WO2020116013A1 - Relay device for space division multiplex optical fiber, optical transmission device and optical reception device - Google Patents
Relay device for space division multiplex optical fiber, optical transmission device and optical reception device Download PDFInfo
- Publication number
- WO2020116013A1 WO2020116013A1 PCT/JP2019/039129 JP2019039129W WO2020116013A1 WO 2020116013 A1 WO2020116013 A1 WO 2020116013A1 JP 2019039129 W JP2019039129 W JP 2019039129W WO 2020116013 A1 WO2020116013 A1 WO 2020116013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical fiber
- space division
- delay
- optical signals
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 173
- 239000013307 optical fiber Substances 0.000 title claims abstract description 143
- 230000005540 biological transmission Effects 0.000 title claims abstract description 45
- 230000003321 amplification Effects 0.000 claims abstract description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 6
- 230000001934 delay Effects 0.000 claims description 4
- 239000000835 fiber Substances 0.000 description 19
- 238000012545 processing Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2581—Multimode transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/05—Spatial multiplexing systems
Definitions
- the present invention relates to a repeater, an optical transmitter, and an optical receiver for a space division multiplex optical fiber.
- an optical fiber communication system that uses a space division multiplex optical fiber (hereinafter, also simply referred to as an optical communication system) is used.
- a multi-core optical fiber in which a plurality of cores are provided in one optical fiber is an example of a space division multiplex optical fiber.
- a multimode optical fiber that transmits optical signals of a plurality of propagation modes with one core is an example of a space division multiplexing optical fiber.
- the multi-core optical fiber is classified into a coupling type and a non-coupling type according to the degree of crosstalk generated between a plurality of cores in the optical fiber.
- the non-coupling type is a multi-core optical fiber configured to suppress crosstalk generated between a plurality of cores
- the coupling type is a multicore optical fiber in which relatively strong crosstalk occurs.
- crosstalk occurs between a plurality of propagation modes. That is, in the space division multiplexing optical fiber, crosstalk may occur between a plurality of transmitted optical signals.
- Patent Document 1 when using a space division multiplex optical fiber, it is necessary to perform MIMO processing on the receiving side to remove the influence of crosstalk.
- relay is performed by multiple repeaters.
- a repeater for an optical communication system using a multi-core optical fiber first, an optical signal transmitted by each core of the multi-core optical fiber by the fan-out unit is the same number as the number of single-core optical fibers. Separated for each transmission. Then, the optical signal of each single core optical fiber is individually optically amplified. After optical amplification, an optical signal transmitted through the same number of single-core optical fibers as the number of cores of the multi-core optical fiber is made incident on each core of the multi-core optical fiber by the fan-in unit.
- the fan-out unit converts the propagation mode so that optical signals of a plurality of propagation modes are transmitted by individual single mode optical fibers. Perform separation.
- the fan-in unit converts the propagation mode of each optical signal transmitted by the plurality of single-core optical fibers and performs mode multiplexing.
- the space division multiplex optical fiber is a coupling-type multicore optical fiber, but the same applies to the case where the space division multiplex optical fiber is a multimode optical fiber.
- the MIMO processing in the optical receiver is performed based on the optical signal transmitted to each core by the optical transmitter at the same time. Therefore, when crosstalk occurs between the cores in a state where the difference in the propagation delay between the cores is large, the buffer amount provided in the optical receiving device to compensate for the difference in the propagation delay becomes large, and The processing load of MIMO processing in the device increases.
- crosstalk between cores occurs at any position in the optical communication system.
- the crosstalk in the vicinity of the optical transmitter is the crosstalk between the optical signals transmitted to each core by the optical transmitter at the same time, but the crosstalk in the vicinity of the optical receiver is different at different times in the optical transmitter.
- Crosstalk occurs between the optical signals transmitted to each core.
- the crosstalk time difference between the optical signals transmitted to the cores by the optical transmitter at the different times increases as the crosstalk generation position approaches the optical receiver.
- a larger buffer amount and signal processing capability are required. In other words, MIMO processing with an insufficient buffer amount and signal processing capability cannot compensate for crosstalk, and the optical receiving apparatus cannot correctly demodulate the optical signal of each core.
- a repeater for relaying N (N is an integer of 2 or more) optical signals transmitted in a first space division multiplex optical fiber to a second space division multiplex optical fiber. ..
- the repeater connects the first space division multiplex optical fiber to the N single core optical fibers and a first connecting unit, and connects the N single core optical fibers to the second space division multiplex optical fiber.
- the amplifying means for amplifying the N optical signals, and between the first connecting means and the second connecting means.
- the delay adjusting means for adjusting the transmission delay of each of the N optical signals.
- the present invention it is possible to reduce the processing load of the MIMO processing in the optical receiving device of the optical communication system using the space division multiplexing optical fiber.
- FIG. 6 is a diagram showing a method of generating a delay adjustment unit according to an embodiment.
- FIG. 6 is a diagram showing a method of generating a delay adjustment unit according to an embodiment.
- FIG. 6 is a diagram showing a method of generating a delay adjustment unit according to an embodiment.
- FIG. 6 is a diagram showing a method of generating a delay adjustment unit according to an embodiment.
- 1 is a configuration diagram of an optical transmitter according to an embodiment.
- FIG. 1 is a configuration diagram of an optical communication system using a multi-core optical fiber according to the present embodiment.
- the optical transmitter 1 communicates with the optical receiver 2 via the optical transmission line 4.
- the optical transmission line 4 includes a multi-core optical fiber and a repeater 3 that amplifies and repeats an optical signal transmitted through each core of the multi-core optical fiber.
- the optical transmission line 4 is divided into a plurality of spans (sections) by the repeater 3. For example, in FIG. 1, the optical transmission line 4 is divided by the three repeaters 3 into a total of four spans, span #1 to span #4. It should be noted that, more generally, the optical transmission line 4 is divided into M spans by (M-1) (M is an integer of 2 or more) repeaters 3.
- the multi-core optical fiber of the optical transmission line 4 has a total of N cores (N is an integer of 2 or more) from the first core to the Nth core.
- N is an integer of 2 or more
- the n-th core (n is an integer from 1 to N) of the multi-core optical fiber of the optical transmission line 4 having the span #m (m is an integer from 1 to M) will be described below. It is simply referred to as the nth core of span #m.
- the optical signal transmitted by the nth core of the optical transmission line 4 is referred to as an optical signal #n.
- FIG. 2 is a configuration diagram of the repeater 3 that connects the span #k (k is an integer from 1 to (M ⁇ 1)) and the span #k+1.
- the fan-out unit 31 connects N cores of the multi-core optical fiber of span #k to each core of the N single-core optical fibers 32-1 to 32-N. That is, the nth core of the span #k is connected to the core of the single core optical fiber 32-n.
- the single core optical fiber 32-n is connected to the optical amplifier 33-n.
- the optical amplifier 33-n amplifies the input optical signal #n and inputs it to the delay adjustment unit 34.
- the delay adjustment unit 34 delays the optical signal #n so as to compensate for the propagation delay of the N optical signals #1 to #N in the repeater 3.
- the delay adjustment unit 34 outputs the optical signal #n after delay compensation to the single core optical fiber 35-n.
- the fan-in unit 36 connects the core of the single core optical fiber 35-n to the nth core of the span #k
- the delay adjusting unit 34 determines the delay given to each optical signal #n so that the delay difference is smaller than a predetermined value. This makes it possible to reduce the amount of buffer required to compensate for crosstalk in MIMO processing and the processing load of MIMO processing. In other words, it becomes possible to correctly demodulate the optical signal of each core in the optical receiving device even with a smaller buffer amount and processing load.
- an optical fiber having a length that compensates for the delay difference of each optical signal #n measured in advance can be used. The method for producing the optical fiber will be described later.
- a variable optical delay line provided corresponding to each optical signal #n can be used.
- the delay adjusting unit 34 is used instead of measuring the delay difference of each optical signal #n when the delay adjusting unit 34 is not provided. By inserting, the delay amount given to each optical signal #n can be adjusted so that the delay difference of each optical signal #n in the repeater 3 becomes smaller than a predetermined value.
- FIGS. 3A to 3D are explanatory diagrams of a method of making and manufacturing the delay adjusting unit 34 when N single-core optical fibers are used as the delay adjusting unit 34.
- N 4
- the delay adjusting unit 34 is configured by four single-core optical fibers 34-1 to 34-4 with connectors.
- the lengths of the single core optical fibers 34-1 to 34-4 with connectors usually have variations, and the variations cause the transmission delays of the single core optical fibers 34-1 to 34-4 to differ.
- the single-core optical fiber 34-1 is longer than the single-core optical fibers 34-2 to 34-4, so that the transmission delay of the single-core optical fiber 34-1 is larger than that of the single-core optical fibers 34-2 to 34-4. It is longer than the transmission delay of 34-4.
- the difference in length between the single core optical fiber 34-1 and the single core optical fiber 34-x (x is 2, 3, 4) is d1x.
- the four single-core optical fibers 34-1 to 34-4 are held by the fiber folders 341 and 342 for multi-core batch fusion.
- a fiber folder for multi-core batch fusion is disclosed in Patent Document 2, for example.
- the single core optical fibers 34-1 to 34-4 are cut at a position between the fiber folders 341 and 342.
- the cut surface of the single core optical fibers 34-1 to 34-4 on the side held by the fiber holder 341 after cutting is referred to as a first end surface
- the single side on the side held by the fiber folder 342 is referred to as a first end surface.
- the cut surfaces of the core optical fibers 34-1 to 34-4 are referred to as second end surfaces.
- the connectors of the single core optical fibers 34-1 to 34-4 on the side gripped by the fiber holder 341 are referred to as the first connectors, and the single core optical fibers 34- on the side gripped by the fiber folder 342 are called.
- the connectors 1 to 34-4 are called second connectors.
- the distance from the fiber holder 341 to the first end surface is the same for each single core optical fiber 34-1 to 34-4, and the distance from the fiber holder 342 to the second end surface is each single core optical fiber. The same applies to 34-1 to 34-4.
- the single-core optical fiber 34-x is pulled out to the first connector side of the fiber holder 341 by a length d1x.
- the distance between the single-core optical fiber 34-x between the fiber holder 341 and the first end surface is shorter than the distance between the single-core optical fiber 34-1 between the fiber holder 341 and the first end surface by the distance d1x.
- the single core optical fiber 34-1 is arranged so that the distances between the single core optical fibers 34-1 to 34-4 between the fiber holder 341 and the first end face are the same.
- the single-core optical fiber 34-x is pulled out to the first connector side by the length d1x, and then each optical signal #n is transmitted in the section from the fan-out section 31 to the fan-in section 36.
- the withdrawal amount of the fiber holder 341 toward the first connector side is adjusted so as to compensate for the delay difference.
- the delay amount of the optical signal #x is smaller than the delay amount of the optical signal #1 by c1x in terms of the fiber length of the single core optical fiber.
- the conversion of the delay amount and the fiber length can be performed, for example, assuming that the delay amount per 1 mm of the fiber length is 5 ps.
- the single core optical fiber 34-x is further pulled out to the first connector side by c1x. Then, as shown in FIG. 3D, the single core optical fibers 34-1 to 34-4 are arranged so that the distances between the fiber holder 341 and the first end faces of the single core optical fibers 34-1 to 34-4 are the same.
- the transmission delay in the repeater 3 can be compensated by cutting the first end face and fusing the first end face and the second end face.
- the delay adjustment unit 34 can be configured by a single-core optical fiber without a connector, instead of the single-core optical fiber with a connector as shown in FIGS. 3A to 3D. It is also possible to use a tape core wire having N single cores instead of individual single core optical fibers. In the case of the tape core wire, in the section where the length of the fiber is adjusted, each optical fiber of the tape core wire may be separated and the processing described in FIGS. 3A to 3D may be performed. Note that in FIGS. 3A to 3D, assuming that the lengths of the single-core optical fibers 34-1 to 34-4 are different, the compensation of the difference in length of the single-core optical fibers 34-1 to 34-4 is performed.
- the lengths of the single core optical fibers 34-1 to 34-4 were adjusted so as to compensate for the transmission delay in the repeater 3.
- the length of the plurality of optical fibers is Since they are almost the same, only the length adjustment for compensating the transmission delay in the repeater 3 needs to be performed.
- the arrangement position of the delay adjustment unit 34 is not limited to the position shown in FIG. 2, and may be arranged between the fan-out unit 31 and the optical amplification units 33-1 to 33-N, for example. Further, the repeater 3 may have other optical components or the like not shown.
- FIG. 4 is a configuration diagram of the optical transmission device 1 according to the present embodiment.
- the optical modulator 11-n outputs an optical signal #n generated by modulating continuous light with data to the single core optical fiber 12-n.
- the optical amplification unit 13-n amplifies the optical signal #n from the single core optical fiber 12-n and outputs it to the delay adjustment unit 14.
- the delay adjustment unit 14 is similar to the delay adjustment unit 34 and outputs the optical signal #n after the delay adjustment to the single core optical fiber 15-n.
- the delay adjustment unit 14 compensates for the transmission delay difference between the optical signals #1 to #N in the section from the optical modulators 11-1 to 11-N to the fan-in unit 16.
- the fan-in unit 16 connects the core of the single core optical fiber 15-n to the nth core of the span #1.
- the delay adjusting unit 14 may be arranged between the optical modulators 11-1 to 11-N and the optical amplifiers 13-1 to 13-N. Further, the optical transmitter 1 may include another optical member (not shown).
- FIG. 5 is a configuration diagram of the optical receiving device 2 according to the present embodiment.
- the fan-out unit 21 connects the nth core of the span #M to the core of the single core optical fiber 22-n.
- the optical amplification unit 23-n amplifies the optical signal #n from the single core optical fiber 22-n and outputs it to the delay adjustment unit 24.
- the delay adjusting unit 24 is the same as the delay adjusting unit 34, and outputs the optical signal #n after the delay adjustment to the single core optical fiber 25-n.
- the delay adjusting unit 24 compensates the transmission delay difference between the optical signal #1 to the optical signal #N in the section from the fan-out unit 21 to the optical receiving units 26-1 to 26-N.
- the optical receiver 26-n receives the optical signal #n from the single core optical fiber 25-n and converts it into an electric signal.
- the electric signals output by the optical receivers 26-1 to 26-N are subjected to MIMO processing to remove the influence of crosstalk, and then demodulated.
- the delay adjusting unit 24 may be arranged between the fan-out unit 21 and the optical amplifying units 23-1 to 23-N. Further, the optical receiving device 1 may include another optical member (not shown).
- the delay adjustment unit 34 of the repeater 3 compensates only the delay difference between the optical signals #1 to #N in the repeater 3. This is based on the assumption that the optical path lengths of the plurality of cores of the multi-core optical fiber are equal, and thus the transmission delays of the optical signals #1 to #N are substantially equal in each span. However, when there is a difference in the transmission delay of the optical signal #1 to the optical signal #N in each span, the delay adjustment unit 34 of the repeater 3 that connects the span #k and the span #k+1, the delay adjusting unit 34 of the span #k and the repeater 3 Of the optical signal #1 to the optical signal #N, which is generated as a whole, can be compensated.
- the delay adjustment unit 34 of the repeater 3 that connects the span #k and the span #k+1 is configured to compensate for the delay difference between the optical signals #1 to #N generated in the entire span #k+1 and the repeater 3. can do.
- the delay adjusting unit 14 of the optical transmitter 1 can be configured to compensate for the delay difference including the span #1 to be connected.
- the delay adjusting unit 24 of the optical receiving device 2 can be configured to compensate for the delay difference including the span #M to be connected.
- the first embodiment and the second embodiment have been described on the assumption that the space division multiplex optical fiber is a multicore optical fiber having N cores.
- the present invention can be similarly applied to a multimode optical fiber capable of transmitting the optical signals #1 to #N in N different propagation modes #1 to #N.
- the optical signal #n is transmitted in the propagation mode #n in the multimode optical fiber.
- the fan-out unit 31 of FIG. 2 performs mode separation and mode conversion so that the optical signal #n from the span #k is transmitted by the core of the single core optical fiber 32-n.
- the fan-in unit 36 performs mode conversion and mode multiplexing so that the optical signal #n transmitted through the single core optical fiber 35-n is transmitted over the span #k+1 in the propagation mode #n.
- the transmitter shown in FIG. 4 and the receiver shown in FIG. 4 performs mode conversion and mode multiplexing so that the optical signal #n transmitted through the single core optical fiber 35-n is transmitted over the span #k+1 in the propagation mode #n.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
Provided is a relay device for relaying N (N is an integer greater than or equal to 2) optical signals, transmitted by a first space division multiplex optical fiber, to a second space division multiplex optical fiber. The relay device is provided with: a first connection means for connecting the first space division multiplex optical fiber and the N single core optical fibers; a second connection means for connecting the N single core optical fibers and the second space division multiplex optical fiber; an amplification means for amplifying, between the first connection means and the second connection means, the N optical signals; and a delay adjustment means for adjusting, between the first connection means and the second connection means, transmission delay of each of the N optical signals.
Description
本発明は、空間分割多重光ファイバ用の中継器、光送信装置及び光受信装置に関する。
The present invention relates to a repeater, an optical transmitter, and an optical receiver for a space division multiplex optical fiber.
通信容量を増大させるため、空間分割多重光ファイバを使用する光ファイバ通信システム(以下、単に、光通信システムとも表記する。)が使用されている。なお、一本の光ファイバ内に複数のコアを設けたマルチコア光ファイバは、空間分割多重光ファイバの一例である。また、1つのコアで複数の伝搬モードの光信号を伝送するマルチモード光ファイバは、空間分割多重光ファイバの一例である。ここで、特許文献1に記載されている様に、マルチコア光ファイバは、当該光ファイバ内の複数のコア間で生じるクロストークの程度により、結合型と非結合型に分類される。非結合型とは、複数のコア間で生じるクロストークを抑える様に構成されたマルチコア光ファイバであり、結合型とは、比較的、強いクロストークが生じるマルチコア光ファイバである。なお、マルチモード光ファイバにおいても、複数の伝搬モード間のクロストークが生じる。つまり、空間分割多重光ファイバでは、伝送される複数の光信号間でクロストークが生じ得る。特許文献1に記載されている様に、空間分割多重光ファイバを使用する場合、受信側でMIMO処理を行い、クロストークの影響を除去する必要がある。
In order to increase the communication capacity, an optical fiber communication system that uses a space division multiplex optical fiber (hereinafter, also simply referred to as an optical communication system) is used. A multi-core optical fiber in which a plurality of cores are provided in one optical fiber is an example of a space division multiplex optical fiber. A multimode optical fiber that transmits optical signals of a plurality of propagation modes with one core is an example of a space division multiplexing optical fiber. Here, as described in Patent Document 1, the multi-core optical fiber is classified into a coupling type and a non-coupling type according to the degree of crosstalk generated between a plurality of cores in the optical fiber. The non-coupling type is a multi-core optical fiber configured to suppress crosstalk generated between a plurality of cores, and the coupling type is a multicore optical fiber in which relatively strong crosstalk occurs. Also in the multimode optical fiber, crosstalk occurs between a plurality of propagation modes. That is, in the space division multiplexing optical fiber, crosstalk may occur between a plurality of transmitted optical signals. As described in Patent Document 1, when using a space division multiplex optical fiber, it is necessary to perform MIMO processing on the receiving side to remove the influence of crosstalk.
ここで、光海底ケーブルシステムといった、比較的距離の長い光通信システムにおいては、複数の中継器による中継が行われる。なお、マルチコア光ファイバを使用する光通信システム用の中継器内では、まず、ファンアウト部により、当該マルチコア光ファイバの各コアで伝送される光信号が、コア数と同じ数のシングルコア光ファイバそれぞれで伝送される様に分離される。そして、各シングルコア光ファイバの光信号は個別に光増幅される。光増幅後、マルチコア光ファイバのコア数と同じ数のシングルコア光ファイバを伝送される光信号はファンイン部によりマルチコア光ファイバの各コアに入射される。なお、マルチモード光ファイバを使用する光通信システム用の中継器の場合、ファンアウト部は、複数の伝搬モードの光信号それぞれが個別のシングルモード光ファイバで伝送される様に伝搬モードの変換と分離を行う。ファンイン部は、複数のシングルコア光ファイバで伝送される光信号それぞれの伝搬モードの変換とモード多重を行う。
▽ Here, in an optical communication system with a relatively long distance, such as an optical submarine cable system, relay is performed by multiple repeaters. In a repeater for an optical communication system using a multi-core optical fiber, first, an optical signal transmitted by each core of the multi-core optical fiber by the fan-out unit is the same number as the number of single-core optical fibers. Separated for each transmission. Then, the optical signal of each single core optical fiber is individually optically amplified. After optical amplification, an optical signal transmitted through the same number of single-core optical fibers as the number of cores of the multi-core optical fiber is made incident on each core of the multi-core optical fiber by the fan-in unit. In the case of a repeater for an optical communication system using a multimode optical fiber, the fan-out unit converts the propagation mode so that optical signals of a plurality of propagation modes are transmitted by individual single mode optical fibers. Perform separation. The fan-in unit converts the propagation mode of each optical signal transmitted by the plurality of single-core optical fibers and performs mode multiplexing.
この様に、空間分割多重光ファイバを使用する光通信システムであっても、シングルコア光ファイバで伝送される区間が存在するため、当該光通信システムの端局装置間(光送信装置から光受信装置までの区間)において、各光信号の伝搬遅延は異なることになる。しかしながら、各光信号の伝搬遅延の差により以下に述べる問題が生じる。なお、以下の説明は、空間分割多重光ファイバが結合型のマルチコア光ファイバであるものとして行うが、空間分割多重光ファイバがマルチモード光ファイバであっても同様である。
As described above, even in the optical communication system using the space division multiplex optical fiber, since there is a section in which the single core optical fiber is transmitted, between the terminal equipments of the optical communication system (from the optical transmitter to the optical receiver). In the section up to the device), the propagation delay of each optical signal will be different. However, the following problems occur due to the difference in propagation delay of each optical signal. The following description will be given assuming that the space division multiplex optical fiber is a coupling-type multicore optical fiber, but the same applies to the case where the space division multiplex optical fiber is a multimode optical fiber.
光受信装置におけるMIMO処理は、光送信装置が同時に各コアに対して送信した光信号に基づき行われる。したがって、コア間の伝搬遅延の差が大きくなった状態で、コア間でクロストークが生じると、この伝搬遅延の差を補償するために光受信装置に設けるバッファ量が大きくなり、かつ、光受信装置におけるMIMO処理の処理負荷が高くなる。
The MIMO processing in the optical receiver is performed based on the optical signal transmitted to each core by the optical transmitter at the same time. Therefore, when crosstalk occurs between the cores in a state where the difference in the propagation delay between the cores is large, the buffer amount provided in the optical receiving device to compensate for the difference in the propagation delay becomes large, and The processing load of MIMO processing in the device increases.
また、コア間のクロストークは、光通信システムの任意の位置で生じる。例えば、光送信装置の近傍でのクロストークは、光送信装置が同時に各コアに送信した光信号間のクロストークであるが、光受信装置の近傍でのクロストークは、光送信装置が異なる時間に各コアに送信した光信号間のクロストークとなる。この異なる時間に光送信装置が各コアに送信した光信号間のクロストークの時間差は、クロストークの発生位置が光受信装置に近づく程、大きくなる。この様に、中継伝送において生じた光信号間のクロストークを補償するには、より大きなバッファ量や信号処理能力が必要となる。別な言い方をすれば、不十分なバッファ量と信号処理能力でのMIMO処理ではクロストークを補償できず、光受信装置において各コアの光信号を正しく復調できなくなってしまう。
Also, crosstalk between cores occurs at any position in the optical communication system. For example, the crosstalk in the vicinity of the optical transmitter is the crosstalk between the optical signals transmitted to each core by the optical transmitter at the same time, but the crosstalk in the vicinity of the optical receiver is different at different times in the optical transmitter. Crosstalk occurs between the optical signals transmitted to each core. The crosstalk time difference between the optical signals transmitted to the cores by the optical transmitter at the different times increases as the crosstalk generation position approaches the optical receiver. As described above, in order to compensate for the crosstalk between the optical signals generated in the relay transmission, a larger buffer amount and signal processing capability are required. In other words, MIMO processing with an insufficient buffer amount and signal processing capability cannot compensate for crosstalk, and the optical receiving apparatus cannot correctly demodulate the optical signal of each core.
本発明の一態様によると、第1空間分割多重光ファイバで伝送されるN個(Nは2以上の整数)の光信号を、第2空間分割多重光ファイバに中継する中継器が提供される。当該中継器は、前記第1空間分割多重光ファイバと前記N個のシングルコア光ファイバを接続する第1接続手段と、前記N個のシングルコア光ファイバと前記第2空間分割多重光ファイバを接続する第2接続手段と、前記第1接続手段と前記第2接続手段との間において、前記N個の光信号を増幅する増幅手段と、前記第1接続手段と前記第2接続手段との間において、前記N個の光信号それぞれの伝送遅延を調整する遅延調整手段と、を備えている。
According to one aspect of the present invention, there is provided a repeater for relaying N (N is an integer of 2 or more) optical signals transmitted in a first space division multiplex optical fiber to a second space division multiplex optical fiber. .. The repeater connects the first space division multiplex optical fiber to the N single core optical fibers and a first connecting unit, and connects the N single core optical fibers to the second space division multiplex optical fiber. Between the first connecting means and the second connecting means, between the first connecting means and the second connecting means, the amplifying means for amplifying the N optical signals, and between the first connecting means and the second connecting means. The delay adjusting means for adjusting the transmission delay of each of the N optical signals.
本発明によると、空間分割多重光ファイバを使用する光通信システムの光受信装置におけるMIMO処理の処理負荷を軽減することができる。
According to the present invention, it is possible to reduce the processing load of the MIMO processing in the optical receiving device of the optical communication system using the space division multiplexing optical fiber.
以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の実施形態は例示であり、本発明を実施形態の内容に限定するものではない。また、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。
Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. The following embodiments are exemplifications, and the present invention is not limited to the contents of the embodiments. Further, in each of the following drawings, components that are not necessary for explaining the embodiment are omitted from the drawings.
<第一実施形態>
図1は、本実施形態によるマルチコア光ファイバを使用する光通信システムの構成図である。光送信装置1は、光伝送路4を介して光受信装置2と通信する。光伝送路4は、マルチコア光ファイバと当該マルチコア光ファイバの各コアで伝送される光信号を増幅・中継する中継器3と、を含んでいる。光伝送路4は、中継器3により複数のスパン(区間)に分割される。例えば、図1では、光伝送路4は、3つの中継器3により、スパン#1~スパン#4の計4つのスパンに分割されている。なお、より一般的に述べると、光伝送路4は、(M-1)(Mは2以上の整数)個の中継器3によりM個のスパンに分割される。以下の説明において、光伝送路4のマルチコア光ファイバは、第1コアから第Nコアの計N個(Nは2以上の整数)のコアを有するものとする。なお、スパン#m(mは1~Mまでの整数)の光伝送路4のマルチコア光ファイバの第nコア(nは1~Nまでの整数)を、説明の簡略化のため、以下では、単に、スパン#mの第nコアと表記する。また、光伝送路4の第nコアで伝送される光信号を、光信号#nと表記する。 <First embodiment>
FIG. 1 is a configuration diagram of an optical communication system using a multi-core optical fiber according to the present embodiment. Theoptical transmitter 1 communicates with the optical receiver 2 via the optical transmission line 4. The optical transmission line 4 includes a multi-core optical fiber and a repeater 3 that amplifies and repeats an optical signal transmitted through each core of the multi-core optical fiber. The optical transmission line 4 is divided into a plurality of spans (sections) by the repeater 3. For example, in FIG. 1, the optical transmission line 4 is divided by the three repeaters 3 into a total of four spans, span # 1 to span #4. It should be noted that, more generally, the optical transmission line 4 is divided into M spans by (M-1) (M is an integer of 2 or more) repeaters 3. In the following description, the multi-core optical fiber of the optical transmission line 4 has a total of N cores (N is an integer of 2 or more) from the first core to the Nth core. In order to simplify the explanation, the n-th core (n is an integer from 1 to N) of the multi-core optical fiber of the optical transmission line 4 having the span #m (m is an integer from 1 to M) will be described below. It is simply referred to as the nth core of span #m. The optical signal transmitted by the nth core of the optical transmission line 4 is referred to as an optical signal #n.
図1は、本実施形態によるマルチコア光ファイバを使用する光通信システムの構成図である。光送信装置1は、光伝送路4を介して光受信装置2と通信する。光伝送路4は、マルチコア光ファイバと当該マルチコア光ファイバの各コアで伝送される光信号を増幅・中継する中継器3と、を含んでいる。光伝送路4は、中継器3により複数のスパン(区間)に分割される。例えば、図1では、光伝送路4は、3つの中継器3により、スパン#1~スパン#4の計4つのスパンに分割されている。なお、より一般的に述べると、光伝送路4は、(M-1)(Mは2以上の整数)個の中継器3によりM個のスパンに分割される。以下の説明において、光伝送路4のマルチコア光ファイバは、第1コアから第Nコアの計N個(Nは2以上の整数)のコアを有するものとする。なお、スパン#m(mは1~Mまでの整数)の光伝送路4のマルチコア光ファイバの第nコア(nは1~Nまでの整数)を、説明の簡略化のため、以下では、単に、スパン#mの第nコアと表記する。また、光伝送路4の第nコアで伝送される光信号を、光信号#nと表記する。 <First embodiment>
FIG. 1 is a configuration diagram of an optical communication system using a multi-core optical fiber according to the present embodiment. The
図2は、スパン#k(kは1~(M-1)までの整数)とスパン#k+1とを接続する中継器3の構成図である。ファンアウト部31は、スパン#kのマルチコア光ファイバのN個のコアを、N個のシングルコア光ファイバ32-1~32-Nの各コアに接続する。つまり、スパン#kの第nコアは、シングルコア光ファイバ32-nのコアに接続される。シングルコア光ファイバ32-nは、光増幅器33-nに接続される。光増幅器33-nは、入力される光信号#nを増幅して遅延調整部34に入力する。遅延調整部34は、当該中継器3におけるN個の光信号#1~#Nの伝搬遅延を補償する様に光信号#nに遅延を与える。遅延調整部34は、遅延補償後の光信号#nをシングルコア光ファイバ35-nに出力する。ファンイン部36は、シングルコア光ファイバ35-nのコアを、スパン#k+1の第nコアに接続する。
FIG. 2 is a configuration diagram of the repeater 3 that connects the span #k (k is an integer from 1 to (M−1)) and the span #k+1. The fan-out unit 31 connects N cores of the multi-core optical fiber of span #k to each core of the N single-core optical fibers 32-1 to 32-N. That is, the nth core of the span #k is connected to the core of the single core optical fiber 32-n. The single core optical fiber 32-n is connected to the optical amplifier 33-n. The optical amplifier 33-n amplifies the input optical signal #n and inputs it to the delay adjustment unit 34. The delay adjustment unit 34 delays the optical signal #n so as to compensate for the propagation delay of the N optical signals # 1 to #N in the repeater 3. The delay adjustment unit 34 outputs the optical signal #n after delay compensation to the single core optical fiber 35-n. The fan-in unit 36 connects the core of the single core optical fiber 35-n to the nth core of the span #k+1.
遅延調整部34が無く、光増幅部33-nによる増幅後の光信号#nをシングルコア光ファイバ35-nに直接接続する場合を考える。この場合、ファンアウト部31からファンイン部36までの区間において、N個の光信号#1~#Nは、個別の光ファイバ及び光学部材により伝送される。よって、ファンアウト部31からファンイン部36までの区間における各光信号#1~#Nの伝送遅延は異なり得る。本実施形態では、この伝送遅延を予め測定し、遅延差を所定値より小さくする様に、遅延調整部34で各光信号#nに与える遅延を決定する。これにより、MIMO処理でクロストークを補償するために必要なバッファ量や、MIMO処理の処理負荷を抑えることができる。別の言い方をすれば、より少ないバッファ量や処理負荷でも、光受信装置において各コアの光信号を正しく復調させることができるようになる。
Consider a case where the delay adjusting unit 34 is not provided and the optical signal #n after being amplified by the optical amplifying unit 33-n is directly connected to the single core optical fiber 35-n. In this case, in the section from the fan-out section 31 to the fan-in section 36, the N optical signals # 1 to #N are transmitted by individual optical fibers and optical members. Therefore, the transmission delay of each of the optical signals # 1 to #N in the section from the fan-out unit 31 to the fan-in unit 36 may be different. In the present embodiment, this transmission delay is measured in advance, and the delay adjustment unit 34 determines the delay given to each optical signal #n so that the delay difference is smaller than a predetermined value. This makes it possible to reduce the amount of buffer required to compensate for crosstalk in MIMO processing and the processing load of MIMO processing. In other words, it becomes possible to correctly demodulate the optical signal of each core in the optical receiving device even with a smaller buffer amount and processing load.
遅延調整部34としては、予め測定した各光信号#nの遅延差を補償する長さの光ファイバを使用することができる。当該光ファイバの作製方法については後述する。また、遅延調整部34としては、各光信号#nに対応して設けた可変光ディレイラインを使用することができる。なお、各光信号#nに対応して設けた可変光ディレイラインを使用する場合、遅延調整部34が無い場合の各光信号#nの遅延差を測定するのではなく、遅延調整部34を挿入して、中継器3における各光信号#nの遅延差が所定値より小さくなる様に、各光信号#nに与える遅延量を調整する構成とすることができる。
As the delay adjustment unit 34, an optical fiber having a length that compensates for the delay difference of each optical signal #n measured in advance can be used. The method for producing the optical fiber will be described later. As the delay adjustment unit 34, a variable optical delay line provided corresponding to each optical signal #n can be used. When the variable optical delay line provided corresponding to each optical signal #n is used, the delay adjusting unit 34 is used instead of measuring the delay difference of each optical signal #n when the delay adjusting unit 34 is not provided. By inserting, the delay amount given to each optical signal #n can be adjusted so that the delay difference of each optical signal #n in the repeater 3 becomes smaller than a predetermined value.
図3A~図3Dは、遅延調整部34としてN個のシングルコア光ファイバを使用する場合における、遅延調整部34の作成作製方法の説明図である。なお、以下では、N=4であり、4つのコネクタ付きのシングルコア光ファイバ34-1~34-4により遅延調整部34を構成するものとする。コネクタ付きのシングルコア光ファイバ34-1~34-4の長さには、通常、バラつきがあり、このバラつきにより、シングルコア光ファイバ34-1~34-4の伝送遅延は異なる。本例においては、シングルコア光ファイバ34-1が、シングルコア光ファイバ34-2~34-4より長く、よって、シングルコア光ファイバ34-1の伝送遅延が、シングルコア光ファイバ34-2~34-4の伝送遅延より長いものとする。具体的には、シングルコア光ファイバ34-1と、シングルコア光ファイバ34-x(xは、2、3、4)との長さの差をd1xとする。
FIGS. 3A to 3D are explanatory diagrams of a method of making and manufacturing the delay adjusting unit 34 when N single-core optical fibers are used as the delay adjusting unit 34. In the following, N=4, and the delay adjusting unit 34 is configured by four single-core optical fibers 34-1 to 34-4 with connectors. The lengths of the single core optical fibers 34-1 to 34-4 with connectors usually have variations, and the variations cause the transmission delays of the single core optical fibers 34-1 to 34-4 to differ. In this example, the single-core optical fiber 34-1 is longer than the single-core optical fibers 34-2 to 34-4, so that the transmission delay of the single-core optical fiber 34-1 is larger than that of the single-core optical fibers 34-2 to 34-4. It is longer than the transmission delay of 34-4. Specifically, the difference in length between the single core optical fiber 34-1 and the single core optical fiber 34-x (x is 2, 3, 4) is d1x.
まず、図3Aに示す様に、4つのシングルコア光ファイバ34-1~34-4を多芯一括融着用のファイバフォルダ341及び342で把持する。なお、多芯一括融着用のファイバフォルダは、例えば、特許文献2に開示されている。続いて、図3Bに示す様に、ファイバフォルダ341と342との間の位置において、シングルコア光ファイバ34-1~34-4を切断する。以下の説明において、切断後において、ファイバフォルダ341に把持された側のシングルコア光ファイバ34-1~34-4の切断面を、第1端面と呼び、ファイバフォルダ342に把持された側のシングルコア光ファイバ34-1~34-4の切断面を、第2端面と呼ぶ。また、切断後において、ファイバフォルダ341に把持された側のシングルコア光ファイバ34-1~34-4のコネクタを第1コネクタと呼び、ファイバフォルダ342に把持された側のシングルコア光ファイバ34-1~34-4のコネクタを第2コネクタと呼ぶ。図3Bの状態において、ファイバフォルダ341から第1端面までの距離は各シングルコア光ファイバ34-1~34-4で同じであり、ファイバフォルダ342から第2端面までの距離は各シングルコア光ファイバ34-1~34-4で同じである。
First, as shown in FIG. 3A, the four single-core optical fibers 34-1 to 34-4 are held by the fiber folders 341 and 342 for multi-core batch fusion. A fiber folder for multi-core batch fusion is disclosed in Patent Document 2, for example. Subsequently, as shown in FIG. 3B, the single core optical fibers 34-1 to 34-4 are cut at a position between the fiber folders 341 and 342. In the following description, the cut surface of the single core optical fibers 34-1 to 34-4 on the side held by the fiber holder 341 after cutting is referred to as a first end surface, and the single side on the side held by the fiber folder 342 is referred to as a first end surface. The cut surfaces of the core optical fibers 34-1 to 34-4 are referred to as second end surfaces. After cutting, the connectors of the single core optical fibers 34-1 to 34-4 on the side gripped by the fiber holder 341 are referred to as the first connectors, and the single core optical fibers 34- on the side gripped by the fiber folder 342 are called. The connectors 1 to 34-4 are called second connectors. In the state of FIG. 3B, the distance from the fiber holder 341 to the first end surface is the same for each single core optical fiber 34-1 to 34-4, and the distance from the fiber holder 342 to the second end surface is each single core optical fiber. The same applies to 34-1 to 34-4.
続いて、図3Cに示す様に、ファイバフォルダ341の第1コネクタ側にシングルコア光ファイバ34-xを長さd1xだけ引き抜く。これにより、ファイバフォルダ341と第1端面とのシングルコア光ファイバ34-xの距離は、ファイバフォルダ341と第1端面とのシングルコア光ファイバ34-1の距離より距離d1xだけ短くなる。例えば、この状態で、図3Dに示す様に、ファイバフォルダ341と第1端面との各シングルコア光ファイバ34-1~34-4の距離が同じとなる様に、シングルコア光ファイバ34-1~34-4を切断し、第1端面と第2端面とを融着すると、4つのシングルコア光ファイバ34-1~34-4の長さは同じとなり、伝送遅延は同じとなる。
Subsequently, as shown in FIG. 3C, the single-core optical fiber 34-x is pulled out to the first connector side of the fiber holder 341 by a length d1x. As a result, the distance between the single-core optical fiber 34-x between the fiber holder 341 and the first end surface is shorter than the distance between the single-core optical fiber 34-1 between the fiber holder 341 and the first end surface by the distance d1x. For example, in this state, as shown in FIG. 3D, the single core optical fiber 34-1 is arranged so that the distances between the single core optical fibers 34-1 to 34-4 between the fiber holder 341 and the first end face are the same. When 34 to 34-4 are cut and the first end face and the second end face are fused, the four single-core optical fibers 34-1 to 34-4 have the same length and the transmission delay becomes the same.
本実施形態では、まず、第1コネクタ側にシングルコア光ファイバ34-xを長さd1xだけ引き抜いた後、さらに、ファンアウト部31からファンイン部36までの区間における各光信号#nの伝送遅延差を補償する様に、ファイバフォルダ341の第1コネクタ側への引抜量を調整する。例えば、光信号#1の遅延量より光信号#xの遅延量がシングルコア光ファイバのファイバ長換算でc1xだけ小さいものとする。なお、遅延量とファイバ長との換算は、例えば、ファイバ長1mm当たりの遅延量が5psであるものとして行うことができる。この場合、シングルコア光ファイバ34-xを第1コネクタ側に更にc1xだけ引き抜くことになる。そして、図3Dに示す様に、ファイバフォルダ341と第1端面との各シングルコア光ファイバ34-1~34-4の距離が同じとなる様に、シングルコア光ファイバ34-1~34-4を切断し、第1端面と第2端面とを融着することで、中継器3における伝送遅延を補償することができる。
In this embodiment, first, the single-core optical fiber 34-x is pulled out to the first connector side by the length d1x, and then each optical signal #n is transmitted in the section from the fan-out section 31 to the fan-in section 36. The withdrawal amount of the fiber holder 341 toward the first connector side is adjusted so as to compensate for the delay difference. For example, it is assumed that the delay amount of the optical signal #x is smaller than the delay amount of the optical signal # 1 by c1x in terms of the fiber length of the single core optical fiber. The conversion of the delay amount and the fiber length can be performed, for example, assuming that the delay amount per 1 mm of the fiber length is 5 ps. In this case, the single core optical fiber 34-x is further pulled out to the first connector side by c1x. Then, as shown in FIG. 3D, the single core optical fibers 34-1 to 34-4 are arranged so that the distances between the fiber holder 341 and the first end faces of the single core optical fibers 34-1 to 34-4 are the same. The transmission delay in the repeater 3 can be compensated by cutting the first end face and fusing the first end face and the second end face.
なお、図3A~図3Dに示す様なコネクタ付きのシングルコア光ファイバではなく、コネクタ無しのシングルコア光ファイバにより遅延調整部34を構成することもできる。また、個別のシングルコア光ファイバではなく、N個のシングルコアを有するテープ芯線を使用することもできる。テープ芯線の場合には、ファイバの長さを調整する区間においては、テープ芯線の各光ファイバを分離して図3A~図3Dで説明した処理を行えば良い。なお、図3A~図3Dでは、各シングルコア光ファイバ34-1~34-4の長さが異なることを前提に、各シングルコア光ファイバ34-1~34-4の長さの差の補償と、中継器3における伝送遅延の補償を行う様に各シングルコア光ファイバ34-1~34-4の長さを調整したが、テープ芯線の場合には、その複数の光ファイバの長さは略同じであるため、中継器3における伝送遅延の補償のための長さ調整のみを行えば良い。
Note that the delay adjustment unit 34 can be configured by a single-core optical fiber without a connector, instead of the single-core optical fiber with a connector as shown in FIGS. 3A to 3D. It is also possible to use a tape core wire having N single cores instead of individual single core optical fibers. In the case of the tape core wire, in the section where the length of the fiber is adjusted, each optical fiber of the tape core wire may be separated and the processing described in FIGS. 3A to 3D may be performed. Note that in FIGS. 3A to 3D, assuming that the lengths of the single-core optical fibers 34-1 to 34-4 are different, the compensation of the difference in length of the single-core optical fibers 34-1 to 34-4 is performed. Then, the lengths of the single core optical fibers 34-1 to 34-4 were adjusted so as to compensate for the transmission delay in the repeater 3. However, in the case of a tape core wire, the length of the plurality of optical fibers is Since they are almost the same, only the length adjustment for compensating the transmission delay in the repeater 3 needs to be performed.
なお、遅延調整部34の配置位置は、図2の位置に限定されず、例えば、ファンアウト部31と光増幅部33-1~33-Nとの間に配置することもできる。また、中継器3は、図示しない他の光学部品等を有するものであっても良い。
The arrangement position of the delay adjustment unit 34 is not limited to the position shown in FIG. 2, and may be arranged between the fan-out unit 31 and the optical amplification units 33-1 to 33-N, for example. Further, the repeater 3 may have other optical components or the like not shown.
同様に、光送信装置1及び光受信装置2においても遅延調整を行う構成とすることもできる。図4は、本実施形態による光送信装置1の構成図である。光変調部11-nは、データで連続光を変調して生成した光信号#nをシングルコア光ファイバ12-nに出力する。光増幅部13-nは、シングルコア光ファイバ12-nからの光信号#nを増幅して遅延調整部14に出力する。遅延調整部14は、遅延調整部34と同様であり、遅延調整後の光信号#nをシングルコア光ファイバ15-nに出力する。なお、遅延調整部14は、光変調部11-1~11-Nからファンイン部16までの区間における光信号#1~光信号#Nの伝送遅延差を補償する。ファンイン部16は、シングルコア光ファイバ15-nのコアを、スパン#1の第nコアに接続する。なお、遅延調整部14の配置位置は、光変調部11-1~11-Nと光増幅部13-1~13-Nとの間であっても良い。また、光送信装置1は、図示しない他の光学部材を含むものであっても良い。
Similarly, the optical transmitter 1 and the optical receiver 2 can also be configured to perform delay adjustment. FIG. 4 is a configuration diagram of the optical transmission device 1 according to the present embodiment. The optical modulator 11-n outputs an optical signal #n generated by modulating continuous light with data to the single core optical fiber 12-n. The optical amplification unit 13-n amplifies the optical signal #n from the single core optical fiber 12-n and outputs it to the delay adjustment unit 14. The delay adjustment unit 14 is similar to the delay adjustment unit 34 and outputs the optical signal #n after the delay adjustment to the single core optical fiber 15-n. The delay adjustment unit 14 compensates for the transmission delay difference between the optical signals # 1 to #N in the section from the optical modulators 11-1 to 11-N to the fan-in unit 16. The fan-in unit 16 connects the core of the single core optical fiber 15-n to the nth core of the span # 1. The delay adjusting unit 14 may be arranged between the optical modulators 11-1 to 11-N and the optical amplifiers 13-1 to 13-N. Further, the optical transmitter 1 may include another optical member (not shown).
図5は、本実施形態による光受信装置2の構成図である。ファンアウト部21は、スパン#Mの第nコアをシングルコア光ファイバ22-nのコアに接続する。光増幅部23-nは、シングルコア光ファイバ22-nからの光信号#nを増幅して遅延調整部24に出力する。遅延調整部24は、遅延調整部34と同様であり、遅延調整後の光信号#nをシングルコア光ファイバ25-nに出力する。なお、遅延調整部24は、ファンアウト部21から光受信部26-1~26-Nまでの区間における光信号#1~光信号#Nの伝送遅延差を補償する。光受信部26-nは、シングルコア光ファイバ25-nからの光信号#nを受信して電気信号に変換する。光受信部26-1~26-Nが出力する各電気信号は、クロストークの影響を除去するためMIMO処理され、その後、復調される。なお、遅延調整部24の配置位置は、ファンアウト部21と光増幅部23-1~23-Nとの間であっても良い。また、光受信装置1は、図示しない他の光学部材を含むものであっても良い。
FIG. 5 is a configuration diagram of the optical receiving device 2 according to the present embodiment. The fan-out unit 21 connects the nth core of the span #M to the core of the single core optical fiber 22-n. The optical amplification unit 23-n amplifies the optical signal #n from the single core optical fiber 22-n and outputs it to the delay adjustment unit 24. The delay adjusting unit 24 is the same as the delay adjusting unit 34, and outputs the optical signal #n after the delay adjustment to the single core optical fiber 25-n. The delay adjusting unit 24 compensates the transmission delay difference between the optical signal # 1 to the optical signal #N in the section from the fan-out unit 21 to the optical receiving units 26-1 to 26-N. The optical receiver 26-n receives the optical signal #n from the single core optical fiber 25-n and converts it into an electric signal. The electric signals output by the optical receivers 26-1 to 26-N are subjected to MIMO processing to remove the influence of crosstalk, and then demodulated. The delay adjusting unit 24 may be arranged between the fan-out unit 21 and the optical amplifying units 23-1 to 23-N. Further, the optical receiving device 1 may include another optical member (not shown).
<第二実施形態>
第一実施形態において、中継器3の遅延調整部34は、当該中継器3内における各光信号#1~#Nの遅延差のみを補償していた。これは、マルチコア光ファイバの複数のコアの光路長は等しく、よって、各スパンにおいて光信号#1~光信号#Nの伝送遅延は略等しいことを前提にしていた。しかしながら、各スパンにおける光信号#1~光信号#Nの伝送遅延に差がある場合、スパン#kとスパン#k+1を接続する中継器3の遅延調整部34は、スパン#kと中継器3の全体で生じる光信号#1~光信号#Nの遅延差を補償する構成とすることができる。また、スパン#kとスパン#k+1を接続する中継器3の遅延調整部34は、スパン#k+1と中継器3の全体で生じる光信号#1~光信号#Nの遅延差を補償する構成とすることができる。同様に、光送信装置1の遅延調整部14は、接続するスパン#1を含めた遅延差を補償する構成とすることができる。さらに、光受信装置2の遅延調整部24は、接続するスパン#Mを含めた遅延差を補償する構成とすることができる。 <Second embodiment>
In the first embodiment, thedelay adjustment unit 34 of the repeater 3 compensates only the delay difference between the optical signals # 1 to #N in the repeater 3. This is based on the assumption that the optical path lengths of the plurality of cores of the multi-core optical fiber are equal, and thus the transmission delays of the optical signals # 1 to #N are substantially equal in each span. However, when there is a difference in the transmission delay of the optical signal # 1 to the optical signal #N in each span, the delay adjustment unit 34 of the repeater 3 that connects the span #k and the span #k+1, the delay adjusting unit 34 of the span #k and the repeater 3 Of the optical signal # 1 to the optical signal #N, which is generated as a whole, can be compensated. In addition, the delay adjustment unit 34 of the repeater 3 that connects the span #k and the span #k+1 is configured to compensate for the delay difference between the optical signals # 1 to #N generated in the entire span #k+1 and the repeater 3. can do. Similarly, the delay adjusting unit 14 of the optical transmitter 1 can be configured to compensate for the delay difference including the span # 1 to be connected. Further, the delay adjusting unit 24 of the optical receiving device 2 can be configured to compensate for the delay difference including the span #M to be connected.
第一実施形態において、中継器3の遅延調整部34は、当該中継器3内における各光信号#1~#Nの遅延差のみを補償していた。これは、マルチコア光ファイバの複数のコアの光路長は等しく、よって、各スパンにおいて光信号#1~光信号#Nの伝送遅延は略等しいことを前提にしていた。しかしながら、各スパンにおける光信号#1~光信号#Nの伝送遅延に差がある場合、スパン#kとスパン#k+1を接続する中継器3の遅延調整部34は、スパン#kと中継器3の全体で生じる光信号#1~光信号#Nの遅延差を補償する構成とすることができる。また、スパン#kとスパン#k+1を接続する中継器3の遅延調整部34は、スパン#k+1と中継器3の全体で生じる光信号#1~光信号#Nの遅延差を補償する構成とすることができる。同様に、光送信装置1の遅延調整部14は、接続するスパン#1を含めた遅延差を補償する構成とすることができる。さらに、光受信装置2の遅延調整部24は、接続するスパン#Mを含めた遅延差を補償する構成とすることができる。 <Second embodiment>
In the first embodiment, the
<その他の実施形態>
空間分割多重光ファイバがN個のコアを有するマルチコア光ファイバであるものとして第一実施形態及び第二実施形態の説明を行った。しかしながら、本発明は、N個の異なる伝搬モード#1~#Nで光信号#1~光信号#Nの伝送が可能なマルチモード光ファイバに対しても同様に適用することができる。なお、光信号#nは、マルチモード光ファイバにおいては伝搬モード#nで伝送される。この場合、図2のファンアウト部31は、スパン#kからの光信号#nが、シングルコア光ファイバ32-nのコアで伝送される様に、モード分離及びモード変換を行う。一方、ファンイン部36は、シングルコア光ファイバ35-nで伝送される光信号#nが、伝搬モード#nでスパン#k+1を伝送される様にモード変換及びモード多重を行う。図4に示す送信装置や、図5に示す受信装置についても同様である。 <Other embodiments>
The first embodiment and the second embodiment have been described on the assumption that the space division multiplex optical fiber is a multicore optical fiber having N cores. However, the present invention can be similarly applied to a multimode optical fiber capable of transmitting theoptical signals # 1 to #N in N different propagation modes # 1 to #N. The optical signal #n is transmitted in the propagation mode #n in the multimode optical fiber. In this case, the fan-out unit 31 of FIG. 2 performs mode separation and mode conversion so that the optical signal #n from the span #k is transmitted by the core of the single core optical fiber 32-n. On the other hand, the fan-in unit 36 performs mode conversion and mode multiplexing so that the optical signal #n transmitted through the single core optical fiber 35-n is transmitted over the span #k+1 in the propagation mode #n. The same applies to the transmitter shown in FIG. 4 and the receiver shown in FIG.
空間分割多重光ファイバがN個のコアを有するマルチコア光ファイバであるものとして第一実施形態及び第二実施形態の説明を行った。しかしながら、本発明は、N個の異なる伝搬モード#1~#Nで光信号#1~光信号#Nの伝送が可能なマルチモード光ファイバに対しても同様に適用することができる。なお、光信号#nは、マルチモード光ファイバにおいては伝搬モード#nで伝送される。この場合、図2のファンアウト部31は、スパン#kからの光信号#nが、シングルコア光ファイバ32-nのコアで伝送される様に、モード分離及びモード変換を行う。一方、ファンイン部36は、シングルコア光ファイバ35-nで伝送される光信号#nが、伝搬モード#nでスパン#k+1を伝送される様にモード変換及びモード多重を行う。図4に示す送信装置や、図5に示す受信装置についても同様である。 <Other embodiments>
The first embodiment and the second embodiment have been described on the assumption that the space division multiplex optical fiber is a multicore optical fiber having N cores. However, the present invention can be similarly applied to a multimode optical fiber capable of transmitting the
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
The present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
本願は、2018年12月4日提出の日本国特許出願特願2018-227285を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
This application claims priority on the basis of Japanese patent application Japanese Patent Application No. 2018-227285 filed on December 4, 2018, and the entire contents thereof are incorporated herein.
Claims (15)
- 第1空間分割多重光ファイバで伝送されるN個(Nは2以上の整数)の光信号を、第2空間分割多重光ファイバに中継する中継器であって、
前記第1空間分割多重光ファイバと前記N個のシングルコア光ファイバを接続する第1接続手段と、
前記N個のシングルコア光ファイバと前記第2空間分割多重光ファイバを接続する第2接続手段と、
前記第1接続手段と前記第2接続手段との間において、前記N個の光信号を増幅する増幅手段と、
前記第1接続手段と前記第2接続手段との間において、前記N個の光信号それぞれの伝送遅延を調整する遅延調整手段と、
を備えている、中継器。 A repeater for relaying N (N is an integer of 2 or more) optical signals transmitted through the first space division multiplex optical fiber to the second space division multiplex optical fiber,
First connection means for connecting the first space division multiplex optical fiber and the N single core optical fibers;
Second connection means for connecting the N single-core optical fibers to the second space division multiplex optical fiber;
Amplification means for amplifying the N optical signals between the first connection means and the second connection means;
Delay adjusting means for adjusting the transmission delay of each of the N optical signals between the first connecting means and the second connecting means;
Equipped with a repeater. - 前記遅延調整手段は、前記中継器における前記N個の光信号の伝送遅延の差が所定値より小さくなる様に、前記N個の光信号それぞれの伝送遅延を調整する、請求項1に記載の中継器。 The delay adjusting means adjusts the transmission delay of each of the N optical signals so that a difference in transmission delay of the N optical signals in the repeater becomes smaller than a predetermined value. Repeater.
- 前記遅延調整手段は、前記第1空間分割多重光ファイバ及び前記中継器における前記N個の光信号の伝送遅延の差が所定値より小さくなる様に、前記N個の光信号それぞれの伝送遅延を調整する、請求項1に記載の中継器。 The delay adjusting means adjusts the transmission delay of each of the N optical signals so that a difference in transmission delay of the N optical signals in the first space division multiplexing optical fiber and the repeater becomes smaller than a predetermined value. The repeater according to claim 1, wherein the relay is adjusted.
- 前記遅延調整手段は、前記第2空間分割多重光ファイバ及び前記中継器における前記N個の光信号の伝送遅延の差が所定値より小さくなる様に、前記N個の光信号それぞれの伝送遅延を調整する、請求項1に記載の中継器。 The delay adjusting means adjusts the transmission delay of each of the N optical signals so that a difference between the transmission delays of the N optical signals in the second space division multiplexing optical fiber and the repeater becomes smaller than a predetermined value. The repeater according to claim 1, wherein the relay is adjusted.
- 前記遅延調整手段は、可変光ディレイライン、前記N個のシングルコア光ファイバ及び前記N個のシングルコアを有するテープ芯線のいずれかである、請求項1から4のいずれか1項に記載の中継器。 The relay according to any one of claims 1 to 4, wherein the delay adjusting unit is any one of a variable optical delay line, the N single-core optical fibers, and a tape core wire having the N single-cores. vessel.
- 前記第1空間分割多重光ファイバ及び前記第2空間分割多重光ファイバは、それぞれ、前記N個のコアを有するマルチコア光ファイバである、請求項1から5のいずれか1項に記載の中継器。 The repeater according to any one of claims 1 to 5, wherein the first space division multiplex optical fiber and the second space division multiplex optical fiber are each a multicore optical fiber having the N cores.
- 前記第1空間分割多重光ファイバ及び前記第2空間分割多重光ファイバは、それぞれ、前記N個の伝搬モードで前記N個の光信号の伝送が可能なマルチモード光ファイバである、請求項1から5のいずれか1項に記載の中継器。 The first space division multiplex optical fiber and the second space division multiplex optical fiber are multimode optical fibers capable of transmitting the N optical signals in the N propagation modes, respectively. The repeater according to any one of 5 above.
- 空間分割多重光ファイバにN個(Nは2以上の整数)の光信号を送信する光送信装置であって、
前記N個の光信号を生成して前記N個のシングルコア光ファイバに出力する生成手段と、
前記N個のシングルコア光ファイバと前記空間分割多重光ファイバを接続する接続手段と、
前記生成手段と前記接続手段との間において、前記N個の光信号それぞれの伝送遅延を調整する遅延調整手段と、
を備えていることをと特徴とする光送信装置。 An optical transmitter for transmitting N (N is an integer of 2 or more) optical signals to a space division multiplexing optical fiber,
Generating means for generating the N optical signals and outputting the N optical signals to the N single-core optical fibers;
Connection means for connecting the N single-core optical fibers and the space division multiplex optical fiber;
Delay adjusting means for adjusting the transmission delay of each of the N optical signals between the generating means and the connecting means;
An optical transmitter comprising: - 前記遅延調整手段は、前記生成手段から前記接続手段までの前記N個の光信号の伝送遅延の差が所定値より小さくなる様に、前記N個の光信号それぞれの伝送遅延を調整する、請求項8に記載の光送信装置。 The delay adjusting means adjusts the transmission delay of each of the N optical signals so that a difference in transmission delay of the N optical signals from the generating means to the connecting means becomes smaller than a predetermined value. Item 9. The optical transmitter according to item 8.
- 前記遅延調整手段は、前記生成手段から前記光送信装置とは逆側の端部において前記空間分割多重光ファイバに接続される装置までの前記N個の光信号の伝送遅延の差が所定値より小さくなる様に、前記N個の光信号それぞれの伝送遅延を調整する、請求項8に記載の光送信装置。 The delay adjusting means is configured such that a difference in transmission delay of the N optical signals from the generating means to a device connected to the space division multiplexing optical fiber at an end on a side opposite to the optical transmitter is less than a predetermined value. The optical transmitter according to claim 8, wherein the transmission delay of each of the N optical signals is adjusted so as to be small.
- 前記空間分割多重光ファイバは、前記N個のコアを有するマルチコア光ファイバ、又は、前記N個の伝搬モードで前記N個の光信号の伝送が可能なマルチモード光ファイバである、請求項8から10のいずれか1項に記載の光送信装置。 9. The space division multiplexing optical fiber is a multi-core optical fiber having the N cores or a multi-mode optical fiber capable of transmitting the N optical signals in the N propagation modes. 10. The optical transmission device according to any one of 10.
- 空間分割多重光ファイバからのN個(Nは2以上の整数)の光信号を受信する光受信装置であって、
前記空間分割多重光ファイバと前記N個のシングルコア光ファイバとを接続する接続手段と、
前記N個のシングルコア光ファイバで伝送される前記N個の光信号を受信する受信手段と、
前記接続手段と前記受信手段との間において、前記N個の光信号それぞれの伝送遅延を調整する遅延調整手段と、
を備えている、光受信装置。 An optical receiving device for receiving N (N is an integer of 2 or more) optical signals from a space division multiplexing optical fiber,
Connection means for connecting the space division multiplex optical fiber and the N single core optical fibers;
Receiving means for receiving the N optical signals transmitted by the N single-core optical fibers;
Delay adjusting means for adjusting the transmission delay of each of the N optical signals between the connecting means and the receiving means;
An optical receiving device comprising. - 前記遅延調整手段は、前記接続手段から前記受信手段までの前記N個の光信号の伝送遅延の差が所定値より小さくなる様に、前記N個の光信号それぞれの伝送遅延を調整する、請求項12に記載の光受信装置。 The delay adjusting means adjusts the transmission delay of each of the N optical signals so that a difference in transmission delay of the N optical signals from the connecting means to the receiving means becomes smaller than a predetermined value. Item 13. The optical receiver according to item 12.
- 前記遅延調整手段は、前記光受信装置とは逆側の端部において前記空間分割多重光ファイバに接続される装置から前記受信手段までの前記N個の光信号の伝送遅延の差が所定値より小さくなる様に、前記N個の光信号それぞれの伝送遅延を調整する、請求項12に記載の光受信装置。 The delay adjusting means has a difference in transmission delay of the N optical signals from a device connected to the space division multiplexing optical fiber at an end opposite to the optical receiving device to the receiving device from a predetermined value. The optical receiver according to claim 12, wherein the transmission delay of each of the N optical signals is adjusted so as to be small.
- 前記空間分割多重光ファイバは、前記N個のコアを有するマルチコア光ファイバ、又は、前記N個の伝搬モードで前記N個の光信号の伝送が可能なマルチモード光ファイバである、請求項12から14のいずれか1項に記載の光受信装置。 13. The space division multiplexing optical fiber is a multi-core optical fiber having the N cores or a multi-mode optical fiber capable of transmitting the N optical signals in the N propagation modes. 15. The optical receiver according to any one of 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-227285 | 2018-12-04 | ||
JP2018227285A JP2020092307A (en) | 2018-12-04 | 2018-12-04 | Relay for space division multiplex optical fiber, optical transmission device, and optical reception device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020116013A1 true WO2020116013A1 (en) | 2020-06-11 |
Family
ID=70975351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039129 WO2020116013A1 (en) | 2018-12-04 | 2019-10-03 | Relay device for space division multiplex optical fiber, optical transmission device and optical reception device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020092307A (en) |
WO (1) | WO2020116013A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023188027A1 (en) * | 2022-03-29 | 2023-10-05 | 日本電信電話株式会社 | Optical propagation system, optical propagation method, and relay amplification device |
JP7431765B2 (en) | 2021-02-18 | 2024-02-15 | Kddi株式会社 | optical amplifier |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014519233A (en) * | 2011-05-04 | 2014-08-07 | アルカテル−ルーセント | Multimode communication optical receiver |
US20150086157A1 (en) * | 2013-09-20 | 2015-03-26 | Alcatel-Lucent Usa Inc. | Photonic Lantern Spatial Multiplexers with mode selectivity |
JP2015516716A (en) * | 2012-03-05 | 2015-06-11 | アルカテル−ルーセント | Multimode optical fiber, mode delay adjuster for fiber systems, and methods using such fibers, adjusters, and systems |
EP2903185A1 (en) * | 2014-02-03 | 2015-08-05 | Alcatel Lucent | Optical amplification node for a Spatial Division Multiplexing optical network |
-
2018
- 2018-12-04 JP JP2018227285A patent/JP2020092307A/en active Pending
-
2019
- 2019-10-03 WO PCT/JP2019/039129 patent/WO2020116013A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014519233A (en) * | 2011-05-04 | 2014-08-07 | アルカテル−ルーセント | Multimode communication optical receiver |
JP2015516716A (en) * | 2012-03-05 | 2015-06-11 | アルカテル−ルーセント | Multimode optical fiber, mode delay adjuster for fiber systems, and methods using such fibers, adjusters, and systems |
US20150086157A1 (en) * | 2013-09-20 | 2015-03-26 | Alcatel-Lucent Usa Inc. | Photonic Lantern Spatial Multiplexers with mode selectivity |
EP2903185A1 (en) * | 2014-02-03 | 2015-08-05 | Alcatel Lucent | Optical amplification node for a Spatial Division Multiplexing optical network |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7431765B2 (en) | 2021-02-18 | 2024-02-15 | Kddi株式会社 | optical amplifier |
WO2023188027A1 (en) * | 2022-03-29 | 2023-10-05 | 日本電信電話株式会社 | Optical propagation system, optical propagation method, and relay amplification device |
Also Published As
Publication number | Publication date |
---|---|
JP2020092307A (en) | 2020-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0738055B1 (en) | Phase synchronization system | |
CN109923808A (en) | Bidirectional-transceiver with time synchronization | |
US7376355B2 (en) | Optical transmission apparatus and optical transmission system | |
JP5398907B2 (en) | Optical communication system | |
JPH1155181A (en) | Wavelength multiplexing optical transmission system | |
EP2725729A1 (en) | Optical data transmission method and system | |
US10193619B2 (en) | Mode division multiplexed passive optical network | |
CN109075857B (en) | Signal loopback circuit and signal loopback method | |
WO2020116013A1 (en) | Relay device for space division multiplex optical fiber, optical transmission device and optical reception device | |
US10567081B2 (en) | Transmission system and transmission method | |
JP5438838B2 (en) | Introducing channel side dispersion shift | |
WO2018193835A1 (en) | Bidirectional optical transmission system and bidirectional optical transmission method | |
TW583421B (en) | Optical relay amplifier and wavelength multiplexing device | |
US7130542B2 (en) | Modular multiplexing/demultiplexing units in optical transmission systems | |
US9369227B2 (en) | Protected optical single-fiber WDM system | |
US11914191B2 (en) | Optical branching/coupling device and optical branching/coupling method | |
JPH09116493A (en) | Wavelength multiplex transmission system | |
JP2013255195A (en) | Submarine transmission optical signal wavelength multiplex system, transmission performance reduction suppression control method, and control program for the same | |
JP3016355B2 (en) | Communication and observation integrated submarine cable system | |
KR100425583B1 (en) | Bi-directional dispersion compensator and optical transmission system comprising it | |
WO2015142523A1 (en) | Multi-span optical communications link having remote optically pumped amplifier | |
KR100434454B1 (en) | Daisy chain wavelength division multiplexing device and daisy chain wavelength division multiplexing system and transmission network utilizing the device | |
JP2010206598A (en) | Single-core bidirectional optical transmission system, single-core bidirectional optical amplifier, and single-core bidirectional optical transmission method | |
JP2006319857A (en) | Single-core bidirectional wavelength multiplexed transmission system | |
JP2004513560A (en) | Apparatus and method for multiplexing and / or demultiplexing optical signals having substantially equal dispersion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19893803 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19893803 Country of ref document: EP Kind code of ref document: A1 |