WO2020116104A1 - Irradiation system and irradiation method - Google Patents

Irradiation system and irradiation method Download PDF

Info

Publication number
WO2020116104A1
WO2020116104A1 PCT/JP2019/044432 JP2019044432W WO2020116104A1 WO 2020116104 A1 WO2020116104 A1 WO 2020116104A1 JP 2019044432 W JP2019044432 W JP 2019044432W WO 2020116104 A1 WO2020116104 A1 WO 2020116104A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
unit
laser array
light source
light
Prior art date
Application number
PCT/JP2019/044432
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 大泉
望 下田
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2020116104A1 publication Critical patent/WO2020116104A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters

Definitions

  • the present invention relates to an irradiation system and an irradiation method.
  • Patent Document 1 a vehicle lidar system in which a plurality of semiconductor lasers (VCSEL arrays) and optical elements (lenses) are combined.
  • VCSEL arrays semiconductor lasers
  • Lenses optical elements
  • a plurality of semiconductor lasers can be used to more appropriately measure the distance to an object. desired.
  • An object of the present invention is to provide an irradiation system and an irradiation method that appropriately calculate the distance to an object.
  • An irradiation system is an irradiation system for controlling a surface-emission laser array, the irradiation system including a first surface-emission laser array and a second surface-emission laser array; A surface emitting laser array and a light receiving section for receiving light emitted from the second surface emitting laser array, a control section for controlling a light emitting position of the second surface emitting laser array, and a detecting section for detecting an object, And the control unit changes the light emitting portion of the second surface emitting laser array in accordance with the light emitting portion of the first surface emitting laser array when the detection result of the detecting unit matches a predetermined condition. It is a thing.
  • FIG. 1 is a functional block diagram showing an outline of a configuration example including an irradiation system according to an embodiment of the present invention.
  • the irradiation system 1 shown in FIG. 1 includes an irradiation unit 100, a light receiving unit 200, an imaging unit 300, and a control unit 400.
  • Irradiation system 1 is an irradiation system that controls a surface emitting laser array (VCSEL array), and specifically, a LiDAR (rider) system or the like. That is, the irradiation system 1 is a system that is installed and used in a vehicle or the like.
  • the irradiation system 1 shown in FIG. 1 is a system that adopts a known XY scan method. For example, the irradiation system 1 detects whether or not there is an object around the vehicle on which it is mounted, and calculates the distance to the detected object.
  • the irradiation unit 100 of the irradiation system 1 includes a fixed surface emitting laser array (first surface emitting laser array) and a movable surface emitting laser array (second surface emitting laser array). That is, the irradiation unit 100 has a plurality of surface emitting laser arrays.
  • the method of moving the movable surface emitting laser array can be realized by applying a known technique.
  • the irradiation unit 100 includes a plurality of light source units 106 (light source units 106a to 106c) and a light emission control circuit 105.
  • Each light source unit 106 has an image forming optical system 101, a collimator lens 102, an image forming optical system 103, and a VCSEL array 104.
  • the imaging optical system 101 is a lens for steering light.
  • the collimator lens 102 is a lens for collimating light.
  • the imaging optical system 103 is a condenser lens for sharpening the beam diameter.
  • the VCSEL array 104 is a light source (VCSEL array) that is a surface emitting laser array.
  • the VCSEL array 104a of the light source unit 106a and the VCSEL array 104c of the light source unit 106c are fixed surface emitting laser arrays.
  • the VCSEL array 104b of the light source unit 106b is a movable surface emitting laser array.
  • the light emission control circuit 105 is a circuit that controls the laser emission timing. Further, the movable VCSEL array 104b is changed to the direction determined by the control unit 400 described later.
  • FIG. 2 is a diagram showing an irradiation example of a plurality of fixed light source units 106.
  • the example of FIG. 2 is an example in which the measurement density in the irradiation range is increased by overlapping the irradiation positions so as to form a staggered arrangement.
  • the irradiation point P1 and the light source unit 106c emitted from the light source unit 106a are emitted as shown in FIG. 2B.
  • the irradiated points P3 to be overlapped are overlapped.
  • FIG. 3 is a diagram illustrating an irradiation example of the plurality of fixed light source units 106.
  • the example of FIG. 3 is an example in which irradiation is performed in a wide range by preventing both irradiation points from overlapping.
  • the irradiation point P1 and the light source unit 106b emitted from the light source unit 106a are emitted as shown in FIG. 3B. It is possible to irradiate a wide range by irradiating the irradiation points P3 so that they do not overlap.
  • FIG. 4 is a diagram illustrating an irradiation example of the plurality of movable light source units 106.
  • the example of FIG. 4 is an example in which a plurality of movable light source units 106 are rotated to the central portion to collect irradiation points from a state in which a wide range is irradiated.
  • the light source unit 106b and the light source unit 106d are movable light source units, and each light source unit 106 rotates 6 degrees toward the center from the initial irradiation direction.
  • the irradiation points (irradiation point P2 and irradiation point P4) of the light source section 106b and the light source section 106d deviate toward the center.
  • the light source unit 106b and the light source unit 106d are each rotated 11 degrees from the initial irradiation direction toward the center.
  • the irradiation points (irradiation point P2 and irradiation point P4) of the light source section 106b and the light source section 106d are further shifted toward the center.
  • the light receiving unit 200 is a part that receives the light emitted from the irradiation unit 100. That is, the light receiving unit 200 is a portion that receives the light emitted from the plurality of surface emitting laser arrays.
  • the light receiving unit 200 has an imaging optical system 201, a light receiving element 202, an amplification/digitization circuit 203, and a light reception control circuit 204.
  • the imaging optical system 201 is a light receiving lens.
  • the light receiving element 202 is PD, APD, SPAD, an array product thereof, or the like.
  • the amplification/digitization circuit 203 is a part that amplifies the received light signal and digitizes it.
  • the light reception control circuit 204 is a circuit that controls the timing of reading data.
  • the light receiving unit 200 sends the received light result to the control unit 400.
  • the image capturing unit 300 is a portion that captures an image of the front of a vehicle or the like.
  • the image pickup unit 300 includes a lens 301, an image pickup element 302, an image processing/recognition processing unit 303, and an image pickup control circuit 304.
  • the lens 301 is a so-called camera lens.
  • the image sensor 302 is a CMOS sensor or the like.
  • the image processing/recognition processing unit 303 is a unit that processes an image obtained by the lens 301 and the image sensor 302. For example, the image processing/recognition processing unit 303 corrects an image and extracts an object (vehicle, person, etc.) from the acquired image.
  • the image pickup control circuit 304 is a circuit for controlling read settings such as a frame rate and resolution of video.
  • the control unit 400 is a unit that controls the entire irradiation system 1.
  • the control unit 400 includes a detection unit 401 (measurement unit), an ROI setting unit 402, an irradiation direction adjustment unit 403, and a proximity detection unit 404.
  • the detection unit 401 of the control unit 400 detects an object based on the light reception result of the light reception unit 200. Further, the detection unit 401 of the control unit 400 detects an object using an image recognition technique based on the image pickup result by the image pickup unit 300.
  • the object here means an object (vehicle, person, obstacle, etc.) located around the vehicle.
  • the detection unit 401 detects an object by specifying the light projection timing and the light reception timing using a known technique.
  • the detection unit 401 may also calculate the distance to the object using a known technique.
  • the detection unit 401 detects that there is an object when receiving the light reception signal.
  • the detection unit 401 of the control unit 400 acquires the object position information recognized by the image processing/recognition processing unit 303 based on the information by the imaging unit 300, thereby To detect.
  • the detecting unit 401 may detect the object by acquiring the image pickup result from the image pickup unit 300 and analyzing the image.
  • the detection unit 401 of the control unit 400 sends the detection result (object position) to the ROI setting unit 402.
  • the detection unit 401 of the control unit 400 calculates the distance to the object based on the light emission timing of the irradiation unit 100 and the light reception timing of the light receiving unit 200 using a known technique. For example, the detection unit 401 calculates the distance to the object based on the light emission timing of the irradiation unit 100 and the light reception timing of the light receiving unit 200 after changing the light emitting location of the light source unit 106b that is the movable light source unit. To do.
  • the detection unit 401 of the control unit 400 may also calculate the distance to the object in the range of the ROI using a known technique after the ROI is set by the ROI setting unit 402.
  • the detection unit 401 calculates the distance to the object based on the result of the light receiving unit 200 receiving the result of irradiation by the irradiation unit 100 after changing the light emitting portion of the light source unit 106b.
  • the detection unit 401 of the control unit 400 may calculate the distance to the object in a range other than the range of the ROI using a known technique.
  • the ROI setting unit 402 of the control unit 400 sets an ROI (range of interest) based on the detection result of the object.
  • the ROI indicates an area (object detection area) that is irradiated by the irradiation unit 100 in a concentrated manner in order to calculate the distance to the object.
  • the ROI setting unit 402 sets the ROI based on the detection result obtained from the detection unit 401.
  • the ROI setting unit 402 sends the set result to the irradiation direction adjusting unit 403.
  • the ROI setting unit 402 may set a plurality of ROIs.
  • the irradiation direction adjustment unit 403 of the control unit 400 sets any one of the surface emitting laser arrays of the irradiation unit 100 to any one of the other surface emitting laser arrays based on the attention range set by the ROI setting unit 402. The position is changed, and the light emitting portion of the surface emitting laser array is changed.
  • the irradiation direction adjustment unit 403 of the control unit 400 sets one of the surface emitting laser arrays of the irradiation unit 100 to any position of another surface emitting laser array (for example, a portion which is an irradiation destination of an object). At the same time, the light emitting portion of the surface emitting laser array is changed.
  • the irradiation direction adjustment unit 403 of the control unit 400 means that any one of the surface emitting laser arrays of the irradiation unit 100 is aligned with any position of the other surface emitting laser array. That is, the position of the light emitting portion of the surface emitting laser array is changed based on the irradiation range so as to increase the irradiation density of the irradiation range.
  • the irradiation direction adjusting unit 403 changes the light emitting portion of the laser light from the light source unit 106b in the irradiation direction of the light source unit 106a or the light source unit 106c.
  • the proximity detection unit 404 determines that the object is close to the object, and outputs that effect.
  • FIG. 5 shows a conceptual diagram of the plurality of light source units 106 and the light receiving units 200.
  • the fixed light source section 106a and the fixed light source section 106c irradiate laser light
  • the movable light source section 106b irradiates
  • the light receiving section 200 receives light.
  • the movable light source irradiates a wide range so that the irradiation position (for example, irradiation point P1) of the fixed light source unit 106a and the irradiation position (for example, irradiation point P3) of the light source unit 106c do not overlap.
  • the irradiation portion of the portion 106b is irradiated to a portion (for example, an irradiation point P2) which is aligned with the irradiation portion of the fixed light source portion 106a or the irradiation portion of the light source portion 106c.
  • the light source unit 106b irradiates the laser light around the boundary between the irradiation range of the light source unit 106a and the irradiation range of the light source unit 106c.
  • the fixed light source unit 106a and the fixed light source unit 106c irradiate in a wide range so that the irradiation point P1 and the irradiation point P3 do not overlap, and the movable light source unit 106b.
  • the irradiation point P2 is the central part (around the boundary).
  • the light source unit 106b when changing the irradiation position of the light source unit 106b to the right side (the light source unit 106c side), the light source unit 106b irradiates the laser light in accordance with the irradiation range of the light source unit 106c. To do.
  • the irradiation point P2 becomes a position corresponding to the irradiation range of the light source unit 106c.
  • the light source unit 106a and the light source unit 106c emit laser light
  • the light receiving unit 200 receives the reflection result of the emitted laser light.
  • the irradiation system 1 detects an object (vehicle C1 and vehicle C2) based on the reflection result of the irradiation point P1 by the irradiation of the light source unit 106a or the irradiation point P3 by the irradiation of the light source unit 106c.
  • the irradiation system 1 determines that the detection accuracy of the vehicle C1 is lower based on the reflection result, and thus determines the vicinity of the vehicle C1 as the attention range. Specifically, the irradiation system 1 specifies that the vehicle C1 has lower detection accuracy because the number of reflection points obtained from the region of the vehicle C1 is smaller than the number of reflection points obtained from the region of the vehicle C2. ..
  • the irradiation system 1 sets an attention range R1, aligns the light source unit 106b with the attention range R1, irradiates laser light, and based on the result, extends to the vehicle C1. To measure the distance.
  • FIG. 7C is a diagram showing a relationship between irradiation areas.
  • the irradiation system 1 first irradiates the area A1 with laser light by the light source section 106a and the light source section 106c, and based on the result, irradiates the area of the vehicle C1 with the light source section 106b. Illuminates area A2 (area corresponding to the attention range). Thereby, the irradiation system 1 can more reliably measure the distance to the vehicle C1.
  • FIG. 8 is a diagram showing an outline of an example of the flow of processing for measuring the distance to an object by the plurality of surface emitting laser arrays according to the present embodiment.
  • the light source unit 106a and the light source unit 106c of the irradiation unit 100 emit light, and the light receiving unit 200 receives the emitted light.
  • the irradiation system 1 scans a wide area by using a plurality of light sources (step S01).
  • the detection unit 401 of the control unit 400 detects an object by determining the presence or absence of an object based on the light reception result of the light reception unit 200 (step S02).
  • step S02 determines the presence or absence of an object based on the light reception result of the light reception unit 200.
  • the ROI setting unit 402 of the control unit 400 selects the area of the object having the smallest number of measurement points.
  • the ROI is set (step S04). If the number of detected objects is singular in step S03 (step S03: No), the ROI setting unit 402 of the control unit 400 sets the region of the object to ROI (step S05).
  • the irradiation direction adjustment unit 403 of the control unit 400 changes the irradiation position of the light source unit 106b of the irradiation unit 100 based on the setting content of the ROI setting unit 402. Then, the irradiation unit 100 causes the light source unit 106a, the light source unit 106b, and the light source unit 106c to emit light.
  • the light receiving unit 200 receives the light emitted by the light emission, and the detection unit 401 measures the distance based on the result of the light reception (step S06).
  • the control unit 400 outputs (notifies) that the object is in the proximity (step S08) when the comparison result of the proximity detection unit 404 is equal to or less than the specified distance (step S07: Yes). If the measured distance is not equal to or less than the designated distance (step S07: No), the control unit 400 proceeds to step S001. In step S08, if a command indicating the end of measurement is issued after the notification (step S09: Yes), the process ends. Further, in step S09, if the instruction indicating the end of the measurement is not issued (step S09: No), the process proceeds to step S01.
  • FIG. 9 is a diagram showing an outline of an example of the flow of processing for measuring the distance to an object by the plurality of surface emitting laser arrays according to the present embodiment.
  • the image capturing unit 300 acquires a captured image by performing an image capturing process (step S11).
  • the detection unit 401 of the control unit 400 determines the presence or absence of an object using an image processing technique based on the imaging result of the imaging unit 300 (result of the image processing/recognition processing unit 303 of the imaging unit 300) (step). S12).
  • the detection unit 401 of the control unit 400 does not detect an object (step S12: No)
  • the process proceeds to step S11.
  • the image processing/recognition processing unit 303 may detect the presence or absence of an object using an image processing technique.
  • step S12 When the detection unit 401 detects an object based on the processing result of the image processing/recognition processing unit 303 of the imaging unit 300 (step S12: Yes), if the number of the objects is plural (step S13: Yes), control is performed.
  • the ROI setting unit 402 of the unit 400 sets each area of the detected object as an ROI (step S14).
  • step S13: No When the number of detected objects is singular in step S13 (step S13: No), the ROI setting unit 402 of the control unit 400 sets the region of the object to ROI (step S15).
  • the irradiation direction adjustment unit 403 of the control unit 400 changes the irradiation position of the light source unit 106b of the irradiation unit 100 based on the setting content of the ROI setting unit 402. Then, the irradiation unit 100 causes the light source unit 106a, the light source unit 106b, and the light source unit 106c to emit light.
  • the light receiving unit 200 receives the reflected light due to the light emission, and the detecting unit 401 measures the distance based on the result of the light reception (step S16).
  • the irradiation direction adjusting unit 403 of the control unit 400 changes the irradiation position of the light source unit 106b to any position of the plurality of ROIs.
  • the irradiation unit 100 causes the light source unit 106a, the light source unit 106b, and the light source unit 106c to emit light.
  • the irradiation direction adjustment unit 403 of the control unit 400 changes the irradiation position of the light source unit 106b to another ROI position.
  • the irradiation unit 100 causes the light source unit 106a, the light source unit 106b, and the light source unit 106c to emit light.
  • the irradiation system 1 sequentially changes the ROI and obtains the irradiation result of the entire range that can be irradiated by the irradiation unit 100.
  • step S17: Yes If the result of comparison by the proximity detection unit 404 is less than or equal to the designated distance (step S17: Yes), the control unit 400 outputs that the object is in proximity (step S18). Moreover, the control part 400 progresses to step S11, when the measured distance is not less than a designated distance (step S17: No). In step S18, if a command indicating the end of measurement is issued after the notification (step S19: Yes), the process ends. Further, in step S19, when the command indicating the end of the measurement is not issued (step S19: No), the process proceeds to step S11.
  • FIG. 10 shows a block diagram of a line scan type irradiation system.
  • the irradiation system 1 shown in FIG. 10 has a fixed light source unit 106e and a movable light source unit 106f compatible with the line scan method. Otherwise, the irradiation system 1 is the same as the irradiation system 1 shown in FIG.
  • Each of the fixed light source unit 106e and the movable light source unit 106f has a diaphragm 107, a diffusion plate 108, an imaging optical system 103, and a VCSEL array 104.
  • the diaphragm 107 is a diaphragm for defining the projection area.
  • the diffuser plate 108 is a diffuser plate for diffusing light.
  • the line scan method is a kind of so-called flash LiDAR (rider), in which one axis of XY has surface emission, and scanning is performed sequentially along the other axis, and measurement is performed by dividing the pixel into each pixel by the light receiving element array. It is a method.
  • the movable light source unit 106f when it is detected that there is an object in the irradiation range of the light source unit 106e, for example, based on the irradiation result by the fixed light source unit 106e, the movable light source unit 106f changes the light source.
  • the irradiation range of the movable light source section 106f is adjusted so that the irradiation range is slightly shifted from the irradiation range of the section 106e. Specifically, the light source is adjusted so that the irradiation area is shifted by about half of one line.
  • FIG. 11 is a block diagram of an irradiation system that combines the line scan method and the XY scan method.
  • FIG. 11 it has a fixed light source unit 106a that is an XY scan system, a fixed light source unit 106c that is an XY scan system, and a movable light source unit 106f that is a line scan system.
  • the movable light source unit when it is detected that there is an object in the irradiation range of the light source unit 106a based on the irradiation results of the fixed light source unit 106a and the light source unit 106c, the movable light source unit is detected.
  • the irradiation range of the movable light source unit 106f is adjusted so that 106f irradiates the object detection region within the irradiation range of the light source unit 106a.
  • the fixed portion may be of the line scan type and the movable portion may be of the XY scan type.
  • the irradiation unit 100 includes the VCSEL array 104a (VCSEL array 104c) and the VCSEL array 104b
  • the light receiving unit 200 includes the light source unit 106a including the VCSEL array 104a (light source unit 106c including the VCSEL array 104c).
  • the irradiation direction adjustment unit 403 of the control unit 400 controls the light emitting position of the light source unit 106b, and the detection unit 401 detects an object.
  • the irradiation direction adjustment unit 403 changes the light emitting portion of the light source unit 106b in accordance with the object detection area of the light source unit 106a when the detection result of the detection unit 401 matches a predetermined condition.
  • the irradiation system 1 when the irradiation system 1 detects an object in the irradiation direction of the VCSEL array 104a, it adjusts the irradiation direction of the VCSEL array 104b to the object detection area of the VCSEL array 104a to more appropriately detect the distance of the object. Can be measured. That is, the irradiation system 1 can appropriately calculate the distance to the object.
  • the detection unit 401 also detects an object based on the result of receiving the light emitted by the light source unit 106a or the light source unit 106c.
  • the irradiation system 1 detects the object based on the light reception result of the light emitted by the light source unit 106a or the light source unit 106c. Therefore, after appropriately detecting the position of the object, the irradiation direction of the VCSEL array 104b is determined. You can decide.
  • the detection unit 401 or the image processing/recognition processing unit 303 of the image pickup unit 300 detects an object based on the image pickup result by the image pickup unit 300.
  • the irradiation system 1 specifies the position of the object from the imaging result
  • the irradiation direction of the VCSEL array 104b can be determined after appropriately detecting the position of the object.
  • the irradiation direction adjustment unit 403 causes the irradiation direction adjustment unit 403 to irradiate an object with low detection accuracy among the plurality of objects.
  • the light emitting portion of the VCSEL array 104b is changed according to the previous portion.
  • the irradiation system 1 can appropriately measure the distance of the object by intensively irradiating the object whose distance is more difficult to measure.
  • the detection unit 401 measures the distance to the object based on the result of receiving the light emitted by the irradiation unit 100 after the irradiation direction of the VCSEL array 104b is changed by the irradiation direction adjustment unit 403. Thereby, the irradiation system 1 can appropriately measure the distance of the object.
  • each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • each of the above-described configurations, functions, and the like may be realized by software by a processor interpreting and realizing a program that realizes each function.
  • Information such as a program, a table, and a file that realizes each function can be placed in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • the present invention can be used for an irradiation system that controls a surface emitting laser array.
  • SYMBOLS 1 Irradiation system, 100... Irradiation part, 101... Imaging optical system, 102... Collimator lens, 103... Imaging optical system, 104... VCSEL array, 105... Projection control circuit, 106... Light source part, 200... Light receiving part , 201... Imaging optical system, 202... Light receiving element, 203... Amplifying/digitizing circuit, 204... Light receiving control circuit, 300... Imaging unit, 301... Lens, 302... Imaging element, 303... Image processing/recognition processing unit, 304... Imaging control circuit, 400... Control section, 401... Detecting section, 402... ROI setting section, 403... Irradiation direction adjusting section, 404... Proximity detecting section.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Semiconductor Lasers (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

An irradiation part 100 includes a VCSEL array 104a (VCSEL array 104c) and a VCSEL array 104b, and a light receiving part 200 receives light emitted from a light source unit 106a which has the VCSEL array 104a (light source unit 106c which has the VCSEL array 104c) and light emitted from a light source unit 106b which has the VCSEL array 104b. An irradiation direction adjustment unit 403 of a control part 400 controls the light-emitting position of the light source unit 106b, and a detection unit 401 detects an object. The irradiation direction adjustment unit 403 changes the light-emitting place of the light source unit 106b so as to be aligned with the light-emitting place of the light source unit 106a or 106c when the detection result of the detection unit 401 matches a prescribed condition.

Description

照射システムおよび照射方法Irradiation system and irradiation method
 本発明は、照射システムおよび照射方法に関するものである。 The present invention relates to an irradiation system and an irradiation method.
 従来から、複数の半導体レーザ(VCSELアレイ)と光学素子(レンズ)を組み合わせた車両用ライダーシステムがある(例えば、特許文献1)。 Conventionally, there is a vehicle lidar system in which a plurality of semiconductor lasers (VCSEL arrays) and optical elements (lenses) are combined (for example, Patent Document 1).
特許5096008号公報Japanese Patent No. 5096008
 ところで、特許文献1に記載のような、複数の半導体レーザを搭載した車両用ライダーシステムでは、複数の半導体レーザ(面発光レーザアレイ)を用いて、より適切に物体までの距離を計測することが望まれる。 By the way, in a vehicle lidar system equipped with a plurality of semiconductor lasers as described in Patent Document 1, a plurality of semiconductor lasers (surface emitting laser arrays) can be used to more appropriately measure the distance to an object. desired.
 本発明の目的は、適切に物体までの距離を算出する照射システム、照射方法を提供することを目的とする。 An object of the present invention is to provide an irradiation system and an irradiation method that appropriately calculate the distance to an object.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。 The following is a brief description of the outline of the typical inventions among the inventions disclosed in the present application.
 本発明の代表的な実施の形態による照射システムは、面発光レーザアレイを制御する照射システムであって、第1の面発光レーザアレイおよび第2の面発光レーザアレイを含む照射部と、第1の面発光レーザアレイおよび第2の面発光レーザアレイから発光された光を受光する受光部と、第2の面発光レーザアレイの発光位置を制御する制御部と、物体を検出する検出部と、を有し、制御部は、検出部による検出結果が所定の条件に合致する場合に、第1の面発光レーザアレイの発光箇所に合せて、第2の面発光レーザアレイの発光箇所を変更するものである。 An irradiation system according to a representative embodiment of the present invention is an irradiation system for controlling a surface-emission laser array, the irradiation system including a first surface-emission laser array and a second surface-emission laser array; A surface emitting laser array and a light receiving section for receiving light emitted from the second surface emitting laser array, a control section for controlling a light emitting position of the second surface emitting laser array, and a detecting section for detecting an object, And the control unit changes the light emitting portion of the second surface emitting laser array in accordance with the light emitting portion of the first surface emitting laser array when the detection result of the detecting unit matches a predetermined condition. It is a thing.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 The effects obtained by the representative one of the inventions disclosed in the present application will be briefly described as follows.
 すなわち、本発明の代表的な実施の形態によれば、適切に物体までの距離を算出することができる。 That is, according to the representative embodiment of the present invention, it is possible to appropriately calculate the distance to the object.
本発明の一実施の形態である照射システムの構成例についての概要を示した機能ブロック図である。It is a functional block diagram showing the outline about the example of composition of the irradiation system which is one embodiment of the present invention. 複数の固定式の光源部の照射例を示す図である。It is a figure which shows the irradiation example of several fixed type light source parts. 複数の固定式の光源部の照射例を示す図である。It is a figure which shows the irradiation example of several fixed type light source parts. 複数の可動式の光源部の照射例を示す図である。It is a figure which shows the irradiation example of several movable type light source parts. 複数の光源部と受光素子との概念図である。It is a conceptual diagram of a some light source part and a light receiving element. 光源部の照射箇所を変更する例を説明する図である。It is a figure explaining the example which changes the irradiation location of a light source part. 光源部の照射制御の例を示す図である。It is a figure which shows the example of irradiation control of a light source part. 本実施の形態における複数の面発光レーザアレイにより、物体までの距離を計測する処理の流れの例について概要を示した図である。It is the figure which showed the outline about the example of the flow of the process which measures the distance to an object by the some surface emitting laser array in this Embodiment. 本実施の形態における複数の面発光レーザアレイにより、物体までの距離を計測する処理の流れの例について概要を示した図である。It is the figure which showed the outline about the example of the flow of the process which measures the distance to an object by the some surface emitting laser array in this Embodiment. ラインスキャン方式の照射システムの構成例についての概要を示した機能ブロック図である。It is the functional block diagram which showed the outline about the structural example of the irradiation system of a line scan system. XYスキャン方式とラインスキャン方式とを組み合わせた照射システムの構成例についての概要を示した機能ブロック図である。It is the functional block diagram which showed the outline about the structural example of the irradiation system which combined the XY scan system and the line scan system.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。一方で、ある図において符号を付して説明した部位について、他の図の説明の際に再度の図示はしないが同一の符号を付して言及する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiments, the same parts are denoted by the same reference symbols in principle and the repeated description thereof will be omitted. On the other hand, parts described with reference numerals in a certain drawing may be referred to with the same reference numeral, although not shown again, in the description of other drawings.
 <システム構成>
 図1は、本発明の一実施形態である照射システムを含む構成例についての概要を示した機能ブロック図である。図1に示す照射システム1は、照射部100、受光部200、撮像部300及び制御部400を有する。
<System configuration>
FIG. 1 is a functional block diagram showing an outline of a configuration example including an irradiation system according to an embodiment of the present invention. The irradiation system 1 shown in FIG. 1 includes an irradiation unit 100, a light receiving unit 200, an imaging unit 300, and a control unit 400.
 照射システム1は、面発光レーザアレイ(VCSELアレイ)を制御する照射システムであり、具体的には、LiDAR(ライダー)システムなどである。すなわち、照射システム1は、車両等に搭載されて使用されるシステムである。なお、図1に示す照射システム1は、公知のXYスキャン方式を採用したシステムである。例えば、照射システム1は、搭載されている車両周辺に物体があるか否かを検出したり、検出した物体までの距離を算出したりする。 Irradiation system 1 is an irradiation system that controls a surface emitting laser array (VCSEL array), and specifically, a LiDAR (rider) system or the like. That is, the irradiation system 1 is a system that is installed and used in a vehicle or the like. The irradiation system 1 shown in FIG. 1 is a system that adopts a known XY scan method. For example, the irradiation system 1 detects whether or not there is an object around the vehicle on which it is mounted, and calculates the distance to the detected object.
 照射システム1の照射部100は、固定式の面発光レーザアレイ(第1の面発光レーザアレイ)および可動式の面発光レーザアレイ(第2の面発光レーザアレイ)を含む。すなわち、照射部100は、複数の面発光レーザアレイを有する。なお、可動式の面発光レーザアレイの可動方法は、公知の技術を適用することにより実現できる。 The irradiation unit 100 of the irradiation system 1 includes a fixed surface emitting laser array (first surface emitting laser array) and a movable surface emitting laser array (second surface emitting laser array). That is, the irradiation unit 100 has a plurality of surface emitting laser arrays. The method of moving the movable surface emitting laser array can be realized by applying a known technique.
 照射部100は、複数の光源部106(光源部106a~光源部106c)と、投光制御回路105を有する。各光源部106は、結像光学系101、コリメータレンズ102、結像光学系103、及びVCSELアレイ104を有する。 The irradiation unit 100 includes a plurality of light source units 106 (light source units 106a to 106c) and a light emission control circuit 105. Each light source unit 106 has an image forming optical system 101, a collimator lens 102, an image forming optical system 103, and a VCSEL array 104.
 結像光学系101は、光をステアリングするためのレンズである。また、コリメータレンズ102は、光を平行化するためのレンズである。結像光学系103は、ビーム径を先鋭化するための集光レンズである。VCSELアレイ104は、面発光レーザアレイである光源(VCSELアレイ)である。 The imaging optical system 101 is a lens for steering light. The collimator lens 102 is a lens for collimating light. The imaging optical system 103 is a condenser lens for sharpening the beam diameter. The VCSEL array 104 is a light source (VCSEL array) that is a surface emitting laser array.
 なお、光源部106aのVCSELアレイ104a及び光源部106cのVCSELアレイ104cが固定式の面発光レーザアレイである。また、光源部106bのVCSELアレイ104bが、可動式の面発光レーザアレイである。 The VCSEL array 104a of the light source unit 106a and the VCSEL array 104c of the light source unit 106c are fixed surface emitting laser arrays. The VCSEL array 104b of the light source unit 106b is a movable surface emitting laser array.
 投光制御回路105は、レーザの発光タイミングを制御する回路である。また、可動式のVCSELアレイ104bを、後述する制御部400によって定められた方向へ変更する。 The light emission control circuit 105 is a circuit that controls the laser emission timing. Further, the movable VCSEL array 104b is changed to the direction determined by the control unit 400 described later.
 ここで複数の光源部106による照射例について図2を用いて説明する。図2は、複数の固定式の光源部106の照射例を示す図である。図2の例では、双方の照射箇所が千鳥配列となるように重ねることにより、照射範囲における測定密度を高めるようにした例である。 Here, an example of irradiation by the plurality of light source units 106 will be described with reference to FIG. FIG. 2 is a diagram showing an irradiation example of a plurality of fixed light source units 106. The example of FIG. 2 is an example in which the measurement density in the irradiation range is increased by overlapping the irradiation positions so as to form a staggered arrangement.
 図2(a)に示すように、光源部106a及び光源部106cからレーザ光を照射すると、図2(b)に示すように、光源部106aから照射される照射点P1及び光源部106cから照射される照射点P3が重なるようになる。 When the laser light is emitted from the light source unit 106a and the light source unit 106c as shown in FIG. 2A, the irradiation point P1 and the light source unit 106c emitted from the light source unit 106a are emitted as shown in FIG. 2B. The irradiated points P3 to be overlapped are overlapped.
 続いて、複数の光源部106による照射例について図3を用いて説明する。図3は、複数の固定式の光源部106の照射例を示す図である。図3の例では、双方の照射箇所が重ならないようにすることにより、広い範囲に照射するようにした例である。 Next, an example of irradiation by the plurality of light source units 106 will be described with reference to FIG. FIG. 3 is a diagram illustrating an irradiation example of the plurality of fixed light source units 106. The example of FIG. 3 is an example in which irradiation is performed in a wide range by preventing both irradiation points from overlapping.
 図3(a)に示すように、光源部106a及び光源部106cからレーザ光を照射すると、図3(b)に示すように、光源部106aから照射される照射点P1及び光源部106bから照射される照射点P3が重ならないように照射することにより、広い範囲に照射することができる。 When the laser light is emitted from the light source units 106a and 106c as shown in FIG. 3A, the irradiation point P1 and the light source unit 106b emitted from the light source unit 106a are emitted as shown in FIG. 3B. It is possible to irradiate a wide range by irradiating the irradiation points P3 so that they do not overlap.
 続いて、複数の光源部106による照射例について図4を用いて説明する。図4は、複数の可動式の光源部106の照射例を示す図である。図4の例では、複数の可動式の光源部106を中央部分へ回転させることにより、広い範囲に照射した状態から照射箇所を集約している例である。 Next, an example of irradiation by the plurality of light source units 106 will be described with reference to FIG. FIG. 4 is a diagram illustrating an irradiation example of the plurality of movable light source units 106. The example of FIG. 4 is an example in which a plurality of movable light source units 106 are rotated to the central portion to collect irradiation points from a state in which a wide range is irradiated.
 図4(a)は、光源部106b及び光源部106dが可動式の光源部であり、それぞれの光源部106が当初の照射方向より中央方向へ6度回転する。この場合、図4(b)に示すように、光源部106b及び光源部106dの照射点(照射点P2及び照射点P4)が中央方向へ寄る。 In FIG. 4A, the light source unit 106b and the light source unit 106d are movable light source units, and each light source unit 106 rotates 6 degrees toward the center from the initial irradiation direction. In this case, as shown in FIG. 4B, the irradiation points (irradiation point P2 and irradiation point P4) of the light source section 106b and the light source section 106d deviate toward the center.
 図4(c)は、光源部106b及び光源部106dをそれぞれ当初の照射方向より中央方向へ11度回転する。この場合、図4(d)に示すように、光源部106b及び光源部106dの照射点(照射点P2及び照射点P4)がさらに中央方向へ寄る。 In FIG. 4C, the light source unit 106b and the light source unit 106d are each rotated 11 degrees from the initial irradiation direction toward the center. In this case, as shown in FIG. 4D, the irradiation points (irradiation point P2 and irradiation point P4) of the light source section 106b and the light source section 106d are further shifted toward the center.
 図1に戻り、受光部200は、照射部100から発光された光を受光する部分である。すなわち、受光部200は、複数の面発光レーザアレイから発光された光を受光する部分である。 Returning to FIG. 1, the light receiving unit 200 is a part that receives the light emitted from the irradiation unit 100. That is, the light receiving unit 200 is a portion that receives the light emitted from the plurality of surface emitting laser arrays.
 受光部200は、結像光学系201、受光素子202、増幅・デジタル化回路203、及び受光制御回路204を有する。結像光学系201は、受光レンズである。受光素子202は、PD、APD、SPAD及びそのアレイ品等である。 The light receiving unit 200 has an imaging optical system 201, a light receiving element 202, an amplification/digitization circuit 203, and a light reception control circuit 204. The imaging optical system 201 is a light receiving lens. The light receiving element 202 is PD, APD, SPAD, an array product thereof, or the like.
 増幅・デジタル化回路203は、受光信号を増幅し、デジタル化する部分である。受光制御回路204は、データの読み出しタイミングを制御する回路である。受光部200は、受光した結果を制御部400へ送出する。 The amplification/digitization circuit 203 is a part that amplifies the received light signal and digitizes it. The light reception control circuit 204 is a circuit that controls the timing of reading data. The light receiving unit 200 sends the received light result to the control unit 400.
 撮像部300は、車両等の前方を撮像する部分である。撮像部300は、レンズ301と、撮像素子302と、画像処理・認識処理部303と、撮像制御回路304とを有する。 The image capturing unit 300 is a portion that captures an image of the front of a vehicle or the like. The image pickup unit 300 includes a lens 301, an image pickup element 302, an image processing/recognition processing unit 303, and an image pickup control circuit 304.
 レンズ301は、いわゆるカメラ用のレンズである。撮像素子302は、CMOSセンサ等である。画像処理・認識処理部303は、レンズ301及び撮像素子302により得られる画像について処理をする部分である。例えば、画像処理・認識処理部303は、画像を補正したり、取得した画像から物体(車両、人物等)を抽出したりする。 The lens 301 is a so-called camera lens. The image sensor 302 is a CMOS sensor or the like. The image processing/recognition processing unit 303 is a unit that processes an image obtained by the lens 301 and the image sensor 302. For example, the image processing/recognition processing unit 303 corrects an image and extracts an object (vehicle, person, etc.) from the acquired image.
 撮像制御回路304は、映像のフレームレートや解像度等の読み出し設定を制御するための回路である。 The image pickup control circuit 304 is a circuit for controlling read settings such as a frame rate and resolution of video.
 制御部400は、照射システム1全体を制御する部分である。制御部400は、検出部401(測定部)と、ROI設定部402と、照射方向調整部403と、近接検出部404とを有する。 The control unit 400 is a unit that controls the entire irradiation system 1. The control unit 400 includes a detection unit 401 (measurement unit), an ROI setting unit 402, an irradiation direction adjustment unit 403, and a proximity detection unit 404.
 制御部400の検出部401は、受光部200による受光結果に基づいて物体を検出する。また、制御部400の検出部401は、撮像部300による撮像結果に基づいて、画像認識技術を用いて物体を検出する。ここでいう物体とは、車両周辺に位置する物体(車両、人、障害物等)をいう。検出部401は、投光タイミングおよび受光タイミングについて、公知技術を用いて特定することにより、物体を検出する。また、検出部401は、当該物体までの距離も公知技術を用いて算出するようにしてもよい。検出部401は、受光信号を受信した場合に、物体があると検出する。 The detection unit 401 of the control unit 400 detects an object based on the light reception result of the light reception unit 200. Further, the detection unit 401 of the control unit 400 detects an object using an image recognition technique based on the image pickup result by the image pickup unit 300. The object here means an object (vehicle, person, obstacle, etc.) located around the vehicle. The detection unit 401 detects an object by specifying the light projection timing and the light reception timing using a known technique. The detection unit 401 may also calculate the distance to the object using a known technique. The detection unit 401 detects that there is an object when receiving the light reception signal.
 また、制御部400の検出部401は、撮像結果に基づいて物体を検出する場合、撮像部300による情報を元に画像処理・認識処理部303で認識した物体位置情報を取得することにより、物体を検出する。なお、検出部401は、撮像部300から撮像結果を取得して、画像解析することにより、物体を検出するようにしてもよい。 Further, when detecting the object based on the imaging result, the detection unit 401 of the control unit 400 acquires the object position information recognized by the image processing/recognition processing unit 303 based on the information by the imaging unit 300, thereby To detect. The detecting unit 401 may detect the object by acquiring the image pickup result from the image pickup unit 300 and analyzing the image.
 制御部400の検出部401は、検出した結果(物体の位置)をROI設定部402へ送出する。 The detection unit 401 of the control unit 400 sends the detection result (object position) to the ROI setting unit 402.
 また、制御部400の検出部401は、照射部100の発光タイミングと、受光部200の受光タイミングとに基づいて物体までの距離を、公知技術を用いて算出する。例えば、検出部401は、可動式の光源部である光源部106bの発光箇所を変更した後における、照射部100の発光タイミングと、受光部200の受光タイミングとに基づいて物体までの距離を算出する。例えば、制御部400の検出部401は、ROI設定部402により、ROIが設定された後に、当該ROIの範囲における物体までの距離も公知技術を用いて算出するようにしてもよい。 Further, the detection unit 401 of the control unit 400 calculates the distance to the object based on the light emission timing of the irradiation unit 100 and the light reception timing of the light receiving unit 200 using a known technique. For example, the detection unit 401 calculates the distance to the object based on the light emission timing of the irradiation unit 100 and the light reception timing of the light receiving unit 200 after changing the light emitting location of the light source unit 106b that is the movable light source unit. To do. For example, the detection unit 401 of the control unit 400 may also calculate the distance to the object in the range of the ROI using a known technique after the ROI is set by the ROI setting unit 402.
 すなわち、検出部401は、光源部106bの発光箇所を変更した後に、照射部100で照射した結果を受光部200で受光した結果に基づいて、上記物体までの距離を算出する。なお、制御部400の検出部401は、当該ROIの範囲以外の範囲における物体までの距離についても公知技術を用いて算出するようにしてもよい。 That is, the detection unit 401 calculates the distance to the object based on the result of the light receiving unit 200 receiving the result of irradiation by the irradiation unit 100 after changing the light emitting portion of the light source unit 106b. Note that the detection unit 401 of the control unit 400 may calculate the distance to the object in a range other than the range of the ROI using a known technique.
 また、制御部400のROI設定部402は、当該物体の検出結果に基づいて、ROI(注目範囲)を設定する。ROIとは、物体までの距離を算出するために照射部100から集中して照射させる領域(物体検出領域)を示す。ROI設定部402は、検出部401から得られた、検出した結果に基づいて、ROIを設定する。ROI設定部402は、設定した結果を照射方向調整部403へ送出する。なお、ROI設定部402は、複数のROIを設定するようにしてもよい。 Further, the ROI setting unit 402 of the control unit 400 sets an ROI (range of interest) based on the detection result of the object. The ROI indicates an area (object detection area) that is irradiated by the irradiation unit 100 in a concentrated manner in order to calculate the distance to the object. The ROI setting unit 402 sets the ROI based on the detection result obtained from the detection unit 401. The ROI setting unit 402 sends the set result to the irradiation direction adjusting unit 403. The ROI setting unit 402 may set a plurality of ROIs.
 また、制御部400の照射方向調整部403は、ROI設定部402によって設定された注目範囲に基づいて、照射部100の面発光レーザアレイの何れかを、他の面発光レーザアレイの何れかの位置に変更し、面発光レーザアレイの発光箇所を変更する。例えば、制御部400の照射方向調整部403は、照射部100の面発光レーザアレイの何れかを、他の面発光レーザアレイの何れかの位置(例えば、物体への照射先となる部分)に合せて、面発光レーザアレイの発光箇所を変更する。 Further, the irradiation direction adjustment unit 403 of the control unit 400 sets any one of the surface emitting laser arrays of the irradiation unit 100 to any one of the other surface emitting laser arrays based on the attention range set by the ROI setting unit 402. The position is changed, and the light emitting portion of the surface emitting laser array is changed. For example, the irradiation direction adjustment unit 403 of the control unit 400 sets one of the surface emitting laser arrays of the irradiation unit 100 to any position of another surface emitting laser array (for example, a portion which is an irradiation destination of an object). At the same time, the light emitting portion of the surface emitting laser array is changed.
 ここで、制御部400の照射方向調整部403は、照射部100の面発光レーザアレイの何れかを、他の面発光レーザアレイの何れかの位置に合せるとは、当該他の面発光レーザアレイの照射範囲の照射密度を上げるように、当該照射範囲に基づいて、面発光レーザアレイの発光箇所の位置を変えることである。 Here, the irradiation direction adjustment unit 403 of the control unit 400 means that any one of the surface emitting laser arrays of the irradiation unit 100 is aligned with any position of the other surface emitting laser array. That is, the position of the light emitting portion of the surface emitting laser array is changed based on the irradiation range so as to increase the irradiation density of the irradiation range.
 具体的に、照射方向調整部403は、光源部106bからもレーザ光を光源部106aまたは光源部106cの照射方向へ発光箇所を変更する。 Specifically, the irradiation direction adjusting unit 403 changes the light emitting portion of the laser light from the light source unit 106b in the irradiation direction of the light source unit 106a or the light source unit 106c.
 近接検出部404は、検出部401によって算出された距離が、予め設定している閾値より少ない場合、物体に近接していると判断し、その旨を出力する。 When the distance calculated by the detection unit 401 is smaller than a preset threshold value, the proximity detection unit 404 determines that the object is close to the object, and outputs that effect.
 図5に複数の光源部106と受光部200との概念図を示す。図5に示すように、照射システム1は、固定された光源部106a及び光源部106cからレーザ光を照射して、可動式の光源部106bを照射して、受光部200が受光する。 FIG. 5 shows a conceptual diagram of the plurality of light source units 106 and the light receiving units 200. As shown in FIG. 5, in the irradiation system 1, the fixed light source section 106a and the fixed light source section 106c irradiate laser light, the movable light source section 106b irradiates, and the light receiving section 200 receives light.
 例えば、固定された光源部106aの照射箇所(例えば、照射点P1)と、光源部106cの照射箇所(例えば、照射点P3)とが重ならないように広い範囲に照射して、可動式の光源部106bの照射箇所を固定された光源部106aの照射箇所または光源部106cの照射箇所の間に合せた箇所(例えば、照射点P2)に照射するようにする。 For example, the movable light source irradiates a wide range so that the irradiation position (for example, irradiation point P1) of the fixed light source unit 106a and the irradiation position (for example, irradiation point P3) of the light source unit 106c do not overlap. The irradiation portion of the portion 106b is irradiated to a portion (for example, an irradiation point P2) which is aligned with the irradiation portion of the fixed light source portion 106a or the irradiation portion of the light source portion 106c.
 続いて、図6を用いて、光源部106bの照射箇所を変更する例を説明する。図6(a)に示すように、注目箇所が中央部分である場合、光源部106bは、光源部106aの照射範囲と、光源部106cの照射範囲との境界部分周辺にレーザ光を照射する。 Next, an example of changing the irradiation location of the light source unit 106b will be described with reference to FIG. As shown in FIG. 6A, when the spot of interest is the central portion, the light source unit 106b irradiates the laser light around the boundary between the irradiation range of the light source unit 106a and the irradiation range of the light source unit 106c.
 そうすると、図6(b)に示すように、固定された光源部106a及び光源部106cは、照射点P1と照射点P3とが重ならないように、広い範囲で照射し、可動式の光源部106bが、光源部106aの照射範囲と、光源部106cの照射範囲との境界部分周辺に照射するので、照射点P2が中央部分(上記境界部分周辺)となる。 Then, as shown in FIG. 6B, the fixed light source unit 106a and the fixed light source unit 106c irradiate in a wide range so that the irradiation point P1 and the irradiation point P3 do not overlap, and the movable light source unit 106b. However, since the irradiation is performed around the boundary between the irradiation range of the light source unit 106a and the irradiation range of the light source unit 106c, the irradiation point P2 is the central part (around the boundary).
 続いて、図6(c)に示すように、右側(光源部106c側)に光源部106bの照射箇所を変更する場合、光源部106bは、光源部106cの照射範囲に合せてレーザ光を照射する。 Subsequently, as shown in FIG. 6C, when changing the irradiation position of the light source unit 106b to the right side (the light source unit 106c side), the light source unit 106b irradiates the laser light in accordance with the irradiation range of the light source unit 106c. To do.
 そうすると、図6(d)に示すように、可動式の光源部106bが、光源部106cの照射範囲に合せて照射するので、照射点P2が光源部106cの照射範囲に合せた箇所となる。 Then, as shown in FIG. 6(d), since the movable light source unit 106b irradiates the light source unit 106c in accordance with the irradiation range, the irradiation point P2 becomes a position corresponding to the irradiation range of the light source unit 106c.
 続いて、照射システム1による、光源部106bの照射制御の例について、図7を用いて説明する。まず、図7(a)に示すように、光源部106a及び光源部106cが、レーザを照射して、受光部200が、照射したレーザ光の反射結果を受光する。 Next, an example of irradiation control of the light source unit 106b by the irradiation system 1 will be described with reference to FIG. First, as shown in FIG. 7A, the light source unit 106a and the light source unit 106c emit laser light, and the light receiving unit 200 receives the reflection result of the emitted laser light.
 照射システム1は、光源部106aの照射による照射点P1または光源部106cの照射による照射点P3の反射結果に基づいて、物体(車両C1および車両C2)を検出する。照射システム1は、反射結果に基づいて、車両C1の方が、検出精度が悪いと考えられることから、車両C1周辺を注目範囲に決定する。具体的に、照射システム1は、車両C1の領域から得られる反射点の数が、車両C2の領域から得られる反射点の数より少ないため、車両C1の方が、検出精度が悪いと特定する。 The irradiation system 1 detects an object (vehicle C1 and vehicle C2) based on the reflection result of the irradiation point P1 by the irradiation of the light source unit 106a or the irradiation point P3 by the irradiation of the light source unit 106c. The irradiation system 1 determines that the detection accuracy of the vehicle C1 is lower based on the reflection result, and thus determines the vicinity of the vehicle C1 as the attention range. Specifically, the irradiation system 1 specifies that the vehicle C1 has lower detection accuracy because the number of reflection points obtained from the region of the vehicle C1 is smaller than the number of reflection points obtained from the region of the vehicle C2. ..
 照射システム1は、図7(b)に示すように、注目範囲R1を設定し、光源部106bを当該注目範囲R1に合せて、レーザ光を照射して、その結果に基づいて、車両C1までの距離を測定する。 As shown in FIG. 7B, the irradiation system 1 sets an attention range R1, aligns the light source unit 106b with the attention range R1, irradiates laser light, and based on the result, extends to the vehicle C1. To measure the distance.
 ここで、図7(c)は、照射領域の関係を示す図である。照射システム1は、図7(c)に示すように、最初に光源部106a及び光源部106cにより、領域A1の範囲にレーザ光を照射し、その結果に基づき、車両C1の範囲に光源部106bが領域A2(注目範囲に対応する領域)に照射する。これにより、照射システム1は、車両C1までの距離をより確実に測定することができる。 Here, FIG. 7C is a diagram showing a relationship between irradiation areas. As shown in FIG. 7C, the irradiation system 1 first irradiates the area A1 with laser light by the light source section 106a and the light source section 106c, and based on the result, irradiates the area of the vehicle C1 with the light source section 106b. Illuminates area A2 (area corresponding to the attention range). Thereby, the irradiation system 1 can more reliably measure the distance to the vehicle C1.
 続いて、図8を用いて、本実施の形態における複数の面発光レーザアレイを用いて物体までの距離を計測する処理の流れを説明する。 Next, the flow of processing for measuring the distance to an object using the plurality of surface emitting laser arrays according to the present embodiment will be described with reference to FIG.
 図8は、本実施の形態における複数の面発光レーザアレイにより、物体までの距離を計測する処理の流れの例について概要を示した図である。 FIG. 8 is a diagram showing an outline of an example of the flow of processing for measuring the distance to an object by the plurality of surface emitting laser arrays according to the present embodiment.
 まず、照射部100の光源部106aおよび光源部106cにより発光し、受光部200は、当該発光による光を受光する。このように、照射システム1は、複数の光源を用いることにより、広域にスキャンする(ステップS01)。 First, the light source unit 106a and the light source unit 106c of the irradiation unit 100 emit light, and the light receiving unit 200 receives the emitted light. In this way, the irradiation system 1 scans a wide area by using a plurality of light sources (step S01).
 制御部400の検出部401は、受光部200による受光結果に基づき、物体の有無を判断することにより、物体検出をする(ステップS02)。制御部400の検出部401が、物体を検出しなかった場合(ステップS02:No)、ステップS01へ進む。 The detection unit 401 of the control unit 400 detects an object by determining the presence or absence of an object based on the light reception result of the light reception unit 200 (step S02). When the detection unit 401 of the control unit 400 does not detect an object (step S02: No), the process proceeds to step S01.
 検出部401が、物体を検出した場合(ステップS02:Yes)、その物体が複数であれば(ステップS03:Yes)、制御部400のROI設定部402は、最も測定点数の少ない物体の領域をROIに設定する(ステップS04)。また、ステップS03において、検出した物体が単数の場合(ステップS03:No)、制御部400のROI設定部402は、物体の領域をROIに設定する(ステップS05)。 When the detection unit 401 detects an object (step S02: Yes) and the number of the objects is plural (step S03: Yes), the ROI setting unit 402 of the control unit 400 selects the area of the object having the smallest number of measurement points. The ROI is set (step S04). If the number of detected objects is singular in step S03 (step S03: No), the ROI setting unit 402 of the control unit 400 sets the region of the object to ROI (step S05).
 制御部400の照射方向調整部403は、ROI設定部402による設定内容に基づいて、照射部100の光源部106bの照射位置を変更する。そして、照射部100は、光源部106a、光源部106b及び光源部106cから発光させる。受光部200は、当該発光による光を受光して、検出部401は、当該受光した結果に基づいて距離を計測する(ステップS06)。 The irradiation direction adjustment unit 403 of the control unit 400 changes the irradiation position of the light source unit 106b of the irradiation unit 100 based on the setting content of the ROI setting unit 402. Then, the irradiation unit 100 causes the light source unit 106a, the light source unit 106b, and the light source unit 106c to emit light. The light receiving unit 200 receives the light emitted by the light emission, and the detection unit 401 measures the distance based on the result of the light reception (step S06).
 制御部400は、近接検出部404で比較した結果が、指定距離以下である場合(ステップS07:Yes)、物体が近接している旨出力(通知)する(ステップS08)。また、制御部400は、計測した距離が、指定距離以下でない場合(ステップS07:No)、ステップS001へ進む。ステップS08において、通知した後、測定終了を示す命令が発行された場合(ステップS09:Yes)、処理を終了する。また、ステップS09において、当該測定終了を示す命令が発行されていない場合(ステップS09:No)、ステップS01へ進む。 The control unit 400 outputs (notifies) that the object is in the proximity (step S08) when the comparison result of the proximity detection unit 404 is equal to or less than the specified distance (step S07: Yes). If the measured distance is not equal to or less than the designated distance (step S07: No), the control unit 400 proceeds to step S001. In step S08, if a command indicating the end of measurement is issued after the notification (step S09: Yes), the process ends. Further, in step S09, if the instruction indicating the end of the measurement is not issued (step S09: No), the process proceeds to step S01.
 続いて、図9を用いて、本実施の形態における複数の面発光レーザアレイを用いて物体までの距離を計測する処理の流れを説明する。 Next, the flow of processing for measuring the distance to an object using the plurality of surface emitting laser arrays according to the present embodiment will be described with reference to FIG.
 図9は、本実施の形態における複数の面発光レーザアレイにより、物体までの距離を計測する処理の流れの例について概要を示した図である。 FIG. 9 is a diagram showing an outline of an example of the flow of processing for measuring the distance to an object by the plurality of surface emitting laser arrays according to the present embodiment.
 まず、撮像部300は、撮像処理をすることにより、撮像画像を取得する(ステップS11)。 First, the image capturing unit 300 acquires a captured image by performing an image capturing process (step S11).
 続いて、制御部400の検出部401は、撮像部300による撮像結果(撮像部300の画像処理・認識処理部303による結果)に基づき、画像処理技術を用いて物体の有無を判断する(ステップS12)。制御部400の検出部401が、物体を検出しなかった場合(ステップS12:No)、ステップS11へ進む。なお、検出部401に替えて、画像処理・認識処理部303が、画像処理技術を用いて、物体の有無を検出するようにしてもよい。 Subsequently, the detection unit 401 of the control unit 400 determines the presence or absence of an object using an image processing technique based on the imaging result of the imaging unit 300 (result of the image processing/recognition processing unit 303 of the imaging unit 300) (step). S12). When the detection unit 401 of the control unit 400 does not detect an object (step S12: No), the process proceeds to step S11. Instead of the detection unit 401, the image processing/recognition processing unit 303 may detect the presence or absence of an object using an image processing technique.
 検出部401が、撮像部300の画像処理・認識処理部303の処理結果に基づいて、物体を検出した場合(ステップS12:Yes)、その物体が複数であれば(ステップS13:Yes)、制御部400のROI設定部402は、検出した物体の領域をそれぞれROIに設定する(ステップS14)。また、ステップS13において、検出した物体が単数の場合(ステップS13:No)、制御部400のROI設定部402は、物体の領域をROIに設定する(ステップS15)。 When the detection unit 401 detects an object based on the processing result of the image processing/recognition processing unit 303 of the imaging unit 300 (step S12: Yes), if the number of the objects is plural (step S13: Yes), control is performed. The ROI setting unit 402 of the unit 400 sets each area of the detected object as an ROI (step S14). When the number of detected objects is singular in step S13 (step S13: No), the ROI setting unit 402 of the control unit 400 sets the region of the object to ROI (step S15).
 制御部400の照射方向調整部403は、ROI設定部402による設定内容に基づいて、照射部100の光源部106bの照射位置を変更する。そして、照射部100は、光源部106a、光源部106b及び光源部106cから発光させる。受光部200は、当該発光による反射光を受光して、検出部401は、当該受光した結果に基づいて距離を計測する(ステップS16)。 The irradiation direction adjustment unit 403 of the control unit 400 changes the irradiation position of the light source unit 106b of the irradiation unit 100 based on the setting content of the ROI setting unit 402. Then, the irradiation unit 100 causes the light source unit 106a, the light source unit 106b, and the light source unit 106c to emit light. The light receiving unit 200 receives the reflected light due to the light emission, and the detecting unit 401 measures the distance based on the result of the light reception (step S16).
 なお、ROI設定部402により設定されているROIが複数ある場合、制御部400の照射方向調整部403は、光源部106bの照射位置を複数のROIの何れかの位置に変更する。その後に、照射部100は、光源部106a、光源部106b及び光源部106cから発光させる。そして、制御部400の照射方向調整部403は、光源部106bの照射位置を他のROIの位置に変更する。その後に、照射部100は、光源部106a、光源部106b及び光源部106cから発光させる。このように、照射システム1は、順次ROIを変更し、照射部100が照射できる範囲全体の照射結果を得る。 When there are a plurality of ROIs set by the ROI setting unit 402, the irradiation direction adjusting unit 403 of the control unit 400 changes the irradiation position of the light source unit 106b to any position of the plurality of ROIs. After that, the irradiation unit 100 causes the light source unit 106a, the light source unit 106b, and the light source unit 106c to emit light. Then, the irradiation direction adjustment unit 403 of the control unit 400 changes the irradiation position of the light source unit 106b to another ROI position. After that, the irradiation unit 100 causes the light source unit 106a, the light source unit 106b, and the light source unit 106c to emit light. In this way, the irradiation system 1 sequentially changes the ROI and obtains the irradiation result of the entire range that can be irradiated by the irradiation unit 100.
 制御部400は、近接検出部404で比較した結果が、指定距離以下である場合(ステップS17:Yes)、物体が近接している旨出力する(ステップS18)。また、制御部400は、計測した距離が、指定距離以下でない場合(ステップS17:No)、ステップS11へ進む。ステップS18において、通知した後、測定終了を示す命令が発行された場合(ステップS19:Yes)、処理を終了する。また、ステップS19において、当該測定終了を示す命令が発行されていない場合(ステップS19:No)、ステップS11へ進む。 If the result of comparison by the proximity detection unit 404 is less than or equal to the designated distance (step S17: Yes), the control unit 400 outputs that the object is in proximity (step S18). Moreover, the control part 400 progresses to step S11, when the measured distance is not less than a designated distance (step S17: No). In step S18, if a command indicating the end of measurement is issued after the notification (step S19: Yes), the process ends. Further, in step S19, when the command indicating the end of the measurement is not issued (step S19: No), the process proceeds to step S11.
 上述の例では、XYスキャン方式の照射システムの例を説明したが、公知のラインスキャン方式の照射システムに適用するようにしてもよい。図10に、ラインスキャン方式の照射システムのブロック図を示す。 In the above example, an example of an XY scan type irradiation system has been described, but it may be applied to a known line scan type irradiation system. FIG. 10 shows a block diagram of a line scan type irradiation system.
 図10に示す照射システム1は、ラインスキャン方式に対応する固定式の光源部106e及び可動式の光源部106fを有する。それ以外は、図1に示した照射システム1と同様であるので、説明を省略する。 The irradiation system 1 shown in FIG. 10 has a fixed light source unit 106e and a movable light source unit 106f compatible with the line scan method. Otherwise, the irradiation system 1 is the same as the irradiation system 1 shown in FIG.
 固定式の光源部106e及び可動式の光源部106fのそれぞれは、絞り107、拡散板108、結像光学系103、及びVCSELアレイ104を有する。絞り107は、投光領域を規定するための絞りである。また、拡散板108は、光を拡散するための拡散板である。ここで、ラインスキャン方式とは、いわゆるフラッシュLiDAR(ライダー)の一種で、XYの片方の軸を面発光とし、もう一方の軸に沿って順次スキャンし、受光素子アレイで各画素に分解する測定方式である。 Each of the fixed light source unit 106e and the movable light source unit 106f has a diaphragm 107, a diffusion plate 108, an imaging optical system 103, and a VCSEL array 104. The diaphragm 107 is a diaphragm for defining the projection area. The diffuser plate 108 is a diffuser plate for diffusing light. Here, the line scan method is a kind of so-called flash LiDAR (rider), in which one axis of XY has surface emission, and scanning is performed sequentially along the other axis, and measurement is performed by dividing the pixel into each pixel by the light receiving element array. It is a method.
 図10に示す照射システム1において、例えば、固定式の光源部106eによる照射結果に基づいて、当該光源部106eの照射範囲に物体があることを検出した場合、可動式の光源部106fが、光源部106eの照射範囲から少しずらした範囲に照射するように可動式の光源部106fの照射範囲を調整する。具体的には1ラインの半分程度照射領域がずれるよう光源を調整する。 In the irradiation system 1 shown in FIG. 10, when it is detected that there is an object in the irradiation range of the light source unit 106e, for example, based on the irradiation result by the fixed light source unit 106e, the movable light source unit 106f changes the light source. The irradiation range of the movable light source section 106f is adjusted so that the irradiation range is slightly shifted from the irradiation range of the section 106e. Specifically, the light source is adjusted so that the irradiation area is shifted by about half of one line.
 また、図11に示すように、ラインスキャン方式とXYスキャン方式とを組み合わせた照射システム1に適用するようにしてもよい。図11は、ラインスキャン方式とXYスキャン方式とを組み合わせた照射システムのブロック図である。 Further, as shown in FIG. 11, it may be applied to an irradiation system 1 in which a line scan method and an XY scan method are combined. FIG. 11 is a block diagram of an irradiation system that combines the line scan method and the XY scan method.
 図11に示すように、XYスキャン方式である固定式の光源部106aと、XYスキャン方式である固定式の光源部106cと、ラインスキャン方式である可動式の光源部106fとを有する。 As shown in FIG. 11, it has a fixed light source unit 106a that is an XY scan system, a fixed light source unit 106c that is an XY scan system, and a movable light source unit 106f that is a line scan system.
 図11に示す照射システム1において、例えば、固定式の光源部106a及び光源部106cによる照射結果に基づいて、当該光源部106aの照射範囲に物体があることを検出した場合、可動式の光源部106fが、光源部106aの照射範囲の内、物体検出領域に合せて照射するように可動式の光源部106fの照射範囲を調整する。また、上記では、可動部をラインスキャン方式とする場合について述べたが、固定部をラインスキャン方式として、可動部をXYスキャン方式にするようにしてもよい。 In the irradiation system 1 shown in FIG. 11, when it is detected that there is an object in the irradiation range of the light source unit 106a based on the irradiation results of the fixed light source unit 106a and the light source unit 106c, the movable light source unit is detected. The irradiation range of the movable light source unit 106f is adjusted so that 106f irradiates the object detection region within the irradiation range of the light source unit 106a. Further, in the above, the case where the movable portion is of the line scan type has been described, but the fixed portion may be of the line scan type and the movable portion may be of the XY scan type.
 上述のように、照射部100が、VCSELアレイ104a(VCSELアレイ104c)およびVCSELアレイ104bを含み、受光部200が、当該VCSELアレイ104aを有する光源部106a(当該VCSELアレイ104cを有する光源部106c)及びVCSELアレイ104bを有する光源部106bから発光された光を受光する。制御部400の照射方向調整部403が、光源部106bの発光位置を制御し、検出部401が、物体を検出する。照射方向調整部403は、検出部401による検出結果が所定の条件に合致する場合に、光源部106aの物体検出領域に合せて、光源部106bの発光箇所を変更する。 As described above, the irradiation unit 100 includes the VCSEL array 104a (VCSEL array 104c) and the VCSEL array 104b, and the light receiving unit 200 includes the light source unit 106a including the VCSEL array 104a (light source unit 106c including the VCSEL array 104c). And light emitted from the light source unit 106b having the VCSEL array 104b. The irradiation direction adjustment unit 403 of the control unit 400 controls the light emitting position of the light source unit 106b, and the detection unit 401 detects an object. The irradiation direction adjustment unit 403 changes the light emitting portion of the light source unit 106b in accordance with the object detection area of the light source unit 106a when the detection result of the detection unit 401 matches a predetermined condition.
 この場合、照射システム1は、例えば、VCSELアレイ104aの照射方向に物体を検出した場合、VCSELアレイ104bの照射方向を当該VCSELアレイ104aの物体検出領域に合せることで、より適切に当該物体の距離を測定することができる。すなわち、照射システム1は、適切に物体までの距離を算出することができる。 In this case, for example, when the irradiation system 1 detects an object in the irradiation direction of the VCSEL array 104a, it adjusts the irradiation direction of the VCSEL array 104b to the object detection area of the VCSEL array 104a to more appropriately detect the distance of the object. Can be measured. That is, the irradiation system 1 can appropriately calculate the distance to the object.
 また、検出部401は、光源部106aまたは光源部106cにより発光された光を受光した結果に基づいて物体を検出する。この場合、照射システム1は、光源部106aまたは光源部106cにより発光された光の受光結果に基づいて物体を検出するので、物体の位置を適切に検出した上で、VCSELアレイ104bの照射方向を決定することができる。 The detection unit 401 also detects an object based on the result of receiving the light emitted by the light source unit 106a or the light source unit 106c. In this case, the irradiation system 1 detects the object based on the light reception result of the light emitted by the light source unit 106a or the light source unit 106c. Therefore, after appropriately detecting the position of the object, the irradiation direction of the VCSEL array 104b is determined. You can decide.
 また、検出部401または撮像部300の画像処理・認識処理部303は、撮像部300による撮像結果に基づいて物体を検出する。この場合、照射システム1は、撮像結果から物体の位置を特定するので、物体の位置を適切に検出した上で、VCSELアレイ104bの照射方向を決定することができる。 Further, the detection unit 401 or the image processing/recognition processing unit 303 of the image pickup unit 300 detects an object based on the image pickup result by the image pickup unit 300. In this case, since the irradiation system 1 specifies the position of the object from the imaging result, the irradiation direction of the VCSEL array 104b can be determined after appropriately detecting the position of the object.
 また、検出部401または撮像部300の画像処理・認識処理部303によって、複数の物体が検出された場合、照射方向調整部403は、当該複数の物体の内、検出精度の低い物体への照射先となる部分に合せて、VCSELアレイ104bの発光箇所を変更する。この場合、照射システム1は、より距離を測定することが困難である物体に対して、集中的に照射させることで、当該物体の距離を適切に測定することができる。 In addition, when a plurality of objects are detected by the detection unit 401 or the image processing/recognition processing unit 303 of the imaging unit 300, the irradiation direction adjustment unit 403 causes the irradiation direction adjustment unit 403 to irradiate an object with low detection accuracy among the plurality of objects. The light emitting portion of the VCSEL array 104b is changed according to the previous portion. In this case, the irradiation system 1 can appropriately measure the distance of the object by intensively irradiating the object whose distance is more difficult to measure.
 また、検出部401は、照射方向調整部403によりVCSELアレイ104bの照射方向を変更した後の、照射部100により発光された光を受光した結果に基づいて、物体までの距離を測定する。これにより、照射システム1は、物体の距離を適切に測定することができる。 Further, the detection unit 401 measures the distance to the object based on the result of receiving the light emitted by the irradiation unit 100 after the irradiation direction of the VCSEL array 104b is changed by the irradiation direction adjustment unit 403. Thereby, the irradiation system 1 can appropriately measure the distance of the object.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, the above embodiments have been described in detail for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the above-described embodiments.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実現することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Further, each of the above-described configurations, functions, and the like may be realized by software by a processor interpreting and realizing a program that realizes each function. Information such as a program, a table, and a file that realizes each function can be placed in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
 本発明は、面発光レーザアレイを制御する照射システムに利用可能である。 The present invention can be used for an irradiation system that controls a surface emitting laser array.
1…照射システム、100…照射部、101…結像光学系、102…コリメータレンズ、103…結像光学系、104…VCSELアレイ、105…投光制御回路、106…光源部、200…受光部、201…結像光学系、202…受光素子、203…増幅・デジタル化回路、204…受光制御回路、300…撮像部、301…レンズ、302…撮像素子、303…画像処理・認識処理部、304…撮像制御回路、400…制御部、401…検出部、402…ROI設定部、403…照射方向調整部、404…近接検出部。 DESCRIPTION OF SYMBOLS 1... Irradiation system, 100... Irradiation part, 101... Imaging optical system, 102... Collimator lens, 103... Imaging optical system, 104... VCSEL array, 105... Projection control circuit, 106... Light source part, 200... Light receiving part , 201... Imaging optical system, 202... Light receiving element, 203... Amplifying/digitizing circuit, 204... Light receiving control circuit, 300... Imaging unit, 301... Lens, 302... Imaging element, 303... Image processing/recognition processing unit, 304... Imaging control circuit, 400... Control section, 401... Detecting section, 402... ROI setting section, 403... Irradiation direction adjusting section, 404... Proximity detecting section.

Claims (6)

  1.  面発光レーザアレイを制御する照射システムであって、
     第1の面発光レーザアレイおよび第2の面発光レーザアレイを含む照射部と、
     前記第1の面発光レーザアレイまたは前記第2の面発光レーザアレイから発光された光を受光する受光部と、
     物体を検出する検出部と、
     前記第2の面発光レーザアレイの発光位置を制御する制御部と、
    を有し、
     前記制御部は、前記検出部による検出結果が所定の条件に合致する場合に、前記第1の面発光レーザアレイの発光箇所に合せて、前記第2の面発光レーザアレイの発光箇所を変更する、照射システム。
    An irradiation system for controlling a surface emitting laser array, comprising:
    An irradiation unit including the first surface-emission laser array and the second surface-emission laser array;
    A light-receiving unit that receives light emitted from the first surface-emission laser array or the second surface-emission laser array;
    A detection unit for detecting an object,
    A control unit for controlling the light emitting position of the second surface emitting laser array;
    Have
    The control unit changes the light emitting portion of the second surface emitting laser array in accordance with the light emitting portion of the first surface emitting laser array when the detection result of the detecting unit matches a predetermined condition. , Irradiation system.
  2.  請求項1に記載の照射システムであって、
     前記検出部は、前記第1の面発光レーザアレイにより発光された光を受光した結果に基づいて物体を検出する、照射システム。
    The irradiation system according to claim 1, wherein
    The said detection part is an irradiation system which detects an object based on the result of having received the light radiate|emitted by the said 1st surface emitting laser array.
  3.  請求項1に記載の照射システムであって、
     撮像部をさらに有し、
     前記検出部は、前記撮像部による撮像結果に基づいて物体を検出する、照射システム。
    The irradiation system according to claim 1, wherein
    Further having an imaging unit,
    The said detection part is an irradiation system which detects an object based on the imaging result by the said imaging part.
  4.  請求項1~3の何れか一項に記載の照射システムであって、
     前記制御部は、前記検出部によって、複数の物体を検出した場合、前記第1の面発光レーザアレイの内、検出精度の低い物体への照射先となる部分に合せて、前記第2の面発光レーザアレイの発光箇所を変更する、照射システム。
    The irradiation system according to any one of claims 1 to 3,
    When the detection unit detects a plurality of objects, the control unit matches the second surface of the first surface-emission laser array in accordance with a portion of the first surface-emission laser array that is an irradiation destination of an object having low detection accuracy. An irradiation system that changes the light emitting point of the light emitting laser array.
  5.  請求項1~4の何れか一項に記載の照射システムであって、
     前記制御部により前記第2の面発光レーザアレイの発光箇所を変更した後の、前記第1の面発光レーザアレイおよび前記第2の面発光レーザアレイから発光された光を受光した結果に基づいて、前記物体までの距離を測定する測定部をさらに備える、照射システム。
    The irradiation system according to any one of claims 1 to 4,
    Based on the result of receiving the light emitted from the first surface-emission laser array and the second surface-emission laser array after changing the light-emission location of the second surface-emission laser array by the controller. The irradiation system further comprising a measuring unit that measures a distance to the object.
  6.  面発光レーザアレイを制御する照射方法であって、
     第1の面発光レーザアレイおよび第2の面発光レーザアレイを含む照射ステップと、
     前記第1の面発光レーザアレイまたは前記第2の面発光レーザアレイから発光された光を受光する受光ステップと、
     物体を検出する検出ステップと、
     前記第2の面発光レーザアレイの発光位置を制御する制御ステップと、
    を有し、
     前記制御ステップでは、前記検出ステップにおける検出結果が所定の条件に合致する場合に、前記第1の面発光レーザアレイの発光箇所に合せて、前記第2の面発光レーザアレイの発光箇所を変更する、照射方法。
    An irradiation method for controlling a surface emitting laser array, comprising:
    An irradiation step including a first surface emitting laser array and a second surface emitting laser array;
    A light receiving step of receiving light emitted from the first surface emitting laser array or the second surface emitting laser array;
    A detection step of detecting an object,
    A control step of controlling a light emitting position of the second surface emitting laser array;
    Have
    In the control step, when the detection result in the detection step matches a predetermined condition, the light emitting portion of the second surface emitting laser array is changed to match the light emitting portion of the first surface emitting laser array. , Irradiation method.
PCT/JP2019/044432 2018-12-06 2019-11-12 Irradiation system and irradiation method WO2020116104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018229142A JP2020091224A (en) 2018-12-06 2018-12-06 Irradiation system and irradiation method
JP2018-229142 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020116104A1 true WO2020116104A1 (en) 2020-06-11

Family

ID=70974589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044432 WO2020116104A1 (en) 2018-12-06 2019-11-12 Irradiation system and irradiation method

Country Status (2)

Country Link
JP (1) JP2020091224A (en)
WO (1) WO2020116104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115840203A (en) * 2021-12-28 2023-03-24 深圳市速腾聚创科技有限公司 Laser emitting device, laser radar and intelligent equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329971A (en) * 2005-04-27 2006-12-07 Sanyo Electric Co Ltd Detector
US20160182891A1 (en) * 2014-12-22 2016-06-23 Google Inc. Integrated Camera System Having Two Dimensional Image Capture and Three Dimensional Time-of-Flight Capture With A Partitioned Field of View
JP2017173298A (en) * 2016-03-16 2017-09-28 株式会社リコー Object detection device and mobile entity device
US20170307736A1 (en) * 2016-04-22 2017-10-26 OPSYS Tech Ltd. Multi-Wavelength LIDAR System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329971A (en) * 2005-04-27 2006-12-07 Sanyo Electric Co Ltd Detector
US20160182891A1 (en) * 2014-12-22 2016-06-23 Google Inc. Integrated Camera System Having Two Dimensional Image Capture and Three Dimensional Time-of-Flight Capture With A Partitioned Field of View
JP2017173298A (en) * 2016-03-16 2017-09-28 株式会社リコー Object detection device and mobile entity device
US20170307736A1 (en) * 2016-04-22 2017-10-26 OPSYS Tech Ltd. Multi-Wavelength LIDAR System

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115840203A (en) * 2021-12-28 2023-03-24 深圳市速腾聚创科技有限公司 Laser emitting device, laser radar and intelligent equipment

Also Published As

Publication number Publication date
JP2020091224A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US11662433B2 (en) Distance measuring apparatus, recognizing apparatus, and distance measuring method
US10816663B2 (en) Distance measuring device and distance measuring method
JP2008531377A5 (en)
US9329025B2 (en) Measuring device
JP2006259098A (en) Optical scanner
JP6186913B2 (en) Measuring device
CN111263899A (en) Lighting device, time-of-flight system and method
JP6748984B2 (en) Distance measuring device and moving body
WO2020116104A1 (en) Irradiation system and irradiation method
JPH11218686A (en) Optical image recording device and method utilising the device
CN101324426A (en) Evaluation of surface structure of devices using different-angle presentation
US20010052581A1 (en) Position sensing device having a single photosensing element
JP2000194829A (en) Irregular pattern reader
JP2020524819A5 (en)
JP2014219250A (en) Range finder and program
JP4014571B2 (en) Printed solder inspection equipment
JP2000097629A (en) Optical sensor
JP4882844B2 (en) Braking light detection device
JP2008032402A (en) Reflector evaluation device and method
JP7294302B2 (en) object detector
US11754388B2 (en) Height measuring device, charged particle beam apparatus, and height measuring method
JP3751610B2 (en) Displacement measuring device
KR101690269B1 (en) Detection apparatus of object position for electronic board
US20210360166A1 (en) System and method for system
US20210208276A1 (en) High dynamic range lidar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893900

Country of ref document: EP

Kind code of ref document: A1