WO2020116121A1 - Vehicular communication system - Google Patents

Vehicular communication system Download PDF

Info

Publication number
WO2020116121A1
WO2020116121A1 PCT/JP2019/044757 JP2019044757W WO2020116121A1 WO 2020116121 A1 WO2020116121 A1 WO 2020116121A1 JP 2019044757 W JP2019044757 W JP 2019044757W WO 2020116121 A1 WO2020116121 A1 WO 2020116121A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
pedestrian
unit
light
Prior art date
Application number
PCT/JP2019/044757
Other languages
French (fr)
Japanese (ja)
Inventor
義朗 伊藤
金子 進
杉本 篤
新 竹田
原田 知明
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to CN201980080275.1A priority Critical patent/CN113165573A/en
Priority to JP2020559860A priority patent/JP7320000B2/en
Publication of WO2020116121A1 publication Critical patent/WO2020116121A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • B60Q1/547Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking for issuing requests to other traffic participants; for confirming to other traffic participants they can proceed, e.g. they can overtake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/24Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead
    • B60Q1/249Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead for illuminating the field of view of a sensor or camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • B60Q1/507Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking specific to autonomous vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q5/00Arrangement or adaptation of acoustic signal devices
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • B60Q1/503Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking using luminous text or symbol displays in or on the vehicle, e.g. static text
    • B60Q1/5035Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking using luminous text or symbol displays in or on the vehicle, e.g. static text electronic displays
    • B60Q1/5037Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking using luminous text or symbol displays in or on the vehicle, e.g. static text electronic displays the display content changing automatically, e.g. depending on traffic situation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2400/00Special features or arrangements of exterior signal lamps for vehicles
    • B60Q2400/50Projected symbol or information, e.g. onto the road or car body

Definitions

  • the present invention relates to a vehicle communication system.
  • the vehicle system automatically controls the traveling of the vehicle. Specifically, in the automatic driving mode, the vehicle system controls the steering control (control of the traveling direction of the vehicle), the brake control, and the accelerator control (vehicle braking, acceleration) based on various information obtained from the camera, the sensor, the radar, and the like. At least one of (control of deceleration) is automatically performed.
  • the driver controls the traveling of the vehicle, as is the case with most conventional vehicles.
  • the traveling of the vehicle is controlled in accordance with the driver's operation (steering operation, braking operation, accelerator operation), and the vehicle system does not automatically perform steering control, brake control and accelerator control.
  • the driving mode of a vehicle is not a concept that exists only in some vehicles, but a concept that exists in all vehicles including conventional vehicles that do not have an automatic driving function. It is classified according to the method.
  • the pedestrian should cross the pedestrian crossing unless he/she knows that the autonomous vehicle recognizes the pedestrian. I feel uneasy whether I can do it.
  • the driver of an emergency vehicle ambulance, fire engine, police car, etc. traveling behind the self-driving car may not drive the self-driving car if it does not know that the self-driving car recognizes the emergency vehicle. I feel uneasy about overtaking.
  • Patent Document 1 discloses an automatic following system in which a following vehicle automatically follows a preceding vehicle.
  • each of the preceding vehicle and the following vehicle is provided with a lighting device, and character information for preventing another vehicle from interrupting between the preceding vehicle and the following vehicle is provided in the lighting device of the preceding vehicle.
  • the character information indicating that the vehicle is automatically following is displayed on the lighting device of the following vehicle.
  • Patent Document 1 since communication is performed with all vehicles and people near the vehicle, it is not possible to communicate with a specific opponent.
  • the present disclosure aims to provide a vehicle communication system capable of communicating with a specific partner around the vehicle.
  • a vehicle communication system A detection unit that can detect the target person around the vehicle, Based on the route information acquired from the vehicle control unit, a prediction unit that identifies the target person who is most likely to enter the predicted route of the vehicle, An information transmission unit that transmits the first information so that the identified target person can be recognized by at least one of light, heat, sound, and vibration.
  • the information transmitting unit After identifying the target person who is most likely to enter the expected course of the host vehicle, the information transmitting unit makes the identified target person recognize the first target person. Communicate information.
  • the vehicle communication system having the above configuration, it is possible to provide a vehicle communication system capable of communicating with a specific partner around the vehicle.
  • the information transmission unit transmits second information different from the first information to the target person.
  • the specific target person can recognize the information such as the message transmitted from the vehicle by recognizing the second information.
  • the information transmission unit transmits the first information to the target person by emitting light.
  • the vehicle communication system having the above configuration, light is emitted to the target person, so that the target person can more reliably recognize the first information.
  • the information transmission unit intermittently irradiates the target person with light.
  • the vehicle communication system having the above configuration, it is possible to limit the amount of light energy output from the information transmission unit and the amount of light energy emitted to the target person. Therefore, the energy consumption of light can be reduced, and the subject's eyes can be prevented from being overloaded.
  • the information transmission unit emits light in the direction in which the target person is looking, based on the information including the direction in which the target person is looking acquired from the vehicle control unit.
  • the information transmitting unit emits light in the direction in which the target person is looking. Therefore, the subject can easily visually recognize the emitted light.
  • the information transmission unit is capable of communicating with a communication terminal that the target person can carry,
  • the information transmission unit is configured to generate at least one of sound and vibration from the communication terminal.
  • the information transmission unit is configured to generate at least one of sound and vibration from the communication terminal carried by the subject. Therefore, it is possible to communicate only with a specific person.
  • the information transmission unit includes a directional speaker that transmits sound toward the target person.
  • the information transmission unit since the information transmission unit includes the directional speaker, it is possible to transmit information to a specific target person by voice or the like. Therefore, it is possible to communicate only with a specific person.
  • FIG. 1A is a top view of a vehicle including the vehicle communication system according to the present embodiment.
  • 1B is a side view of the vehicle shown in FIG. 1A.
  • FIG. 2 is a block diagram of the vehicle communication system according to the present embodiment.
  • FIG. 3 is a vertical sectional view of the road surface drawing lamp.
  • FIG. 4 is a side view showing the configuration of the light source unit of the road surface drawing lamp.
  • FIG. 5 is a perspective view showing the configuration of the light distribution unit of the road surface drawing lamp.
  • FIG. 6 is a flowchart showing a process until the predetermined information is transmitted to the object.
  • FIG. 7 is a schematic diagram for explaining how predetermined information is transmitted to an object that becomes an obstacle when the vehicle turns left.
  • FIG. 1A is a top view of a vehicle including the vehicle communication system according to the present embodiment.
  • FIG. 1B is a side view of the vehicle shown in FIG. 1A.
  • FIG. 2 is a block diagram of the vehicle communication system according to
  • FIG. 8 is a schematic diagram for explaining how predetermined information is transmitted to an object that is an obstacle when the vehicle turns left.
  • FIG. 9 is a schematic diagram for explaining how predetermined information is transmitted to an object that becomes an obstacle when the vehicle turns left.
  • FIG. 10 is a schematic diagram for explaining how predetermined information is transmitted to an object that is an obstacle when the vehicle turns left.
  • “horizontal direction”, “front-back direction”, and “vertical direction” are referred to as appropriate. These directions are relative directions set for vehicle 100 shown in FIGS. 1A and 1B.
  • the “vertical direction” is a direction including “upward direction” and “downward direction”.
  • the “front-rear direction” is a direction including the “front direction” and the “rear direction”.
  • the “left-right direction” is a direction including the “left direction” and the “right direction”.
  • FIG. 1A illustrates a top view of vehicle 100.
  • FIG. 1B illustrates a left side view of the vehicle 100.
  • the vehicle 100 is a vehicle that can travel in the automatic driving mode and includes the information transmission device 40.
  • the information transmission device 40 includes an information transmission unit 401 and a transmission control unit 402 (see FIG. 2).
  • the information transmission device 40 is arranged on the vehicle body roof 100A of the vehicle 100, and is configured to emit light, infrared laser, sound, radio waves and the like to the outside of the vehicle 100.
  • the single information transmission device 40 is arranged on the vehicle body roof 100A, but the information transmission device 40 emits light toward an object existing in any direction with respect to the vehicle 100.
  • the number, arrangement, shape, etc. are not particularly limited as long as the pattern can be irradiated.
  • each of the road surface drawing devices is arranged in the left head lamp 20L, the right head lamp 20R, the left rear combination lamp 30L, and the right rear combination lamp 30R.
  • the road surface drawing device may be arranged so as to surround the side surface 100B of the vehicle 100.
  • FIG. 2 illustrates a block diagram of the vehicle system 1.
  • the vehicle system 1 includes a vehicle control unit 3, a sensor 5, a camera 6, a radar 7, an HMI (Human Machine Interface) 8, a GPS (Global Positioning System) 9, and The wireless communication unit 10 and the map information storage unit 11 are provided.
  • the vehicle system 1 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
  • the vehicle system 1 further includes a vehicle communication system 2.
  • the vehicle communication system 2 includes a detection unit 300 including the camera 6 and the radar 7, and an information transmission device 40.
  • the information transmission device 40 includes an information transmission unit 401 and a transmission control unit 402.
  • the transmission control unit 402 includes a prediction unit 403.
  • the vehicle control unit 3 is configured to control the traveling of the vehicle 100.
  • the vehicle control unit 3 is composed of an electronic control unit (ECU).
  • the electronic control unit includes a processor such as a CPU (Central Processing Unit), a ROM (Read Only Memory) in which various vehicle control programs are stored, and a RAM (Random Access Memory) in which various vehicle control data are temporarily stored. It is composed by.
  • the processor is configured to expand a program designated from various vehicle control programs stored in the ROM onto the RAM and execute various processes in cooperation with the RAM.
  • the sensor 5 includes an acceleration sensor, a speed sensor, a gyro sensor, and the like.
  • the sensor 5 is configured to detect the traveling state of the vehicle 100 and output the traveling state information to the vehicle control unit 3.
  • the sensor 5 is a seating sensor that detects whether the driver is sitting in the driver's seat, a face orientation sensor that detects the direction of the driver's face, an external weather sensor that detects external weather conditions, and whether there is a person in the vehicle.
  • a human sensor for detecting may be further provided.
  • the camera 6 is a camera including an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary MOS).
  • the radar 7 is a millimeter wave radar, a microwave radar, a laser radar, or the like.
  • the camera 6 and/or the radar 7 is configured to detect a surrounding environment of the vehicle 100 (another vehicle, a pedestrian, a road shape, a traffic sign, an obstacle, etc.) and output the surrounding environment information to the vehicle control unit 3. ing.
  • the radar 7 can also detect an object such as a pedestrian around the vehicle 100.
  • the radar 7 may be configured to be able to receive radio waves transmitted from other communication devices.
  • the HMI 8 is composed of an input unit that receives an input operation from the driver and an output unit that outputs driving information and the like to the driver.
  • the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for changing over the operation mode of vehicle 100, and the like.
  • the output unit is a display that displays various traveling information.
  • the GPS 9 is configured to acquire the current position information of the vehicle 100 and output the acquired current position information to the vehicle control unit 3.
  • the wireless communication unit 10 receives information (for example, driving information and the like) about other vehicles around the vehicle 100 from the other vehicle and transmits information (for example, driving information and the like) about the vehicle 100 to the other vehicle. Configured (vehicle-to-vehicle communication).
  • the wireless communication unit 10 is configured to receive infrastructure information from infrastructure equipment such as a traffic light and a sign light, and transmit traveling information of the vehicle 100 to the infrastructure equipment (road-vehicle communication).
  • the vehicle 100 may communicate directly with another vehicle or infrastructure equipment, or may communicate via a wireless communication network.
  • the map information storage unit 11 is an external storage device such as a hard disk drive in which map information is stored, and is configured to output the map information to the vehicle control unit 3.
  • the information transmission device 40 includes an information transmission unit 401 and a transmission control unit 402.
  • the information transmission unit 401 includes, for example, a road surface drawing device including a laser light source and an optical deflection device that deflects laser light emitted from the laser light source, a laser transmission device that irradiates infrared lasers of various wave numbers, and a normal speaker. At least one of a directional speaker having a higher directivity and a radio wave transmitting device for transmitting a radio wave used for communication with a mobile communication terminal or the like is included.
  • the light deflection device is, for example, a movable mirror such as a MEMS (Micro Electro Mechanical Systems) mirror or a galvano mirror.
  • the road surface drawing device draws a light pattern on the road surface around the object by scanning the laser light.
  • the information transmitting unit 401 can transmit predetermined information to an object such as a pedestrian around the vehicle 100.
  • the information transmission unit 401 may include, for example, a vehicle body display provided on the vehicle 100.
  • the information transmission unit 401 causes the vehicle body display or the like to display predetermined information.
  • the vehicle body display may be provided on the front surface of the vehicle 100 or may be a display for displaying on the windshield, for example.
  • the transmission control unit 402 is composed of an electronic control unit (ECU).
  • the transmission control unit 402 is configured to control the information transmission unit 401.
  • the transmission control unit 402 is configured to control the road surface drawing device so as to irradiate the object with laser light, for example, based on the position information of the object.
  • the transmission control unit 402 and the vehicle control unit 3 may be configured by the same electronic control unit.
  • the information transmission unit 401 includes a plurality of devices (laser transmission device, directional speaker, radio wave transmission device, etc.), the transmission control unit 402 uses which device according to the situation around the vehicle 100. It is possible to determine whether or not to transmit the predetermined information.
  • the prediction unit 403 of the transmission control unit 402 is based on the information about the predicted route of the vehicle 100 (route information) generated by the vehicle control unit 3 and the information about the target object around the vehicle 100 detected by the detection unit 300. , It is determined whether there is an object (pedestrian, etc.) that can enter the expected course of the vehicle 100. In addition, the prediction unit 403 identifies the target person who is most likely to enter the predicted course of the vehicle 100.
  • the vehicle control unit 3 uses at least the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information, the map information, and the like. Generate one automatically.
  • the steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and control the steering device 13 based on the received steering control signal.
  • the brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal.
  • the accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and control the accelerator device 17 based on the received accelerator control signal.
  • the traveling of the vehicle 100 is automatically controlled by the vehicle system 1.
  • the vehicle control unit 3 when the vehicle 100 travels in the manual driving mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal and a brake control signal in accordance with the driver's manual operation on the accelerator pedal, the brake pedal and the steering wheel.
  • the steering control signal, the accelerator control signal, and the brake control signal are generated by the driver's manual operation, so that the traveling of the vehicle 100 is controlled by the driver.
  • the operation mode includes an automatic operation mode and a manual operation mode.
  • the automatic driving mode includes a fully automatic driving mode, an advanced driving support mode, and a driving support mode.
  • the vehicle system 1 In the fully automatic driving mode, the vehicle system 1 automatically performs all traveling controls such as steering control, brake control, and accelerator control, and the driver is not in a state where the vehicle 100 can be driven.
  • the vehicle system 1 In the advanced driving support mode, the vehicle system 1 automatically performs all traveling controls such as steering control, brake control, and accelerator control, and the driver does not drive the vehicle 100 although the vehicle 100 can be driven.
  • the vehicle system 1 In the driving support mode, the vehicle system 1 automatically performs a part of the traveling control among the steering control, the brake control, and the accelerator control, and the driver drives the vehicle 100 under the driving support of the vehicle system 1. On the other hand, in the manual driving mode, the vehicle system 1 does not automatically perform the traveling control, and the driver drives the vehicle 100 without the driving assistance of the vehicle system 1.
  • the driving mode of the vehicle 100 may be switched by operating the driving mode switch.
  • the vehicle control unit 3 sets the driving modes of the vehicle 100 to four driving modes (fully automatic driving mode, advanced driving support mode, driving support mode, manual driving mode) in accordance with the driver's operation of the driving mode changeover switch. ) Switch between.
  • the driving mode of the vehicle 100 is automatically set based on information about a travelable section in which the autonomous vehicle can travel or a travel-prohibited section in which the autonomous vehicle is prohibited from traveling, or information about an external weather condition. It may be switched.
  • the vehicle control unit 3 switches the operation mode of the vehicle 100 based on these pieces of information.
  • the driving mode of the vehicle 100 may be automatically switched by using a seating sensor, a face orientation sensor, or the like. In this case, the vehicle control unit 3 switches the driving mode of the vehicle 100 based on the output signals from the seating sensor and the face orientation sensor.
  • FIG. 3 is a vertical cross-sectional view showing a schematic configuration of the road surface drawing lamp 102 incorporated in the road surface drawing device when the information transmission unit 401 includes the road surface drawing device.
  • the road surface drawing lamp 102 is a lamp capable of drawing a road surface. As shown in FIG. 3, the road surface drawing lamp 102 includes a lamp body 111 having an opening on the vehicle front side, and a transparent front cover 112 attached so as to cover the opening of the lamp body 111. ..
  • the road surface drawing lamp 102 includes a light source unit 120 and a light distribution unit 130 that reflects light from the light source unit 120.
  • the light source unit 120 and the light distribution unit 130 are supported at predetermined positions in the lamp chamber 113 by the support plate 141.
  • the support plate 141 is attached to the lamp body 111 via an aiming screw 142.
  • the light source unit 120 includes a plurality (three in this example) of light sources 121, a heat sink 122, a plurality (four in this example) of lenses 123, and a condenser section 124.
  • the light source unit 120 is fixed to the front surface of the support plate 141.
  • Each light source 121 is electrically connected to the lamp control unit 4, which is one of the emission control units 402.
  • the light distribution unit 130 has a terminal portion 137 and a reflecting mirror 138.
  • the light distribution unit 130 has a positional relationship with the light source unit 120 so that the laser light emitted from the light source unit 120 can be reflected in front of the road surface drawing lamp 102 via the reflecting mirror 138.
  • the light distribution unit 130 is fixed to the tip of a protrusion 143 that protrudes forward from the front surface of the support plate 141.
  • the terminal portion 137 is electrically connected to the lamp control unit 4.
  • the road surface drawing lamp 102 is configured so that the optical axis can be adjusted in the horizontal direction and the vertical direction by rotating the aiming screw 142 and adjusting the posture of the support plate 141.
  • FIG. 4 is a side view of the light source unit 120 that constitutes the road surface drawing lamp 102.
  • the light source unit 120 includes a first light source 121a, a second light source 121b, a third light source 121c, a heat sink 122, a first lens 123a, and a second lens 123b. , A third lens 123c, a fourth lens 123d, and a condenser section 124.
  • the first light source 121a is a light source that emits red laser light R, and is composed of a light emitting element including a red laser diode.
  • the second light source 121b is composed of a green laser diode which emits the green laser light G
  • the third light source 121c is composed of a blue laser diode which emits the blue laser light B.
  • the first light source 121a, the second light source 121b, and the third light source 121c have a laser light emitting surface 125a, which is a light emitting surface, a laser light emitting surface 125b, and a laser light emitting surface 125c. They are arranged so as to be parallel to each other.
  • the light emitting element of each light source is not limited to the laser diode.
  • the first light source 121a to the third light source 121c are arranged so that their respective laser light emitting surfaces 125a to 125c face the front of the road surface drawing lamp 102, and are attached to the heat sink 122.
  • the heat sink 122 is formed of a material having a high thermal conductivity such as aluminum, and is attached to the light source unit 120 in a state where the rear surface of the heat sink 122 is in contact with the support plate 141 (see FIG. 3).
  • the first lens 123a to the fourth lens 123d are, for example, collimating lenses.
  • the first lens 123a is provided on the optical path of the red laser light R between the first light source 121a and the condensing unit 124, and converts the red laser light R emitted from the first light source 121a into parallel light. Then, the light is emitted to the light collecting unit 124.
  • the second lens 123b is provided on the optical path of the green laser light G between the second light source 121b and the condensing unit 124, and converts the green laser light G emitted from the second light source 121b into parallel light. Then, the light is emitted to the light collecting unit 124.
  • the third lens 123c is provided on the optical path of the blue laser light B between the third light source 121c and the condensing unit 124, and converts the blue laser light B emitted from the third light source 121c into parallel light. Then, the light is emitted to the light collecting unit 124.
  • the fourth lens 123d is fitted in an opening provided in the upper part of the housing 126 of the light source unit 120.
  • the fourth lens 123d is provided on the optical path of the white laser light W (described later) between the condensing unit 124 and the light distributing unit 130 (see FIG. 3), and the white laser light emitted from the condensing unit 124. W is converted into parallel light and emitted to the light distribution unit 130.
  • the condensing unit 124 collects the red laser light R, the green laser light G, and the blue laser light B to generate the white laser light W.
  • the condensing unit 124 has a first dichroic mirror 124a, a second dichroic mirror 124b, and a third dichroic mirror 124c.
  • the first dichroic mirror 124a is a mirror that reflects at least red light and transmits blue light and green light, and reflects the red laser light R that has passed through the first lens 123a toward the fourth lens 123d.
  • the second dichroic mirror 124b is a mirror that reflects at least green light and transmits blue light, and is arranged so as to reflect the green laser light G that has passed through the second lens 123b toward the fourth lens 123d.
  • the third dichroic mirror 124c is a mirror that reflects at least blue light, and is arranged so as to reflect the blue laser light B that has passed through the third lens 123c toward the fourth lens 123d.
  • first dichroic mirror 124a to the third dichroic mirror 124c are arranged so that the optical paths of the laser beams reflected by them are parallel to each other and that the respective laser beams are collected and incident on the fourth lens 123d.
  • the positional relationship of is defined.
  • the first dichroic mirror 124a to the third dichroic mirror 124c are arranged such that the regions of the dichroic mirrors 124a to 124c where the laser light strikes (the reflection points of the laser light) are aligned.
  • the blue laser light B emitted from the third light source 121c is reflected by the third dichroic mirror 124c and travels to the second dichroic mirror 124b side.
  • the green laser light G emitted from the second light source 121b is reflected by the second dichroic mirror 124b toward the first dichroic mirror 124a side and overlaps with the blue laser light B transmitted through the second dichroic mirror 124b. Can be matched.
  • the red laser light R emitted from the first light source 121a is reflected by the first dichroic mirror 124a toward the fourth lens 123d side, and the blue laser light B and the green laser light which have passed through the first dichroic mirror 124a. It is superimposed on the collective light of light G. As a result, the white laser light W is formed, and the formed white laser light W passes through the fourth lens 123d and travels toward the light distribution unit 130.
  • the first light source 121a that emits the red laser light R is arranged at the position closest to the condensing unit 124, and the third light source 121c that emits the blue laser light B. Is arranged at the farthest position from the condensing part 124, and the second light source 121b for emitting the green laser light G is arranged at the intermediate position. That is, the first light source 121a to the third light source 121c are arranged at positions closer to the condensing part 124 as the wavelength of the emitted laser light is longer.
  • FIG. 5 is a perspective view of the light distribution unit 130 forming the road surface drawing lamp 102, as observed from the front side.
  • the light distribution unit 130 includes a base 131, a first rotating body 132, a second rotating body 133, a first torsion bar 134, a second torsion bar 135, and a permanent member. It has magnets 136a and 136b, a terminal portion 137, and a reflecting mirror 138.
  • the light distribution unit 130 is composed of, for example, a galvanometer mirror.
  • the light distribution unit 130 may be configured by, for example, a MEMS (MEMS) mirror.
  • MEMS MEMS
  • the base 131 is a frame body having an opening 131a in the center, and is fixed to the protrusion 143 (see FIG. 3) in a state of being inclined in the front-rear direction of the road surface drawing lamp 102.
  • the first rotating body 132 is arranged in the opening 131 a of the base 131.
  • the first rotating body 132 is a frame body having an opening 132a in the center thereof, and a first torsion bar 134 extending from the lower rear side to the upper front side of the road surface drawing lamp 102 allows the first rotary body 132 to move to the left and right (vehicle) with respect to the base 131. It is supported rotatably in the width direction.
  • the second rotating body 133 is arranged in the opening 132 a of the first rotating body 132.
  • the second rotating body 133 is a rectangular flat plate, and is supported by a second torsion bar 135 extending in the vehicle width direction so as to be vertically (vertically) rotatable with respect to the first rotating body 132. ing.
  • the second rotating body 133 rotates left and right together with the first rotating body 132 when the first rotating body 132 rotates left and right with the first torsion bar 134 as a rotation axis.
  • a reflecting mirror 138 is provided on the surface of the second rotating body 133 by plating or vapor deposition.
  • the base 131 is provided with a pair of permanent magnets 136 a at positions orthogonal to the extending direction of the first torsion bar 134.
  • the permanent magnet 136a forms a magnetic field orthogonal to the first torsion bar 134.
  • a first coil (not shown) is wired in the first rotating body 132, and the first coil is connected to the lamp control unit 4 via the terminal portion 137.
  • the base 131 is provided with a pair of permanent magnets 136b at positions orthogonal to the extending direction of the second torsion bar 135.
  • the permanent magnet 136b forms a magnetic field orthogonal to the second torsion bar 135.
  • a second coil (not shown) is wired on the second rotating body 133, and the second coil is connected to the lamp control unit 4 via the terminal portion 137.
  • the first rotating body 132 and the second rotating body 133 are reciprocally rotated to the left and right, and the second rotating body is rotated.
  • the moving body 133 independently reciprocates up and down. This causes the reflecting mirror 138 to reciprocate vertically and horizontally.
  • the positional relationship between the light source unit 120 and the light distribution unit 130 is determined so that the laser light emitted from the light source unit 120 is reflected by the reflecting mirror 138 in front of the road surface drawing lamp 102.
  • the light distribution unit 130 scans the front of the vehicle 100 with laser light by the reciprocating rotation of the reflecting mirror 138.
  • the light distribution unit 130 scans the area of the drawing pattern to be formed with laser light.
  • the laser beam is applied to the drawing pattern forming area, and a predetermined drawing pattern is formed in front of the vehicle 100.
  • FIG. 6 is a flowchart showing a process until the predetermined information is transmitted to the object.
  • FIG. 7 is a schematic diagram for explaining how predetermined information is transmitted to an object that is an obstacle when the vehicle 100 makes a left turn.
  • the vehicle 100 is scheduled to turn left at the intersection I.
  • the information transmission unit 401 includes a road surface drawing device.
  • the vehicle control unit 3 determines a course (anticipated course) in which the vehicle 100 is expected to travel (STEP 01). Specifically, the vehicle control unit 3 includes the destination information input by the driver of the vehicle 100, the current position information acquired by the GPS 9, the information about the other vehicles around the vehicle 100 received by the wireless communication unit 10, and the map. The expected course of the vehicle 100 is determined based on the map information and the like stored in the information storage unit 11. In the first operation example, as illustrated in FIG. 7, the vehicle 100 is scheduled to turn left at the intersection I. Therefore, the vehicle control unit 3 determines that the vehicle 100 is going to turn left at the intersection I and pass the pedestrian crossing Z1.
  • the detection unit 300 transmits information about the object (pedestrian, etc.) around the vehicle 100 detected by the detection unit 300 to the transmission control unit 402.
  • the detection unit 300 detects a pedestrian P1 located near the pedestrian crossing Z1, a pedestrian P2 located near the pedestrian crossing Z2, and a pedestrian P3 located farther from the vehicle 100 than the pedestrian P1.
  • STEP02 may be performed before STEP01.
  • the prediction unit 403 of the transmission control unit 402 predicts the vehicle 100 based on the information about the predicted route of the vehicle 100 (route information) and the information about the target object around the vehicle 100 detected by the detection unit 300. Judge whether there is an object (pedestrian, etc.) that can enter the route. When there is a pedestrian or the like that can enter the expected course of the vehicle 100 (YES in STEP03), the process proceeds to STEP04. In FIG. 7, a pedestrian P1 and a pedestrian P3 are about to cross a pedestrian crossing Z1. Therefore, the prediction unit 403 determines that the pedestrian P1 and the pedestrian P3 may enter the predicted route of the vehicle 100.
  • the prediction unit 403 determines that the pedestrian P2 may not enter the predicted course of the vehicle 100. If there is no target person who can enter the predicted course of the vehicle 100 (NO in STEP 03), this process ends.
  • the prediction unit 403 can enter the predicted route of the vehicle 100 based on the information about the predicted route of the vehicle 100 (route information) and the information about the object around the vehicle 100 detected by the detection unit 300. Identify the most likely target.
  • the transmission control unit 402 generates an instruction signal for transmitting predetermined information to the target person identified by the prediction unit 403.
  • the pedestrian P3 is located farther from the vehicle 100 than the pedestrian P1. Therefore, the pedestrian P1 is the target person who is most likely to enter the predicted course of the vehicle 100. Therefore, the transmission control unit 402 generates an instruction signal for transmitting predetermined information to the pedestrian P1.
  • the transmission control unit 402 controls the information transmission unit 401 based on the generated instruction signal.
  • the information transmission unit 401 transmits the first information to the target person identified by the prediction unit 403 (STEP 05).
  • the first information is information for transmitting some information from the vehicle 100 or for causing a pedestrian or the like to recognize that the information is being transmitted.
  • light as the first information is emitted from the information transmitting unit 401 toward the face of the pedestrian P1.
  • the emitted light is preferably weak enough to be visually recognized by a person.
  • the light hits the face of the pedestrian P1 and a circle C is projected.
  • the information transmission unit 401 transmits the second information to the target person specified by the prediction unit 403 (STEP 06).
  • the second information is a message or the like from the vehicle 100 to a pedestrian or the like.
  • the information transmission device 40 draws predetermined information on the pedestrian crossing Z1. In the example illustrated in FIG. 7, the information transmission device 40 draws a symbol S on the pedestrian P1 to warn the pedestrian P1 not to cross the pedestrian crossing Z1.
  • the pedestrian P1 can recognize that the symbol S is information transmitted to the pedestrian P1 because the pedestrian P1 itself is illuminated with light. As a result, the pedestrian P1 does not have to cross the pedestrian crossing Z1. Also, unnecessary information is not transmitted to the pedestrians P2 to P3.
  • the vehicle 100 can pass the pedestrian crossing Z1 without contacting the pedestrian P1. When STEP 06 is executed, this process ends.
  • the information transmission unit 401 provides the pedestrian P1 who is the pedestrian around the vehicle 100 and who has the highest possibility of entering the predicted course of the vehicle 100 as the first information. Irradiate with light.
  • the pedestrian P1 can recognize the existence of the vehicle 100. Further, the pedestrian P1 can recognize that some information is transmitted from the vehicle 100.
  • the second information is displayed near the traveling direction of the pedestrian P1, so that the pedestrian P1 receives the message (second information) transmitted from the vehicle 100 to the pedestrian P1. Can be easily recognized.
  • the pedestrian P1 is irradiated with the light as the first information. Therefore, the pedestrian P1 tries to transmit some information to the pedestrian P1 toward the vehicle 100. Can be recognized.
  • FIG. 8 is a schematic diagram for explaining how predetermined information is transmitted to an object that is an obstacle when the vehicle 100 turns left.
  • the second operation example is different from the first operation example in that pedestrians P4 to P6 wear glasses GL4 to GL6 with a communication function.
  • the glasses with communication function GL4 to GL6 are provided with two antennas. Radio waves are emitted from the two antennas.
  • the detection unit 300 can receive the radio waves transmitted from the two antennas.
  • the information transmission unit 401 includes a road surface drawing device.
  • the vehicle control unit 3 determines that the vehicle 100 is going to turn left at the intersection I and pass the pedestrian crossing Z1 (STEP 01 in FIG. 6).
  • the detection unit 300 also detects a pedestrian P4 near the pedestrian crossing Z1, a pedestrian P5 near the pedestrian crossing Z2, and a pedestrian P6 located farther from the vehicle 100 than the pedestrian P4. (STEP 02 in FIG. 6). Therefore, the prediction unit 403 of the transmission control unit 402 determines that the pedestrian P4 and the pedestrian P6 may enter the predicted course of the vehicle 100 (YES in STEP 03 of FIG. 6 ).
  • the prediction unit 403 determines that the pedestrian P5 is unlikely to enter the predicted course of the vehicle 100.
  • the prediction unit 403 determines that the target person who is most likely to enter the predicted course of the vehicle 100 is the pedestrian P4 (STEP 04 in FIG. 6).
  • the transmission control unit 402 generates an instruction signal for transmitting predetermined information to the pedestrian P4.
  • the vehicle control unit 3 receives the radio wave information transmitted from the antennas of the communication function glasses GL4 to GL6 worn by the pedestrians P4 to P6.
  • the vehicle control unit 3 determines the direction of the faces of the pedestrians P4 to P6 based on the received radio wave information, and specifies the direction viewed by the pedestrians P4 to P6.
  • the vehicle control unit 3 transmits information regarding the direction in which the pedestrian is looking to the transmission control unit 402.
  • the transmission control unit 402 controls the pedestrians P4 to P6 based on the radio wave information transmitted from the antennas of the communication function glasses GL4 to GL6 worn by the pedestrians P4 to P6. You may specify the viewing direction.
  • the transmission control unit 402 controls the information transmission unit 401 to change the emission direction of light based on the information including the direction in which the pedestrian is looking, which is acquired from the vehicle control unit 3. That is, the transmission control unit 402 controls the information transmission unit 401 to change the emission direction of light according to the direction in which the pedestrian is facing.
  • the information transmission unit 401 irradiates the glasses with communication function GL4 to GL6 with light as the first information. The irradiated light is reflected by the glasses GL4 to GL6 with a communication function, and as a result, the pedestrian recognizes the light (STEP 05 in FIG. 6).
  • the vehicle control unit 3 determines that the pedestrian P4 is facing leftward and the pedestrians P5 to P6 are facing backward. Since the pedestrian P4 is the target person who is most likely to enter the predicted course of the vehicle 100, the information transmission unit 401 irradiates the spectacles GL4 with communication function, which the pedestrian P4 wears, with light. Then, the pedestrian P4 recognizes the light and looks at the direction of the vehicle 100, which is the light emission source. As illustrated in FIG. 8, the information transmitting unit 401 draws the symbol S as the second information on the pedestrian crossing Z1 (STEP 06 in FIG. 6). Thereby, the pedestrian P4 can recognize the symbol S. As a result, the pedestrian P4 does not have to cross the pedestrian crossing Z1. Also, unnecessary information is not transmitted to the pedestrians P5 to P6. The vehicle 100 can pass through the pedestrian crossing Z1 without contacting the pedestrian P4.
  • the information transmission unit 401 emits light in the direction in which the pedestrian P4 is looking. Therefore, the pedestrian P4 can easily visually recognize the emitted light.
  • FIG. 9 is a schematic diagram for explaining how predetermined information is transmitted to an obstacle which is an obstacle when the vehicle 100 turns left.
  • the third operation example is different from the first operation example in that pedestrians P7 to P9 carry communication terminals TD7 to TD9 capable of communicating with the vehicle 100.
  • the communication terminals TD7 to TD9 are, for example, smartphones.
  • the information transmission unit 401 includes a road surface drawing device and a radio wave transmission device.
  • the vehicle control unit 3 determines that the vehicle 100 is going to turn left at the intersection I and pass the pedestrian crossing Z1 (STEP 01 in FIG. 6). Further, the detection unit 300 detects a pedestrian P7 near the pedestrian crossing Z1, a pedestrian P8 near the pedestrian crossing Z2, and a pedestrian P9 located farther from the vehicle 100 than the pedestrian P7. (STEP 02 in FIG. 6).
  • the prediction unit 403 determines that the pedestrian P7 and the pedestrian P9 may enter the predicted course of the vehicle 100 (YES in STEP 03 of FIG. 6 ). On the other hand, the prediction unit 403 determines that there is no possibility that the pedestrian P8 will enter the predicted route of the vehicle 100. Then, the vehicle control unit 3 determines that the target person who is most likely to enter the expected course of the vehicle 100 is the pedestrian P7 (STEP 04 in FIG. 6). The transmission control unit 402 generates an instruction signal for transmitting predetermined information to the pedestrian P7.
  • the transmission control unit 402 controls the information transmission unit 401 based on the generated instruction signal.
  • the information transmission unit 401 transmits a radio wave as the first information to the communication terminal TD7 carried by the pedestrian P7 (STEP 05 in FIG. 6).
  • the communication terminal TD7 that has received the radio wave vibrates as illustrated in FIG.
  • the pedestrian P7 confirms the surroundings of the pedestrian P7 itself.
  • the information transmission unit 401 irradiates the road surface near the pedestrian P7, for example, the pedestrian crossing Z1 with light as the second information (STEP 06 in FIG. 6).
  • the symbol S is drawn on the crosswalk Z1.
  • the pedestrian P7 can recognize the symbol S.
  • the pedestrian P7 does not have to cross the pedestrian crossing Z1.
  • unnecessary information is not transmitted to the pedestrians P8 to P9.
  • the vehicle 100 can pass the pedestrian crossing Z1 without contacting the pedestrian P7.
  • FIG. 10 is a schematic diagram for explaining how predetermined information is transmitted to an obstacle which is an obstacle when the vehicle 100 turns left.
  • the description of the same parts as those in the first operation example will be omitted.
  • the information transmission unit 401 includes a road surface drawing device and a directional speaker.
  • the vehicle control unit 3 determines that the vehicle 100 is going to turn left at the intersection I and pass the pedestrian crossing Z1 (STEP01 in FIG. 6).
  • the detection unit 300 detects a pedestrian P10 near the pedestrian crossing Z1, a pedestrian P11 near the pedestrian crossing Z2, and a pedestrian P12 located farther from the vehicle 100 than the pedestrian P10. (STEP 02 in FIG. 6).
  • the prediction unit 403 determines that the pedestrian P10 and the pedestrian P12 may enter the predicted course of the vehicle 100 (YES in STEP 03 of FIG. 6 ). On the other hand, the prediction unit 403 determines that there is no possibility that the pedestrian P11 will enter the predicted route of the vehicle 100. Then, the vehicle control unit 3 determines that the target person who is most likely to enter the predicted course of the vehicle 100 is the pedestrian P10 (STEP 04 in FIG. 6). The transmission control unit 402 generates an instruction signal for transmitting predetermined information to the pedestrian P10.
  • the transmission control unit 402 controls the information transmission unit 401 based on the generated instruction signal.
  • the information transmitting unit 401 outputs a sound as the first information to the pedestrian P10 from the directional speaker of the information transmitting unit 401 (STEP 05 in FIG. 6).
  • the pedestrian P10 can recognize the voice, but the pedestrians P11 to P12 cannot recognize the voice. Therefore, the pedestrian P10 recognizes the sound and looks at the direction of the vehicle 100 that is the source of the sound.
  • the information transmitting unit 401 irradiates the pedestrian P10, for example, the pedestrian crossing Z1 with light as the second information (STEP 06 in FIG. 6).
  • the symbol S is drawn on the pedestrian crossing Z1.
  • the pedestrian P10 can recognize the symbol S.
  • the pedestrian P10 does not have to cross the pedestrian crossing Z1.
  • pedestrians P11 to P12 do not have to transmit unnecessary information.
  • the vehicle 100 can pass the pedestrian crossing Z1 without contacting the pedestrian P10.
  • light may be intermittently applied to the pedestrian P1.
  • the energy amount of the output light and the energy amount of the light emitted to the pedestrian P1 can be limited. Therefore, the energy consumption of light can be reduced, and the pedestrian P1 does not need to place an excessive burden on the eyes.
  • the pedestrians P4 to P6 wear glasses GL4 to GL6 with a communication function, but not limited to this.
  • a device other than glasses may be used as long as it is a wearable device with a communication function.
  • the present invention is not limited to this example.
  • a sound such as music or voice may flow from the communication terminal TD7 without vibrating the communication terminal TD7.
  • sound such as music may flow from the communication terminal TD7 while vibrating the communication terminal TD7.
  • the second information has been described by using the example of being transmitted to the pedestrian by drawing the road surface, but the present invention is not limited to this.
  • the second information may be transmitted by sound such as voice, or may be transmitted to a pedestrian by displaying a message on a display unit of an electronic communication device such as a smartphone.
  • the prediction unit 403 is included in the transmission control unit 402, but the present invention is not limited to this example.
  • the prediction unit 403 may be included in the vehicle control unit 3, for example.
  • STEP05 and STEP06 are executed has been described, but the present invention is not limited to this.
  • STEP06 does not necessarily have to be executed. That is, the second information does not necessarily have to be transmitted to the pedestrian.
  • the road surface rendering device of the information transmission unit 401 may include a light source that emits infrared rays.
  • the information transmitter 401 may emit infrared rays toward the pedestrian. When the infrared ray hits the pedestrian, the pedestrian feels heat and can recognize the first information.
  • the present invention is not limited to this.
  • the first information may be transmitted to the pedestrian by appropriately combining a plurality of light, heat, sound, and vibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Traffic Control Systems (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A vehicular communication system (2) that comprises: a detection part (300) that can detect target persons in the surroundings of a vehicle; a prediction part (403) that, on the basis of route information that has been acquired from a vehicle control part (3), specifies the target persons that would most likely enter a predicted route for the vehicle; and an information transmission part (401) that communicates first information such that the first information can be recognized by the specified target persons by light, heat, sound, and/or vibration.

Description

車両用コミュニケーションシステムVehicle communication system
 本発明は、車両用コミュニケーションシステムに関する。 The present invention relates to a vehicle communication system.
 現在、自動車の自動運転技術の研究が各国で盛んに行われており、自動運転モードで車両(以下、「車両」は自動車のことを指す。)が公道を走行することができるための法整備が各国で検討されている。ここで、自動運転モードでは、車両システムが車両の走行を自動的に制御する。具体的には、自動運転モードでは、車両システムは、カメラ、センサ及びレーダ等から得られる各種情報に基づいてステアリング制御(車両の進行方向の制御)、ブレーキ制御及びアクセル制御(車両の制動、加減速の制御)のうちの少なくとも1つを自動的に行う。一方、以下に述べる手動運転モードでは、従来型の車両の多くがそうであるように、運転者が車両の走行を制御する。具体的には、手動運転モードでは、運転者の操作(ステアリング操作、ブレーキ操作、アクセル操作)に従って車両の走行が制御され、車両システムはステアリング制御、ブレーキ制御及びアクセル制御を自動的に行わない。尚、車両の運転モードとは、一部の車両のみに存在する概念ではなく、自動運転機能を有さない従来型の車両も含めた全ての車両において存在する概念であって、例えば、車両制御方法等に応じて分類される。 Currently, research on automatic driving technology for automobiles is actively carried out in various countries, and a law is established to enable vehicles (hereinafter, “vehicles” refer to automobiles) to travel on public roads in automatic driving mode. Is being considered in each country. Here, in the automatic driving mode, the vehicle system automatically controls the traveling of the vehicle. Specifically, in the automatic driving mode, the vehicle system controls the steering control (control of the traveling direction of the vehicle), the brake control, and the accelerator control (vehicle braking, acceleration) based on various information obtained from the camera, the sensor, the radar, and the like. At least one of (control of deceleration) is automatically performed. On the other hand, in the manual driving mode described below, the driver controls the traveling of the vehicle, as is the case with most conventional vehicles. Specifically, in the manual driving mode, the traveling of the vehicle is controlled in accordance with the driver's operation (steering operation, braking operation, accelerator operation), and the vehicle system does not automatically perform steering control, brake control and accelerator control. It should be noted that the driving mode of a vehicle is not a concept that exists only in some vehicles, but a concept that exists in all vehicles including conventional vehicles that do not have an automatic driving function. It is classified according to the method.
 例えば、自動運転車の前方において横断歩道を渡ろうとしている歩行者が存在する場合、当該歩行者は、当該自動運転車が歩行者を認識していることが分からなければ、横断歩道を渡ることができるか不安に感じてしまう。また、自動運転車の後方を走行中の緊急車両(救急車、消防車又はパトカー等)の運転者は、当該自動運転車が緊急車両を認識していることが分からなければ、当該自動運転車を追い越してよいか不安に感じてしまう。 For example, if there is a pedestrian trying to cross a pedestrian crossing in front of an autonomous vehicle, the pedestrian should cross the pedestrian crossing unless he/she knows that the autonomous vehicle recognizes the pedestrian. I feel uneasy whether I can do it. In addition, the driver of an emergency vehicle (ambulance, fire engine, police car, etc.) traveling behind the self-driving car may not drive the self-driving car if it does not know that the self-driving car recognizes the emergency vehicle. I feel uneasy about overtaking.
 一方、特許文献1には、先行車に後続車が自動追従走行した自動追従走行システムが開示されている。当該自動追従走行システムでは、先行車と後続車の各々が照明装置を備えており、先行車と後続車との間に他車が割り込むことを防止するための文字情報が先行車の照明装置に表示されると共に、自動追従走行である旨を示す文字情報が後続車の照明装置に表示される。 On the other hand, Patent Document 1 discloses an automatic following system in which a following vehicle automatically follows a preceding vehicle. In the automatic following traveling system, each of the preceding vehicle and the following vehicle is provided with a lighting device, and character information for preventing another vehicle from interrupting between the preceding vehicle and the following vehicle is provided in the lighting device of the preceding vehicle. In addition to being displayed, the character information indicating that the vehicle is automatically following is displayed on the lighting device of the following vehicle.
日本国特開平9-277887号公報Japanese Unexamined Patent Publication No. 9-277887
 しかしながら、特許文献1では、車両の近くにいる全ての車両や人に対してコミュニケーションを取るため、特定の相手とコミュニケーションを取ることができない。 However, in Patent Document 1, since communication is performed with all vehicles and people near the vehicle, it is not possible to communicate with a specific opponent.
 本開示は、車両の周囲にいる特定の相手とコミュニケーションを取ることが可能な車両用コミュニケーションシステムを提供することを目的とする。 The present disclosure aims to provide a vehicle communication system capable of communicating with a specific partner around the vehicle.
 上記の目的を達成するための一態様に係る車両用コミュニケーションシステムは、
 自車の周囲の対象者を検出可能な検出部と、
 車両制御部から取得した進路情報に基づいて、自車両の予想進路に進入する可能性の最も高い対象者を特定する予想部と、
 特定した前記対象者が、光、熱、音、振動の少なくとも一つで認識できるように第一情報を伝える情報発信部と、を備える。
A vehicle communication system according to an aspect for achieving the above object,
A detection unit that can detect the target person around the vehicle,
Based on the route information acquired from the vehicle control unit, a prediction unit that identifies the target person who is most likely to enter the predicted route of the vehicle,
An information transmission unit that transmits the first information so that the identified target person can be recognized by at least one of light, heat, sound, and vibration.
 上記構成に係る車両用コミュニケーションシステムによれば、自車両の予想進路に進入する可能性の最も高い対象者を特定した後、情報発信部は、当該特定された対象者が認識できるように第一情報を伝達する。
 このように、上記構成によれば、車両の周囲にいる特定の相手とコミュニケーションを取ることが可能な車両用コミュニケーションシステムを提供することができる。
According to the vehicle communication system having the above configuration, after identifying the target person who is most likely to enter the expected course of the host vehicle, the information transmitting unit makes the identified target person recognize the first target person. Communicate information.
As described above, according to the above configuration, it is possible to provide a vehicle communication system capable of communicating with a specific partner around the vehicle.
 また、上記の目的を達成するための一態様に係る車両用コミュニケーションシステムにおいて、
 前記情報発信部は、前記第一情報とは異なる第二情報を前記対象者に伝達する。
Further, in a vehicle communication system according to an aspect for achieving the above object,
The information transmission unit transmits second information different from the first information to the target person.
 上記構成に係る車両用コミュニケーションシステムによれば、特定の対象者は、第二情報を認識することで、車両から伝達されるメッセージ等の情報を認識することができる。 According to the vehicle communication system having the above configuration, the specific target person can recognize the information such as the message transmitted from the vehicle by recognizing the second information.
 また、上記の目的を達成するための一態様に係る車両用コミュニケーションシステムにおいて、
 前記情報発信部は、前記対象者に対して光を出射することで第一情報を伝える。
Further, in a vehicle communication system according to an aspect for achieving the above object,
The information transmission unit transmits the first information to the target person by emitting light.
 上記構成に係る車両用コミュニケーションシステムによれば、対象者に対して光が出射されるので、対象者はより確実に第一情報を認識することができる。 According to the vehicle communication system having the above configuration, light is emitted to the target person, so that the target person can more reliably recognize the first information.
 また、上記の目的を達成するための一態様に係る車両用コミュニケーションシステムにおいて、
 前記情報発信部は、前記対象者に対して断続的に光を照射する。
Further, in a vehicle communication system according to an aspect for achieving the above object,
The information transmission unit intermittently irradiates the target person with light.
 上記構成に係る車両用コミュニケーションシステムによれば、情報発信部から出力される光のエネルギー量や対象者に対して出射される光のエネルギー量を制限することができる。したがって、光の消費エネルギー量を減少させることができ、かつ対象者の目に過度な負担をかけずに済む。 According to the vehicle communication system having the above configuration, it is possible to limit the amount of light energy output from the information transmission unit and the amount of light energy emitted to the target person. Therefore, the energy consumption of light can be reduced, and the subject's eyes can be prevented from being overloaded.
 また、上記の目的を達成するための一態様に係る車両用コミュニケーションシステムにおいて、
 前記情報発信部は、前記車両制御部から取得した前記対象者が見ている方向を含む情報に基づいて、前記対象者が見ている方向に向けて光を出射する。
Further, in a vehicle communication system according to an aspect for achieving the above object,
The information transmission unit emits light in the direction in which the target person is looking, based on the information including the direction in which the target person is looking acquired from the vehicle control unit.
 上記構成に係る車両用コミュニケーションシステムによれば、情報発信部は、対象者が見ている方向に向けて光を出射する。したがって、対象者は出射される光を容易に視認することができる。 According to the vehicle communication system having the above configuration, the information transmitting unit emits light in the direction in which the target person is looking. Therefore, the subject can easily visually recognize the emitted light.
 また、上記の目的を達成するための一態様に係る車両用コミュニケーションシステムにおいて、
 前記情報発信部は、前記対象者が携帯可能な通信端末と通信可能であり、
 前記情報発信部は、前記通信端末から音または振動の少なくとも一つを生じさせるように構成される。
Further, in a vehicle communication system according to an aspect for achieving the above object,
The information transmission unit is capable of communicating with a communication terminal that the target person can carry,
The information transmission unit is configured to generate at least one of sound and vibration from the communication terminal.
 上記構成に係る車両用コミュニケーションシステムによれば、情報発信部は、対象者が携帯している通信端末から音または振動の少なくとも一つを生じさせるように構成されている。したがって、特定の相手とだけコミュニケーションを取ることができる。 According to the vehicle communication system having the above configuration, the information transmission unit is configured to generate at least one of sound and vibration from the communication terminal carried by the subject. Therefore, it is possible to communicate only with a specific person.
 また、上記の目的を達成するための一態様に係る車両用コミュニケーションシステムにおいて、
 前記情報発信部は、前記対象者に向けて音を伝達させる指向性スピーカを含む。
Further, in a vehicle communication system according to an aspect for achieving the above object,
The information transmission unit includes a directional speaker that transmits sound toward the target person.
 上記構成に係る車両用コミュニケーションシステムによれば、情報発信部は指向性スピーカを含むため、音声等で特定の対象者に情報を伝達することができる。したがって、特定の相手とだけコミュニケーションを取ることができる。 According to the vehicle communication system having the above configuration, since the information transmission unit includes the directional speaker, it is possible to transmit information to a specific target person by voice or the like. Therefore, it is possible to communicate only with a specific person.
 本開示によれば、車両の周囲にいる特定の相手とコミュニケーションを取ることが可能な車両用コミュニケーションシステムを提供することができる。 According to the present disclosure, it is possible to provide a vehicle communication system capable of communicating with a specific partner around the vehicle.
図1Aは、本実施形態に係る車両用コミュニケーションシステムを備えた車両の上面図である。FIG. 1A is a top view of a vehicle including the vehicle communication system according to the present embodiment. 図1Bは、図1Aに示す車両の側面図である。1B is a side view of the vehicle shown in FIG. 1A. 図2は、本実施形態に係る車両用コミュニケーションシステムのブロック図である。FIG. 2 is a block diagram of the vehicle communication system according to the present embodiment. 図3は、路面描画ランプの垂直断面図である。FIG. 3 is a vertical sectional view of the road surface drawing lamp. 図4は、路面描画ランプの光源ユニットの構成を示す側面図である。FIG. 4 is a side view showing the configuration of the light source unit of the road surface drawing lamp. 図5は、路面描画ランプの配光部の構成を示す斜視図である。FIG. 5 is a perspective view showing the configuration of the light distribution unit of the road surface drawing lamp. 図6は、対象物に所定の情報を伝達するまでの処理を示すフローチャートである。FIG. 6 is a flowchart showing a process until the predetermined information is transmitted to the object. 図7は、車両が左折する時に障害となる対象物へ所定の情報を伝達する様子を説明するための模式図である。FIG. 7 is a schematic diagram for explaining how predetermined information is transmitted to an object that becomes an obstacle when the vehicle turns left. 図8は、車両が左折する時に障害となる対象物へ所定の情報を伝達する様子を説明するための模式図である。FIG. 8 is a schematic diagram for explaining how predetermined information is transmitted to an object that is an obstacle when the vehicle turns left. 図9は、車両が左折する時に障害となる対象物へ所定の情報を伝達する様子を説明するための模式図である。FIG. 9 is a schematic diagram for explaining how predetermined information is transmitted to an object that becomes an obstacle when the vehicle turns left. 図10は、車両が左折する時に障害となる対象物へ所定の情報を伝達する様子を説明するための模式図である。FIG. 10 is a schematic diagram for explaining how predetermined information is transmitted to an object that is an obstacle when the vehicle turns left.
 以下、本開示の実施形態(以下、本実施形態という。)について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。 Hereinafter, an embodiment of the present disclosure (hereinafter referred to as the present embodiment) will be described with reference to the drawings. It should be noted that members having the same reference numerals as those already described in the description of the present embodiment will not be described for convenience of description. In addition, the dimensions of each member shown in the drawings may be different from the actual dimensions of each member for convenience of description.
 また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」、「上下方向」について適宜言及する。これらの方向は、図1Aおよび図1Bに示す車両100について設定された相対的な方向である。ここで、「上下方向」は、「上方向」及び「下方向」を含む方向である。「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。 In addition, in the description of the present embodiment, for convenience of description, “horizontal direction”, “front-back direction”, and “vertical direction” are referred to as appropriate. These directions are relative directions set for vehicle 100 shown in FIGS. 1A and 1B. Here, the “vertical direction” is a direction including “upward direction” and “downward direction”. The “front-rear direction” is a direction including the “front direction” and the “rear direction”. The “left-right direction” is a direction including the “left direction” and the “right direction”.
 本実施形態に係る情報発信装置40を備えた車両100について以下に説明する。図1Aは、車両100の上面図を例示している。図1Bは、車両100の左側面図を例示している。車両100は、自動運転モードで走行可能な車両であって、情報発信装置40を備える。情報発信装置40は、情報発信部401と、発信制御部402とを備える(図2参照)。情報発信装置40は、車両100の車体ルーフ100A上に配置されており、車両100の外部に向けて光、赤外線レーザ、音、電波等を発信するように構成されている。 A vehicle 100 equipped with the information transmission device 40 according to the present embodiment will be described below. FIG. 1A illustrates a top view of vehicle 100. FIG. 1B illustrates a left side view of the vehicle 100. The vehicle 100 is a vehicle that can travel in the automatic driving mode and includes the information transmission device 40. The information transmission device 40 includes an information transmission unit 401 and a transmission control unit 402 (see FIG. 2). The information transmission device 40 is arranged on the vehicle body roof 100A of the vehicle 100, and is configured to emit light, infrared laser, sound, radio waves and the like to the outside of the vehicle 100.
 尚、本実施形態では、単一の情報発信装置40が車体ルーフ100A上に配置されているが、情報発信装置40は、車両100を基準とした任意の方向に存在する対象物に向けて光パターンを照射することが可能である限りにおいて、数、配置、形状等は特に限定されない。例えば、情報発信装置40が、4つの路面描画装置を備える場合、路面描画装置のそれぞれが左側ヘッドランプ20L、右側ヘッドランプ20R、左側リアコンビネーションランプ30L、右側リアコンビネーションランプ30R内に配置されてもよい。さらに、路面描画装置が車両100の側面100Bを囲むように配置されてもよい。 In the present embodiment, the single information transmission device 40 is arranged on the vehicle body roof 100A, but the information transmission device 40 emits light toward an object existing in any direction with respect to the vehicle 100. The number, arrangement, shape, etc. are not particularly limited as long as the pattern can be irradiated. For example, when the information transmission device 40 includes four road surface drawing devices, each of the road surface drawing devices is arranged in the left head lamp 20L, the right head lamp 20R, the left rear combination lamp 30L, and the right rear combination lamp 30R. Good. Further, the road surface drawing device may be arranged so as to surround the side surface 100B of the vehicle 100.
 次に、図2を参照して車両100の車両システム1について説明する。図2は、車両システム1のブロック図を例示している。図2に例示されるように、車両システム1は、車両制御部3と、センサ5と、カメラ6と、レーダ7と、HMI(Human Machine Interface)8と、GPS(Global Positioning System)9と、無線通信部10と、地図情報記憶部11とを備える。さらに、車両システム1は、ステアリングアクチュエータ12と、ステアリング装置13と、ブレーキアクチュエータ14と、ブレーキ装置15と、アクセルアクチュエータ16と、アクセル装置17と、を備える。 Next, the vehicle system 1 of the vehicle 100 will be described with reference to FIG. FIG. 2 illustrates a block diagram of the vehicle system 1. As illustrated in FIG. 2, the vehicle system 1 includes a vehicle control unit 3, a sensor 5, a camera 6, a radar 7, an HMI (Human Machine Interface) 8, a GPS (Global Positioning System) 9, and The wireless communication unit 10 and the map information storage unit 11 are provided. Further, the vehicle system 1 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
 車両システム1は、さらに車両用コミュニケーションシステム2を備える。車両用コミュニケーションシステム2は、カメラ6及びレーダ7を合わせた検出部300と、情報発信装置40と、を備える。情報発信装置40は、情報発信部401と、発信制御部402と、を備える。発信制御部402は、予想部403を含む。 The vehicle system 1 further includes a vehicle communication system 2. The vehicle communication system 2 includes a detection unit 300 including the camera 6 and the radar 7, and an information transmission device 40. The information transmission device 40 includes an information transmission unit 401 and a transmission control unit 402. The transmission control unit 402 includes a prediction unit 403.
 車両制御部3は、車両100の走行を制御するように構成されている。車両制御部3は、電子制御ユニット(ECU)により構成されている。電子制御ユニットは、CPU(Central Processing Unit)等のプロセッサと、各種車両制御プログラムが記憶されたROM(Read Only Memory)と、各種車両制御データが一時的に記憶されるRAM(Random Access Memory)とにより構成されている。プロセッサは、ROMに記憶された各種車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されている。 The vehicle control unit 3 is configured to control the traveling of the vehicle 100. The vehicle control unit 3 is composed of an electronic control unit (ECU). The electronic control unit includes a processor such as a CPU (Central Processing Unit), a ROM (Read Only Memory) in which various vehicle control programs are stored, and a RAM (Random Access Memory) in which various vehicle control data are temporarily stored. It is composed by. The processor is configured to expand a program designated from various vehicle control programs stored in the ROM onto the RAM and execute various processes in cooperation with the RAM.
 センサ5は、加速度センサ、速度センサ、及びジャイロセンサ等を備える。センサ5は、車両100の走行状態を検出して、走行状態情報を車両制御部3に出力するように構成されている。センサ5は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。 The sensor 5 includes an acceleration sensor, a speed sensor, a gyro sensor, and the like. The sensor 5 is configured to detect the traveling state of the vehicle 100 and output the traveling state information to the vehicle control unit 3. The sensor 5 is a seating sensor that detects whether the driver is sitting in the driver's seat, a face orientation sensor that detects the direction of the driver's face, an external weather sensor that detects external weather conditions, and whether there is a person in the vehicle. A human sensor for detecting may be further provided.
 カメラ6は、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS)等の撮像素子を含むカメラである。レーダ7は、ミリ波レーダ、マイクロ波レーダ又はレーザーレーダ等である。カメラ6及び/又はレーダ7は、車両100の周辺環境(他車、歩行者、道路形状、交通標識、障害物等)を検出し、周辺環境情報を車両制御部3に出力するように構成されている。レーダ7は、車両100の周辺にいる歩行者等の対象物を検出することもできる。さらに、レーダ7は、他の通信装置から送信される電波を受信可能に構成されていてもよい。 The camera 6 is a camera including an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary MOS). The radar 7 is a millimeter wave radar, a microwave radar, a laser radar, or the like. The camera 6 and/or the radar 7 is configured to detect a surrounding environment of the vehicle 100 (another vehicle, a pedestrian, a road shape, a traffic sign, an obstacle, etc.) and output the surrounding environment information to the vehicle control unit 3. ing. The radar 7 can also detect an object such as a pedestrian around the vehicle 100. Furthermore, the radar 7 may be configured to be able to receive radio waves transmitted from other communication devices.
 HMI8は、運転者からの入力操作を受付ける入力部と、走行情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両100の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、各種走行情報を表示するディスプレイである。 The HMI 8 is composed of an input unit that receives an input operation from the driver and an output unit that outputs driving information and the like to the driver. The input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for changing over the operation mode of vehicle 100, and the like. The output unit is a display that displays various traveling information.
 GPS9は、車両100の現在位置情報を取得し、当該取得された現在位置情報を車両制御部3に出力するように構成されている。無線通信部10は、車両100の周囲にいる他車に関する情報(例えば、走行情報等)を他車から受信すると共に、車両100に関する情報(例えば、走行情報等)を他車に送信するように構成されている(車車間通信)。また、無線通信部10は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両100の走行情報をインフラ設備に送信するように構成されている(路車間通信)。車両100は、他車両やインフラ設備と直接通信してもよいし、無線通信ネットワークを介して通信してもよい。地図情報記憶部11は、地図情報が記憶されたハードディスクドライブ等の外部記憶装置であって、地図情報を車両制御部3に出力するように構成されている。 The GPS 9 is configured to acquire the current position information of the vehicle 100 and output the acquired current position information to the vehicle control unit 3. The wireless communication unit 10 receives information (for example, driving information and the like) about other vehicles around the vehicle 100 from the other vehicle and transmits information (for example, driving information and the like) about the vehicle 100 to the other vehicle. Configured (vehicle-to-vehicle communication). In addition, the wireless communication unit 10 is configured to receive infrastructure information from infrastructure equipment such as a traffic light and a sign light, and transmit traveling information of the vehicle 100 to the infrastructure equipment (road-vehicle communication). The vehicle 100 may communicate directly with another vehicle or infrastructure equipment, or may communicate via a wireless communication network. The map information storage unit 11 is an external storage device such as a hard disk drive in which map information is stored, and is configured to output the map information to the vehicle control unit 3.
 情報発信装置40は、情報発信部401と、発信制御部402とを備える。情報発信部401は、例えば、レーザ光源と、レーザ光源から出射されるレーザ光を偏向する光偏向装置とを備える路面描画装置、種々の波数の赤外線レーザを照射するレーザ発信装置、通常のスピーカに比べて高い指向性を有する指向性スピーカ、及び移動通信端末等との通信に用いられる電波を発信する電波発信装置の少なくとも一つを含む。例えば、情報発信部401が路面描画装置を含む場合において、光偏向装置は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーやガルバノミラー等の可動ミラーである。路面描画装置は、後述するように、レーザ光を走査することで、光パターンを対象物の周囲の路面上に描画する。 The information transmission device 40 includes an information transmission unit 401 and a transmission control unit 402. The information transmission unit 401 includes, for example, a road surface drawing device including a laser light source and an optical deflection device that deflects laser light emitted from the laser light source, a laser transmission device that irradiates infrared lasers of various wave numbers, and a normal speaker. At least one of a directional speaker having a higher directivity and a radio wave transmitting device for transmitting a radio wave used for communication with a mobile communication terminal or the like is included. For example, when the information transmission unit 401 includes a road surface drawing device, the light deflection device is, for example, a movable mirror such as a MEMS (Micro Electro Mechanical Systems) mirror or a galvano mirror. As will be described later, the road surface drawing device draws a light pattern on the road surface around the object by scanning the laser light.
 情報発信部401は、車両100の周辺にいる歩行者等の対象物に向けて所定の情報を伝達することが可能である。情報発信部401は、例えば、車両100に設けられた車体ディスプレイ等を備えていてもよい。この場合、情報発信部401は、車体ディスプレイ等に所定の情報を表示させる。車体ディスプレイは、例えば、車両100の前面に設けられていてもよいし、フロントガラスに表示させるディスプレイであってもよい。 The information transmitting unit 401 can transmit predetermined information to an object such as a pedestrian around the vehicle 100. The information transmission unit 401 may include, for example, a vehicle body display provided on the vehicle 100. In this case, the information transmission unit 401 causes the vehicle body display or the like to display predetermined information. The vehicle body display may be provided on the front surface of the vehicle 100 or may be a display for displaying on the windshield, for example.
 発信制御部402は、電子制御ユニット(ECU)により構成されている。発信制御部402は、情報発信部401を制御するように構成されている。発信制御部402は、例えば、対象物の位置情報に基づいて、対象物に向けてレーザ光を照射するように路面描画装置を制御するように構成されている。尚、発信制御部402と車両制御部3は、同一の電子制御ユニットによって構成されていてもよい。さらに、発信制御部402は、情報発信部401が複数の装置(レーザ発信装置、指向性スピーカ、電波発信装置等)を含んでいる場合、車両100の周辺の状況に応じて、どの装置を用いて所定の情報を発信するかを判断することが可能である。 The transmission control unit 402 is composed of an electronic control unit (ECU). The transmission control unit 402 is configured to control the information transmission unit 401. The transmission control unit 402 is configured to control the road surface drawing device so as to irradiate the object with laser light, for example, based on the position information of the object. The transmission control unit 402 and the vehicle control unit 3 may be configured by the same electronic control unit. Further, when the information transmission unit 401 includes a plurality of devices (laser transmission device, directional speaker, radio wave transmission device, etc.), the transmission control unit 402 uses which device according to the situation around the vehicle 100. It is possible to determine whether or not to transmit the predetermined information.
 発信制御部402の予想部403は、車両制御部3が生成する車両100の予想進路に関する情報(進路情報)と、検出部300が検出した車両100の周辺の対象物に関する情報と、に基づいて、車両100の予想進路に侵入し得る対象物(歩行者等)がいるかどうか判断する。また、予想部403は、車両100の予想進路に侵入する可能性が最も高い対象者を特定する。 The prediction unit 403 of the transmission control unit 402 is based on the information about the predicted route of the vehicle 100 (route information) generated by the vehicle control unit 3 and the information about the target object around the vehicle 100 detected by the detection unit 300. , It is determined whether there is an object (pedestrian, etc.) that can enter the expected course of the vehicle 100. In addition, the prediction unit 403 identifies the target person who is most likely to enter the predicted course of the vehicle 100.
 車両100が自動運転モードで走行する場合、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ12は、ステアリング制御信号を車両制御部3から受信して、受信したステアリング制御信号に基づいてステアリング装置13を制御するように構成されている。ブレーキアクチュエータ14は、ブレーキ制御信号を車両制御部3から受信して、受信したブレーキ制御信号に基づいてブレーキ装置15を制御するように構成されている。アクセルアクチュエータ16は、アクセル制御信号を車両制御部3から受信して、受信したアクセル制御信号に基づいてアクセル装置17を制御するように構成されている。このように、自動運転モードでは、車両100の走行は車両システム1により自動制御される。 When the vehicle 100 travels in the automatic driving mode, the vehicle control unit 3 uses at least the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information, the map information, and the like. Generate one automatically. The steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and control the steering device 13 based on the received steering control signal. The brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal. The accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and control the accelerator device 17 based on the received accelerator control signal. As described above, in the automatic driving mode, the traveling of the vehicle 100 is automatically controlled by the vehicle system 1.
 一方、車両100が手動運転モードで走行する場合、車両制御部3は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に従って、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両100の走行は運転者により制御される。 On the other hand, when the vehicle 100 travels in the manual driving mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal and a brake control signal in accordance with the driver's manual operation on the accelerator pedal, the brake pedal and the steering wheel. As described above, in the manual driving mode, the steering control signal, the accelerator control signal, and the brake control signal are generated by the driver's manual operation, so that the traveling of the vehicle 100 is controlled by the driver.
 次に、車両100の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム1がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両100を運転できる状態にはない。高度運転支援モードでは、車両システム1がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両100を運転できる状態にはあるものの車両100を運転しない。運転支援モードでは、車両システム1がステアリング制御、ブレーキ制御及びアクセル制御のうち一部の走行制御を自動的に行うと共に、車両システム1の運転支援の下で運転者が車両100を運転する。一方、手動運転モードでは、車両システム1が走行制御を自動的に行わないと共に、車両システム1の運転支援なしに運転者が車両100を運転する。 Next, the operation mode of the vehicle 100 will be described. The operation mode includes an automatic operation mode and a manual operation mode. The automatic driving mode includes a fully automatic driving mode, an advanced driving support mode, and a driving support mode. In the fully automatic driving mode, the vehicle system 1 automatically performs all traveling controls such as steering control, brake control, and accelerator control, and the driver is not in a state where the vehicle 100 can be driven. In the advanced driving support mode, the vehicle system 1 automatically performs all traveling controls such as steering control, brake control, and accelerator control, and the driver does not drive the vehicle 100 although the vehicle 100 can be driven. In the driving support mode, the vehicle system 1 automatically performs a part of the traveling control among the steering control, the brake control, and the accelerator control, and the driver drives the vehicle 100 under the driving support of the vehicle system 1. On the other hand, in the manual driving mode, the vehicle system 1 does not automatically perform the traveling control, and the driver drives the vehicle 100 without the driving assistance of the vehicle system 1.
 また、車両100の運転モードは、運転モード切替スイッチを操作することで切り替えられてもよい。この場合、車両制御部3は、運転モード切替スイッチに対する運転者の操作に応じて、車両100の運転モードを4つの運転モード(完全自動運転モード、高度運転支援モード、運転支援モード、手動運転モード)の間で切り替える。また、車両100の運転モードは、自動運転車が走行可能である走行可能区間や自動運転車の走行が禁止されている走行禁止区間についての情報または外部天候状態についての情報に基づいて自動的に切り替えられてもよい。この場合、車両制御部3は、これらの情報に基づいて車両100の運転モードを切り替える。さらに、車両100の運転モードは、着座センサや顔向きセンサ等を用いることで自動的に切り替えられてもよい。この場合、車両制御部3は、着座センサや顔向きセンサからの出力信号に基づいて、車両100の運転モードを切り替える。 The driving mode of the vehicle 100 may be switched by operating the driving mode switch. In this case, the vehicle control unit 3 sets the driving modes of the vehicle 100 to four driving modes (fully automatic driving mode, advanced driving support mode, driving support mode, manual driving mode) in accordance with the driver's operation of the driving mode changeover switch. ) Switch between. In addition, the driving mode of the vehicle 100 is automatically set based on information about a travelable section in which the autonomous vehicle can travel or a travel-prohibited section in which the autonomous vehicle is prohibited from traveling, or information about an external weather condition. It may be switched. In this case, the vehicle control unit 3 switches the operation mode of the vehicle 100 based on these pieces of information. Furthermore, the driving mode of the vehicle 100 may be automatically switched by using a seating sensor, a face orientation sensor, or the like. In this case, the vehicle control unit 3 switches the driving mode of the vehicle 100 based on the output signals from the seating sensor and the face orientation sensor.
 図3は、情報発信部401が路面描画装置を含む場合において、路面描画装置に内蔵される路面描画ランプ102の概略構成を示す垂直断面図である。路面描画ランプ102は、路面描画可能なランプである。図3に示すように、路面描画ランプ102は、車両前方側に開口部を有するランプボディ111と、ランプボディ111の開口部を覆うように取り付けられた透明の前面カバー112と、を備えている。 FIG. 3 is a vertical cross-sectional view showing a schematic configuration of the road surface drawing lamp 102 incorporated in the road surface drawing device when the information transmission unit 401 includes the road surface drawing device. The road surface drawing lamp 102 is a lamp capable of drawing a road surface. As shown in FIG. 3, the road surface drawing lamp 102 includes a lamp body 111 having an opening on the vehicle front side, and a transparent front cover 112 attached so as to cover the opening of the lamp body 111. ..
 路面描画ランプ102は、光源ユニット120と、光源ユニット120からの光を反射する配光部130とを備えている。光源ユニット120および配光部130は、支持プレート141により灯室113内の所定位置に支持されている。支持プレート141は、エイミングスクリュー142を介してランプボディ111に取り付けられている。 The road surface drawing lamp 102 includes a light source unit 120 and a light distribution unit 130 that reflects light from the light source unit 120. The light source unit 120 and the light distribution unit 130 are supported at predetermined positions in the lamp chamber 113 by the support plate 141. The support plate 141 is attached to the lamp body 111 via an aiming screw 142.
 光源ユニット120は、複数(本例では3個)の光源121と、ヒートシンク122と、複数(本例では4個)のレンズ123と、集光部124とを有している。光源ユニット120は、支持プレート141の前面に固定されている。各々の光源121は、発信制御部402の一つであるランプ制御部4と電気的に接続されている。 The light source unit 120 includes a plurality (three in this example) of light sources 121, a heat sink 122, a plurality (four in this example) of lenses 123, and a condenser section 124. The light source unit 120 is fixed to the front surface of the support plate 141. Each light source 121 is electrically connected to the lamp control unit 4, which is one of the emission control units 402.
 配光部130は、端子部137と、反射鏡138とを有している。配光部130は、光源ユニット120から出射されたレーザ光を、反射鏡138を介して、路面描画ランプ102の前方へ反射できるように、光源ユニット120との位置関係が定められている。配光部130は、支持プレート141の前面から前方に突出する突出部143の先端に固定される。端子部137は、ランプ制御部4と電気的に接続されている。 The light distribution unit 130 has a terminal portion 137 and a reflecting mirror 138. The light distribution unit 130 has a positional relationship with the light source unit 120 so that the laser light emitted from the light source unit 120 can be reflected in front of the road surface drawing lamp 102 via the reflecting mirror 138. The light distribution unit 130 is fixed to the tip of a protrusion 143 that protrudes forward from the front surface of the support plate 141. The terminal portion 137 is electrically connected to the lamp control unit 4.
 路面描画ランプ102は、エイミングスクリュー142を回転させて支持プレート141の姿勢を調節することで光軸を水平方向および垂直方向に調整できるように構成されている。 The road surface drawing lamp 102 is configured so that the optical axis can be adjusted in the horizontal direction and the vertical direction by rotating the aiming screw 142 and adjusting the posture of the support plate 141.
 図4は、路面描画ランプ102を構成する光源ユニット120の側面図である。図4に示すように、光源ユニット120は、第一の光源121aと、第二の光源121bと、第三の光源121cと、ヒートシンク122と、第一のレンズ123aと、第二のレンズ123bと、第三のレンズ123cと、第四のレンズ123dと、集光部124とを有している。 FIG. 4 is a side view of the light source unit 120 that constitutes the road surface drawing lamp 102. As shown in FIG. 4, the light source unit 120 includes a first light source 121a, a second light source 121b, a third light source 121c, a heat sink 122, a first lens 123a, and a second lens 123b. , A third lens 123c, a fourth lens 123d, and a condenser section 124.
 第一の光源121aは、赤色レーザ光Rを出射する光源であり、赤色レーザダイオードからなる発光素子で構成されている。同様に、第二の光源121bは、緑色レーザ光Gを出射する緑色レーザダイオードで構成されており、第三の光源121cは、青色レーザ光Bを出射する青色レーザダイオードで構成されている。第一の光源121aと、第二の光源121bと、第三の光源121cとは、各々の光出射面であるレーザ光出射面125aと、レーザ光出射面125bと、レーザ光出射面125cとが互いに平行となるように配置されている。なお、各光源の発光素子は、レーザダイオードに限定されない。 The first light source 121a is a light source that emits red laser light R, and is composed of a light emitting element including a red laser diode. Similarly, the second light source 121b is composed of a green laser diode which emits the green laser light G, and the third light source 121c is composed of a blue laser diode which emits the blue laser light B. The first light source 121a, the second light source 121b, and the third light source 121c have a laser light emitting surface 125a, which is a light emitting surface, a laser light emitting surface 125b, and a laser light emitting surface 125c. They are arranged so as to be parallel to each other. The light emitting element of each light source is not limited to the laser diode.
 第一の光源121a~第三の光源121cは、それぞれのレーザ光出射面125a~125cが路面描画ランプ102の前方を向くように配置され、ヒートシンク122に取り付けられている。ヒートシンク122は、アルミニウムなど熱伝導率が高い材料によって形成されており、ヒートシンク122の後側面が支持プレート141(図3参照)に接触された状態で光源ユニット120に取り付けられている。 The first light source 121a to the third light source 121c are arranged so that their respective laser light emitting surfaces 125a to 125c face the front of the road surface drawing lamp 102, and are attached to the heat sink 122. The heat sink 122 is formed of a material having a high thermal conductivity such as aluminum, and is attached to the light source unit 120 in a state where the rear surface of the heat sink 122 is in contact with the support plate 141 (see FIG. 3).
 第一のレンズ123a~第四のレンズ123dは、例えばコリメートレンズで構成されている。第一のレンズ123aは、第一の光源121aと集光部124との間の赤色レーザ光Rの光路上に設けられ、第一の光源121aから出射された赤色レーザ光Rを平行光に変換して集光部124に出射する。第二のレンズ123bは、第二の光源121bと集光部124との間の緑色レーザ光Gの光路上に設けられ、第二の光源121bから出射された緑色レーザ光Gを平行光に変換して集光部124に出射する。 The first lens 123a to the fourth lens 123d are, for example, collimating lenses. The first lens 123a is provided on the optical path of the red laser light R between the first light source 121a and the condensing unit 124, and converts the red laser light R emitted from the first light source 121a into parallel light. Then, the light is emitted to the light collecting unit 124. The second lens 123b is provided on the optical path of the green laser light G between the second light source 121b and the condensing unit 124, and converts the green laser light G emitted from the second light source 121b into parallel light. Then, the light is emitted to the light collecting unit 124.
 第三のレンズ123cは、第三の光源121cと集光部124との間の青色レーザ光Bの光路上に設けられ、第三の光源121cから出射された青色レーザ光Bを平行光に変換して集光部124に出射する。第四のレンズ123dは、光源ユニット120の筐体126の上部に設けられた開口に嵌め合わされている。第四のレンズ123dは、集光部124と配光部130(図3参照)との間の白色レーザ光W(後述)の光路上に設けられ、集光部124から出射された白色レーザ光Wを平行光に変換して配光部130に出射する。 The third lens 123c is provided on the optical path of the blue laser light B between the third light source 121c and the condensing unit 124, and converts the blue laser light B emitted from the third light source 121c into parallel light. Then, the light is emitted to the light collecting unit 124. The fourth lens 123d is fitted in an opening provided in the upper part of the housing 126 of the light source unit 120. The fourth lens 123d is provided on the optical path of the white laser light W (described later) between the condensing unit 124 and the light distributing unit 130 (see FIG. 3), and the white laser light emitted from the condensing unit 124. W is converted into parallel light and emitted to the light distribution unit 130.
 集光部124は、赤色レーザ光R、緑色レーザ光G、および青色レーザ光Bを集合させて白色レーザ光Wを生成する。集光部124は、第一のダイクロイックミラー124aと、第二のダイクロイックミラー124bと、第三のダイクロイックミラー124cとを有している。 The condensing unit 124 collects the red laser light R, the green laser light G, and the blue laser light B to generate the white laser light W. The condensing unit 124 has a first dichroic mirror 124a, a second dichroic mirror 124b, and a third dichroic mirror 124c.
 第一のダイクロイックミラー124aは、少なくとも、赤色光を反射し青色光および緑色光を透過させるミラーであり、第一のレンズ123aを通過した赤色レーザ光Rを第四のレンズ123dに向けて反射するように配置されている。第二のダイクロイックミラー124bは、少なくとも、緑色光を反射し青色光を透過させるミラーであり、第二のレンズ123bを通過した緑色レーザ光Gを第四のレンズ123dに向けて反射するように配置されている。第三のダイクロイックミラー124cは、少なくとも、青色光を反射するミラーであり、第三のレンズ123cを通過した青色レーザ光Bを第四のレンズ123dに向けて反射するように配置されている。 The first dichroic mirror 124a is a mirror that reflects at least red light and transmits blue light and green light, and reflects the red laser light R that has passed through the first lens 123a toward the fourth lens 123d. Are arranged as follows. The second dichroic mirror 124b is a mirror that reflects at least green light and transmits blue light, and is arranged so as to reflect the green laser light G that has passed through the second lens 123b toward the fourth lens 123d. Has been done. The third dichroic mirror 124c is a mirror that reflects at least blue light, and is arranged so as to reflect the blue laser light B that has passed through the third lens 123c toward the fourth lens 123d.
 また、第一のダイクロイックミラー124a~第三のダイクロイックミラー124cは、それぞれが反射したレーザ光の光路が平行で、かつ各レーザ光が集合して第四のレンズ123dに入射されるように、互いの位置関係が定められている。本例では、第一のダイクロイックミラー124a~第三のダイクロイックミラー124cは、各ダイクロイックミラー124a~124cにおいてレーザ光が当たる領域(レーザ光の反射点)が一直線上に並ぶように配置されている。 Further, the first dichroic mirror 124a to the third dichroic mirror 124c are arranged so that the optical paths of the laser beams reflected by them are parallel to each other and that the respective laser beams are collected and incident on the fourth lens 123d. The positional relationship of is defined. In the present example, the first dichroic mirror 124a to the third dichroic mirror 124c are arranged such that the regions of the dichroic mirrors 124a to 124c where the laser light strikes (the reflection points of the laser light) are aligned.
 第三の光源121cから出射された青色レーザ光Bは、第三のダイクロイックミラー124cで反射され、第二のダイクロイックミラー124b側に進行する。第二の光源121bから出射された緑色レーザ光Gは、第二のダイクロイックミラー124bにより第一のダイクロイックミラー124a側に反射されるとともに、第二のダイクロイックミラー124bを透過した青色レーザ光Bと重ね合わせられる。第一の光源121aから出射された赤色レーザ光Rは、第一のダイクロイックミラー124aにより第四のレンズ123d側に反射されるとともに、第一のダイクロイックミラー124aを透過した青色レーザ光Bおよび緑色レーザ光Gの集合光と重ね合わせられる。その結果、白色レーザ光Wが形成され、形成された白色レーザ光Wは、第四のレンズ123dを通過して配光部130に向けて進行する。 The blue laser light B emitted from the third light source 121c is reflected by the third dichroic mirror 124c and travels to the second dichroic mirror 124b side. The green laser light G emitted from the second light source 121b is reflected by the second dichroic mirror 124b toward the first dichroic mirror 124a side and overlaps with the blue laser light B transmitted through the second dichroic mirror 124b. Can be matched. The red laser light R emitted from the first light source 121a is reflected by the first dichroic mirror 124a toward the fourth lens 123d side, and the blue laser light B and the green laser light which have passed through the first dichroic mirror 124a. It is superimposed on the collective light of light G. As a result, the white laser light W is formed, and the formed white laser light W passes through the fourth lens 123d and travels toward the light distribution unit 130.
 第一の光源121a~第三の光源121cは、赤色レーザ光Rを出射する第一の光源121aが集光部124から最も近い位置に配置され、青色レーザ光Bを出射する第三の光源121cが集光部124から最も遠い位置に配置され、緑色レーザ光Gを出射する第二の光源121bが中間の位置に配置される。すなわち、第一の光源121a~第三の光源121cは、出射するレーザ光の波長が長いものほど集光部124に近い位置に配置される。 In the first light source 121a to the third light source 121c, the first light source 121a that emits the red laser light R is arranged at the position closest to the condensing unit 124, and the third light source 121c that emits the blue laser light B. Is arranged at the farthest position from the condensing part 124, and the second light source 121b for emitting the green laser light G is arranged at the intermediate position. That is, the first light source 121a to the third light source 121c are arranged at positions closer to the condensing part 124 as the wavelength of the emitted laser light is longer.
 図5は、路面描画ランプ102を構成する配光部130を前方側から観察したときの斜視図である。図5に示すように、配光部130は、ベース131と、第一の回動体132と、第二の回動体133と、第一のトーションバー134と、第二のトーションバー135と、永久磁石136a,136bと、端子部137と、反射鏡138とを有している。配光部130は、例えばガルバノミラーで構成されている。なお、配光部130を例えばMEMS(メムス)ミラーで構成するようにしてもよい。 FIG. 5 is a perspective view of the light distribution unit 130 forming the road surface drawing lamp 102, as observed from the front side. As shown in FIG. 5, the light distribution unit 130 includes a base 131, a first rotating body 132, a second rotating body 133, a first torsion bar 134, a second torsion bar 135, and a permanent member. It has magnets 136a and 136b, a terminal portion 137, and a reflecting mirror 138. The light distribution unit 130 is composed of, for example, a galvanometer mirror. The light distribution unit 130 may be configured by, for example, a MEMS (MEMS) mirror.
 ベース131は、中央に開口部131aを有する枠体であり、路面描画ランプ102の前後方向へ傾斜した状態で突出部143(図3参照)に固定されている。ベース131の開口部131aには、第一の回動体132が配置されている。第一の回動体132は、中央に開口部132aを有する枠体であり、路面描画ランプ102の後方下側から前方上側に延在する第一のトーションバー134により、ベース131に対し左右(車幅方向)に回動可能に支持されている。 The base 131 is a frame body having an opening 131a in the center, and is fixed to the protrusion 143 (see FIG. 3) in a state of being inclined in the front-rear direction of the road surface drawing lamp 102. The first rotating body 132 is arranged in the opening 131 a of the base 131. The first rotating body 132 is a frame body having an opening 132a in the center thereof, and a first torsion bar 134 extending from the lower rear side to the upper front side of the road surface drawing lamp 102 allows the first rotary body 132 to move to the left and right (vehicle) with respect to the base 131. It is supported rotatably in the width direction.
 第一の回動体132の開口部132aには、第二の回動体133が配置されている。第二の回動体133は、矩形状の平板であり、車幅方向に延在する第二のトーションバー135により、第一の回動体132に対し上下(垂直方向)に回動可能に支持されている。第二の回動体133は、第一の回動体132が第一のトーションバー134を回動軸として左右に回動すると、第一の回動体132と共に左右に回動する。第二の回動体133の表面には、メッキまたは蒸着等により反射鏡138が設けられている。 The second rotating body 133 is arranged in the opening 132 a of the first rotating body 132. The second rotating body 133 is a rectangular flat plate, and is supported by a second torsion bar 135 extending in the vehicle width direction so as to be vertically (vertically) rotatable with respect to the first rotating body 132. ing. The second rotating body 133 rotates left and right together with the first rotating body 132 when the first rotating body 132 rotates left and right with the first torsion bar 134 as a rotation axis. A reflecting mirror 138 is provided on the surface of the second rotating body 133 by plating or vapor deposition.
 ベース131には、第一のトーションバー134の延在方向と直交する位置に、一対の永久磁石136aが設けられている。永久磁石136aは、第一のトーションバー134と直交する磁界を形成する。第一の回動体132には第一のコイル(図示省略)が配線され、第一のコイルは、端子部137を介してランプ制御部4に接続されている。また、ベース131には、第二のトーションバー135の延在方向と直交する位置に、一対の永久磁石136bが設けられている。永久磁石136bは、第二のトーションバー135と直交する磁界を形成する。第二の回動体133には第二のコイル(図示省略)が配線され、第二のコイルは、端子部137を介してランプ制御部4に接続されている。 The base 131 is provided with a pair of permanent magnets 136 a at positions orthogonal to the extending direction of the first torsion bar 134. The permanent magnet 136a forms a magnetic field orthogonal to the first torsion bar 134. A first coil (not shown) is wired in the first rotating body 132, and the first coil is connected to the lamp control unit 4 via the terminal portion 137. Further, the base 131 is provided with a pair of permanent magnets 136b at positions orthogonal to the extending direction of the second torsion bar 135. The permanent magnet 136b forms a magnetic field orthogonal to the second torsion bar 135. A second coil (not shown) is wired on the second rotating body 133, and the second coil is connected to the lamp control unit 4 via the terminal portion 137.
 第一のコイルおよび第二のコイルに流れる電流の大きさと向きとが制御されることにより、第一の回動体132および第二の回動体133が左右に往復回動し、また第二の回動体133が単独で上下に往復回動する。これにより、反射鏡138が上下左右に往復回動する。 By controlling the magnitude and direction of the current flowing through the first coil and the second coil, the first rotating body 132 and the second rotating body 133 are reciprocally rotated to the left and right, and the second rotating body is rotated. The moving body 133 independently reciprocates up and down. This causes the reflecting mirror 138 to reciprocate vertically and horizontally.
 光源ユニット120と配光部130とは、光源ユニット120から出射されたレーザ光が反射鏡138で路面描画ランプ102の前方に反射されるよう互いの位置関係が定められている。配光部130は、反射鏡138の往復回動によりレーザ光で車両100の前方を走査する。例えば、配光部130は、形成すべき描画パターンの領域をレーザ光により走査する。これにより、レーザ光が描画パターンの形成領域に照射されて、車両100の前方に所定の描画パターンが形成される。 The positional relationship between the light source unit 120 and the light distribution unit 130 is determined so that the laser light emitted from the light source unit 120 is reflected by the reflecting mirror 138 in front of the road surface drawing lamp 102. The light distribution unit 130 scans the front of the vehicle 100 with laser light by the reciprocating rotation of the reflecting mirror 138. For example, the light distribution unit 130 scans the area of the drawing pattern to be formed with laser light. As a result, the laser beam is applied to the drawing pattern forming area, and a predetermined drawing pattern is formed in front of the vehicle 100.
 次に、車両用コミュニケーションシステム2に係る動作例について説明する。
(第一動作例)
 図6及び図7を参照して、車両100が左折する時に、対象物に所定の情報を伝達する様子について説明する。図6は、対象物に所定の情報を伝達するまでの処理を示すフローチャートである。図7は、車両100が左折する時に障害となる対象物へ所定の情報を伝達する様子を説明するための模式図である。尚、第一動作例では、車両100は、交差点Iで左折する予定である。また、車両用コミュニケーションシステム2によって第一動作例が実施される場合、情報発信部401は路面描画装置を含んでいる。
Next, an operation example of the vehicle communication system 2 will be described.
(First operation example)
A manner in which predetermined information is transmitted to the object when the vehicle 100 turns left will be described with reference to FIGS. 6 and 7. FIG. 6 is a flowchart showing a process until the predetermined information is transmitted to the object. FIG. 7 is a schematic diagram for explaining how predetermined information is transmitted to an object that is an obstacle when the vehicle 100 makes a left turn. In the first operation example, the vehicle 100 is scheduled to turn left at the intersection I. When the first operation example is carried out by the vehicle communication system 2, the information transmission unit 401 includes a road surface drawing device.
 図6に例示されるように、最初に、車両制御部3は、車両100が通行すると予想される進路(予想進路)を判断する(STEP01)。具体的には、車両制御部3は、車両100の運転者が入力した目的地情報、GPS9が取得した現在位置情報、無線通信部10が受信した車両100の周囲にいる他車に関する情報、地図情報記憶部11に記憶された地図情報等に基づいて、車両100の予想進路を判断する。第一動作例においては、図7に例示されるように、車両100は交差点Iで左折する予定である。したがって、車両制御部3は、車両100は交差点Iを左折し、横断歩道Z1を通過する予定であると判断する。 As illustrated in FIG. 6, first, the vehicle control unit 3 determines a course (anticipated course) in which the vehicle 100 is expected to travel (STEP 01). Specifically, the vehicle control unit 3 includes the destination information input by the driver of the vehicle 100, the current position information acquired by the GPS 9, the information about the other vehicles around the vehicle 100 received by the wireless communication unit 10, and the map. The expected course of the vehicle 100 is determined based on the map information and the like stored in the information storage unit 11. In the first operation example, as illustrated in FIG. 7, the vehicle 100 is scheduled to turn left at the intersection I. Therefore, the vehicle control unit 3 determines that the vehicle 100 is going to turn left at the intersection I and pass the pedestrian crossing Z1.
 STEP02において、検出部300は、検出部300が検出した車両100の周辺の対象物(歩行者等)に関する情報を発信制御部402に送信する。図7において、検出部300は、横断歩道Z1の近くにいる歩行者P1と、横断歩道Z2の近くにいる歩行者P2と、歩行者P1よりも車両100から遠い位置にいる歩行者P3とを検出する。尚、STEP02は、STEP01より先に行われてもよい。 In STEP 02, the detection unit 300 transmits information about the object (pedestrian, etc.) around the vehicle 100 detected by the detection unit 300 to the transmission control unit 402. In FIG. 7, the detection unit 300 detects a pedestrian P1 located near the pedestrian crossing Z1, a pedestrian P2 located near the pedestrian crossing Z2, and a pedestrian P3 located farther from the vehicle 100 than the pedestrian P1. To detect. Note that STEP02 may be performed before STEP01.
 STEP03において、発信制御部402の予想部403は、車両100の予想進路に関する情報(進路情報)と、検出部300が検出した車両100の周辺の対象物に関する情報とに基づいて、車両100の予想進路に侵入し得る対象物(歩行者等)がいるかどうか判断する。車両100の予想進路に侵入し得る歩行者等がいる場合(STEP03でYES)、STEP04に進む。図7において、歩行者P1と歩行者P3は横断歩道Z1を渡ろうとしている。したがって、予想部403は、車両100の予想進路に歩行者P1と歩行者P3が侵入する可能性があると判断する。一方、歩行者P2は横断歩道Z1を渡ろうとしていないので、予想部403は、車両100の予想進路に歩行者P2が侵入する可能性はないと判断する。なお、車両100の予想進路に侵入し得る対象者が誰もいない場合(STEP03でNO)、本処理は終了する。 In STEP03, the prediction unit 403 of the transmission control unit 402 predicts the vehicle 100 based on the information about the predicted route of the vehicle 100 (route information) and the information about the target object around the vehicle 100 detected by the detection unit 300. Judge whether there is an object (pedestrian, etc.) that can enter the route. When there is a pedestrian or the like that can enter the expected course of the vehicle 100 (YES in STEP03), the process proceeds to STEP04. In FIG. 7, a pedestrian P1 and a pedestrian P3 are about to cross a pedestrian crossing Z1. Therefore, the prediction unit 403 determines that the pedestrian P1 and the pedestrian P3 may enter the predicted route of the vehicle 100. On the other hand, since the pedestrian P2 is not trying to cross the pedestrian crossing Z1, the prediction unit 403 determines that the pedestrian P2 may not enter the predicted course of the vehicle 100. If there is no target person who can enter the predicted course of the vehicle 100 (NO in STEP 03), this process ends.
 STEP04において、予想部403は、車両100の予想進路に関する情報(進路情報)と、検出部300が検出した車両100の周辺の対象物に関する情報とに基づいて、車両100の予想進路に侵入する可能性が最も高い対象者を特定する。発信制御部402は、予想部403が特定した対象者に対して、所定の情報を伝達するための指示信号を生成する。図7に示す例において、歩行者P3は、歩行者P1よりも車両100から遠い位置にいる。したがって、車両100の予想進路に侵入する可能性が最も高い対象者は歩行者P1である。このため、発信制御部402は、歩行者P1に対して所定の情報を伝達するための指示信号を生成する。 In STEP 04, the prediction unit 403 can enter the predicted route of the vehicle 100 based on the information about the predicted route of the vehicle 100 (route information) and the information about the object around the vehicle 100 detected by the detection unit 300. Identify the most likely target. The transmission control unit 402 generates an instruction signal for transmitting predetermined information to the target person identified by the prediction unit 403. In the example shown in FIG. 7, the pedestrian P3 is located farther from the vehicle 100 than the pedestrian P1. Therefore, the pedestrian P1 is the target person who is most likely to enter the predicted course of the vehicle 100. Therefore, the transmission control unit 402 generates an instruction signal for transmitting predetermined information to the pedestrian P1.
 発信制御部402は、生成した指示信号に基づき、情報発信部401を制御する。情報発信部401は、予想部403が特定した対象者に対して第一情報を伝達する(STEP05)。第一情報とは、車両100から何らかの情報を発信するか、又は発信していることを歩行者等に認識させるための情報である。図7に示す例では、第一情報としての光が、情報発信部401から歩行者P1の顔に向けて、出射される。尚、出射される光は、人が視認できる程度に微弱なものであることが望ましい。当該光は歩行者P1の顔に当たり、円Cが投影される。 The transmission control unit 402 controls the information transmission unit 401 based on the generated instruction signal. The information transmission unit 401 transmits the first information to the target person identified by the prediction unit 403 (STEP 05). The first information is information for transmitting some information from the vehicle 100 or for causing a pedestrian or the like to recognize that the information is being transmitted. In the example shown in FIG. 7, light as the first information is emitted from the information transmitting unit 401 toward the face of the pedestrian P1. The emitted light is preferably weak enough to be visually recognized by a person. The light hits the face of the pedestrian P1 and a circle C is projected.
 さらに、情報発信部401は、予想部403が特定した対象者に対して、第二情報を伝達する(STEP06)。第二情報とは、車両100から歩行者等へのメッセージ等である。情報発信装置40は、所定の情報を横断歩道Z1上に描画する。図7に示す例では、情報発信装置40は、歩行者P1に対し、横断歩道Z1を渡らないように注意を促すための記号Sを横断歩道Z1上に描画する。歩行者P1は、歩行者P1自身に光が当てられたことにより、記号Sは、自分に対して伝達された情報であることを認識することができる。これにより、歩行者P1は横断歩道Z1を渡らずに済む。また、歩行者P2~P3にとっては、不要な情報を伝達されずに済む。車両100は、歩行者P1と接触することなく、横断歩道Z1を通過することができる。STEP06が実行されると、本処理は終了する。 Further, the information transmission unit 401 transmits the second information to the target person specified by the prediction unit 403 (STEP 06). The second information is a message or the like from the vehicle 100 to a pedestrian or the like. The information transmission device 40 draws predetermined information on the pedestrian crossing Z1. In the example illustrated in FIG. 7, the information transmission device 40 draws a symbol S on the pedestrian P1 to warn the pedestrian P1 not to cross the pedestrian crossing Z1. The pedestrian P1 can recognize that the symbol S is information transmitted to the pedestrian P1 because the pedestrian P1 itself is illuminated with light. As a result, the pedestrian P1 does not have to cross the pedestrian crossing Z1. Also, unnecessary information is not transmitted to the pedestrians P2 to P3. The vehicle 100 can pass the pedestrian crossing Z1 without contacting the pedestrian P1. When STEP 06 is executed, this process ends.
 第一動作例によれば、情報発信部401は、車両100の周囲にいる歩行者であって、車両100の予想進路に侵入する可能性が最も高い歩行者P1に対し、第一情報としての光を照射する。このように、第一動作例によれば、特定の相手とだけコミュニケーションを取ることができる。また、歩行者P1は、車両100の存在を認識することができる。さらに、歩行者P1は、車両100から何かしらの情報を伝達されたことを認識することができる。 According to the first operation example, the information transmission unit 401 provides the pedestrian P1 who is the pedestrian around the vehicle 100 and who has the highest possibility of entering the predicted course of the vehicle 100 as the first information. Irradiate with light. Thus, according to the first operation example, it is possible to communicate only with a specific partner. Further, the pedestrian P1 can recognize the existence of the vehicle 100. Further, the pedestrian P1 can recognize that some information is transmitted from the vehicle 100.
 また、第一動作例によれば、歩行者P1の進行方向の近くに第二情報が表示されるので、歩行者P1は自分に向けて伝達された車両100からのメッセージ(第二情報)を容易に認識することができる。 Further, according to the first operation example, the second information is displayed near the traveling direction of the pedestrian P1, so that the pedestrian P1 receives the message (second information) transmitted from the vehicle 100 to the pedestrian P1. Can be easily recognized.
 また、第一動作例によれば、歩行者P1に対して、第一情報としての光が照射されるので、歩行者P1は、車両100が自分に向けて何かしらの情報を伝達しようとしていることを認識することができる。 Further, according to the first operation example, the pedestrian P1 is irradiated with the light as the first information. Therefore, the pedestrian P1 tries to transmit some information to the pedestrian P1 toward the vehicle 100. Can be recognized.
(第二動作例)
 図8は、車両100が左折する時に障害となる対象物へ所定の情報を伝達する様子を説明するための模式図である。尚、第二動作例においては、第一動作例と重複する部分は説明を省略する。第二動作例は、歩行者P4~P6が、通信機能付きメガネGL4~GL6を着用している点で第一動作例と異なる。通信機能付きメガネGL4~GL6は二本のアンテナを備えている。当該二本のアンテナからは、電波が発信されている。検出部300は、当該二本のアンテナから発信される電波を受信することができる。また、車両用コミュニケーションシステム2によって第二動作例が実施される場合、情報発信部401は路面描画装置を含んでいる。
(Second operation example)
FIG. 8 is a schematic diagram for explaining how predetermined information is transmitted to an object that is an obstacle when the vehicle 100 turns left. In the second operation example, the description of the same parts as those in the first operation example will be omitted. The second operation example is different from the first operation example in that pedestrians P4 to P6 wear glasses GL4 to GL6 with a communication function. The glasses with communication function GL4 to GL6 are provided with two antennas. Radio waves are emitted from the two antennas. The detection unit 300 can receive the radio waves transmitted from the two antennas. Further, when the second operation example is performed by the vehicle communication system 2, the information transmission unit 401 includes a road surface drawing device.
 第二動作例においても、第一動作例と同様に、車両制御部3は、車両100は交差点Iを左折し、横断歩道Z1を通過する予定であると判断する(図6のSTEP01)。また、検出部300は、横断歩道Z1の近くにいる歩行者P4と、横断歩道Z2の近くにいる歩行者P5と、歩行者P4よりも車両100から遠い位置にいる歩行者P6とを検出する(図6のSTEP02)。したがって、発信制御部402の予想部403は、車両100の予想進路に歩行者P4及び歩行者P6が侵入する可能性があると判断する(図6のSTEP03でYES)。一方、予想部403は、車両100の予想進路に歩行者P5が侵入する可能性はないと判断する。そして、予想部403は、車両100の予想進路に侵入する可能性が最も高い対象者は歩行者P4であると判断する(図6のSTEP04)。発信制御部402は、歩行者P4に対して所定の情報を伝達するための指示信号を生成する。 In the second operation example, as in the first operation example, the vehicle control unit 3 determines that the vehicle 100 is going to turn left at the intersection I and pass the pedestrian crossing Z1 (STEP 01 in FIG. 6). The detection unit 300 also detects a pedestrian P4 near the pedestrian crossing Z1, a pedestrian P5 near the pedestrian crossing Z2, and a pedestrian P6 located farther from the vehicle 100 than the pedestrian P4. (STEP 02 in FIG. 6). Therefore, the prediction unit 403 of the transmission control unit 402 determines that the pedestrian P4 and the pedestrian P6 may enter the predicted course of the vehicle 100 (YES in STEP 03 of FIG. 6 ). On the other hand, the prediction unit 403 determines that the pedestrian P5 is unlikely to enter the predicted course of the vehicle 100. Then, the prediction unit 403 determines that the target person who is most likely to enter the predicted course of the vehicle 100 is the pedestrian P4 (STEP 04 in FIG. 6). The transmission control unit 402 generates an instruction signal for transmitting predetermined information to the pedestrian P4.
 ここで、車両制御部3は、歩行者P4~P6が着用している通信機能付きメガネGL4~GL6のアンテナから送信された電波情報を受信する。車両制御部3は、受信した電波情報に基づき、歩行者P4~P6の顔の向きを判断し、歩行者P4~P6が見ている方向を特定する。車両制御部3は、歩行者が見ている方向に関する情報を発信制御部402に送信する。尚、車両制御部3の代わりに、発信制御部402が、歩行者P4~P6が着用している通信機能付きメガネGL4~GL6のアンテナから送信された電波情報に基づき、歩行者P4~P6が見ている方向を特定してもよい。 Here, the vehicle control unit 3 receives the radio wave information transmitted from the antennas of the communication function glasses GL4 to GL6 worn by the pedestrians P4 to P6. The vehicle control unit 3 determines the direction of the faces of the pedestrians P4 to P6 based on the received radio wave information, and specifies the direction viewed by the pedestrians P4 to P6. The vehicle control unit 3 transmits information regarding the direction in which the pedestrian is looking to the transmission control unit 402. Instead of the vehicle control unit 3, the transmission control unit 402 controls the pedestrians P4 to P6 based on the radio wave information transmitted from the antennas of the communication function glasses GL4 to GL6 worn by the pedestrians P4 to P6. You may specify the viewing direction.
 ところで、例えば、歩行者が車両100と異なる方向を向いている場合、第一動作例の場合とは異なり、歩行者の顔に光が照射されても歩行者は光に気付かない可能性がある。そのため、発信制御部402は、車両制御部3から取得した歩行者が見ている方向を含む情報に基づいて、光の出射方向を変えるよう情報発信部401を制御する。つまり、発信制御部402は、歩行者の向いている方向に応じて、光の出射方向を変えるよう情報発信部401を制御する。図8に示す例では、情報発信部401は、通信機能付きメガネGL4~GL6に、第一情報としての光を照射する。照射された光は通信機能付きメガネGL4~GL6に反射し、その結果、歩行者は当該光を認識する(図6のSTEP05)。 By the way, for example, when the pedestrian is facing a different direction from the vehicle 100, unlike the case of the first operation example, the pedestrian may not notice the light even if the pedestrian's face is illuminated with light. .. Therefore, the transmission control unit 402 controls the information transmission unit 401 to change the emission direction of light based on the information including the direction in which the pedestrian is looking, which is acquired from the vehicle control unit 3. That is, the transmission control unit 402 controls the information transmission unit 401 to change the emission direction of light according to the direction in which the pedestrian is facing. In the example illustrated in FIG. 8, the information transmission unit 401 irradiates the glasses with communication function GL4 to GL6 with light as the first information. The irradiated light is reflected by the glasses GL4 to GL6 with a communication function, and as a result, the pedestrian recognizes the light (STEP 05 in FIG. 6).
 第二動作例において、車両制御部3は、歩行者P4は左方向を、歩行者P5~6は後方向を向いていると判断する。車両100の予想進路に侵入する可能性が最も高い対象者は歩行者P4なので、情報発信部401は、歩行者P4が装着している通信機能付きメガネGL4に光を照射する。そうすると、歩行者P4は当該光を認識し、光の出射源である車両100の方向を見る。情報発信部401は、図8に例示されるように、横断歩道Z1に第二情報としての記号Sを描画する(図6のSTEP06)。これにより、歩行者P4は、記号Sを認識することができる。これにより、歩行者P4は横断歩道Z1を渡らずに済む。また、歩行者P5~P6にとっては、不要な情報を伝達されずに済む。車両100は、歩行者P4と接触することなく、横断歩道Z1を通過することができる。 In the second operation example, the vehicle control unit 3 determines that the pedestrian P4 is facing leftward and the pedestrians P5 to P6 are facing backward. Since the pedestrian P4 is the target person who is most likely to enter the predicted course of the vehicle 100, the information transmission unit 401 irradiates the spectacles GL4 with communication function, which the pedestrian P4 wears, with light. Then, the pedestrian P4 recognizes the light and looks at the direction of the vehicle 100, which is the light emission source. As illustrated in FIG. 8, the information transmitting unit 401 draws the symbol S as the second information on the pedestrian crossing Z1 (STEP 06 in FIG. 6). Thereby, the pedestrian P4 can recognize the symbol S. As a result, the pedestrian P4 does not have to cross the pedestrian crossing Z1. Also, unnecessary information is not transmitted to the pedestrians P5 to P6. The vehicle 100 can pass through the pedestrian crossing Z1 without contacting the pedestrian P4.
 第二動作例によれば、情報発信部401は、歩行者P4が見ている方向に向けて光を出射する。したがって、歩行者P4は出射される光を容易に視認することができる。 According to the second operation example, the information transmission unit 401 emits light in the direction in which the pedestrian P4 is looking. Therefore, the pedestrian P4 can easily visually recognize the emitted light.
(第三動作例)
 図9は、車両100が左折する時に障害となる対象物へ所定の情報を伝達する様子を説明するための模式図である。尚、第三動作例においては、第一動作例と重複する部分は説明を省略する。第三動作例は、歩行者P7~P9が、車両100と通信可能な通信端末TD7~TD9を携帯している点で第一動作例と異なる。通信端末TD7~TD9は、例えばスマートフォンである。また、車両用コミュニケーションシステム2によって第三動作例が実施される場合、情報発信部401は路面描画装置と、電波発信装置とを含んでいる。
(Third operation example)
FIG. 9 is a schematic diagram for explaining how predetermined information is transmitted to an obstacle which is an obstacle when the vehicle 100 turns left. In the third operation example, the description of the same parts as those in the first operation example will be omitted. The third operation example is different from the first operation example in that pedestrians P7 to P9 carry communication terminals TD7 to TD9 capable of communicating with the vehicle 100. The communication terminals TD7 to TD9 are, for example, smartphones. Further, when the third operation example is performed by the vehicle communication system 2, the information transmission unit 401 includes a road surface drawing device and a radio wave transmission device.
 第三動作例においても、第一動作例と同様に、車両制御部3は、車両100は交差点Iを左折し、横断歩道Z1を通過する予定であると判断する(図6のSTEP01)。また、検出部300は、横断歩道Z1の近くにいる歩行者P7と、横断歩道Z2の近くにいる歩行者P8と、歩行者P7よりも車両100から遠い位置にいる歩行者P9とを検出する(図6のSTEP02)。 In the third operation example, as in the first operation example, the vehicle control unit 3 determines that the vehicle 100 is going to turn left at the intersection I and pass the pedestrian crossing Z1 (STEP 01 in FIG. 6). Further, the detection unit 300 detects a pedestrian P7 near the pedestrian crossing Z1, a pedestrian P8 near the pedestrian crossing Z2, and a pedestrian P9 located farther from the vehicle 100 than the pedestrian P7. (STEP 02 in FIG. 6).
 図9において、歩行者P7及び歩行者P9は横断歩道Z1を渡ろうとしている。したがって、予想部403は、車両100の予想進路に歩行者P7及び歩行者P9が侵入する可能性があると判断する(図6のSTEP03でYES)。一方、予想部403は、車両100の予想進路に歩行者P8が侵入する可能性はないと判断する。そして、車両制御部3は、車両100の予想進路に侵入する可能性が最も高い対象者は歩行者P7であると判断する(図6のSTEP04)。発信制御部402は、歩行者P7に対して所定の情報を伝達するための指示信号を生成する。 In FIG. 9, pedestrian P7 and pedestrian P9 are crossing pedestrian crossing Z1. Therefore, the prediction unit 403 determines that the pedestrian P7 and the pedestrian P9 may enter the predicted course of the vehicle 100 (YES in STEP 03 of FIG. 6 ). On the other hand, the prediction unit 403 determines that there is no possibility that the pedestrian P8 will enter the predicted route of the vehicle 100. Then, the vehicle control unit 3 determines that the target person who is most likely to enter the expected course of the vehicle 100 is the pedestrian P7 (STEP 04 in FIG. 6). The transmission control unit 402 generates an instruction signal for transmitting predetermined information to the pedestrian P7.
 発信制御部402は、生成した指示信号に基づいて情報発信部401を制御する。その結果、情報発信部401は、歩行者P7が携帯している通信端末TD7に向けて、第一情報としての電波を発信する(図6のSTEP05)。当該電波を受信した通信端末TD7は、図9に例示されるように、振動する。そうすると、歩行者P7は、歩行者P7自身の周囲を確認する。 The transmission control unit 402 controls the information transmission unit 401 based on the generated instruction signal. As a result, the information transmission unit 401 transmits a radio wave as the first information to the communication terminal TD7 carried by the pedestrian P7 (STEP 05 in FIG. 6). The communication terminal TD7 that has received the radio wave vibrates as illustrated in FIG. Then, the pedestrian P7 confirms the surroundings of the pedestrian P7 itself.
 また、情報発信部401は、歩行者P7の近くの路面、例えば、横断歩道Z1に、第二情報としての光を照射する(図6のSTEP06)。図9に示す例では、横断歩道Z1に記号Sが描画される。これにより、歩行者P7は、記号Sを認識することができる。これにより、歩行者P7は横断歩道Z1を渡らずに済む。また、歩行者P8~P9にとっては、不要な情報を伝達されずに済む。車両100は、歩行者P7と接触することなく、横断歩道Z1を通過することができる。 Further, the information transmission unit 401 irradiates the road surface near the pedestrian P7, for example, the pedestrian crossing Z1 with light as the second information (STEP 06 in FIG. 6). In the example shown in FIG. 9, the symbol S is drawn on the crosswalk Z1. Thereby, the pedestrian P7 can recognize the symbol S. As a result, the pedestrian P7 does not have to cross the pedestrian crossing Z1. Also, unnecessary information is not transmitted to the pedestrians P8 to P9. The vehicle 100 can pass the pedestrian crossing Z1 without contacting the pedestrian P7.
 第三動作例によれば、歩行者P7が携帯している通信端末TD7を振動させることで、当該振動する通信端末TD7を携帯する歩行者P7とだけコミュニケーションを取ることができる。 According to the third operation example, by vibrating the communication terminal TD7 carried by the pedestrian P7, it is possible to communicate only with the pedestrian P7 carrying the vibrating communication terminal TD7.
(第四動作例)
 図10は、車両100が左折する時に障害となる対象物へ所定の情報を伝達する様子を説明するための模式図である。尚、第四動作例においては、第一動作例と重複する部分は説明を省略する。また、車両用コミュニケーションシステム2によって第四動作例が実施される場合、情報発信部401は路面描画装置と、指向性スピーカとを含んでいる。
(Fourth operation example)
FIG. 10 is a schematic diagram for explaining how predetermined information is transmitted to an obstacle which is an obstacle when the vehicle 100 turns left. In the fourth operation example, the description of the same parts as those in the first operation example will be omitted. Further, when the fourth operation example is implemented by the vehicle communication system 2, the information transmission unit 401 includes a road surface drawing device and a directional speaker.
 第四動作例においても、第一動作例と同様に、車両制御部3は、車両100は交差点Iを左折し、横断歩道Z1を通過する予定であると判断する(図6のSTEP01)。また、検出部300は、横断歩道Z1の近くにいる歩行者P10と、横断歩道Z2の近くにいる歩行者P11と、歩行者P10よりも車両100から遠い位置にいる歩行者P12とを検出する(図6のSTEP02)。 In the fourth operation example, as in the first operation example, the vehicle control unit 3 determines that the vehicle 100 is going to turn left at the intersection I and pass the pedestrian crossing Z1 (STEP01 in FIG. 6). In addition, the detection unit 300 detects a pedestrian P10 near the pedestrian crossing Z1, a pedestrian P11 near the pedestrian crossing Z2, and a pedestrian P12 located farther from the vehicle 100 than the pedestrian P10. (STEP 02 in FIG. 6).
 図10において、歩行者P10及び歩行者P12は横断歩道Z1を渡ろうとしている。したがって、予想部403は、車両100の予想進路に歩行者P10及び歩行者P12が侵入する可能性があると判断する(図6のSTEP03でYES)。一方、予想部403は、車両100の予想進路に歩行者P11が侵入する可能性はないと判断する。そして、車両制御部3は、車両100の予想進路に侵入する可能性が最も高い対象者は歩行者P10であると判断する(図6のSTEP04)。発信制御部402は、歩行者P10に対して所定の情報を伝達するための指示信号を生成する。 In FIG. 10, pedestrian P10 and pedestrian P12 are about to cross a pedestrian crossing Z1. Therefore, the prediction unit 403 determines that the pedestrian P10 and the pedestrian P12 may enter the predicted course of the vehicle 100 (YES in STEP 03 of FIG. 6 ). On the other hand, the prediction unit 403 determines that there is no possibility that the pedestrian P11 will enter the predicted route of the vehicle 100. Then, the vehicle control unit 3 determines that the target person who is most likely to enter the predicted course of the vehicle 100 is the pedestrian P10 (STEP 04 in FIG. 6). The transmission control unit 402 generates an instruction signal for transmitting predetermined information to the pedestrian P10.
 発信制御部402は、生成した指示信号に基づいて情報発信部401を制御する。その結果、情報発信部401は、歩行者P10に向けて、情報発信部401の指向性スピーカから、第一情報としての音声を出す(図6のSTEP05)。歩行者P10は当該音声を認識することができるが、歩行者P11~P12は当該音声を認識することができない。したがって、歩行者P10は当該音を認識し、当該音の発信源である車両100の方向を見る。 The transmission control unit 402 controls the information transmission unit 401 based on the generated instruction signal. As a result, the information transmitting unit 401 outputs a sound as the first information to the pedestrian P10 from the directional speaker of the information transmitting unit 401 (STEP 05 in FIG. 6). The pedestrian P10 can recognize the voice, but the pedestrians P11 to P12 cannot recognize the voice. Therefore, the pedestrian P10 recognizes the sound and looks at the direction of the vehicle 100 that is the source of the sound.
 情報発信部401は、歩行者P10の近く、例えば横断歩道Z1に、第二情報としての光を照射する(図6のSTEP06)。図10に示す例では、横断歩道Z1に記号Sが描画される。これにより、歩行者P10は、記号Sを認識することができる。これにより、歩行者P10は横断歩道Z1を渡らずに済む。一方、歩行者P11~P12にとっては、不要な情報を伝達されずに済む。車両100は、歩行者P10と接触することなく、横断歩道Z1を通過することができる。 The information transmitting unit 401 irradiates the pedestrian P10, for example, the pedestrian crossing Z1 with light as the second information (STEP 06 in FIG. 6). In the example shown in FIG. 10, the symbol S is drawn on the pedestrian crossing Z1. As a result, the pedestrian P10 can recognize the symbol S. As a result, the pedestrian P10 does not have to cross the pedestrian crossing Z1. On the other hand, pedestrians P11 to P12 do not have to transmit unnecessary information. The vehicle 100 can pass the pedestrian crossing Z1 without contacting the pedestrian P10.
 第四動作例によれば、歩行者P10に向けて、情報発信部401の指向性スピーカから音声が出るので、特定の歩行者P10に情報を伝達することができる。したがって、歩行者P10とだけコミュニケーションを取ることができる。 According to the fourth operation example, since sound is output from the directional speaker of the information transmission unit 401 toward the pedestrian P10, information can be transmitted to the specific pedestrian P10. Therefore, it is possible to communicate only with the pedestrian P10.
 上述した第一動作例において、光は断続的に歩行者P1に対して照射されてもよい。この場合、出力される光のエネルギー量や歩行者P1に対して出射される光のエネルギー量を制限することができる。したがって、光の消費エネルギー量を減少させることができ、かつ歩行者P1の目に過度な負担をかけずに済む。 In the first operation example described above, light may be intermittently applied to the pedestrian P1. In this case, the energy amount of the output light and the energy amount of the light emitted to the pedestrian P1 can be limited. Therefore, the energy consumption of light can be reduced, and the pedestrian P1 does not need to place an excessive burden on the eyes.
 上述した第二動作例において、歩行者P4~P6は通信機能付きメガネGL4~GL6を着用しているがこれに限られない。通信機能付きのウェアラブルデバイスであればメガネ以外のデバイスであってもよい。 In the second operation example described above, the pedestrians P4 to P6 wear glasses GL4 to GL6 with a communication function, but not limited to this. A device other than glasses may be used as long as it is a wearable device with a communication function.
 上述した第三動作例において、歩行者P7が携帯する通信端末TD7が振動する例を用いて説明したがこの例に限られない。例えば、通信端末TD7を振動させずに、通信端末TD7から音楽や音声等の音が流れてもよい。また、例えば、通信端末TD7が振動しつつ、通信端末TD7から音楽等の音が流れてもよい。 In the above-described third operation example, the example in which the communication terminal TD7 carried by the pedestrian P7 vibrates has been described, but the present invention is not limited to this example. For example, a sound such as music or voice may flow from the communication terminal TD7 without vibrating the communication terminal TD7. Further, for example, sound such as music may flow from the communication terminal TD7 while vibrating the communication terminal TD7.
 上述した第四動作例においては、情報発信部401の指向性スピーカから音声が出る例を用いて説明したがこれに限られない。例えば、情報発信部401の指向性スピーカから、音声以外の音(例えば音楽等)が出てもよい。 In the above-described fourth operation example, an example in which sound is output from the directional speaker of the information transmission unit 401 has been described, but the present invention is not limited to this. For example, a sound other than voice (for example, music) may be output from the directional speaker of the information transmitting unit 401.
 上述した実施形態において、第二情報は路面描画により歩行者に伝達される例を用いて説明したがこれに限られない。例えば、第二情報は、音声等の音によって伝達されてもよいし、スマートフォン等の電子通信機器の表示部にメッセージを表示させることによって、歩行者に伝達されてもよい。 In the above-described embodiment, the second information has been described by using the example of being transmitted to the pedestrian by drawing the road surface, but the present invention is not limited to this. For example, the second information may be transmitted by sound such as voice, or may be transmitted to a pedestrian by displaying a message on a display unit of an electronic communication device such as a smartphone.
 上述した実施形態において、予想部403は発信制御部402に含まれているがこの例に限られない。予想部403は、例えば、車両制御部3に含まれていてもよい。 In the embodiment described above, the prediction unit 403 is included in the transmission control unit 402, but the present invention is not limited to this example. The prediction unit 403 may be included in the vehicle control unit 3, for example.
 上述した実施形態において、STEP05とSTEP06が実行される例を用いて説明したがこれに限られない。例えば、STEP06は必ずしも実行されなくてもよい。つまり、第二情報は必ずしも歩行者に伝達されなくてもよい。 In the above-described embodiment, an example in which STEP05 and STEP06 are executed has been described, but the present invention is not limited to this. For example, STEP06 does not necessarily have to be executed. That is, the second information does not necessarily have to be transmitted to the pedestrian.
 情報発信部401の路面描写装置は、赤外線を出射する光源を備えていてもよい。この場合、情報発信部401は、歩行者に向けて赤外線を出射してもよい。赤外線が歩行者に当たると、歩行者は熱を感じるので、第一情報を認識することができる。 The road surface rendering device of the information transmission unit 401 may include a light source that emits infrared rays. In this case, the information transmitter 401 may emit infrared rays toward the pedestrian. When the infrared ray hits the pedestrian, the pedestrian feels heat and can recognize the first information.
 上述した実施形態では、光、熱、音、振動の少なくとも一つにより第一情報を歩行者に伝達する形態について説明したがこれに限られない。光、熱、音、振動の複数を適宜組み合わせて第一情報を歩行者に伝達してもよい。 In the above-described embodiment, the form in which the first information is transmitted to the pedestrian by at least one of light, heat, sound and vibration has been described, but the present invention is not limited to this. The first information may be transmitted to the pedestrian by appropriately combining a plurality of light, heat, sound, and vibration.
 なお、本開示は、上述した実施形態に限定されず、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所等は、本開示の目的を達成できるものであれば任意であり、限定されない。 It should be noted that the present disclosure is not limited to the above-described embodiments, and can be modified, improved, etc. as appropriate. In addition, the material, shape, size, numerical value, form, number, arrangement location, etc. of each constituent element in the above-described embodiments are arbitrary and are not limited as long as the object of the present disclosure can be achieved.
 本出願は、2018年12月4日出願の日本特許出願(特願2018-227396号)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on the Japanese patent application (Japanese Patent Application No. 2018-227396) filed on December 4, 2018, the content of which is incorporated herein by reference.

Claims (7)

  1.  自車の周囲の対象者を検出可能な検出部と、
     車両制御部から取得した進路情報に基づいて、自車両の予想進路に進入する可能性の最も高い対象者を特定する予想部と、
     特定した前記対象者が、光、熱、音、振動の少なくとも一つで認識できるように第一情報を伝える情報発信部と、を備える、車両用コミュニケーションシステム。
    A detection unit that can detect the target person around the vehicle,
    Based on the route information acquired from the vehicle control unit, a prediction unit that identifies the target person who is most likely to enter the predicted route of the vehicle,
    A communication system for a vehicle, comprising: an information transmission unit that transmits the first information so that the identified target person can be recognized by at least one of light, heat, sound, and vibration.
  2.  前記情報発信部は、前記第一情報とは異なる第二情報を前記対象者に伝達する、請求項1に記載の車両用コミュニケーションシステム。 The vehicle communication system according to claim 1, wherein the information transmission unit transmits second information different from the first information to the target person.
  3.  前記情報発信部は、前記対象者に対して光を出射することで前記第一情報を伝える、請求項1または2に記載の車両用コミュニケーションシステム。 The vehicle communication system according to claim 1 or 2, wherein the information transmission unit transmits the first information by emitting light to the target person.
  4.  前記情報発信部は、前記対象者に対して断続的に光を照射する、請求項3に記載の車両用コミュニケーションシステム。 The vehicle communication system according to claim 3, wherein the information transmission unit intermittently irradiates the target person with light.
  5.  前記情報発信部は、前記車両制御部から取得した前記対象者が見ている方向を含む情報に基づいて、前記対象者が見ている方向に向けて光を出射する、請求項3または4に記載の車両用コミュニケーションシステム。 The information transmitting unit emits light in the direction in which the target person is looking, based on the information including the direction in which the target person is viewing, which is acquired from the vehicle control unit. The vehicle communication system described.
  6.  前記情報発信部は、前記対象者が携帯可能な通信端末と通信可能であり、
     前記情報発信部は、前記通信端末から音または振動の少なくとも一つを生じさせるように構成される、請求項1または2に記載の車両用コミュニケーションシステム。
    The information transmission unit is capable of communicating with a communication terminal that the target person can carry,
    The vehicle communication system according to claim 1, wherein the information transmission unit is configured to generate at least one of sound and vibration from the communication terminal.
  7.  前記情報発信部は、前記対象者に向けて音を伝達させる指向性スピーカを含む、請求項1または2に記載の車両用コミュニケーションシステム。 The vehicle communication system according to claim 1 or 2, wherein the information transmission unit includes a directional speaker that transmits sound to the target person.
PCT/JP2019/044757 2018-12-04 2019-11-14 Vehicular communication system WO2020116121A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980080275.1A CN113165573A (en) 2018-12-04 2019-11-14 Vehicle communication system
JP2020559860A JP7320000B2 (en) 2018-12-04 2019-11-14 Vehicle communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018227396 2018-12-04
JP2018-227396 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020116121A1 true WO2020116121A1 (en) 2020-06-11

Family

ID=70975396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044757 WO2020116121A1 (en) 2018-12-04 2019-11-14 Vehicular communication system

Country Status (3)

Country Link
JP (1) JP7320000B2 (en)
CN (1) CN113165573A (en)
WO (1) WO2020116121A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159871A (en) * 2016-03-11 2017-09-14 トヨタ自動車株式会社 Vehicular lighting system
JP2017159881A (en) * 2016-03-10 2017-09-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Recognition result presentation device, recognition result presentation method and autonomous movable body
WO2018074011A1 (en) * 2016-10-20 2018-04-26 パナソニック株式会社 Pedestrian-vehicle communication system, in-vehicle terminal device, pedestrian terminal device and safe-driving assistance method
JP2018069752A (en) * 2016-10-24 2018-05-10 マツダ株式会社 Headlight control device for vehicle
WO2018198156A1 (en) * 2017-04-24 2018-11-01 三菱電機株式会社 Notification control device and notification control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013005903B4 (en) * 2013-04-05 2023-06-07 Volkswagen Aktiengesellschaft Device and method for warning road users of a traffic hazard
JP6137001B2 (en) * 2014-03-14 2017-05-31 株式会社デンソー In-vehicle device
CN105867875A (en) * 2016-04-14 2016-08-17 吉林大学 Front pedestrian target recognition based automobile horn volume self-adaption control system
CN205706411U (en) * 2016-04-19 2016-11-23 北京奔驰汽车有限公司 A kind of traffic safety information interactive device and install the automobile of this device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159881A (en) * 2016-03-10 2017-09-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Recognition result presentation device, recognition result presentation method and autonomous movable body
JP2017159871A (en) * 2016-03-11 2017-09-14 トヨタ自動車株式会社 Vehicular lighting system
WO2018074011A1 (en) * 2016-10-20 2018-04-26 パナソニック株式会社 Pedestrian-vehicle communication system, in-vehicle terminal device, pedestrian terminal device and safe-driving assistance method
JP2018069752A (en) * 2016-10-24 2018-05-10 マツダ株式会社 Headlight control device for vehicle
WO2018198156A1 (en) * 2017-04-24 2018-11-01 三菱電機株式会社 Notification control device and notification control method

Also Published As

Publication number Publication date
JP7320000B2 (en) 2023-08-02
CN113165573A (en) 2021-07-23
JPWO2020116121A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP7254832B2 (en) HEAD-UP DISPLAY, VEHICLE DISPLAY SYSTEM, AND VEHICLE DISPLAY METHOD
JP2019121320A (en) Inter-vehicle communication system, vehicle system, illumination system for vehicle, and vehicle
JP7470230B2 (en) Vehicle display system, vehicle system and vehicle
CN113573935A (en) Head-up display for vehicle and head-up display system for vehicle
CN114302828A (en) Display system for vehicle and vehicle
JP7295863B2 (en) Vehicle display system and vehicle
WO2021015171A1 (en) Head-up display
CN111225826B (en) Lamp system for vehicle
WO2020116121A1 (en) Vehicular communication system
CN111247033B (en) Lamp system for vehicle
CN111247034B (en) Lamp system for vehicle
US20240227664A1 (en) Vehicle display system, vehicle system, and vehicle
JP7284705B2 (en) vehicle lamp system
JP2023141162A (en) image display device
JP2022040442A (en) Display control device, and head-up display device
CN113711106A (en) Head-up display for vehicle and light source unit used for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894131

Country of ref document: EP

Kind code of ref document: A1