WO2020116254A1 - Cell culture device - Google Patents

Cell culture device Download PDF

Info

Publication number
WO2020116254A1
WO2020116254A1 PCT/JP2019/046230 JP2019046230W WO2020116254A1 WO 2020116254 A1 WO2020116254 A1 WO 2020116254A1 JP 2019046230 W JP2019046230 W JP 2019046230W WO 2020116254 A1 WO2020116254 A1 WO 2020116254A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
microchannel
porous
cell culture
porous membrane
Prior art date
Application number
PCT/JP2019/046230
Other languages
French (fr)
Japanese (ja)
Inventor
晃寿 伊藤
圭介 奥
孝浩 大場
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020116254A1 publication Critical patent/WO2020116254A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present disclosure relates to a cell culture device.
  • a cell culture device having a flow channel of a micrometer order width called a micro flow channel defined by a plurality of cavity members is known (for example, Japanese Patent Nos. 5700460 and 5771962).
  • the microchannel is divided into upper and lower parts by a porous membrane, and the microchannel is deformed by pressure from both sides of the porous membrane.
  • Cell culture devices that expand and contract a porous membrane by means of this are also known.
  • cell culture devices that imitate biological functions by incorporating a porous membrane in the microchannel and culturing cells on one or both sides of this porous membrane have attracted attention as a drug discovery support tool.
  • cell culture using a cell culture device it is possible to control the orientation of cells by applying mechanical stress, in addition to supplying nutrients by perfusion of a medium.
  • the cell culture device is expanded and contracted with the deformation of the microchannel. It is also possible to repeatedly apply mechanical stress to cell tissues and promote orientation control and maturation of cells.
  • the extension characteristics of the porous membrane are much lower than the environment in which the target cells are supported in vivo (eg, blood vessel wall, intestinal wall). Therefore, there is a problem in that it is difficult to give sufficient deformation to the porous membrane to apply mechanical stress to the cells. Moreover, in order to give sufficient deformation to the porous membrane, it is necessary to apply a corresponding force, but the elongation property of the porous membrane may not be able to withstand such force and may cause damage to the cell culture device. ..
  • the present disclosure easily reproduces the mechanical stress applied to cells in vivo by using a porous membrane that can be stretched with a force smaller than the force required for stretching the porous membrane used in the prior art.
  • An object is to provide a possible cell culture device.
  • a cell culture device is arranged between a pair of cavity members facing each other and having microcavities formed on the facing surfaces, and the facing surfaces of the pair of cavity members, and A porous film having a plurality of openings arranged in a honeycomb shape on one side or both sides of the porous film, which are connected to the cavity member or the porous film, and apply at least a force along the thickness direction to the porous film so that the porous film has at least the thickness.
  • a membrane stretching mechanism capable of stretching along a direction, wherein the porous membrane has a plurality of intramembrane spaces communicating in the thickness direction from each of the plurality of openings, and adjacent membrane spaces are porous.
  • a porous film at least along a thickness direction means extending up or down along a thickness direction.
  • the microcavities are separated by the porous film.
  • the porous membrane has openings arranged in a honeycomb shape on one side or both sides, has an intramembrane space communicating from the openings in the thickness direction, and adjacent intramembrane spaces communicate with each other inside the porous membrane. It has a horizontal communication structure. Furthermore, the average opening diameter of the openings is 1 ⁇ m or more and 200 ⁇ m or less, the porosity of the porous film is 40% or more and 90% or less, the film thickness of the porous film is 0.5 ⁇ m or more and 100 ⁇ m or less, and 20% of the porous film.
  • the tensile force per unit width required for stretching is 0.1 N/m or more and 20 N/m or less.
  • a cell culture device is the cell culture device according to the first aspect, wherein the porous membrane has a plurality of openings on both sides, and the opening on one side is the opening on the other side through the intramembrane space. Is in communication with.
  • the intra-membrane space penetrates in the thickness direction of the porous film from the opening on one surface to the opening on the other surface, it is between the pair of micro cavities separated by the porous film. Liquids and substances can be circulated.
  • the cell culture device is the cell culture device according to the first or second aspect, wherein the other of the microcavities is a well having an opening on the side opposite to the porous membrane.
  • one of the pair of microcavities is a microchannel, and the other is a well having an opening on the side opposite to the porous membrane, and thus seeding cells into the well through this opening, While operations such as addition of liquids and reagents can be applied, liquids and substances can be circulated between the wells and the micro channels separated by the porous membrane.
  • the cell culture device is the cell culture device according to the first aspect or the second aspect, wherein the other of the respective microcavities is also a microchannel.
  • one of the pair of micro-cavities is a micro-channel and the other is a micro-channel, so that shear stress associated with the fluid flow should be applied to any surface of the porous membrane.
  • a cell culture device is the cell culture device according to any one of the first to fourth aspects, in which a plurality of porous membranes having the same opening diameter or different opening diameters are laminated. There is.
  • the strength can be increased by stacking a plurality of porous films.
  • the aperture ratio can be substantially reduced without changing the porosity, and the passage of cells through the porous membrane can be controlled.
  • a cell culture device is the cell culture device according to any one of the first to fifth aspects, wherein, as a membrane extension mechanism, a liquid flowing through the microchannel is used in the microchannel. It is equipped with an acceleration mechanism capable of increasing the flow velocity.
  • the membrane stretching mechanism stretches the porous membrane along the thickness direction
  • the pressure in the thickness direction generated by the liquid flowing in the micro flow channel can be applied to the porous membrane in the micro flow channel by the acceleration mechanism as such a mechanism.
  • the cell culture device is not limited to the cell culture device according to any one of the first to fifth aspects, in which at least the microchannel is formed in the pair of cavity members.
  • the membrane stretching mechanism includes a contact member that contacts the opposite side of the flexible cavity member to the side where the microchannel is formed, and the contact member along the thickness direction of the porous membrane. And a movable member capable of at least one of pressing and pulling.
  • the membrane stretching mechanism stretches the porous membrane along the thickness direction
  • the porous membrane can be stretched by changing the pressure of the microchannel by the mechanical configuration of the contact member and the movable member as such a mechanism.
  • At least one of the pair of cavity members in which the micro flow channel is formed has flexibility, and the membrane extension mechanism has the micro flow channel.
  • the membrane stretching mechanism stretches the porous membrane along the thickness direction
  • a mechanism that exerts a pressure (at least one of pressurization and depressurization) acting on the microchannel on the porous membrane for example, there is a mechanism that exerts a pressure (at least one of pressurization and depressurization) acting on the microchannel on the porous membrane.
  • the internal pressure change space presses the micro flow channel, and the porous membrane is pressed by this pressing.
  • the internal pressure change space pulls the microchannel, and the porous membrane is pulled along with this pulling. In either case, the porous membrane will stretch.
  • both pressurization and depressurization of these are possible.
  • a cell culture device is the cell culture device according to any one of the first to eighth aspects, which is provided on both sides of the microcavity and has flexibility in addition to the membrane extension mechanism.
  • a lateral extension mechanism having a cavity side wall and a lateral pressure change space provided outside each of the cavity side walls is provided, and the lateral extension mechanism has at least pressure and decompression in the lateral pressure change space.
  • FIG. 5 is a sectional view taken along line CC in FIG. 4. Another example of the porous membrane is shown in a sectional view taken along the line CC in FIG.
  • FIG. 2 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the cross section taken along line BB in FIG. 1.
  • FIG. 2 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the cross section taken along line BB in FIG. 1.
  • FIG. 2 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the cross section taken along the line BB in FIG. 1.
  • FIG. 2 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the cross section taken along the line BB in FIG. 1.
  • FIG. 2 is a sectional view taken along the line AA in FIG. 1.
  • FIG. 2 is a schematic diagram showing a state in which the porous film is not stretched in a part of the cross section taken along the line AA in FIG. 1.
  • FIG. 2 is a schematic view showing a state where the porous film is stretched in a part of the cross section taken along the line AA in FIG. 1.
  • FIG. 2 is a schematic view showing a state where the porous film is stretched in a part of the cross section taken along the line AA in FIG. 1.
  • It is a perspective view showing the whole cell culture device structure in a 2nd embodiment. It is an exploded perspective view showing the whole cell culture device structure in a 2nd embodiment.
  • FIG. 16 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the DD cross section in FIG. 15.
  • FIG. 16 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the DD cross section in FIG. 15.
  • FIG. 16 is a schematic view showing a state in which the porous film is not stretched in a part of the cross section taken along the line EE in FIG. 15.
  • FIG. 16 is a schematic view showing a state in which the porous film is stretched in a part of the cross section taken along the line EE in FIG. 15.
  • It is a perspective view showing the whole cell culture device structure in a 3rd embodiment. It is an exploded perspective view showing the whole cell culture device structure in a 3rd embodiment.
  • FIG. 23 is a schematic diagram showing a state in which the porous film is not expanded in a part of the cross section taken along the line FF in FIG. 22.
  • FIG. 23 is a schematic view showing a state where the porous film is stretched in a part of the cross section taken along the line FF in FIG. 22.
  • FIG. 23 is a schematic view showing a state where the porous film is stretched in a part of the cross section taken along the line FF in FIG. 22.
  • the cell culture device 10 of the present embodiment includes an upper cavity member 12 and a lower cavity member 14 facing each other as a pair of cavity members stacked in the thickness direction.
  • the cavity unit 16 is formed.
  • the upper cavity member 12 and the lower cavity member 14 are preferably made of a transparent transparent material such as PDMS (polydimethylsiloxane), for example.
  • the materials for the upper cavity member 12 and the lower cavity member 14 include PDMS (polydimethylsiloxane), epoxy resin, urethane resin, styrene thermoplastic elastomer, olefin thermoplastic elastomer, and acrylic resin. Examples thereof include thermoplastic elastomers and polyvinyl alcohol.
  • the rubber hardness of the upper cavity member 12 and the lower cavity member 14 is preferably 20 degrees or more and 80 degrees or less, and more preferably 50 degrees or more and 70 degrees or less.
  • the “rubber hardness” can be evaluated by measuring the hardness of the upper cavity member 12 and the lower cavity member 14 with a type A durometer according to the method specified in JIS K6253:2012. By having such rubber hardness, the upper cavity member 12 and the lower cavity member 14 have flexibility.
  • the concave portion 26 has an inflow port 26A, an outflow port 26B, and a flow path portion 26C that connects the inflow port 26A and the outflow port 26B.
  • the concave portion 20 has an inflow port 20A, an outflow port 20B, and a flow path section 20C that connects the inflow port 20A and the outflow port 20B.
  • the upper cavity member 12 is formed with through holes 22A and 22B which penetrate the upper cavity member 12 in the thickness direction and whose lower ends communicate with the inflow port 20A and the outflow port 20B, respectively.
  • the microcavity is a space having a size on the order of micrometers, which is defined by the facing surfaces of the pair of cavity members (the upper cavity member 12 and the lower cavity member 14).
  • the microcavity includes a microchannel (upper microchannel 18 and lower microchannel 24) that is a groove having a width of less than 1 mm, and a circular shape, an elliptical shape, a rectangular shape having a maximum diameter portion of less than 1 mm.
  • a well 19 (see FIGS. 20 and 21) described later, which is a hole having a polygonal shape and penetrating the cavity member.
  • the microcavities include an upper microcavity formed in the upper cavity member 12 and a lower microcavity formed in the lower cavity member 14.
  • both the upper microcavity and the lower microcavity have microchannels (the upper microchannel 18 and the lower microchannel). Road 24). Note that, in FIG. 3, configurations other than the upper cavity member 12, the lower cavity member 14, the upper microchannel 18, the lower microchannel 24, and the porous membrane 30 are omitted.
  • the inflow port 26A and the outflow port 26B of the lower cavity member 14 are provided at positions that do not overlap with the inflow port 20A and the outflow port 20B of the upper cavity member 12 in a plan view.
  • the flow passage portion 26C of the lower cavity member 14 is provided at a position overlapping the flow passage portion 20C of the upper cavity member 12 in a plan view.
  • the upper cavity member 12 is formed with through holes 28A and 28B which penetrate the upper cavity member 12 in the thickness direction and whose lower ends communicate with the inflow port 26A and the outflow port 26B of the lower cavity member 14, respectively. .. Further, on the outer peripheral surface of the cavity unit 16 (the upper cavity member 12 and the lower cavity member 14), recesses 29 are provided at positions where spacers 46 described later are arranged.
  • a porous film 30 is arranged between the facing surfaces 12A and 14A of the upper cavity member 12 and the lower cavity member 14.
  • the porous film 30 is made of, for example, a hydrophobic polymer that can be dissolved in a hydrophobic organic solvent.
  • the hydrophobic organic solvent is a liquid having a solubility in water at 25° C. of 10 (g/100 g water) or less.
  • hydrophobic polymer polystyrene, polyacrylate, polymethacrylate, polyacrylamide, polymethacrylamide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyhexafluoropropene, polyvinyl ether, polyvinylcarbazole, polyvinyl acetate, polytetrachloride.
  • polyester eg polyethylene terephthalate, polyethylene naphthalate, polyethylene succinate, polybutylene succinate, polylactic acid, poly-3-hydroxybutyrate etc.
  • polylactone eg polycaprolactone etc.
  • polyamide or polyimide eg , Nylon, polyamic acid, etc.
  • polyurethane polyurea, polybutadiene, polycarbonate, polyaromatics, polysulfone, polyether sulfone, polysiloxane derivative, cellulose acylate (eg, triacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate). Rate) and other polymers.
  • any block copolymer that can be dissolved in a hydrophobic organic solvent can be used.
  • block copolymers that can be used in the present disclosure include styrene-butadiene block copolymers, styrene-isoprene block copolymers and other aromatic hydrocarbon-aliphatic hydrocarbon block copolymers, styrene-acrylic acid block copolymers, styrene-acrylic.
  • Aromatic hydrocarbon-aliphatic polar compound block copolymer such as sodium acid acid block copolymer, styrene-polyethylene glycol block copolymer, fluorene-methyl methacrylate block copolymer, aromatic hydrocarbon-aromatic polar compound block copolymer such as styrene-vinylpyridine Etc.
  • These polymers may be homopolymers, copolymers, polymer blends or polymer alloys, if necessary, from the viewpoints of solubility in solvents, optical properties, electrical properties, film strength, elasticity, etc. These polymers may be used alone or in combination of two or more.
  • the material of the porous film 30 is not limited to the hydrophobic polymer, and various materials can be selected from the viewpoint of cell adhesiveness and the like.
  • the upper surface 30A and the lower surface 30B of the porous film 30 cover the flow path portions 20C and 26C of the upper micro flow path 18 and the lower micro flow path 24, and separate the upper micro flow path 18 and the lower micro flow path 24 from each other. ..
  • the upper surface 30A of the porous membrane 30 defines the upper microchannel 18 together with the concave portion 20 of the upper cavity member 12, and the lower surface 30B of the porous membrane 30 forms the lower side together with the concave portion 26 of the lower cavity member 14.
  • a micro flow path 24 is defined.
  • the porous film 30 is formed with a plurality of in-membrane spaces 32 penetrating in the thickness direction, and the upper surface 30A and the lower surface 30B of the porous film 30 have inner spaces on both sides thereof.
  • 32 openings 32A are provided respectively.
  • the opening 32A is circular in plan view. The openings 32A are provided apart from each other, and the flat portion 34 extends between the openings 32A adjacent to each other.
  • the opening 32A is not limited to the circular shape, and may be a polygonal shape or an elliptical shape.
  • the plurality of openings 32A are arranged in a honeycomb shape as shown in FIG.
  • the honeycomb arrangement means that six openings 32A are equally arranged around an arbitrary opening 32A (excluding the openings 32A at the edge of the film), and the centers of the six openings 32A are regular hexagons. Is located at the apex of, and the center of the opening 32A located at the center corresponds to the center of the regular hexagon.
  • the term "equal distribution” does not necessarily mean that the central angle is 60° and that the six surrounding openings 32A are arranged at substantially equal intervals with respect to the central opening 32A. It should have been done.
  • the "center of the opening 32A" means the center of the opening 32A in plan view.
  • the inner space 32 of the porous film 30 has a sphere shape in which the upper and lower ends of the sphere are cut off. Note that the sphere referred to here does not need to be a true sphere, and distortion that is generally recognized as a sphere is acceptable.
  • the intra-membrane spaces 32 adjacent to each other have a lateral communication structure in which the communication holes 36 communicate with each other inside the porous film 30.
  • the lateral communication structure refers to a space structure in which adjacent membrane spaces 32 communicate with each other inside the porous membrane 30.
  • the term "horizontal” as used herein means a plane direction orthogonal to the vertical direction when the thickness direction of the porous film 30 is vertical. Since the openings 32A are arranged in a honeycomb shape in the porous film 30, the arbitrary intra-membrane space 32 communicates with all of the six intra-membrane spaces 32 that are evenly arranged around it.
  • the intra-membrane space 32 may have a barrel shape, a columnar shape, a polygonal prism shape, or the like, and the communication hole 36 may have a cylindrical void that connects adjacent intra-membrane spaces 32. ..
  • the opening 32A of the porous film 30 may be provided on one surface, for example, only the upper surface 30A of the porous film 30 (or only the lower surface 30B).
  • Such a porous membrane 30 having the openings 32A provided on only one surface is suitable for culturing cells in the intramembrane space 32.
  • the region of the upper surface 30A and the lower surface 30B of the porous membrane 30 on which cells are seeded is fibronectin, collagen (eg, type I collagen, IV Type collagen, or type V collagen), laminin, vitronectin, gelatin, perlecan, nidogen, proteoglycan, osteopontin, tenascin, nephronectin, basement membrane matrix and polylysine, preferably at least one selected from the group consisting of ..
  • collagen eg, type I collagen, IV Type collagen, or type V collagen
  • the cell culture device 10 of the present embodiment is used as an organ simulating device or the like, by providing a cell layer seeded with cells constituting the organ to be simulated on at least one of the upper surface 30A and the lower surface 30B of the porous membrane 30.
  • the inside of the upper micro-channel 18 and the inside of the lower micro-channel 24 can be made to have an environment close to that of the organ to be simulated.
  • the cell layer 100 can be provided on the upper surface 30A of the porous membrane 30. Further, as shown in FIG. 8, the cell layer 100 may be provided on the lower surface 30B of the porous film 30.
  • the cell layer 100 can be provided on both the upper surface 30A and the lower surface 30B of the porous film 30.
  • the cell layers 100 provided on the upper surface 30A and the lower surface 30B may be formed by seeding cells of the same type, or may be formed by seeding cells of different types.
  • the diameter of the openings 32A be 2 to 5 ⁇ m, which is smaller than the diameter of the cells.
  • the film thickness is preferably 2 to 20 ⁇ m.
  • the cell layer 100 can be provided in the inner space 32 of the porous membrane 30.
  • the porous film 30 in which the intra-membrane space 32 is open only on one surface is desirable.
  • the film thickness is preferably 20 to 200 ⁇ m.
  • which of the upper surface 30A, the lower surface 30B of the porous film 30 and the intramembrane space 32 is provided with the cell layer 100 can be appropriately selected according to the characteristics of the cells constituting the organ to be simulated. ..
  • the dew condensation method is a method in which the surface of the material forming the porous film 30 is condensed to form the film inner space 32 by using water drops as a template.
  • the dew condensation method can reduce the film thickness of the porous film 30 and increase the porosity and the opening rate of the openings 32A as compared with other methods. Specifically, a film thickness of 0.5 to 10 ⁇ m is possible by the condensation method. Further, the communication hole 36 can be provided in the porous film 30. Therefore, in the present embodiment, the porous film 30 is manufactured by the dew condensation method.
  • the opening ratio can be defined as the ratio of the area of the openings 32A to the area of the porous film 30.
  • a means for forming the present porous membrane other than the dew condensation method there is an emulsification method using a fine oil droplet or a fine water droplet created by emulsification as a template, instead of a water droplet derived from dew condensation, and details thereof are disclosed in International Publication 2017/104610. No. 6,096,242, the contents of which are included in the present disclosure.
  • the average opening diameter of the openings 32A is 1 ⁇ m or more and 200 ⁇ m or less.
  • the average opening diameter of the openings 32A is 1 ⁇ m or more, it is easy to form the lateral communication structure of the intramembrane space 32.
  • the average opening diameter of the openings 32A is 200 ⁇ m or less, it is easy to maintain the honeycomb-shaped arrangement without the adjacent openings 32A fusing. Therefore, a suitable average opening diameter of the openings 32A is 1 ⁇ m or more and 200 ⁇ m or less.
  • the average opening diameter means the average value of the diameters of the plurality of openings 32A on the surface of the porous film 30. This average opening diameter can be, for example, the average value of the values obtained by observing the surface of the porous film 30 under a microscope and measuring the diameters of a considerable number of the openings 32A.
  • the porosity of the porous film 30 is 40% or more and 90% or less.
  • the porosity of the porous film 30 is 40% or more, it is easy to form the lateral communication structure of the intra-membrane space 32.
  • the porosity of the porous film 30 is 90% or less, it is easy to maintain the shape of the porous film 30, and the strength is not lowered and the porous film 30 is not easily broken. Therefore, the preferable porosity of the porous film 30 is 40% or more and 90% or less.
  • the porosity refers to the ratio of the volume of the intra-membrane space 32 to the volume of the porous membrane 30.
  • the porosity is obtained by, for example, observing a cross section of the porous film 30 under a microscope and estimating the observed intra-membrane space 32 as a spherical trapezoidal shape in which two upper and lower sides and six side faces are cut off in a circular shape.
  • the volume of the plurality of in-membrane spaces 32 can be calculated as a percentage obtained by dividing the volume of the porous membrane 30 in which the in-membrane spaces 32 exist.
  • the film thickness of the porous film 30 is 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the numerical value of the film thickness is such that the aspect ratio between the opening diameter of the opening 32A and the height of the intra-membrane space 32 (that is, the value obtained by dividing the opening diameter of the opening 32A by the height of the intra-membrane space 32). It is a numerical value derived from the fact that exceeding 2 is practically impossible.
  • the film thickness is preferably 0.5 to 10 ⁇ m.
  • the total film thickness of the porous films 30 is preferably 10 to 200 ⁇ m.
  • the tensile force per unit width required for 20% elongation of the porous film 30 is 0.1 N/m or more and 20 N/m or less because the porous film 30 has the numerical range as described above. it can.
  • the numerical range of the tensile force is a value that can be realized by the difference in pressure generated by the liquid flowing through the upper microchannel 18 and the lower microchannel 24.
  • the cell culture device 10 has a pair of holding plates 38 as holding members for holding the cavity unit 16 in a compressed state in the thickness direction.
  • the pair of holding plates 38 is provided separately from the cavity unit 16 at both ends in the thickness direction of the cavity unit 16, that is, above the upper cavity member 12 and below the lower cavity member 14. Is sized to cover the entire upper surface and the entire lower surface of the lower cavity member 14.
  • a plurality (eight in this embodiment) of bolt holes 40 that penetrate in the thickness direction are formed at positions corresponding to each other in the pair of holding plates 38.
  • the holding plate 38 provided on the upper side of the upper cavity member 12 is formed with through holes 42A, 42B, 44A, 44B which communicate with the through holes 22A, 22B, 28A, 28B of the upper cavity member 12, respectively. ing.
  • inflow tubes 62A and 64A are connected to the through holes 42A and 44A, respectively, and outflow tubes 62B and 64B are connected to the through holes 42B and 44B, respectively.
  • a solution, a cell suspension or the like flows into the upper microchannel 18 and the lower microchannel 24 through the inflow tubes 62A and 64A, and the solution flows from the upper microchannel 18 and the lower microchannel 24 through the outflow tubes 62B and 64B. And cell suspension etc. flow out.
  • An accelerating mechanism 70 as a membrane stretching mechanism is connected upstream of the inflow tube 64A flowing into the lower microchannel 24.
  • an accelerating mechanism 75 which is also a membrane stretching mechanism, is connected upstream of the inflow tube 62A that flows into the upper microchannel 18. That is, the acceleration mechanisms 70 and 75 as the film stretching mechanism are connected to the lower cavity member 14 and the upper cavity member 12 via the inflow tubes 64A and 62A, respectively.
  • These accelerating mechanisms 70 and 75 are, for example, a circulation pump capable of changing the flow velocity of the liquid flowing through the lower microchannel 24 and the upper microchannel 18, and the lower microchannel 24 and the upper microchannel 18. It can be configured by a pressure adjuster or the like that pressurizes the liquid filled in from the upstream side.
  • gas or liquid is injected from the upstream side of at least one of the corresponding inflow tubes 62A and 64A in a state where at least one of the outflow tubes 62B and 64B is closed.
  • a pressure may be applied.
  • a pressure resistance adjusting mechanism is connected to the downstream side of at least one of the outflow tubes 62B and 64B, and control is performed so that the cross-sectional area of at least one of the outflow tubes 62B and 64B is expanded or reduced, thereby achieving the same transmission. It is also possible to adopt a configuration in which the pressure inside the microchannel can be adjusted even with the liquid amount.
  • a plurality of (eight in this embodiment) spacers 46 that define the spacing between the holding plates 38 are provided outside the recess 29 of the cavity unit 16 between the pair of holding plates 38.
  • the spacers 46 are cylindrical members each having an inner diameter substantially the same as the inner diameter of the bolt hole 40, and are arranged at positions corresponding to the bolt hole 40.
  • the pair of holding plates 38 are joined to each other by a plurality of bolts 50 that are inserted into the bolt holes 40 and the spacers 46 and fixed with the nuts 48. At this time, the upper cavity member 12 and the lower cavity member 14 are compressed and held by the pair of holding plates 38 with the porous film 30 sandwiched therebetween.
  • FIGS. 12 to 14 show cross-sections taken along the line AA of FIG. 1 except for the upper cavity member 12, the lower cavity member 14, the upper microchannel 18, the lower microchannel 24, and the porous membrane 30. It is omitted.
  • the liquid flowing through the upper microchannel 18 and the lower microchannel 24 applies shear stress in the direction of the horizontal arrow as shown in FIG.
  • pressure in the thickness direction is generated by the liquid flowing through the upper microchannel 18 and the lower microchannel 24. This pressure is determined by the viscosity of the liquid, the flow velocity and the shape of the flow channel.
  • the upper microchannel 18 and the lower microchannel 24 have the same pressure and no pressure difference occurs, so that the porous membrane 30 does not expand.
  • the pressure in the thickness direction also changes due to the change in the flow velocity. Change.
  • the pressure in the lower microchannel 24 becomes larger than the pressure in the upper microchannel 18, a pressure difference is generated between the upper and lower microchannels.
  • pressure in the thickness direction is applied to the porous membrane 30 from the lower microchannel 24, and the porous membrane 30 expands upward along the thickness direction. Also, the shear stress in the direction of the horizontal arrow continues to be applied.
  • the flow velocity of the liquid flowing in the upper micro flow channel 18 is controlled by the acceleration mechanism 75 to be higher than the flow velocity of the liquid flowing in the lower micro flow channel 24, so that the pressure in the upper micro flow channel 18 becomes lower.
  • the pressure in the thickness direction from the upper micro flow channel 18 is applied to the porous film 30, and the porous film 30 moves downward in the thickness direction. Extend to. Also, the shear stress in the direction of the horizontal arrow continues to be applied.
  • the thickness direction in the thickness direction caused by the pressure difference due to the liquid flowing through the upper microchannel 18 and the lower microchannel 24 is increased.
  • the porous film 30 can be expanded in the thickness direction toward the side to which pressure is applied.
  • the porous membrane 30 has a cell layer 100 formed at an appropriate position as illustrated in FIGS. 7 to 10.
  • the pressure in the thickness direction applied to the porous membrane 30 as described above causes the porous membrane 30 to expand, and a vertical force is applied to the cell layer 100. Further, due to the shear stress of the fluid, a horizontal force is also applied to the cell layer 100.
  • the cell layer 100 is given a mechanical stress simulating the inside of a living body, and it becomes possible to promote orientation control and maturation of cells. This pressure in the thickness direction can occur even at a low flow velocity, and the porous membrane 30 in the cell culture device 10 of the present disclosure can be expanded by 20% even with such a pressure in the thickness direction. ..
  • intestinal epithelial cells are seeded on the porous membrane 30 as cells
  • cardiomyocytes are seeded on the porous membrane 30 as cells, mechanical stress on the porous membrane 30 can promote autonomous pulsation of the cardiomyocytes.
  • the cell culture device 10 of the present embodiment includes an upper cavity member 12 and a lower cavity member 14 facing each other as a pair of cavity members stacked in the thickness direction.
  • the cavity unit 16 is formed.
  • the material and physical properties of the upper cavity member 12 and the lower cavity member 14 are the same as in the first embodiment.
  • a recess 26 that defines the lower microchannel 24 as one of the microcavities is formed on the upper surface of the lower cavity member 14, that is, the surface 14A facing the upper cavity member 12.
  • the concave portion 26 has an inflow port 26A, an outflow port 26B, and a flow path portion 26C that connects the inflow port 26A and the outflow port 26B.
  • the upper cavity member 12 is formed with two wells 19 as the other of the microcavities so as to penetrate from the upper surface to the surface 12A facing the lower cavity member 14.
  • the number of wells 19 is not limited to two, and may be one or three or more.
  • the well 19 is a closed space having no inflow port and outflow port other than the upper opening 19A and the lower opening 19B.
  • the well 19 is formed as the upper microcavity in the upper cavity member 12, and the lower microchannel 24 is formed in the lower cavity member 14 as the lower microcavity.
  • the well 19 and the micro flow channel are as described in the first embodiment.
  • the upper microcavity is the well 19 and the lower microcavity is the lower microchannel 24, as shown in FIG. 17 that schematically shows a cross section taken along line DD of FIG. All the wells 19 of the upper cavity member 12 are provided at positions where they overlap the flow passage portion 26C of the lower cavity member 14 in a plan view.
  • the components other than the upper cavity member 12, the lower cavity member 14, the upper microchannel 18, the lower microchannel 24, and the porous membrane 30 are omitted.
  • the porous membrane 30 arranged between the upper cavity member 12 and the lower cavity member 14 is the same as in the first embodiment.
  • the lower end of the well 19 is defined by the porous film 30.
  • the upper end of the well 19 is open upward. From the upper end of the well 19, cells can be seeded and solutions and reagents can be added.
  • the cell layer 100 is formed on the upper surface 30A of the porous membrane 30, and the solution 200 is formed up to the middle portion of the lower microchannel 24 and the well 19.
  • the solution and the reagent can be appropriately added from the upper end of the well 19 while culturing the cell layer 100 in the well 19.
  • the electrode 300 by attaching the electrode 300 to the cell layer 100, it is possible to apply an electrical stimulation to the cell layer 100 and measure the potential generated in the cell layer 100.
  • the cardiomyocytes can be seeded on the porous membrane 30 to simulate the electrical dynamics of the cardiomyocytes.
  • various sensors for example, a temperature sensor, a pressure sensor, a chemical sensor, etc. may be attached instead of the electrodes to measure the temperature and pressure or various chemical substances.
  • the holding member is almost the same as in the first embodiment. However, as shown in FIG. 15 in a state where the cavity unit 16 is held by the holding member, the inflow tube 64A is connected to the through hole 44A, and the outflow tube 64B is connected to the through hole 44B. A solution, a cell suspension or the like flows into the lower micro flow channel 24 through the inflow tube 64A, and a solution, a cell suspension or the like flows out from the lower micro flow channel 24 through the outflow tube 64B.
  • two through holes 45 corresponding to the opening 19A are provided substantially in the center of the upper holding plate 38.
  • An accelerating mechanism 70 as a membrane stretching mechanism is connected upstream of the inflow tube 64A flowing into the lower microchannel 24. That is, the acceleration mechanism 70 as the film stretching mechanism is connected to the lower cavity member 14 via the inflow tube 64A.
  • the acceleration mechanism 70 is the same as in the first embodiment.
  • FIG. 20 shows a state in which the flow velocity of the liquid flowing through the lower microchannel 24 is so small that the pressure in the thickness direction is not applied to the extent that the porous film 30 extends.
  • the flow velocity of the liquid flowing through the lower microchannel 24 is increased by the acceleration mechanism 70, the pressure in the thickness direction from the lower microchannel 24 is applied to the porous membrane 30 as shown in FIG. Is added, the porous film 30 extends downward along the thickness direction.
  • the flow velocity of the liquid referred to here is determined by the elongation property and area of the porous membrane, the viscosity of the liquid, and the like.
  • the pressure in the thickness direction generated by the change in the flow velocity of the liquid flowing through the lower microchannel 24 is applied.
  • the porous film 30 can be expanded along the thickness direction.
  • the cell culture device 10 of the present embodiment is composed of an upper cavity member 12 and a lower cavity member 14 facing each other as a pair of cavity members stacked in the thickness direction.
  • the cavity unit 16 is formed.
  • the materials, physical properties, and structures of the upper cavity member 12 and the lower cavity member 14 are the same as in the first embodiment.
  • porous membrane 30 arranged between the upper cavity member 12 and the lower cavity member 14 is also the same as in the first embodiment.
  • the holding member is almost the same as that of the first embodiment, but is different in that a rectangular contact opening 39 is formed substantially at the center of the lower holding plate 38 of the pair of holding plates 38.
  • a contact member 80 having the same shape is fitted in the contact opening 39.
  • the upper surface of the fitted contact member 80 is the lower surface of the lower cavity member 14 which is the opposite side of the flexible lower cavity member 14 to the side where the flow path portion 26C of the lower micro flow path 24 is formed. It is fixed in contact.
  • a movable member 85 that can move up and down by a power source (not shown) is fixed to the lower surface of the contact member 80. As the movable member 85 moves up and down, the contact member 80 also moves up and down, and the lower cavity member 14 is also deformed accordingly. That is, the contact member 80 and the movable member 85 function as a film stretching mechanism. In other words, the contact member 80 as the film stretching mechanism is connected to the lower cavity member 14.
  • inflow tubes 62A and 64A are connected to the through holes 42A and 44A, respectively, and outflow tubes 62B and 64B are connected to the through holes 42B and 44B, respectively.
  • a solution, a cell suspension or the like flows into the upper microchannel 18 and the lower microchannel 24 through the inflow tubes 62A and 64A, and the solution flows from the upper microchannel 18 and the lower microchannel 24 through the outflow tubes 62B and 64B. And cell suspension etc. flow out.
  • the contact member 80 and the movable member 85 are provided as the membrane stretching mechanism, and the membrane stretching mechanism causes the porous membrane 30 to stretch.
  • 24 to 26 are sectional views taken along the line FF of FIG. 22, showing the upper cavity member 12 and the lower cavity member 14, the upper microchannel 18 and the lower microchannel 24, the porous membrane 30, the contact member 80 and the movable member.
  • the configurations other than the member 85 are omitted.
  • the contact member 80 when the movable member 85 operates and moves upward along the thickness direction of the porous membrane 30, the contact member 80 also moves upward at the same time. Along with this, the contact member 80 presses the lower cavity member 14 upward, and thus the lower cavity member 14 undergoes upward deformation. This deformation is applied as a pressing force to the porous membrane 30 via the solution in the lower microchannel 24, so that the porous membrane 30 extends upward.
  • the contact member 80 when the movable member 85 operates and moves downward along the thickness direction of the porous film 30, the contact member 80 also moves downward. Along with that, the contact member 80 pulls the lower cavity member 14 downward, so that the lower cavity member 14 undergoes downward deformation. This deformation is applied as a traction force to the porous membrane 30 via the solution in the lower microchannel 24, so that the porous membrane 30 extends downward.
  • the contact member 80 and the movable member 85 as the film stretching mechanism can be provided in the upper cavity member 12 as in the modification of the present embodiment shown in FIGS. 27 to 29. That is, of the pair of holding plates 38, a contact opening (not shown) similar to the contact opening 39 shown in FIG. 23 is provided substantially at the center of the upper holding plate 38, and the contact member having the same shape is provided in this contact opening. Insert 80.
  • the lower surface of the fitted contact member 80 is fixed in contact with the upper surface of the upper cavity member 12, which is the side of the flexible upper cavity member 12 opposite to the side on which the upper microchannel 18 is formed. That is, the contact member 80 as the film stretching mechanism is connected to the upper cavity member 12.
  • a movable member 85 that can move up and down by a power source (not shown) is fixed to the upper surface of the contact member 80. As the movable member 85 moves up and down, the contact member 80 also moves up and down, and the upper cavity member 12 is also deformed accordingly.
  • 27 to 29 show cross sections from the same viewpoint as FIGS. 24 to 26.
  • the contact member 80 when the movable member 85 operates and moves downward along the thickness direction of the porous membrane 30, the contact member 80 also moves downward at the same time. Along with that, the contact member 80 presses the upper cavity member 12 downward, so that the upper cavity member 12 undergoes downward deformation. This deformation is applied as a pressing force to the porous membrane 30 via the solution in the upper microchannel 18, whereby the porous membrane 30 extends downward along the thickness direction.
  • the contact member 80 when the movable member 85 operates and moves upward along the thickness direction of the porous film 30, the contact member 80 also moves upward at the same time. Along with that, the contact member 80 pulls the upper cavity member 12 upward, so that the upper cavity member 12 undergoes downward deformation. This deformation is applied as a traction force to the porous membrane 30 via the solution in the upper microchannel 18, whereby the porous membrane 30 extends upward along the thickness direction.
  • a part of the contact member 80 as a membrane extension mechanism can be fitted into the lower cavity member 14 and directly connected to the porous membrane 30.
  • the “flexibility” in the present embodiment means that the material forming the lower cavity member 14 or the upper cavity member 12 has such a softness that it can be deformed by being pressed by the contact member 80. means.
  • [Fourth Embodiment] 31 to 33 show a part of the cell culture device 10 according to the fourth embodiment in a sectional view according to the section taken along the line BB of FIG. 1, and show the upper cavity member 12 and the lower cavity member. Structures other than the cavity unit 16 composed of 14 and the porous film 30 are omitted. The upper microchannel 18 formed in the upper cavity member 12 and the lower microchannel 24 formed in the lower cavity member 14 are separated by a porous film 30.
  • an internal pressure change space 90 as a membrane extension mechanism is formed inside the lower cavity member 14.
  • the internal pressure change space 90 is formed along the lower microchannel 24 and is connected to an external pressurizing/depressurizing mechanism (pressurizing pump and vacuum pump) not shown.
  • the internal pressure change space 90 When a gas is sent to the internal pressure change space 90 from a pressurizing pump as a pressurizing/depressurizing mechanism to pressurize it, the internal pressure change space 90 expands toward the lower micro flow channel 24, as shown in FIG. 32. This expansion presses the side of the lower cavity member 14 opposite to the side where the lower microchannel 24 is formed, and acts as a pressing force on the porous membrane 30 via the solution in the lower microchannel 24. By adding, the porous film 30 expands upward along the thickness direction.
  • the internal pressure change space 90 contracts as shown in FIG. Due to this contraction, the side of the lower cavity member 14 opposite to the side where the lower microchannel 24 is formed is pulled, and is applied as a pulling force to the porous membrane 30 via the solution in the lower microchannel 24. Then, the porous film 30 extends downward along the thickness direction.
  • the internal pressure change space 90 may be formed inside the upper cavity member 12.
  • the expansion of the internal pressure change space 90 presses the side of the upper cavity member 12 opposite to the side on which the upper microchannel 18 is formed, and permeates through the solution in the upper microchannel 18.
  • the porous membrane 30 extends downward along the thickness direction.
  • the contraction of the internal pressure change space 90 pulls the side of the upper cavity member 12 opposite to the side on which the upper microchannel 18 is formed, and the porous membrane is mediated by the solution in the upper microchannel 18.
  • the porous film 30 extends upward along the thickness direction.
  • the “flexibility” in the present embodiment means that the material forming the lower cavity member 14 or the upper cavity member 12 has a hardness that allows the material to be deformed by the expansion or contraction of the internal pressure change space 90.
  • [Fifth Embodiment] 34 to 36 show a part of the cell culture device 10 according to the fifth embodiment in a sectional view according to the section taken along the line BB of FIG. 1, and show the upper cavity member 12 and the lower cavity member. Structures other than the cavity unit 16 composed of 14 and the porous film 30 are omitted. The upper microchannel 18 formed in the upper cavity member 12 and the lower microchannel 24 formed in the lower cavity member 14 are separated by a porous film 30.
  • flexible cavity sidewalls 95A are provided on both sides of the upper microchannel 18 and the lower microchannel 24 as the microcavities.
  • the term “both sides of the microcavity” means the sides parallel to both the flow channel direction of the microchannel and the facing direction of the microcavity.
  • a lateral pressure change space 95B as a space extending between the upper cavity member 12 and the lower cavity member 14 is provided outside each of the cavity side walls 95A.
  • the cavity side wall 95A and the lateral pressure change space 95B form a lateral extension mechanism 95.
  • the porous film 30 is connected to the cavity side wall 95A as the lateral extension mechanism 95.
  • the lateral pressure change space 95B is formed along the upper microchannel 18 and the lower microchannel 24, and is connected to an external pressurizing/depressurizing mechanism (pressurizing pump and vacuum pump) not shown. .
  • the "width direction of the porous membrane” means a direction perpendicular to both the flow channel direction of the micro flow channel and the opposing direction of the microcavity.
  • the term “flexibility” in the present embodiment means that the material forming the upper cavity member 12 and the lower cavity member 14 has such a hardness that it can be deformed by expansion or contraction of the lateral pressure change space 95B.
  • the porous film 30 has been used as a single layer, but a plurality of porous films 30 may be laminated and used.
  • a plurality of porous films 30 may be laminated and used.
  • FIG. 37 when two porous films 30 having the same diameter opening 32A and the same thickness are laminated and used with the positions of the openings 32A aligned, the stretching property is improved. The strength can be increased while keeping it.
  • substantially lowering the aperture ratio means that when the laminated porous film 30 is projected in a plan view, the openings 32A of a certain layer are covered with a substantial portion between all the openings 32A adjacent to each other. It means that the area occupied by the opening 32A is reduced.
  • porous membranes 30 having openings 32A having the same diameter and having the same thickness can be laminated.
  • FIG. 40 it is also possible to stack and use a plurality of types of porous membranes having different diameters and thicknesses of the openings 32A.
  • the number and type of the porous membranes 30 to be laminated and how to shift the positions of the openings 32A can be appropriately determined depending on the usage mode, for example, the size of the cell culture device 10, the cell type used, the type of experiment, and the like.
  • FIG. 41 In the example of the porous film used in the present disclosure, as shown in the plan view of FIG. 41, circular openings are regularly arranged in a honeycomb shape.
  • This porous film is made of polybutadiene (PB, Example 1) or polycarbonate (PC, Example 2), and its cross section is as shown in FIG. 5, and the upper and lower openings have a lateral communication structure. It penetrates vertically by the inner space.
  • the thickness of this porous film was 3 ⁇ m, the opening diameter was 5 ⁇ m, the porosity was 85%, and the opening ratio was 63%.
  • three layers of PB-made porous membranes were used as Example 3
  • three layers of PC-made porous membranes were used as Example 4.
  • the porous film used as a comparative example is made of PC and has circular openings sparsely and irregularly as shown in the plan view photograph of FIG. 43.
  • the cross section of this porous film is as shown in FIG. 44, and the directions and lengths of the holes penetrate are different.
  • the thickness of this porous film is 10 ⁇ m, the opening diameter is 5 ⁇ m, the porosity is 10%, and the opening ratio is 3 to 10%.
  • the porous membrane of Example 2 made of the same material as that of Comparative Example had a tensile force of 2.48 N/m per unit width required for 20% elongation, which was a comparative example (472.5 N/m). It was possible to stretch with a force as small as about 0.5% of m).
  • the porous film of Example 2 was laminated in three layers, the film thickness was almost the same as that of the comparative example, but the tensile force per unit width required for 20% elongation was 7.5 N/m. It was possible to stretch with a small force of about 1.6%.
  • FIG. 46 is an enlarged view of the vicinity of the X axis in FIG. 45.
  • the porous membrane of the comparative example reached the yield point in the vicinity of the tensile force per unit width exceeding 400 N/m, and ruptured when the tensile force per unit width showed an elongation of about 65% near 550 N/m ( Figure 45).
  • the yield point was reached near a tensile force of 1.5 N/m per unit width, and about 88% was reached near a tensile force of 4.3 N/m per unit width. It broke when it showed elongation (Fig. 46).
  • the porous membrane of Example 1 was substantially elastically deformed until it showed an elongation of about 180% at a tensile force of about 0.5 N/m per unit width, and was fractured soon (FIG. 46). As described above, it was shown that the porous membranes of the examples can be deformed with a smaller tensile force than the comparative examples.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This cell culture device is provided with a pair of cavity members which face each other and which each has a microcavity formed on the facing surfaces, a porous film which separates the microcavities and which has openings arranged in a honeycomb pattern on one or both surfaces, and a film stretching mechanism which is connected to the cavity member or the porous film, and which can stretch the porous film at least in the thickness direction by applying a force to the porous film in at least the thickness direction. The porous film has in-membrane spaces that communicate from the openings in the thickness direction, and has a horizontally linked structure in which the adjacent in-membrane spaces communicate with each other inside of the porous film. The average opening diameter of the openings is 1-200 μm, the void ratio is 40-90%, the membrane thickness 0.5-100 μm, and the tensile force per unit width necessary for 20% stretching is 0.1-20 N/m.

Description

細胞培養デバイスCell culture device
 本開示は、細胞培養デバイスに関する。 The present disclosure relates to a cell culture device.
 複数のキャビティ部材によって画成されたマイクロ流路と呼ばれるマイクロメートルオーダーの幅の流路を有する細胞培養デバイスが知られている(例えば、特許第5700460号公報及び特許第5771962号公報)。 A cell culture device having a flow channel of a micrometer order width called a micro flow channel defined by a plurality of cavity members is known (for example, Japanese Patent Nos. 5700460 and 5771962).
 また、特許第5415538号公報、特許第5815643号公報及び特開2017-136082号公報のように、マイクロ流路を多孔膜で上下に分けるとともに、多孔膜の両側から圧力によりマイクロ流路を変形させて多孔膜を伸張及び収縮させる細胞培養デバイスも知られている。 In addition, as in Japanese Patent No. 5415538, Japanese Patent No. 5815643, and Japanese Unexamined Patent Application Publication No. 2017-136082, the microchannel is divided into upper and lower parts by a porous membrane, and the microchannel is deformed by pressure from both sides of the porous membrane. Cell culture devices that expand and contract a porous membrane by means of this are also known.
 マイクロ流路に多孔膜を組み込み、この多孔膜の片面又は両面で細胞培養を行うことで生体機能を模倣する細胞培養デバイスは、近年、創薬支援ツールとして注目を集めている。細胞培養デバイスを用いた細胞培養では、培地の灌流による栄養分の供給に加えて、メカニカルストレスの付与による細胞の配向制御が可能である。また、細胞培養デバイスに、特許第5415538号公報、特許第5815643号公報及び特開2017-136082号公報に開示されているように、マイクロ流路の変形に伴う膜の拡張及び収縮を行うことで、細胞組織に繰り返しメカニカルストレスを付与し、細胞の配向制御及び成熟化を促進することも可能となる。 In recent years, cell culture devices that imitate biological functions by incorporating a porous membrane in the microchannel and culturing cells on one or both sides of this porous membrane have attracted attention as a drug discovery support tool. In cell culture using a cell culture device, it is possible to control the orientation of cells by applying mechanical stress, in addition to supplying nutrients by perfusion of a medium. Further, as disclosed in Japanese Patent Nos. 5415538, 5815643, and Japanese Unexamined Patent Application Publication No. 2017-136082, the cell culture device is expanded and contracted with the deformation of the microchannel. It is also possible to repeatedly apply mechanical stress to cell tissues and promote orientation control and maturation of cells.
 しかし、これまでの多孔膜を用いた細胞培養デバイスでは、多孔膜の伸張特性が、目的とする細胞が生体内で支持されている環境(例えば、血管壁、腸壁)よりも遙かに低いため、多孔膜に十分な変形を与えて細胞にメカニカルストレスを付与することが困難であるという課題があった。また、多孔膜に十分な変形を与えるためには相応の力を加える必要があるが、多孔膜の伸張特性がそのような力には耐えきれずに細胞培養デバイスの破損をもたらす可能性もある。 However, in cell culture devices using porous membranes up to now, the extension characteristics of the porous membrane are much lower than the environment in which the target cells are supported in vivo (eg, blood vessel wall, intestinal wall). Therefore, there is a problem in that it is difficult to give sufficient deformation to the porous membrane to apply mechanical stress to the cells. Moreover, in order to give sufficient deformation to the porous membrane, it is necessary to apply a corresponding force, but the elongation property of the porous membrane may not be able to withstand such force and may cause damage to the cell culture device. ..
 本開示は、これまで先行技術で使用されてきた多孔膜の伸張に要する力よりも小さな力で伸張が可能な多孔膜を使用することで、生体内で細胞に与えられるメカニカルストレスを容易に再現可能な細胞培養デバイスを提供することを目的とする。 The present disclosure easily reproduces the mechanical stress applied to cells in vivo by using a porous membrane that can be stretched with a force smaller than the force required for stretching the porous membrane used in the prior art. An object is to provide a possible cell culture device.
 本開示の第1態様に係る細胞培養デバイスは、互いに対向し、対向面にマイクロキャビティが各々形成された一対のキャビティ部材と、一対のキャビティ部材の対向面間に配置され、各々のマイクロキャビティを隔てるとともに片面又は両面にハニカム状に配列された複数の開口を有する多孔膜と、キャビティ部材又は多孔膜に連結され、多孔膜に少なくとも厚さ方向に沿った力を加えて多孔膜を少なくとも厚さ方向に沿って伸張させることができる、膜伸張機構と、を備え、多孔膜は、複数の開口の各々から厚さ方向に連通する複数の膜内空間を有するとともに隣接する膜内空間どうしは多孔膜の内部で互いに連通する横連通構造を有しており、開口の平均開口径が1μm以上200μm以下であり、多孔膜の空隙率が40%以上90%以下であり、多孔膜の膜厚が0.5μm以上100μm以下であり、多孔膜の20%伸張に要する単位幅あたりの引張力が0.1N/m以上20N/m以下であるとともに、各々のマイクロキャビティのうち少なくとも一方がマイクロ流路である。なお、多孔膜を少なくとも厚さ方向に沿って伸張させる、とは、厚さ方向に沿って上方又は下方へ伸張させることをいう。 A cell culture device according to a first aspect of the present disclosure is arranged between a pair of cavity members facing each other and having microcavities formed on the facing surfaces, and the facing surfaces of the pair of cavity members, and A porous film having a plurality of openings arranged in a honeycomb shape on one side or both sides of the porous film, which are connected to the cavity member or the porous film, and apply at least a force along the thickness direction to the porous film so that the porous film has at least the thickness. And a membrane stretching mechanism capable of stretching along a direction, wherein the porous membrane has a plurality of intramembrane spaces communicating in the thickness direction from each of the plurality of openings, and adjacent membrane spaces are porous. It has a lateral communication structure in which it communicates with each other inside the membrane, the average opening diameter of the openings is 1 μm or more and 200 μm or less, the porosity of the porous membrane is 40% or more and 90% or less, and the thickness of the porous membrane is 0.5 μm or more and 100 μm or less, the tensile force per unit width required for 20% extension of the porous membrane is 0.1 N/m or more and 20 N/m or less, and at least one of the microcavities has a microchannel. Is. In addition, extending a porous film at least along a thickness direction means extending up or down along a thickness direction.
 上記構成によれば、マイクロキャビティが多孔膜で隔てられている。そして、その多孔膜は、片面又は両面にハニカム状に配列された開口を有し、開口から厚さ方向に連通する膜内空間を有するとともに隣接する膜内空間どうしは多孔膜の内部で互いに連通する横連通構造を有している。さらに、開口の平均開口径が1μm以上200μm以下であり、多孔膜の空隙率が40%以上90%以下であり、多孔膜の膜厚が0.5μm以上100μm以下であり、多孔膜の20%伸張に要する単位幅あたりの引張力が0.1N/m以上20N/m以下である。このような多孔膜が膜伸張機構により少なくとも厚さ方向に沿って伸張されることで、多孔膜の表面又は膜内空間内で培養される細胞に対し、生体内で与えられるようなメカニカルストレスを与えることができる。 According to the above configuration, the microcavities are separated by the porous film. The porous membrane has openings arranged in a honeycomb shape on one side or both sides, has an intramembrane space communicating from the openings in the thickness direction, and adjacent intramembrane spaces communicate with each other inside the porous membrane. It has a horizontal communication structure. Furthermore, the average opening diameter of the openings is 1 μm or more and 200 μm or less, the porosity of the porous film is 40% or more and 90% or less, the film thickness of the porous film is 0.5 μm or more and 100 μm or less, and 20% of the porous film. The tensile force per unit width required for stretching is 0.1 N/m or more and 20 N/m or less. By stretching such a porous membrane at least along the thickness direction by a membrane stretching mechanism, cells that are cultivated on the surface of the porous membrane or in the inner space of the membrane are subjected to mechanical stress that is applied in vivo. Can be given.
 本開示の第2態様に係る細胞培養デバイスは、第1態様に係る細胞培養デバイスにおいて、多孔膜は両面に複数の開口を有し、一方の面の開口は膜内空間を通じて他方の面の開口と連通している。 A cell culture device according to a second aspect of the present disclosure is the cell culture device according to the first aspect, wherein the porous membrane has a plurality of openings on both sides, and the opening on one side is the opening on the other side through the intramembrane space. Is in communication with.
 上記構成によれば、膜内空間は、一方の面の開口から他方の面の開口まで、多孔膜の厚さ方向に貫通しているため、多孔膜によって隔てられている一対のマイクロキャビティの間で液体や物質を流通させることができる。 According to the above configuration, since the intra-membrane space penetrates in the thickness direction of the porous film from the opening on one surface to the opening on the other surface, it is between the pair of micro cavities separated by the porous film. Liquids and substances can be circulated.
 本開示の第3態様に係る細胞培養デバイスは、第1態様又は第2態様に係る細胞培養デバイスにおいて、各々のマイクロキャビティのうち他方は、多孔膜と反対側に開口部を有するウェルである。 The cell culture device according to the third aspect of the present disclosure is the cell culture device according to the first or second aspect, wherein the other of the microcavities is a well having an opening on the side opposite to the porous membrane.
 上記構成によれば、一対のマイクロキャビティのうち一方はマイクロ流路であり、他方が多孔膜と反対側に開口部を有するウェルであることから、この開口部を通じてウェルに対し細胞の播種や、液体及び試薬の添加等の操作を加えることができる一方、多孔膜によって隔てられているマイクロ流路を通じてウェルとの間で液体や物質を流通させることができる。 According to the above configuration, one of the pair of microcavities is a microchannel, and the other is a well having an opening on the side opposite to the porous membrane, and thus seeding cells into the well through this opening, While operations such as addition of liquids and reagents can be applied, liquids and substances can be circulated between the wells and the micro channels separated by the porous membrane.
 本開示の第4態様に係る細胞培養デバイスは、第1態様又は第2態様に係る細胞培養デバイスにおいて、各々のマイクロキャビティのうち他方もマイクロ流路である。 The cell culture device according to the fourth aspect of the present disclosure is the cell culture device according to the first aspect or the second aspect, wherein the other of the respective microcavities is also a microchannel.
 上記構成によれば、一対のマイクロキャビティのうち一方はマイクロ流路であり、他方もマイクロ流路であることから、多孔膜のいずれの面に対しても流体の流れに伴う剪断応力を加えることができる。 According to the above configuration, one of the pair of micro-cavities is a micro-channel and the other is a micro-channel, so that shear stress associated with the fluid flow should be applied to any surface of the porous membrane. You can
 本開示の第5態様に係る細胞培養デバイスは、第1~第4態様のいずれか1つの態様に係る細胞培養デバイスにおいて、開口が同じ開口径又は異なる開口径の多孔膜が複数枚積層されている。 A cell culture device according to a fifth aspect of the present disclosure is the cell culture device according to any one of the first to fourth aspects, in which a plurality of porous membranes having the same opening diameter or different opening diameters are laminated. There is.
 上記構成によれば、多孔膜を複数枚積層させることで、強度を増すことができる。また、開口の位置をずらして複数枚の多孔膜を積層させることで、空隙率を変えずに実質的に開口率を減少させることができ、細胞の多孔膜の通り抜けをコントロールすることができる。 According to the above configuration, the strength can be increased by stacking a plurality of porous films. In addition, by arranging a plurality of porous membranes by shifting the positions of the openings, the aperture ratio can be substantially reduced without changing the porosity, and the passage of cells through the porous membrane can be controlled.
 本開示の第6態様に係る細胞培養デバイスは、第1~第5態様のいずれか1つの態様に係る細胞培養デバイスにおいて、膜伸張機構として、マイクロ流路において、該マイクロ流路を流れる液体の流速を増加させることの可能な加速機構を備える。 A cell culture device according to a sixth aspect of the present disclosure is the cell culture device according to any one of the first to fifth aspects, wherein, as a membrane extension mechanism, a liquid flowing through the microchannel is used in the microchannel. It is equipped with an acceleration mechanism capable of increasing the flow velocity.
 膜伸張機構が多孔膜を厚さ方向に沿って伸張させる態様としては、例えば、マイクロ流路を流れる液体が多孔膜に及ぼす厚さ方向への圧力を利用した機構がある。上記構成によれば、このような機構としての加速機構によってマイクロ流路において、そのマイクロ流路を流れる液体により生じる厚さ方向への圧力を、多孔膜に加えることができる。 As an aspect in which the membrane stretching mechanism stretches the porous membrane along the thickness direction, for example, there is a mechanism that uses the pressure in the thickness direction exerted by the liquid flowing through the microchannel on the porous membrane. According to the above configuration, the pressure in the thickness direction generated by the liquid flowing in the micro flow channel can be applied to the porous membrane in the micro flow channel by the acceleration mechanism as such a mechanism.
 本開示の第7態様に係る細胞培養デバイスは、第1~第5態様のいずれか1つの態様に係る細胞培養デバイスにおいて、一対のキャビティ部材のうち少なくともマイクロ流路が形成されている方は可撓性を有するとともに、膜伸張機構は、可撓性を有するキャビティ部材においてマイクロ流路が形成されている側の反対側に接触する接触部材と、接触部材を多孔膜の厚さ方向に沿って少なくとも押圧及び牽引の一方が可能である可動部材と、を備える。 The cell culture device according to the seventh aspect of the present disclosure is not limited to the cell culture device according to any one of the first to fifth aspects, in which at least the microchannel is formed in the pair of cavity members. In addition to having flexibility, the membrane stretching mechanism includes a contact member that contacts the opposite side of the flexible cavity member to the side where the microchannel is formed, and the contact member along the thickness direction of the porous membrane. And a movable member capable of at least one of pressing and pulling.
 膜伸張機構が多孔膜を厚さ方向に沿って伸張させる態様としては、例えば、マイクロ流路に作用する圧力(加圧及び減圧の少なくとも一方)を利用する機構がある。上記構成によれば、このような機構としての接触部材と可動部材という機械的構成によってマイクロ流路の圧力を変化させることで、多孔膜を伸張させることができる。 As an aspect in which the membrane stretching mechanism stretches the porous membrane along the thickness direction, for example, there is a mechanism that uses pressure (at least one of pressurization and depressurization) that acts on the microchannel. According to the above configuration, the porous membrane can be stretched by changing the pressure of the microchannel by the mechanical configuration of the contact member and the movable member as such a mechanism.
 本開示の第8態様に係る細胞培養デバイスは、一対のキャビティ部材のうち少なくともマイクロ流路が形成されている方は可撓性を有するとともに、膜伸張機構は、マイクロ流路が形成されているキャビティ部材の内部に形成された、マイクロ流路が形成されている側の反対側から多孔膜の厚さ方向に沿って加圧による押圧及び減圧による牽引の少なくとも一方が可能な、内部圧力変化空間を備える。 In the cell culture device according to the eighth aspect of the present disclosure, at least one of the pair of cavity members in which the micro flow channel is formed has flexibility, and the membrane extension mechanism has the micro flow channel. An internal pressure change space formed inside the cavity member, in which at least one of pressing by pressure and pulling by depressurization is possible along the thickness direction of the porous membrane from the side opposite to the side where the microchannel is formed. Equipped with.
 膜伸張機構が多孔膜を厚さ方向に沿って伸張させる態様としては、例えば、マイクロ流路に作用する圧力(加圧及び減圧の少なくとも一方)を多孔膜に作用させる機構がある。上記構成によれば、このような機構としての内部圧力変化空間を加圧することで、内部圧力変化空間がマイクロ流路を押圧し、この押圧に伴い多孔膜が押圧される。あるいは、内部圧力変化空間を減圧することで、内部圧力変化空間がマイクロ流路を牽引し、この牽引に伴い多孔膜が牽引される。いずれの場合も、多孔膜は伸張することになる。あるいは、これらの加圧及び減圧両方が可能となる。 As an aspect in which the membrane stretching mechanism stretches the porous membrane along the thickness direction, for example, there is a mechanism that exerts a pressure (at least one of pressurization and depressurization) acting on the microchannel on the porous membrane. According to the above configuration, by pressurizing the internal pressure change space as such a mechanism, the internal pressure change space presses the micro flow channel, and the porous membrane is pressed by this pressing. Alternatively, by depressurizing the internal pressure change space, the internal pressure change space pulls the microchannel, and the porous membrane is pulled along with this pulling. In either case, the porous membrane will stretch. Alternatively, both pressurization and depressurization of these are possible.
 本開示の第9態様に係る細胞培養デバイスは、第1~第8態様のいずれか1つの態様に係る細胞培養デバイスにおいて、膜伸張機構に加え、マイクロキャビティの両側に設けられ可撓性を有するキャビティ側壁と、キャビティ側壁の各々の外方に設けられる側方圧力変化空間と、を備えた側方伸張機構を有し、側方伸張機構は、側方圧力変化空間において加圧及び減圧の少なくとも一方を行うことにより、キャビティ側壁に対し加圧による押圧及び減圧による牽引の少なくとも一方を行うことで、多孔膜を幅方向に伸張させる。 A cell culture device according to a ninth aspect of the present disclosure is the cell culture device according to any one of the first to eighth aspects, which is provided on both sides of the microcavity and has flexibility in addition to the membrane extension mechanism. A lateral extension mechanism having a cavity side wall and a lateral pressure change space provided outside each of the cavity side walls is provided, and the lateral extension mechanism has at least pressure and decompression in the lateral pressure change space. By performing one of these, at least one of pressing by pressure and pulling by depressurization is performed on the side wall of the cavity, thereby extending the porous film in the width direction.
 上記構成によれば、多孔膜の厚さ方向の伸張に加え、多孔膜の幅方向の伸張も可能となる。 According to the above configuration, in addition to the expansion in the thickness direction of the porous film, the expansion in the width direction of the porous film is possible.
 本開示によれば、これまで先行技術で使用されてきた多孔膜の伸張に要する力よりも小さな力で伸張が可能な多孔膜を使用することで、生体内で細胞に与えられるメカニカルストレスを、これまでの多孔膜を使用した細胞培養デバイスよりも容易に再現可能な細胞培養デバイスを提供することができる。 According to the present disclosure, by using a porous membrane that can be stretched with a force smaller than the force required for stretching the porous membrane that has been used in the prior art, mechanical stress imparted to cells in vivo is It is possible to provide a cell culture device that can be more easily reproduced than a cell culture device using a conventional porous membrane.
第1実施形態における細胞培養デバイスの全体構造を示す斜視図である。It is a perspective view showing the whole cell culture device structure in a 1st embodiment. 第1実施形態における細胞培養デバイスの全体構造を示す分解斜視図である。It is an exploded perspective view showing the whole cell culture device structure in a 1st embodiment. 図1におけるB-B線断面の一部を示す模式図である。It is a schematic diagram which shows a part of BB line cross section in FIG. 第1実施形態における細胞培養デバイスの多孔膜を示す平面図である。It is a top view which shows the porous membrane of the cell culture device in 1st Embodiment. 図4におけるC-C線断面図である。FIG. 5 is a sectional view taken along line CC in FIG. 4. 図4におけるC-C線断面図にて多孔膜の別の例を示す。Another example of the porous membrane is shown in a sectional view taken along the line CC in FIG. 図1におけるB-B線断面の一部において、細胞層が設けられている状態の例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the cross section taken along line BB in FIG. 1. 図1におけるB-B線断面の一部において、細胞層が設けられている状態の例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the cross section taken along line BB in FIG. 1. 図1におけるB-B線断面の一部において、細胞層が設けられている状態の例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the cross section taken along the line BB in FIG. 1. 図1におけるB-B線断面の一部において、細胞層が設けられている状態の例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the cross section taken along the line BB in FIG. 1. 図1におけるA-A線断面図である。FIG. 2 is a sectional view taken along the line AA in FIG. 1. 図1におけるA-A線断面の一部において、多孔膜の伸張が生じていない状態を示す模式図である。FIG. 2 is a schematic diagram showing a state in which the porous film is not stretched in a part of the cross section taken along the line AA in FIG. 1. 図1におけるA-A線断面の一部において、多孔膜の伸張が生じている状態を示す模式図である。FIG. 2 is a schematic view showing a state where the porous film is stretched in a part of the cross section taken along the line AA in FIG. 1. 図1におけるA-A線断面の一部において、多孔膜の伸張が生じている状態を示す模式図である。FIG. 2 is a schematic view showing a state where the porous film is stretched in a part of the cross section taken along the line AA in FIG. 1. 第2実施形態における細胞培養デバイスの全体構造を示す斜視図である。It is a perspective view showing the whole cell culture device structure in a 2nd embodiment. 第2実施形態における細胞培養デバイスの全体構造を示す分解斜視図である。It is an exploded perspective view showing the whole cell culture device structure in a 2nd embodiment. 図15におけるD-D線断面の一部を示す模式図である。It is a schematic diagram which shows a part of DD cross section in FIG. 図15におけるD-D線断面の一部において、細胞層が設けられている状態の例を示す模式図である。FIG. 16 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the DD cross section in FIG. 15. 図15におけるD-D線断面の一部において、細胞層が設けられている状態の例を示す模式図である。FIG. 16 is a schematic diagram showing an example of a state in which a cell layer is provided in a part of the DD cross section in FIG. 15. 図15におけるE-E線断面の一部において、多孔膜の伸張が生じていない状態を示す模式図である。FIG. 16 is a schematic view showing a state in which the porous film is not stretched in a part of the cross section taken along the line EE in FIG. 15. 図15におけるE-E線断面の一部において、多孔膜の伸張が生じている状態を示す模式図である。FIG. 16 is a schematic view showing a state in which the porous film is stretched in a part of the cross section taken along the line EE in FIG. 15. 第3実施形態における細胞培養デバイスの全体構造を示す斜視図である。It is a perspective view showing the whole cell culture device structure in a 3rd embodiment. 第3実施形態における細胞培養デバイスの全体構造を示す分解斜視図である。It is an exploded perspective view showing the whole cell culture device structure in a 3rd embodiment. 図22におけるF-F線断面の一部において、多孔膜の伸張が生じていない状態を示す模式図である。FIG. 23 is a schematic diagram showing a state in which the porous film is not expanded in a part of the cross section taken along the line FF in FIG. 22. 図22におけるF-F線断面の一部において、多孔膜の伸張が生じている状態を示す模式図である。FIG. 23 is a schematic view showing a state where the porous film is stretched in a part of the cross section taken along the line FF in FIG. 22. 図22におけるF-F線断面の一部において、多孔膜の伸張が生じている状態を示す模式図である。FIG. 23 is a schematic view showing a state where the porous film is stretched in a part of the cross section taken along the line FF in FIG. 22. 第3実施形態における細胞培養デバイスの変形例を示す断面図である。It is sectional drawing which shows the modification of the cell culture device in 3rd Embodiment. 第3実施形態における細胞培養デバイスの変形例を示す断面図である。It is sectional drawing which shows the modification of the cell culture device in 3rd Embodiment. 第3実施形態における細胞培養デバイスの変形例を示す断面図である。It is sectional drawing which shows the modification of the cell culture device in 3rd Embodiment. 第3実施形態における細胞培養デバイスの別の変形例を示す断面図である。It is sectional drawing which shows another modification of the cell culture device in 3rd Embodiment. 第4実施形態における細胞培養デバイスの要部を示す断面図である。It is sectional drawing which shows the principal part of the cell culture device in 4th Embodiment. 第4実施形態における細胞培養デバイスの要部を示す断面図である。It is sectional drawing which shows the principal part of the cell culture device in 4th Embodiment. 第4実施形態における細胞培養デバイスの要部を示す断面図である。It is sectional drawing which shows the principal part of the cell culture device in 4th Embodiment. 第5実施形態における細胞培養デバイスの要部を示す断面図である。It is sectional drawing which shows the principal part of the cell culture device in 5th Embodiment. 第5実施形態における細胞培養デバイスの要部を示す断面図である。It is sectional drawing which shows the principal part of the cell culture device in 5th Embodiment. 第5実施形態における細胞培養デバイスの要部を示す断面図である。It is sectional drawing which shows the principal part of the cell culture device in 5th Embodiment. 多孔膜を積層して使用する例を示す断面図である。It is sectional drawing which shows the example which laminates|stacks and uses a porous film. 多孔膜を積層して使用する例を示す断面図である。It is sectional drawing which shows the example which laminates|stacks and uses a porous film. 多孔膜を積層して使用する例を示す断面図である。It is sectional drawing which shows the example which laminates|stacks and uses a porous film. 多孔膜を積層して使用する例を示す断面図である。It is sectional drawing which shows the example which laminates|stacks and uses a porous film. 実施例の多孔膜の平面写真である。It is a top view photograph of the porous membrane of an example. 実施例の多孔膜の平面写真である。It is a top view photograph of the porous membrane of an example. 比較例の多孔膜の平面写真である。It is a top view photograph of the porous membrane of a comparative example. 比較例の多孔膜の模式断面図である。It is a schematic cross section of the porous membrane of a comparative example. 実施例及び比較例の多孔膜の引張力と伸びとの関係をグラフで示す。The relationship between the tensile force and the elongation of the porous membranes of Examples and Comparative Examples is shown in a graph. 実施例及び比較例の多孔膜の引張力と伸びとの関係をグラフで示す。The relationship between the tensile force and the elongation of the porous membranes of Examples and Comparative Examples is shown in a graph.
 以下、本開示の各実施形態について図面を参照しつつ説明する。なお、以下の実施形態は本開示を例示するものであり、本開示の範囲を制限するものではない。また、各構成の説明を容易とするため、図中の各構成の寸法を適宜変更している。このため、図中の縮尺は実際とは異なっている。また、一部の図は各構成を簡略化した模式図としている。また、複数の図面において、同じ符号で表された共通の構成要素については、説明を省略する場合がある。 Hereinafter, each embodiment of the present disclosure will be described with reference to the drawings. It should be noted that the following embodiments exemplify the present disclosure and do not limit the scope of the present disclosure. Further, in order to facilitate the description of each component, the dimensions of each component in the drawing are changed as appropriate. Therefore, the scale in the figure is different from the actual scale. In addition, some of the drawings are schematic diagrams in which each configuration is simplified. Further, in some drawings, description of common components represented by the same reference numeral may be omitted.
[第1実施形態]
<キャビティユニット>
 図1及び図2に示すように、本実施形態の細胞培養デバイス10は、厚さ方向に積層された一対のキャビティ部材としての、互いに対向する上側キャビティ部材12と下側キャビティ部材14とで構成されたキャビティユニット16を有している。上側キャビティ部材12及び下側キャビティ部材14は、一例としてPDMS(ポリジメチルシロキサン)等の可撓性を有する透明な材料で構成されていることが好ましい。
[First Embodiment]
<Cavity unit>
As shown in FIGS. 1 and 2, the cell culture device 10 of the present embodiment includes an upper cavity member 12 and a lower cavity member 14 facing each other as a pair of cavity members stacked in the thickness direction. The cavity unit 16 is formed. The upper cavity member 12 and the lower cavity member 14 are preferably made of a transparent transparent material such as PDMS (polydimethylsiloxane), for example.
 なお、上側キャビティ部材12及び下側キャビティ部材14を構成する材料としては、PDMS(ポリジメチルシロキサン)の他、エポキシ系樹脂、ウレタン系樹脂、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、アクリル系熱可塑性エラストマー、ポリビニルアルコール等が挙げられる。 The materials for the upper cavity member 12 and the lower cavity member 14 include PDMS (polydimethylsiloxane), epoxy resin, urethane resin, styrene thermoplastic elastomer, olefin thermoplastic elastomer, and acrylic resin. Examples thereof include thermoplastic elastomers and polyvinyl alcohol.
 ここで、上側キャビティ部材12及び下側キャビティ部材14は、ゴム硬度が20度以上80度以下とされていることが好ましく、50度以上70度以下とされていることがさらに好ましい。「ゴム硬度」は、JIS K6253:2012に規定される方法で、タイプAのデュロメータによって上側キャビティ部材12及び下側キャビティ部材14の硬さを測定することによって評価することができる。このようなゴム硬度を有することで、上側キャビティ部材12及び下側キャビティ部材14は可撓性を備える。 The rubber hardness of the upper cavity member 12 and the lower cavity member 14 is preferably 20 degrees or more and 80 degrees or less, and more preferably 50 degrees or more and 70 degrees or less. The “rubber hardness” can be evaluated by measuring the hardness of the upper cavity member 12 and the lower cavity member 14 with a type A durometer according to the method specified in JIS K6253:2012. By having such rubber hardness, the upper cavity member 12 and the lower cavity member 14 have flexibility.
 図2に示すように、下側キャビティ部材14の上面、すなわち上側キャビティ部材12との対向面14Aには、マイクロキャビティの一方としての下側マイクロ流路24を画成する凹部26が形成されている。凹部26は、流入口26A、流出口26B、及び流入口26Aと流出口26Bとを連通する流路部26Cを有している。 As shown in FIG. 2, on the upper surface of the lower cavity member 14, that is, the surface 14A facing the upper cavity member 12, there is formed a recess 26 that defines the lower microchannel 24 as one of the microcavities. There is. The concave portion 26 has an inflow port 26A, an outflow port 26B, and a flow path portion 26C that connects the inflow port 26A and the outflow port 26B.
 同様に、上側キャビティ部材12の下面、すなわち下側キャビティ部材14との対向面12Aには、マイクロキャビティの他方としての上側マイクロ流路18を画成する凹部20が形成されている。凹部20は、流入口20A、流出口20B、及び流入口20Aと流出口20Bとを連通する流路部20Cを有している。また、上側キャビティ部材12には、上側キャビティ部材12を厚さ方向に貫通し、下端が流入口20A及び流出口20Bに連通する貫通孔22A、22Bがそれぞれ形成されている。 Similarly, on the lower surface of the upper cavity member 12, that is, the surface 12A facing the lower cavity member 14, there is formed a recess 20 that defines the upper microchannel 18 as the other of the microcavities. The concave portion 20 has an inflow port 20A, an outflow port 20B, and a flow path section 20C that connects the inflow port 20A and the outflow port 20B. Further, the upper cavity member 12 is formed with through holes 22A and 22B which penetrate the upper cavity member 12 in the thickness direction and whose lower ends communicate with the inflow port 20A and the outflow port 20B, respectively.
 なお、マイクロキャビティとは、一対のキャビティ部材(上側キャビティ部材12及び下側キャビティ部材14)の対向面に画成される、マイクロメートルオーダーのサイズを有する空間である。具体的には、マイクロキャビティは、幅1mm未満の溝であるマイクロ流路(上側マイクロ流路18及び下側マイクロ流路24)と、最大径部分が1mm未満である円形、楕円形又は矩形等の多角形の形状を有しキャビティ部材を貫通する孔である後述するウェル19(図20及び図21参照)とを含む。マイクロキャビティには、上側キャビティ部材12に形成される上側マイクロキャビティと、下側キャビティ部材14に形成される下側マイクロキャビティとがある。本実施形態では、図1のB-B線断面を模式的に示す図3に示すように、上側マイクロキャビティ及び下側マイクロキャビティの両方がマイクロ流路(上側マイクロ流路18及び下側マイクロ流路24)である。なお、図3では、上側キャビティ部材12及び下側キャビティ部材14、上側マイクロ流路18及び下側マイクロ流路24並びに多孔膜30以外の構成は省略している。 The microcavity is a space having a size on the order of micrometers, which is defined by the facing surfaces of the pair of cavity members (the upper cavity member 12 and the lower cavity member 14). Specifically, the microcavity includes a microchannel (upper microchannel 18 and lower microchannel 24) that is a groove having a width of less than 1 mm, and a circular shape, an elliptical shape, a rectangular shape having a maximum diameter portion of less than 1 mm. And a well 19 (see FIGS. 20 and 21) described later, which is a hole having a polygonal shape and penetrating the cavity member. The microcavities include an upper microcavity formed in the upper cavity member 12 and a lower microcavity formed in the lower cavity member 14. In the present embodiment, as shown in FIG. 3 schematically showing a cross section taken along the line BB of FIG. 1, both the upper microcavity and the lower microcavity have microchannels (the upper microchannel 18 and the lower microchannel). Road 24). Note that, in FIG. 3, configurations other than the upper cavity member 12, the lower cavity member 14, the upper microchannel 18, the lower microchannel 24, and the porous membrane 30 are omitted.
 ここで、下側キャビティ部材14の流入口26A及び流出口26Bは、上側キャビティ部材12の流入口20A及び流出口20Bと平面視で重ならない位置に設けられている。一方、下側キャビティ部材14の流路部26Cは、上側キャビティ部材12の流路部20Cと平面視で重なる位置に設けられている。 Here, the inflow port 26A and the outflow port 26B of the lower cavity member 14 are provided at positions that do not overlap with the inflow port 20A and the outflow port 20B of the upper cavity member 12 in a plan view. On the other hand, the flow passage portion 26C of the lower cavity member 14 is provided at a position overlapping the flow passage portion 20C of the upper cavity member 12 in a plan view.
 また、上側キャビティ部材12には、上側キャビティ部材12を厚さ方向に貫通し、下端が下側キャビティ部材14の流入口26A及び流出口26Bに連通する貫通孔28A、28Bがそれぞれ形成されている。さらに、キャビティユニット16(上側キャビティ部材12及び下側キャビティ部材14)の外周面には、後述するスペーサ46が配置される位置に凹部29がそれぞれ設けられている。 Further, the upper cavity member 12 is formed with through holes 28A and 28B which penetrate the upper cavity member 12 in the thickness direction and whose lower ends communicate with the inflow port 26A and the outflow port 26B of the lower cavity member 14, respectively. .. Further, on the outer peripheral surface of the cavity unit 16 (the upper cavity member 12 and the lower cavity member 14), recesses 29 are provided at positions where spacers 46 described later are arranged.
<多孔膜>
 上側キャビティ部材12及び下側キャビティ部材14の対向面12A、14A間には、多孔膜30が配置されている。多孔膜30は、一例として疎水性の有機溶媒に溶解可能な疎水性ポリマーから成る。なお、疎水性の有機溶媒は、25℃の水に対する溶解度が10(g/100g水)以下の液体である。
<Porous membrane>
A porous film 30 is arranged between the facing surfaces 12A and 14A of the upper cavity member 12 and the lower cavity member 14. The porous film 30 is made of, for example, a hydrophobic polymer that can be dissolved in a hydrophobic organic solvent. The hydrophobic organic solvent is a liquid having a solubility in water at 25° C. of 10 (g/100 g water) or less.
 疎水性ポリマーとしては、ポリスチレン、ポリアクリレート、ポリメタクリレート、ポリアクリルアミド、ポリメタクリルアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリヘキサフルオロプロペン、ポリビニルエーテル、ポリビニルカルバゾール、ポリ酢酸ビニル、ポリテトラフルオロエチレン、ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリ乳酸、ポリ-3-ヒドロキシブチレート等)、ポリラクトン(例えば、ポリカプロラクトン等)、ポリアミド又はポリイミド(例えば、ナイロン、ポリアミド酸等)、ポリウレタン、ポリウレア、ポリブタジエン、ポリカーボネート、ポリアロマティックス、ポリスルホン、ポリエーテルスルホン、ポリシロキサン誘導体、セルロースアシレート(例えば、トリアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート)などのポリマーが挙げられる。また、疎水性の有機溶媒に溶解可能な任意のブロックコポリマーを用いることができる。本開示で用いることができるブロックコポリマーの具体例としては、スチレン-ブタジエンブロックコポリマー、スチレン-イソプレンブロックコポリマー等の芳香族炭化水素-脂肪族炭化水素ブロックコポリマー、スチレン-アクリル酸ブロックコポリマー、スチレン-アクリル酸ナトリウムブロックコポリマー、スチレン-ポリエチレングリコールブロックコポリマー、フルオレン-メタクリル酸メチルブロックコポリマー等の芳香族炭化水素-脂肪族極性化合物ブロックコポリマー、スチレン-ビニルピリジン等の芳香族炭化水素-芳香族極性化合物ブロックコポリマー等が挙げられる。 As the hydrophobic polymer, polystyrene, polyacrylate, polymethacrylate, polyacrylamide, polymethacrylamide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyhexafluoropropene, polyvinyl ether, polyvinylcarbazole, polyvinyl acetate, polytetrachloride. Fluoroethylene, polyester (eg polyethylene terephthalate, polyethylene naphthalate, polyethylene succinate, polybutylene succinate, polylactic acid, poly-3-hydroxybutyrate etc.), polylactone (eg polycaprolactone etc.), polyamide or polyimide (eg , Nylon, polyamic acid, etc.), polyurethane, polyurea, polybutadiene, polycarbonate, polyaromatics, polysulfone, polyether sulfone, polysiloxane derivative, cellulose acylate (eg, triacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate). Rate) and other polymers. Further, any block copolymer that can be dissolved in a hydrophobic organic solvent can be used. Specific examples of block copolymers that can be used in the present disclosure include styrene-butadiene block copolymers, styrene-isoprene block copolymers and other aromatic hydrocarbon-aliphatic hydrocarbon block copolymers, styrene-acrylic acid block copolymers, styrene-acrylic. Aromatic hydrocarbon-aliphatic polar compound block copolymer such as sodium acid acid block copolymer, styrene-polyethylene glycol block copolymer, fluorene-methyl methacrylate block copolymer, aromatic hydrocarbon-aromatic polar compound block copolymer such as styrene-vinylpyridine Etc.
 これらのポリマーは、溶剤への溶解性、光学的物性、電気的物性、膜強度、弾性等の観点から、必要に応じてホモポリマー、コポリマー、ポリマーブレンド又はポリマーアロイとしてよい。また、これらのポリマーは、1種単独で又は2種以上を混合して使用してよい。なお、多孔膜30の素材は疎水性ポリマーには限られず、細胞の接着性の観点等から種々の素材を選択することが可能である。 These polymers may be homopolymers, copolymers, polymer blends or polymer alloys, if necessary, from the viewpoints of solubility in solvents, optical properties, electrical properties, film strength, elasticity, etc. These polymers may be used alone or in combination of two or more. The material of the porous film 30 is not limited to the hydrophobic polymer, and various materials can be selected from the viewpoint of cell adhesiveness and the like.
 多孔膜30の上面30A及び下面30Bは、上側マイクロ流路18及び下側マイクロ流路24の流路部20C、26Cを覆い、上側マイクロ流路18と下側マイクロ流路24とを隔てている。 The upper surface 30A and the lower surface 30B of the porous film 30 cover the flow path portions 20C and 26C of the upper micro flow path 18 and the lower micro flow path 24, and separate the upper micro flow path 18 and the lower micro flow path 24 from each other. ..
 具体的には、多孔膜30の上面30Aが上側キャビティ部材12の凹部20とともに上側マイクロ流路18を画成しており、多孔膜30の下面30Bが下側キャビティ部材14の凹部26とともに下側マイクロ流路24を画成している。 Specifically, the upper surface 30A of the porous membrane 30 defines the upper microchannel 18 together with the concave portion 20 of the upper cavity member 12, and the lower surface 30B of the porous membrane 30 forms the lower side together with the concave portion 26 of the lower cavity member 14. A micro flow path 24 is defined.
 図4及び図5に示すように、多孔膜30には、厚さ方向に貫通する複数の膜内空間32が形成されており、多孔膜30の上面30A及び下面30Bの両面には膜内空間32の開口32Aがそれぞれ設けられている。また、図4に示すように、開口32Aは平面視で円形である。開口32Aどうしは互いに離間して設けられており、隣り合う開口32Aの間には平坦部34が延在している。なお、開口32Aは円形には限られず、多角形や楕円形であってもよい。 As shown in FIGS. 4 and 5, the porous film 30 is formed with a plurality of in-membrane spaces 32 penetrating in the thickness direction, and the upper surface 30A and the lower surface 30B of the porous film 30 have inner spaces on both sides thereof. 32 openings 32A are provided respectively. Further, as shown in FIG. 4, the opening 32A is circular in plan view. The openings 32A are provided apart from each other, and the flat portion 34 extends between the openings 32A adjacent to each other. The opening 32A is not limited to the circular shape, and may be a polygonal shape or an elliptical shape.
 複数の開口32Aは、図4に示すようにハニカム状に配置されている。ここで、ハニカム状の配置とは、任意の開口32A(膜の辺縁にある開口32Aを除く)の周囲に6個の開口32Aが等配され、その6個の開口32Aの中心が正六角形の頂点に位置し、その中心に位置する開口32Aの中心が当該正六角形の中心に相当するような配列をいう。なお、ここでいう「等配」とは、中心角60°で正確に配列されている必要は必ずしもなく、中心に位置する開口32Aに対して周囲の6個の開口32Aがほぼ等しい間隔で配列されていればよい。なお、「開口32Aの中心」とは、開口32Aの平面視における中心を意味する。 The plurality of openings 32A are arranged in a honeycomb shape as shown in FIG. Here, the honeycomb arrangement means that six openings 32A are equally arranged around an arbitrary opening 32A (excluding the openings 32A at the edge of the film), and the centers of the six openings 32A are regular hexagons. Is located at the apex of, and the center of the opening 32A located at the center corresponds to the center of the regular hexagon. The term "equal distribution" does not necessarily mean that the central angle is 60° and that the six surrounding openings 32A are arranged at substantially equal intervals with respect to the central opening 32A. It should have been done. The "center of the opening 32A" means the center of the opening 32A in plan view.
 図5に示すように、多孔膜30の膜内空間32は球体の上端及び下端を切り取った球台形状とされている。なお、ここでいう球体とは、真球であることを要さず、概ね球と認められる程度のゆがみは許容する。また、互いに隣接する膜内空間32どうしは、多孔膜30の内部において連通孔36によって連通した、横連通構造となっている。なお、横連通構造とは、隣接する膜内空間32が多孔膜30の内部で互いに連通する空間構造をいう。ここでいう「横」とは、多孔膜30の厚さ方向を縦とした場合、この縦の方向と直交する面方向をいう。多孔膜30では開口32Aがハニカム状に配列しているため、任意の膜内空間32は、その周囲に等配されている6個の膜内空間32の全てと連通している。 As shown in FIG. 5, the inner space 32 of the porous film 30 has a sphere shape in which the upper and lower ends of the sphere are cut off. Note that the sphere referred to here does not need to be a true sphere, and distortion that is generally recognized as a sphere is acceptable. Further, the intra-membrane spaces 32 adjacent to each other have a lateral communication structure in which the communication holes 36 communicate with each other inside the porous film 30. The lateral communication structure refers to a space structure in which adjacent membrane spaces 32 communicate with each other inside the porous membrane 30. The term "horizontal" as used herein means a plane direction orthogonal to the vertical direction when the thickness direction of the porous film 30 is vertical. Since the openings 32A are arranged in a honeycomb shape in the porous film 30, the arbitrary intra-membrane space 32 communicates with all of the six intra-membrane spaces 32 that are evenly arranged around it.
 なお、膜内空間32はバレル形状や円柱形状、又は多角柱形状等とされていてもよく、また、連通孔36は隣接する膜内空間32どうしを繋ぐ筒状の空隙とされていてもよい。 The intra-membrane space 32 may have a barrel shape, a columnar shape, a polygonal prism shape, or the like, and the communication hole 36 may have a cylindrical void that connects adjacent intra-membrane spaces 32. ..
 また、図6に示す別の例のように、多孔膜30の開口32Aは片面、たとえば多孔膜30の上面30Aにのみ(又は下面30Bにのみ)設けられることとしてもよい。このような、片面にのみ開口32Aが設けられている多孔膜30は、膜内空間32の中で細胞を培養する場合に適している。 Further, as in another example shown in FIG. 6, the opening 32A of the porous film 30 may be provided on one surface, for example, only the upper surface 30A of the porous film 30 (or only the lower surface 30B). Such a porous membrane 30 having the openings 32A provided on only one surface is suitable for culturing cells in the intramembrane space 32.
 なお、本実施形態の細胞培養デバイス10を細胞培養デバイス等として用いる場合、多孔膜30の上面30A及び下面30Bのうち少なくとも細胞が播種される領域が、フィブロネクチン、コラーゲン(例えば、I型コラーゲン、IV型コラーゲン、又はV型コラーゲン)、ラミニン、ビトロネクチン、ゼラチン、パールカン、ニドゲン、プロテオグリカン、オステオポンチン、テネイシン、ネフロネクチン、基底膜マトリックス及びポリリジンからなる群から選択される少なくとも1種によって被覆されていることが好ましい。多孔膜30を被覆することで、細胞の接着性を高めることが可能となる。 When the cell culture device 10 of the present embodiment is used as a cell culture device or the like, at least the region of the upper surface 30A and the lower surface 30B of the porous membrane 30 on which cells are seeded is fibronectin, collagen (eg, type I collagen, IV Type collagen, or type V collagen), laminin, vitronectin, gelatin, perlecan, nidogen, proteoglycan, osteopontin, tenascin, nephronectin, basement membrane matrix and polylysine, preferably at least one selected from the group consisting of .. By covering the porous film 30, it becomes possible to enhance the adhesiveness of cells.
 また、本実施形態の細胞培養デバイス10を臓器模擬装置等として用いる場合、多孔膜30の上面30A及び下面30Bのうち少なくとも一方に模擬対象の臓器を構成する細胞を播種した細胞層を設けることで、上側マイクロ流路18内及び下側マイクロ流路24内を模擬対象の臓器内に近い環境とすることが可能となる。 When the cell culture device 10 of the present embodiment is used as an organ simulating device or the like, by providing a cell layer seeded with cells constituting the organ to be simulated on at least one of the upper surface 30A and the lower surface 30B of the porous membrane 30. The inside of the upper micro-channel 18 and the inside of the lower micro-channel 24 can be made to have an environment close to that of the organ to be simulated.
 例えば、図7に示すように、多孔膜30の上面30Aに細胞層100を設けることができる。また、図8に示すように、多孔膜30の下面30Bに細胞層100を設けることもできる。 For example, as shown in FIG. 7, the cell layer 100 can be provided on the upper surface 30A of the porous membrane 30. Further, as shown in FIG. 8, the cell layer 100 may be provided on the lower surface 30B of the porous film 30.
 さらに、図9に示すように、多孔膜30の上面30A及び下面30Bの両方に細胞層100を設けることができる。上面30A及び下面30Bに設けられている細胞層100は、それぞれ同種の細胞を播種して形成してもよいし、また、それぞれ異種の細胞を播種して形成してもよい。この場合、各面の細胞層100を構成する細胞が、多孔膜30を通り抜けて互いにコンタミネーションが生ずるのを防ぐために、開口32Aの径は細胞の径より小さい2~5μmとすることが望ましく、この場合の膜厚は2~20μmが望ましい。 Further, as shown in FIG. 9, the cell layer 100 can be provided on both the upper surface 30A and the lower surface 30B of the porous film 30. The cell layers 100 provided on the upper surface 30A and the lower surface 30B may be formed by seeding cells of the same type, or may be formed by seeding cells of different types. In this case, in order to prevent the cells constituting the cell layer 100 on each surface from passing through the porous membrane 30 and causing contamination with each other, it is desirable that the diameter of the openings 32A be 2 to 5 μm, which is smaller than the diameter of the cells. In this case, the film thickness is preferably 2 to 20 μm.
 また、図10に示すように、多孔膜30の膜内空間32の中に細胞層100を設けることもできる。この場合、膜内空間32が一方の面のみに開口している多孔膜30が望ましい。この場合の膜厚は、20~200μmが望ましい。このように多孔膜30の膜内空間32の中に細胞層100を設ける場合、図6に示すような、片面にのみ開口32Aが設けられている多孔膜30を使用することとしてもよい。 Further, as shown in FIG. 10, the cell layer 100 can be provided in the inner space 32 of the porous membrane 30. In this case, the porous film 30 in which the intra-membrane space 32 is open only on one surface is desirable. In this case, the film thickness is preferably 20 to 200 μm. When the cell layer 100 is provided in the intra-membrane space 32 of the porous membrane 30 as described above, the porous membrane 30 having the opening 32A provided on only one surface as shown in FIG. 6 may be used.
 以上のように、多孔膜30の上面30A、下面30B及び膜内空間32のいずれに細胞層100を設けるかは、模擬対象の臓器を構成する細胞の特性に応じ、適宜に選択することができる。 As described above, which of the upper surface 30A, the lower surface 30B of the porous film 30 and the intramembrane space 32 is provided with the cell layer 100 can be appropriately selected according to the characteristics of the cells constituting the organ to be simulated. ..
 膜内空間32が形成された多孔膜30を作製する方法としては、例えば結露法がある。結露法とは、多孔膜30を構成する素材の表面を結露させ、水滴を鋳型として膜内空間32を形成する方法である。結露法は、他の方法と比較して、多孔膜30の膜厚を薄くすることができるとともに、空隙率や開口32Aの開口率を大きくすることが可能である。具体的には、結露法では0.5~10μmまでの膜厚が可能である。また、多孔膜30内に連通孔36を設けることが可能である。このため、本実施形態では、多孔膜30を結露法によって作製している。結露法の詳細は、例えば、特許第4945281号公報、特許第5422230号公報、特開2011-74140号公報、特許第5405374号公報に記載されており、その内容は本開示に包含される。ここで、開口率は、多孔膜30の面積に占める開口32Aの面積の率として定義することができる。なお、結露法以外の本多孔膜の形成手段としては、鋳型として結露由来の水滴ではなく、乳化により作成した微小油滴または微小水滴を用いる乳化法があり、その詳細は国際公開2017/104610に記載されており、その内容は本開示に包含される。 As a method for producing the porous film 30 in which the intra-membrane space 32 is formed, there is a condensation method, for example. The dew condensation method is a method in which the surface of the material forming the porous film 30 is condensed to form the film inner space 32 by using water drops as a template. The dew condensation method can reduce the film thickness of the porous film 30 and increase the porosity and the opening rate of the openings 32A as compared with other methods. Specifically, a film thickness of 0.5 to 10 μm is possible by the condensation method. Further, the communication hole 36 can be provided in the porous film 30. Therefore, in the present embodiment, the porous film 30 is manufactured by the dew condensation method. Details of the dew condensation method are described in, for example, Japanese Patent Nos. 4945281, 5422230, 2011-74140, and 5405374, the contents of which are included in the present disclosure. Here, the opening ratio can be defined as the ratio of the area of the openings 32A to the area of the porous film 30. As a means for forming the present porous membrane other than the dew condensation method, there is an emulsification method using a fine oil droplet or a fine water droplet created by emulsification as a template, instead of a water droplet derived from dew condensation, and details thereof are disclosed in International Publication 2017/104610. No. 6,096,242, the contents of which are included in the present disclosure.
 本実施形態では、開口32Aの平均開口径が1μm以上200μm以下である。ここで、開口32Aの平均開口径が1μm以上なので、膜内空間32の横連通構造を形成することが容易である。また、開口32Aの平均開口径が200μm以下なので、隣り合う開口32Aどうしが融合することなく、ハニカム状の配列を保つことが容易である。よって、開口32Aの好適な平均開口径は、1μm以上200μm以下である。なお、平均開口径とは、多孔膜30の表面における複数の開口32Aの直径の平均値をいう。この平均開口径は、例えば、顕微鏡下で多孔膜30の表面を観察して、相当数の開口32Aの直径を測定した値の平均値とすることができる。 In the present embodiment, the average opening diameter of the openings 32A is 1 μm or more and 200 μm or less. Here, since the average opening diameter of the openings 32A is 1 μm or more, it is easy to form the lateral communication structure of the intramembrane space 32. Further, since the average opening diameter of the openings 32A is 200 μm or less, it is easy to maintain the honeycomb-shaped arrangement without the adjacent openings 32A fusing. Therefore, a suitable average opening diameter of the openings 32A is 1 μm or more and 200 μm or less. The average opening diameter means the average value of the diameters of the plurality of openings 32A on the surface of the porous film 30. This average opening diameter can be, for example, the average value of the values obtained by observing the surface of the porous film 30 under a microscope and measuring the diameters of a considerable number of the openings 32A.
 本実施形態では、多孔膜30の空隙率が40%以上90%以下である。ここで、多孔膜30の空隙率が40%以上なので、膜内空間32の横連通構造を形成することが容易である。また、多孔膜30の空隙率が90%以下なので、多孔膜30としての形状を保つことが容易となり、強度も低下せずに破れにくくなる。よって、多孔膜30の好適な空隙率は、40%以上90%以下である。なお、空隙率とは、多孔膜30の体積に占める膜内空間32の体積の割合をいう。この空隙率は、例えば、顕微鏡下で多孔膜30の断面を観察して、観察された膜内空間32を、上下二方及び側面六方が円形に削ぎ落とされた球台形状と推定して求めた複数の膜内空間32の体積を、それらの膜内空間32が存在する多孔膜30の体積で除して得られたパーセンテージとして求めることができる。 In this embodiment, the porosity of the porous film 30 is 40% or more and 90% or less. Here, since the porosity of the porous film 30 is 40% or more, it is easy to form the lateral communication structure of the intra-membrane space 32. Further, since the porosity of the porous film 30 is 90% or less, it is easy to maintain the shape of the porous film 30, and the strength is not lowered and the porous film 30 is not easily broken. Therefore, the preferable porosity of the porous film 30 is 40% or more and 90% or less. The porosity refers to the ratio of the volume of the intra-membrane space 32 to the volume of the porous membrane 30. The porosity is obtained by, for example, observing a cross section of the porous film 30 under a microscope and estimating the observed intra-membrane space 32 as a spherical trapezoidal shape in which two upper and lower sides and six side faces are cut off in a circular shape. The volume of the plurality of in-membrane spaces 32 can be calculated as a percentage obtained by dividing the volume of the porous membrane 30 in which the in-membrane spaces 32 exist.
 本実施形態では、多孔膜30の膜厚は0.5μm以上100μm以下である。ここで、この膜厚の数値は、開口32Aの開口径と、膜内空間32の高さとのアスペクト比(すなわち、開口32Aの開口径を、膜内空間32の高さで除した値)が2を超えることが現実的には不可能なことから導出される数値である。なお、単層の多孔膜30を使用する場合、膜厚は0.5~10μmが望ましい。また、複数の多孔膜30を積層して用いる場合、多孔膜30の総膜厚は10~200μmが望ましい。 In the present embodiment, the film thickness of the porous film 30 is 0.5 μm or more and 100 μm or less. Here, the numerical value of the film thickness is such that the aspect ratio between the opening diameter of the opening 32A and the height of the intra-membrane space 32 (that is, the value obtained by dividing the opening diameter of the opening 32A by the height of the intra-membrane space 32). It is a numerical value derived from the fact that exceeding 2 is practically impossible. When the single layer porous film 30 is used, the film thickness is preferably 0.5 to 10 μm. When a plurality of porous films 30 are laminated and used, the total film thickness of the porous films 30 is preferably 10 to 200 μm.
 本実施形態では、多孔膜30が上記したような数値範囲を有することで、多孔膜30の20%伸張に要する単位幅あたりの引張力を0.1N/m以上20N/m以下とすることができる。この引張力の数値範囲は、上側マイクロ流路18及び下側マイクロ流路24を流れる液体によって発生する圧力の差で実現可能な値である。 In the present embodiment, the tensile force per unit width required for 20% elongation of the porous film 30 is 0.1 N/m or more and 20 N/m or less because the porous film 30 has the numerical range as described above. it can. The numerical range of the tensile force is a value that can be realized by the difference in pressure generated by the liquid flowing through the upper microchannel 18 and the lower microchannel 24.
<保持部材>
 図1及び図2に示すように、細胞培養デバイス10は、キャビティユニット16を厚さ方向に圧縮した状態で保持する保持部材としての一対の保持プレート38を有している。一対の保持プレート38は、キャビティユニット16の厚さ方向における両端、すなわち上側キャビティ部材12の上側及び下側キャビティ部材14の下側にキャビティユニット16と別体に設けられており、上側キャビティ部材12の上面全体及び下側キャビティ部材14の下面全体を覆う大きさとされている。
<Holding member>
As shown in FIGS. 1 and 2, the cell culture device 10 has a pair of holding plates 38 as holding members for holding the cavity unit 16 in a compressed state in the thickness direction. The pair of holding plates 38 is provided separately from the cavity unit 16 at both ends in the thickness direction of the cavity unit 16, that is, above the upper cavity member 12 and below the lower cavity member 14. Is sized to cover the entire upper surface and the entire lower surface of the lower cavity member 14.
 図2に示すように、一対の保持プレート38の互いに対応する位置には、厚さ方向に貫通する複数(本実施形態では8つ)のボルト孔40がそれぞれ形成されている。また、上側キャビティ部材12の上側に設けられている保持プレート38には、上側キャビティ部材12の貫通孔22A、22B、28A、28Bにそれぞれ連通する貫通孔42A、42B、44A、44Bがそれぞれ形成されている。 As shown in FIG. 2, a plurality (eight in this embodiment) of bolt holes 40 that penetrate in the thickness direction are formed at positions corresponding to each other in the pair of holding plates 38. Further, the holding plate 38 provided on the upper side of the upper cavity member 12 is formed with through holes 42A, 42B, 44A, 44B which communicate with the through holes 22A, 22B, 28A, 28B of the upper cavity member 12, respectively. ing.
 なお、図1に示すように、貫通孔42A、44Aには流入チューブ62A、64Aがそれぞれ接続され、また、貫通孔42B、44Bには流出チューブ62B、64Bがそれぞれ接続されている。流入チューブ62A、64Aを通して上側マイクロ流路18及び下側マイクロ流路24に溶液や細胞懸濁液等が流入し、上側マイクロ流路18及び下側マイクロ流路24から流出チューブ62B、64Bを通して溶液や細胞懸濁液等が流出する。 As shown in FIG. 1, inflow tubes 62A and 64A are connected to the through holes 42A and 44A, respectively, and outflow tubes 62B and 64B are connected to the through holes 42B and 44B, respectively. A solution, a cell suspension or the like flows into the upper microchannel 18 and the lower microchannel 24 through the inflow tubes 62A and 64A, and the solution flows from the upper microchannel 18 and the lower microchannel 24 through the outflow tubes 62B and 64B. And cell suspension etc. flow out.
 なお、下側マイクロ流路24に流入する流入チューブ64Aの上流には、膜伸張機構としての加速機構70が接続されている。同様に、上側マイクロ流路18に流入する流入チューブ62Aの上流には、同じく膜伸張機構としての加速機構75が接続されている。すなわち、膜伸張機構としての加速機構70、75は、それぞれ流入チューブ64A、62Aを介してそれぞれ下側キャビティ部材14及び上側キャビティ部材12に連結されている。これらの加速機構70、75は、例えば、下側マイクロ流路24及び上側マイクロ流路18を流れる液体の流速を変化させることのできる循環ポンプや、下側マイクロ流路24及び上側マイクロ流路18に充填した液体を上流側から加圧する圧力調整機などで構成することができる。 An accelerating mechanism 70 as a membrane stretching mechanism is connected upstream of the inflow tube 64A flowing into the lower microchannel 24. Similarly, an accelerating mechanism 75, which is also a membrane stretching mechanism, is connected upstream of the inflow tube 62A that flows into the upper microchannel 18. That is, the acceleration mechanisms 70 and 75 as the film stretching mechanism are connected to the lower cavity member 14 and the upper cavity member 12 via the inflow tubes 64A and 62A, respectively. These accelerating mechanisms 70 and 75 are, for example, a circulation pump capable of changing the flow velocity of the liquid flowing through the lower microchannel 24 and the upper microchannel 18, and the lower microchannel 24 and the upper microchannel 18. It can be configured by a pressure adjuster or the like that pressurizes the liquid filled in from the upstream side.
 なお、膜伸張機構としては、加速機構70の他に、例えば、流出チューブ62B、64Bの少なくとも一方を閉塞した状態で、対応する流入チューブ62A、64Aの少なくとも一方の上流から気体又は液体を注入し、圧力を加える構成とすることもできる。さらに、流出チューブ62B、64Bの少なくとも一方の下流側に圧力抵抗調整機構を接続し、流出チューブ62B、64Bの当該少なくとも一方のチューブの断面積を拡大又は縮小するように制御することで、同じ送液量でもマイクロ流路内部の圧力を調整できるようにした構成とすることもできる。 In addition to the accelerating mechanism 70, for example, as the film stretching mechanism, gas or liquid is injected from the upstream side of at least one of the corresponding inflow tubes 62A and 64A in a state where at least one of the outflow tubes 62B and 64B is closed. Alternatively, a pressure may be applied. Further, a pressure resistance adjusting mechanism is connected to the downstream side of at least one of the outflow tubes 62B and 64B, and control is performed so that the cross-sectional area of at least one of the outflow tubes 62B and 64B is expanded or reduced, thereby achieving the same transmission. It is also possible to adopt a configuration in which the pressure inside the microchannel can be adjusted even with the liquid amount.
 一対の保持プレート38間におけるキャビティユニット16の凹部29の外側には、保持プレート38の間隔を規定する複数(本実施形態では8つ)のスペーサ46がそれぞれ設けられている。スペーサ46は、内径がボルト孔40の内径と略同じ大きさとされた円筒形状の部材であり、ボルト孔40に対応する位置にそれぞれ配置されている。 A plurality of (eight in this embodiment) spacers 46 that define the spacing between the holding plates 38 are provided outside the recess 29 of the cavity unit 16 between the pair of holding plates 38. The spacers 46 are cylindrical members each having an inner diameter substantially the same as the inner diameter of the bolt hole 40, and are arranged at positions corresponding to the bolt hole 40.
 一対の保持プレート38は、図11に示すように、ボルト孔40及びスペーサ46に挿通されてナット48で固定された複数のボルト50によって互いに接合される。このとき、上側キャビティ部材12及び下側キャビティ部材14は、間に多孔膜30を挟んだ状態で一対の保持プレート38によって圧縮されて保持される。 As shown in FIG. 11, the pair of holding plates 38 are joined to each other by a plurality of bolts 50 that are inserted into the bolt holes 40 and the spacers 46 and fixed with the nuts 48. At this time, the upper cavity member 12 and the lower cavity member 14 are compressed and held by the pair of holding plates 38 with the porous film 30 sandwiched therebetween.
 図12~図14を参照して、細胞に与えられるメカニカルストレスについて説明する。なお、図12~図14は、図1のA-A線断面を、上側キャビティ部材12及び下側キャビティ部材14、上側マイクロ流路18及び下側マイクロ流路24並びに多孔膜30以外の構成は省略して示している。 The mechanical stress applied to cells will be described with reference to FIGS. 12 to 14. 12 to 14 show cross-sections taken along the line AA of FIG. 1 except for the upper cavity member 12, the lower cavity member 14, the upper microchannel 18, the lower microchannel 24, and the porous membrane 30. It is omitted.
 上側マイクロ流路18と下側マイクロ流路24とを流れる液体により、図12に示すように、水平矢印方向へ剪断応力が加わる。また、上側マイクロ流路18及び下側マイクロ流路24を流れる液体により、厚さ方向への圧力が生じる。この圧力は、液体の粘度、流速及び流路形状によって決定される。図12では、上側マイクロ流路18と下側マイクロ流路24とで圧力が等しく、圧力差が生じないので、多孔膜30は伸張しない。 The liquid flowing through the upper microchannel 18 and the lower microchannel 24 applies shear stress in the direction of the horizontal arrow as shown in FIG. In addition, pressure in the thickness direction is generated by the liquid flowing through the upper microchannel 18 and the lower microchannel 24. This pressure is determined by the viscosity of the liquid, the flow velocity and the shape of the flow channel. In FIG. 12, the upper microchannel 18 and the lower microchannel 24 have the same pressure and no pressure difference occurs, so that the porous membrane 30 does not expand.
 ここで、下側マイクロ流路24を流れる液体の流速を、加速機構70によって上側マイクロ流路18を流れる液体の流速より大きくなるように制御すると、流速の変化により、厚さ方向への圧力も変化する。ここで、下側マイクロ流路24内の圧力が上側マイクロ流路18内の圧力よりも大きくなると、上下のマイクロ流路間で圧力差が生じる。この場合、図13に示すように、多孔膜30に下側マイクロ流路24からの、厚さ方向への圧力が加わり、多孔膜30は厚さ方向に沿って上方へ伸張する。また、水平矢印方向への剪断応力は、引き続き加わっている。 Here, if the flow velocity of the liquid flowing through the lower micro flow channel 24 is controlled to be higher than the flow velocity of the liquid flowing through the upper micro flow channel 18 by the acceleration mechanism 70, the pressure in the thickness direction also changes due to the change in the flow velocity. Change. Here, when the pressure in the lower microchannel 24 becomes larger than the pressure in the upper microchannel 18, a pressure difference is generated between the upper and lower microchannels. In this case, as shown in FIG. 13, pressure in the thickness direction is applied to the porous membrane 30 from the lower microchannel 24, and the porous membrane 30 expands upward along the thickness direction. Also, the shear stress in the direction of the horizontal arrow continues to be applied.
 一方、上側マイクロ流路18を流れる液体の流速を、加速機構75によって下側マイクロ流路24を流れる液体の流速より大きくなるように制御して、上側マイクロ流路18内の圧力が下側マイクロ流路24内の圧力よりも大きくなると、図14に示すように、多孔膜30に上側マイクロ流路18からの、厚さ方向への圧力が加わり、多孔膜30は厚さ方向に沿って下方へ伸張する。また、水平矢印方向への剪断応力は、引き続き加わっている。 On the other hand, the flow velocity of the liquid flowing in the upper micro flow channel 18 is controlled by the acceleration mechanism 75 to be higher than the flow velocity of the liquid flowing in the lower micro flow channel 24, so that the pressure in the upper micro flow channel 18 becomes lower. When the pressure becomes higher than the pressure in the flow channel 24, as shown in FIG. 14, the pressure in the thickness direction from the upper micro flow channel 18 is applied to the porous film 30, and the porous film 30 moves downward in the thickness direction. Extend to. Also, the shear stress in the direction of the horizontal arrow continues to be applied.
 このように、本実施形態では、多孔膜30の材質及び諸元に基づく伸張特性によって、上側マイクロ流路18と下側マイクロ流路24とを流れる液体による圧力の差によって生ずる厚さ方向への圧力が加わった方への多孔膜30の厚さ方向に沿った伸張が可能となっている。 As described above, in the present embodiment, due to the extension characteristics based on the material and specifications of the porous film 30, the thickness direction in the thickness direction caused by the pressure difference due to the liquid flowing through the upper microchannel 18 and the lower microchannel 24 is increased. The porous film 30 can be expanded in the thickness direction toward the side to which pressure is applied.
 なお、この加速機構70、75による流速変化を断続的に行うことで、パルス状のメカニカルストレスを多孔膜30に生じさせることもできる。 By intermittently changing the flow velocity by the acceleration mechanisms 70 and 75, it is possible to generate a pulse-like mechanical stress in the porous film 30.
 また、上側マイクロ流路18及び下側マイクロ流路24のいずれか一方又は両方に液体を加圧する装置を接続することで、上側マイクロ流路18及び下側マイクロ流路24のいずれか一方又は両方において液体を加圧して多孔膜30を伸張させることもできる。 Further, by connecting a device for pressurizing a liquid to either one or both of the upper microchannel 18 and the lower microchannel 24, one or both of the upper microchannel 18 and the lower microchannel 24 are connected. It is also possible to pressurize the liquid to expand the porous film 30.
 なお、多孔膜30には、図7~図10に例示したように適宜の位置に細胞層100が形成されている。上記したような多孔膜30に加えられる厚さ方向への圧力により、多孔膜30が伸張し、垂直方向の力が細胞層100に加わる。また、流体による剪断応力により、水平方向への力も細胞層100に加わる。細胞層100に生体内を模したメカニカルストレスが与えられ、細胞の配向制御及び成熟化を促進することが可能となる。この厚さ方向への圧力は、小さい速度の流速でも生じ得るものであり、本開示の細胞培養デバイス10における多孔膜30はこの程度の厚さ方向への圧力でも20%の伸張が可能である。例えば、細胞として腸管上皮細胞を多孔膜30に播種した場合、多孔膜30の伸張及び収縮を繰り返すことで腸管の蠕動運動をシミュレートすることができ、陰窩のような腸管上皮構造の形成を促進することができるまた、細胞として心筋細胞を多孔膜30に播種した場合、多孔膜30へのメカニカルストレスにより、心筋細胞に自律的な拍動を促進することも可能である。 The porous membrane 30 has a cell layer 100 formed at an appropriate position as illustrated in FIGS. 7 to 10. The pressure in the thickness direction applied to the porous membrane 30 as described above causes the porous membrane 30 to expand, and a vertical force is applied to the cell layer 100. Further, due to the shear stress of the fluid, a horizontal force is also applied to the cell layer 100. The cell layer 100 is given a mechanical stress simulating the inside of a living body, and it becomes possible to promote orientation control and maturation of cells. This pressure in the thickness direction can occur even at a low flow velocity, and the porous membrane 30 in the cell culture device 10 of the present disclosure can be expanded by 20% even with such a pressure in the thickness direction. .. For example, when intestinal epithelial cells are seeded on the porous membrane 30 as cells, it is possible to simulate the peristaltic movement of the intestinal tract by repeating expansion and contraction of the porous membrane 30, thereby forming an intestinal epithelial structure such as a crypt. Further, when cardiomyocytes are seeded on the porous membrane 30 as cells, mechanical stress on the porous membrane 30 can promote autonomous pulsation of the cardiomyocytes.
[第2実施形態]
 図15及び図16に示すように、本実施形態の細胞培養デバイス10は、厚さ方向に積層された一対のキャビティ部材としての、互いに対向する上側キャビティ部材12と下側キャビティ部材14とで構成されたキャビティユニット16を有している。なお、上側キャビティ部材12及び下側キャビティ部材14の材質及び物性については第1実施形態と同様である。
[Second Embodiment]
As shown in FIGS. 15 and 16, the cell culture device 10 of the present embodiment includes an upper cavity member 12 and a lower cavity member 14 facing each other as a pair of cavity members stacked in the thickness direction. The cavity unit 16 is formed. The material and physical properties of the upper cavity member 12 and the lower cavity member 14 are the same as in the first embodiment.
 図16に示すように、下側キャビティ部材14の上面、すなわち上側キャビティ部材12との対向面14Aには、マイクロキャビティの一方としての下側マイクロ流路24を画成する凹部26が形成されている。凹部26は、流入口26A、流出口26B、及び流入口26Aと流出口26Bとを連通する流路部26Cを有している。 As shown in FIG. 16, on the upper surface of the lower cavity member 14, that is, the surface 14A facing the upper cavity member 12, a recess 26 that defines the lower microchannel 24 as one of the microcavities is formed. There is. The concave portion 26 has an inflow port 26A, an outflow port 26B, and a flow path portion 26C that connects the inflow port 26A and the outflow port 26B.
 上側キャビティ部材12には、上面から、下側キャビティ部材14との対向面12Aまでを貫通するようにして、マイクロキャビティの他方としてのウェル19が2つ形成されている。なお、ウェル19の個数は2つに限られず、1つでも、あるいは3つ以上でもよい。ウェル19は、上側の開口部19A及び下側の開口部19B以外に流入口及び流出口を有さない閉鎖空間である。 The upper cavity member 12 is formed with two wells 19 as the other of the microcavities so as to penetrate from the upper surface to the surface 12A facing the lower cavity member 14. The number of wells 19 is not limited to two, and may be one or three or more. The well 19 is a closed space having no inflow port and outflow port other than the upper opening 19A and the lower opening 19B.
 本実施形態におけるマイクロキャビティとして、上側キャビティ部材12には上側マイクロキャビティとしてウェル19が形成され、下側キャビティ部材14には下側マイクロキャビティとして下側マイクロ流路24が形成される。ウェル19及びマイクロ流路については第1実施形態で説明したとおりである。本実施形態では、図15のD-D線断面を模式的に示す図17に示すように、上側マイクロキャビティがウェル19で、下側マイクロキャビティが下側マイクロ流路24である。上側キャビティ部材12のウェル19はいずれも、下側キャビティ部材14の流路部26Cと平面視で重なる位置に設けられている。なお、図17では、上側キャビティ部材12及び下側キャビティ部材14、上側マイクロ流路18及び下側マイクロ流路24並びに多孔膜30以外の構成は省略している。 As the microcavity in this embodiment, the well 19 is formed as the upper microcavity in the upper cavity member 12, and the lower microchannel 24 is formed in the lower cavity member 14 as the lower microcavity. The well 19 and the micro flow channel are as described in the first embodiment. In the present embodiment, the upper microcavity is the well 19 and the lower microcavity is the lower microchannel 24, as shown in FIG. 17 that schematically shows a cross section taken along line DD of FIG. All the wells 19 of the upper cavity member 12 are provided at positions where they overlap the flow passage portion 26C of the lower cavity member 14 in a plan view. In FIG. 17, the components other than the upper cavity member 12, the lower cavity member 14, the upper microchannel 18, the lower microchannel 24, and the porous membrane 30 are omitted.
 なお、上側キャビティ部材12と下側キャビティ部材14との間に配置されている多孔膜30については、第1実施形態と同様である。ウェル19の下端は、この多孔膜30によって画成されている。一方、ウェル19の上端は、上方へ開放している。このウェル19の上端から、細胞を播種したり、溶液及び試薬を添加することができる。 The porous membrane 30 arranged between the upper cavity member 12 and the lower cavity member 14 is the same as in the first embodiment. The lower end of the well 19 is defined by the porous film 30. On the other hand, the upper end of the well 19 is open upward. From the upper end of the well 19, cells can be seeded and solutions and reagents can be added.
 図15のD-D線断面を模式的に示す図18に示すように、多孔膜30の上面30Aに細胞層100を形成し、下側マイクロ流路24とウェル19の中途部分まで溶液200で満たすことで、ウェル19の中で細胞層100を培養しつつ、ウェル19の上端から適宜溶液及び試薬を添加することができる。さらに、図19に示すように、細胞層100に電極300を装着することで、細胞層100に電気刺激を与えたり、また、細胞層100で生じた電位を測定したりすることができる。これにより、例えば心筋細胞を多孔膜30に播種して心筋細胞の電気的動態をシミュレートすることができる。なお、電極の代わりに各種センサ(例えば、温度センサ、圧力センサ、化学センサ等)を装着して、温度や圧力あるいは様々な化学物質等の測定を行うこともできる。 As shown in FIG. 18, which schematically shows a cross section taken along the line DD of FIG. 15, the cell layer 100 is formed on the upper surface 30A of the porous membrane 30, and the solution 200 is formed up to the middle portion of the lower microchannel 24 and the well 19. By filling, the solution and the reagent can be appropriately added from the upper end of the well 19 while culturing the cell layer 100 in the well 19. Further, as shown in FIG. 19, by attaching the electrode 300 to the cell layer 100, it is possible to apply an electrical stimulation to the cell layer 100 and measure the potential generated in the cell layer 100. Thereby, for example, the cardiomyocytes can be seeded on the porous membrane 30 to simulate the electrical dynamics of the cardiomyocytes. Note that various sensors (for example, a temperature sensor, a pressure sensor, a chemical sensor, etc.) may be attached instead of the electrodes to measure the temperature and pressure or various chemical substances.
 保持部材についても、第1実施形態とほぼ同様である。ただし、保持部材によりキャビティユニット16が保持された状態の図15に示すように、貫通孔44Aには流入チューブ64Aが接続され、また、貫通孔44Bには流出チューブ64Bが接続されている。流入チューブ64Aを通して下側マイクロ流路24に溶液や細胞懸濁液等が流入し、下側マイクロ流路24から流出チューブ64Bを通して溶液や細胞懸濁液等が流出する。また、上側の保持プレート38のほぼ中央には、開口部19Aに対応する貫通孔45が2個設けられている。 The holding member is almost the same as in the first embodiment. However, as shown in FIG. 15 in a state where the cavity unit 16 is held by the holding member, the inflow tube 64A is connected to the through hole 44A, and the outflow tube 64B is connected to the through hole 44B. A solution, a cell suspension or the like flows into the lower micro flow channel 24 through the inflow tube 64A, and a solution, a cell suspension or the like flows out from the lower micro flow channel 24 through the outflow tube 64B. In addition, two through holes 45 corresponding to the opening 19A are provided substantially in the center of the upper holding plate 38.
 なお、下側マイクロ流路24に流入する流入チューブ64Aの上流には、膜伸張機構としての加速機構70が接続されている。すなわち、膜伸張機構としての加速機構70は、流入チューブ64Aを介してそれぞれ下側キャビティ部材14に連結されている。この加速機構70については第1実施形態と同様である。 An accelerating mechanism 70 as a membrane stretching mechanism is connected upstream of the inflow tube 64A flowing into the lower microchannel 24. That is, the acceleration mechanism 70 as the film stretching mechanism is connected to the lower cavity member 14 via the inflow tube 64A. The acceleration mechanism 70 is the same as in the first embodiment.
 この加速機構70を用いることで、下側マイクロ流路24から多孔膜30を介して細胞層100に剪断応力を与えることができるのも第1実施形態と同様である。図20及び図21は、図15のE-E線断面を、上側キャビティ部材12及び下側キャビティ部材14、ウェル19及び下側マイクロ流路24並びに多孔膜30以外の構成は省略して示している。 By using this acceleration mechanism 70, shear stress can be applied to the cell layer 100 from the lower microchannel 24 through the porous membrane 30 as in the first embodiment. 20 and 21 show a cross section taken along the line EE of FIG. 15, omitting configurations other than the upper cavity member 12 and the lower cavity member 14, the well 19, the lower microchannel 24, and the porous membrane 30. There is.
 図20は、多孔膜30が伸張するほどの厚さ方向への圧力は加わってない程度に、下側マイクロ流路24を流れる液体の流速が微小である状態を示す。ここで、下側マイクロ流路24を流れる液体の流速を、加速機構70によって増大させると、図21に示すように、多孔膜30に下側マイクロ流路24からの、厚さ方向への圧力が加わり、多孔膜30は厚さ方向に沿って下方へ伸張する。なお、ここで言及する液体の流速は、多孔膜の伸張特性及び面積、並びに液体の粘度等によって定まるものである。 FIG. 20 shows a state in which the flow velocity of the liquid flowing through the lower microchannel 24 is so small that the pressure in the thickness direction is not applied to the extent that the porous film 30 extends. Here, when the flow velocity of the liquid flowing through the lower microchannel 24 is increased by the acceleration mechanism 70, the pressure in the thickness direction from the lower microchannel 24 is applied to the porous membrane 30 as shown in FIG. Is added, the porous film 30 extends downward along the thickness direction. The flow velocity of the liquid referred to here is determined by the elongation property and area of the porous membrane, the viscosity of the liquid, and the like.
 このように、本実施形態でも、多孔膜30の材質及び諸元に基づく伸張特性によって、下側マイクロ流路24とを流れる液体の流速の変化によって生ずる厚さ方向への圧力が加わった方への多孔膜30の厚さ方向に沿った伸張が可能となっている。 As described above, also in the present embodiment, due to the extension characteristics based on the material and specifications of the porous film 30, the pressure in the thickness direction generated by the change in the flow velocity of the liquid flowing through the lower microchannel 24 is applied. The porous film 30 can be expanded along the thickness direction.
 なお、この加速機構70による流速変化を断続的に行うことで、パルス状のメカニカルストレスを多孔膜30に生じさせることもできる。 By intermittently changing the flow velocity by the acceleration mechanism 70, pulsed mechanical stress can be generated in the porous film 30.
 また、下側マイクロ流路24に液体を加圧する装置を接続することで、下側マイクロ流路24において液体を加圧して多孔膜30を伸張させることもできる。 Further, by connecting a device that pressurizes the liquid to the lower microchannel 24, it is possible to pressurize the liquid in the lower microchannel 24 and expand the porous membrane 30.
[第3実施形態]
 図22及び図23に示すように、本実施形態の細胞培養デバイス10は、厚さ方向に積層された一対のキャビティ部材としての、互いに対向する上側キャビティ部材12と下側キャビティ部材14とで構成されたキャビティユニット16を有している。なお、上側キャビティ部材12及び下側キャビティ部材14の材質、物性及び構造については第1実施形態と同様である。
[Third Embodiment]
As shown in FIGS. 22 and 23, the cell culture device 10 of the present embodiment is composed of an upper cavity member 12 and a lower cavity member 14 facing each other as a pair of cavity members stacked in the thickness direction. The cavity unit 16 is formed. The materials, physical properties, and structures of the upper cavity member 12 and the lower cavity member 14 are the same as in the first embodiment.
 また、上側キャビティ部材12と下側キャビティ部材14との間に配置されている多孔膜30についても、第1実施形態と同様である。 Further, the porous membrane 30 arranged between the upper cavity member 12 and the lower cavity member 14 is also the same as in the first embodiment.
 さらに、保持部材についても、第1実施形態とほぼ同様であるが、一対の保持プレート38のうち、下側の保持プレート38のほぼ中心に、長方形の接触開口39が形成されている点で相違する。この接触開口39には、同形状の接触部材80が嵌入する。嵌入した接触部材80の上面は、可撓性を有する下側キャビティ部材14において下側マイクロ流路24の流路部26Cが形成されている側の反対側である下側キャビティ部材14の下面と接触した状態で固着される。接触部材80の下面には、図示しない動力源で上下動可能な可動部材85が固定されている。この可動部材85の上下動に伴い、接触部材80も上下動し、さらにそれに伴い下側キャビティ部材14も変形を被る。すなわち、接触部材80及び可動部材85は、膜伸張機構として機能する。換言すると、膜伸張機構としての接触部材80は、下側キャビティ部材14と連結されている。 Further, the holding member is almost the same as that of the first embodiment, but is different in that a rectangular contact opening 39 is formed substantially at the center of the lower holding plate 38 of the pair of holding plates 38. To do. A contact member 80 having the same shape is fitted in the contact opening 39. The upper surface of the fitted contact member 80 is the lower surface of the lower cavity member 14 which is the opposite side of the flexible lower cavity member 14 to the side where the flow path portion 26C of the lower micro flow path 24 is formed. It is fixed in contact. A movable member 85 that can move up and down by a power source (not shown) is fixed to the lower surface of the contact member 80. As the movable member 85 moves up and down, the contact member 80 also moves up and down, and the lower cavity member 14 is also deformed accordingly. That is, the contact member 80 and the movable member 85 function as a film stretching mechanism. In other words, the contact member 80 as the film stretching mechanism is connected to the lower cavity member 14.
 なお、図22に示すように、貫通孔42A、44Aには流入チューブ62A、64Aがそれぞれ接続され、また、貫通孔42B、44Bには流出チューブ62B、64Bがそれぞれ接続されている。流入チューブ62A、64Aを通して上側マイクロ流路18及び下側マイクロ流路24に溶液や細胞懸濁液等が流入し、上側マイクロ流路18及び下側マイクロ流路24から流出チューブ62B、64Bを通して溶液や細胞懸濁液等が流出する。 Note that, as shown in FIG. 22, inflow tubes 62A and 64A are connected to the through holes 42A and 44A, respectively, and outflow tubes 62B and 64B are connected to the through holes 42B and 44B, respectively. A solution, a cell suspension or the like flows into the upper microchannel 18 and the lower microchannel 24 through the inflow tubes 62A and 64A, and the solution flows from the upper microchannel 18 and the lower microchannel 24 through the outflow tubes 62B and 64B. And cell suspension etc. flow out.
 本実施形態では、膜伸張機構として接触部材80及び可動部材85が設けられており、この膜伸張機構によって、多孔膜30の伸張が生ずる。図24~図26は、図22のF-F線断面を、上側キャビティ部材12及び下側キャビティ部材14、上側マイクロ流路18及び下側マイクロ流路24、多孔膜30並びに接触部材80及び可動部材85以外の構成は省略して示している。 In the present embodiment, the contact member 80 and the movable member 85 are provided as the membrane stretching mechanism, and the membrane stretching mechanism causes the porous membrane 30 to stretch. 24 to 26 are sectional views taken along the line FF of FIG. 22, showing the upper cavity member 12 and the lower cavity member 14, the upper microchannel 18 and the lower microchannel 24, the porous membrane 30, the contact member 80 and the movable member. The configurations other than the member 85 are omitted.
 図24に示すように、可動部材85が作動していない状態では、下側キャビティ部材14には変形は生じず、多孔膜30の伸張も生じない。 As shown in FIG. 24, when the movable member 85 is not operating, the lower cavity member 14 is not deformed and the porous membrane 30 is not expanded.
 ここで、図25に示すように、可動部材85が作動して多孔膜30の厚さ方向に沿って上方へ移動すると、同時に接触部材80も上方へ移動する。それに伴い、接触部材80が、下側キャビティ部材14を上方へ押圧し、よって下側キャビティ部材14は上方への変形を被る。この変形が、下側マイクロ流路24内の溶液を介して多孔膜30への押圧力として加わることで、多孔膜30は上方へ伸張する。 Here, as shown in FIG. 25, when the movable member 85 operates and moves upward along the thickness direction of the porous membrane 30, the contact member 80 also moves upward at the same time. Along with this, the contact member 80 presses the lower cavity member 14 upward, and thus the lower cavity member 14 undergoes upward deformation. This deformation is applied as a pressing force to the porous membrane 30 via the solution in the lower microchannel 24, so that the porous membrane 30 extends upward.
 一方、図26に示すように、可動部材85が作動して多孔膜30の厚さ方向に沿って下方へ移動すると、同時に接触部材80も下方へ移動する。それに伴い、接触部材80が、下側キャビティ部材14を下方へ牽引し、よって下側キャビティ部材14は下方への変形を被る。この変形が、下側マイクロ流路24内の溶液を介して多孔膜30への牽引力として加わることで、多孔膜30は下方へ伸張する。 On the other hand, as shown in FIG. 26, when the movable member 85 operates and moves downward along the thickness direction of the porous film 30, the contact member 80 also moves downward. Along with that, the contact member 80 pulls the lower cavity member 14 downward, so that the lower cavity member 14 undergoes downward deformation. This deformation is applied as a traction force to the porous membrane 30 via the solution in the lower microchannel 24, so that the porous membrane 30 extends downward.
 なお、図27~図29に示す本実施形態の変形例のように、膜伸張機構としての接触部材80及び可動部材85を、上側キャビティ部材12に設けることもできる。すなわち、一対の保持プレート38のうち、上側の保持プレート38のほぼ中心に、図23に示す接触開口39と同様の接触開口(図示せず)を設け、この接触開口に、同形状の接触部材80を嵌入させる。嵌入した接触部材80の下面は、可撓性を有する上側キャビティ部材12において上側マイクロ流路18が形成されている側の反対側である上側キャビティ部材12の上面と接触した状態で固着される。すなわち、膜伸張機構としての接触部材80は、上側キャビティ部材12に連結されている。接触部材80の上面には、図示しない動力源で上下動可能な可動部材85が固定されている。この可動部材85の上下動に伴い、接触部材80も上下動し、さらにそれに伴い上側キャビティ部材12も変形を被る。なお、図27~図29は、図24~図26と同じ視点からの断面を示している。 Note that the contact member 80 and the movable member 85 as the film stretching mechanism can be provided in the upper cavity member 12 as in the modification of the present embodiment shown in FIGS. 27 to 29. That is, of the pair of holding plates 38, a contact opening (not shown) similar to the contact opening 39 shown in FIG. 23 is provided substantially at the center of the upper holding plate 38, and the contact member having the same shape is provided in this contact opening. Insert 80. The lower surface of the fitted contact member 80 is fixed in contact with the upper surface of the upper cavity member 12, which is the side of the flexible upper cavity member 12 opposite to the side on which the upper microchannel 18 is formed. That is, the contact member 80 as the film stretching mechanism is connected to the upper cavity member 12. A movable member 85 that can move up and down by a power source (not shown) is fixed to the upper surface of the contact member 80. As the movable member 85 moves up and down, the contact member 80 also moves up and down, and the upper cavity member 12 is also deformed accordingly. 27 to 29 show cross sections from the same viewpoint as FIGS. 24 to 26.
 図27に示すように、可動部材85が作動していない状態では、上側キャビティ部材12には変形は生じず、多孔膜30の伸張も生じない。 As shown in FIG. 27, when the movable member 85 is not operating, the upper cavity member 12 is not deformed and the porous membrane 30 is not expanded.
 ここで、図28に示すように、可動部材85が作動して多孔膜30の厚さ方向に沿って下方へ移動すると、同時に接触部材80も下方へ移動する。それに伴い、接触部材80が、上側キャビティ部材12を下方へ押圧し、よって上側キャビティ部材12は下方への変形を被る。この変形が、上側マイクロ流路18内の溶液を介して多孔膜30への押圧力として加わることで、多孔膜30は厚さ方向に沿って下方へ伸張する。 Here, as shown in FIG. 28, when the movable member 85 operates and moves downward along the thickness direction of the porous membrane 30, the contact member 80 also moves downward at the same time. Along with that, the contact member 80 presses the upper cavity member 12 downward, so that the upper cavity member 12 undergoes downward deformation. This deformation is applied as a pressing force to the porous membrane 30 via the solution in the upper microchannel 18, whereby the porous membrane 30 extends downward along the thickness direction.
 一方、図29に示すように、可動部材85が作動して多孔膜30の厚さ方向に沿って上方へ移動すると、同時に接触部材80も上方へ移動する。それに伴い、接触部材80が、上側キャビティ部材12を上方へ牽引し、よって上側キャビティ部材12は下方への変形を被る。この変形が、上側マイクロ流路18内の溶液を介して多孔膜30への牽引力として加わることで、多孔膜30は厚さ方向に沿って上方へ伸張する。 On the other hand, as shown in FIG. 29, when the movable member 85 operates and moves upward along the thickness direction of the porous film 30, the contact member 80 also moves upward at the same time. Along with that, the contact member 80 pulls the upper cavity member 12 upward, so that the upper cavity member 12 undergoes downward deformation. This deformation is applied as a traction force to the porous membrane 30 via the solution in the upper microchannel 18, whereby the porous membrane 30 extends upward along the thickness direction.
 ここで、図30に示すように、膜伸張機構としての接触部材80の一部を、下側キャビティ部材14に嵌入させて、多孔膜30に直接連結させることもできる。 Here, as shown in FIG. 30, a part of the contact member 80 as a membrane extension mechanism can be fitted into the lower cavity member 14 and directly connected to the porous membrane 30.
 なお、本実施形態における「可撓性」とは、下側キャビティ部材14又は上側キャビティ部材12を構成する材質が、接触部材80による押圧で変形可能な程度の柔らかさを有していることを意味する。 The “flexibility” in the present embodiment means that the material forming the lower cavity member 14 or the upper cavity member 12 has such a softness that it can be deformed by being pressed by the contact member 80. means.
 なお、この接触部材80及び可動部材85による流速変化を断続的に行うことで、パルス状のメカニカルストレスを多孔膜30に生じさせることもできる。 By intermittently changing the flow velocity by the contact member 80 and the movable member 85, it is possible to generate a pulse-like mechanical stress in the porous film 30.
[第4実施形態]
 図31~図33は、第4実施形態に係る細胞培養デバイス10の一部を、図1のB-B線断面に準じた断面図で示したもので、上側キャビティ部材12及び下側キャビティ部材14からなるキャビティユニット16並びに多孔膜30以外の構成は省略している。上側キャビティ部材12に形成されている上側マイクロ流路18と、下側キャビティ部材14に形成されている下側マイクロ流路24とは、多孔膜30で隔てられている。
[Fourth Embodiment]
31 to 33 show a part of the cell culture device 10 according to the fourth embodiment in a sectional view according to the section taken along the line BB of FIG. 1, and show the upper cavity member 12 and the lower cavity member. Structures other than the cavity unit 16 composed of 14 and the porous film 30 are omitted. The upper microchannel 18 formed in the upper cavity member 12 and the lower microchannel 24 formed in the lower cavity member 14 are separated by a porous film 30.
 本実施形態では、図31に示すように、膜伸張機構としての内部圧力変化空間90が下側キャビティ部材14の内部に形成されている。内部圧力変化空間90は、下側マイクロ流路24に沿って形成されており、図示しない外部の加減圧機構(加圧ポンプ及び真空ポンプ)と接続されている。 In the present embodiment, as shown in FIG. 31, an internal pressure change space 90 as a membrane extension mechanism is formed inside the lower cavity member 14. The internal pressure change space 90 is formed along the lower microchannel 24 and is connected to an external pressurizing/depressurizing mechanism (pressurizing pump and vacuum pump) not shown.
 この内部圧力変化空間90に、加減圧機構としての加圧ポンプから気体を送り込んで加圧すると、図32に示すように、内部圧力変化空間90が下側マイクロ流路24の方へ膨張する。この膨張が、下側キャビティ部材14の、下側マイクロ流路24が形成されている側の反対側を押圧し、下側マイクロ流路24内の溶液を介して多孔膜30への押圧力として加わることで、多孔膜30は厚さ方向に沿って上方へ伸張する。 When a gas is sent to the internal pressure change space 90 from a pressurizing pump as a pressurizing/depressurizing mechanism to pressurize it, the internal pressure change space 90 expands toward the lower micro flow channel 24, as shown in FIG. 32. This expansion presses the side of the lower cavity member 14 opposite to the side where the lower microchannel 24 is formed, and acts as a pressing force on the porous membrane 30 via the solution in the lower microchannel 24. By adding, the porous film 30 expands upward along the thickness direction.
 一方、この内部圧力変化空間90から、加減圧機構としての真空ポンプによって気体を吸引して減圧すると、図33に示すように、内部圧力変化空間90が収縮する。この収縮により、下側キャビティ部材14の、下側マイクロ流路24が形成されている側の反対側が牽引され、下側マイクロ流路24内の溶液を介して多孔膜30への牽引力として加わることで、多孔膜30は厚さ方向に沿って下方へ伸張する。 On the other hand, when gas is sucked from the internal pressure change space 90 by a vacuum pump as a pressurizing/depressurizing mechanism to reduce the pressure, the internal pressure change space 90 contracts as shown in FIG. Due to this contraction, the side of the lower cavity member 14 opposite to the side where the lower microchannel 24 is formed is pulled, and is applied as a pulling force to the porous membrane 30 via the solution in the lower microchannel 24. Then, the porous film 30 extends downward along the thickness direction.
 なお、内部圧力変化空間90は、上側キャビティ部材12の内部に形成されていてもよい。この場合、内部圧力変化空間90が膨張することで、上側キャビティ部材12の、上側マイクロ流路18が形成されている側の反対側を押圧し、上側マイクロ流路18内の溶液を介して多孔膜30への押圧力として加わることで、多孔膜30は厚さ方向に沿って下方へ伸張する。また、内部圧力変化空間90が収縮することで、上側キャビティ部材12の、上側マイクロ流路18が形成されている側の反対側を牽引し、上側マイクロ流路18内の溶液を介して多孔膜30への牽引力として加わることで、多孔膜30は厚さ方向に沿って上方へ伸張する。 The internal pressure change space 90 may be formed inside the upper cavity member 12. In this case, the expansion of the internal pressure change space 90 presses the side of the upper cavity member 12 opposite to the side on which the upper microchannel 18 is formed, and permeates through the solution in the upper microchannel 18. By being applied as a pressing force to the membrane 30, the porous membrane 30 extends downward along the thickness direction. Further, the contraction of the internal pressure change space 90 pulls the side of the upper cavity member 12 opposite to the side on which the upper microchannel 18 is formed, and the porous membrane is mediated by the solution in the upper microchannel 18. When applied as a traction force to 30, the porous film 30 extends upward along the thickness direction.
 なお、本実施形態における「可撓性」とは、下側キャビティ部材14又は上側キャビティ部材12を構成する材質が、内部圧力変化空間90の膨張又は収縮で変形可能な程度の硬度を有していることを意味する。 The “flexibility” in the present embodiment means that the material forming the lower cavity member 14 or the upper cavity member 12 has a hardness that allows the material to be deformed by the expansion or contraction of the internal pressure change space 90. Means that
[第5実施形態]
 図34~図36は、第5実施形態に係る細胞培養デバイス10の一部を、図1のB-B線断面に準じた断面図で示したもので、上側キャビティ部材12及び下側キャビティ部材14からなるキャビティユニット16並びに多孔膜30以外の構成は省略している。上側キャビティ部材12に形成されている上側マイクロ流路18と、下側キャビティ部材14に形成されている下側マイクロ流路24とは、多孔膜30で隔てられている。
[Fifth Embodiment]
34 to 36 show a part of the cell culture device 10 according to the fifth embodiment in a sectional view according to the section taken along the line BB of FIG. 1, and show the upper cavity member 12 and the lower cavity member. Structures other than the cavity unit 16 composed of 14 and the porous film 30 are omitted. The upper microchannel 18 formed in the upper cavity member 12 and the lower microchannel 24 formed in the lower cavity member 14 are separated by a porous film 30.
 本実施形態では、図34に示すように、マイクロキャビティとしての上側マイクロ流路18及び下側マイクロ流路24の両側に、可撓性を有するキャビティ側壁95Aが設けられている。なお、「マイクロキャビティの両側」とは、マイクロ流路の流路方向及びマイクロキャビティの対向方向の両方に対し平行な側をいう。また、キャビティ側壁95Aの各々の外方に、上側キャビティ部材12と下側キャビティ部材14との間に跨がる空間としての側方圧力変化空間95Bが設けられている。これらキャビティ側壁95A及び側方圧力変化空間95Bは、側方伸張機構95を構成する。この側方伸張機構95としてのキャビティ側壁95Aには、多孔膜30が連結されている。なお、側方圧力変化空間95Bは、上側マイクロ流路18及び下側マイクロ流路24に沿って形成されており、図示しない外部の加減圧機構(加圧ポンプ及び真空ポンプ)と接続されている。 In the present embodiment, as shown in FIG. 34, flexible cavity sidewalls 95A are provided on both sides of the upper microchannel 18 and the lower microchannel 24 as the microcavities. The term “both sides of the microcavity” means the sides parallel to both the flow channel direction of the microchannel and the facing direction of the microcavity. Further, a lateral pressure change space 95B as a space extending between the upper cavity member 12 and the lower cavity member 14 is provided outside each of the cavity side walls 95A. The cavity side wall 95A and the lateral pressure change space 95B form a lateral extension mechanism 95. The porous film 30 is connected to the cavity side wall 95A as the lateral extension mechanism 95. The lateral pressure change space 95B is formed along the upper microchannel 18 and the lower microchannel 24, and is connected to an external pressurizing/depressurizing mechanism (pressurizing pump and vacuum pump) not shown. .
 この側方圧力変化空間95Bから、加減圧機構としての真空ポンプによって気体を吸引して減圧すると、図35に示すように、側方圧力変化空間95Bが収縮する。この収縮により、キャビティ側壁95Aがそれぞれ外方へ牽引され、それに伴い、多孔膜30は幅方向に伸張する。これにより、多孔膜30に幅方向のメカニカルストレスが加えられる。なお、「多孔膜の幅方向」とは、マイクロ流路の流路方向及びマイクロキャビティの対向方向の両方に対し垂直な方向をいう。 When the gas is sucked from the side pressure change space 95B by a vacuum pump as a pressurization mechanism to reduce the pressure, the side pressure change space 95B contracts, as shown in FIG. Due to this contraction, the cavity side walls 95A are respectively pulled outward, and accordingly, the porous film 30 extends in the width direction. Thereby, mechanical stress in the width direction is applied to the porous film 30. The "width direction of the porous membrane" means a direction perpendicular to both the flow channel direction of the micro flow channel and the opposing direction of the microcavity.
 一方、この側方圧力変化空間95Bに加減圧機構としての加圧ポンプから気体を送り込んで加圧すると、図36に示すように、側方圧力変化空間95Bが内方へ膨張する。この膨張により、キャビティ側壁95Aはそれぞれ内方へ押圧され、多孔膜30は厚さ方向に沿って下方へ撓む。これにより、多孔膜30に幅方向及び厚さ方向のメカニカルストレスが加えられる。 On the other hand, when gas is sent to the side pressure change space 95B from a pressurizing pump as a pressurization mechanism to pressurize the side pressure change space 95B, the side pressure change space 95B expands inward as shown in FIG. By this expansion, the cavity side walls 95A are pressed inward, respectively, and the porous film 30 bends downward along the thickness direction. As a result, mechanical stress is applied to the porous film 30 in the width direction and the thickness direction.
 なお、本実施形態における「可撓性」とは、上側キャビティ部材12及び下側キャビティ部材14を構成する材質が、側方圧力変化空間95Bの膨張又は収縮で変形可能な程度の硬度を有していることを意味する。 The term “flexibility” in the present embodiment means that the material forming the upper cavity member 12 and the lower cavity member 14 has such a hardness that it can be deformed by expansion or contraction of the lateral pressure change space 95B. Means that
[多孔膜の積層]
 以上の各実施形態では、多孔膜30は単層で使用されてきたが、複数の多孔膜30を積層して用いることもできる。例えば、図37に示すように、同じ径の開口32Aを有し、かつ、同じ厚さの2枚の多孔膜30を、開口32Aの位置を合わせた状態で積層して使用すると、伸張特性を保ったまま、強度を増すことができる。
[Lamination of porous film]
In each of the above embodiments, the porous film 30 has been used as a single layer, but a plurality of porous films 30 may be laminated and used. For example, as shown in FIG. 37, when two porous films 30 having the same diameter opening 32A and the same thickness are laminated and used with the positions of the openings 32A aligned, the stretching property is improved. The strength can be increased while keeping it.
 なお、図38に示すように、同じ径の開口32Aを有し、かつ、同じ厚さの2枚の多孔膜30を、開口32Aの位置をずらした状態で積層して使用すると、空隙率を変えることなく、実質的に開口率を下げることができる。ここで、実質的に開口率を下げることとは、積層した多孔膜30を平面視で投影した場合、ある層の開口32Aが隣接する総の開口32A間の実質部分で覆われることで、全体としての開口32Aの占める面積が減少することを意味する。このように多孔膜30を積層することで、細胞の径より大きな開口32Aの多孔膜30を使用しつつも、細胞の多孔膜30の通り抜けをコントロールすることができる。 Note that, as shown in FIG. 38, when two porous films 30 having openings 32A having the same diameter and having the same thickness are stacked and used with the positions of the openings 32A shifted, the porosity is increased. The aperture ratio can be substantially reduced without changing. Here, substantially lowering the aperture ratio means that when the laminated porous film 30 is projected in a plan view, the openings 32A of a certain layer are covered with a substantial portion between all the openings 32A adjacent to each other. It means that the area occupied by the opening 32A is reduced. By stacking the porous membranes 30 in this manner, it is possible to control the passage of cells through the porous membranes 30 while using the porous membranes 30 having the openings 32A larger than the cell diameter.
 また、図39に示すように、同じ径の開口32Aを有し、かつ、同じ厚さの多孔膜30を3枚、又はそれ以上、積層することもできる。さらには、図40に示すように、開口32Aの径及び厚さの異なる複数種類の多孔膜を積層して用いることもできる。多孔膜30を積層する枚数、種類及び開口32Aの位置のずらし方は、使用態様、例えば、細胞培養デバイス10の大きさ、使用する細胞種、実験の種類等によって適宜決定することができる。 Further, as shown in FIG. 39, three or more porous membranes 30 having openings 32A having the same diameter and having the same thickness can be laminated. Furthermore, as shown in FIG. 40, it is also possible to stack and use a plurality of types of porous membranes having different diameters and thicknesses of the openings 32A. The number and type of the porous membranes 30 to be laminated and how to shift the positions of the openings 32A can be appropriately determined depending on the usage mode, for example, the size of the cell culture device 10, the cell type used, the type of experiment, and the like.
 本開示で使用した多孔膜の実施例は、図41の平面写真に示すとおり、円形の開口がハニカム状に規則正しく配列されている。この多孔膜はポリブタジエン(PB、実施例1)又はポリカーボネート(PC、実施例2)を材質とし、その断面は、図5に示すとおりであり、上面及び下面の開口が、横連通構造を呈する膜内空間によって上下に貫通している。この多孔膜の膜厚は3μmで、開口径は5μm、空隙率は85%、開口率は63%であった。さらに、PBを材質とする多孔膜を3層積層したものを実施例3、及び、PCを材質とする多孔膜を3層積層したものを実施例4として用いた。これら3層積層の多孔膜は図42の平面写真に示すとおりであり、その開口率は11%である。この図42から明らかなように、同じ多孔膜を積層しても開口の位置がずれることによって、開口率を低減させることができる。したがって、開口の径が小さい多孔膜を用意せずとも、より大径の開口を有する多孔膜を積層することで実質的に多孔膜の開口率を下げることができる。これにより、開口の径より大きな径の細胞を培養する場合であっても、細胞が多孔膜をすり抜けることを阻止することが可能となる。 In the example of the porous film used in the present disclosure, as shown in the plan view of FIG. 41, circular openings are regularly arranged in a honeycomb shape. This porous film is made of polybutadiene (PB, Example 1) or polycarbonate (PC, Example 2), and its cross section is as shown in FIG. 5, and the upper and lower openings have a lateral communication structure. It penetrates vertically by the inner space. The thickness of this porous film was 3 μm, the opening diameter was 5 μm, the porosity was 85%, and the opening ratio was 63%. Further, three layers of PB-made porous membranes were used as Example 3, and three layers of PC-made porous membranes were used as Example 4. These three-layer laminated porous films are as shown in the plan photograph of FIG. 42, and the aperture ratio is 11%. As is clear from FIG. 42, even if the same porous film is laminated, the position of the opening is displaced, so that the aperture ratio can be reduced. Therefore, even if a porous film having a small opening diameter is not prepared, the aperture ratio of the porous film can be substantially reduced by stacking the porous films having larger diameter openings. This makes it possible to prevent cells from slipping through the porous membrane even when culturing cells having a diameter larger than the diameter of the openings.
 一方、比較例として使用した多孔膜は、PCを材質とし、図43の平面写真に示すとおり、円形の開口がまばらに、かつ不規則に存在している。この多孔膜の断面は、図44に示すとおりであり、孔の貫通する方向及び長さが区々である。この多孔膜の膜厚は10μmで、開口径は5μm、空隙率は10%、開口率は3~10%である。 On the other hand, the porous film used as a comparative example is made of PC and has circular openings sparsely and irregularly as shown in the plan view photograph of FIG. 43. The cross section of this porous film is as shown in FIG. 44, and the directions and lengths of the holes penetrate are different. The thickness of this porous film is 10 μm, the opening diameter is 5 μm, the porosity is 10%, and the opening ratio is 3 to 10%.
 実施例及び比較例について、それぞれの材質、積層の態様及び20%伸張に必要な単位幅あたりの引張力を下記表1に示した。 For each of the examples and comparative examples, the respective materials, modes of lamination, and tensile force per unit width required for 20% elongation are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、比較例と同じ材質である実施例2の多孔膜は、20%伸張に必要な単位幅あたりの引張力が2.48N/mと、比較例(472.5N/m)の約0.5%という小さな力で伸張することが可能であった。また、この実施例2の多孔膜を3層に積層した場合、膜厚はほぼ比較例と同じながらも、20%伸張に必要な単位幅あたりの引張力が7.5N/mと、比較例の約1.6%とやはり小さな力で伸張することが可能であった。また、PBを材質とした実施例1及び実施例3は、積層の態様を同じくするそれぞれ実施例2及び実施例4に対し、20%伸張に必要な単位幅あたりの引張力がいずれも6.4%と、より小さな力で伸張することが可能であった。 As shown in Table 1 above, the porous membrane of Example 2 made of the same material as that of Comparative Example had a tensile force of 2.48 N/m per unit width required for 20% elongation, which was a comparative example (472.5 N/m). It was possible to stretch with a force as small as about 0.5% of m). When the porous film of Example 2 was laminated in three layers, the film thickness was almost the same as that of the comparative example, but the tensile force per unit width required for 20% elongation was 7.5 N/m. It was possible to stretch with a small force of about 1.6%. Further, in Examples 1 and 3 in which PB is used as a material, the tensile force per unit width required for 20% extension is 6 as compared with Examples 2 and 4 in which the lamination mode is the same. It was possible to stretch with a smaller force of 4%.
 また、実施例1及び2並びに比較例の多孔膜について、多孔膜に加える幅あたりの引張力と、多孔膜の伸びの関係を図45及び図46のグラフにて示すとおりである。なお、図46は、図45のX軸付近を拡大したものである。比較例の多孔膜は、単位幅あたりの引張力が400N/mを超えた付近で降伏点に達し、単位幅あたりの引張力550N/m付近で約65%の伸びを示したところで破断した(図45)。なお、比較例と同じ材質の実施例2の多孔膜では、単位幅あたりの引張力1.5N/m付近で降伏点に達し、単位幅あたりの引張力4.3N/m付近で約88%の伸びを示したところで破断した(図46)。一方、実施例1の多孔膜では、単位幅あたりの引張力0.5N/m付近で約180%の伸びを示すまでほぼ弾性変形を行ってまもなく破断した(図46)。以上、実施例の多孔膜は、比較例に比べ、小さな引張力で変形できることが示された。 Further, regarding the porous membranes of Examples 1 and 2 and Comparative Example, the relationship between the tensile force applied to the porous membrane per width and the elongation of the porous membrane is shown in the graphs of FIGS. 45 and 46. Note that FIG. 46 is an enlarged view of the vicinity of the X axis in FIG. 45. The porous membrane of the comparative example reached the yield point in the vicinity of the tensile force per unit width exceeding 400 N/m, and ruptured when the tensile force per unit width showed an elongation of about 65% near 550 N/m ( Figure 45). In the porous membrane of Example 2 made of the same material as the comparative example, the yield point was reached near a tensile force of 1.5 N/m per unit width, and about 88% was reached near a tensile force of 4.3 N/m per unit width. It broke when it showed elongation (Fig. 46). On the other hand, the porous membrane of Example 1 was substantially elastically deformed until it showed an elongation of about 180% at a tensile force of about 0.5 N/m per unit width, and was fractured soon (FIG. 46). As described above, it was shown that the porous membranes of the examples can be deformed with a smaller tensile force than the comparative examples.

Claims (9)

  1.  互いに対向し、対向面にマイクロキャビティが各々形成された一対のキャビティ部材と、
     一対の前記キャビティ部材の前記対向面間に配置され、各々の前記マイクロキャビティを隔てるとともに片面又は両面にハニカム状に配列された複数の開口を有する多孔膜と、
     前記キャビティ部材又は前記多孔膜に連結され、前記多孔膜に少なくとも厚さ方向に沿った力を加えて前記多孔膜を少なくとも厚さ方向に沿って伸張させることができる、膜伸張機構と、
     を備え、
     前記多孔膜は、前記複数の開口の各々から厚さ方向に連通する複数の膜内空間を有するとともに隣接する前記膜内空間どうしは前記多孔膜の内部で互いに連通する横連通構造を有しており、
     前記開口の平均開口径が1μm以上200μm以下であり、
     前記多孔膜の空隙率が40%以上90%以下であり、
     前記多孔膜の膜厚が0.5μm以上100μm以下であり、
     前記多孔膜の20%伸張に要する単位幅あたりの引張力が0.1N/m以上20N/m以下であるとともに、
     各々の前記マイクロキャビティのうち少なくとも一方がマイクロ流路である、
     細胞培養デバイス。
    A pair of cavity members facing each other, each having a microcavity formed on the facing surface,
    A porous membrane having a plurality of openings arranged between the facing surfaces of a pair of the cavity members and separating each of the microcavities and having one side or both sides arranged in a honeycomb shape,
    A membrane stretching mechanism, which is connected to the cavity member or the porous membrane and can apply a force along at least the thickness direction to the porous membrane to stretch the porous membrane at least along the thickness direction,
    Equipped with
    The porous membrane has a plurality of intra-membrane spaces communicating from each of the plurality of openings in the thickness direction, and the adjacent intra-membrane spaces have a lateral communication structure in which they communicate with each other inside the porous membrane. Cage,
    The average opening diameter of the openings is 1 μm or more and 200 μm or less,
    The porosity of the porous film is 40% or more and 90% or less,
    The thickness of the porous film is 0.5 μm or more and 100 μm or less,
    The tensile force per unit width required for 20% extension of the porous film is 0.1 N/m or more and 20 N/m or less, and
    At least one of the microcavities is a microchannel,
    Cell culture device.
  2.  前記多孔膜は両面に前記複数の開口を有し、一方の面の開口は前記膜内空間を通じて他方の面の開口と連通している、請求項1に記載の細胞培養デバイス。 The cell culture device according to claim 1, wherein the porous membrane has the plurality of openings on both sides, and the opening on one surface communicates with the opening on the other surface through the intramembrane space.
  3.  各々の前記マイクロキャビティのうち他方は、前記多孔膜と反対側に開口部を有するウェルである、請求項1又は2に記載の細胞培養デバイス。 The cell culture device according to claim 1 or 2, wherein the other of the microcavities is a well having an opening on the side opposite to the porous membrane.
  4.  各々の前記マイクロキャビティのうち他方もマイクロ流路である、請求項1又は2に記載の細胞培養デバイス。 The cell culture device according to claim 1 or 2, wherein the other of the respective microcavities is also a microchannel.
  5.  前記開口が同じ開口径又は異なる開口径の前記多孔膜が複数枚積層されている、請求項1から4までのいずれか1項に記載の細胞培養デバイス。 The cell culture device according to any one of claims 1 to 4, wherein a plurality of the porous membranes having the same opening diameter or different opening diameters are laminated.
  6.  前記膜伸張機構として、前記マイクロ流路において、該マイクロ流路を流れる液体の流速を増加させることの可能な加速機構を備える、請求項1から5までのいずれか1項に記載の細胞培養デバイス。 The cell culture device according to any one of claims 1 to 5, further comprising, as the membrane stretching mechanism, an acceleration mechanism capable of increasing a flow velocity of a liquid flowing through the microchannel in the microchannel. ..
  7.  前記一対のキャビティ部材のうち少なくとも前記マイクロ流路が形成されている方は可撓性を有するとともに、
     前記膜伸張機構は、前記可撓性を有するキャビティ部材において前記マイクロ流路が形成されている側の反対側に接触する接触部材と、前記接触部材を多孔膜の厚さ方向に沿って少なくとも押圧及び牽引の一方が可能である可動部材と、を備える、請求項1から5までのいずれか1項に記載の細胞培養デバイス。
    Of the pair of cavity members, at least the one in which the microchannel is formed has flexibility,
    The membrane stretching mechanism includes a contact member that contacts the opposite side of the flexible cavity member to the side where the microchannel is formed, and at least presses the contact member along the thickness direction of the porous membrane. And a movable member capable of one of pulling, and the cell culture device according to any one of claims 1 to 5.
  8.  前記一対のキャビティ部材のうち少なくとも前記マイクロ流路が形成されている方は可撓性を有するとともに、
     前記膜伸張機構は、前記マイクロ流路が形成されているキャビティ部材の内部に形成された、前記マイクロ流路が形成されている側の反対側から前記多孔膜の厚さ方向に沿って加圧による押圧及び減圧による牽引の少なくとも一方が可能な、内部圧力変化空間を備える、請求項1から5までのいずれか1項に記載の細胞培養デバイス。
    Of the pair of cavity members, at least the one in which the microchannel is formed has flexibility,
    The membrane stretching mechanism applies pressure along the thickness direction of the porous membrane from the side opposite to the side where the micro-channel is formed, which is formed inside the cavity member where the micro-channel is formed. The cell culture device according to any one of claims 1 to 5, comprising an internal pressure change space capable of at least one of pressing by and depressurization.
  9.  前記膜伸張機構に加え、
     前記マイクロキャビティの両側に設けられ可撓性を有するキャビティ側壁と、
     前記キャビティ側壁の各々の外方に設けられる側方圧力変化空間と、
     を備えた側方伸張機構を有し、
     前記側方伸張機構は、前記側方圧力変化空間において加圧及び減圧の少なくとも一方を行うことにより、前記キャビティ側壁に対し加圧による押圧及び減圧による牽引の少なくとも一方を行うことで、前記多孔膜を幅方向に伸張させる、請求項1から8までのいずれか1項に記載の細胞培養デバイス。
    In addition to the membrane stretching mechanism,
    Flexible cavity side walls provided on both sides of the microcavity,
    A lateral pressure change space provided on the outside of each of the cavity sidewalls;
    Has a lateral extension mechanism with
    The lateral extension mechanism performs at least one of pressurization and depressurization in the lateral pressure change space, thereby performing at least one of pressurization by pressurization and pulling by depressurization on the side wall of the cavity. The cell culture device according to claim 1, wherein the cell culture device is expanded in the width direction.
PCT/JP2019/046230 2018-12-06 2019-11-26 Cell culture device WO2020116254A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018229313 2018-12-06
JP2018-229313 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020116254A1 true WO2020116254A1 (en) 2020-06-11

Family

ID=70973898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046230 WO2020116254A1 (en) 2018-12-06 2019-11-26 Cell culture device

Country Status (1)

Country Link
WO (1) WO2020116254A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462564A (en) * 2021-06-25 2021-10-01 上海睿钰生物科技有限公司 Culture device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415538B2 (en) * 1974-03-25 1979-06-15
WO2009099066A1 (en) * 2008-02-04 2009-08-13 Shimadzu Corporation Biodevice
WO2009139177A1 (en) * 2008-05-15 2009-11-19 国立大学法人大阪大学 Blood platelet induction method
JP2014506801A (en) * 2011-02-28 2014-03-20 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Cell culture system
JP2015516154A (en) * 2012-04-18 2015-06-11 ヘモシアー・リミテッド・ライアビリティ・カンパニーHemoShear, LLC In vitro model for pathological or physiological conditions
JP2016535591A (en) * 2013-10-21 2016-11-17 ヘモシアー・リミテッド・ライアビリティ・カンパニーHemoShear, LLC In vitro model for tumor microenvironment
WO2018061846A1 (en) * 2016-09-27 2018-04-05 富士フイルム株式会社 Method for producing cell tissue, and porous film
WO2018096054A1 (en) * 2016-11-24 2018-05-31 Alveolix Ag Cell culturing system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415538B2 (en) * 1974-03-25 1979-06-15
WO2009099066A1 (en) * 2008-02-04 2009-08-13 Shimadzu Corporation Biodevice
WO2009139177A1 (en) * 2008-05-15 2009-11-19 国立大学法人大阪大学 Blood platelet induction method
JP2014506801A (en) * 2011-02-28 2014-03-20 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Cell culture system
JP2015516154A (en) * 2012-04-18 2015-06-11 ヘモシアー・リミテッド・ライアビリティ・カンパニーHemoShear, LLC In vitro model for pathological or physiological conditions
JP2016535591A (en) * 2013-10-21 2016-11-17 ヘモシアー・リミテッド・ライアビリティ・カンパニーHemoShear, LLC In vitro model for tumor microenvironment
WO2018061846A1 (en) * 2016-09-27 2018-04-05 富士フイルム株式会社 Method for producing cell tissue, and porous film
WO2018096054A1 (en) * 2016-11-24 2018-05-31 Alveolix Ag Cell culturing system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462564A (en) * 2021-06-25 2021-10-01 上海睿钰生物科技有限公司 Culture device
CN113462564B (en) * 2021-06-25 2022-04-01 上海睿钰生物科技有限公司 Culture device

Similar Documents

Publication Publication Date Title
US9962698B2 (en) Removing bubbles in microfluidic systems
US20200070154A1 (en) Low elasticity films for microfluidic use
US10054536B2 (en) Microfluidic particle analysis method, device and system
JP7257565B2 (en) Microfluidic device, method of manufacture, and use thereof
KR102345370B1 (en) blood vessel model
US11390837B2 (en) Microchannel device
Tanaka et al. An ultra-small fluid oscillation unit for pumping driven by self-organized three-dimensional bridging of pulsatile cardiomyocytes on elastic micro-piers
WO2020116254A1 (en) Cell culture device
US20220105510A1 (en) Microfluidic cell culture devices
US20200369998A1 (en) Microchannel device
CN102212459A (en) Polydimethylsiloxane (PDMS)-based cell sorting structure
EP3870365B1 (en) Microfluidic device for mechanically stimulating a material
Park et al. Fabrication of 3D thin polymer structures for hybrid sensors and actuators
Bhushan Electromagnetic pump and hardware development for organs-on-chips
Chumtong et al. An active microscaffold for applications in tissue engineering
Wang et al. A microfluidic device to load multiple mechanical stimulators with differing strain magnitudes with a single pump
Chumtong et al. On-chip flexible scaffold for construction of multishaped tissues
Corral Nájera Development of a tunable and resealable porous membrane for organ-on-a-chip devices
Jeon et al. Hot embossing for fabrication of a microfluidic 3D cell culture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP