparatus 50 different from the ophthalmologic apparatus 20. Therefore, the control unit 11 can acquire inspection data of a plurality of types (different modalities).
  • diagnosis support device 10 is not limited to a PC, and may be realized by an ophthalmologic device, a tablet terminal, or a mobile terminal such as a smartphone. Further, the control units (for example, the control unit 11 and the control unit 21 of the ophthalmologic apparatus 20) of a plurality of devices may cooperate to function as the diagnosis support apparatus 10.
  • the CPU is used as an example of the controller that performs various processes, but a controller other than the CPU may be used for at least a part of the various devices.
  • a GPU may be used as the controller to speed up the process.
  • the ophthalmologic apparatus 20 will be described.
  • the ophthalmologic apparatus 20 of the present embodiment is an OCT apparatus capable of capturing a tomographic image or the like of the tissue of the subject's eye.
  • the ophthalmologic apparatus 20 may be an ophthalmologic apparatus other than the OCT apparatus.
  • the ophthalmologic apparatus 20 includes a laser scanning optometry apparatus (SLO), a fundus camera, a Scheimpflug camera, a corneal endothelial cell photographing apparatus, an eye refractive power measuring apparatus, a cornea measuring apparatus, a corner angle photographing apparatus, a tonometer, or a perimeter. And so on.
  • the ophthalmologic apparatus 20 includes a control unit 21 that performs various control processes and an imaging unit 24.
  • the control unit 21 includes a CPU 22 that is a controller that controls the control, and a storage unit 23 that can store programs and data.
  • the image capturing unit 24 has various configurations necessary for capturing an ophthalmologic image of the subject's eye.
  • the imaging unit 24 of the present embodiment includes an OCT light source, a branching optical element that branches the OCT light emitted from the OCT light source into measurement light and reference light, a scanning unit for scanning the measurement light, and the measurement light to the subject's eye.
  • An optical system for irradiating, a light receiving element for receiving the combined light of the light reflected by the tissue of the eye to be examined and the reference light, and the like are included.
  • the ophthalmologic apparatus 20 can take a two-dimensional tomographic image and a three-dimensional tomographic image of the fundus of the eye to be inspected.
  • the control unit 21 scans the scan line with OCT light (measurement light) to capture a two-dimensional tomographic image of a cross section intersecting the scan line.
  • the two-dimensional tomographic image may be an arithmetic mean image generated by performing arithmetic mean processing on a plurality of tomographic images of the same site.
  • the control unit 21 can also capture a three-dimensional tomographic image of the tissue by two-dimensionally scanning the OCT light.
  • control unit 21 acquires a plurality of two-dimensional tomographic images by scanning measurement light on each of a plurality of scan lines whose positions are different from each other in a two-dimensional region when the tissue is viewed from the front. To do. Next, the control unit 21 acquires a three-dimensional tomographic image by combining a plurality of captured two-dimensional tomographic images.
  • the data server 30 stores the inspection data.
  • the data server 30 acquires the examination data of the ophthalmologic apparatus 50 via the terminal device 40.
  • the data server 30 may directly acquire the examination data from the ophthalmologic apparatus 50 without using the terminal device 40.
  • the data server 30 may acquire the examination data not only from the ophthalmologic apparatus 50 but also from other ophthalmologic apparatuses connected to the network 60.
  • the data server 30 may acquire and store the inspection data of the ophthalmologic apparatus 20.
  • the terminal device 40 is, for example, a PC or the like that can exchange examination data with the ophthalmologic apparatus 50.
  • the terminal device 40 includes, for example, a control unit 41 and a communication unit 44.
  • the control unit 41 controls the terminal device 40.
  • the control unit 41 includes a CPU 42 that is a controller that controls the control, and a storage unit 43 that can store programs and data.
  • the communication unit 44 connects the terminal device 40 to another device (for example, the data server 30) via the network 60 (for example, the Internet).
  • the terminal device 40 may include a display unit 45, an operation unit 46, and the like.
  • the ophthalmologic apparatus 50 will be described.
  • the ophthalmologic apparatus 50 of the present embodiment is a non-contact tonometer that can measure the intraocular pressure of the subject's eye in a non-contact manner.
  • the ophthalmologic apparatus 50 may be an ophthalmologic apparatus other than the tonometer.
  • the ophthalmologic apparatus 50 may be an OCT, an SLO, a fundus camera, a Scheimpflug camera, a corneal endothelial cell photographing device, an eye refractive power measuring device, a cornea measuring device, a corner angle photographing device, or a perimeter.
  • the ophthalmologic apparatus 50 includes a control unit 51 that performs various control processes and an inspection unit 54.
  • the control unit 51 includes a CPU 52 that is a controller that controls the control, and a storage unit 53 that can store programs and data.
  • the inspection unit 54 includes various components necessary for measuring the intraocular pressure of the eye to be inspected.
  • the inspection unit 54 of the present embodiment includes a fluid ejection unit that ejects air to the eye to be inspected, a deformation detection unit that detects deformation of the cornea, and the like.
  • the inspection unit 54 measures, for example, the intraocular pressure based on the pressure when air is ejected to the eye to be inspected and the deformed state of the cornea.
  • the diagnosis support device 10 acquires disease information of the eye to be inspected based on the inspection data.
  • the control unit 11 acquires disease information by automatic analysis using a mathematical model stored in the storage unit 13.
  • the mathematical model is trained by, for example, a machine learning algorithm.
  • the mathematical model outputs, for example, the probability that each disease, finding, or abnormal site exists in the eye to be examined.
  • the control unit 11 inputs the inspection data into the mathematical model to acquire the existence probabilities of each of the plurality of diseases and the like.
  • Mathematical model is constructed by a mathematical model construction process.
  • the mathematical model is trained by the training data set, and thereby the mathematical model that outputs the probability that the disease or the finding of the eye to be examined exists is constructed.
  • the training data set includes data on the input side (training data for input) and data on the output side (training data for output).
  • Mathematical model learns training data set based on machine learning algorithm.
  • Neural networks, random forests, boosting, support vector machines (SVM), etc. are generally known as machine learning algorithms.
  • Neural network is a method that mimics the behavior of the nerve cell network of a living being.
  • Examples of the neural network include feedforward (forward propagation type) neural network, RBF network (radial basis function), spiking neural network, convolutional neural network, recurrent neural network (recurrent neural network, feedback neural network, etc.), probability.
  • Neural networks Boltzmann machine, Basian network, etc.).
  • Random forest is a method to generate a large number of decision trees by learning based on training data that is randomly sampled.
  • a random forest is used, the branches of a plurality of decision trees that have been learned as discriminators are traced, and the average (or majority) of the results obtained from each decision tree is taken.
  • Boosting is a method of generating a strong classifier by combining multiple weak classifiers.
  • a strong classifier is constructed by sequentially learning simple and weak classifiers.
  • SVM is a method of configuring a two-class pattern classifier using a linear input element.
  • the SVM learns the parameters of the linear input element based on, for example, the criterion (hyperplane separation theorem) of obtaining a margin-maximized hyperplane that maximizes the distance from each data point from the training data.
  • Mathematical model refers to, for example, a data structure for predicting the relationship between input data and output data.
  • the mathematical model is constructed by being trained with the training data set.
  • the training data set is a set of input training data and output training data.
  • As the input training data the inspection data of the subject's eye acquired in the past is used.
  • As the output training data data of the diagnosis result such as the disease name and the position of the disease is used.
  • the mathematical model is trained such that when a certain input training data is input, the corresponding output training data is output. For example, training updates the correlation data (eg, weights) for each input and output.
  • a multilayer neural network is used as a machine learning algorithm.
  • a neural network includes an input layer for inputting data, an output layer for generating data to be predicted, and one or more hidden layers between the input layer and the output layer.
  • a plurality of nodes also called units
  • a convolutional neural network (CNN), which is a type of multilayer neural network, is used.
  • GAN Geneative Adversary Networks
  • the automatic analysis may be performed by clustering, pixel vector, cosine similarity, or other mathematical correlation calculation method.
  • the control operation of the diagnosis support device 10 having the above configuration will be described with reference to FIG.
  • the diagnosis support apparatus 1 provides the user with test data necessary for definitive diagnosis based on the disease information of the eye to be examined.
  • Step S1 Acquisition of inspection data
  • the control unit 11 acquires the examination data of the eye to be examined from the storage unit 13 of the ophthalmologic apparatus 20, for example.
  • the control unit 11 acquires a tomographic image (OCT image) from the ophthalmologic apparatus 20.
  • OCT image tomographic image
  • the test data acquired here is used to acquire disease information in step S2.
  • the control unit 11 may access the network 60 via the communication unit 14 and acquire the examination data of the eye to be examined from the data server 30. In this case, the control unit 11 acquires the examination data of the eye to be inspected from the data server 30 based on the information such as the designated personal ID and name.
  • Step S2 Disease information acquisition
  • the control unit 11 acquires, for example, disease information of the eye to be inspected based on the tomographic image input in step S1.
  • the control unit 11 inputs the inspection data into the mathematical model trained by the machine learning algorithm to acquire the existence probabilities for each of the plurality of diseases, findings, or abnormal parts in the eye to be inspected.
  • the control unit 11 acquires the disease information of the eye to be inspected by inputting at least one inspection data into the mathematical model.
  • the control unit 11 inputs the tomographic image into the mathematical model to acquire the probabilities of each of the plurality of diseases and the like.
  • the disease information is not limited to automatic analysis and may be acquired based on user input.
  • Step S3 disease information output
  • the control unit 11 outputs the disease information to the display unit 15.
  • FIG. 3 is an example of a result display screen 100 that displays disease information.
  • the control unit 11 displays the inspection data 110 input to the mathematical model and the button group 120 on the result display screen 100.
  • a tomographic image 111 is displayed as the inspection data 110.
  • an Enface image 112 is displayed on the result display screen 100.
  • the Enface image 112 is, for example, a two-dimensional image when the three-dimensional OCT data is viewed from the front direction of the subject's eye.
  • each disease is assigned to the button group 120, and the probability that the disease exists is displayed on each button (buttons 121 to 125).
  • the control unit 11 causes the result display screen 100 to display, for example, the test data 110 and the probability that the disease exists (confidence level).
  • the disease A is assigned to the button 121, the disease B to the button 122, the disease C to the button 123, the disease D to the button 124, and the disease E to the button 125, respectively.
  • the existence probability of each disease is displayed on each of the buttons 121 to 125.
  • the probability of disease A is 39%
  • the probability of disease B is 19%
  • the probability of disease C is 4%
  • the probability of disease D is 8%.
  • % the probability of disease E is 9%.
  • the probability does not always have to be displayed.
  • Step S4 Accept selection signal
  • the user confirms the probability of the disease displayed on each button and selects any of the buttons 121 to 125. For example, the user operates the operation unit 16 and presses any of the buttons 121 to 125.
  • the operation unit 16 transmits a selection signal based on the user's selection to the control unit 11.
  • the control unit 11 receives the selection signal output from the operation unit 16.
  • Step S5 Output of related data
  • the control unit 11 receives a selection signal indicating that any of the buttons 121 to 125 has been pressed, the control unit 11 displays a diagnostic screen for the selected disease (focused disease).
  • FIG. 4 is an example of the diagnostic screen 101.
  • the control unit 11 causes the diagnosis screen 101 to display information (related data 130) corresponding to the disease of interest.
  • the related data 130 is, for example, test data necessary for definite diagnosis of a disease, and also includes test data not used for automatic analysis.
  • the control unit 11 may acquire the related data 130 from the data server 30 at the time of receiving the selection signal, or may acquire all the examination data regarding the subject from the data server 30 in advance and store the inspection data in the storage unit 13. You may keep it.
  • FIG. 4 shows the diagnosis screen 101 when the button 121 of the disease A (for example, retinal disease) is pressed.
  • the control unit 11 controls the thickness map 131 indicating the thickness of the retina, the tomographic image 132, the retinal thickness analysis chart 133, the comparison image 134 with the retinal thickness of a normal eye, and the fundus image 135 on which the measurement result of the luminosity is superimposed.
  • the fluorescent fundus image 136, the intraocular pressure value 137, and the like captured using the contrast agent are displayed on the diagnostic screen 101.
  • the inspection data for example, tomographic image
  • a frame representing the finding detection position output in the automatic analysis, a finding detection probability map, or an abnormal part probability map is displayed. They may be displayed in an overlapping manner, or the finding detection position may be enlarged and displayed.
  • the control unit 11 may display the inspection data side by side in the order of importance, or may display a plurality of inspection data sequentially according to the passage of time or user operation. The control unit 11 may customize the diagnostic screen 101 as appropriate based on the user's operation.
  • control unit 11 may switch the display of the diagnostic screen 101 each time any one of the button group 120 is pressed. For example, when the user presses the disease B button 122, the control unit 11 receives the disease B selection signal and controls the display of the display unit 15. For example, the display unit 15 displays the test data necessary for diagnosing the disease B.
  • FIG. 5 shows the diagnostic screen 102 when the button 122 to which the disease B (for example, a disease in which abnormalities in the fundus blood vessels such as diabetic retinopathy appear) is pressed.
  • the control unit 11 displays the motion contrast image (OCT angiography) 141 calculated based on the OCT signal, the tomographic image 142, and the transition 143 of similar case data on the diagnosis screen 102, for example.
  • OCT angiography the motion contrast image
  • the control unit 11 may change the type of examination data displayed on the display unit 15 according to the disease of interest.
  • an image 144 after 6 months and an image 145 after 12 months when the treatment method ⁇ is applied to the eyes of similar cases are displayed.
  • an image 146 after 6 months when the treatment method ⁇ is applied to the eyes of similar cases and an image 147 after 12 months are displayed.
  • the control unit 11 When displaying the transition of similar case data, for example, the control unit 11 calculates the degree of similarity between the examination data of the eye to be inspected and the past case data accumulated in the data server 30. Then, the control unit 11 selects similar case data satisfying a specific condition and displays the transition on the diagnosis screen 102.
  • the specific condition may be set by, for example, the degree of similarity, the newness of the case date, or any conditional expression, or may be set by the user arbitrarily. In each image of similar cases, the degree of similarity, the similar area, the degree of difference, or the different area may be displayed.
  • the method of calculating the degree of similarity may be machine learning, clustering, pixel vectors, various statistical methods, and other mathematical correlation calculation methods. Further, in calculating the degree of similarity, the feature amount output in the automatic analysis may be used.
  • control unit 11 may perform a display prompting to capture the inspection data, a display method of capturing the inspection data, and the like. Also, a button for communicating with the image capturing device may be displayed so that the image can be captured as it is.
  • the user checks the relevant data displayed on each diagnosis screen for each disease included in the disease information, and makes the final diagnosis.
  • the user may input the final diagnosis result into the diagnosis support device 10.
  • the diagnosis result input to the diagnosis support device 10 may be used for learning a mathematical model.
  • the diagnosis support device 10 of the present embodiment selects and presents information necessary for the user to make a definitive diagnosis based on the disease information of the eye to be examined.
  • the user can efficiently perform definitive diagnosis and treatment planning. For example, as compared with the case where diagnosis is performed after referring to all test data in large numbers, by giving priority to reference to test data that is likely to contribute to definitive diagnosis, a definitive diagnosis with a small number of data references and reference time is made. Is possible.
  • the diagnosis support device 10 can save the user the trouble of referring to the inspection data that does not contribute to the definitive diagnosis.
  • the diagnosis support apparatus 10 can reduce the oversight of findings by the user by displaying the inspection data related to the definitive diagnosis in a list.
  • diagnosis support device 10 can display the transition of similar case data so that the user can refer to a typical transition of similar cases in the past (including recent cases) when a user makes a treatment plan. .. As a result, the diagnosis support device 10 can assist the user's knowledge and support a more appropriate treatment plan.
  • the result display screen 100 transits to the diagnostic screens 101 and 102 when the user selects a disease or the like, but the diagnostic screens 101 and 102 are automatically moved based on a specific condition, and the inspection data A list may be displayed.
  • the specific condition may be set, for example, according to the magnitude of the probability that a disease or the like exists, or may be set arbitrarily by the user.
  • control unit 11 may output the position of each disease (specifically, the position where it is determined that the disease may exist) to the result display screen 100 or the like in the automatic analysis.
  • the display instead of switching the display to the diagnostic screens 101 and 102 by pressing the button group 120, the display may be switched by selecting the position of the disease.
  • the control unit 11 diagnoses the examination data of the other eye of the same subject when the disease information is acquired by the examination data of one of the left eye and the right eye of the same subject. It may be displayed on the screen 101.
  • the user can diagnose the other eye based on the diagnosis result of the other eye. For example, when glaucoma or the like develops in one eye, it tends to develop in the other eye. Therefore, based on the disease information on one eye, the inspection data of the other eye (for example, the eye having a low degree of disease) is also output, so that the diagnosis can be performed more appropriately.
  • the inspection data output method is not limited to the display on the display unit 15.
  • the inspection data may be transmitted to another device or may be output as a report.
  • the method of outputting the report may be a method of printing on paper or a method of outputting data in a specific format (for example, PDF data or the like).
  • the ophthalmologic apparatus 20 may be a composite apparatus capable of acquiring examination data of a plurality of different modalities.
  • the control unit 11 may acquire examination data of multiple types of modalities from the ophthalmologic apparatus 20.
  • the control unit 11 performs automatic analysis using at least some types of inspection data acquired from the ophthalmologic apparatus 20, and displays related data including other types of inspection data on the diagnostic screen based on the automatic analysis result. You may let me.
  • control unit 12 CPU 13 storage unit 14 communication unit 20 ophthalmic device 30 data server 40 terminal device 50 ophthalmic device 60 network

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

The present invention addresses the technical problem of providing: a diagnostic assistance device which facilitates conduction of a definitive diagnosis based on disease information; and a diagnostic assistance program. This diagnostic assistance device is for assisting diagnosis of a subject's eye, and a control means of the diagnostic assistance device is characterized by acquiring disease information based on at least one piece of examination data on the subject's eye and outputting, to an output means, information corresponding to a disease of interest selected using the disease information. With this configuration, a definitive diagnosis based on disease information is facilitated.

Description

診断支援装置、および診断支援プログラムDiagnostic support device and diagnostic support program
 本開示は、被検眼の診断を支援する診断支援装置、および診断支援プログラムに関する。 The present disclosure relates to a diagnosis support device and a diagnosis support program that support diagnosis of an eye to be inspected.
 従来、眼科撮影装置(例えば、光干渉断層計(OCT)、眼底カメラ、レーザ走査型検眼装置(SLO)等)によって得られた眼科画像に基づいて、被検眼に対する種々の診断が行われている。 Conventionally, various diagnoses have been performed on an eye to be inspected based on an ophthalmic image obtained by an ophthalmologic imaging apparatus (for example, an optical coherence tomography (OCT), a fundus camera, a laser scanning optometry apparatus (SLO), etc.). ..
特開2015-104581号公報JP, 2005-104581, A
 ところで、ユーザ(例えば医師等)の診断を支援する診断支援装置において、眼科画像に基づく被検眼の疾患情報を出力させる試みがなされている。しかしながら、疾患情報を基に確定診断を行う場合、複数の撮影画像または検査値の中から関連するデータを見つけて表示させることは手間であった。 By the way, an attempt has been made to output disease information of an eye to be examined based on an ophthalmologic image in a diagnosis support device that supports diagnosis of a user (for example, a doctor). However, when making a definitive diagnosis based on disease information, it has been troublesome to find and display related data from a plurality of captured images or test values.
 本開示は、従来の問題点に鑑み、疾患情報に基づく確定診断を行いやすい診断支援装置、および診断支援プログラムを提供することを技術課題とする。 In view of the conventional problems, the present disclosure has a technical problem to provide a diagnostic support device and a diagnostic support program that facilitate a definitive diagnosis based on disease information.
 上記課題を解決するために、本開示は以下のような構成を備えることを特徴とする。 In order to solve the above problems, the present disclosure is characterized by having the following configurations.
 (1) 被検眼の診断を支援するための診断支援装置であって、前記診断支援装置の制御手段は、前記被検眼の少なくとも1つの検査データに基づく疾患情報を取得し、前記疾患情報を用いて選択された着目疾患に対応する情報を出力手段に出力させることを特徴とする。
 (2) 被検眼の診断を支援するための診断支援装置において実行される診断支援プログラムであって、前記診断支援装置のプロセッサによって実行されることで、前記被検眼の少なくとも1つの検査データに基づく疾患情報を取得する取得ステップと、前記疾患情報を用いて選択された着目疾患に対応する情報を出力手段に出力させる出力ステップと、を前記診断支援装置に実行させることを特徴とする。
(1) A diagnosis support apparatus for supporting diagnosis of an eye to be inspected, wherein a control means of the diagnosis support apparatus acquires disease information based on at least one examination data of the eye to be inspected and uses the disease information. It is characterized in that the output means outputs information corresponding to the selected disease of interest.
(2) A diagnosis support program executed in a diagnosis support apparatus for supporting diagnosis of an eye to be inspected, which is executed by a processor of the diagnosis support apparatus, and is based on at least one examination data of the eye to be inspected. It is characterized in that the diagnosis support apparatus is made to perform an acquisition step of acquiring disease information and an output step of causing the output means to output information corresponding to the target disease selected using the disease information.
診断支援装置1の概略構成を示すブロック図である。FIG. 3 is a block diagram showing a schematic configuration of a diagnosis support device 1. 診断支援装置1の制御動作を示すフローチャートである。5 is a flowchart showing a control operation of the diagnosis support device 1. 自動解析の結果画面の一例を示す図である。It is a figure which shows an example of the result screen of an automatic analysis. 確定診断画面の一例を示す図である。It is a figure which shows an example of a definite diagnosis screen. 確定診断画面の一例を示す図である。It is a figure which shows an example of a definite diagnosis screen.
<実施形態>
 以下、本開示に係る実施形態について説明する。本開示の診断支援装置は、被検眼の診断を支援する。診断支援装置は、例えば、制御部(例えば、制御部11)を備える。制御部は、被検眼の少なくとも1つの検査データに基づく疾患情報(例えば、疾患、所見または異常部位などの情報)を取得する。例えば、制御部は、インターネットを介してデータベース等に蓄積された疾患情報を取得してもよいし、ローカルに保存された疾患情報を取得してもよい。制御部は、疾患情報を用いて選択された着目疾患に対応する情報を出力部(例えば、表示部15など)に出力させる。これによって、診断支援装置は、ユーザが着目疾患に対する確定診断を行う際に、対応する検査データを選別して出力させるという手間を省くことができる。なお、着目疾患は、疾患、所見または異常部位などの情報を含んでもよい。
<Embodiment>
Hereinafter, embodiments according to the present disclosure will be described. The diagnosis support apparatus of the present disclosure supports diagnosis of an eye to be inspected. The diagnosis support device includes, for example, a control unit (for example, the control unit 11). The control unit acquires disease information (for example, information on a disease, a finding, an abnormal site, or the like) based on at least one examination data of the eye to be inspected. For example, the control unit may obtain disease information accumulated in a database or the like via the Internet, or may obtain disease information stored locally. The control unit causes the output unit (for example, the display unit 15 or the like) to output information corresponding to the disease of interest selected using the disease information. Thereby, the diagnosis support apparatus can save the trouble of selecting and outputting the corresponding test data when the user makes a definite diagnosis for the disease of interest. The disease of interest may include information such as a disease, a finding, or an abnormal site.
 なお、検査データは、被検眼の撮影画像であってもよいし、被検眼の検査値であってもよい。撮影画像としては、例えば、眼底画像、前眼部画像が挙げられる。眼底画像は、被検眼の眼底を撮影した画像である。眼底画像は、例えば、光干渉断層計(OCT:optical coherence tomography)またはシャインプルーフカメラなどによって撮影された眼底断層画像であってもよいし、眼底カメラ、SLO(SLO:Scanning Laser Ophthalmoscope)などによって撮影された眼底正面画像であってもよい。前眼部画像は、例えば、前眼部観察カメラによって撮影された前眼部正面画像であってもよいし、前眼部OCT画像、徹宵像、スリットランプ画像、隅角鏡画像等であってもよい。検査値としては、例えば、眼屈折力、視力値、眼圧値、または視野検査値などである。視野検査値は、例えば、視野計側のパラメータとしては、MD値(ハンフリー視野計)、視感度閾値の平均値、PSD(パターン標準偏差)、CPSD(修正パターン標準偏差)、SF(短期変動)などである。 The inspection data may be a captured image of the eye to be inspected or an inspection value of the eye to be inspected. Examples of the captured image include a fundus image and an anterior segment image. The fundus image is an image of the fundus of the subject's eye. The fundus image may be a fundus tomographic image captured by, for example, an optical coherence tomography (OCT) or a Scheimpflug camera, or may be captured by a fundus camera, SLO (SLO: Scanning Laser Ophthalmoscope), or the like. The front image of the fundus may be displayed. The anterior segment image may be, for example, an anterior segment front image captured by an anterior segment observation camera, or an anterior segment OCT image, a toe image, a slit lamp image, a corner mirror image, and the like. May be. The inspection value is, for example, an eye refractive power, a visual acuity value, an intraocular pressure value, a visual field inspection value, or the like. The visual field inspection value is, for example, as a parameter on the perimeter side, an MD value (Humfree perimeter), an average value of the visual sensitivity threshold, PSD (pattern standard deviation), CPSD (corrected pattern standard deviation), SF (short-term variation). And so on.
 なお、制御部は、着目疾患に対応する情報として撮影画像を出力させる場合、疾患、所見または異常部位の写る撮影画像を出力部に出力させてもよい。 Note that the control unit may output a captured image showing a disease, a finding, or an abnormal part to the output unit when outputting the captured image as information corresponding to the disease of interest.
 なお、着目疾患に対応する情報は、例えば、疾患情報を得るために用いられた検査データとは異なる検査データを含んでもよい。これによって、診断支援装置は、ユーザが着目疾患に対する確定診断を行う際に、ユーザに付加的な情報を提供できる。例えば、制御部は、着目疾患に対応する情報として複数の検査データを出力部に出力させてもよい。 Note that the information corresponding to the disease of interest may include, for example, test data different from the test data used to obtain the disease information. Accordingly, the diagnosis support apparatus can provide the user with additional information when the user makes a definite diagnosis for the disease of interest. For example, the control unit may cause the output unit to output a plurality of test data as information corresponding to the disease of interest.
 なお、制御部は、操作信号を受け付けてもよい。操作信号は、例えば、ユーザによって操作される操作部(例えば、操作部16)から出力される。この場合、制御部は、操作信号に基づいて選択された着目疾患に対応する情報を出力部に出力させてもよい。例えば、制御部は、疾患情報と、疾患情報を得るために用いられた検査データを表示部に表示させてもよい。この場合、ユーザは、表示部に表示された疾患情報と検査データに基づいて着目疾患を選択してもよい。 Note that the control unit may accept an operation signal. The operation signal is output from, for example, an operation unit (for example, the operation unit 16) operated by the user. In this case, the control unit may cause the output unit to output information corresponding to the disease of interest selected based on the operation signal. For example, the control unit may display the disease information and the test data used to obtain the disease information on the display unit. In this case, the user may select the disease of interest based on the disease information and the test data displayed on the display unit.
 なお、制御部は、ユーザによって別の着目疾患が選択される度に、出力部における情報の出力を変更または追加してもよい。例えば、制御部は、着目疾患の選択に基づいて、表示部に表示させる検査データの種類を変化させてもよい。 Note that the control unit may change or add the output of information in the output unit each time another disease of interest is selected by the user. For example, the control unit may change the type of test data displayed on the display unit based on the selection of the disease of interest.
 制御部は、特定条件に基づいて選択された着目疾患に対応する情報を出力部に出力させてもよい。例えば、特定条件は、疾患情報の確信度(例えば、疾患、所見、異常部位等の存在する確率)に基づいて設定される条件であってもよい。例えば、確信度の高い着目疾患に対応する情報を表示部に表示させてもよい。もちろん、特定条件は、ユーザによって設定されてもよい。 The control unit may cause the output unit to output information corresponding to the disease of interest selected based on the specific condition. For example, the specific condition may be a condition set based on the certainty factor of the disease information (for example, the probability of existence of a disease, a finding, an abnormal site, etc.). For example, information corresponding to the disease of interest with high certainty may be displayed on the display unit. Of course, the specific condition may be set by the user.
 制御部は、機械学習アルゴリズムによって訓練された数学モデルに検査データを入力することで、疾患情報を取得してもよい。数学モデルは、例えば、検査データの入力に基づいて、複数の疾患、所見または異常部位などの各々の存在確率を出力するように構成されてもよい。 The control unit may acquire disease information by inputting test data into a mathematical model trained by a machine learning algorithm. The mathematical model may be configured to output the existence probabilities of each of a plurality of diseases, findings, abnormal sites, etc. based on the input of the inspection data, for example.
 制御部は、データベース(例えば、データサーバ30)に蓄積された症例データのうち、検査データおよび/または疾患情報に類似する類似症例データの推移を出力部に出力させてもよい。例えば、制御部は、検査データおよび/または疾患情報と、過去の症例データとの類似度を判定してもよい。このとき、制御部は、各データの特徴量に基づいて類似度を判定してもよい。制御部は、類似度の高い症例について、その推移を出力部に出力させる。なお、類似症例データの推移は、画像データ、検査値、処置内容、類似領域、または相違領域の推移、もしくはそれらの組み合わせであってもよい。 The control unit may cause the output unit to output the transition of the similar case data that is similar to the examination data and/or the disease information among the case data accumulated in the database (for example, the data server 30). For example, the control unit may determine the degree of similarity between test data and/or disease information and past case data. At this time, the control unit may determine the degree of similarity based on the feature amount of each data. The control unit causes the output unit to output the transition of a case with a high degree of similarity. The transition of the similar case data may be transition of image data, test value, treatment content, similar region, or different region, or a combination thereof.
 なお、類似候補の表示条件として、類似度が特定値以上となる場合、類似度の大きさに基づく条件(例えば、上位任意位まで、など)、デフォルトで設定されている条件、またはユーザが設定した条件などであってもよい。 As a display condition of the similarity candidate, when the similarity is equal to or higher than a specific value, a condition based on the size of the similarity (for example, up to any arbitrary rank), a condition set by default, or set by the user The conditions may be set.
 なお、診断支援装置のプロセッサ(例えば、CPU12)は、記憶部(例えば、記憶部13)に記憶された診断支援プログラムを実行してもよい。診断支援プログラムは、例えば、取得ステップと、出力ステップと、を含む。取得ステップは、被検眼の少なくとも1つの検査データに基づく疾患情報を取得するステップである。出力ステップは、疾患情報を用いて選択された着目疾患に対応する情報を出力部に出力させるステップである。 Note that the processor (for example, the CPU 12) of the diagnostic support device may execute the diagnostic support program stored in the storage unit (for example, the storage unit 13). The diagnosis support program includes, for example, an acquisition step and an output step. The acquisition step is a step of acquiring disease information based on at least one examination data of the eye to be inspected. The output step is a step of causing the output unit to output information corresponding to the focused disease selected using the disease information.
<実施例>
 以下、本開示における典型的な実施例の1つについて説明する。本実施例の診断支援装置は、ユーザによる被検眼の診断を支援する。診断支援装置は、例えば、被検眼の少なくとも1つの検査データを取得し、診断を支援するための情報をユーザに提供する。診断支援装置は、例えば、パーソナルコンピュータ(以下、「PC」という)によって実現される。図1に示すように、診断支援装置10は、例えば、制御部11、通信部14を備える。制御部11は、診断支援装置10を制御する。制御部11は、制御を司るコントローラであるCPU12と、プログラムおよびデータ等を記憶することが可能な記憶部13を備える。記憶部13には、ユーザの診断を支援するための診断支援プログラムが記憶されている。通信部14は、ネットワーク60(例えばインターネット)を介して、診断支援装置10を他のデバイス(例えばデータサーバ30)と接続する。
<Example>
Hereinafter, one of typical examples in the present disclosure will be described. The diagnosis support apparatus according to the present embodiment assists the user in diagnosing the eye to be inspected. The diagnosis support device acquires, for example, at least one examination data of the eye to be inspected, and provides the user with information for supporting the diagnosis. The diagnosis support device is realized by, for example, a personal computer (hereinafter referred to as “PC”). As shown in FIG. 1, the diagnosis support device 10 includes, for example, a control unit 11 and a communication unit 14. The control unit 11 controls the diagnosis support device 10. The control unit 11 includes a CPU 12 that is a controller that controls the control, and a storage unit 13 that can store programs and data. The storage unit 13 stores a diagnosis support program for supporting the user's diagnosis. The communication unit 14 connects the diagnosis support apparatus 10 to another device (for example, the data server 30) via the network 60 (for example, the Internet).
 診断支援装置10は、表示部15、操作部16等を備えてもよい。表示部15は、検査データ、診断支援情報などを表示させる。表示部15の表示は、制御部11によって制御される。表示部15には、画像を表示可能な種々のデバイス(例えば、モニタ、ディスプレイ、プロジェクタ等の少なくともいずれか)を使用できる。なお、本開示における「画像」には、静止画像も動画像も共に含まれる。操作部16は、ユーザが各種指示を診断支援装置10に入力するために、ユーザによって操作される。操作部16には、例えば、キーボード、マウス、タッチパネル等の少なくともいずれかを使用できる。 The diagnosis support device 10 may include a display unit 15, an operation unit 16 and the like. The display unit 15 displays inspection data, diagnosis support information, and the like. The display on the display unit 15 is controlled by the control unit 11. For the display unit 15, various devices capable of displaying images (for example, at least one of a monitor, a display, a projector, etc.) can be used. It should be noted that the “image” in the present disclosure includes both still images and moving images. The operation unit 16 is operated by the user so that the user inputs various instructions to the diagnosis support apparatus 10. For the operation unit 16, for example, at least one of a keyboard, a mouse, a touch panel, etc. can be used.
 制御部11は、眼科装置20との間で検査データのやり取りを行うことができる。制御部11が眼科装置20との間で検査データのやり取りを行う方法は、適宜選択できる。例えば、制御部11は、有線通信、無線通信、着脱可能な記憶媒体(例えばUSBメモリ)等の少なくともいずれかによって、眼科装置20との間で検査データのやり取りを行ってもよい。 The control unit 11 can exchange test data with the ophthalmologic apparatus 20. The method by which the control unit 11 exchanges the examination data with the ophthalmologic apparatus 20 can be appropriately selected. For example, the control unit 11 may exchange test data with the ophthalmologic apparatus 20 by at least one of wired communication, wireless communication, a removable storage medium (for example, a USB memory), and the like.
 診断支援装置10は、ネットワーク60を介してデータサーバ30と接続されている。これによって、制御部11は、データサーバ30に蓄積された検査データを取得することもできる。データサーバ30には、眼科装置20とは種類の異なる眼科装置50によって取得された検査データ等が蓄積(記憶)される。したがって、制御部11は、複数種類(異なるモダリティ)の検査データを取得できる。 The diagnosis support device 10 is connected to the data server 30 via the network 60. Thereby, the control unit 11 can also acquire the inspection data accumulated in the data server 30. The data server 30 stores (stores) examination data and the like acquired by the ophthalmologic apparatus 50 different from the ophthalmologic apparatus 20. Therefore, the control unit 11 can acquire inspection data of a plurality of types (different modalities).
 なお、診断支援装置10は、PCに限らず、眼科装置、タブレット端末、またはスマートフォン等の携帯端末によって実現されてもよい。また、複数のデバイスの制御部(例えば、制御部11と、眼科装置20の制御部21)が協働して診断支援装置10として機能してもよい。 Note that the diagnosis support device 10 is not limited to a PC, and may be realized by an ophthalmologic device, a tablet terminal, or a mobile terminal such as a smartphone. Further, the control units (for example, the control unit 11 and the control unit 21 of the ophthalmologic apparatus 20) of a plurality of devices may cooperate to function as the diagnosis support apparatus 10.
 また、本実施例では、各種処理を行うコントローラの一例としてCPUを用いるが、各種デバイスの少なくとも一部に、CPU以外のコントローラが用いられてもよい。例えば、コントローラとしてGPUを採用することで、処理の高速化を図ってもよい。 Further, in the present embodiment, the CPU is used as an example of the controller that performs various processes, but a controller other than the CPU may be used for at least a part of the various devices. For example, a GPU may be used as the controller to speed up the process.
<眼科装置20>
 眼科装置20について説明する。本実施例の眼科装置20は、被検眼の組織の断層画像等を撮影することが可能なOCT装置である。しかしながら、眼科装置20は、OCT装置以外の眼科装置であってもよい。例えば、眼科装置20は、レーザ走査型検眼装置(SLO)、眼底カメラ、シャインプルーフカメラ、角膜内皮細胞撮影装置、眼屈折力測定装置、角膜測定装置、隅角撮影装置、眼圧計、または視野計などであってもよい。
<Ophthalmologic device 20>
The ophthalmologic apparatus 20 will be described. The ophthalmologic apparatus 20 of the present embodiment is an OCT apparatus capable of capturing a tomographic image or the like of the tissue of the subject's eye. However, the ophthalmologic apparatus 20 may be an ophthalmologic apparatus other than the OCT apparatus. For example, the ophthalmologic apparatus 20 includes a laser scanning optometry apparatus (SLO), a fundus camera, a Scheimpflug camera, a corneal endothelial cell photographing apparatus, an eye refractive power measuring apparatus, a cornea measuring apparatus, a corner angle photographing apparatus, a tonometer, or a perimeter. And so on.
 眼科装置20は、各種制御処理を行う制御部21と、撮影部24を備える。制御部21は、制御を司るコントローラであるCPU22と、プログラムおよびデータ等を記憶することが可能な記憶部23を備える。 The ophthalmologic apparatus 20 includes a control unit 21 that performs various control processes and an imaging unit 24. The control unit 21 includes a CPU 22 that is a controller that controls the control, and a storage unit 23 that can store programs and data.
 撮影部24は、被検眼の眼科画像を撮影するために必要な各種構成を備える。本実施例の撮影部24には、OCT光源、OCT光源から出射されたOCT光を測定光と参照光に分岐する分岐光学素子、測定光を走査するための走査部、測定光を被検眼に照射するための光学系、被検眼の組織によって反射された光と参照光の合成光を受光する受光素子等が含まれる。 The image capturing unit 24 has various configurations necessary for capturing an ophthalmologic image of the subject's eye. The imaging unit 24 of the present embodiment includes an OCT light source, a branching optical element that branches the OCT light emitted from the OCT light source into measurement light and reference light, a scanning unit for scanning the measurement light, and the measurement light to the subject's eye. An optical system for irradiating, a light receiving element for receiving the combined light of the light reflected by the tissue of the eye to be examined and the reference light, and the like are included.
 眼科装置20は、被検眼の眼底の二次元断層画像および三次元断層画像を撮影することができる。詳細には、制御部21は、スキャンライン上にOCT光(測定光)を走査させることで、スキャンラインに交差する断面の二次元断層画像を撮影する。二次元断層画像は、同一部位の複数の断層画像に対して加算平均処理を行うことで生成された加算平均画像であってもよい。また、制御部21は、OCT光を二次元的に走査することによって、組織における三次元断層画像を撮影することができる。例えば、制御部21は、組織を正面から見た際の二次元の領域内において、位置が互いに異なる複数のスキャンライン上の各々に測定光を走査させることで、複数の二次元断層画像を取得する。次いで、制御部21は、撮影された複数の二次元断層画像を組み合わせることで、三次元断層画像を取得する。 The ophthalmologic apparatus 20 can take a two-dimensional tomographic image and a three-dimensional tomographic image of the fundus of the eye to be inspected. Specifically, the control unit 21 scans the scan line with OCT light (measurement light) to capture a two-dimensional tomographic image of a cross section intersecting the scan line. The two-dimensional tomographic image may be an arithmetic mean image generated by performing arithmetic mean processing on a plurality of tomographic images of the same site. The control unit 21 can also capture a three-dimensional tomographic image of the tissue by two-dimensionally scanning the OCT light. For example, the control unit 21 acquires a plurality of two-dimensional tomographic images by scanning measurement light on each of a plurality of scan lines whose positions are different from each other in a two-dimensional region when the tissue is viewed from the front. To do. Next, the control unit 21 acquires a three-dimensional tomographic image by combining a plurality of captured two-dimensional tomographic images.
<データサーバ30>
 データサーバ30は、検査データを蓄積する。図1の例では、データサーバ30は、端末装置40を介して、眼科装置50の検査データを取得する。もちろん、データサーバ30は、端末装置40を介さず、眼科装置50から直接検査データを取得してもよい。なお、データサーバ30は、眼科装置50だけでなく、ネットワーク60に接続された他の眼科装置から検査データを取得してもよい。例えば、データサーバ30は、眼科装置20の検査データを取得し、蓄積してもよい。
<Data server 30>
The data server 30 stores the inspection data. In the example of FIG. 1, the data server 30 acquires the examination data of the ophthalmologic apparatus 50 via the terminal device 40. Of course, the data server 30 may directly acquire the examination data from the ophthalmologic apparatus 50 without using the terminal device 40. The data server 30 may acquire the examination data not only from the ophthalmologic apparatus 50 but also from other ophthalmologic apparatuses connected to the network 60. For example, the data server 30 may acquire and store the inspection data of the ophthalmologic apparatus 20.
<端末装置40>
 端末装置40は、例えば、眼科装置50との間で検査データをやり取りできるPC等である。端末装置40は、例えば、制御部41、通信部44を備える。制御部41は、端末装置40を制御する。制御部41は、制御を司るコントローラであるCPU42と、プログラムおよびデータ等を記憶することが可能な記憶部43を備える。通信部44は、ネットワーク60(例えばインターネット)を介して、端末装置40を他のデバイス(例えばデータサーバ30)と接続する。端末装置40は、表示部45、操作部46等を備えてもよい。
<Terminal device 40>
The terminal device 40 is, for example, a PC or the like that can exchange examination data with the ophthalmologic apparatus 50. The terminal device 40 includes, for example, a control unit 41 and a communication unit 44. The control unit 41 controls the terminal device 40. The control unit 41 includes a CPU 42 that is a controller that controls the control, and a storage unit 43 that can store programs and data. The communication unit 44 connects the terminal device 40 to another device (for example, the data server 30) via the network 60 (for example, the Internet). The terminal device 40 may include a display unit 45, an operation unit 46, and the like.
<眼科装置50>
 眼科装置50について説明する。本実施例の眼科装置50は、被検眼の眼圧を非接触にて測定可能な非接触式眼圧計である。しかしながら、眼科装置50は、眼圧計以外の眼科装置であってもよい。例えば、眼科装置50は、OCT、SLO、眼底カメラ、シャインプルーフカメラ、角膜内皮細胞撮影装置、眼屈折力測定装置、角膜測定装置、隅角撮影装置または視野計などであってもよい。
<Ophthalmologic apparatus 50>
The ophthalmologic apparatus 50 will be described. The ophthalmologic apparatus 50 of the present embodiment is a non-contact tonometer that can measure the intraocular pressure of the subject's eye in a non-contact manner. However, the ophthalmologic apparatus 50 may be an ophthalmologic apparatus other than the tonometer. For example, the ophthalmologic apparatus 50 may be an OCT, an SLO, a fundus camera, a Scheimpflug camera, a corneal endothelial cell photographing device, an eye refractive power measuring device, a cornea measuring device, a corner angle photographing device, or a perimeter.
 眼科装置50は、各種制御処理を行う制御部51と、検査部54を備える。制御部51は、制御を司るコントローラであるCPU52と、プログラムおよびデータ等を記憶することが可能な記憶部53を備える。 The ophthalmologic apparatus 50 includes a control unit 51 that performs various control processes and an inspection unit 54. The control unit 51 includes a CPU 52 that is a controller that controls the control, and a storage unit 53 that can store programs and data.
 検査部54は、被検眼の眼圧を測定するために必要な各種構成を備える。本実施例の検査部54には、被検眼に空気を噴出する流体噴出部と、角膜の変形を検出する変形検出部等が含まれる。検査部54は、例えば、被検眼に空気を噴出したときの圧力と、角膜の変形状態に基づいて眼圧を測定する。 The inspection unit 54 includes various components necessary for measuring the intraocular pressure of the eye to be inspected. The inspection unit 54 of the present embodiment includes a fluid ejection unit that ejects air to the eye to be inspected, a deformation detection unit that detects deformation of the cornea, and the like. The inspection unit 54 measures, for example, the intraocular pressure based on the pressure when air is ejected to the eye to be inspected and the deformed state of the cornea.
<疾患情報の取得について>
 診断支援装置10は、検査データに基づいて被検眼の疾患情報を取得する。例えば、制御部11は、記憶部13に記憶された数学モデルを用いた自動解析によって疾患情報を取得する。数学モデルは、例えば、機械学習アルゴリズムによって訓練される。数学モデルは、例えば、被検眼における各々の疾患、所見、または異常部位が存在する確率を出力する。制御部11は、数学モデルに検査データを入力することによって、複数の疾患等の各々の存在確率を取得する。
<About acquisition of disease information>
The diagnosis support device 10 acquires disease information of the eye to be inspected based on the inspection data. For example, the control unit 11 acquires disease information by automatic analysis using a mathematical model stored in the storage unit 13. The mathematical model is trained by, for example, a machine learning algorithm. The mathematical model outputs, for example, the probability that each disease, finding, or abnormal site exists in the eye to be examined. The control unit 11 inputs the inspection data into the mathematical model to acquire the existence probabilities of each of the plurality of diseases and the like.
 数学モデルは、数学モデル構築処理によって構築される。数学モデル構築処理では、訓練データセットによって数学モデルが訓練されることで、被検眼の疾患または所見が存在する確率を出力する数学モデルが構築される。訓練データセットには、入力側のデータ(入力用訓練データ)と出力側のデータ(出力用訓練データ)が含まれる。 Mathematical model is constructed by a mathematical model construction process. In the mathematical model construction processing, the mathematical model is trained by the training data set, and thereby the mathematical model that outputs the probability that the disease or the finding of the eye to be examined exists is constructed. The training data set includes data on the input side (training data for input) and data on the output side (training data for output).
 数学モデルは、機械学習アルゴリズムに基づいて訓練データセットを学習する。機械学習アルゴリズムとしては、例えば、ニューラルネットワーク、ランダムフォレスト、ブースティング、サポートベクターマシン(SVM)等が一般的に知られている。 Mathematical model learns training data set based on machine learning algorithm. Neural networks, random forests, boosting, support vector machines (SVM), etc. are generally known as machine learning algorithms.
 ニューラルネットワークは、生物の神経細胞ネットワークの挙動を模倣する手法である。ニューラルネットワークには、例えば、フィードフォワード(順伝播型)ニューラルネットワーク、RBFネットワーク(放射基底関数)、スパイキングニューラルネットワーク、畳み込みニューラルネットワーク、再帰型ニューラルネットワーク(リカレントニューラルネット、フィードバックニューラルネット等)、確率的ニューラルネット(ボルツマンマシン、ベイシアンネットワーク等)等がある。 Neural network is a method that mimics the behavior of the nerve cell network of a living being. Examples of the neural network include feedforward (forward propagation type) neural network, RBF network (radial basis function), spiking neural network, convolutional neural network, recurrent neural network (recurrent neural network, feedback neural network, etc.), probability. Neural networks (Boltzmann machine, Basian network, etc.).
 ランダムフォレストは、ランダムサンプリングされた訓練データに基づいて学習を行って、多数の決定木を生成する方法である。ランダムフォレストを用いる場合、予め識別器として学習しておいた複数の決定木の分岐を辿り、各決定木から得られる結果の平均(あるいは多数決)を取る。  Random forest is a method to generate a large number of decision trees by learning based on training data that is randomly sampled. When a random forest is used, the branches of a plurality of decision trees that have been learned as discriminators are traced, and the average (or majority) of the results obtained from each decision tree is taken.
 ブースティングは、複数の弱識別器を組み合わせることで強識別器を生成する手法である。単純で弱い識別器を逐次的に学習させることで、強識別器を構築する。 Boosting is a method of generating a strong classifier by combining multiple weak classifiers. A strong classifier is constructed by sequentially learning simple and weak classifiers.
 SVMは、線形入力素子を利用して2クラスのパターン識別器を構成する手法である。SVMは、例えば、訓練データから、各データ点との距離が最大となるマージン最大化超平面を求めるという基準(超平面分離定理)で、線形入力素子のパラメータを学習する。 SVM is a method of configuring a two-class pattern classifier using a linear input element. The SVM learns the parameters of the linear input element based on, for example, the criterion (hyperplane separation theorem) of obtaining a margin-maximized hyperplane that maximizes the distance from each data point from the training data.
 数学モデルは、例えば、入力データと出力データの関係を予測するためのデータ構造を指す。数学モデルは、訓練データセットを用いて訓練されることで構築される。訓練データセットは、入力用訓練データと出力用訓練データのセットである。入力用訓練データには、過去に取得された被検眼の検査データが用いられる。出力用訓練データには、疾患名および疾患の位置等の診断結果のデータが用いられる。数学モデルは、ある入力用訓練データが入力された時に、それに対応する出力用訓練データが出力されるように訓練される。例えば、訓練によって、各入力と出力の相関データ(例えば、重み)が更新される。 Mathematical model refers to, for example, a data structure for predicting the relationship between input data and output data. The mathematical model is constructed by being trained with the training data set. The training data set is a set of input training data and output training data. As the input training data, the inspection data of the subject's eye acquired in the past is used. As the output training data, data of the diagnosis result such as the disease name and the position of the disease is used. The mathematical model is trained such that when a certain input training data is input, the corresponding output training data is output. For example, training updates the correlation data (eg, weights) for each input and output.
 本実施例では、機械学習アルゴリズムとして多層型のニューラルネットワークが用いられている。ニューラルネットワークは、データを入力するための入力層と、予測したいデータを生成するための出力層と、入力層と出力層の間の1つ以上の隠れ層を含む。各層には、複数のノード(ユニットとも言われる)が配置される。本実施例では、例えば、多層型ニューラルネットワークの一種である畳み込みニューラルネットワーク(CNN)等が用いられる。 In this embodiment, a multilayer neural network is used as a machine learning algorithm. A neural network includes an input layer for inputting data, an output layer for generating data to be predicted, and one or more hidden layers between the input layer and the output layer. A plurality of nodes (also called units) are arranged in each layer. In this embodiment, for example, a convolutional neural network (CNN), which is a type of multilayer neural network, is used.
 また、他の機械学習アルゴリズムが用いられてもよい。例えば、競合する2つのニューラルネットワークを利用する敵対的生成ネットワーク(Generative adversarial networks:GAN)が、機械学習アルゴリズムとして採用されてもよい。 Also, other machine learning algorithms may be used. For example, an adversarial generation network (Generative Adversary Networks: GAN) using two competing neural networks may be adopted as the machine learning algorithm.
 なお、自動解析は、クラスタリング、画素ベクトル、コサイン類似度、その他の数学的相関計算手法によって行われてもよい。 Note that the automatic analysis may be performed by clustering, pixel vector, cosine similarity, or other mathematical correlation calculation method.
<確定診断支援について>
 上記のような構成を備える診断支援装置10の制御動作について図2を用いて説明する。診断支援装置1は、被検眼の疾患情報に基づいて、確定診断に必要な検査データをユーザに提供する。
<About definitive diagnosis support>
The control operation of the diagnosis support device 10 having the above configuration will be described with reference to FIG. The diagnosis support apparatus 1 provides the user with test data necessary for definitive diagnosis based on the disease information of the eye to be examined.
(ステップS1:検査データの取得)
 制御部11は、例えば、眼科装置20の記憶部13から被検眼の検査データを取得する。例えば、制御部11は、眼科装置20から断層画像(OCT画像)を取得する。ここで取得される検査データは、ステップS2において疾患情報を取得するために用いられる。なお、制御部11は、通信部14を介してネットワーク60にアクセスし、データサーバ30から被検眼の検査データを取得してもよい。この場合、制御部11は、指定された個人IDおよび氏名などの情報に基づいてデータサーバ30から被検眼の検査データを取得する。
(Step S1: Acquisition of inspection data)
The control unit 11 acquires the examination data of the eye to be examined from the storage unit 13 of the ophthalmologic apparatus 20, for example. For example, the control unit 11 acquires a tomographic image (OCT image) from the ophthalmologic apparatus 20. The test data acquired here is used to acquire disease information in step S2. The control unit 11 may access the network 60 via the communication unit 14 and acquire the examination data of the eye to be examined from the data server 30. In this case, the control unit 11 acquires the examination data of the eye to be inspected from the data server 30 based on the information such as the designated personal ID and name.
(ステップS2:疾患情報取得)
 制御部11は、例えば、ステップS1において入力された断層画像に基づく被検眼の疾患情報を取得する。本実施例では、制御部11は、機械学習アルゴリズムによって訓練された数学モデルに検査データを入力することで、被検眼における複数の疾患、所見、または異常部位の各々に対する存在確率を取得する。制御部11は、少なくとも1つの検査データを数学モデルに入力することによって、被検眼の疾患情報を取得する。本実施例において、制御部11は、数学モデルに断層画像を入力することによって、複数の疾患等の各々の確率を取得する。なお、疾患情報は、自動解析に限らず、ユーザの入力に基づいて取得されてもよい。
(Step S2: Disease information acquisition)
The control unit 11 acquires, for example, disease information of the eye to be inspected based on the tomographic image input in step S1. In the present embodiment, the control unit 11 inputs the inspection data into the mathematical model trained by the machine learning algorithm to acquire the existence probabilities for each of the plurality of diseases, findings, or abnormal parts in the eye to be inspected. The control unit 11 acquires the disease information of the eye to be inspected by inputting at least one inspection data into the mathematical model. In the present embodiment, the control unit 11 inputs the tomographic image into the mathematical model to acquire the probabilities of each of the plurality of diseases and the like. The disease information is not limited to automatic analysis and may be acquired based on user input.
(ステップS3:疾患情報出力)
 制御部11は、疾患情報を表示部15に出力する。図3は、疾患情報を表示する結果表示画面100の一例である。制御部11は結果表示画面100に、数学モデルに入力した検査データ110と、ボタン群120を表示させる。図3の例では、検査データ110として断層画像111が表示される。また、結果表示画面100にはEnface画像112が表示される。Enface画像112は、例えば、三次元OCTデータを被検眼の正面方向から見た場合の二次元画像である。例えば、ボタン群120には、各疾患が割り当てられており、その疾患が存在する確率が各ボタン(ボタン121~125)上に表示される。つまり、制御部11は、例えば、検査データ110と、疾患が存在する確率(確信度)を結果表示画面100に表示させる。図3の例では、ボタン121に疾患A、ボタン122に疾患B、ボタン123に疾患C、ボタン124に疾患D、ボタン125に疾患Eがそれぞれ割り当てられている。また、各ボタン121~125には各疾患の存在確率が表示されており、疾患Aの確率は39%、疾患Bの確率は19%、疾患Cの確率は4%、疾患Dの確率は8%、疾患Eの確率は9%であることが表示されている。なお、確率は必ずしも表示しなくてもよい。
(Step S3: disease information output)
The control unit 11 outputs the disease information to the display unit 15. FIG. 3 is an example of a result display screen 100 that displays disease information. The control unit 11 displays the inspection data 110 input to the mathematical model and the button group 120 on the result display screen 100. In the example of FIG. 3, a tomographic image 111 is displayed as the inspection data 110. Further, an Enface image 112 is displayed on the result display screen 100. The Enface image 112 is, for example, a two-dimensional image when the three-dimensional OCT data is viewed from the front direction of the subject's eye. For example, each disease is assigned to the button group 120, and the probability that the disease exists is displayed on each button (buttons 121 to 125). That is, the control unit 11 causes the result display screen 100 to display, for example, the test data 110 and the probability that the disease exists (confidence level). In the example of FIG. 3, the disease A is assigned to the button 121, the disease B to the button 122, the disease C to the button 123, the disease D to the button 124, and the disease E to the button 125, respectively. Further, the existence probability of each disease is displayed on each of the buttons 121 to 125. The probability of disease A is 39%, the probability of disease B is 19%, the probability of disease C is 4%, the probability of disease D is 8%. %, the probability of disease E is 9%. The probability does not always have to be displayed.
(ステップS4:選択信号受付)
 ユーザは、各ボタンに表示された疾患の確率を確認し、ボタン121~125のいずれかを選択する。例えば、ユーザは、操作部16を操作し、ボタン121~125のいずれかを押す。操作部16は、ユーザの選択に基づく選択信号を制御部11に送信する。制御部11は、操作部16から出力された選択信号を受け付ける。
(Step S4: Accept selection signal)
The user confirms the probability of the disease displayed on each button and selects any of the buttons 121 to 125. For example, the user operates the operation unit 16 and presses any of the buttons 121 to 125. The operation unit 16 transmits a selection signal based on the user's selection to the control unit 11. The control unit 11 receives the selection signal output from the operation unit 16.
(ステップS5:関連データの出力)
 制御部11は、ボタン121~125のいずれかが押されたことを示す選択信号を受け付けると、選択された疾患(着目疾患)の診断画面を表示させる。図4は、診断画面101の一例である。制御部11は、着目疾患に対応する情報(関連データ130)を診断画面101に表示させる。関連データ130は、例えば、疾患の確定診断に必要な検査データであり、自動解析に用いられていない検査データも含む。制御部11は、選択信号を受け付けた時点でデータサーバ30から関連データ130を取得してもよいし、予め被検者に関するすべての検査データをデータサーバ30から取得し、記憶部13に記憶しておいてもよい。
(Step S5: Output of related data)
When the control unit 11 receives a selection signal indicating that any of the buttons 121 to 125 has been pressed, the control unit 11 displays a diagnostic screen for the selected disease (focused disease). FIG. 4 is an example of the diagnostic screen 101. The control unit 11 causes the diagnosis screen 101 to display information (related data 130) corresponding to the disease of interest. The related data 130 is, for example, test data necessary for definite diagnosis of a disease, and also includes test data not used for automatic analysis. The control unit 11 may acquire the related data 130 from the data server 30 at the time of receiving the selection signal, or may acquire all the examination data regarding the subject from the data server 30 in advance and store the inspection data in the storage unit 13. You may keep it.
 例えば、図4は、疾患A(例えば、網膜疾患)のボタン121が押されたときの診断画面101を示す。例えば、制御部11は、網膜の厚みを示す厚みマップ131、断層画像132、網膜厚の解析チャート133、正常眼の網膜厚との比較画像134、視感度の測定結果が重畳された眼底画像135、造影剤を用いて撮影された蛍光眼底画像136、眼圧値137等を診断画面101に表示させる。 For example, FIG. 4 shows the diagnosis screen 101 when the button 121 of the disease A (for example, retinal disease) is pressed. For example, the control unit 11 controls the thickness map 131 indicating the thickness of the retina, the tomographic image 132, the retinal thickness analysis chart 133, the comparison image 134 with the retinal thickness of a normal eye, and the fundus image 135 on which the measurement result of the luminosity is superimposed. The fluorescent fundus image 136, the intraocular pressure value 137, and the like captured using the contrast agent are displayed on the diagnostic screen 101.
 なお、診断画面101において、自動解析に用いた検査データ(例えば、断層画像)を表示させる場合、自動解析において出力された所見検出位置を表す枠、所見検出確率マップ、または異常部位確率マップ等を重ねて表示させてもよいし、所見検出位置を拡大して表示させてもよい。また、制御部11は、検査データを重要度順に並べて表示させてもよいし、複数の検査データを時間経過またはユーザの操作に応じて順次表示させるようにしてもよい。制御部11は、ユーザの操作に基づいて、診断画面101を適宜カスタマイズしてもよい。 When displaying the inspection data (for example, tomographic image) used in the automatic analysis on the diagnostic screen 101, a frame representing the finding detection position output in the automatic analysis, a finding detection probability map, or an abnormal part probability map is displayed. They may be displayed in an overlapping manner, or the finding detection position may be enlarged and displayed. Further, the control unit 11 may display the inspection data side by side in the order of importance, or may display a plurality of inspection data sequentially according to the passage of time or user operation. The control unit 11 may customize the diagnostic screen 101 as appropriate based on the user's operation.
 なお、制御部11は、ボタン群120のいずれかが押される度に、診断画面101の表示を切り換えてもよい。例えば、ユーザによって疾患Bのボタン122が押されると、制御部11は疾患Bの選択信号を受け取り、表示部15の表示を制御する。例えば、疾患Bを診断するために必要な検査データを表示部15に表示させる。 Note that the control unit 11 may switch the display of the diagnostic screen 101 each time any one of the button group 120 is pressed. For example, when the user presses the disease B button 122, the control unit 11 receives the disease B selection signal and controls the display of the display unit 15. For example, the display unit 15 displays the test data necessary for diagnosing the disease B.
 図5は、疾患B(例えば、糖尿病網膜症などの眼底血管に異常が現れる疾患)が割り当てられたボタン122が押されたときの診断画面102を示す。制御部11は、例えば、OCT信号に基づいて算出されたモーションコントラスト画像(OCTアンジオグラフィ)141、断層画像142、類似症例データの推移143を診断画面102に表示させる。このように、制御部11は、着目する疾患に応じて表示部15に表示させる検査データの種類を変更してもよい。図5の例では、類似症例の眼に対して治療法αが施されたときの6か月後の画像144と、12か月後の画像145が表示される。また、類似症例の眼に対して治療法βが施されたときの6か月後の画像146と、12か月後の画像147が表示される。 FIG. 5 shows the diagnostic screen 102 when the button 122 to which the disease B (for example, a disease in which abnormalities in the fundus blood vessels such as diabetic retinopathy appear) is pressed. The control unit 11 displays the motion contrast image (OCT angiography) 141 calculated based on the OCT signal, the tomographic image 142, and the transition 143 of similar case data on the diagnosis screen 102, for example. In this way, the control unit 11 may change the type of examination data displayed on the display unit 15 according to the disease of interest. In the example of FIG. 5, an image 144 after 6 months and an image 145 after 12 months when the treatment method α is applied to the eyes of similar cases are displayed. Further, an image 146 after 6 months when the treatment method β is applied to the eyes of similar cases and an image 147 after 12 months are displayed.
 類似症例データの推移を表示する場合、例えば、制御部11は、被検眼の検査データと、データサーバ30に蓄積された過去の症例データとの類似度を算出する。そして、制御部11は、特定条件を満たす類似症例データを選択し、その推移を診断画面102に表示する。特定条件は、例えば、類似度の高さ、症例日付の新しさ、または任意の条件式等によって設定されてもよいし、ユーザが任意に設定してもよい。なお、類似症例の各画像において、類似度、類似領域、相違度、または相違領域等を表示してもよい。 When displaying the transition of similar case data, for example, the control unit 11 calculates the degree of similarity between the examination data of the eye to be inspected and the past case data accumulated in the data server 30. Then, the control unit 11 selects similar case data satisfying a specific condition and displays the transition on the diagnosis screen 102. The specific condition may be set by, for example, the degree of similarity, the newness of the case date, or any conditional expression, or may be set by the user arbitrarily. In each image of similar cases, the degree of similarity, the similar area, the degree of difference, or the different area may be displayed.
 なお、類似度の算出方法は、機械学習、クラスタリング、画素ベクトル、各種統計手法、その他の数学的相関計算手法などが用いられてもよい。また、類似度の算出において、自動解析において出力された特徴量を使用してもよい。 The method of calculating the degree of similarity may be machine learning, clustering, pixel vectors, various statistical methods, and other mathematical correlation calculation methods. Further, in calculating the degree of similarity, the feature amount output in the automatic analysis may be used.
 なお、制御部11は、例えば、診断画面101,102において、表示するべき検査データがない場合、その検査データの撮影を促す表示や、その検査データの撮影方法の表示等を行ってもよい。また、そのまま撮影できるように、撮影装置との通信を行うボタンを表示してもよい。 Note that, for example, when there is no inspection data to be displayed on the diagnostic screens 101 and 102, the control unit 11 may perform a display prompting to capture the inspection data, a display method of capturing the inspection data, and the like. Also, a button for communicating with the image capturing device may be displayed so that the image can be captured as it is.
 ユーザは、疾患情報に含まれる各疾患について、それぞれの診断画面に表示された関連データを確認し、最終的な診断を行う。ユーザは、最終的な診断結果を診断支援装置10に入力してもよい。診断支援装置10に入力された診断結果は、数学モデルの学習に利用されてもよい。 The user checks the relevant data displayed on each diagnosis screen for each disease included in the disease information, and makes the final diagnosis. The user may input the final diagnosis result into the diagnosis support device 10. The diagnosis result input to the diagnosis support device 10 may be used for learning a mathematical model.
 以上のように、本実施例の診断支援装置10は、被検眼の疾患情報に基づいて、ユーザが確定診断を行うために必要な情報を選別して提示する。これによって、ユーザは、確定診断および治療計画を効率よく行うことができる。例えば、多数ある検査データを全て参照してから診断を行う場合に比べ、確定診断に寄与する可能性が高い検査データを優先して参照することで、少ないデータ参照数、参照時間での確定診断が可能となる。つまり、診断支援装置10は、確定診断に寄与しない検査データをユーザが参照する手間を省くことができる。また、診断支援装置10は、確定診断に関連する検査データを一覧で表示することで、ユーザによる所見の見落としを軽減することができる。 As described above, the diagnosis support device 10 of the present embodiment selects and presents information necessary for the user to make a definitive diagnosis based on the disease information of the eye to be examined. As a result, the user can efficiently perform definitive diagnosis and treatment planning. For example, as compared with the case where diagnosis is performed after referring to all test data in large numbers, by giving priority to reference to test data that is likely to contribute to definitive diagnosis, a definitive diagnosis with a small number of data references and reference time is made. Is possible. In other words, the diagnosis support device 10 can save the user the trouble of referring to the inspection data that does not contribute to the definitive diagnosis. In addition, the diagnosis support apparatus 10 can reduce the oversight of findings by the user by displaying the inspection data related to the definitive diagnosis in a list.
 また、診断支援装置10は、類似症例データの推移を表示させることで、ユーザが治療計画を行う際に、過去の典型的な類似症例の推移(近年の症例を含む)を参照させることができる。これによって、診断支援装置10は、ユーザの知識を補助し、より好適な治療計画を行うことを支援することができる。 Further, the diagnosis support device 10 can display the transition of similar case data so that the user can refer to a typical transition of similar cases in the past (including recent cases) when a user makes a treatment plan. .. As a result, the diagnosis support device 10 can assist the user's knowledge and support a more appropriate treatment plan.
 なお、以上の実施例では、結果表示画面100においてユーザが疾患等を選択することによって診断画面101、102に遷移したが、特定条件に基づいて自動で診断画面101、102に移り、検査データの一覧が表示されてもよい。特定条件は、例えば、疾患等の存在する確率の大きさによって設定されてもよいし、ユーザによって任意に設定されてもよい。 In the above-described embodiment, the result display screen 100 transits to the diagnostic screens 101 and 102 when the user selects a disease or the like, but the diagnostic screens 101 and 102 are automatically moved based on a specific condition, and the inspection data A list may be displayed. The specific condition may be set, for example, according to the magnitude of the probability that a disease or the like exists, or may be set arbitrarily by the user.
 なお、制御部11は、自動解析において、各々の疾患の位置(詳細には、疾患が存在する可能性があると判断された位置)を結果表示画面100等に出力させてもよい。この場合、ボタン群120を押すことによって診断画面101,102に表示を切り換える代わりに、疾患の位置を選択することで表示を切り換えてもよい。 Note that the control unit 11 may output the position of each disease (specifically, the position where it is determined that the disease may exist) to the result display screen 100 or the like in the automatic analysis. In this case, instead of switching the display to the diagnostic screens 101 and 102 by pressing the button group 120, the display may be switched by selecting the position of the disease.
 なお、制御部11は、同一の被検者の左眼および右眼の検査データのうち一方の検査データによって疾患情報が取得された場合、同一の被検者の他方の眼の検査データを診断画面101に表示させてもよい。この場合、ユーザは、一方の眼の診断結果も踏まえて他方の眼の診断を行うことができる。例えば緑内障等は、一方の眼で発症すると、他方の眼でも発症しやすい傾向がある。従って、一方の眼に関する疾患情報に基づいて、他方の眼(例えば、疾患が存在する度合いが低い方の眼)の検査データも合わせて出力することで、よって、より適切に診断が行われる。 Note that the control unit 11 diagnoses the examination data of the other eye of the same subject when the disease information is acquired by the examination data of one of the left eye and the right eye of the same subject. It may be displayed on the screen 101. In this case, the user can diagnose the other eye based on the diagnosis result of the other eye. For example, when glaucoma or the like develops in one eye, it tends to develop in the other eye. Therefore, based on the disease information on one eye, the inspection data of the other eye (for example, the eye having a low degree of disease) is also output, so that the diagnosis can be performed more appropriately.
 なお、検査データの出力方法は、表示部15への表示に限らない。例えば、検査データを他のデバイスへ送信してもよいし、レポートとして出力されてもよい。レポートの出力方法は、紙に印刷する方法でもよいし、特定の形式のデータ(例えばPDFデータ等)で出力する方法でもよい。 Note that the inspection data output method is not limited to the display on the display unit 15. For example, the inspection data may be transmitted to another device or may be output as a report. The method of outputting the report may be a method of printing on paper or a method of outputting data in a specific format (for example, PDF data or the like).
 なお、眼科装置20は、複数の異なるモダリティの検査データを取得可能な複合装置であってもよい。この場合、制御部11は、眼科装置20から複数種類のモダリティの検査データを取得してもよい。制御部11は、眼科装置20から取得される少なくとも一部の種類の検査データを用いて自動解析を行い、その自動解析結果に基づいて他の種類の検査データを含む関連データを診断画面に表示させてもよい。 Note that the ophthalmologic apparatus 20 may be a composite apparatus capable of acquiring examination data of a plurality of different modalities. In this case, the control unit 11 may acquire examination data of multiple types of modalities from the ophthalmologic apparatus 20. The control unit 11 performs automatic analysis using at least some types of inspection data acquired from the ophthalmologic apparatus 20, and displays related data including other types of inspection data on the diagnostic screen based on the automatic analysis result. You may let me.
 10 診断支援装置
 11 制御部
 12 CPU
 13 記憶部
 14 通信部
 20 眼科装置
 30 データサーバ
 40 端末装置
 50 眼科装置
 60 ネットワーク
 
10 diagnosis support device 11 control unit 12 CPU
13 storage unit 14 communication unit 20 ophthalmic device 30 data server 40 terminal device 50 ophthalmic device 60 network

Claims (10)

  1.  被検眼の診断を支援するための診断支援装置であって、
     前記診断支援装置の制御手段は、前記被検眼の少なくとも1つの検査データに基づく疾患情報を取得し、前記疾患情報を用いて選択された着目疾患に対応する情報を出力手段に出力させることを特徴とする診断支援装置。
    A diagnostic support device for supporting diagnosis of an eye to be inspected,
    The control means of the diagnosis support device acquires disease information based on at least one examination data of the eye to be inspected, and causes the output means to output information corresponding to the disease of interest selected using the disease information. Diagnostic support device.
  2.  前記着目疾患に対応する情報は、前記疾患情報を得るために用いられた前記検査データとは異なる検査データを含むことを特徴とする請求項1の診断支援装置。 The diagnosis support device according to claim 1, wherein the information corresponding to the disease of interest includes test data different from the test data used to obtain the disease information.
  3.  前記制御手段は、ユーザによって操作される操作手段から出力された操作信号を受け付け、前記操作信号に基づいて選択された前記着目疾患に対応する情報を前記出力手段に出力させることを特徴とする請求項1または2の診断支援装置。 The control means receives an operation signal output from an operation means operated by a user, and causes the output means to output information corresponding to the disease of interest selected based on the operation signal. Item 1 or 2 diagnosis support device.
  4.  前記制御手段は、前記ユーザによって別の着目疾患が選択される度に、前記出力手段における前記情報の出力を変更または追加することを特徴とする請求項3の診断支援装置。 The diagnosis support device according to claim 3, wherein the control unit changes or adds the output of the information in the output unit each time another disease of interest is selected by the user.
  5.  前記制御手段は、特定条件に基づいて選択された前記着目疾患に対応する情報を前記出力手段に出力させることを特徴とする請求項1または2の診断支援装置。 The diagnosis support device according to claim 1 or 2, wherein the control unit causes the output unit to output information corresponding to the disease of interest selected based on a specific condition.
  6.  前記特定条件は、前記疾患情報の確信度に基づいて設定される条件であることを特徴とする請求項5の診断支援装置。 The diagnosis support apparatus according to claim 5, wherein the specific condition is a condition set based on the certainty factor of the disease information.
  7.  前記制御手段は、機械学習アルゴリズムによって訓練された数学モデルに前記検査データを入力することで、前記疾患情報を取得することを特徴とする請求項1~6のいずれかの診断支援装置。 The diagnosis support device according to any one of claims 1 to 6, wherein the control means acquires the disease information by inputting the inspection data into a mathematical model trained by a machine learning algorithm.
  8.  前記制御手段は、データベースに蓄積された症例データのうち、前記検査データおよび/または前記疾患情報に類似する類似症例データの推移を前記出力手段に出力させることを特徴とする請求項1~7のいずれかの診断支援装置。 8. The control unit causes the output unit to output a transition of the similar case data similar to the examination data and/or the disease information among the case data accumulated in the database. Any diagnostic support device.
  9.  前記推移は、画像データ、検査値、処置内容、類似領域、または相違領域の推移、もしくはそれらの組み合わせであることを特徴とする請求項8の診断支援装置。 The diagnosis support apparatus according to claim 8, wherein the transition is a transition of image data, an inspection value, a treatment content, a similar region, or a different region, or a combination thereof.
  10.  被検眼の診断を支援するための診断支援装置において実行される診断支援プログラムであって、前記診断支援装置のプロセッサによって実行されることで、
     前記被検眼の少なくとも1つの検査データに基づく疾患情報を取得する取得ステップと、
     前記疾患情報を用いて選択された着目疾患に対応する情報を出力手段に出力させる出力ステップと、
    を前記診断支援装置に実行させることを特徴とする診断支援プログラム。
    A diagnostic support program executed in a diagnostic support device for supporting the diagnosis of an eye to be inspected, by being executed by a processor of the diagnostic support device,
    An acquisition step of acquiring disease information based on at least one inspection data of the eye to be inspected;
    An output step of causing the output means to output information corresponding to the disease of interest selected using the disease information,
    Is executed by the diagnosis support device.
PCT/JP2019/046856 2018-12-04 2019-11-29 Diagnostic assistance device and diagnostic assistance program WO2020116351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559148A JPWO2020116351A1 (en) 2018-12-04 2019-11-29 Diagnostic support device and diagnostic support program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018227719 2018-12-04
JP2018-227719 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020116351A1 true WO2020116351A1 (en) 2020-06-11

Family

ID=70975122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046856 WO2020116351A1 (en) 2018-12-04 2019-11-29 Diagnostic assistance device and diagnostic assistance program

Country Status (2)

Country Link
JP (1) JPWO2020116351A1 (en)
WO (1) WO2020116351A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114255869A (en) * 2022-01-26 2022-03-29 广州天鹏计算机科技有限公司 Medical big data cloud platform
WO2024070907A1 (en) * 2022-09-30 2024-04-04 株式会社ニデック Ocular fundus image processing device and ocular fundus image processing program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110883A (en) * 2012-10-30 2014-06-19 Canon Inc Image processor and image processing method
JP2015203920A (en) * 2014-04-11 2015-11-16 キヤノン株式会社 Similar case retrieval system, similar case retrieval method and program
JP2018121886A (en) * 2017-01-31 2018-08-09 株式会社ニデック Image processing device and image processing program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110883A (en) * 2012-10-30 2014-06-19 Canon Inc Image processor and image processing method
JP2015203920A (en) * 2014-04-11 2015-11-16 キヤノン株式会社 Similar case retrieval system, similar case retrieval method and program
JP2018121886A (en) * 2017-01-31 2018-08-09 株式会社ニデック Image processing device and image processing program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114255869A (en) * 2022-01-26 2022-03-29 广州天鹏计算机科技有限公司 Medical big data cloud platform
CN114255869B (en) * 2022-01-26 2022-10-28 深圳市拓普智造科技有限公司 Medical big data cloud platform
WO2024070907A1 (en) * 2022-09-30 2024-04-04 株式会社ニデック Ocular fundus image processing device and ocular fundus image processing program

Also Published As

Publication number Publication date
JPWO2020116351A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US12096981B2 (en) Ophthalmologic image processing device and non-transitory computer-readable storage medium storing computer-readable instructions
JP6907563B2 (en) Image processing device and image processing program
WO2018143180A1 (en) Image processing device and image processing program
JP6878923B2 (en) Image processing equipment, image processing system, and image processing program
US20180360304A1 (en) Ophthalmologic information processing device and non-transitory computer-readable storage medium storing computer-readable instructions
JP7196908B2 (en) Ophthalmic image processing device and ophthalmic image processing program
US20220284577A1 (en) Fundus image processing device and non-transitory computer-readable storage medium storing computer-readable instructions
WO2020116351A1 (en) Diagnostic assistance device and diagnostic assistance program
JP2024040372A (en) Ophthalmologic image processing program and ophthalmologic image processing device
WO2020026535A1 (en) Ophthalmic image processing device, oct device, and ophthalmic image processing program
JP2024045441A (en) Ophthalmologic image processing device and ophthalmologic image processing program
JP2019208852A (en) Ophthalmologic image processing apparatus and ophthalmologic image processing program
JP2019208851A (en) Fundus image processing device and fundus image processing program
JP2020058615A (en) Image processing device, learned model, image processing method, and program
JP6568375B2 (en) Ophthalmic information processing system, image processing apparatus, and image processing method
JP2022138552A (en) Ophthalmologic image processing device, ophthalmologic image processing program, and ophthalmologic imaging device
JP2021074095A (en) Ophthalmologic image processing device and ophthalmologic image processing program
JP7521575B2 (en) Ophthalmic image processing device, OCT device, and ophthalmic image processing program
JP7302184B2 (en) Ophthalmic image processing device and ophthalmic image processing program
JP2020036837A (en) Ophthalmologic image processing apparatus and ophthalmologic imaging apparatus
JP7468163B2 (en) Ophthalmic image processing program and ophthalmic image processing device
WO2020241794A1 (en) Ophthalmic image processing device, ophthalmic image processing program, and ophthalmic image processing system
JP7180187B2 (en) Ophthalmic image processing device, OCT device, and ophthalmic image processing program
WO2022225037A1 (en) Examination system, examination device, examination method, and examination program
JP2022068457A (en) Medical image processor, medical image processing system, medical image processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892237

Country of ref document: EP

Kind code of ref document: A1