WO2020116017A1 - Design method for composite material and composite material - Google Patents

Design method for composite material and composite material Download PDF

Info

Publication number
WO2020116017A1
WO2020116017A1 PCT/JP2019/039583 JP2019039583W WO2020116017A1 WO 2020116017 A1 WO2020116017 A1 WO 2020116017A1 JP 2019039583 W JP2019039583 W JP 2019039583W WO 2020116017 A1 WO2020116017 A1 WO 2020116017A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
mode
laminated
layers
layer
Prior art date
Application number
PCT/JP2019/039583
Other languages
French (fr)
Japanese (ja)
Inventor
良輔 橋爪
江崎 浩司
正好 須原
拓史 杉山
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2020116017A1 publication Critical patent/WO2020116017A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced

Definitions

  • the present invention relates to a composite material design method and a composite material.
  • Patent Document 1 discloses a composite material structure applied to a main wing of an aircraft.
  • this composite material structure by making the tensile rigidity and compression rigidity in the peripheral area of the access hole provided in the main wing smaller than the tensile rigidity and compression rigidity in other areas, the tensile load and compression load are mainly loaded in other areas. As a result, the reinforcement of the area around the access hole is reduced.
  • an additional layer is laminated between the composite material layers around a place where stress concentration is likely to occur, such as an access hole, and reinforcement is performed by increasing the plate thickness. It is common to improve strength by forming a part. However, there is still room for improvement in the laminated structure for obtaining the desired strength of the reinforcing portion, that is, the number of laminated additional layers and the structure in the orientation direction of the reinforcing fibers.
  • the present invention has been made in view of the above, and for a composite material having a reinforcing portion formed by laminating an additional layer of the composite material layer between the composite material layers extending from the normal portion, the resistance of the reinforcing portion is The purpose is to further improve load performance.
  • the present invention provides a normal part formed by laminating a plurality of composite material layers containing reinforcing fibers, and is provided around a through hole and extends from the normal part.
  • a method of designing a composite material having a reinforcing portion formed by laminating an additional layer of the composite material layer between the composite material layers, wherein a load is applied to the composite material, and the reinforcing portion is
  • a test step that specifies which of the fracture modes including a pullout mode and a mode other than the pullout mode is destroyed, and the number of layers of the additional layer and the orientation direction of the reinforcing fibers depending on the identified fracture mode.
  • Laminated configuration changing step to form the composite material is changed, until the destruction mode is the pull-out mode, the test step and the laminated configuration changing step is repeatedly executed, the in the reinforcing portion It is characterized by optimizing the laminated structure of the composite material layer.
  • the reinforcement mode is optimized by changing the number of layers of additional layers and the orientation direction of the reinforcing fibers until the failure mode of the reinforcement specified in the test step becomes the pullout mode with the highest strength. Can be converted. Therefore, according to the present invention, for a composite material having a reinforcing portion formed by laminating an additional layer of the composite material layer between the composite material layers extending from the normal portion, to further improve the load bearing performance of the reinforcing portion. Is possible.
  • the fracture mode includes a brittle fracture mode and a delamination mode, and in the laminated structure changing step, when the fracture mode is the brittle fracture mode, the adjacent composite material layers have the same orientation direction. It is preferable to change the number of stacked layers and the orientation direction so that the additional layers tend to increase.
  • the fracture mode includes a brittle fracture mode and a delamination mode, and in the laminated structure changing step, when the fracture mode is the delamination mode, the adjacent composite material layers have the same orientation direction. It is preferable to change the number of stacked layers and the orientation direction so that the number of additional layers tends to decrease.
  • the additional layer is adjacent to the composite material layer in which the orientation direction matches the load direction, and the orientation direction is the load direction. It is preferable to stack at least one.
  • the additional layer having the same orientation direction as the adjacent composite material layer is laminated. Is preferred.
  • the plurality of composite material layers are laminated by pseudo isotropic lamination in which the orientation directions are 0°, +45°, ⁇ 45°, and 90° when the load direction is 0°.
  • the additional layer having an orientation direction other than 90° is laminated adjacent to the composite material layer having an orientation direction other than 90°.
  • the fracture mode is a brittle fracture mode
  • the present invention provides a normal part formed by laminating a plurality of composite material layers containing reinforcing fibers, and is provided around a through hole and extends from the normal part.
  • At least one additional layer, the orientation direction of which coincides with the load direction, is laminated adjacent to the corresponding composite material layer.
  • the additional layer whose orientation direction matches the load direction is laminated, the toughness against load can be effectively increased. Further, it becomes possible to suppress the occurrence of brittle fracture mode, bring the fracture mode closer to the pull-out mode, and improve the load bearing performance of the reinforcing portion. Therefore, according to the present invention, for a composite material having a reinforcing portion formed by laminating an additional layer of the composite material layer between the composite material layers extending from the normal portion, to further improve the load bearing performance of the reinforcing portion. Is possible.
  • the additional layer having the same orientation direction as that of the adjacent composite material layer is laminated between all the composite material layers.
  • the plurality of composite material layers are laminated by pseudo isotropic lamination in which the orientation directions are 0°, +45°, ⁇ 45°, and 90° when the load direction is 0°. It is preferable that the reinforcing portion is adjacent to the composite material layer having an orientation direction other than 90°, and the additional layer having an orientation direction other than 90° is laminated.
  • FIG. 1 is a plan view showing an example of a composite material according to an embodiment.
  • FIG. 2 is a sectional view taken along the line AA of FIG.
  • FIG. 3 is a cross-sectional view showing another configuration example of the composite material according to the embodiment.
  • FIG. 4 is an explanatory diagram showing the orientation directions of the reinforcing fibers included in each composite material layer of the composite material according to the embodiment.
  • FIG. 5 is explanatory drawing which shows the example of another laminated constitution of a reinforcement part.
  • FIG. 6 is an explanatory diagram showing an example of another laminated structure of the reinforcing portion.
  • FIG. 7 is explanatory drawing which shows the other example of the laminated constitution of a composite material.
  • FIG. 1 is a plan view showing an example of a composite material according to an embodiment.
  • FIG. 2 is a sectional view taken along the line AA of FIG.
  • FIG. 3 is a cross-sectional view showing another configuration example of the composite material according to the embodiment.
  • FIG. 8 is an explanatory diagram showing another example of the laminated structure of the composite material.
  • FIG. 9 is a flowchart showing an example of a composite material designing method according to the embodiment.
  • FIG. 10 is a plan view showing another configuration of the composite material according to the embodiment.
  • FIG. 1 is a plan view showing an example of a composite material according to an embodiment
  • FIG. 2 is a sectional view taken along the line AA of FIG.
  • the composite material 100 shown in FIGS. 1 and 2 is a fiber reinforced composite material applied to various parts of an aircraft, such as a main wing and an outer skin of an airframe.
  • the composite material 100 may be applied to equipment other than aircraft.
  • the composite material 100 is formed by stacking a plurality of composite material layers 10.
  • Each composite material layer 10 is obtained by impregnating reinforcing fibers (for example, carbon fibers or the like) extending along a predetermined orientation direction with a matrix resin.
  • the composite material 100 is formed in a vertically symmetrical structure with the center line L as a reference.
  • the composite material 100 has a through hole 100a. As shown in FIGS. 1 and 2, the through hole 100a is a hole that penetrates the composite material 100, and is used as, for example, an access hole or the like. Moreover, the composite material 100 includes a normal portion 101 and a reinforcing portion 102. As shown in FIG. 2, the normal portion 101 is a portion formed by laminating a plurality of composite material layers 10. Here, the composite material layer 10 forming the normal portion 101 is referred to as a "base layer 20". In the present embodiment, as shown in FIG. 2, in the normal portion 101, four base layers 21, 22, 23, 24 are laminated in this order from the outer layer side to the inner layer side (center line L side).
  • the reinforcing portion 102 is provided as a portion having a plate thickness larger than that of the normal portion 101 in the area around the through hole 100a.
  • the reinforcing portion 102 has an additional layer 30 adjacent to the base layer 20 extending from the normal portion 101 and having the composite material layer 10 added thereto. That is, the additional layer 30 is laminated between the base layers 20.
  • the reinforcing portion 102 has a plate thickness larger than that of the normal portion 101.
  • the base layer 20 and the additional layer 30 have the same thickness.
  • a region 40 where only the matrix resin exists exists between the end of each additional layer 30 and the base layer 20.
  • the additional layer 30 is laminated in the order of the additional layers 31, 32, 33, 34 from the outer layer side to the inner layer side (center line L side). That is, the reinforcing portion 102 extends from the outer layer side to the inner layer side (center line L side) to the base layer 21, the additional layer 31, the base layer 22, the additional layer 32, the base layer 23, the additional layer 33, the base layer 24, the additional layer. It is formed by laminating in the order of 34. As described above, by providing the reinforcing portion 102 having a plate thickness larger than that of the normal portion 101, it is possible to improve the strength of the peripheral region of the through hole 100a where stress concentration is likely to occur.
  • FIG. 3 is a cross-sectional view showing another configuration example of the composite material according to the embodiment.
  • the composite material 100 has the same laminated structure as the composite material 100 shown in FIG. 2 and each composite material layer 10.
  • the base layer 21 on the lower side in the drawing extends smoothly.
  • the additional layers 31, 32, 33, and 34 are laminated so that the thickness of the base layer 21 on the lower side of the drawing increases toward the upper side of the drawing.
  • the smooth outer base layer 21 located on the lower side in FIG. Aerodynamic surface can be made smooth.
  • each composite material layer 10 is made thinner than a composite material layer used for a general composite material.
  • Each composite material layer 10 has a thickness in the range of, for example, 0.03 mm or more and 0.1 mm or less.
  • the stress redistribution phenomenon due to the damage may not occur in the area around the through hole 100a, that is, the stress concentration may not be relaxed.
  • the stress concentration may not be relaxed.
  • a tensile load in the load direction G acts on the composite material 100 as indicated by the white arrow in FIGS. 2 and 3
  • brittle fracture is likely to occur in the region around the through hole 100a, and the desired resistance is increased. Load performance may not be obtained.
  • the laminated structure of each composite material layer 10 is designed for the purpose of suppressing the occurrence of brittle fracture in the peripheral region of the through hole 100a and obtaining the desired load bearing performance. ..
  • a laminated structure of the composite material 100 for obtaining a desired load bearing performance will be described with reference to FIGS. 2 to 4.
  • FIG. 4 is an explanatory diagram showing the orientation directions of the reinforcing fibers included in each composite material layer of the composite material according to the embodiment.
  • the composite material 100 is mainly subjected to a load in a load direction G indicated by an outlined arrow in FIGS. 2 and 3 when applied to an aircraft, for example.
  • the load direction G is a tensile load.
  • the direction along the load direction G is defined as 0°.
  • the composite material 100 is a pseudo isotropic material in which the composite material layers 10 (base layer 20 and additional layer 30) in which the orientation directions of the reinforcing fibers are 0°, +45°, ⁇ 45°, and 90° are laminated. It is laminated by lamination.
  • +45° and ⁇ 45° mean that the orientation direction of the reinforcing fiber extends in a direction forming an angle of 45° with respect to 0°, and 90° means that the orientation direction of the reinforcing fiber is 0°. It means extending in a direction orthogonal to the direction.
  • the normal unit 101 repeats the laminated constitution of 45°, 90°, ⁇ 45°, and 0° with the center line L as a reference, and repeats [45/90/ ⁇ 45/0]. It is formed of a laminated structure of s . That is, in the normal portion 101, the orientation direction of the reinforcing fibers of the base layer 21 is 45°, the orientation direction of the reinforcing fibers of the base layer 22 is 90°, the orientation direction of the reinforcing fibers of the base layer 23 is ⁇ 45°, and the base layer 24. The orientation direction of the reinforcing fiber is 0°.
  • the reinforcing portion 102 has a laminated structure of 45°, 45°, 90°, 90°, ⁇ 45°, ⁇ 45°, 0°, 0° with reference to the center line L. It is formed in a laminated structure of [45 2 /90 2 / ⁇ 45 2 /0 2 ] s which is inverted and repeated. That is, the orientation direction of the reinforcing fibers of the base layer 21 and the additional layer 31 laminated adjacent to the base layer 21 is 45°. Further, the orientation direction of the reinforcing fibers of the base layer 22 and the additional layer 32 laminated adjacent to the base layer 22 is 90°.
  • the orientation direction of the reinforcing fibers of the base layer 23 and the additional layer 33 laminated adjacent to the base layer 23 is ⁇ 45°.
  • the orientation direction of the reinforcing fibers of the base layer 24 and the additional layer 34 laminated adjacent to the base layer 24 is 0°. Therefore, in the reinforcing portion 102, the additional layer 30 that is laminated adjacent to each base layer 20 has the same orientation direction of the reinforcing fibers as that of the adjacent base layer 20. Note that “adjacent” here means adjoining on one side of the additional layer 30.
  • the additional layer 30 having the same orientation direction of the reinforcing fibers as the base layer 20 is laminated between all the base layers 20, so that the initial damage in the peripheral region of the through hole 100a can be most allowed. ..
  • the occurrence of the initial damage does not immediately lead to breakage due to brittle fracture in the region around the through hole 100a, and the initial damage reduces the rigidity of the region around the through hole 100a and relaxes the stress concentration.
  • the laminated structure of the reinforcing portion 102 is not limited to that shown in FIGS. 2 to 4. 5 and 6 are explanatory views showing examples of other laminated configurations of the reinforcing portion.
  • the reinforcing portion 102 repeats the laminated structure of 45°, 90°, ⁇ 45°, 0°, 0° by inverting with respect to the center line L as a reference [45/90/ ⁇ 45. /0 2 ] s . That is, it is a configuration in which only the additional layer 34 in which the orientation direction of the reinforcing fibers is 0° is additionally laminated adjacent to the base layer 24 in which the orientation direction of the reinforcing fibers is 0°.
  • the reinforcing portion 102 is formed. It is possible to effectively increase the toughness against the load. Further, as described above, it is possible to allow the initial damage in the peripheral region of the through hole 100a, relieve the stress concentration, and suppress the occurrence of brittle fracture. Therefore, it is possible to effectively increase the load bearing performance of the reinforcing portion 102 while suppressing an increase in the number of stacked additional layers 30 (while suppressing an increase in the plate thickness of the reinforcing portion 102).
  • the reinforcing portion 102 is formed by reversing the laminated structure of 45°, 45°, 90°, ⁇ 45°, ⁇ 45°, 0°, 0° with the center line L as a reference. Repeatedly, it is formed by a laminated structure of [45 2 /90/ ⁇ 45 2 /0 2 ] s . That is, in a configuration in which the additional layers 31, 33, and 34 in which the orientation directions of the reinforcing fibers are other than 90° are additionally laminated adjacent to the base layers 21, 23, and 24 in which the orientation directions of the reinforcing fibers are other than 90°. is there.
  • a 45° additional layer 31 is laminated adjacent to the 45° base layer 21, and a ⁇ 45° additional layer 33 is laminated adjacent to the ⁇ 45° base layer 23.
  • the additional layer 34 of 0° is laminated adjacent to the base layer 24 of 0°. That is, the additional layer 30 having the orientation direction other than 90° is laminated so as to be adjacent to the base layer 20 having the orientation direction of the reinforcing fibers other than 90°.
  • the reinforcing portion 102 is formed by stacking the additional layers 30 having the orientation directions of 0°, 45°, and ⁇ 45° in which the contribution ratio of the load sharing is relatively higher than that of the layer having the orientation direction of 90°. It is possible to effectively increase the toughness against the load. Further, as described above, it is possible to allow the initial damage in the peripheral region of the through hole 100a, relieve the stress concentration, and suppress the occurrence of brittle fracture. Therefore, it is possible to effectively increase the load bearing performance of the reinforcing portion 102 while suppressing an increase in the number of stacked additional layers 30 (while suppressing an increase in the plate thickness of the reinforcing portion 102).
  • the composite material having the reinforcement part formed by laminating the additional layer of the composite material layer between the composite material layers extending from the normal part is a reinforcement part. It becomes possible to further improve the load bearing performance of.
  • the orientation directions of the reinforcing fibers are adjacent to all the base layers 20 in which the orientation directions of the reinforcing fibers are 0°. It is not necessary to stack an additional layer 30 with 0°. 7 and 8 are explanatory views showing another example of the laminated structure of the composite material. 7 and 8, only one side with respect to the center line L is shown. In the case where the normal part 101 has a laminated structure of [45/90/ ⁇ 45 2 /0 3 /45/0] s , as in the example shown in FIG.
  • It may be formed in a laminated structure of [45/90/ ⁇ 45 2 /0 4 /45/0 2 ] s in which only the additional layer 30 of 0° is laminated adjacent to the layer 20.
  • the normal portion 101 has a laminated structure of [45/90/ ⁇ 45 2 /0 3 /45/0] s as in the example shown in FIG.
  • the 0° additional layer 30 is laminated adjacent to the 0° base layer 20 and the 45° and ⁇ 45° additional layers 30 are laminated adjacent to the 45° and ⁇ 45° base layers 20.
  • [45 2 /90/ ⁇ 45 4 /0 4 /45 2 /0 2 ] s may be formed in a laminated structure.
  • the composite material 100 is laminated by pseudo isotropic lamination in which the composite material layers 10 (base layer 20 and additional layer 30) of 0°, +45°, ⁇ 45°, and 90° are laminated.
  • the composite material 100 includes at least one base layer 20 in the orientation direction (0° in the embodiment) along the load direction G, it may be formed by any lamination other than the pseudo isotropic lamination.
  • the reinforcing portion 102 may be provided with at least one additional layer 30 in the orientation direction along the load direction G so as to be adjacent to the base layer 20 in the orientation direction along the load direction G.
  • FIG. 9 is a flowchart showing an example of a composite material designing method according to the embodiment.
  • the designer forms the composite material 100 by initial design.
  • the laminated structure of the additional layer 30 can be set arbitrarily.
  • the additional layer 30 may not be laminated and the reinforcing portion 102 may not be formed (the reinforcing portion 102 and the normal portion 101 have the same plate thickness).
  • step S2 the designer performs a tensile test on the formed composite material 100 (test step).
  • a tensile load in the load direction G is applied to the composite material 100 to specify in what destruction mode the peripheral region of the through hole 100a is broken.
  • the fracture modes include a brittle fracture mode, a delamination mode, and a pull-out mode.
  • the brittle fracture mode is a mode in which each composite material layer 10 undergoes brittle fracture due to the development of in-plane cracks.
  • the delamination mode is a mode in which adjacent composite material layers 10 are delaminated.
  • the pull-out mode is a fracture mode intermediate between the brittle fracture mode and the delamination mode, and each layer constituting the composite material 100 seems to be pulled out from the composite material 100 due to the interaction between the progress of the in-plane crack and the delamination.
  • the fractured portions have a non-uniform zigzag shape. Breakdown in pullout mode has the best load bearing performance.
  • step S3 the designer determines what kind of failure mode was specified in the tensile test. Then, the designer forms a composite structure in which the number of layers of the additional layer 30 and the orientation direction of the reinforcing fibers are changed in accordance with the fracture mode specified in the tensile test, to change the laminated structure (steps S4 and S5) or step. Proceed to any of S6.
  • step S3 When the designer first determines that the fracture mode is the brittle fracture mode in step S3, the designer tends to increase the number of the additional layers 30 in which the orientation directions of the adjacent base layer 20 and the reinforcing fibers are the same, as step S4.
  • the composite material 100 is newly formed by changing the number of laminated layers and the orientation direction of the additional layer 30 (laminated structure changing step).
  • an additional layer 30 in which the orientation directions of the reinforcing fibers are the same as those of the adjacent base layers 20 ( Additional layers 31, 32, 33, 34) may be laminated.
  • an additional layer 34 in which the orientation direction of the reinforcing fibers is 0° may be laminated adjacent to the base layer 24 in which the orientation direction of the reinforcing fibers is 0°.
  • the reinforcing fibers are made to be adjacent to the base layers 21, 23, 24 whose orientation directions of the reinforcing fibers are other than 90°. Additional layers 31, 33, 34 having an orientation direction other than 90° may be laminated.
  • the base layers 21, 23, 24 whose orientation directions of the reinforcing fibers are other than 90°.
  • Additional layers 31, 33, 34 having an orientation direction other than 90° may be laminated.
  • step S5 when the designer determines that the breakage mode is the interlayer breakage mode in step S3, in step S5, the additional layer 30 in which the adjacent base layer 20 and the reinforcing fiber have the same orientation direction as the additional layer 30 tends to decrease.
  • the composite material 100 is newly formed by changing the number of laminated layers of 30 and the orientation direction (laminated structure changing step).
  • any one of the additional layers 31, 32, and 33 adjacent to the base layers 21, 22, and 23 in which the orientation direction of the reinforcing fiber is other than 0° may be removed.
  • any of the additional layers 31, 33 and 34 adjacent to the base layers 21, 23 and 24 in which the orientation direction of the reinforcing fibers is other than 90° may be removed.
  • the additional layer 32 adjacent to the base layer 22 in which the orientation direction of the reinforcing fibers is 90° may be removed.
  • step S3 After forming the composite material 100 whose laminated structure is changed in steps S5 and S6, the designer returns to step S2, executes the tensile test again, and depending on the fracture mode (step S3), either the steps S4 or S5. Proceed to. That is, the processes of steps S2 to S5 are repeatedly executed. Then, if it is determined in step S3 that the destruction mode is the pullout mode, then in step S6, it is determined that the configuration of the composite material 100 that has been destroyed in the pullout mode is the optimum solution, and this processing ends.
  • a load is applied to the composite material 100, and the reinforcing portion 102 is broken in any one of the breaking modes including the pullout mode and the modes other than the pullout mode.
  • Test step (step S2) for determining whether or not the laminated layer is changed, and a laminated structure changing step (steps S4, S5) for forming a composite material in which the number of layers of the additional layer 30 and the orientation direction of the reinforcing fibers are changed according to the specified fracture mode.
  • the test step and the laminated structure changing step are repeatedly executed until the destruction mode becomes the pull-out mode to optimize the laminated structure of the composite material layer in the reinforcing portion.
  • the number of layers of the additional layer 30 and the orientation direction of the reinforcing fibers are changed until the failure mode of the reinforcing portion 102 specified in the test step becomes the pullout mode having the highest strength, and the reinforcing portion 102 is laminated.
  • the configuration can be optimized. Therefore, according to the composite material designing method of the embodiment, the composite material having the reinforcing portion 102 formed by laminating the additional layer 30 of the composite material layer 10 between the composite material layers 10 extending from the normal portion 101 is described. Therefore, the load bearing performance of the reinforcing portion 102 can be further improved. Further, by optimizing the laminated structure of the reinforcing portion 102 in this manner, the number of laminated layers of the additional layer 30 can be reduced, and the weight of the composite material 100 can be reduced.
  • the fracture mode includes a brittle fracture mode and a delamination mode, and in the laminated structure changing step, when the fracture mode is the brittle fracture mode, the number of additional layers 30 having the same orientation direction as the adjacent base layer 20 increases. The number of layers and the orientation direction are changed so as to tend to (step S4).
  • the orientation directions of the reinforcing fibers are matched, and the number of adjacent base layers 20 and additional layers 30 is increased. Therefore, in a direction that allows initial damage in the peripheral region of the through hole 100a, that is, in the peripheral region of the through hole 100a. It is possible to change the laminated structure in the direction in which the stress relaxation described above is obtained. As a result, it becomes possible to suppress the occurrence of the brittle fracture mode, bring the fracture mode closer to the pullout mode, and enhance the load bearing performance of the reinforcing portion 102.
  • the fracture mode includes a brittle fracture mode and a delamination mode
  • the adjacent composite material layer 10 has an additional layer 30 whose orientation direction matches. The number of stacked layers and the orientation direction are changed so as to decrease (step S5).
  • the orientation directions of the reinforcing fibers are the same, and the adjacent base layer 20 and the additional layer 30 are reduced. Therefore, it is possible to change the laminated configuration in a direction that does not allow initial damage in the peripheral region of the through hole 100a. Becomes This causes the fracture mode to approach the brittle fracture mode from the delamination mode. As a result, it is possible to suppress the occurrence of the interlayer fracture mode, bring the fracture mode closer to the pull-out mode, and improve the load bearing performance of the reinforcing portion 102.
  • the fracture mode when the fracture mode is the brittle fracture mode, at least one additional layer 30 in which the orientation direction is the load direction is adjacent to the composite material layer 10 in which the orientation direction matches the load direction. Stack.
  • the additional layer 30 having the orientation direction aligned with the load direction is laminated, the toughness against the load can be effectively enhanced. As a result, it is possible to suppress the occurrence of brittle fracture while effectively suppressing the increase in the number of layers of the additional layer 30 and effectively improve the load bearing performance of the reinforcing portion 102.
  • the additional layer 30 having the same orientation direction as the adjacent composite material layer 10 is laminated between all the composite material layers 10.
  • the plurality of composite material layers 10 are laminated by pseudo isotropic lamination in which the orientation directions are 0°, +45°, ⁇ 45°, and 90° when the load direction is 0°.
  • the additional layer 30 having the orientation direction other than 90° is laminated adjacent to the composite material layer 10 having the orientation direction other than 90°.
  • the reinforcing portion 102 is formed by stacking the additional layers 30 whose orientation directions are 0°, 45°, and ⁇ 45° in which the contribution ratio of the load sharing is relatively higher than that of the layer whose orientation direction is 90°. It is possible to effectively increase the toughness against the load. Therefore, it is possible to effectively increase the load bearing performance of the reinforcing portion 102 while suppressing an increase in the number of stacked additional layers 30 (while suppressing an increase in the plate thickness of the reinforcing portion 102).
  • the fracture mode is the brittle fracture mode
  • the number of laminations and the orientation direction of the reinforcing portion 102 are changed so that the additional layer 30 whose orientation direction matches the adjacent base layer 20 increases.
  • a plurality of additional layers 30 having different alignment directions from the adjacent base layer 20 may be laminated. For example, it is possible to stack a plurality of 0° additional layers 30 between the 90° base layer 20 and the 45° base layer 20.
  • the composite material 100 has one reinforcing portion 102 corresponding to one through hole 100a.
  • the reinforcing portion 102 may be provided so as to correspond to the plurality of through holes 100a.
  • FIG. 10 is an explanatory diagram showing another example of the composite material according to the embodiment.
  • the composite material 200 has a plurality of through holes 200a and a reinforcing portion 202 having a plate thickness larger than that of the normal portion 201 in the peripheral region of the plurality of through holes 200a.
  • the laminated structure of the additional layer 30 can be designed by the same method as that of the reinforcing portion 102 described above.
  • each composite material layer 10 of the composite material 100 is thinned to have a thickness in the range of, for example, 0.03 mm or more and 0.1 mm or less.
  • the composite material layer 10 may be 0.1 mm or more.
  • the laminated structure of the composite material 100 is considered in consideration of the relaxation of stress concentration around the through hole 100a (the degree of tolerance of initial damage). By designing, it becomes possible to favorably improve the load bearing performance of the reinforcing portion 102.
  • the composite material 100 has the through hole 100a and the reinforcing portion 102 formed in the peripheral region of the through hole 100a.
  • the reinforcing portion 102 may be formed not only in the through hole 100a but also in any region where stress concentration is likely to occur.
  • the load direction G is the direction indicated by the white arrow in FIGS. 2 and 3.
  • the load direction G is not limited to this, and may be the direction of the tensile load acting on the composite material 100 in any direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

This design method for a composite material comprises: a test step (step S2) in which a load is applied to the composite material to identify a fracture mode, from among fracture modes including a pull-out mode and modes other than the pull-out mode, in which a reinforced section is caused to fracture; and a layer configuration modifying step (steps S4 and S5) in which the composite material is formed by modifying a number of added layers and an alignment direction of reinforcing fibers in accordance with the identified fracture mode. The test step and the layer configuration modifying step are repeated until the fracture mode becomes the pull-out mode, thereby optimizing the layer configuration of the composite material layers in the reinforced section.

Description

複合材の設計方法および複合材Composite design method and composite
 本発明は、複合材の設計方法および複合材に関する。 The present invention relates to a composite material design method and a composite material.
 従来、強化繊維を含む複合材料層を複数積層して形成される複合材に関する技術が知られている。例えば、特許文献1には、航空機の主翼に適用される複合材構造体が開示されている。この複合材構造体では、主翼に設けられるアクセスホールの周辺領域における引張剛性、圧縮剛性を、他領域における引張剛性、圧縮剛性よりも小さくすることで、引張荷重、圧縮荷重を他領域で主として負担させて、アクセスホールの周辺領域の補強を少なくしている。 Conventionally, a technology related to a composite material formed by laminating a plurality of composite material layers containing reinforcing fibers is known. For example, Patent Document 1 discloses a composite material structure applied to a main wing of an aircraft. In this composite material structure, by making the tensile rigidity and compression rigidity in the peripheral area of the access hole provided in the main wing smaller than the tensile rigidity and compression rigidity in other areas, the tensile load and compression load are mainly loaded in other areas. As a result, the reinforcement of the area around the access hole is reduced.
国際公開第2012/105691号International Publication No. 2012/105691
 上記特許文献1に記載された航空機に適用される複合材では、例えばアクセスホールといった応力集中が生じやすい箇所の周囲において、複合材料層の間に追加層を積層し、板厚を増加させた補強部を形成することで、強度を向上させることが一般的である。しかしながら、補強部について所望の強度を得るための積層構成、すなわち追加層の積層数および強化繊維の配向方向の構成については、なお改善の余地がある。 In the composite material applied to the aircraft described in Patent Document 1, an additional layer is laminated between the composite material layers around a place where stress concentration is likely to occur, such as an access hole, and reinforcement is performed by increasing the plate thickness. It is common to improve strength by forming a part. However, there is still room for improvement in the laminated structure for obtaining the desired strength of the reinforcing portion, that is, the number of laminated additional layers and the structure in the orientation direction of the reinforcing fibers.
 本発明は、上記に鑑みてなされたものであって、通常部から延びる複合材料層の間に複合材料層の追加層を積層して形成された補強部を有する複合材について、補強部の耐荷重性能をより向上させることを目的とする。 The present invention has been made in view of the above, and for a composite material having a reinforcing portion formed by laminating an additional layer of the composite material layer between the composite material layers extending from the normal portion, the resistance of the reinforcing portion is The purpose is to further improve load performance.
 上述した課題を解決し、目的を達成するために、本発明は、強化繊維を含む複合材料層が複数積層されて形成された通常部と、貫通孔の周囲に設けられ、前記通常部から延びる前記複合材料層の間に前記複合材料層の追加層を積層して形成された補強部とを有する複合材の設計方法であって、前記複合材に荷重を付加して、前記補強部が、プルアウトモードと前記プルアウトモード以外のモードとを含む破壊モードのいずれで破壊されるかを特定する試験ステップと、特定された前記破壊モードに応じて前記追加層の積層数および前記強化繊維の配向方向を変更した前記複合材を形成する積層構成変更ステップと、を備え、前記破壊モードが前記プルアウトモードとなるまで、前記試験ステップと前記積層構成変更ステップとを繰り返し実行して、前記補強部における前記複合材料層の積層構成を最適化することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention provides a normal part formed by laminating a plurality of composite material layers containing reinforcing fibers, and is provided around a through hole and extends from the normal part. A method of designing a composite material having a reinforcing portion formed by laminating an additional layer of the composite material layer between the composite material layers, wherein a load is applied to the composite material, and the reinforcing portion is A test step that specifies which of the fracture modes including a pullout mode and a mode other than the pullout mode is destroyed, and the number of layers of the additional layer and the orientation direction of the reinforcing fibers depending on the identified fracture mode. Laminated configuration changing step to form the composite material is changed, until the destruction mode is the pull-out mode, the test step and the laminated configuration changing step is repeatedly executed, the in the reinforcing portion It is characterized by optimizing the laminated structure of the composite material layer.
 この構成により、試験ステップで特定される補強部の破壊モードが、最も強度が高いプルアウトモードになるまで、追加層の積層数および強化繊維の配向方向を変更して、補強部の積層構成を最適化することができる。したがって、本発明によれば、通常部から延びる複合材料層の間に複合材料層の追加層を積層して形成された補強部を有する複合材について、補強部の耐荷重性能をより向上させることが可能となる。 With this configuration, the reinforcement mode is optimized by changing the number of layers of additional layers and the orientation direction of the reinforcing fibers until the failure mode of the reinforcement specified in the test step becomes the pullout mode with the highest strength. Can be converted. Therefore, according to the present invention, for a composite material having a reinforcing portion formed by laminating an additional layer of the composite material layer between the composite material layers extending from the normal portion, to further improve the load bearing performance of the reinforcing portion. Is possible.
 また、前記破壊モードは、脆性破壊モードと、層間剥離モードとを含み、前記積層構成変更ステップは、前記破壊モードが脆性破壊モードである場合、隣接する前記複合材料層と前記配向方向が一致する前記追加層が増加する傾向に、前記積層数および前記配向方向を変更することが好ましい。 Further, the fracture mode includes a brittle fracture mode and a delamination mode, and in the laminated structure changing step, when the fracture mode is the brittle fracture mode, the adjacent composite material layers have the same orientation direction. It is preferable to change the number of stacked layers and the orientation direction so that the additional layers tend to increase.
 この構成により、脆性破壊モードの発生を抑制し、破壊モードをプルアウトモードに近づけて、補強部の耐荷重性能を高めることが可能となる。 With this configuration, it is possible to suppress the occurrence of brittle fracture mode, bring the fracture mode closer to the pull-out mode, and improve the load bearing performance of the reinforcement part.
 また、前記破壊モードは、脆性破壊モードと、層間剥離モードとを含み、前記積層構成変更ステップは、前記破壊モードが層間剥離モードである場合、隣接する前記複合材料層と前記配向方向が一致する前記追加層が減少する傾向に、前記積層数および前記配向方向を変更することが好ましい。 Further, the fracture mode includes a brittle fracture mode and a delamination mode, and in the laminated structure changing step, when the fracture mode is the delamination mode, the adjacent composite material layers have the same orientation direction. It is preferable to change the number of stacked layers and the orientation direction so that the number of additional layers tends to decrease.
 この構成により、層間剥離モードの発生を抑制し、破壊モードをプルアウトモードに近づけて、補強部の耐荷重性能を高めることが可能となる。 With this configuration, it is possible to suppress the occurrence of delamination mode, bring the fracture mode closer to the pull-out mode, and enhance the load bearing performance of the reinforcement part.
 また、前記積層構成変更ステップは、前記破壊モードが脆性破壊モードである場合、前記配向方向が荷重方向と一致する前記複合材料層に隣接させて、前記配向方向が前記荷重方向である前記追加層を、少なくとも1つ積層することが好ましい。 Also, in the laminated structure changing step, when the fracture mode is a brittle fracture mode, the additional layer is adjacent to the composite material layer in which the orientation direction matches the load direction, and the orientation direction is the load direction. It is preferable to stack at least one.
 この構成により、配向方向が荷重方向と一致する追加層を積層するため、補強部の荷重に対する靱性を効果的に高めることができる。その結果、追加層の積層数の増加を抑制しつつ、脆性破壊の発生を抑制して補強部の耐荷重性能を効果的に高めることが可能となる。 With this configuration, since the additional layer whose orientation direction matches the load direction is laminated, the toughness of the reinforcing portion against the load can be effectively increased. As a result, it becomes possible to suppress the occurrence of brittle fracture while effectively suppressing the increase in the number of additional layers to be stacked, and to effectively enhance the load bearing performance of the reinforcing portion.
 また、前記積層構成変更ステップは、前記破壊モードが脆性破壊モードである場合、すべての前記複合材料層の間に、隣接する前記複合材料層と前記配向方向が一致する前記追加層を積層することが好ましい。 Further, in the stacking configuration changing step, when the fracture mode is a brittle fracture mode, between the composite material layers, the additional layer having the same orientation direction as the adjacent composite material layer is laminated. Is preferred.
 この構成により、脆性破壊の発生を良好に抑制し、補強部の耐荷重性能を高めることが可能となる。 With this configuration, it is possible to satisfactorily suppress the occurrence of brittle fracture and enhance the load bearing performance of the reinforced portion.
 また、複数の前記複合材料層は、荷重方向を0°としたとき、前記配向方向が0°、+45°、-45°、90°であるものを積層した疑似等方積層により積層されており、前記積層構成変更ステップは、前記破壊モードが脆性破壊モードである場合、前記配向方向が90°以外の前記複合材料層に隣接させて、前記配向方向が90°以外の前記追加層を積層することが好ましい。 The plurality of composite material layers are laminated by pseudo isotropic lamination in which the orientation directions are 0°, +45°, −45°, and 90° when the load direction is 0°. In the laminated structure changing step, when the fracture mode is a brittle fracture mode, the additional layer having an orientation direction other than 90° is laminated adjacent to the composite material layer having an orientation direction other than 90°. Preferably.
 この構成により、配向方向が90°の層に比べて、荷重分担の寄与率が相対的に高い配向方向が0°、45°、-45°の追加層を積層することで、補強部の荷重に対する靱性を効果的に高めることができる。その結果、追加層の積層数の増加を抑制しつつ、補強部の耐荷重性能を効果的に高めることが可能となる。 With this configuration, by stacking additional layers in which the orientation directions are 0°, 45°, and −45° in which the contribution ratio of the load sharing is relatively higher than that of the layers in which the orientation direction is 90°, the load of the reinforcing portion is stacked. Toughness can be effectively increased. As a result, it becomes possible to effectively increase the load bearing performance of the reinforcing portion while suppressing an increase in the number of stacked additional layers.
 上述した課題を解決し、目的を達成するために、本発明は、強化繊維を含む複合材料層が複数積層されて形成された通常部と、貫通孔の周囲に設けられ、前記通常部から延びる前記複合材料層の間に前記複合材料層の追加層を積層して形成された補強部とを有する複合材であって、前記補強部は、前記強化繊維の配向方向が主として作用する荷重方向と一致する前記複合材料層に隣接して、前記配向方向が前記荷重方向と一致する前記追加層が、少なくとも1つ積層されていることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention provides a normal part formed by laminating a plurality of composite material layers containing reinforcing fibers, and is provided around a through hole and extends from the normal part. A composite material having a reinforcing portion formed by laminating an additional layer of the composite material layer between the composite material layers, wherein the reinforcing portion has a load direction in which an orientation direction of the reinforcing fibers mainly acts. At least one additional layer, the orientation direction of which coincides with the load direction, is laminated adjacent to the corresponding composite material layer.
 この構成により、配向方向が荷重方向と一致する追加層を積層するため、荷重に対する靱性を効果的に高めることができる。また、脆性破壊モードの発生を抑制し、破壊モードをプルアウトモードに近づけて、補強部の耐荷重性能を高めることが可能となる。したがって、本発明によれば、通常部から延びる複合材料層の間に複合材料層の追加層を積層して形成された補強部を有する複合材について、補強部の耐荷重性能をより向上させることが可能となる。 With this configuration, since the additional layer whose orientation direction matches the load direction is laminated, the toughness against load can be effectively increased. Further, it becomes possible to suppress the occurrence of brittle fracture mode, bring the fracture mode closer to the pull-out mode, and improve the load bearing performance of the reinforcing portion. Therefore, according to the present invention, for a composite material having a reinforcing portion formed by laminating an additional layer of the composite material layer between the composite material layers extending from the normal portion, to further improve the load bearing performance of the reinforcing portion. Is possible.
 また、前記補強部は、すべての前記複合材料層の間に、隣接する前記複合材料層と前記配向方向が一致する前記追加層が積層されていることが好ましい。 Further, in the reinforcing portion, it is preferable that the additional layer having the same orientation direction as that of the adjacent composite material layer is laminated between all the composite material layers.
 この構成により、脆性破壊の発生を良好に抑制し、補強部の耐荷重性能を高めることが可能となる。 With this configuration, it is possible to satisfactorily suppress the occurrence of brittle fracture and enhance the load bearing performance of the reinforced portion.
 また、複数の前記複合材料層は、前記荷重方向を0°としたとき、前記配向方向が0°、+45°、-45°、90°であるものを積層した疑似等方積層により積層されており、前記補強部は、前記配向方向が90°以外の前記複合材料層に隣接して、前記配向方向が90°以外の前記追加層が積層されていることが好ましい。 Further, the plurality of composite material layers are laminated by pseudo isotropic lamination in which the orientation directions are 0°, +45°, −45°, and 90° when the load direction is 0°. It is preferable that the reinforcing portion is adjacent to the composite material layer having an orientation direction other than 90°, and the additional layer having an orientation direction other than 90° is laminated.
 この構成により、配向方向が90°の層に比べて、荷重分担の寄与率が相対的に高い配向方向が0°、45°、-45°の追加層を積層することで、補強部の荷重に対する靱性を効果的に高めることができる。その結果、追加層の積層数の増加を抑制しつつ、補強部の耐荷重性能を効果的に高めることが可能となる。 With this configuration, by stacking additional layers in which the orientation directions are 0°, 45°, and −45° in which the contribution ratio of the load sharing is relatively higher than that of the layers in which the orientation direction is 90°, the load of the reinforcing portion is stacked. Toughness can be effectively increased. As a result, it becomes possible to effectively increase the load bearing performance of the reinforcing portion while suppressing an increase in the number of stacked additional layers.
図1は、実施形態にかかる複合材の一例を示す平面図である。FIG. 1 is a plan view showing an example of a composite material according to an embodiment. 図2は、図1のA-A線に沿った断面図である。FIG. 2 is a sectional view taken along the line AA of FIG. 図3は、実施形態にかかる複合材の他の構成例を示す断面図である。FIG. 3 is a cross-sectional view showing another configuration example of the composite material according to the embodiment. 図4は、実施形態にかかる複合材の各複合材料層が有する強化繊維の配向方向を示す説明図である。FIG. 4 is an explanatory diagram showing the orientation directions of the reinforcing fibers included in each composite material layer of the composite material according to the embodiment. 図5は、補強部の他の積層構成の例を示す説明図である。FIG. 5: is explanatory drawing which shows the example of another laminated constitution of a reinforcement part. 図6は、補強部の他の積層構成の例を示す説明図である。FIG. 6 is an explanatory diagram showing an example of another laminated structure of the reinforcing portion. 図7は、複合材の積層構成の他の例を示す説明図である。FIG. 7: is explanatory drawing which shows the other example of the laminated constitution of a composite material. 図8は、複合材の積層構成の他の例を示す説明図である。FIG. 8 is an explanatory diagram showing another example of the laminated structure of the composite material. 図9は、実施形態にかかる複合材の設計方法の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of a composite material designing method according to the embodiment. 図10は、実施形態にかかる複合材の他の構成を示す平面図である。FIG. 10 is a plan view showing another configuration of the composite material according to the embodiment.
 以下に、本発明にかかる複合材の設計方法および複合材の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。 Hereinafter, a method for designing a composite material and an embodiment of the composite material according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
 図1は、実施形態にかかる複合材の一例を示す平面図であり、図2は、図1のA-A線に沿った断面図である。図1および図2に示す複合材100は、例えば主翼や機体の外板といった航空機の種々の部分に適用される繊維強化複合材である。なお、複合材100は、航空機以外の設備に適用されるものであってもよい。複合材100は、図2に示すように、複数の複合材料層10を積層して形成されている。各複合材料層10は、所定の配向方向に沿って延びる強化繊維(例えば炭素繊維等)に、マトリックス樹脂を含浸させたものである。なお、本実施形態において、複合材100は、図2に示すように、中心線Lを基準に図中上下対称構造に形成されている。 1 is a plan view showing an example of a composite material according to an embodiment, and FIG. 2 is a sectional view taken along the line AA of FIG. The composite material 100 shown in FIGS. 1 and 2 is a fiber reinforced composite material applied to various parts of an aircraft, such as a main wing and an outer skin of an airframe. The composite material 100 may be applied to equipment other than aircraft. As shown in FIG. 2, the composite material 100 is formed by stacking a plurality of composite material layers 10. Each composite material layer 10 is obtained by impregnating reinforcing fibers (for example, carbon fibers or the like) extending along a predetermined orientation direction with a matrix resin. In this embodiment, as shown in FIG. 2, the composite material 100 is formed in a vertically symmetrical structure with the center line L as a reference.
 複合材100は、貫通孔100aを備えている。貫通孔100aは、図1および図2に示すように、複合材100を貫通する孔部であり、例えばアクセスホール等として用いられる。また、複合材100は、通常部101と、補強部102とを備えている。通常部101は、図2に示すように、複数の複合材料層10が積層して形成された部分である。ここでは、通常部101を構成する複合材料層10を「ベース層20」と称する。本実施形態において、通常部101は、図2に示すように、外層側から内層側(中心線L側)にかけて、4つのベース層21、22、23、24がこの順番に積層されている。 The composite material 100 has a through hole 100a. As shown in FIGS. 1 and 2, the through hole 100a is a hole that penetrates the composite material 100, and is used as, for example, an access hole or the like. Moreover, the composite material 100 includes a normal portion 101 and a reinforcing portion 102. As shown in FIG. 2, the normal portion 101 is a portion formed by laminating a plurality of composite material layers 10. Here, the composite material layer 10 forming the normal portion 101 is referred to as a "base layer 20". In the present embodiment, as shown in FIG. 2, in the normal portion 101, four base layers 21, 22, 23, 24 are laminated in this order from the outer layer side to the inner layer side (center line L side).
 一方、補強部102は、貫通孔100aの周囲領域において、通常部101よりも板厚を増加させた部分として設けられている。補強部102は、図2に示すように、通常部101から延びるベース層20に隣接させて、複合材料層10を追加した追加層30を有している。すなわち、各ベース層20の間に、追加層30が積層されている。それにより、補強部102は、通常部101よりも板厚が増加する。本実施形態において、ベース層20と追加層30とは、同じ厚さであるものとする。なお、図2に示すように、各追加層30の端部とベース層20との間には、マトリックス樹脂のみが存在する領域40が存在する。 On the other hand, the reinforcing portion 102 is provided as a portion having a plate thickness larger than that of the normal portion 101 in the area around the through hole 100a. As shown in FIG. 2, the reinforcing portion 102 has an additional layer 30 adjacent to the base layer 20 extending from the normal portion 101 and having the composite material layer 10 added thereto. That is, the additional layer 30 is laminated between the base layers 20. As a result, the reinforcing portion 102 has a plate thickness larger than that of the normal portion 101. In the present embodiment, the base layer 20 and the additional layer 30 have the same thickness. As shown in FIG. 2, a region 40 where only the matrix resin exists exists between the end of each additional layer 30 and the base layer 20.
 本実施形態において、追加層30は、図2に示すように、外層側から内層側(中心線L側)にかけて、追加層31、32、33、34の順に積層されている。すなわち、補強部102は、外層側から内層側(中心線L側)にかけて、ベース層21、追加層31、ベース層22、追加層32、ベース層23、追加層33、ベース層24、追加層34の順に積層されて形成される。このように、通常部101よりも板厚を増加させた補強部102を設けることで、応力集中が生じやすい貫通孔100aの周囲領域の強度を向上させることができる。 In the present embodiment, as shown in FIG. 2, the additional layer 30 is laminated in the order of the additional layers 31, 32, 33, 34 from the outer layer side to the inner layer side (center line L side). That is, the reinforcing portion 102 extends from the outer layer side to the inner layer side (center line L side) to the base layer 21, the additional layer 31, the base layer 22, the additional layer 32, the base layer 23, the additional layer 33, the base layer 24, the additional layer. It is formed by laminating in the order of 34. As described above, by providing the reinforcing portion 102 having a plate thickness larger than that of the normal portion 101, it is possible to improve the strength of the peripheral region of the through hole 100a where stress concentration is likely to occur.
 図2に示す例において、複合材100は、中心線Lを基準に図中上下対称構造に形成されているが、複合材100の形状は、これに限られない。図3は、実施形態にかかる複合材の他の構成例を示す断面図である。図3に示す例では、複合材100は、図2に示す複合材100と各複合材料層10が同じ積層構成となっている。ただし、図3に示す例では、複合材100は、図中下側のベース層21が平滑に延在する。そして、補強部102は、図3に示すように、図中下側のベース層21に対して図中上側に向けて板厚が増加するように、追加層31、32、33、34が積層されている。これにより、複合材100が翼や機体の外板といった航空機の外面を構成する部材に適用される場合に、図3中の下側に位置する平滑なベース層21を用いて、航空機の外面(空力面)を平滑にすることができる。 In the example shown in FIG. 2, the composite material 100 is formed in a vertically symmetrical structure with respect to the center line L, but the shape of the composite material 100 is not limited to this. FIG. 3 is a cross-sectional view showing another configuration example of the composite material according to the embodiment. In the example shown in FIG. 3, the composite material 100 has the same laminated structure as the composite material 100 shown in FIG. 2 and each composite material layer 10. However, in the example shown in FIG. 3, in the composite material 100, the base layer 21 on the lower side in the drawing extends smoothly. Then, as shown in FIG. 3, in the reinforcing portion 102, the additional layers 31, 32, 33, and 34 are laminated so that the thickness of the base layer 21 on the lower side of the drawing increases toward the upper side of the drawing. Has been done. Accordingly, when the composite material 100 is applied to a member that constitutes an outer surface of an aircraft such as a wing or an outer skin of an airframe, the smooth outer base layer 21 located on the lower side in FIG. Aerodynamic surface) can be made smooth.
 また、本実施形態において、各複合材料層10は、一般的な複合材に用いられる複合材料層よりも薄層化されている。各複合材料層10は、例えば0.03mm以上0.1mm以下の範囲の厚さである。このように、各複合材料層10を薄層化することで、複合材100に荷重が作用したときに、強化繊維の配向方向が異なる隣接層によって、クラック先端の開口変形抑制効果が得られる。その結果、初期損傷(亀裂)を抑制することができるため、複合材100の強度が向上する。ただし、初期損傷の抑制を図ることで、貫通孔100aの周囲領域において、損傷の発生による応力再分配現象が生じない、すなわち応力集中が緩和されない場合がある。その結果、例えば、図2および図3において白抜き矢印で示すように複合材100に荷重方向Gの引張荷重が作用したとき、貫通孔100aの周囲領域において脆性破壊が生じやすくなり、所望の耐荷重性能を得られない可能性がある。 Further, in the present embodiment, each composite material layer 10 is made thinner than a composite material layer used for a general composite material. Each composite material layer 10 has a thickness in the range of, for example, 0.03 mm or more and 0.1 mm or less. By thinning each composite material layer 10 in this way, when a load is applied to the composite material 100, the effect of suppressing the opening deformation of the crack tip is obtained by the adjacent layers in which the orientation directions of the reinforcing fibers are different. As a result, the initial damage (crack) can be suppressed, so that the strength of the composite material 100 is improved. However, by suppressing the initial damage, the stress redistribution phenomenon due to the damage may not occur in the area around the through hole 100a, that is, the stress concentration may not be relaxed. As a result, for example, when a tensile load in the load direction G acts on the composite material 100 as indicated by the white arrow in FIGS. 2 and 3, brittle fracture is likely to occur in the region around the through hole 100a, and the desired resistance is increased. Load performance may not be obtained.
 本実施形態の複合材100は、貫通孔100aの周囲領域において脆性破壊が生じることを抑制し、所望の耐荷重性能を得ることを目的に、各複合材料層10の積層構成が設計されている。以下、所望の耐荷重性能を得るための複合材100の積層構成について、図2から図4を参照しながら説明する。図4は、実施形態にかかる複合材の各複合材料層が有する強化繊維の配向方向を示す説明図である。 In the composite material 100 of the present embodiment, the laminated structure of each composite material layer 10 is designed for the purpose of suppressing the occurrence of brittle fracture in the peripheral region of the through hole 100a and obtaining the desired load bearing performance. .. Hereinafter, a laminated structure of the composite material 100 for obtaining a desired load bearing performance will be described with reference to FIGS. 2 to 4. FIG. 4 is an explanatory diagram showing the orientation directions of the reinforcing fibers included in each composite material layer of the composite material according to the embodiment.
 複合材100には、例えば航空機に適用された状態において、図2および図3に白抜き矢印で示す荷重方向Gの荷重が主として作用するものとする。本実施形態において、荷重方向Gは、引張荷重である。ここでは、荷重方向Gに沿った方向を0°と定義する。本実施形態において、複合材100は、強化繊維の配向方向が0°、+45°、-45°、90°である複合材料層10(ベース層20および追加層30)を積層した、疑似等方積層により積層されている。なお、+45°、-45°とは、強化繊維の配向方向が0°に対して45°の角度を成す方向に延びることを意味し、90°とは、強化繊維の配向方向が0°に対して直交する方向に延びることを意味する。 The composite material 100 is mainly subjected to a load in a load direction G indicated by an outlined arrow in FIGS. 2 and 3 when applied to an aircraft, for example. In the present embodiment, the load direction G is a tensile load. Here, the direction along the load direction G is defined as 0°. In the present embodiment, the composite material 100 is a pseudo isotropic material in which the composite material layers 10 (base layer 20 and additional layer 30) in which the orientation directions of the reinforcing fibers are 0°, +45°, −45°, and 90° are laminated. It is laminated by lamination. In addition, +45° and −45° mean that the orientation direction of the reinforcing fiber extends in a direction forming an angle of 45° with respect to 0°, and 90° means that the orientation direction of the reinforcing fiber is 0°. It means extending in a direction orthogonal to the direction.
 通常部101は、図4に示すように、45°、90°、-45°、0°の積層構成を、中心線Lを基準として反転して繰り返す、[45/90/-45/0]の積層構成で形成されている。すなわち、通常部101は、ベース層21の強化繊維の配向方向が45°、ベース層22の強化繊維の配向方向が90°、ベース層23の強化繊維の配向方向が-45°、ベース層24の強化繊維の配向方向が0°とされている。 As shown in FIG. 4, the normal unit 101 repeats the laminated constitution of 45°, 90°, −45°, and 0° with the center line L as a reference, and repeats [45/90/−45/0]. It is formed of a laminated structure of s . That is, in the normal portion 101, the orientation direction of the reinforcing fibers of the base layer 21 is 45°, the orientation direction of the reinforcing fibers of the base layer 22 is 90°, the orientation direction of the reinforcing fibers of the base layer 23 is −45°, and the base layer 24. The orientation direction of the reinforcing fiber is 0°.
 一方、補強部102は、図4に示すように、45°、45°、90°、90°、-45°、-45°、0°、0°の積層構成を、中心線Lを基準として反転して繰り返す、[45/90/-45/0の積層構成で形成されている。すなわち、ベース層21と、ベース層21に隣接して積層される追加層31の強化繊維の配向方向が45°である。また、ベース層22と、ベース層22に隣接して積層される追加層32の強化繊維の配向方向が90°である。また、ベース層23と、ベース層23に隣接して積層される追加層33の強化繊維の配向方向が-45°である。また、ベース層24と、ベース層24に隣接して積層される追加層34の強化繊維の配向方向が0°である。したがって、補強部102は、各ベース層20に隣接して積層される追加層30が、当該隣接するベース層20と、強化繊維の配向方向が同じものとされている。なお、ここでの「隣接する」とは、追加層30の一方側において隣接することを意味している。 On the other hand, as shown in FIG. 4, the reinforcing portion 102 has a laminated structure of 45°, 45°, 90°, 90°, −45°, −45°, 0°, 0° with reference to the center line L. It is formed in a laminated structure of [45 2 /90 2 /−45 2 /0 2 ] s which is inverted and repeated. That is, the orientation direction of the reinforcing fibers of the base layer 21 and the additional layer 31 laminated adjacent to the base layer 21 is 45°. Further, the orientation direction of the reinforcing fibers of the base layer 22 and the additional layer 32 laminated adjacent to the base layer 22 is 90°. Further, the orientation direction of the reinforcing fibers of the base layer 23 and the additional layer 33 laminated adjacent to the base layer 23 is −45°. Further, the orientation direction of the reinforcing fibers of the base layer 24 and the additional layer 34 laminated adjacent to the base layer 24 is 0°. Therefore, in the reinforcing portion 102, the additional layer 30 that is laminated adjacent to each base layer 20 has the same orientation direction of the reinforcing fibers as that of the adjacent base layer 20. Note that “adjacent” here means adjoining on one side of the additional layer 30.
 この構成により、すべてのベース層20の間に、当該ベース層20と強化繊維の配向方向が同じ追加層30を積層するため、貫通孔100aの周囲領域での初期損傷を最も許容させることができる。初期損傷の発生により即座に貫通孔100aの周囲領域で脆性破壊による破断に至ることはなく、初期損傷により貫通孔100aの周囲領域の剛性が低下し、応力集中が緩和される。その結果、貫通孔100aの周囲領域で脆性破壊が発生することを抑制する(破局的な全体崩壊を遅らせる)ことができ、補強部102の耐荷重性能を高めることが可能となる。 With this configuration, the additional layer 30 having the same orientation direction of the reinforcing fibers as the base layer 20 is laminated between all the base layers 20, so that the initial damage in the peripheral region of the through hole 100a can be most allowed. .. The occurrence of the initial damage does not immediately lead to breakage due to brittle fracture in the region around the through hole 100a, and the initial damage reduces the rigidity of the region around the through hole 100a and relaxes the stress concentration. As a result, it is possible to suppress the occurrence of brittle fracture in the area around the through hole 100a (delay catastrophic overall collapse), and it is possible to enhance the load bearing performance of the reinforcing portion 102.
 また、補強部102の積層構成は、図2から図4に示すものに限られない。図5および図6は、補強部の他の積層構成の例を示す説明図である。図5に示す例では、補強部102は、45°、90°、-45°、0°、0°の積層構成を、中心線Lを基準として反転して繰り返す、[45/90/-45/0の積層構成で形成されている。つまり、強化繊維の配向方向が0°であるベース層24に隣接させて、強化繊維の配向方向が0°である追加層34のみを追加で積層した構成である。 Further, the laminated structure of the reinforcing portion 102 is not limited to that shown in FIGS. 2 to 4. 5 and 6 are explanatory views showing examples of other laminated configurations of the reinforcing portion. In the example shown in FIG. 5, the reinforcing portion 102 repeats the laminated structure of 45°, 90°, −45°, 0°, 0° by inverting with respect to the center line L as a reference [45/90/−45. /0 2 ] s . That is, it is a configuration in which only the additional layer 34 in which the orientation direction of the reinforcing fibers is 0° is additionally laminated adjacent to the base layer 24 in which the orientation direction of the reinforcing fibers is 0°.
 この構成により、少なくとも、強化繊維の配向方向が荷重方向Gと一致するベース層24に隣接させて、強化繊維の配向方向が荷重方向Gと一致する追加層34を積層することで、補強部102の荷重に対する靱性を効果的に高めることができる。また、上述したように、貫通孔100aの周囲領域での初期損傷を許容させて、応力集中を緩和させ、脆性破壊の発生を抑制することができる。したがって、追加層30の積層数の増加を抑制しつつ(補強部102の板厚増加を抑制しつつ)、補強部102の耐荷重性能を効果的に高めることが可能となる。 With this configuration, by at least adjoining the base layer 24 in which the orientation direction of the reinforcing fibers coincides with the load direction G and by laminating the additional layer 34 in which the orientation direction of the reinforcing fibers coincides with the load direction G, the reinforcing portion 102 is formed. It is possible to effectively increase the toughness against the load. Further, as described above, it is possible to allow the initial damage in the peripheral region of the through hole 100a, relieve the stress concentration, and suppress the occurrence of brittle fracture. Therefore, it is possible to effectively increase the load bearing performance of the reinforcing portion 102 while suppressing an increase in the number of stacked additional layers 30 (while suppressing an increase in the plate thickness of the reinforcing portion 102).
 また、図6に示す例では、補強部102は、45°、45°、90°、-45°、-45°、0°、0°の積層構成を、中心線Lを基準として反転して繰り返す、[45/90/-45/0の積層構成で形成されている。つまり、強化繊維の配向方向が90°以外であるベース層21、23、24に隣接させて、強化繊維の配向方向が90°以外である追加層31、33、34を追加で積層した構成である。より詳細には、45°のベース層21に隣接させて45°である追加層31を積層し、-45°のベース層23に隣接させて-45°である追加層33を積層し、0°のベース層24に隣接させて0°の追加層34を積層した構成である。すなわち、強化繊維の配向配向が90°以外のベース層20に隣接させて、配向方向が90°以外の追加層30を積層する。 Further, in the example shown in FIG. 6, the reinforcing portion 102 is formed by reversing the laminated structure of 45°, 45°, 90°, −45°, −45°, 0°, 0° with the center line L as a reference. Repeatedly, it is formed by a laminated structure of [45 2 /90/−45 2 /0 2 ] s . That is, in a configuration in which the additional layers 31, 33, and 34 in which the orientation directions of the reinforcing fibers are other than 90° are additionally laminated adjacent to the base layers 21, 23, and 24 in which the orientation directions of the reinforcing fibers are other than 90°. is there. More specifically, a 45° additional layer 31 is laminated adjacent to the 45° base layer 21, and a −45° additional layer 33 is laminated adjacent to the −45° base layer 23. The additional layer 34 of 0° is laminated adjacent to the base layer 24 of 0°. That is, the additional layer 30 having the orientation direction other than 90° is laminated so as to be adjacent to the base layer 20 having the orientation direction of the reinforcing fibers other than 90°.
 この構成により、配向方向が90°の層に比べて、荷重分担の寄与率が相対的に高い配向方向が0°、45°、-45°の追加層30を積層することで、補強部102の荷重に対する靱性を効果的に高めることができる。また、上述したように、貫通孔100aの周囲領域での初期損傷を許容させて、応力集中を緩和させ、脆性破壊の発生を抑制することができる。したがって、追加層30の積層数の増加を抑制しつつ(補強部102の板厚増加を抑制しつつ)、補強部102の耐荷重性能を効果的に高めることが可能となる。 With this configuration, the reinforcing portion 102 is formed by stacking the additional layers 30 having the orientation directions of 0°, 45°, and −45° in which the contribution ratio of the load sharing is relatively higher than that of the layer having the orientation direction of 90°. It is possible to effectively increase the toughness against the load. Further, as described above, it is possible to allow the initial damage in the peripheral region of the through hole 100a, relieve the stress concentration, and suppress the occurrence of brittle fracture. Therefore, it is possible to effectively increase the load bearing performance of the reinforcing portion 102 while suppressing an increase in the number of stacked additional layers 30 (while suppressing an increase in the plate thickness of the reinforcing portion 102).
 以上説明したように、実施形態にかかる複合材100によれば、通常部から延びる複合材料層の間に複合材料層の追加層を積層して形成された補強部を有する複合材について、補強部の耐荷重性能をより向上させることが可能となる。 As described above, according to the composite material 100 according to the embodiment, the composite material having the reinforcement part formed by laminating the additional layer of the composite material layer between the composite material layers extending from the normal part is a reinforcement part. It becomes possible to further improve the load bearing performance of.
 なお、通常部101において、強化繊維の配向方向が0°であるベース層20が複数ある場合、強化繊維の配向方向が0°であるベース層20のすべてに隣接させて、強化繊維の配向方向が0°である追加層30を積層する必要はない。図7および図8は、複合材の積層構成の他の例を示す説明図である。図7および図8では、中心線Lに対する片側のみを記載している。図7に示す例のように、通常部101が[45/90/-45/0/45/0]の積層構成である場合において、補強部102は、一部の0°のベース層20に隣接させて、0°の追加層30のみを積層した[45/90/-45/0/45/0の積層構成で形成されてもよい。また、同様に、図8に示す例のように、通常部101が[45/90/-45/0/45/0]の積層構成である場合において、補強部102は、一部の0°のベース層20に隣接させて0°の追加層30を積層し、かつ、45°、-45°のベース層20に隣接させて45°、-45°の追加層30を積層した[45/90/-45/0/45/0の積層構成で形成されてもよい。 In addition, in the normal part 101, when there are a plurality of base layers 20 in which the orientation directions of the reinforcing fibers are 0°, the orientation directions of the reinforcing fibers are adjacent to all the base layers 20 in which the orientation directions of the reinforcing fibers are 0°. It is not necessary to stack an additional layer 30 with 0°. 7 and 8 are explanatory views showing another example of the laminated structure of the composite material. 7 and 8, only one side with respect to the center line L is shown. In the case where the normal part 101 has a laminated structure of [45/90/−45 2 /0 3 /45/0] s , as in the example shown in FIG. It may be formed in a laminated structure of [45/90/−45 2 /0 4 /45/0 2 ] s in which only the additional layer 30 of 0° is laminated adjacent to the layer 20. Similarly, when the normal portion 101 has a laminated structure of [45/90/−45 2 /0 3 /45/0] s as in the example shown in FIG. The 0° additional layer 30 is laminated adjacent to the 0° base layer 20 and the 45° and −45° additional layers 30 are laminated adjacent to the 45° and −45° base layers 20. [45 2 /90/−45 4 /0 4 /45 2 /0 2 ] s may be formed in a laminated structure.
 また、本実施形態では、複合材100を、0°、+45°、-45°、90°の複合材料層10(ベース層20および追加層30)を積層した、疑似等方積層により積層するものとした。ただし、複合材100は、少なくとも、荷重方向Gに沿った配向方向(実施形態では0°)のベース層20を一つ含むものでさえあれば、疑似等方積層以外のいかなる積層により形成されてもよい。そして、補強部102は、荷重方向Gに沿った配向方向のベース層20に隣接させて、荷重方向Gに沿った配向方向の追加層30が、少なくとも一つ設けられるものであればよい。 Further, in the present embodiment, the composite material 100 is laminated by pseudo isotropic lamination in which the composite material layers 10 (base layer 20 and additional layer 30) of 0°, +45°, −45°, and 90° are laminated. And However, as long as the composite material 100 includes at least one base layer 20 in the orientation direction (0° in the embodiment) along the load direction G, it may be formed by any lamination other than the pseudo isotropic lamination. Good. The reinforcing portion 102 may be provided with at least one additional layer 30 in the orientation direction along the load direction G so as to be adjacent to the base layer 20 in the orientation direction along the load direction G.
 次に、実施形態にかかる複合材の設計方法について説明する。図9は、実施形態にかかる複合材の設計方法の一例を示すフローチャートである。ここでは、複合材100の通常部101が図4の積層構成である例を考える。設計者は、まず、ステップS1として、初期設計で複合材100を形成する。初期設計では、例えば、追加層30の積層構成を任意に設定することができる。なお、初期設計では、追加層30を積層せず、補強部102を形成しない(補強部102と通常部101との板厚を同じとする)ものとしてもよい。 Next, a method of designing the composite material according to the embodiment will be described. FIG. 9 is a flowchart showing an example of a composite material designing method according to the embodiment. Here, consider an example in which the normal portion 101 of the composite material 100 has the laminated structure of FIG. First, in step S1, the designer forms the composite material 100 by initial design. In the initial design, for example, the laminated structure of the additional layer 30 can be set arbitrarily. In the initial design, the additional layer 30 may not be laminated and the reinforcing portion 102 may not be formed (the reinforcing portion 102 and the normal portion 101 have the same plate thickness).
 次に、設計者は、ステップS2として、形成した複合材100に引張試験を行う(試験ステップ)。引張試験は、図2および図3に示すように、複合材100に荷重方向Gの引張荷重を作用させ、貫通孔100aの周囲領域において、いかなる破壊モードで破壊されるかを特定する。複合材の耐荷重性能として、荷重が作用した場合にいかなる破壊モードで破壊されるかを評価する手法がある。破壊モードとしては、脆性(Brittle)破壊モード、層間剥離(Delamination)モード、プルアウト(Pull-out)モードがある。脆性破壊モードは、各複合材料層10が面内亀裂の進展により脆性破壊するモードである。層間剥離モードは、隣接する複合材料層10同士が剥離するモードである。プルアウトモードは、脆性破壊モードと層間剥離モードとの中間の破壊モードであり、面内亀裂の進展と層間剥離との相互作用によって、複合材100を構成する各層が複合材100から引き抜けたように、破断部が不均一なジグザグ状となる。プルアウトモードでの破壊が最も耐荷重性能が良好である。 Next, in step S2, the designer performs a tensile test on the formed composite material 100 (test step). In the tensile test, as shown in FIGS. 2 and 3, a tensile load in the load direction G is applied to the composite material 100 to specify in what destruction mode the peripheral region of the through hole 100a is broken. As a load-bearing performance of a composite material, there is a method of evaluating in what failure mode a load is applied when the load is applied. The fracture modes include a brittle fracture mode, a delamination mode, and a pull-out mode. The brittle fracture mode is a mode in which each composite material layer 10 undergoes brittle fracture due to the development of in-plane cracks. The delamination mode is a mode in which adjacent composite material layers 10 are delaminated. The pull-out mode is a fracture mode intermediate between the brittle fracture mode and the delamination mode, and each layer constituting the composite material 100 seems to be pulled out from the composite material 100 due to the interaction between the progress of the in-plane crack and the delamination. In addition, the fractured portions have a non-uniform zigzag shape. Breakdown in pullout mode has the best load bearing performance.
 次に、設計者は、ステップS3として、引張試験で特定された破壊モードがいかなる種類であったかを判定する。そして、設計者は、引張試験で特定された破壊モードに応じて、追加層30の積層数および強化繊維の配向方向を変更した複合材を形成する積層構成変更ステップ(ステップS4、S5)またはステップS6のいずれかに進む。 Next, in step S3, the designer determines what kind of failure mode was specified in the tensile test. Then, the designer forms a composite structure in which the number of layers of the additional layer 30 and the orientation direction of the reinforcing fibers are changed in accordance with the fracture mode specified in the tensile test, to change the laminated structure (steps S4 and S5) or step. Proceed to any of S6.
 設計者は、まず、ステップS3において、破壊モードが脆性破壊モードであると判定した場合、ステップS4として、隣接するベース層20と強化繊維の配向方向が一致する追加層30が増加する傾向に、追加層30の積層数および配向方向を変更して、新たに複合材100を形成する(積層構成変更ステップ)。 When the designer first determines that the fracture mode is the brittle fracture mode in step S3, the designer tends to increase the number of the additional layers 30 in which the orientation directions of the adjacent base layer 20 and the reinforcing fibers are the same, as step S4. The composite material 100 is newly formed by changing the number of laminated layers and the orientation direction of the additional layer 30 (laminated structure changing step).
 ステップS4での積層構成の変更には、種々の手法を用いることができる。例えば、図2から図4に示すように、すべてのベース層20(ベース層21、22、23、24)の間に、隣接するベース層20と強化繊維の配向方向が一致する追加層30(追加層31、32、33、34)を積層してもよい。また、図5に示すように、強化繊維の配向方向が0°であるベース層24に隣接させて、強化繊維の配向方向が0°である追加層34を積層してもよい。また、図6に示すように、複合材100が疑似等方積層により形成されている場合において、強化繊維の配向方向が90°以外のベース層21、23、24に隣接させて、強化繊維の配向方向が90°以外の追加層31、33、34を積層してもよい。なお、上述したように、通常部101において、強化繊維の配向方向が0°であるベース層20が複数ある場合、強化繊維の配向方向が0°であるベース層20のすべてに隣接させて、強化繊維の配向方向が0°である追加層30を積層する必要はない(図7および図8の例参照)。 Various methods can be used to change the laminated structure in step S4. For example, as shown in FIGS. 2 to 4, between all the base layers 20 (base layers 21, 22, 23, 24), an additional layer 30 (in which the orientation directions of the reinforcing fibers are the same as those of the adjacent base layers 20 ( Additional layers 31, 32, 33, 34) may be laminated. Further, as shown in FIG. 5, an additional layer 34 in which the orientation direction of the reinforcing fibers is 0° may be laminated adjacent to the base layer 24 in which the orientation direction of the reinforcing fibers is 0°. Further, as shown in FIG. 6, in the case where the composite material 100 is formed by pseudo isotropic lamination, the reinforcing fibers are made to be adjacent to the base layers 21, 23, 24 whose orientation directions of the reinforcing fibers are other than 90°. Additional layers 31, 33, 34 having an orientation direction other than 90° may be laminated. As described above, in the normal part 101, when there are a plurality of base layers 20 in which the orientation direction of the reinforcing fibers is 0°, they are adjacent to all the base layers 20 in which the orientation direction of the reinforcing fibers is 0°. It is not necessary to stack an additional layer 30 in which the orientation direction of the reinforcing fibers is 0° (see the examples of Figures 7 and 8).
 一方、設計者は、ステップS3において、破壊モードが層間破壊モードと判定した場合、ステップS5として、隣接するベース層20と強化繊維の配向方向が一致する追加層30が減少する傾向に、追加層30の積層数および配向方向を変更して、新たに複合材100を形成する(積層構成変更ステップ)。 On the other hand, when the designer determines that the breakage mode is the interlayer breakage mode in step S3, in step S5, the additional layer 30 in which the adjacent base layer 20 and the reinforcing fiber have the same orientation direction as the additional layer 30 tends to decrease. The composite material 100 is newly formed by changing the number of laminated layers of 30 and the orientation direction (laminated structure changing step).
 ステップS5での積層構成の変更には、種々の手法を用いることができる。例えば図4に示す積層構成において、強化繊維の配向方向が0°であるベース層24に隣接した追加層34を取り除いてもよい。また、例えば図4に示す積層構成において、強化繊維の配向方向が0°以外であるベース層21、22、23に隣接した追加層31、32、33のいずれかを取り除いてもよい。また、例えば図4に示す積層構成において、強化繊維の配向方向が90°以外のベース層21、23、24に隣接した追加層31、33、34のいずれかを取り除いてもよい。また、図4に示す積層構成において、強化繊維の配向方向が90°のベース層22に隣接した追加層32を取り除いてもよい。 Various methods can be used to change the laminated structure in step S5. For example, in the laminated structure shown in FIG. 4, the additional layer 34 adjacent to the base layer 24 in which the orientation direction of the reinforcing fibers is 0° may be removed. Further, for example, in the laminated structure shown in FIG. 4, any one of the additional layers 31, 32, and 33 adjacent to the base layers 21, 22, and 23 in which the orientation direction of the reinforcing fiber is other than 0° may be removed. Further, for example, in the laminated structure shown in FIG. 4, any of the additional layers 31, 33 and 34 adjacent to the base layers 21, 23 and 24 in which the orientation direction of the reinforcing fibers is other than 90° may be removed. Further, in the laminated structure shown in FIG. 4, the additional layer 32 adjacent to the base layer 22 in which the orientation direction of the reinforcing fibers is 90° may be removed.
 設計者は、ステップS5、S6で積層構成を変更した複合材100を形成すると、ステップS2に戻り、再び引張試験を実行し、破壊モードに応じて(ステップS3)、ステップS4、S5のいずれかに進む。すなわち、ステップS2からステップS5の処理を繰り返し実行する。そして、ステップS3において、破壊モードがプルアウトモードと判定された場合には、ステップS6として、プルアウトモードで破壊した複合材100の構成が最適解であると判定し、本処理を終了する。 After forming the composite material 100 whose laminated structure is changed in steps S5 and S6, the designer returns to step S2, executes the tensile test again, and depending on the fracture mode (step S3), either the steps S4 or S5. Proceed to. That is, the processes of steps S2 to S5 are repeatedly executed. Then, if it is determined in step S3 that the destruction mode is the pullout mode, then in step S6, it is determined that the configuration of the composite material 100 that has been destroyed in the pullout mode is the optimum solution, and this processing ends.
 以上説明したように、実施形態にかかる複合材の設計方法は、複合材100に荷重を付加して、補強部102が、プルアウトモードとプルアウトモード以外のモードとを含む破壊モードのいずれで破壊されるかを特定する試験ステップ(ステップS2)と、特定された破壊モードに応じて追加層30の積層数および強化繊維の配向方向を変更した複合材を形成する積層構成変更ステップ(ステップS4、S5)と、を備え、破壊モードがプルアウトモードとなるまで、試験ステップと積層構成変更ステップとを繰り返し実行して、補強部における複合材料層の積層構成を最適化する。 As described above, in the composite material designing method according to the embodiment, a load is applied to the composite material 100, and the reinforcing portion 102 is broken in any one of the breaking modes including the pullout mode and the modes other than the pullout mode. Test step (step S2) for determining whether or not the laminated layer is changed, and a laminated structure changing step (steps S4, S5) for forming a composite material in which the number of layers of the additional layer 30 and the orientation direction of the reinforcing fibers are changed according to the specified fracture mode. ) And, the test step and the laminated structure changing step are repeatedly executed until the destruction mode becomes the pull-out mode to optimize the laminated structure of the composite material layer in the reinforcing portion.
 この構成により、試験ステップで特定される補強部102の破壊モードが、最も強度が高いプルアウトモードになるまで、追加層30の積層数および強化繊維の配向方向を変更して、補強部102の積層構成を最適化することができる。したがって、実施形態にかかる複合材の設計方法によれば、通常部101から延びる複合材料層10の間に複合材料層10の追加層30を積層して形成された補強部102を有する複合材について、補強部102の耐荷重性能をより向上させることが可能となる。また、このように、補強部102の積層構成の最適化を図ることで、追加層30の積層数の削減を図ることができ、複合材100の軽量化をも図ることが可能となる。 With this configuration, the number of layers of the additional layer 30 and the orientation direction of the reinforcing fibers are changed until the failure mode of the reinforcing portion 102 specified in the test step becomes the pullout mode having the highest strength, and the reinforcing portion 102 is laminated. The configuration can be optimized. Therefore, according to the composite material designing method of the embodiment, the composite material having the reinforcing portion 102 formed by laminating the additional layer 30 of the composite material layer 10 between the composite material layers 10 extending from the normal portion 101 is described. Therefore, the load bearing performance of the reinforcing portion 102 can be further improved. Further, by optimizing the laminated structure of the reinforcing portion 102 in this manner, the number of laminated layers of the additional layer 30 can be reduced, and the weight of the composite material 100 can be reduced.
 また、破壊モードは、脆性破壊モードと、層間剥離モードとを含み、積層構成変更ステップは、破壊モードが脆性破壊モードである場合、隣接するベース層20と配向方向が一致する追加層30が増加する傾向に、積層数および配向方向を変更する(ステップS4)。 Further, the fracture mode includes a brittle fracture mode and a delamination mode, and in the laminated structure changing step, when the fracture mode is the brittle fracture mode, the number of additional layers 30 having the same orientation direction as the adjacent base layer 20 increases. The number of layers and the orientation direction are changed so as to tend to (step S4).
 この構成により、強化繊維の配向方向が一致し、隣接するベース層20および追加層30が増加するため、貫通孔100aの周囲領域における初期損傷を許容する方向、つまり、貫通孔100aの周囲領域での応力緩和が得られる方向に、積層構成を変更することが可能となる。その結果、脆性破壊モードの発生を抑制し、破壊モードをプルアウトモードに近づけて、補強部102の耐荷重性能を高めることが可能となる。 With this configuration, the orientation directions of the reinforcing fibers are matched, and the number of adjacent base layers 20 and additional layers 30 is increased. Therefore, in a direction that allows initial damage in the peripheral region of the through hole 100a, that is, in the peripheral region of the through hole 100a. It is possible to change the laminated structure in the direction in which the stress relaxation described above is obtained. As a result, it becomes possible to suppress the occurrence of the brittle fracture mode, bring the fracture mode closer to the pullout mode, and enhance the load bearing performance of the reinforcing portion 102.
 また、破壊モードは、脆性破壊モードと、層間剥離モードとを含み、積層構成変更ステップは、破壊モードが層間剥離モードである場合、隣接する複合材料層10と配向方向が一致する追加層30が減少する傾向に、積層数および配向方向を変更する(ステップS5)。 Further, the fracture mode includes a brittle fracture mode and a delamination mode, and in the laminated structure changing step, when the fracture mode is the delamination mode, the adjacent composite material layer 10 has an additional layer 30 whose orientation direction matches. The number of stacked layers and the orientation direction are changed so as to decrease (step S5).
 この構成により、強化繊維の配向方向が一致し、隣接するベース層20および追加層30が減少するため、貫通孔100aの周囲領域における初期損傷を許容しない方向に、積層構成を変更することが可能となる。それにより、破壊モードが層間剥離モードから脆性破壊モードに近づくことになる。その結果、層間破壊モードの発生を抑制し、破壊モードをプルアウトモードに近づけて、補強部102の耐荷重性能を高めることが可能となる。 With this configuration, the orientation directions of the reinforcing fibers are the same, and the adjacent base layer 20 and the additional layer 30 are reduced. Therefore, it is possible to change the laminated configuration in a direction that does not allow initial damage in the peripheral region of the through hole 100a. Becomes This causes the fracture mode to approach the brittle fracture mode from the delamination mode. As a result, it is possible to suppress the occurrence of the interlayer fracture mode, bring the fracture mode closer to the pull-out mode, and improve the load bearing performance of the reinforcing portion 102.
 また、積層構成変更ステップは、破壊モードが脆性破壊モードである場合、配向方向が荷重方向と一致する複合材料層10に隣接させて、配向方向が荷重方向である追加層30を、少なくとも1つ積層する。 In the laminated structure changing step, when the fracture mode is the brittle fracture mode, at least one additional layer 30 in which the orientation direction is the load direction is adjacent to the composite material layer 10 in which the orientation direction matches the load direction. Stack.
 この構成により、配向方向が荷重方向と一致する追加層30を積層するため、荷重に対する靱性を効果的に高めることができる。その結果、追加層30の積層数の増加を抑制しつつ、脆性破壊の発生を抑制して補強部102の耐荷重性能を効果的に高めることが可能となる。 With this configuration, since the additional layer 30 having the orientation direction aligned with the load direction is laminated, the toughness against the load can be effectively enhanced. As a result, it is possible to suppress the occurrence of brittle fracture while effectively suppressing the increase in the number of layers of the additional layer 30 and effectively improve the load bearing performance of the reinforcing portion 102.
 また、積層構成変更ステップは、破壊モードが脆性破壊モードである場合、すべての複合材料層10の間に、隣接する複合材料層10と配向方向が一致する追加層30を積層する。 In the laminated structure changing step, when the fracture mode is the brittle fracture mode, the additional layer 30 having the same orientation direction as the adjacent composite material layer 10 is laminated between all the composite material layers 10.
 この構成により、すべての複合材料層10の間に追加層30を積層するため、貫通孔100aの周囲領域での初期損傷を最も許容させることができる。その結果、貫通孔100aの周囲領域において、応力集中が緩和されるため、脆性破壊の発生が抑制され、補強部102の耐荷重性能を高めることが可能となる。 With this configuration, since the additional layer 30 is laminated between all the composite material layers 10, the initial damage in the peripheral region of the through hole 100a can be allowed most. As a result, stress concentration is alleviated in the region around the through hole 100a, so that the occurrence of brittle fracture is suppressed and the load bearing performance of the reinforcing portion 102 can be improved.
 また、複数の複合材料層10は、荷重方向を0°としたとき、配向方向が0°、+45°、-45°、90°であるものを積層した疑似等方積層により積層されており、積層構成変更ステップは、破壊モードが脆性破壊モードである場合、配向方向が90°以外の複合材料層10に隣接させて、配向方向が90°以外の追加層30を積層する。 Further, the plurality of composite material layers 10 are laminated by pseudo isotropic lamination in which the orientation directions are 0°, +45°, −45°, and 90° when the load direction is 0°. In the laminated structure changing step, when the fracture mode is the brittle fracture mode, the additional layer 30 having the orientation direction other than 90° is laminated adjacent to the composite material layer 10 having the orientation direction other than 90°.
 この構成により、配向方向が90°の層に比べて、荷重分担の寄与率が相対的に高い配向方向が0°、45°、-45°の追加層30を積層することで、補強部102の荷重に対する靱性を効果的に高めることができる。したがって、追加層30の積層数の増加を抑制しつつ(補強部102の板厚増加を抑制しつつ)、補強部102の耐荷重性能を効果的に高めることが可能となる。 With this configuration, the reinforcing portion 102 is formed by stacking the additional layers 30 whose orientation directions are 0°, 45°, and −45° in which the contribution ratio of the load sharing is relatively higher than that of the layer whose orientation direction is 90°. It is possible to effectively increase the toughness against the load. Therefore, it is possible to effectively increase the load bearing performance of the reinforcing portion 102 while suppressing an increase in the number of stacked additional layers 30 (while suppressing an increase in the plate thickness of the reinforcing portion 102).
 なお、本実施形態では、破壊モードが脆性破壊モードである場合、隣接するベース層20と配向方向が一致する追加層30が増加する傾向に、補強部102の積層数および配向方向を変更するものとした。ただし、破壊モードをプルアウトモードに近づけることができれば、隣接するベース層20と異なる配向方向の追加層30を複数積層してもよい。例えば、90°のベース層20と45°のベース層20との間に、0°の追加層30を複数積層すること等が考えられる。 In addition, in the present embodiment, when the fracture mode is the brittle fracture mode, the number of laminations and the orientation direction of the reinforcing portion 102 are changed so that the additional layer 30 whose orientation direction matches the adjacent base layer 20 increases. And However, as long as the destruction mode can be brought close to the pull-out mode, a plurality of additional layers 30 having different alignment directions from the adjacent base layer 20 may be laminated. For example, it is possible to stack a plurality of 0° additional layers 30 between the 90° base layer 20 and the 45° base layer 20.
 また、本実施形態では、複合材100が、1つの貫通孔100aに対応して1つの補強部102を有するものとした。ただし、補強部102は、複数の貫通孔100aに対応して設けられてもよい。図10は、実施形態にかかる複合材の他の例を示す説明図である。図示するように、複合材200は、複数の貫通孔200aと、複数の貫通孔200aの周囲領域において、通常部201よりも板厚を増加させた補強部202を有している。このような補強部202においても、上述した補強部102と同様の手法により、追加層30の積層構成を設計することができる。 Further, in the present embodiment, the composite material 100 has one reinforcing portion 102 corresponding to one through hole 100a. However, the reinforcing portion 102 may be provided so as to correspond to the plurality of through holes 100a. FIG. 10 is an explanatory diagram showing another example of the composite material according to the embodiment. As shown in the figure, the composite material 200 has a plurality of through holes 200a and a reinforcing portion 202 having a plate thickness larger than that of the normal portion 201 in the peripheral region of the plurality of through holes 200a. Also in such a reinforcing portion 202, the laminated structure of the additional layer 30 can be designed by the same method as that of the reinforcing portion 102 described above.
 また、本実施形態では、複合材100の各複合材料層10が例えば0.03mm以上0.1mm以下の範囲の厚さである薄層化されたものとした。ただし、複合材料層10は、0.1mm以上であってもよい。このように、各複合材料層10を薄層化しない場合であっても、貫通孔100aの周囲における応力集中の緩和(初期損傷の許容の程度)を考慮して、複合材100の積層構成を設計することで、補強部102の耐荷重性能を良好に向上させることが可能となる。 In addition, in the present embodiment, each composite material layer 10 of the composite material 100 is thinned to have a thickness in the range of, for example, 0.03 mm or more and 0.1 mm or less. However, the composite material layer 10 may be 0.1 mm or more. As described above, even if each composite material layer 10 is not thinned, the laminated structure of the composite material 100 is considered in consideration of the relaxation of stress concentration around the through hole 100a (the degree of tolerance of initial damage). By designing, it becomes possible to favorably improve the load bearing performance of the reinforcing portion 102.
 また、本実施形態では、複合材100が貫通孔100aと、貫通孔100aの周囲領域において形成された補強部102を有するものとした。ただし、補強部102は、貫通孔100aのみならず、応力集中が生じやすい、いかなる領域において形成されるものであってもよい。 In addition, in the present embodiment, the composite material 100 has the through hole 100a and the reinforcing portion 102 formed in the peripheral region of the through hole 100a. However, the reinforcing portion 102 may be formed not only in the through hole 100a but also in any region where stress concentration is likely to occur.
 また、本実施形態では、荷重方向Gを図2および図3において白抜き矢印で示す方向とした。ただし、荷重方向Gは、これに限られず、複合材100に対していずれかの方向に作用する引張荷重の方向であってもよい。 Further, in the present embodiment, the load direction G is the direction indicated by the white arrow in FIGS. 2 and 3. However, the load direction G is not limited to this, and may be the direction of the tensile load acting on the composite material 100 in any direction.
 10 複合材料層
 20、21、22、23、24 ベース層
 30、31、32、33、34 追加層
 100、200 複合材
 100a、200a 貫通孔
 101、201 通常部
 102、202 補強部
 G 荷重方向
 L 中心線
10 Composite Material Layer 20, 21, 22, 23, 24 Base Layer 30, 31, 32, 33, 34 Additional Layer 100, 200 Composite Material 100a, 200a Through Hole 101, 201 Normal Part 102, 202 Reinforcing Part G Load Direction L Center line

Claims (9)

  1.  強化繊維を含む複合材料層が複数積層されて形成された通常部と、貫通孔の周囲に設けられ、前記通常部から延びる前記複合材料層の間に前記複合材料層の追加層を積層して形成された補強部とを有する複合材の設計方法であって、
     前記複合材に荷重を付加して、前記補強部が、プルアウトモードと前記プルアウトモード以外のモードとを含む破壊モードのいずれで破壊されるかを特定する試験ステップと、
     特定された前記破壊モードに応じて前記追加層の積層数および前記強化繊維の配向方向を変更した前記複合材を形成する積層構成変更ステップと、
     を備え、
     前記破壊モードが前記プルアウトモードとなるまで、前記試験ステップと前記積層構成変更ステップとを繰り返し実行して、前記補強部における前記複合材料層の積層構成を最適化することを特徴とする複合材の設計方法。
    A normal part formed by stacking a plurality of composite material layers containing reinforcing fibers, and an additional layer of the composite material layer is provided between the composite material layers provided around the through hole and extending from the normal part. A method of designing a composite material having a formed reinforcing portion,
    A test step of applying a load to the composite material to specify whether the reinforcing portion is broken in a breaking mode including a pullout mode and a mode other than the pullout mode,
    A laminated structure changing step of forming the composite material in which the number of laminated layers of the additional layer and the orientation direction of the reinforcing fibers are changed according to the specified breaking mode,
    Equipped with
    Until the destruction mode becomes the pull-out mode, the test step and the laminated structure changing step are repeatedly executed to optimize the laminated structure of the composite material layer in the reinforcing portion. Design method.
  2.  前記破壊モードは、脆性破壊モードと、層間剥離モードとを含み、
     前記積層構成変更ステップは、前記破壊モードが脆性破壊モードである場合、隣接する前記複合材料層と前記配向方向が一致する前記追加層が増加する傾向に、前記積層数および前記配向方向を変更することを特徴とする請求項1に記載の複合材の設計方法。
    The fracture mode includes a brittle fracture mode and a delamination mode,
    In the laminated structure changing step, when the fracture mode is a brittle fracture mode, the number of the laminated layers and the orientation direction are changed so that the number of the additional layers in which the alignment direction matches the adjacent composite material layer increases. The method for designing a composite material according to claim 1, wherein:
  3.  前記破壊モードは、脆性破壊モードと、層間剥離モードとを含み、
     前記積層構成変更ステップは、前記破壊モードが層間剥離モードである場合、隣接する前記複合材料層と前記配向方向が一致する前記追加層が減少する傾向に、前記積層数および前記配向方向を変更することを特徴とする請求項1または請求項2に記載の複合材の設計方法。
    The fracture mode includes a brittle fracture mode and a delamination mode,
    In the layered structure changing step, when the destruction mode is a delamination mode, the number of stacked layers and the orientation direction are changed so that the number of the additional layers having the same orientation direction as that of the adjacent composite material layer tends to decrease. The method for designing a composite material according to claim 1 or 2, wherein:
  4.  前記積層構成変更ステップは、前記破壊モードが脆性破壊モードである場合、前記配向方向が荷重方向と一致する前記複合材料層に隣接させて、前記配向方向が前記荷重方向である前記追加層を、少なくとも1つ積層することを特徴とする請求項2または請求項3に記載の複合材の設計方法。 In the laminated structure changing step, when the fracture mode is a brittle fracture mode, the additional layer is adjacent to the composite material layer in which the orientation direction matches the load direction, and the orientation direction is the load direction, The method for designing a composite material according to claim 2, wherein at least one is laminated.
  5.  前記積層構成変更ステップは、前記破壊モードが脆性破壊モードである場合、すべての前記複合材料層の間に、隣接する前記複合材料層と前記配向方向が一致する前記追加層を積層することを特徴とする請求項2から請求項4のいずれか一項に記載の複合材の設計方法。 When the fracture mode is a brittle fracture mode, the stacking configuration changing step stacks the additional layer having the same orientation direction as the adjacent composite material layer between all the composite material layers. The method for designing a composite material according to any one of claims 2 to 4.
  6.  複数の前記複合材料層は、荷重方向を0°としたとき、前記配向方向が0°、+45°、-45°、90°であるものを積層した疑似等方積層により積層されており、
     前記積層構成変更ステップは、前記破壊モードが脆性破壊モードである場合、前記配向方向が90°以外の前記複合材料層に隣接させて、前記配向方向が90°以外の前記追加層を積層することを特徴とする請求項2から請求項4のいずれか一項に記載の複合材の設計方法。
    The plurality of composite material layers are laminated by pseudo isotropic lamination in which the orientation directions are 0°, +45°, −45°, and 90° when the load direction is 0°.
    In the laminated structure changing step, when the fracture mode is a brittle fracture mode, the additional layer having an orientation direction other than 90° is laminated adjacent to the composite material layer having an orientation direction other than 90°. The method for designing a composite material according to any one of claims 2 to 4, wherein:
  7.  強化繊維を含む複合材料層が複数積層されて形成された通常部と、貫通孔の周囲に設けられ、前記通常部から延びる前記複合材料層の間に前記複合材料層の追加層を積層して形成された補強部とを有する複合材であって、
     前記補強部は、主として作用する荷重方向と前記強化繊維の配向方向が一致する前記複合材料層に隣接して、前記荷重方向と前記配向方向が一致する前記追加層が、少なくとも1つ積層されていることを特徴とする複合材。
    A normal part formed by stacking a plurality of composite material layers containing reinforcing fibers, and an additional layer of the composite material layer is provided between the composite material layers provided around the through hole and extending from the normal part. A composite material having a formed reinforcing portion,
    The reinforcing part is adjacent to the composite material layer in which the load direction mainly acting and the orientation direction of the reinforcing fiber are the same, and at least one additional layer in which the load direction and the orientation direction are the same is laminated. Composite material characterized by being
  8.  前記補強部は、すべての前記複合材料層の間に、隣接する前記複合材料層と前記配向方向が一致する前記追加層が積層されていることを特徴とする請求項7に記載の複合材。 The composite material according to claim 7, wherein in the reinforcing portion, the additional layer having the same orientation direction as the adjacent composite material layer is laminated between all the composite material layers.
  9.  複数の前記複合材料層は、前記荷重方向を0°としたとき、前記配向方向が0°、+45°、-45°、90°であるものを積層した疑似等方積層により積層されており、
     前記補強部は、前記配向方向が90°以外の前記複合材料層に隣接して、前記配向方向が90°以外の前記追加層が積層されていることを特徴とする請求項7に記載の複合材。
    The plurality of composite material layers are laminated by pseudo isotropic lamination in which the orientation directions are 0°, +45°, −45°, and 90° when the load direction is 0°.
    8. The composite according to claim 7, wherein the reinforcing part is adjacent to the composite material layer having an orientation direction other than 90°, and the additional layer having an orientation direction other than 90° is laminated. Material.
PCT/JP2019/039583 2018-12-05 2019-10-08 Design method for composite material and composite material WO2020116017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018228482A JP7112950B2 (en) 2018-12-05 2018-12-05 Composite design methods and composites
JP2018-228482 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020116017A1 true WO2020116017A1 (en) 2020-06-11

Family

ID=70974539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039583 WO2020116017A1 (en) 2018-12-05 2019-10-08 Design method for composite material and composite material

Country Status (2)

Country Link
JP (1) JP7112950B2 (en)
WO (1) WO2020116017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11447266B2 (en) 2018-03-12 2022-09-20 Subaru Corporation Composite structure, aircraft, and lightning current guiding method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260142A (en) * 2007-04-10 2008-10-30 Toyota Motor Corp Method for forming through-hole to fiber-reinforced resin sheet
FR2951400A1 (en) * 2009-10-20 2011-04-22 Airbus Operations Sas Composite material structural part for use in e.g. floor pan of aircraft industry, has reinforcement ply provided between two one-way oriented fiber plies layers, and arranged in regular way on thickness of structural part between layers
JP2011122885A (en) * 2009-12-09 2011-06-23 Mitsubishi Heavy Ind Ltd Method of evaluating interlaminar strength of composite material
JP2012035442A (en) * 2010-08-04 2012-02-23 Toyota Motor Corp Fiber-reinforced resin member, and fastening structure
WO2014116151A1 (en) * 2013-01-24 2014-07-31 Saab Ab An aerial skin article with reinforced fastening holes
US20150314553A1 (en) * 2013-01-11 2015-11-05 Aircelle Reinforced structural component made of composite material
JP2016135669A (en) * 2015-01-02 2016-07-28 ザ・ボーイング・カンパニーThe Boeing Company Skin/stringer design for composite wing
JP2018063119A (en) * 2016-10-11 2018-04-19 三菱重工業株式会社 Method for evaluating destruction strength of fiber-reinforced composite material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290269A (en) * 2007-05-22 2008-12-04 Toyota Motor Corp Method for forming through-hole in fiber-reinforced resin sheet
JP5095503B2 (en) * 2008-05-27 2012-12-12 株式会社日立国際電気 Wireless repeater amplifier
CN105102829B (en) * 2013-04-05 2016-12-28 敷纺株式会社 Composite weight connector
JP6309324B2 (en) * 2014-03-28 2018-04-11 三菱重工業株式会社 Composite structure, aircraft wing and aircraft fuselage provided with the same, and method for manufacturing composite structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260142A (en) * 2007-04-10 2008-10-30 Toyota Motor Corp Method for forming through-hole to fiber-reinforced resin sheet
FR2951400A1 (en) * 2009-10-20 2011-04-22 Airbus Operations Sas Composite material structural part for use in e.g. floor pan of aircraft industry, has reinforcement ply provided between two one-way oriented fiber plies layers, and arranged in regular way on thickness of structural part between layers
JP2011122885A (en) * 2009-12-09 2011-06-23 Mitsubishi Heavy Ind Ltd Method of evaluating interlaminar strength of composite material
JP2012035442A (en) * 2010-08-04 2012-02-23 Toyota Motor Corp Fiber-reinforced resin member, and fastening structure
US20150314553A1 (en) * 2013-01-11 2015-11-05 Aircelle Reinforced structural component made of composite material
WO2014116151A1 (en) * 2013-01-24 2014-07-31 Saab Ab An aerial skin article with reinforced fastening holes
JP2016135669A (en) * 2015-01-02 2016-07-28 ザ・ボーイング・カンパニーThe Boeing Company Skin/stringer design for composite wing
JP2018063119A (en) * 2016-10-11 2018-04-19 三菱重工業株式会社 Method for evaluating destruction strength of fiber-reinforced composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11447266B2 (en) 2018-03-12 2022-09-20 Subaru Corporation Composite structure, aircraft, and lightning current guiding method
EP3539881B1 (en) * 2018-03-12 2023-02-08 Subaru Corporation Composite structure, aircraft, and lightning current guiding method

Also Published As

Publication number Publication date
JP2020090030A (en) 2020-06-11
JP7112950B2 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
CA2640194C (en) Method of molding composite material structural member and composite material structural member
JP5654055B2 (en) Composite structure, aircraft main wing and aircraft fuselage provided with the same
RU2518927C2 (en) Structure made of composite materials, aircraft main wing and body containing said structure
RU2519111C2 (en) Structural component and method for structural component manufacturing
US20190055001A1 (en) Method of designing composite material, method of evaluating composite material, and composite material
CA2473346C (en) Lightweight structure particularly for aircraft
RU2645500C1 (en) Structure of composite material and containing it aircraft wing and fuselage of aircraft, method of manufacturing structures composite material
US9475568B2 (en) Composite structure, aircraft wing and aircraft fuselage including composite structure, and method of manufacturing composite structure
WO2020116017A1 (en) Design method for composite material and composite material
US20180163772A1 (en) Composite shaft arrangement with load introduction elements
WO2017141526A1 (en) Structure designing method and structure
JP2012035442A (en) Fiber-reinforced resin member, and fastening structure
WO2014162789A1 (en) Composite material lightweight coupling
US10994513B2 (en) Composite structure
Bozhevolnaya et al. Localized effects across core junctions in sandwich beams subjected to in-plane and out-of-plane loading
Ehsani et al. Application of laminated composite grids as a reinforcing element of automotive components
KR101840742B1 (en) Fiber reinforced composite panel with horizontally inserted connector
JP7365847B2 (en) Composite material with reinforced fiber bundles and bolted structure
WO2022144998A1 (en) Layered body structure and method for manufacturing layered body structure
US9517614B1 (en) Delamination and crack prevention layer for structural sandwich panels
JP7551544B2 (en) Fiber-reinforced composite frame
KR20230106365A (en) A spiral composite material with vibration absorption properties
JP5360523B2 (en) Hybrid carbon fiber reinforced composite material
JP2022150610A (en) Designing method of anisotropic composite laminate structure
JP2022144406A (en) Fiber-reinforced composite material frame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894042

Country of ref document: EP

Kind code of ref document: A1