WO2020115914A1 - Resin composition, resin sheet, metal substrate, power semiconductor device, and production method for metal substrate - Google Patents

Resin composition, resin sheet, metal substrate, power semiconductor device, and production method for metal substrate Download PDF

Info

Publication number
WO2020115914A1
WO2020115914A1 PCT/JP2018/045188 JP2018045188W WO2020115914A1 WO 2020115914 A1 WO2020115914 A1 WO 2020115914A1 JP 2018045188 W JP2018045188 W JP 2018045188W WO 2020115914 A1 WO2020115914 A1 WO 2020115914A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
metal
resin composition
meth
resin
Prior art date
Application number
PCT/JP2018/045188
Other languages
French (fr)
Japanese (ja)
Inventor
一也 木口
古川 直樹
森本 剛
智彦 小竹
藤本 大輔
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/045188 priority Critical patent/WO2020115914A1/en
Publication of WO2020115914A1 publication Critical patent/WO2020115914A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to a resin composition, a resin sheet, a metal substrate, a power semiconductor device, and a method for manufacturing a metal substrate.
  • a laminated body in which a resin layer for insulation or the like is arranged between a pair of members is used for various purposes (see, for example, Patent Document 1).
  • Such a laminate has been manufactured by attaching both members via a resin sheet.
  • the cured product of the resin sheet described in Patent Document 1 has high thermal conductivity, it is necessary to apply heat of 100° C. or higher when the resin sheet is cured and manufactured, and thus a heating device or the like for curing the resin sheet is used. Will be needed. Further, even when it is assumed that a resin sheet or the like that is cured by light, moisture or the like is supposed to be cured, a device, equipment, etc. for curing the resin sheet are required separately. Therefore, it is desirable to use a resin sheet that can be cured under room temperature conditions or conditions close to room temperature without requiring any special device or equipment.
  • One form of the present invention has been made in view of the above, can be cured under room temperature conditions or conditions close to room temperature, a resin composition and a resin sheet excellent in pot life, and using this resin sheet
  • An object is to provide a metal substrate, a power semiconductor device, and a method for manufacturing a metal substrate.
  • the present inventors have accomplished the present invention as a result of extensive studies to solve the above problems. That is, the present invention includes the following aspects.
  • ⁇ 4> The resin composition according to ⁇ 3>, wherein the content of the inorganic filler is 40% by volume to 90% by volume based on the total solid content.
  • the two main surfaces are respectively adhered to an adherend, and at least one main surface is used by being adhered to a surface of the adherend containing at least one of metal and metal ions.
  • ⁇ 7> The resin sheet according to ⁇ 5> or ⁇ 6>, wherein at least one of the two main surfaces is used by being bonded to a metal-containing layer containing at least one of a metal and a metal ion.
  • ⁇ 8> The resin sheet according to any one of ⁇ 5> to ⁇ 7>, wherein the resin sheet has a thickness of 30 ⁇ m to 400 ⁇ m.
  • ⁇ 9> The resin sheet according to any one of ⁇ 5> to ⁇ 8>, which is cured at a temperature of 5° C. to 70° C.
  • a method of manufacturing a metal substrate comprising: ⁇ 13> The method for producing a metal substrate according to ⁇ 12>, wherein in the curing step, the resin sheet is cured at a temperature of 5°C to 70°C.
  • a resin composition and a resin sheet that can be cured under room temperature conditions or conditions close to room temperature and have an excellent pot life, and a metal substrate, a power semiconductor device and a metal using the resin sheet.
  • a method for manufacturing a substrate can be provided.
  • the present invention is not limited to the following embodiments.
  • the constituent elements including element steps and the like
  • the term “process” includes not only a process independent of other processes but also the process even if the process is not clearly distinguishable from the other processes as long as the purpose of the process is achieved. ..
  • the numerical range indicated by using "to” includes the numerical values before and after "to" as the minimum value and the maximum value, respectively.
  • each component may include a plurality of types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of types of particles corresponding to each component may be included.
  • the particle size of each component means a value for a mixture of the plurality of types of particles present in the composition unless otherwise specified.
  • the term “layer” may include not only the case where the layer is formed over the entire area when the area where the layer is present is observed, but also the case where the layer is formed only in a part of the area. included.
  • the term “laminate” refers to stacking layers, two or more layers may be combined and two or more layers may be removable.
  • (meth)acrylic means acrylic or methacrylic
  • (meth)acryloyl means acryloyl or methacryloyl
  • (meth)acrylate means acrylate or methacrylate
  • the resin composition of the present disclosure includes a multimer having an anaerobic curable functional group in its side chain, and is used under anaerobic conditions in which oxygen supply is suppressed.
  • the above resin composition is used to obtain a cured product obtained by curing under anaerobic conditions, and more specifically, a resin sheet that is a sheet-shaped molded product of this resin composition is anaerobic. It is used to obtain a cured product that is cured under the conditions.
  • the above-mentioned resin composition can be cured under room temperature conditions or conditions close to room temperature, and is cured under anaerobic conditions, so that unintentional curing hardly occurs and the pot life is excellent.
  • the resin composition of the present disclosure includes a multimer having an anaerobic curable functional group in the side chain. This makes it possible to increase the strength of the resin composition before and after curing, and when the resin composition containing a monomer having an anaerobic curable functional group and not containing the above-described polymer is cured. In comparison, the generation of volatile components can be suppressed.
  • the anaerobic conditions in which the supply of oxygen is suppressed means that a molded product of a resin composition such as a resin sheet formed by molding the resin composition into a sheet from the outside (hereinafter, "resin sheet”). It is also referred to as “etc.”) in which the oxygen is not supplied to the resin sheet or the like from the outside.
  • the environment where it is difficult to supply oxygen to the resin sheet or the like from the outside means that the two main surfaces of the resin sheet or the like are in contact with members each having an oxygen permeability of 0.5 mL/(m 2 ⁇ 24 h ⁇ atm) or less. Means that.
  • the oxygen permeability of the two metal members when the two main surfaces of a resin sheet or the like are respectively brought into contact with a metal member, the oxygen permeability of the two metal members may be 0.5 mL/(m 2 ⁇ 24h ⁇ atm) or less, When the two main surfaces are brought into contact with the metal member and the resin member, respectively, the oxygen permeability of the metal member and the resin member may be 0.5 mL/(m 2 ⁇ 24 h ⁇ atm) or less.
  • the oxygen permeability of the member can be measured under the conditions of a temperature of 23° C. and a relative humidity of 65% using an oxygen permeability measuring device (for example, MOCON, OX-TRAN).
  • the resin composition of the present disclosure includes a multimer having an anaerobic curable functional group in its side chain (hereinafter, also referred to as “specific multimer”).
  • the anaerobic curable functional group may be any functional group capable of initiating a curing reaction under anaerobic conditions, and at least one of the two main surfaces of the resin sheet or the like under anaerobic conditions is a metal or a metal ion. It is preferably a functional group that initiates a curing reaction under the condition of being in contact with at least one.
  • the anaerobic curable functional group (meth)acryloyl group, vinyl group, allyl group and the like can be mentioned.
  • the multimer preferably has two or more anaerobic curable functional groups in one molecule.
  • the multimer may or may not have an anaerobic curable functional group in the main chain.
  • the specific multimer preferably has an anaerobic curable functional group at the side chain terminal from the viewpoint of strength when the resin composition is used as a cured product.
  • the specific multimer may have an anaerobic curable functional group at the main chain terminal, or may have each at the main chain terminal and the side chain terminal.
  • the main chain of the specific multimer includes olefins such as ethylene and propylene, styrene, vinyl chloride, vinylidene chloride, acrylonitrile, vinylcarbazole, (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, It may have a structure in which a monomer such as a monofunctional (meth)acrylic compound having a polyalkylene structure such as (meth)acrylate or methacrylate is homopolymerized or copolymerized.
  • olefins such as ethylene and propylene, styrene, vinyl chloride, vinylidene chloride, acrylonitrile, vinylcarbazole, (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, It may have a structure in which a monomer such as a monofunctional (meth)acrylic compound having a polyalkylene structure such as (
  • the specific multimer may include, for example, a multimer represented by the following general formula (I).
  • R 4's each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 1 to 4 carbon atoms, or a hydroxyalkyl group having 1 to 4 carbon atoms.
  • a group in which one hydrogen atom is replaced with an anaerobic curable functional group is shown.
  • R 5's each independently represent a hydrogen atom or a methyl group.
  • R 6 represents a hydrogen atom, a hydroxy group, or a group in which one hydrogen atom of a hydroxyalkyl group having 1 to 4 carbon atoms is substituted with an anaerobic curable functional group.
  • m is 1 to 8
  • v is 0 or 1
  • n is 2 to 20.
  • the group in which one hydrogen atom of the hydroxyalkyl group having 1 to 4 carbon atoms is substituted with the anaerobic curable functional group is preferably a group in which the hydrogen atom of the hydroxy group is substituted with the anaerobic curable functional group.
  • the specific multimer includes, for example, a multimer having a reactive functional group such as a hydroxy group, an amino group, a carboxy group, an isocyanate group, a thiol group, an epoxy group in a side chain, and a reactive functional group contained in the multimer.
  • a reactive functional group such as a hydroxy group, an amino group, a carboxy group, an isocyanate group, a thiol group, an epoxy group in a side chain, and a reactive functional group contained in the multimer.
  • It may be a reaction product of a monomer having a reactive functional group and an anaerobic curable functional group that react.
  • This reaction product has a structure in which the reactive functional group in the multimer reacts with the reactive functional group in the monomer, and has an anaerobic curable functional group in the side chain.
  • the specific multimer has an anaerobic curable functional group at the main chain terminal, and has a side chain having a reactive functional group such as a hydroxy group, an amino group, a carboxy group, an isocyanate group, a thiol group, and an epoxy group.
  • This reaction product has a structure in which the reactive functional group in the multimer reacts with the reactive functional group in the monomer, and has an anaerobic curable functional group at the side chain and main chain terminal.
  • reaction product obtained by reacting a monomer having an anaerobic curable functional group at the terminal with a polymer having an anaerobic curable functional group at the main chain terminal and having the above-mentioned reactive functional group in the side chain It has an anaerobic curable functional group at the main chain end and side chain end.
  • the specific multimer may be a reaction product of a multimer having a hydroxy group in a side chain and a monomer having an isocyanate group and an anaerobic curable functional group.
  • This reaction product has a urethane bond formed by the reaction of a hydroxy group and an isocyanate group, and has an anaerobic curable functional group in its side chain.
  • the specific multimer may have the following structure (I) in the side chain.
  • R 1 and R 2 each independently represent a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms
  • R 3 represents a hydrogen atom or a methyl group
  • * represents a bonding site. ..
  • R 1 and R 2 are each independently a methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group, sec-butylene group, tert-butylene group, n -Pentylene group, isopentylene group, neopentylene group, tert-pentylene group and the like.
  • * is preferably bonded to a carbon atom in the main chain.
  • the weight average molecular weight (Mw) of the specific multimer is preferably 5,000 to 800,000, more preferably 10,000 to 500,000.
  • the weight average molecular weight refers to a value measured by gel permeation chromatography (GPC).
  • the content of the specific multimer in the resin composition is not particularly limited.
  • the content of the specific multimer is preferably 5% by mass to 40% by mass, more preferably 7% by mass to 36% by mass, and further preferably 9% by mass to 32% by mass.
  • the resin composition of the present disclosure together with a specific multimer, a monomer having an anaerobic curable functional group, a multimer having no anaerobic curable functional group in its side chain and having an anaerobic curable functional group in its main chain.
  • Etc. (hereinafter, also referred to as “other compound”) may be included.
  • the compound include monofunctional (meth)acrylic compounds and polyfunctional (meth)acrylic compounds. Other compounds may be used alone or in combination of two or more.
  • the monofunctional (meth)acrylic compound examples include (meth)acrylic acid; methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, 2-ethylhexyl (meth).
  • polyfunctional (meth)acrylic compound examples include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and ethoxy.
  • the content of other compounds in the resin composition may be 10% by mass or less, 5% by mass or less, or 3% by mass or less. Further, the resin composition may not contain any other compound, and may contain 1% by mass or more.
  • the resin composition of the present disclosure preferably contains an inorganic filler.
  • the inorganic filler may be non-conductive or conductive.
  • the use of the non-conductive inorganic filler tends to suppress the decrease in insulation. Further, the thermal conductivity tends to be further improved by using the conductive inorganic filler.
  • non-conductive inorganic filler examples include aluminum oxide (alumina), magnesium oxide, aluminum nitride, boron nitride, silicon nitride, silica (silicon dioxide), silicon oxide, aluminum hydroxide, barium sulfate and the like. ..
  • the conductive inorganic filler examples include gold, silver, nickel, copper, graphite and the like. Among them, graphite is preferable from the viewpoint of suppressing the curing of the resin composition before adhering to the adherend.
  • the inorganic filler is at least one selected from the group consisting of aluminum oxide (alumina), boron nitride, magnesium oxide, aluminum nitride, silica (silicon oxide) and graphite. It is more preferably at least one selected from the group consisting of boron nitride and aluminum oxide (alumina). These inorganic fillers may be used alone or in combination of two or more.
  • the inorganic filler it is preferable to use a mixture of two or more kinds having different volume average particle diameters.
  • the small-particle-diameter inorganic filler is packed in the voids of the large-particle-diameter inorganic filler, so that the inorganic-filler is packed more densely than when using only the single-particle-diameter inorganic filler. It becomes possible to exhibit higher thermal conductivity.
  • aluminum oxide is used as the inorganic filler, 60% by volume to 75% by volume of aluminum oxide having a volume average particle diameter of 16 ⁇ m to 20 ⁇ m and an average volume average particle diameter of 2 ⁇ m to 4 ⁇ m are oxidized in the inorganic filler.
  • the volume average particle diameter (D50) of the inorganic filler can be measured using a laser diffraction method.
  • the inorganic filler in the resin composition is extracted and measured using a laser diffraction/scattering particle size distribution analyzer (for example, Beckman Coulter, Inc., trade name: LS230).
  • a laser diffraction/scattering particle size distribution analyzer for example, Beckman Coulter, Inc., trade name: LS230.
  • the inorganic filler component is extracted from the resin composition and sufficiently dispersed with an ultrasonic disperser or the like, and the weight cumulative particle size distribution curve of this dispersion liquid is calculated. taking measurement.
  • the volume average particle diameter (D50) refers to a particle diameter at which the cumulative value becomes 50% from the smaller diameter side in the volume cumulative particle size distribution curve obtained by the above measurement.
  • the content of the inorganic filler is not particularly limited.
  • the content of the inorganic filler in the resin composition is preferably 40% by volume or more, more preferably more than 40% by volume, and more preferably 50% by volume from the viewpoint of thermal conductivity. It is more preferably more than 90% by volume and particularly preferably 55% by volume to 80% by volume.
  • the content of the inorganic filler is 40% by volume or more, it tends to be possible to achieve higher thermal conductivity.
  • the content of the inorganic filler is 90% by volume or less, it tends to be possible to suppress deterioration in flexibility and insulation of the cured product of the resin sheet.
  • the content of the inorganic filler in the resin composition is preferably 40% by mass to 95% by mass, more preferably 50% by mass to 95% by mass, and 60% by mass to 95% by mass based on the total solid content.
  • the content is more preferably mass%, particularly preferably 65 mass% to 95 mass%, and even more preferably 65 mass% to 93 mass%.
  • the resin composition of the present disclosure may contain a polymerization initiator.
  • the metal ion and the polymerization initiator react with each other to generate a radical, and the generated radical reacts with the anaerobic curable functional group to suitably proceed the curing reaction.
  • the polymerization initiator may be an organic peroxide.
  • the organic peroxide include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, methyl cyclohexanone peroxide, methyl acetoacetate peroxide, and acetylacetone peroxide; 1 ,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, 2,2-bis(t-butylperoxy)octane, n -Butyl-4,4-bis(t-butylperoxy)valerate, peroxyketals such as 2,2-bis(t-butylperoxy)butane; t-butyl hydroperoxide, cumene hydroperoxide, diisopropyl Hydroperoxides such as
  • diisopropyl peroxydicarbonate di2-ethylhexyl peroxydicarbonate, di-n-propyl peroxydicarbonate, bis-(4-t-butylcyclohexyl) peroxydicarbonate, dimyristyl peroxydicarbonate, di-2 -Peroxydicarbonates such as ethoxyethyl peroxydicarbonate, dimethoxyisopropyl peroxydicarbonate, di(3-methyl-3-methoxybutyl)peroxydicarbonate, diallyl peroxydicarbonate; t-butyl peroxydiamine Cetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, t-butylperoxyneodecanoate, cumylperoxyneodecanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxy
  • the content of the polymerization initiator in the resin composition is 0.01 parts by mass with respect to 100 parts by mass of the specific multimer in terms of storage stability and curability. It is preferably from 10 to 10 parts by mass, more preferably from 0.1 to 5 parts by mass.
  • the resin composition of the present disclosure contains a polymerization accelerator.
  • the polymerization accelerator is not particularly limited, and examples thereof include a hydrazine compound, an amine compound, a mercaptan compound, and a transition metal-containing compound. These polymerization accelerators may be used alone or in combination of two or more.
  • the hydrazine compound is not particularly limited, 1-acetyl-2-phenylhydrazine, 1-acetyl-2(p-tolyl)hydrazine, 1-benzoyl-2-phenylhydrazine, 1-(1′,1′, 1'-trifluoro)acetyl-2-phenylhydrazine, 1,5-diphenyl-carbohydrazine, 1-formyl-2-phenylhydrazine, 1-acetyl-2-(p-bromophenyl)hydrazine, 1-acetyl-2 Examples include -(p-nitrophenyl)hydrazine, 1-acetyl-2-(2'-phenylethylhydrazine), ethylcarbazate, p-nitrophenylhydrazine, p-trisulfonylhydrazide and the like.
  • the amine compound is not particularly limited, and is a heterocyclic secondary amine such as 2-ethylhexylamine, 1,2,3,4-tetrahydroquinone, 1,2,3,4-tetrahydroquinaldine; quinoline, methylquinoline.
  • Quinaldine, quinoxalinephenazine and other heterocyclic tertiary amines N,N-dimethyl-para-toluidine, N,N-dimethyl-anisidine, N,N-dimethylaniline and other aromatic tertiary amines; 1,2 Examples include azole compounds such as 1,4-triazole, oxazole, oxadiazole, thiadiazole, benzotriazole, hydroxybenzotriazole, benzoxazole, 1,2,3-benzothiadiazole, and 3-mercaptobenzotrizole.
  • the mercaptan compound is not particularly limited, and examples thereof include linear mercaptans such as n-dodecyl mercaptan, ethyl mercaptan, and butyl mercaptan.
  • transition metal-containing compounds include metal chelate complex salts.
  • the metal chelate complex salt is not particularly limited, pentadione iron, pentadione cobalt, pentadione copper, propylenediamine copper, ethylenediamine copper, iron naphthate, nickel naphthate, cobalt naphthate, copper naphthate, copper octate, iron hexoate, iron propionate. , Vanadium acetylacetone and the like.
  • the content of the polymerization accelerator in the resin composition is 0.05 parts by mass with respect to 100 parts by mass of the specific polymer in terms of storage stability and curing accelerating property. It is preferably from 5 to 5 parts by mass, more preferably from 0.1 to 3 parts by mass.
  • the resin composition may contain at least one silane coupling agent.
  • the silane coupling agent plays a role of forming a covalent bond between the surface of the inorganic filler and the resin that surrounds it (corresponding to a binder agent), improves the thermal conductivity, and prevents moisture from penetrating to insulate the insulation. It can be considered to play a role of improving sex.
  • silane coupling agent is not particularly limited, and a commercially available one may be used. In the present disclosure, it is preferable to use a silane coupling agent having an acryloyl group, an epoxy group, an amino group, a mercapto group, a ureido group or a hydroxyl group at the terminal.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane.
  • silane 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-ureidopropyltriethoxysilane.
  • a silane coupling agent oligomer represented by trade name: SC-6000KS2 (Hitachi Chemical Techno Service Co., Ltd.) and the like can also be mentioned. These silane coupling agents may be used alone or in combination of two or more.
  • the content of the silane coupling agent in the resin composition is not particularly limited.
  • the content of the silane coupling agent is preferably 0.01% by mass to 0.2% by mass, more preferably 0.03% by mass to 0.1% by mass.
  • the resin composition may contain other components in addition to the above components, if necessary.
  • the resin composition of the present disclosure may be a varnish-shaped resin composition prepared by adding an organic solvent such as methyl ethyl ketone or cyclohexanone.
  • the resin sheet of the present disclosure is a sheet-shaped molded product of the resin composition of the present disclosure described above.
  • the above-mentioned resin sheet is used to obtain a cured product after being cured under anaerobic conditions in which the supply of oxygen is suppressed.
  • the two main surfaces of the resin sheet may be in contact with a member having an oxygen permeability of 0.5 mL/(m 2 ⁇ 24 h ⁇ atm) or less, respectively. .3mL / (m 2 ⁇ 24h ⁇ atm) may be in contact with at a member or less, may be in contact with 0.1mL / (m 2 ⁇ 24h ⁇ atm) or less is member.
  • the member that comes into contact with the resin sheet may be an adherend that is adhered to the resin sheet.
  • the resin sheet of the present disclosure has two main surfaces bonded to an adherend, and at least one main surface bonded to a surface of the adherend containing at least one of metal and metal ions. Is preferred, and it is more preferred that the two main surfaces are used by being adhered to the surface of the adherend containing at least one of metal and metal ions. At least one main surface of the resin sheet is covered under anaerobic conditions in which the supply of oxygen is suppressed, for example, under the condition that the two main surfaces of the resin sheet are in contact with the adherend and the supply of oxygen is suppressed.
  • the polymerization reaction of the specific multimer contained in the resin sheet suitably proceeds, and the resin sheet can be suitably cured.
  • At least one of the two main surfaces may be used by being bonded to a metal-containing layer containing at least one of a metal and metal ions, and the two main surfaces may be bonded to the metal-containing layer. It may be used.
  • another layer may be laminated on the surface of the metal-containing layer that is not bonded to the resin sheet, and this other layer may or may not include at least one of a metal and a metal ion. You don't have to.
  • metals include iron, aluminum, zinc, titanium, chromium, manganese, cobalt, nickel, tin, lead, copper, silver and gold, and examples of metal ions include these ions.
  • the metal may be an alloy such as stainless steel.
  • the thickness of the resin sheet is not particularly limited and can be appropriately selected according to the purpose.
  • the thickness of the resin sheet may be 30 ⁇ m to 400 ⁇ m, or may be 50 ⁇ m to 300 ⁇ m from the viewpoint of high thermal conductivity, insulation and curability.
  • the thickness of the resin sheet or the like can be measured by a known method, and is the number average value of the values measured at 5 points.
  • the resin sheet may be cured at a temperature of 5°C to 70°C, preferably 10°C to 40°C.
  • the use of the resin sheet of the present disclosure is not particularly limited.
  • a semiconductor device can be given.
  • semiconductor devices it is preferably used for parts having a particularly high heat generation density.
  • the method for producing the resin sheet of the present disclosure is not particularly limited.
  • a resin composition in which a varnish-shaped resin composition prepared by adding an organic solvent such as methyl ethyl ketone or cyclohexanone (hereinafter, also referred to as “resin varnish”) on a resin support is applied by a dispenser or the like. After forming the layer of the product, it can be produced by removing at least a part of the organic solvent from the layer of the resin composition by drying.
  • the drying method is not particularly limited as long as at least a part of the organic solvent contained in the resin varnish can be removed, and from the commonly used drying methods, the type of the organic solvent contained in the resin varnish, the content may be appropriately selected depending on the content. You can
  • the metal substrate of the present disclosure includes a metal support, a cured product of the resin sheet of the present disclosure disposed on the metal support, and a metal foil disposed on the cured product.
  • the metal substrate of the present disclosure can be manufactured by curing a resin sheet under room temperature conditions or conditions close to room temperature.
  • the material, thickness, etc. of the metal support can be appropriately selected according to the purpose. Specifically, a metal such as aluminum or iron can be used and the thickness can be set to 0.5 mm to 5 mm.
  • the metal foil in the metal substrate is not particularly limited, and examples thereof include gold foil, copper foil, aluminum foil, and the like, and generally copper foil is used.
  • the thickness of the metal foil is, for example, 1 ⁇ m to 200 ⁇ m, and is preferably 120 ⁇ m or less from the viewpoint of flexibility.
  • nickel, nickel-phosphorus alloy, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as an intermediate layer, and a copper foil layer is provided on both surfaces of the foil to form a composite foil having a three-layer structure. Examples include a composite foil having a two-layer structure in which an aluminum foil and a copper foil are combined.
  • one copper layer has a thickness of 0.5 ⁇ m to 15 ⁇ m and the other copper layer has a thickness of 10 ⁇ m to 300 ⁇ m.
  • the method for producing a metal substrate of the present disclosure includes a step of laminating a metal support, a resin sheet of the present disclosure, and a metal foil in this order, and curing the resin sheet under anaerobic conditions in which oxygen supply is suppressed. And a step of
  • a resin sheet is formed by placing the resin composition on the metal support or the metal foil and drying the resin sheet or disposing the resin sheet, and further, the metal foil or the metal support is placed on the resin sheet.
  • the metal support, the resin sheet of the present disclosure, and the metal foil may be laminated in this order.
  • the two main surfaces of the resin sheet may be in an anaerobic condition in which the supply of oxygen to the resin sheet is suppressed by contacting the metal support and the metal foil.
  • the resin sheet may be cured at a temperature of 5°C to 70°C, preferably 10°C to 40°C.
  • the resin sheet may be cured while being pressurized, for example, 0.05 MPa to 20 MPa may be pressurized, preferably 0.2 MPa to 15 MPa.
  • the power semiconductor device of the present disclosure includes a semiconductor module in which a metal plate, a solder layer, and a semiconductor chip are laminated in this order, a heat dissipation member containing a metal, and the present disclosure disposed between the metal plate and the heat dissipation member of the semiconductor module. And a cured product of the resin sheet.
  • the semiconductor module portion may be sealed with a sealing material or the like, or the entire power semiconductor module may be molded with a molding resin or the like.
  • FIG. 1 is a schematic sectional view showing an example of the configuration of a power semiconductor device.
  • a cured product 102 of a resin sheet is arranged between a metal plate 106 in a semiconductor module in which a metal plate 106, a solder layer 110, and a semiconductor chip 108 are laminated in this order, and a heat dissipation base substrate 104. Is sealed with a sealing material 114.
  • the heat dissipation base substrate 104 can be configured by using copper or aluminum having thermal conductivity.
  • FIG. 2 is a schematic sectional view showing another example of the configuration of the power semiconductor device. In FIG.
  • a cured product 102 of a resin sheet is arranged between a metal plate 106 in a semiconductor module in which a metal plate 106, a solder layer 110, and a semiconductor chip 108 are laminated in this order, and a heat dissipation base substrate 104.
  • the heat dissipation base substrate 104 is molded with the mold resin 112.
  • the cured product of the resin sheet of the present disclosure can be used as a heat dissipation adhesive layer between a semiconductor module and a heat dissipation base substrate as shown in FIG. Further, even when the entire power semiconductor device is molded as shown in FIG. 2, it can be used as a heat dissipation material between the heat dissipation base substrate and the metal plate.
  • the multimer A has a urethane bond formed by the reaction of the hydroxy group derived from 2-hydroxyethyl acrylate in the acrylic intermediate A with the isocyanate group in MOI, and has (meth)acryloyl at the side chain end. It is a multimer having a group.
  • (Multimer B) Using a 100-mL eggplant-shaped flask as a reactor, 30 g of acrylic intermediate B, 4 g of MOI, and 0.002 g of dibutyltin dilaurate were mixed, and the mixture was stirred at 75° C. for 1 hour at a stirring rotation number of 400 times/minute to obtain an acrylic intermediate polymer. MOI modified to obtain MOI modified acrylic resin B (multimer B).
  • the weight average molecular weight (Mw) of MOI modified acrylic resin B was 20000.
  • the multimer B has a urethane bond formed by the reaction between the hydroxy group derived from 2-hydroxyethyl acrylate in the acrylic intermediate B and the isocyanate group in the MOI, and has (meth)acryloyl at the side chain terminal. It is a multimer having a group.
  • ⁇ Polymerization initiator Cumene hydroperoxide (Tokyo Chemical Industry Co., Ltd.)
  • ⁇ Polymerization accelerator Cobalt naphthenate (Tokyo Chemical Industry Co., Ltd.)
  • Inorganic filler Inorganic filler 1: AA-18 (alumina particles, Sumitomo Chemical Co., Ltd., D50: 18 ⁇ m) Inorganic filler 2: AA-3 (alumina particles, Sumitomo Chemical Co., Ltd., D50: 3 ⁇ m) Inorganic filler 3: AA-04 (alumina particles, Sumitomo Chemical Co., Ltd., D50: 0.4 ⁇ m) Inorganic filler 4: HP-40 (boron nitride particles, Mizushima Iron & Iron Co., Ltd., D50: 40 ⁇ m)
  • Example 1> (Preparation of resin composition) 9.76% by mass of the polymer A, 0.1% by mass of the polymerization initiator, 0.01% by mass of the polymerization accelerator, 50.34% by mass of the inorganic filler 1, and 2 of the inorganic filler 2. 18.30% by mass, 7.63% by mass of the inorganic filler 3, 0.08% by mass of the additive, and 13.78% by mass of the solvent are mixed to prepare a varnish-like resin composition. did.
  • the density of the inorganic filler 1 is 3.98 g/cm 3
  • the density of the inorganic filler 2 is 3.98 g/cm 3
  • the density of the inorganic filler 3 is 3.98 g/cm 3
  • the polymer A the polymerization initiator
  • the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 70% by volume.
  • B stage sheet curability To evaluate the curability of the B stage sheet, the above varnish-shaped resin composition was applied onto a PET film using an applicator so that the thickness after drying was 200 ⁇ m, and then dried at 70° C. for 10 minutes. A sample before being B-staged was prepared. Furthermore, the PET film was peeled off from the PET film and the B stage sheet with the copper foil, and after the B stage, a sample was prepared. Using a differential scanning calorimeter (manufactured by Perkin Elmer, model number DSC8500), the sample before and after the B stage was heated from 20°C to 300°C at 10°C/min, and the calorific value was measured. The curing rate A was calculated by the following formula.
  • Curing rate A (%) (heat generation amount of sample after B stage conversion/heat generation amount of sample before B stage conversion) x 100 ⁇ Evaluation of curability> The curability was evaluated based on the following criteria. A: Curing rate 50% or more B: Curing rate less than 50%
  • Curing rate B (%) (calorific value of sample after curing/calorific value of sample before B stage conversion) ⁇ 100 ⁇ Evaluation of curability> The curability was evaluated based on the following criteria. A: Curing rate less than 20% B: Curing rate 20% or more
  • the copper foil of the cured resin sheet was removed by etching to obtain a resin sheet for evaluating thermal conductivity.
  • the obtained resin sheet was cut into a length of 10 mm and a width of 10 mm to obtain a sample.
  • the thermal diffusivity was evaluated by the xenon flash method (trade name: LFA447 nanoflash of NETZSCH).
  • the thermal conductivity of the cured resin sheet was obtained from the product of this value, the density measured by the Archimedes method, and the specific heat measured by DSC (differential scanning calorimeter; product name of Perkin Elmer: DSC Pyris1). ..
  • the results are shown in Table 1.
  • Example 2> Preparation of resin composition 9.76% by mass of the polymer B, 0.1% by mass of the polymerization initiator, 0.01% by mass of the polymerization accelerator, 50.34% by mass of the inorganic filler 1, and 2 of the inorganic filler. 18.30% by mass, 7.63% by mass of the inorganic filler 3, 0.08% by mass of the additive, and 13.78% by mass of the solvent are mixed to prepare a varnish-like resin composition. did.
  • the density of the inorganic filler 1 is 3.98 g/cm 3
  • the density of the inorganic filler 2 is 3.98 g/cm 3
  • the density of the inorganic filler 3 is 3.98 g/cm 3
  • the polymer A the polymerization initiator
  • the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 70% by volume.
  • Example 3> (Preparation of resin composition) Polymer A 15.00 mass %, polymerization initiator 0.15 mass %, polymerization accelerator 0.01 mass %, inorganic filler 4 33.34 mass %, inorganic filler 2 7.54% by mass, 7.54% by mass of the inorganic filler 3, 0.05% by mass of the additive, and 36.37% by mass of the solvent are mixed to prepare a varnish-like resin composition. did.
  • the density of the inorganic filler 4 is 2.20 g/cm 3
  • the density of the inorganic filler 2 is 3.98 g/cm 3
  • the density of the inorganic filler 3 is 3.98 g/cm 3
  • the polymer A the polymerization initiator
  • the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 60% by volume.
  • ⁇ Comparative Example 1> (Preparation of resin composition)
  • the resin A is 5.53% by mass
  • the curing agent A is 4.30% by mass
  • the curing accelerator is 0.2% by mass
  • the inorganic filler 1 is 50.24% by mass
  • the inorganic filler 2 is 18%.
  • a varnish-like resin composition was prepared by mixing 0.27% by mass, 7.61% by mass of the inorganic filler 3, 0.08% by mass of the additive, and 13.77% by mass of the solvent. ..
  • the density of the inorganic filler 1 is 3.98 g/cm 3
  • the density of the inorganic filler 2 is 3.98 g/cm 3
  • the density of the inorganic filler 3 is 3.98 g/cm 3
  • the polymer A the polymerization initiator
  • the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 70% by volume.
  • ⁇ Comparative example 2> (Preparation of resin composition) 6.57% by mass of the resin A, 3.29% by mass of the curing agent B, 50.34% by mass of the inorganic filler 1, 18.30% by mass of the inorganic filler 2 and 3 of the inorganic filler 3. 7.63% by mass, 0.08% by mass of the additive, and 13.79% by mass of the solvent were mixed to prepare a varnish-shaped resin composition.
  • the density of the inorganic filler 1 is 3.98 g/cm 3
  • the density of the inorganic filler 2 is 3.98 g/cm 3
  • the density of the inorganic filler 3 is 3.98 g/cm 3
  • the polymer A the polymerization initiator
  • the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 70% by volume.
  • the density of the inorganic filler 1 is 3.98 g/cm 3
  • the density of the inorganic filler 2 is 3.98 g/cm 3
  • the density of the inorganic filler 3 is 3.98 g/cm 3
  • butyl acrylate and ethyl acrylate was calculated by setting the densities of the 2-hydroxyethyl acrylate, the polymerization initiator and the polymerization accelerator to be 1.2 g/cm 3 and found to be 70% by volume. there were.
  • Examples 1 to 3 regarding the curability of the B stage, it is presumed that the value of the curing rate A increased because the curing of the resin sheet proceeded without the heat treatment. Furthermore, in Examples 1 to 3, the curing progressed sufficiently even without heat treatment, so it is presumed that the value of the curing rate B became low. From the above, it was found that in Examples 1 to 3, the resin sheet could be cured under room temperature conditions. Furthermore, since it is cured under anaerobic conditions, unintentional curing is unlikely to occur and the pot life is presumed to be excellent.
  • Comparative Example 1 regarding the curability of the B stage, it is presumed that the value of the curing rate A increased because the curing of the resin sheet proceeded without heat treatment. However, in Comparative Example 1, it is presumed that the value of the curing rate B became high because the curing did not proceed sufficiently when the same operation as in Example 1 in which the curing was performed without the heat treatment was performed. In Comparative Example 2, regarding the curability of the B-stage sheet, the varnish-shaped resin composition was applied to a PET film and then cured when dried, and the value of the curing rate A was low. From the above, in Comparative Examples 1 and 2, it was found that unintended curing of the resin sheet proceeded before being attached to the adherend, and the pot life was poor.
  • Comparative Example 3 since the monomer having the anaerobic curable functional group was used, the resin was likely to remain on the PET film, and the PET film releasability was insufficient.
  • 102 cured product of resin sheet
  • 104 heat dissipation base substrate
  • 106 metal plate
  • 108 semiconductor chip
  • 110 solder layer
  • 112 mold resin
  • 114 sealing material

Abstract

A resin composition which comprises a polymer having an anaerobic curable functional group at a side chain terminal end, and which is used under an anaerobic condition in which a supply of oxygen is suppressed.

Description

樹脂組成物、樹脂シート、金属基板、パワー半導体装置及び金属基板の製造方法Resin composition, resin sheet, metal substrate, power semiconductor device, and method for manufacturing metal substrate
 本発明は、樹脂組成物、樹脂シート、金属基板、パワー半導体装置及び金属基板の製造方法に関する。 The present invention relates to a resin composition, a resin sheet, a metal substrate, a power semiconductor device, and a method for manufacturing a metal substrate.
 電子機器及び電気機器の部品として、一対の部材の間に絶縁等を目的とする樹脂層が配置された積層体が種々の用途に用いられている(例えば、特許文献1参照)。このような積層体は、樹脂シートを介して双方の部材を貼り付けることで製造されていた。 As a component of an electronic device and an electric device, a laminated body in which a resin layer for insulation or the like is arranged between a pair of members is used for various purposes (see, for example, Patent Document 1). Such a laminate has been manufactured by attaching both members via a resin sheet.
特許第5431595号公報Japanese Patent No. 5431595
 特許文献1に記載の樹脂シートの硬化物は高熱伝導性を有する一方、樹脂シートから硬化させて製造する際に100℃以上の熱をかける必要があるため、樹脂シートを硬化させる加熱装置等が必要となる。また、光、湿気等で硬化する樹脂シートなどを硬化させることを想定した場合であっても樹脂シートを硬化させる装置、設備等が別途必要となる。そこで、特別な装置、設備等を必要とすることなく、室温条件又は室温に近い条件にて硬化可能な樹脂シートが望ましい。更に、熱、光、湿気等で硬化する樹脂シートでは、樹脂組成物を乾燥して得られるAステージシート作製時、半硬化状態のBステージシート作製時等の被着体に貼り付ける前に意図しない硬化が進行するおそれがあり、ポットライフに改善の余地がある。 While the cured product of the resin sheet described in Patent Document 1 has high thermal conductivity, it is necessary to apply heat of 100° C. or higher when the resin sheet is cured and manufactured, and thus a heating device or the like for curing the resin sheet is used. Will be needed. Further, even when it is assumed that a resin sheet or the like that is cured by light, moisture or the like is supposed to be cured, a device, equipment, etc. for curing the resin sheet are required separately. Therefore, it is desirable to use a resin sheet that can be cured under room temperature conditions or conditions close to room temperature without requiring any special device or equipment. Furthermore, in the case of a resin sheet that is cured by heat, light, moisture, etc., it is intended before attaching to an adherend, such as during preparation of an A-stage sheet obtained by drying a resin composition or during preparation of a semi-cured B-stage sheet. There is room for improvement in pot life because curing may proceed.
 本発明の一形態は、上記に鑑みてなされたものであり、室温条件又は室温に近い条件にて硬化可能であり、ポットライフに優れる樹脂組成物及び樹脂シート、並びに、この樹脂シートを用いた金属基板、パワー半導体装置及び金属基板の製造方法を提供することを目的とする。 One form of the present invention has been made in view of the above, can be cured under room temperature conditions or conditions close to room temperature, a resin composition and a resin sheet excellent in pot life, and using this resin sheet An object is to provide a metal substrate, a power semiconductor device, and a method for manufacturing a metal substrate.
 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に至った。すなわち、本発明は以下の態様を包含する。
<1> 側鎖に嫌気硬化性官能基を有する多量体を含み、酸素の供給が抑制された嫌気性条件にて用いられる樹脂組成物。
<2> 前記多量体は、前記嫌気硬化性官能基を側鎖末端に有する<1>に記載の樹脂組成物。
<3> 無機充填材を更に含む<1>又は<2>に記載の樹脂組成物。
<4> 無機充填材の含有率が全固形分に対して40体積%~90体積%である<3>に記載の樹脂組成物。
The present inventors have accomplished the present invention as a result of extensive studies to solve the above problems. That is, the present invention includes the following aspects.
<1> A resin composition containing a multimer having an anaerobic curable functional group in its side chain and used under anaerobic conditions in which oxygen supply is suppressed.
<2> The resin composition according to <1>, wherein the multimer has the anaerobic curable functional group at a side chain terminal.
<3> The resin composition according to <1> or <2>, further including an inorganic filler.
<4> The resin composition according to <3>, wherein the content of the inorganic filler is 40% by volume to 90% by volume based on the total solid content.
<5> <1>~<4>のいずれか1つに記載の樹脂組成物のシート状成形体である樹脂シート。
<6> 2つの主面がそれぞれ被着体と接着され、かつ少なくとも一方の主面が前記被着体の金属及び金属イオンの少なくとも一方を含む表面と接着されて用いられる<5>に記載の樹脂シート。
<7> 2つの主面の少なくとも一方は、金属及び金属イオンの少なくとも一方を含む金属含有層と接着されて用いられる<5>又は<6>に記載の樹脂シート。
<8> 樹脂シートの厚さが30μm~400μmである<5>~<7>のいずれか1つに記載の樹脂シート。
<9> 5℃~70℃の温度で硬化させる<5>~<8>のいずれか1つに記載の樹脂シート。
<5> A resin sheet which is a sheet-shaped molded product of the resin composition according to any one of <1> to <4>.
<6> The two main surfaces are respectively adhered to an adherend, and at least one main surface is used by being adhered to a surface of the adherend containing at least one of metal and metal ions. Resin sheet.
<7> The resin sheet according to <5> or <6>, wherein at least one of the two main surfaces is used by being bonded to a metal-containing layer containing at least one of a metal and a metal ion.
<8> The resin sheet according to any one of <5> to <7>, wherein the resin sheet has a thickness of 30 μm to 400 μm.
<9> The resin sheet according to any one of <5> to <8>, which is cured at a temperature of 5° C. to 70° C.
<10> 金属支持体と、前記金属支持体上に配置された<5>~<9>のいずれか1つに記載の樹脂シートの硬化物と、前記硬化物上に配置された金属箔と、を備える金属基板。 <10> A metal support, a cured product of the resin sheet according to any one of <5> to <9> disposed on the metal support, and a metal foil disposed on the cured product. And a metal substrate including.
<11> 金属板、はんだ層及び半導体チップがこの順に積層された半導体モジュールと、金属を含む放熱部材と、前記半導体モジュールの前記金属板と前記放熱部材との間に配置された<5>~<9>のいずれか1つに記載の樹脂シートの硬化物と、を備えるパワー半導体装置。 <11> A semiconductor module in which a metal plate, a solder layer, and a semiconductor chip are laminated in this order, a heat dissipation member containing metal, and <5>, which is arranged between the metal plate and the heat dissipation member of the semiconductor module. A cured product of the resin sheet according to any one of <9>, and a power semiconductor device.
<12> 金属支持体と、<5>~<9>のいずれか1つに記載の樹脂シートと、金属箔とをこの順に積層する工程と、前記樹脂シートを酸素の供給が抑制された嫌気性条件にて硬化させる工程と、を含む金属基板の製造方法。
<13> 前記硬化させる工程では、前記樹脂シートを5℃~70℃の温度にて硬化させる<12>に記載の金属基板の製造方法。
<12> A step of laminating a metal support, the resin sheet according to any one of <5> to <9>, and a metal foil in this order, and anaerobic control of oxygen supply to the resin sheet. A method of manufacturing a metal substrate, comprising:
<13> The method for producing a metal substrate according to <12>, wherein in the curing step, the resin sheet is cured at a temperature of 5°C to 70°C.
 本発明の一形態によれば、室温条件又は室温に近い条件にて硬化可能であり、ポットライフに優れる樹脂組成物及び樹脂シート、並びに、この樹脂シートを用いた金属基板、パワー半導体装置及び金属基板の製造方法を提供することができる。 According to one embodiment of the present invention, a resin composition and a resin sheet that can be cured under room temperature conditions or conditions close to room temperature and have an excellent pot life, and a metal substrate, a power semiconductor device and a metal using the resin sheet. A method for manufacturing a substrate can be provided.
本開示のパワー半導体装置の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the power semiconductor device of this indication. 本開示のパワー半導体装置の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the power semiconductor device of this indication.
 以下、本発明の樹脂組成物、樹脂シート、金属基板、パワー半導体装置及び金属基板の製造方法を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において、「(メタ)アクリル」とはアクリル又はメタクリルを意味し、「(メタ)アクリロイル」とはアクリロイル又はメタクリロイルを意味し、「(メタ)アクリレート」とはアクリレート又はメタクリレートを意味する。
Hereinafter, modes for carrying out the resin composition, the resin sheet, the metal substrate, the power semiconductor device, and the method for manufacturing the metal substrate of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
In the present disclosure, the term “process” includes not only a process independent of other processes but also the process even if the process is not clearly distinguishable from the other processes as long as the purpose of the process is achieved. ..
In the present disclosure, the numerical range indicated by using "to" includes the numerical values before and after "to" as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another stepwise described numerical range. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may include a plurality of types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be included. When a plurality of types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of types of particles present in the composition unless otherwise specified.
In the present disclosure, the term “layer” may include not only the case where the layer is formed over the entire area when the area where the layer is present is observed, but also the case where the layer is formed only in a part of the area. included.
In the present disclosure, the term “laminate” refers to stacking layers, two or more layers may be combined and two or more layers may be removable.
In the present disclosure, “(meth)acrylic” means acrylic or methacrylic, “(meth)acryloyl” means acryloyl or methacryloyl, and “(meth)acrylate” means acrylate or methacrylate.
<樹脂組成物>
 本開示の樹脂組成物は、側鎖に嫌気硬化性官能基を有する多量体を含み、酸素の供給が抑制された嫌気性条件にて用いられる。例えば、前述の樹脂組成物は、嫌気性条件下にて硬化されてなる硬化物を得るために用いられ、より具体的には、この樹脂組成物のシート状成形体である樹脂シートが嫌気性条件下にて硬化されてなる硬化物を得るために用いられる。前述の樹脂組成物は、室温条件又は室温に近い条件にて硬化可能であり、かつ嫌気性条件下にて硬化されるため、意図せぬ硬化が生じにくくポットライフに優れる。更に、前述の樹脂組成物をシート状に成形した樹脂シートを被着体との接着に用いることにより、樹脂シートを被着体に接着させてから硬化させる際に、加熱装置、光照射装置等の特別な装置が不要であり、製造設備の簡略化及び既存設備の有効利用が可能と考えられる。
<Resin composition>
The resin composition of the present disclosure includes a multimer having an anaerobic curable functional group in its side chain, and is used under anaerobic conditions in which oxygen supply is suppressed. For example, the above resin composition is used to obtain a cured product obtained by curing under anaerobic conditions, and more specifically, a resin sheet that is a sheet-shaped molded product of this resin composition is anaerobic. It is used to obtain a cured product that is cured under the conditions. The above-mentioned resin composition can be cured under room temperature conditions or conditions close to room temperature, and is cured under anaerobic conditions, so that unintentional curing hardly occurs and the pot life is excellent. Furthermore, by using a resin sheet obtained by molding the above-mentioned resin composition into a sheet for adhesion to an adherend, when the resin sheet is adhered to the adherend and then cured, a heating device, a light irradiation device, etc. No special equipment is required, and it is possible to simplify manufacturing equipment and effectively use existing equipment.
 更に、本開示の樹脂組成物は、側鎖に嫌気硬化性官能基を有する多量体を含む。これにより、この樹脂組成物の硬化前及び硬化後の強度を高めることができ、嫌気硬化性官能基を有する単量体を含み、前述の多量体を含まない樹脂組成物を硬化させた場合と比較して揮発成分の発生を抑制することができる。 Further, the resin composition of the present disclosure includes a multimer having an anaerobic curable functional group in the side chain. This makes it possible to increase the strength of the resin composition before and after curing, and when the resin composition containing a monomer having an anaerobic curable functional group and not containing the above-described polymer is cured. In comparison, the generation of volatile components can be suppressed.
 本開示にて、酸素の供給が抑制された嫌気性条件とは、外部から酸素が、樹脂組成物をシート状に成形してなる樹脂シート等の樹脂組成物の成形体(以下、「樹脂シート等」とも称する。)に全く供給されない環境であることだけでなく、外部から酸素が樹脂シート等に供給されにくい環境であることも含む。
 外部から酸素が樹脂シート等に供給されにくい環境とは、樹脂シート等の2つの主面がそれぞれ酸素透過率が0.5mL/(m・24h・atm)以下である部材と接触していることを意味する。例えば、樹脂シート等の2つの主面をそれぞれ金属部材と接触させる場合、2つの金属部材の酸素透過率が0.5mL/(m・24h・atm)以下であればよく、樹脂シート等の2つの主面を金属部材及び樹脂部材とそれぞれ接触させる場合、金属部材及び樹脂部材の酸素透過率がそれぞれ0.5mL/(m・24h・atm)以下であればよい。
 部材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、温度23℃かつ相対湿度65%の条件で測定することができる。
In the present disclosure, the anaerobic conditions in which the supply of oxygen is suppressed means that a molded product of a resin composition such as a resin sheet formed by molding the resin composition into a sheet from the outside (hereinafter, "resin sheet"). It is also referred to as “etc.”) in which the oxygen is not supplied to the resin sheet or the like from the outside.
The environment where it is difficult to supply oxygen to the resin sheet or the like from the outside means that the two main surfaces of the resin sheet or the like are in contact with members each having an oxygen permeability of 0.5 mL/(m 2 ·24 h·atm) or less. Means that. For example, when the two main surfaces of a resin sheet or the like are respectively brought into contact with a metal member, the oxygen permeability of the two metal members may be 0.5 mL/(m 2 ·24h·atm) or less, When the two main surfaces are brought into contact with the metal member and the resin member, respectively, the oxygen permeability of the metal member and the resin member may be 0.5 mL/(m 2 ·24 h·atm) or less.
The oxygen permeability of the member can be measured under the conditions of a temperature of 23° C. and a relative humidity of 65% using an oxygen permeability measuring device (for example, MOCON, OX-TRAN).
(多量体)
 本開示の樹脂組成物は、側鎖に嫌気硬化性官能基を有する多量体(以下、「特定の多量体」とも称する。)を含む。嫌気硬化性官能基としては、嫌気性条件下にて硬化反応が開始される官能基であればよく、嫌気性条件下かつ樹脂シート等の2つの主面の少なくとも一方が、金属及び金属イオンの少なくとも一方と接触している条件にて硬化反応が開始される官能基であることが好ましい。
(Multimer)
The resin composition of the present disclosure includes a multimer having an anaerobic curable functional group in its side chain (hereinafter, also referred to as “specific multimer”). The anaerobic curable functional group may be any functional group capable of initiating a curing reaction under anaerobic conditions, and at least one of the two main surfaces of the resin sheet or the like under anaerobic conditions is a metal or a metal ion. It is preferably a functional group that initiates a curing reaction under the condition of being in contact with at least one.
 嫌気硬化性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等が挙げられる。多量体は、1分子内に嫌気硬化性官能基を2つ以上有していることが好ましい。また、多量体は主鎖に嫌気硬化性官能基を有していてもよく、有していなくてもよい。 As the anaerobic curable functional group, (meth)acryloyl group, vinyl group, allyl group and the like can be mentioned. The multimer preferably has two or more anaerobic curable functional groups in one molecule. The multimer may or may not have an anaerobic curable functional group in the main chain.
 特定の多量体は、樹脂組成物を硬化物としたときの強度の点から、嫌気硬化性官能基を側鎖末端に有することが好ましい。なお、特定の多量体は、嫌気硬化性官能基を主鎖末端に有していてもよく、主鎖末端及び側鎖末端にそれぞれ有していてもよい。 The specific multimer preferably has an anaerobic curable functional group at the side chain terminal from the viewpoint of strength when the resin composition is used as a cured product. In addition, the specific multimer may have an anaerobic curable functional group at the main chain terminal, or may have each at the main chain terminal and the side chain terminal.
 特定の多量体の主鎖としては、エチレン、プロピレン等のオレフィン、スチレン、塩化ビニル、塩化ビニリデン、アクリロニトリル、ビニルカルバゾール、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、ポリアルキレン構造を有する(メタ)アクリレート又はメタクリレート等の単官能(メタ)アクリル化合物などの単量体が単独重合又は共重合されてなる構造を有していてもよい。 The main chain of the specific multimer includes olefins such as ethylene and propylene, styrene, vinyl chloride, vinylidene chloride, acrylonitrile, vinylcarbazole, (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, It may have a structure in which a monomer such as a monofunctional (meth)acrylic compound having a polyalkylene structure such as (meth)acrylate or methacrylate is homopolymerized or copolymerized.
 特定の多量体は、例えば、以下の一般式(I)で表される多量体を含んでいてもよい。 The specific multimer may include, for example, a multimer represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、炭素数1~4のヒドロキシアルキル基、又は、炭素数1~4のヒドロキシアルキル基の1つの水素原子が嫌気硬化性官能基に置換された基を示す。Rは、それぞれ独立に、水素原子又はメチル基を示す。Rは、水素原子、ヒドロキシ基、又は、炭素数1~4のヒドロキシアルキル基の1つの水素原子が嫌気硬化性官能基に置換された基を示す。mは1~8であり、vは0又は1であり、nは2~20である。
 炭素数1~4のヒドロキシアルキル基の1つの水素原子が嫌気硬化性官能基に置換された基は、ヒドロキシ基の水素原子が嫌気硬化性官能基に置換された基であることが好ましい。
In the general formula (I), R 4's each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 1 to 4 carbon atoms, or a hydroxyalkyl group having 1 to 4 carbon atoms. A group in which one hydrogen atom is replaced with an anaerobic curable functional group is shown. R 5's each independently represent a hydrogen atom or a methyl group. R 6 represents a hydrogen atom, a hydroxy group, or a group in which one hydrogen atom of a hydroxyalkyl group having 1 to 4 carbon atoms is substituted with an anaerobic curable functional group. m is 1 to 8, v is 0 or 1, and n is 2 to 20.
The group in which one hydrogen atom of the hydroxyalkyl group having 1 to 4 carbon atoms is substituted with the anaerobic curable functional group is preferably a group in which the hydrogen atom of the hydroxy group is substituted with the anaerobic curable functional group.
 特定の多量体は、例えば、ヒドロキシ基、アミノ基、カルボキシ基、イソシアネート基、チオール基、エポキシ基等の反応性官能基を側鎖に有する多量体と、多量体に含まれる反応性官能基と反応する反応性官能基及び嫌気硬化性官能基を有する単量体と、の反応物であってもよい。この反応物は、多量体における反応性官能基と、単量体における反応性官能基とが反応した構造を有し、かつ側鎖に嫌気硬化性官能基を有する。
 また、末端に嫌気硬化性官能基を有する単量体を、前述の反応性官能基を側鎖に有する多量体と反応させた反応物は、側鎖末端に嫌気硬化性官能基を有する。
The specific multimer includes, for example, a multimer having a reactive functional group such as a hydroxy group, an amino group, a carboxy group, an isocyanate group, a thiol group, an epoxy group in a side chain, and a reactive functional group contained in the multimer. It may be a reaction product of a monomer having a reactive functional group and an anaerobic curable functional group that react. This reaction product has a structure in which the reactive functional group in the multimer reacts with the reactive functional group in the monomer, and has an anaerobic curable functional group in the side chain.
Further, the reaction product obtained by reacting the monomer having an anaerobic curable functional group at the terminal with the multimer having the reactive functional group in the side chain has the anaerobic curable functional group at the side chain terminal.
 また、特定の多量体は、嫌気硬化性官能基を主鎖末端に有し、側鎖にヒドロキシ基、アミノ基、カルボキシ基、イソシアネート基、チオール基、エポキシ基等の反応性官能基を側鎖に有する多量体と、多量体に含まれる反応性官能基と反応する反応性官能基及び嫌気硬化性官能基を有する単量体と、の反応物であってもよい。この反応物は、多量体における反応性官能基と、単量体における反応性官能基とが反応した構造を有し、かつ側鎖及び主鎖末端に嫌気硬化性官能基を有する。
 更に、末端に嫌気硬化性官能基を有する単量体を、嫌気硬化性官能基を主鎖末端に有し、前述の反応性官能基を側鎖に有する多量体と反応させた反応物は、主鎖末端及び側鎖末端に嫌気硬化性官能基を有する。
Further, the specific multimer has an anaerobic curable functional group at the main chain terminal, and has a side chain having a reactive functional group such as a hydroxy group, an amino group, a carboxy group, an isocyanate group, a thiol group, and an epoxy group. And a monomer having a reactive functional group that reacts with the reactive functional group contained in the multimer and a monomer having an anaerobic curable functional group. This reaction product has a structure in which the reactive functional group in the multimer reacts with the reactive functional group in the monomer, and has an anaerobic curable functional group at the side chain and main chain terminal.
Furthermore, the reaction product obtained by reacting a monomer having an anaerobic curable functional group at the terminal with a polymer having an anaerobic curable functional group at the main chain terminal and having the above-mentioned reactive functional group in the side chain It has an anaerobic curable functional group at the main chain end and side chain end.
 一例として、特定の多量体は、ヒドロキシ基を側鎖に有する多量体と、イソシアネート基及び嫌気硬化性官能基を有する単量体と、の反応物であってもよい。この反応物は、ヒドロキシ基とイソシアネート基とが反応して形成されたウレタン結合を有し、かつ側鎖に嫌気硬化性官能基を有する。 As an example, the specific multimer may be a reaction product of a multimer having a hydroxy group in a side chain and a monomer having an isocyanate group and an anaerobic curable functional group. This reaction product has a urethane bond formed by the reaction of a hydroxy group and an isocyanate group, and has an anaerobic curable functional group in its side chain.
 例えば、特定の多量体は、以下の構造(I)を側鎖に有するものであってもよい。 For example, the specific multimer may have the following structure (I) in the side chain.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 構造(I)中、R及びRは、それぞれ独立に炭素数1~6の置換又は無置換のアルキレン基を示し、Rは、水素原子又はメチル基を示し、*は結合部位を示す。 In the structure (I), R 1 and R 2 each independently represent a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms, R 3 represents a hydrogen atom or a methyl group, and * represents a bonding site. ..
 構造(I)中、R及びRは、それぞれ独立にメチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、n-ペンチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基等が挙げられる。
 構造(I)中、*は主鎖の炭素原子と結合していることが好ましい。
In the structure (I), R 1 and R 2 are each independently a methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group, sec-butylene group, tert-butylene group, n -Pentylene group, isopentylene group, neopentylene group, tert-pentylene group and the like.
In structure (I), * is preferably bonded to a carbon atom in the main chain.
 特定の多量体の重量平均分子量(Mw)は、5000~800000であることが好ましく、10000~500000であることがより好ましい。
 本開示において、重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定された値をいう。
The weight average molecular weight (Mw) of the specific multimer is preferably 5,000 to 800,000, more preferably 10,000 to 500,000.
In the present disclosure, the weight average molecular weight refers to a value measured by gel permeation chromatography (GPC).
 樹脂組成物中の特定の多量体の含有率は特に制限されない。特定の多量体の含有率は、5質量%~40質量%であることが好ましく、7質量%~36質量%であることがより好ましく、9質量%~32質量%であることがさらに好ましい。 The content of the specific multimer in the resin composition is not particularly limited. The content of the specific multimer is preferably 5% by mass to 40% by mass, more preferably 7% by mass to 36% by mass, and further preferably 9% by mass to 32% by mass.
 本開示の樹脂組成物は、特定の多量体とともに、嫌気硬化性官能基を有する単量体、側鎖に嫌気硬化性官能基を有さず、主鎖に嫌気硬化性官能基を有する多量体等(以下、「その他の化合物」とも称する)を含んでいてもよい。 The resin composition of the present disclosure, together with a specific multimer, a monomer having an anaerobic curable functional group, a multimer having no anaerobic curable functional group in its side chain and having an anaerobic curable functional group in its main chain. Etc. (hereinafter, also referred to as “other compound”) may be included.
 その他の化合物としては、例えば、単官能(メタ)アクリル化合物、多官能(メタ)アクリル化合物等が挙げられる。その他の化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いることができる。 Other examples of the compound include monofunctional (meth)acrylic compounds and polyfunctional (meth)acrylic compounds. Other compounds may be used alone or in combination of two or more.
 単官能(メタ)アクリル化合物の具体例としては、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香環を有する(メタ)アクリレート化合物;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環を有する(メタ)アクリレート化合物;(メタ)アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;ヘプタデカフルオロデシル(メタ)アクリレート等のフッ化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有する(メタ)アクリレート化合物;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;などが挙げられる。 Specific examples of the monofunctional (meth)acrylic compound include (meth)acrylic acid; methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, 2-ethylhexyl (meth). ) Acrylate, isononyl (meth)acrylate, n-octyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, etc., alkyl (meth)acrylate having 1 to 18 carbon atoms in the alkyl group; benzyl (meth) ) Acrylate, (meth)acrylate compounds having an aromatic ring such as phenoxyethyl (meth)acrylate; alkoxyalkyl (meth)acrylates such as butoxyethyl (meth)acrylate; amino such as N,N-dimethylaminoethyl (meth)acrylate Alkyl (meth)acrylate; diethylene glycol monoethyl ether (meth)acrylate, triethylene glycol monobutyl ether (meth)acrylate, tetraethylene glycol monomethyl ether (meth)acrylate, hexaethylene glycol monomethyl ether (meth)acrylate, octaethylene glycol monomethyl ether Polyalkylene glycols such as (meth)acrylate, nonaethylene glycol monomethyl ether (meth)acrylate, dipropylene glycol monomethyl ether (meth)acrylate, heptapropylene glycol monomethyl ether (meth)acrylate and tetraethylene glycol monoethyl ether (meth)acrylate Monoalkyl ether (meth)acrylate; polyalkylene glycol monoaryl ether (meth)acrylate such as hexaethylene glycol monophenyl ether (meth)acrylate; cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, isobornyl (meth) (Meth)acrylate compounds having an alicyclic ring such as acrylates and methylene oxide-added cyclodecatriene (meth)acrylates; (meth)acrylate compounds having a heterocycle such as (meth)acryloylmorpholine and tetrahydrofurfuryl (meth)acrylate; hepta Fluorinated alkyl (meth)acrylates such as decafluorodecyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth) (Meth)acrylate compound having a hydroxyl group such as acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, hexaethylene glycol mono(meth)acrylate, octapropylene glycol mono(meth)acrylate; glycidyl( (Meth)acrylate compound having a glycidyl group such as (meth)acrylate; 2-(2-(meth)acryloyloxyethyloxy)ethyl isocyanate, 2-(meth)acryloyloxyethyl isocyanate having a isocyanate group-containing (meth)acrylate Compounds: polyethylene glycol mono(meth)acrylates such as tetraethylene glycol mono(meth)acrylate, hexaethylene glycol mono(meth)acrylate, octapropylene glycol mono(meth)acrylate; (meth)acrylamide, N,N-dimethyl( (Meth)acrylamide compounds such as (meth)acrylamide, N-isopropyl(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, 2-hydroxyethyl(meth)acrylamide; And so on.
 多官能(メタ)アクリル化合物の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;などが挙げられる。 Specific examples of the polyfunctional (meth)acrylic compound include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and ethoxy. Bisphenol A-type di(meth)acrylate, propoxylated bisphenol A-type di(meth)acrylate, propoxylated ethoxylated bisphenol A-type di(meth)acrylate, and other alkylene glycol di(meth)acrylates; polyethylene glycol di(meth)acrylate , Polyalkylene glycol di(meth)acrylates such as polypropylene glycol di(meth)acrylate; trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, tris(2-hydroxyethyl)isocyanurate tri( Tri(meth)acrylate compounds such as (meth)acrylate; tetra(meth)acrylate compounds such as ethylene oxide-added pentaerythritol tetra(meth)acrylate, trimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate; Be done.
 樹脂組成物中のその他の化合物の含有率としては、10質量%以下であってもよく、5質量%以下であってもよく、3質量%以下であってもよい。また、樹脂組成物は、その他の化合物を含んでいなくてもよく、1質量%以上含んでいてもよい。 The content of other compounds in the resin composition may be 10% by mass or less, 5% by mass or less, or 3% by mass or less. Further, the resin composition may not contain any other compound, and may contain 1% by mass or more.
(無機充填材)
 本開示の樹脂組成物は、無機充填材を含むことが好ましい。無機充填材は、非導電性であっても、導電性であってもよい。非導電性の無機充填材を使用することによって絶縁性の低下が抑制される傾向にある。また、導電性の無機充填材を使用することによって熱伝導性がより向上する傾向にある。
(Inorganic filler)
The resin composition of the present disclosure preferably contains an inorganic filler. The inorganic filler may be non-conductive or conductive. The use of the non-conductive inorganic filler tends to suppress the decrease in insulation. Further, the thermal conductivity tends to be further improved by using the conductive inorganic filler.
 非導電性の無機充填材として具体的には、酸化アルミニウム(アルミナ)、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、シリカ(二酸化ケイ素)、酸化ケイ素、水酸化アルミニウム、硫酸バリウム等が挙げられる。また導電性の無機充填材としては、金、銀、ニッケル、銅、黒鉛等が挙げられ、中でも被着体との接着前にて樹脂組成物の硬化を抑制する点から黒鉛が好ましい。中でも熱伝導率の観点から、無機充填材としては、酸化アルミニウム(アルミナ)、窒化ホウ素、酸化マグネシウム、窒化アルミニウム、シリカ(酸化ケイ素)及び黒鉛からなる群より選択される少なくとも1種であることが好ましく、窒化ホウ素及び酸化アルミニウム(アルミナ)からなる群より選択される少なくとも1種であることがより好ましい。
 これら無機充填材は、1種を単独で用いてもよく、2種以上を組み合わせて用いることができる。
Specific examples of the non-conductive inorganic filler include aluminum oxide (alumina), magnesium oxide, aluminum nitride, boron nitride, silicon nitride, silica (silicon dioxide), silicon oxide, aluminum hydroxide, barium sulfate and the like. .. Examples of the conductive inorganic filler include gold, silver, nickel, copper, graphite and the like. Among them, graphite is preferable from the viewpoint of suppressing the curing of the resin composition before adhering to the adherend. Among them, from the viewpoint of thermal conductivity, the inorganic filler is at least one selected from the group consisting of aluminum oxide (alumina), boron nitride, magnesium oxide, aluminum nitride, silica (silicon oxide) and graphite. It is more preferably at least one selected from the group consisting of boron nitride and aluminum oxide (alumina).
These inorganic fillers may be used alone or in combination of two or more.
 無機充填材は、2種以上の互いに体積平均粒子径の異なるものを混合して用いることが好ましい。これにより大粒子径の無機充填材の空隙に小粒子径の無機充填材がパッキングされることによって、単一粒子径の無機充填材のみを使用するよりも無機充填材が密に充填されるため、より高熱伝導率を発揮することが可能となる。
 具体的には、無機充填材として酸化アルミニウムを使用する場合、無機充填材中に、体積平均粒子径16μm~20μmの酸化アルミニウムを60体積%~75体積%、体積平均粒子径2μm~4μmの酸化アルミニウムを10体積%~20体積%、体積平均粒子径0.3μm~0.5μmの酸化アルミニウムを10体積%~20体積%の範囲の割合で混合することによって、より最密充填化が可能となる。
 さらに、無機充填材として窒化ホウ素及び酸化アルミニウムを併用する場合、無機充填材中に、体積平均粒子径20μm~100μmの窒化ホウ素を60体積%~90体積%、体積平均粒子径2μm~4μmの酸化アルミニウムを5体積%~20体積%、体積平均粒子径0.3μm~0.5μmの酸化アルミニウムを5体積%~20体積%の範囲の割合で混合することによって、より高熱伝導化が可能となる。
As the inorganic filler, it is preferable to use a mixture of two or more kinds having different volume average particle diameters. As a result, the small-particle-diameter inorganic filler is packed in the voids of the large-particle-diameter inorganic filler, so that the inorganic-filler is packed more densely than when using only the single-particle-diameter inorganic filler. It becomes possible to exhibit higher thermal conductivity.
Specifically, when aluminum oxide is used as the inorganic filler, 60% by volume to 75% by volume of aluminum oxide having a volume average particle diameter of 16 μm to 20 μm and an average volume average particle diameter of 2 μm to 4 μm are oxidized in the inorganic filler. By mixing aluminum in an amount of 10% to 20% by volume and aluminum oxide having a volume average particle size of 0.3 μm to 0.5 μm in a range of 10% to 20% by volume, more dense packing can be achieved. Become.
Further, when boron nitride and aluminum oxide are used together as the inorganic filler, boron nitride having a volume average particle diameter of 20 μm to 100 μm is oxidized in the inorganic filler having a volume average particle diameter of 2 μm to 4 μm. Higher thermal conductivity can be achieved by mixing 5% by volume to 20% by volume of aluminum and 5% by volume to 20% by volume of aluminum oxide having a volume average particle size of 0.3 μm to 0.5 μm. ..
 無機充填材の体積平均粒子径(D50)は、レーザー回折法を用いて測定することができる。例えば、樹脂組成物中の無機充填材を抽出し、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社、商品名:LS230)を用いて測定する。具体的には、有機溶剤、硝酸、王水等を用い、樹脂組成物中から無機充填材成分を抽出し、超音波分散機等で十分に分散し、この分散液の重量累積粒度分布曲線を測定する。
 体積平均粒子径(D50)は、上記測定より得られた体積累積粒度分布曲線において、小径側から累積が50%となる粒子径をいう。
The volume average particle diameter (D50) of the inorganic filler can be measured using a laser diffraction method. For example, the inorganic filler in the resin composition is extracted and measured using a laser diffraction/scattering particle size distribution analyzer (for example, Beckman Coulter, Inc., trade name: LS230). Specifically, using an organic solvent, nitric acid, aqua regia, etc., the inorganic filler component is extracted from the resin composition and sufficiently dispersed with an ultrasonic disperser or the like, and the weight cumulative particle size distribution curve of this dispersion liquid is calculated. taking measurement.
The volume average particle diameter (D50) refers to a particle diameter at which the cumulative value becomes 50% from the smaller diameter side in the volume cumulative particle size distribution curve obtained by the above measurement.
 樹脂組成物が無機充填剤を含む場合、無機充填材の含有率は特に制限されない。中でも熱伝導性の観点から、樹脂組成物における無機充填材の含有率は、全固形分に対して40体積%以上であることが好ましく、40体積%を超えることがより好ましく、50体積%を超え、90体積%以下であることがさらに好ましく、55体積%~80体積%であることが特に好ましい。
 無機充填材の含有率が40体積%以上であると、より高い熱伝導率を達成することが可能となる傾向にある。一方、無機充填材の含有率が90体積%以下であると、樹脂シートの硬化物の柔軟性の低下及び絶縁性の低下を抑制できる傾向にある。
When the resin composition contains an inorganic filler, the content of the inorganic filler is not particularly limited. Among them, the content of the inorganic filler in the resin composition is preferably 40% by volume or more, more preferably more than 40% by volume, and more preferably 50% by volume from the viewpoint of thermal conductivity. It is more preferably more than 90% by volume and particularly preferably 55% by volume to 80% by volume.
When the content of the inorganic filler is 40% by volume or more, it tends to be possible to achieve higher thermal conductivity. On the other hand, when the content of the inorganic filler is 90% by volume or less, it tends to be possible to suppress deterioration in flexibility and insulation of the cured product of the resin sheet.
 樹脂組成物における無機充填材の含有率は、全固形分に対して40質量%~95質量%であることが好ましく、50質量%~95質量%であることがより好ましく、60質量%~95質量%であることがさらに好ましく、65質量%~95質量%であることが特に好ましく、65質量%~93質量%であることがより一層好ましい。 The content of the inorganic filler in the resin composition is preferably 40% by mass to 95% by mass, more preferably 50% by mass to 95% by mass, and 60% by mass to 95% by mass based on the total solid content. The content is more preferably mass%, particularly preferably 65 mass% to 95 mass%, and even more preferably 65 mass% to 93 mass%.
(重合開始剤)
 本開示の樹脂組成物は、重合開始剤を含んでいてもよい。重合開始剤を含むことにより、金属イオンと重合開始剤とが反応してラジカルが発生し、発生したラジカルが嫌気硬化性官能基と反応して硬化反応が好適に進行する。
(Polymerization initiator)
The resin composition of the present disclosure may contain a polymerization initiator. By including the polymerization initiator, the metal ion and the polymerization initiator react with each other to generate a radical, and the generated radical reacts with the anaerobic curable functional group to suitably proceed the curing reaction.
 重合開始剤は、有機過酸化物であってもよい。有機過酸化物としては、例えば、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド類;1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)オクタン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(t-ブチルパーオキシ)ブタン等のパーオキシケタール類;t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド等のハイドロパーオキサイド類;ジt-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3等のジアルキルパーオキサイド類;アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、サクシニックアシッドパーオキサイド、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、m-トルオイルパーオキサイド等のジアシルパーオキサイド類;ジイソプロピルパーオキシジカーボネート、ジ2-エチルヘキシルパーオキシジカーボネート、ジn-プロピルパーオキシジカーボネート、ビス-(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ2-エトキシエチルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、ジアリルパーオキシジカーボネート等のパーオキシジカーボネート類;t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシベンゾエート、ジt-ブチルパーオキシイソフタレート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシマレイックアシッド、t-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエート、t-ヘキシルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオヘキサノエート、t-ヘキシルパーオキシネオヘキサノエート、クミルパーオキシネオヘキサノエート等のパーオキシエステル類;アセチルシクロヘキシルスルホニルパーオキシド、t-ブチルパーオキシアリルカーボネートなどが挙げられる。
 これら有機過酸化物は、1種を単独で用いてもよく、2種以上を組み合わせて用いることができる。
The polymerization initiator may be an organic peroxide. Examples of the organic peroxide include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, methyl cyclohexanone peroxide, methyl acetoacetate peroxide, and acetylacetone peroxide; 1 ,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, 2,2-bis(t-butylperoxy)octane, n -Butyl-4,4-bis(t-butylperoxy)valerate, peroxyketals such as 2,2-bis(t-butylperoxy)butane; t-butyl hydroperoxide, cumene hydroperoxide, diisopropyl Hydroperoxides such as benzene hydroperoxide, p-menthane hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide and 1,1,3,3-tetramethylbutyl hydroperoxide; di t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, α,α′-bis(t-butylperoxy-m-isopropyl)benzene, 2,5-dimethyl-2,5-di(t -Butylperoxy)hexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3 and other dialkyl peroxides; acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, deca Diacyl peroxides such as noyl peroxide, lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, succinic acid peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, and m-toluoyl peroxide. Kinds; diisopropyl peroxydicarbonate, di2-ethylhexyl peroxydicarbonate, di-n-propyl peroxydicarbonate, bis-(4-t-butylcyclohexyl) peroxydicarbonate, dimyristyl peroxydicarbonate, di-2 -Peroxydicarbonates such as ethoxyethyl peroxydicarbonate, dimethoxyisopropyl peroxydicarbonate, di(3-methyl-3-methoxybutyl)peroxydicarbonate, diallyl peroxydicarbonate; t-butyl peroxydiamine Cetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, t-butylperoxyneodecanoate, cumylperoxyneodecanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxybenzoate, di-t-butylperoxyisophthalate, 2,5-dimethyl-2,5 -Di(benzoylperoxy)hexane, t-butylperoxymaleic acid, t-butylperoxyisopropyl carbonate, cumylperoxyoctoate, t-hexylperoxyneodecanoate, t-hexylperoxypivalate, Peroxy esters such as t-butyl peroxy neohexanoate, t-hexyl peroxy neohexanoate, cumyl peroxy neohexanoate; acetylcyclohexyl sulfonyl peroxide, t-butyl peroxy allyl carbonate, etc. Be done.
These organic peroxides may be used alone or in combination of two or more.
 樹脂組成物が重合開始剤を含む場合、樹脂組成物中の重合開始剤の含有量は、保存安定性及び硬化性の点から、特定の多量体100質量部に対して、0.01質量部~10質量部であることが好ましく、0.1質量部~5質量部であることがより好ましい。 When the resin composition contains a polymerization initiator, the content of the polymerization initiator in the resin composition is 0.01 parts by mass with respect to 100 parts by mass of the specific multimer in terms of storage stability and curability. It is preferably from 10 to 10 parts by mass, more preferably from 0.1 to 5 parts by mass.
(重合促進剤)
 本開示の樹脂組成物は、重合促進剤を含む。重合促進剤としては、特に制限されず、例えば、ヒドラジン系化合物、アミン化合物、メルカプタン化合物、遷移金属含有化合物等が挙げられる。
 これら重合促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いることができる。
(Polymerization accelerator)
The resin composition of the present disclosure contains a polymerization accelerator. The polymerization accelerator is not particularly limited, and examples thereof include a hydrazine compound, an amine compound, a mercaptan compound, and a transition metal-containing compound.
These polymerization accelerators may be used alone or in combination of two or more.
 ヒドラジン系化合物としては、特に限定されず、1-アセチル-2-フェニルヒドラジン、1-アセチル-2(p-トリル)ヒドラジン、1-ベンゾイル-2-フェニルヒドラジン、1-(1’,1’,1’-トリフルオロ)アセチル-2-フェニルヒドラジン、1,5-ジフェニル-カルボヒドラジン、1-フォーミル-2-フェニルヒドラジン、1-アセチル-2-(p-ブロモフェニル)ヒドラジン、1-アセチル-2-(p-ニトロフェニル)ヒドラジン、1-アセチル-2-(2’-フェニルエチルヒドラジン)、エチルカルバゼート、p-ニトロフェニルヒドラジン、p-トリスルホニルヒドラジド等が挙げられる。 The hydrazine compound is not particularly limited, 1-acetyl-2-phenylhydrazine, 1-acetyl-2(p-tolyl)hydrazine, 1-benzoyl-2-phenylhydrazine, 1-(1′,1′, 1'-trifluoro)acetyl-2-phenylhydrazine, 1,5-diphenyl-carbohydrazine, 1-formyl-2-phenylhydrazine, 1-acetyl-2-(p-bromophenyl)hydrazine, 1-acetyl-2 Examples include -(p-nitrophenyl)hydrazine, 1-acetyl-2-(2'-phenylethylhydrazine), ethylcarbazate, p-nitrophenylhydrazine, p-trisulfonylhydrazide and the like.
 アミン化合物としては、特に限定されず、2-エチルヘキシルアミン、1,2,3,4-テトラヒドロキノン、1,2,3,4-テトラヒドロキナルジン等の複素環第二級アミン;キノリン、メチルキノリン、キナルジン、キノキサリンフェナジン等の複素環第三級アミン;N,N-ジメチル-パラ-トルイジン、N,N-ジメチル-アニシジン、N,N-ジメチルアニリン等の芳香族第三級アミン;1,2,4-トリアゾール、オキサゾール、オキサジアゾール、チアジアゾール、ベンゾトリアゾール、ヒドロキシベンゾトリアゾール、ベンゾキサゾール、1,2,3-ベンゾチアジアゾール、3-メルカプトベンゾトリゾール等のアゾール系化合物などが挙げられる。 The amine compound is not particularly limited, and is a heterocyclic secondary amine such as 2-ethylhexylamine, 1,2,3,4-tetrahydroquinone, 1,2,3,4-tetrahydroquinaldine; quinoline, methylquinoline. , Quinaldine, quinoxalinephenazine and other heterocyclic tertiary amines; N,N-dimethyl-para-toluidine, N,N-dimethyl-anisidine, N,N-dimethylaniline and other aromatic tertiary amines; 1,2 Examples include azole compounds such as 1,4-triazole, oxazole, oxadiazole, thiadiazole, benzotriazole, hydroxybenzotriazole, benzoxazole, 1,2,3-benzothiadiazole, and 3-mercaptobenzotrizole.
 メルカプタン化合物としては、特に限定されず、n-ドデシルメルカプタン、エチルメルカプタン、ブチルメルカプタン等の直鎖型メルカプタンが挙げられる。 The mercaptan compound is not particularly limited, and examples thereof include linear mercaptans such as n-dodecyl mercaptan, ethyl mercaptan, and butyl mercaptan.
 遷移金属含有化合物としては、金属キレート錯塩が挙げられる。金属キレート錯塩としては、特に限定されず、ペンタジオン鉄、ペンタジオンコバルト、ペンタジオン銅、プロピレンジアミン銅、エチレンジアミン銅、鉄ナフテート、ニッケルナフテート、コバルトナフテート、銅ナフテート、銅オクテート、鉄ヘキソエート、鉄プロピオネート、アセチルアセトンバナジウム等が挙げられる。 Examples of transition metal-containing compounds include metal chelate complex salts. The metal chelate complex salt is not particularly limited, pentadione iron, pentadione cobalt, pentadione copper, propylenediamine copper, ethylenediamine copper, iron naphthate, nickel naphthate, cobalt naphthate, copper naphthate, copper octate, iron hexoate, iron propionate. , Vanadium acetylacetone and the like.
 樹脂組成物が重合促進剤を含む場合、樹脂組成物中の重合促進剤の含有量は、保存安定性及び硬化促進性の点から、特定の多量体100質量部に対して、0.05質量部~5質量部であることが好ましく、0.1質量部~3質量部であることがより好ましい。 When the resin composition contains a polymerization accelerator, the content of the polymerization accelerator in the resin composition is 0.05 parts by mass with respect to 100 parts by mass of the specific polymer in terms of storage stability and curing accelerating property. It is preferably from 5 to 5 parts by mass, more preferably from 0.1 to 3 parts by mass.
(シランカップリング剤)
 樹脂組成物は、シランカップリング剤の少なくとも1種を含んでいてもよい。シランカップリング剤は、無機充填材の表面とその周りを取り囲む樹脂との間で共有結合を形成する役割(バインダ剤に相当)、熱伝導率の向上、及び水分の侵入を妨げることによって絶縁信頼性を向上させる働きを果たすと考えることができる。
(Silane coupling agent)
The resin composition may contain at least one silane coupling agent. The silane coupling agent plays a role of forming a covalent bond between the surface of the inorganic filler and the resin that surrounds it (corresponding to a binder agent), improves the thermal conductivity, and prevents moisture from penetrating to insulate the insulation. It can be considered to play a role of improving sex.
 シランカップリング剤の種類としては特に限定されず、市販されているものを用いてもよい。本開示においては、末端にアクリロイル基、エポキシ基、アミノ基、メルカプト基、ウレイド基又は水酸基を有するシランカップリング剤を用いることが好適である。 The type of silane coupling agent is not particularly limited, and a commercially available one may be used. In the present disclosure, it is preferable to use a silane coupling agent having an acryloyl group, an epoxy group, an amino group, a mercapto group, a ureido group or a hydroxyl group at the terminal.
 シランカップリング剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン等を挙げることができる。また、商品名:SC-6000KS2に代表されるシランカップリング剤オリゴマー(日立化成テクノサービス株式会社)等も挙げられる。これらシランカップリング剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Specific examples of the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane. , 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltriethoxy Examples include silane, 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-ureidopropyltriethoxysilane. it can. Further, a silane coupling agent oligomer represented by trade name: SC-6000KS2 (Hitachi Chemical Techno Service Co., Ltd.) and the like can also be mentioned. These silane coupling agents may be used alone or in combination of two or more.
 樹脂組成物がシランカップリング剤を含む場合、樹脂組成物中のシランカップリング剤の含有率は特に制限されない。シランカップリング剤の含有率は、0.01質量%~0.2質量%であることが好ましく、0.03質量%~0.1質量%であることがより好ましい。 When the resin composition contains a silane coupling agent, the content of the silane coupling agent in the resin composition is not particularly limited. The content of the silane coupling agent is preferably 0.01% by mass to 0.2% by mass, more preferably 0.03% by mass to 0.1% by mass.
(その他の成分)
 樹脂組成物は、必要に応じて、上記成分に加えてその他の成分を含んでいてもよい。本開示の樹脂組成物は、メチルエチルケトン、シクロヘキサノン等の有機溶剤を添加して調製したワニス状の樹脂組成物であってもよい。
(Other ingredients)
The resin composition may contain other components in addition to the above components, if necessary. The resin composition of the present disclosure may be a varnish-shaped resin composition prepared by adding an organic solvent such as methyl ethyl ketone or cyclohexanone.
<樹脂シート>
 本開示の樹脂シートは、前述の本開示の樹脂組成物のシート状成形体である。例えば、前述の樹脂シートは、酸素の供給が抑制された嫌気性条件下にて硬化され、硬化物を得るために用いられる。
<Resin sheet>
The resin sheet of the present disclosure is a sheet-shaped molded product of the resin composition of the present disclosure described above. For example, the above-mentioned resin sheet is used to obtain a cured product after being cured under anaerobic conditions in which the supply of oxygen is suppressed.
 酸素の供給が抑制された嫌気性条件では、樹脂シートの2つの主面がそれぞれ酸素透過率が0.5mL/(m・24h・atm)以下である部材と接触していてもよく、0.3mL/(m・24h・atm)以下である部材と接触していてもよく、0.1mL/(m・24h・atm)以下である部材と接触していてもよい。 Under anaerobic conditions in which the supply of oxygen is suppressed, the two main surfaces of the resin sheet may be in contact with a member having an oxygen permeability of 0.5 mL/(m 2 ·24 h·atm) or less, respectively. .3mL / (m 2 · 24h · atm) may be in contact with at a member or less, may be in contact with 0.1mL / (m 2 · 24h · atm) or less is member.
 前述の樹脂シートと接触する部材は、樹脂シートと接着される被着体であってもよい。 The member that comes into contact with the resin sheet may be an adherend that is adhered to the resin sheet.
 また、本開示の樹脂シートは、2つの主面がそれぞれ被着体と接着され、かつ少なくとも一方の主面が被着体の金属及び金属イオンの少なくとも一方を含む表面と接着されて用いられることが好ましく、2つの主面が被着体の金属及び金属イオンの少なくとも一方を含む表面と接着されて用いられることがより好ましい。酸素の供給が抑制された嫌気性条件、例えば、樹脂シートの2つの主面がそれぞれ被着体と接触して酸素の供給が抑制された条件にて、樹脂シートの少なくとも一方の主面が被着体の金属及び金属イオンの少なくとも一方を含む表面と接着されることにより、樹脂シートに含まれる特定の多量体の重合反応が好適に進行し、樹脂シートを好適に硬化させることができる。 Further, the resin sheet of the present disclosure has two main surfaces bonded to an adherend, and at least one main surface bonded to a surface of the adherend containing at least one of metal and metal ions. Is preferred, and it is more preferred that the two main surfaces are used by being adhered to the surface of the adherend containing at least one of metal and metal ions. At least one main surface of the resin sheet is covered under anaerobic conditions in which the supply of oxygen is suppressed, for example, under the condition that the two main surfaces of the resin sheet are in contact with the adherend and the supply of oxygen is suppressed. By adhering to the surface of the adherend containing at least one of the metal and the metal ion, the polymerization reaction of the specific multimer contained in the resin sheet suitably proceeds, and the resin sheet can be suitably cured.
 本開示の樹脂シートでは、2つの主面の少なくとも一方は、金属及び金属イオンの少なくとも一方を含む金属含有層と接着されて用いられてもよく、2つの主面は金属含有層と接着されて用いられてもよい。なお、金属含有層における樹脂シートと接着していない面には、別の層が積層されていてもよく、この別の層は金属及び金属イオンの少なくとも一方を含んでいてもよく、含んでいなくてもよい。 In the resin sheet of the present disclosure, at least one of the two main surfaces may be used by being bonded to a metal-containing layer containing at least one of a metal and metal ions, and the two main surfaces may be bonded to the metal-containing layer. It may be used. Incidentally, another layer may be laminated on the surface of the metal-containing layer that is not bonded to the resin sheet, and this other layer may or may not include at least one of a metal and a metal ion. You don't have to.
 金属としては、鉄、アルミニウム、亜鉛、チタン、クロム、マンガン、コバルト、ニッケル、スズ、鉛、銅、銀、金等が挙げられ、金属イオンとしては、これらのイオンが挙げられる。金属としては、ステンレス鋼等の合金であってもよい。 Examples of metals include iron, aluminum, zinc, titanium, chromium, manganese, cobalt, nickel, tin, lead, copper, silver and gold, and examples of metal ions include these ions. The metal may be an alloy such as stainless steel.
 樹脂シートの厚さは特に制限されず、目的に応じて適宜選択することができる。例えば、樹脂シートの厚さは、高熱伝導性、絶縁性及び硬化性の点から、30μm~400μmであってもよく、50μm~300μmであってもよい。本開示において樹脂シート等の厚さは公知の方法により測定でき、5点で測定した値の数平均値とする。 The thickness of the resin sheet is not particularly limited and can be appropriately selected according to the purpose. For example, the thickness of the resin sheet may be 30 μm to 400 μm, or may be 50 μm to 300 μm from the viewpoint of high thermal conductivity, insulation and curability. In the present disclosure, the thickness of the resin sheet or the like can be measured by a known method, and is the number average value of the values measured at 5 points.
 樹脂シートは、5℃~70℃の温度にて硬化させてもよく、好ましくは10℃~40℃の温度にて硬化させてもよい。 The resin sheet may be cured at a temperature of 5°C to 70°C, preferably 10°C to 40°C.
 本開示の樹脂シートの用途は、特に制限されない。例えば、半導体装置が挙げられる。半導体装置の中でも、特に発熱密度が高い部品に好適に用いられる。 The use of the resin sheet of the present disclosure is not particularly limited. For example, a semiconductor device can be given. Among semiconductor devices, it is preferably used for parts having a particularly high heat generation density.
 本開示の樹脂シートの製造方法は特に限定されるものではない。例えば、樹脂製の支持体上に、メチルエチルケトン、シクロヘキサノン等の有機溶剤を添加して調製したワニス状の樹脂組成物(以下、「樹脂ワニス」ともいう。)を、ディスペンサー等により付与して樹脂組成物の層を形成した後、樹脂組成物の層から有機溶剤の少なくとも一部を乾燥により除去することで製造することができる。 The method for producing the resin sheet of the present disclosure is not particularly limited. For example, a resin composition in which a varnish-shaped resin composition prepared by adding an organic solvent such as methyl ethyl ketone or cyclohexanone (hereinafter, also referred to as “resin varnish”) on a resin support is applied by a dispenser or the like. After forming the layer of the product, it can be produced by removing at least a part of the organic solvent from the layer of the resin composition by drying.
 乾燥方法は、樹脂ワニスに含まれる有機溶剤の少なくとも一部を除去できれば特に制限されず、通常用いられる乾燥方法から、樹脂ワニスに含まれる有機溶剤の種類、含有量等に応じて適宜選択することができる。 The drying method is not particularly limited as long as at least a part of the organic solvent contained in the resin varnish can be removed, and from the commonly used drying methods, the type of the organic solvent contained in the resin varnish, the content may be appropriately selected depending on the content. You can
<金属基板>
 本開示の金属基板は、金属支持体と、金属支持体上に配置された本開示の樹脂シートの硬化物と、硬化物上に配置された金属箔と、を備える。本開示の金属基板は、室温条件又は室温に近い条件にて樹脂シートを硬化させて製造可能である。
<Metal substrate>
The metal substrate of the present disclosure includes a metal support, a cured product of the resin sheet of the present disclosure disposed on the metal support, and a metal foil disposed on the cured product. The metal substrate of the present disclosure can be manufactured by curing a resin sheet under room temperature conditions or conditions close to room temperature.
 金属支持体は、目的に応じて、その素材、厚さ等は適宜選択することができる。具体的には、アルミニウム、鉄等の金属を用い、厚さを0.5mm~5mmとすることができる。 The material, thickness, etc. of the metal support can be appropriately selected according to the purpose. Specifically, a metal such as aluminum or iron can be used and the thickness can be set to 0.5 mm to 5 mm.
 金属基板における金属箔は、特に制限されず、金箔、銅箔、アルミニウム箔等が挙げられ、一般的には銅箔が用いられる。
 金属箔の厚さとしては、例えば、1μm~200μmが挙げられ、可とう性の観点から、120μm以下であることが好ましい。
 また、金属箔としては、ニッケル、ニッケル-リン合金、ニッケル-スズ合金、ニッケル-鉄合金、鉛、鉛-スズ合金等を中間層とし、この両面に銅層を設けた3層構造の複合箔、アルミニウム箔と銅箔とを複合した2層構造の複合箔などが挙げられる。中間層の両面に銅層を設けた3層構造の複合箔では、一方の銅層の厚さを0.5μm~15μmとし、他方の銅層の厚さを10μm~300μmとすることが好ましい。
The metal foil in the metal substrate is not particularly limited, and examples thereof include gold foil, copper foil, aluminum foil, and the like, and generally copper foil is used.
The thickness of the metal foil is, for example, 1 μm to 200 μm, and is preferably 120 μm or less from the viewpoint of flexibility.
As the metal foil, nickel, nickel-phosphorus alloy, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as an intermediate layer, and a copper foil layer is provided on both surfaces of the foil to form a composite foil having a three-layer structure. Examples include a composite foil having a two-layer structure in which an aluminum foil and a copper foil are combined. In the three-layer composite foil in which copper layers are provided on both surfaces of the intermediate layer, it is preferable that one copper layer has a thickness of 0.5 μm to 15 μm and the other copper layer has a thickness of 10 μm to 300 μm.
<金属基板の製造方法>
 本開示の金属基板の製造方法は、金属支持体と、本開示の樹脂シートと、金属箔とをこの順に積層する工程と、前記樹脂シートを酸素の供給が抑制された嫌気性条件にて硬化させる工程と、を含む。
<Metal Substrate Manufacturing Method>
The method for producing a metal substrate of the present disclosure includes a step of laminating a metal support, a resin sheet of the present disclosure, and a metal foil in this order, and curing the resin sheet under anaerobic conditions in which oxygen supply is suppressed. And a step of
 前述の積層する工程では、金属支持体上又は金属箔上に、樹脂組成物を付与し乾燥することで樹脂シートを形成又は樹脂シートを配置し、さらに樹脂シート上に金属箔又は金属支持体を配置することにより、金属支持体と、本開示の樹脂シートと、金属箔とをこの順に積層してもよい。 In the above-mentioned laminating step, a resin sheet is formed by placing the resin composition on the metal support or the metal foil and drying the resin sheet or disposing the resin sheet, and further, the metal foil or the metal support is placed on the resin sheet. By disposing, the metal support, the resin sheet of the present disclosure, and the metal foil may be laminated in this order.
 前述の硬化させる工程では、樹脂シートの2つの主面に金属支持体及び金属箔に接触することで樹脂シートの酸素の供給が抑制された嫌気性条件となっていてもよい。これにより、樹脂シート硬化の際に、嫌気性条件とするための装置、操作等が特に不要となる。 In the curing step described above, the two main surfaces of the resin sheet may be in an anaerobic condition in which the supply of oxygen to the resin sheet is suppressed by contacting the metal support and the metal foil. As a result, when the resin sheet is cured, there is no need for a device, an operation, or the like for setting an anaerobic condition.
 前述の硬化させる工程では、樹脂シートを5℃~70℃の温度にて硬化させてもよく、好ましくは10℃~40℃の温度にて硬化させてもよい。 In the above curing step, the resin sheet may be cured at a temperature of 5°C to 70°C, preferably 10°C to 40°C.
 前述の硬化させる工程では、樹脂シートを加圧しながら硬化させてもよく、例えば、0.05MPa~20MPa加圧してもよく、好ましくは0.2MPa~15MPa加圧してもよい。 In the curing step described above, the resin sheet may be cured while being pressurized, for example, 0.05 MPa to 20 MPa may be pressurized, preferably 0.2 MPa to 15 MPa.
<パワー半導体装置>
 本開示のパワー半導体装置は、金属板、はんだ層及び半導体チップがこの順に積層された半導体モジュールと、金属を含む放熱部材と、半導体モジュールの金属板と放熱部材との間に配置された本開示の樹脂シートの硬化物と、を備える。
 パワー半導体装置は、半導体モジュール部分のみが封止材等で封止されていても、パワー半導体モジュール全体がモールド樹脂等でモールドされていてもよい。以下、パワー半導体装置の例を、図面を用いて説明する。
<Power semiconductor device>
The power semiconductor device of the present disclosure includes a semiconductor module in which a metal plate, a solder layer, and a semiconductor chip are laminated in this order, a heat dissipation member containing a metal, and the present disclosure disposed between the metal plate and the heat dissipation member of the semiconductor module. And a cured product of the resin sheet.
In the power semiconductor device, only the semiconductor module portion may be sealed with a sealing material or the like, or the entire power semiconductor module may be molded with a molding resin or the like. Hereinafter, an example of the power semiconductor device will be described with reference to the drawings.
 図1はパワー半導体装置の構成の一例を示す概略断面図である。図1では、金属板106とはんだ層110と半導体チップ108とがこの順に積層された半導体モジュールにおける金属板106と、放熱ベース基板104との間に樹脂シートの硬化物102が配置され、半導体モジュールの部分が封止材114で封止されている。放熱ベース基板104は、熱伝導性を有する銅又はアルミニウムを用いて構成することができる。
 また、図2はパワー半導体装置の構成の別の一例を示す概略断面図である。図2では、金属板106とはんだ層110と半導体チップ108とがこの順に積層された半導体モジュールにおける金属板106と、放熱ベース基板104との間に樹脂シートの硬化物102が配置され、半導体モジュールと放熱ベース基板104とがモールド樹脂112でモールドされている。
FIG. 1 is a schematic sectional view showing an example of the configuration of a power semiconductor device. In FIG. 1, a cured product 102 of a resin sheet is arranged between a metal plate 106 in a semiconductor module in which a metal plate 106, a solder layer 110, and a semiconductor chip 108 are laminated in this order, and a heat dissipation base substrate 104. Is sealed with a sealing material 114. The heat dissipation base substrate 104 can be configured by using copper or aluminum having thermal conductivity.
Further, FIG. 2 is a schematic sectional view showing another example of the configuration of the power semiconductor device. In FIG. 2, a cured product 102 of a resin sheet is arranged between a metal plate 106 in a semiconductor module in which a metal plate 106, a solder layer 110, and a semiconductor chip 108 are laminated in this order, and a heat dissipation base substrate 104. The heat dissipation base substrate 104 is molded with the mold resin 112.
 このように、本開示の樹脂シートの硬化物は、図1に示すように半導体モジュールと放熱ベース基板との間の放熱性の接着層として用いることが可能である。また、図2のようにパワー半導体装置の全体をモールド成形する場合でも、放熱ベース基板と金属板との間の放熱材として用いることが可能である。 As described above, the cured product of the resin sheet of the present disclosure can be used as a heat dissipation adhesive layer between a semiconductor module and a heat dissipation base substrate as shown in FIG. Further, even when the entire power semiconductor device is molded as shown in FIG. 2, it can be used as a heat dissipation material between the heat dissipation base substrate and the metal plate.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
 以下に多量体A及び多量体Bの合成に用いた材料とその略号を示す。
(モノマー)
 ・アクリル酸エチル(エチルアクリレート、富士フイルム和光純薬株式会社)
 ・アクリル酸ブチル(n-ブチルアクリレート、富士フイルム和光純薬株式会社)
 ・2-ヒドロキシエチルアクリレート(日油株式会社)
 ・2-イソシアナトエチルメタクリレート(MOI)(2-メタクリロイルオキシエチルイソシアネート、昭和電工株式会社)
(重合開始剤)
 ・アゾビスイソブチロニトリル(富士フイルム和光純薬株式会社)
(触媒)
 ・ジラウリン酸ジブチルすず(富士フイルム和光純薬株式会社)
(溶剤)
 ・メチルエチルケトン(富士フイルム和光純薬株式会社)
 ・イソプロパノール(富士フイルム和光純薬株式会社)
The materials used for the synthesis of polymer A and polymer B and their abbreviations are shown below.
(monomer)
・Ethyl acrylate (Ethyl acrylate, Fujifilm Wako Pure Chemical Industries, Ltd.)
・Butyl acrylate (n-butyl acrylate, Fujifilm Wako Pure Chemical Industries, Ltd.)
・2-Hydroxyethyl acrylate (NOF CORPORATION)
・2-Isocyanatoethyl methacrylate (MOI) (2-methacryloyloxyethyl isocyanate, Showa Denko KK)
(Polymerization initiator)
・Azobisisobutyronitrile (Fujifilm Wako Pure Chemical Industries, Ltd.)
(catalyst)
・Dibutyltin dilaurate (Fujifilm Wako Pure Chemical Industries, Ltd.)
(solvent)
・Methyl ethyl ketone (Fujifilm Wako Pure Chemical Industries, Ltd.)
・Isopropanol (Fujifilm Wako Pure Chemical Industries, Ltd.)
[アクリル樹脂の合成]
 以下のとおり、公知の溶液重合方法により、実施例で用いたアクリル樹脂を合成した。
[Synthesis of acrylic resin]
As described below, the acrylic resin used in the examples was synthesized by a known solution polymerization method.
(アクリル中間体Aの合成例)
 撹拌機、温度計、窒素ガス導入管、排出管及び加熱ジャケットから構成された500mLフラスコを反応器とし、モノマーとしてアクリル酸エチル45.0g、アクリル酸ブチル94.5g、2-ヒドロキシエチルアクリレート10.5g、溶媒としてメチルエチルケトン177.3gを混合し、反応器に加え、室温下(25℃)、撹拌回転数250回/分で撹拌し、1時間、窒素を100mL/分で流した。その後、30分かけて65℃に昇温し、昇温完了後、アゾビスイソブチロニトリル0.38gをメチルエチルケトン6gに溶解した溶液を反応器に添加し、反応を開始させた。その後、反応器内温度65℃で撹拌し、5時間反応させた。その後、アゾビスイソブチロニトリル0.08gをメチルエチルケトン1.5gに溶解した溶液を反応器に添加し、15分かけて80℃まで昇温し、さらに2時間反応させた。その後、溶媒を除去、乾燥し、アクリル中間体Aを得た。
(Synthesis example of acrylic intermediate A)
A 500 mL flask composed of a stirrer, a thermometer, a nitrogen gas introduction pipe, a discharge pipe and a heating jacket was used as a reactor, and 45.0 g of ethyl acrylate as a monomer, 94.5 g of butyl acrylate, and 2-hydroxyethyl acrylate 10. 5 g and 177.3 g of methyl ethyl ketone as a solvent were mixed and added to the reactor, and the mixture was stirred at room temperature (25° C.) at a stirring rotation speed of 250 rpm, and nitrogen was flowed at 100 mL/min for 1 hour. Thereafter, the temperature was raised to 65° C. over 30 minutes, and after the temperature was completed, a solution prepared by dissolving 0.38 g of azobisisobutyronitrile in 6 g of methyl ethyl ketone was added to the reactor to start the reaction. After that, the mixture was stirred at a reactor internal temperature of 65° C. and reacted for 5 hours. Then, a solution prepared by dissolving 0.08 g of azobisisobutyronitrile in 1.5 g of methyl ethyl ketone was added to the reactor, heated to 80° C. over 15 minutes, and further reacted for 2 hours. Then, the solvent was removed and dried to obtain an acrylic intermediate A.
(アクリル中間体Bの合成例)
 撹拌機、温度計、窒素ガス導入管、排出管及び加熱ジャケットから構成された500mLフラスコを反応器とし、モノマーとしてアクリル酸エチル41.1g、アクリル酸ブチル86.4g、2-ヒドロキシエチルアクリレート15.0g、溶媒としてイソプロパノール164.6gを混合し、反応器に加え、室温下(25℃)、撹拌回転数250回/分で撹拌し、1時間、窒素を100mL/分で流した。その後、30分かけて70℃に昇温し、昇温完了後、アゾビスイソブチロニトリル0.38gをメチルエチルケトン3gに溶解した溶液を反応器に添加し、反応を開始させた。その後、反応器内温度70℃で撹拌し、5時間反応させた。その後、アゾビスイソブチロニトリル0.08gをメチルエチルケトン1.5gに溶解した溶液を反応器に添加し、15分かけて80℃まで昇温し、さらに2時間反応させた。その後、溶媒を除去、乾燥し、アクリル中間体Bを得た。
(Synthesis example of acrylic intermediate B)
A 500 mL flask composed of a stirrer, a thermometer, a nitrogen gas introduction pipe, a discharge pipe, and a heating jacket was used as a reactor, and 41.1 g of ethyl acrylate as a monomer, 86.4 g of butyl acrylate, and 2-hydroxyethyl acrylate 15. 0 g and 164.6 g of isopropanol as a solvent were mixed and added to the reactor, and the mixture was stirred at room temperature (25° C.) at a stirring rotation speed of 250 times/min, and nitrogen was flowed at 100 mL/min for 1 hour. Then, the temperature was raised to 70° C. over 30 minutes, and after the temperature was completed, a solution prepared by dissolving 0.38 g of azobisisobutyronitrile in 3 g of methyl ethyl ketone was added to the reactor to start the reaction. After that, the mixture was stirred at a reactor temperature of 70° C. and reacted for 5 hours. Then, a solution prepared by dissolving 0.08 g of azobisisobutyronitrile in 1.5 g of methyl ethyl ketone was added to the reactor, heated to 80° C. over 15 minutes, and further reacted for 2 hours. Then, the solvent was removed and dried to obtain an acrylic intermediate B.
(MOI変性アクリル樹脂の合成法)
(多量体A)
 100mLのナス型フラスコを反応器とし、アクリル中間体A30g、MOI2g、ジラウリン酸ジブチルすず0.002gを混合し、75℃で1時間、撹拌回転数400回/分で撹拌し、アクリル中間体ポリマをMOI変性し、MOI変性アクリル樹脂A(多量体A)を得た。MOI変性アクリル樹脂Aの重量平均分子量(Mw)は、200000であった。なお、多量体Aは、アクリル中間体Aにおける2-ヒドロキシエチルアクリレート由来のヒドロキシ基と、MOIにおけるイソシアネート基とが反応して形成されたウレタン結合を有し、かつ側鎖末端に(メタ)アクリロイル基を有する多量体である。
(多量体B)
 100mLのナス型フラスコを反応器とし、アクリル中間体B30g、MOI4g、ジラウリン酸ジブチルすず0.002gを混合し、75℃で1時間、撹拌回転数400回/分で撹拌し、アクリル中間体ポリマをMOI変性し、MOI変性アクリル樹脂B(多量体B)を得た。MOI変性アクリル樹脂Bの重量平均分子量(Mw)は、20000であった。なお、多量体Bは、アクリル中間体Bにおける2-ヒドロキシエチルアクリレート由来のヒドロキシ基と、MOIにおけるイソシアネート基とが反応して形成されたウレタン結合を有し、かつ側鎖末端に(メタ)アクリロイル基を有する多量体である。
(Synthesis method of MOI modified acrylic resin)
(Multimer A)
Using a 100-mL eggplant-shaped flask as a reactor, 30 g of acrylic intermediate A, 2 g of MOI, and 0.002 g of dibutyltin dilaurate were mixed, and the mixture was stirred at 75° C. for 1 hour at a rotation speed of 400 times/minute to obtain an acrylic intermediate polymer. MOI-modified to obtain MOI-modified acrylic resin A (multimer A). The weight average molecular weight (Mw) of MOI modified acrylic resin A was 200,000. The multimer A has a urethane bond formed by the reaction of the hydroxy group derived from 2-hydroxyethyl acrylate in the acrylic intermediate A with the isocyanate group in MOI, and has (meth)acryloyl at the side chain end. It is a multimer having a group.
(Multimer B)
Using a 100-mL eggplant-shaped flask as a reactor, 30 g of acrylic intermediate B, 4 g of MOI, and 0.002 g of dibutyltin dilaurate were mixed, and the mixture was stirred at 75° C. for 1 hour at a stirring rotation number of 400 times/minute to obtain an acrylic intermediate polymer. MOI modified to obtain MOI modified acrylic resin B (multimer B). The weight average molecular weight (Mw) of MOI modified acrylic resin B was 20000. The multimer B has a urethane bond formed by the reaction between the hydroxy group derived from 2-hydroxyethyl acrylate in the acrylic intermediate B and the isocyanate group in the MOI, and has (meth)acryloyl at the side chain terminal. It is a multimer having a group.
 以下に樹脂組成物の調製及び樹脂シートの作製に用いた材料とその略号を示す。
(特定の多量体)
 ・多量体A(重量平均分子量200000)
 ・多量体B(重量平均分子量20000)
The materials used for the preparation of the resin composition and the resin sheet and their abbreviations are shown below.
(Specific multimers)
・Polymer A (weight average molecular weight 200,000)
・Polymer B (weight average molecular weight 20000)
 ・重合開始剤:クメンハイドロパーオキサイド(東京化成工業株式会社)
 ・重合促進剤:ナフテン酸コバルト(東京化成工業株式会社)
・Polymerization initiator: Cumene hydroperoxide (Tokyo Chemical Industry Co., Ltd.)
・Polymerization accelerator: Cobalt naphthenate (Tokyo Chemical Industry Co., Ltd.)
(その他の硬化性化合物及び硬化剤)
 ・樹脂A:YL6121H(三菱ケミカル株式会社、エポキシ当量:172g/eq)
 ・硬化剤A:MEHC-7403H[高耐熱・難燃性フェノール樹脂、明和化成株式会社、水酸基当量:136g/eq]
 ・硬化剤B:QC11(三菱ケミカル株式会社製、アミン価:420KOHmg/g)
 ・硬化促進剤A:TPP(トリフェニルホスフィン、富士フイルム和光純薬株式会社製
(Other curable compounds and curing agents)
-Resin A: YL6121H (Mitsubishi Chemical Corporation, epoxy equivalent: 172 g/eq)
-Curing agent A: MEHC-7403H [highly heat-resistant and flame-retardant phenolic resin, Meiwa Kasei Co., Ltd., hydroxyl equivalent: 136 g/eq]
-Curing agent B: QC11 (manufactured by Mitsubishi Chemical Corporation, amine value: 420 KOHmg/g)
-Curing accelerator A: TPP (triphenylphosphine, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
(無機充填材)
 ・無機充填材1:AA-18(アルミナ粒子、住友化学株式会社、D50:18μm)
 ・無機充填材2:AA-3(アルミナ粒子、住友化学株式会社、D50:3μm)
 ・無機充填材3:AA-04(アルミナ粒子、住友化学株式会社、D50:0.4μm)
 ・無機充填材4:HP-40(窒化ホウ素粒子、水島合金鉄株式会社、D50:40μm)
(Inorganic filler)
Inorganic filler 1: AA-18 (alumina particles, Sumitomo Chemical Co., Ltd., D50: 18 μm)
Inorganic filler 2: AA-3 (alumina particles, Sumitomo Chemical Co., Ltd., D50: 3 μm)
Inorganic filler 3: AA-04 (alumina particles, Sumitomo Chemical Co., Ltd., D50: 0.4 μm)
Inorganic filler 4: HP-40 (boron nitride particles, Mizushima Iron & Iron Co., Ltd., D50: 40 μm)
(添加剤)
 ・KBM-573:3-フェニルアミノプロピルトリメトキシシラン[シランカップリング剤、信越化学工業株式会社、商品名]
(Additive)
-KBM-573: 3-phenylaminopropyltrimethoxysilane [silane coupling agent, Shin-Etsu Chemical Co., Ltd., trade name]
(溶剤)
 ・メチルエチルケトン(富士フイルム和光純薬株式会社)
(solvent)
・Methyl ethyl ketone (Fujifilm Wako Pure Chemical Industries, Ltd.)
(支持体)
 ・PETフィルム[帝人フィルムソリューション株式会社、商品名:A31、厚さ50μm、酸素透過率100mL/(m・24h・atm)以下]
 
 ・銅箔[古河電気工業株式会社、厚さ:105μm、GTSグレード、酸素透過率0.5mL/(m・24h・atm)以下]
(Support)
・PET film [Teijin Film Solutions Co., Ltd., trade name: A31, thickness 50 μm, oxygen permeability 100 mL/(m 2 ·24 h·atm) or less]

・Copper foil [Furukawa Electric Co., Ltd., thickness: 105 μm, GTS grade, oxygen permeability 0.5 mL/(m 2 ·24 h·atm) or less]
<実施例1>
(樹脂組成物の調製)
 多量体Aを9.76質量%と、重合開始剤を0.1質量%と、重合促進剤を0.01質量%と、無機充填材1を50.34質量%と、無機充填材2を18.30質量%と、無機充填材3を7.63質量%と、添加剤を0.08質量%と、溶剤を13.78質量%と、を混合し、ワニス状の樹脂組成物を調製した。
 無機充填材1の密度を3.98g/cm、無機充填材2の密度を3.98g/cm、無機充填材3の密度を3.98g/cm並びに多量体A、重合開始剤及び重合促進剤の密度を1.2g/cmとして、樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
<Example 1>
(Preparation of resin composition)
9.76% by mass of the polymer A, 0.1% by mass of the polymerization initiator, 0.01% by mass of the polymerization accelerator, 50.34% by mass of the inorganic filler 1, and 2 of the inorganic filler 2. 18.30% by mass, 7.63% by mass of the inorganic filler 3, 0.08% by mass of the additive, and 13.78% by mass of the solvent are mixed to prepare a varnish-like resin composition. did.
The density of the inorganic filler 1 is 3.98 g/cm 3 , the density of the inorganic filler 2 is 3.98 g/cm 3 , the density of the inorganic filler 3 is 3.98 g/cm 3 , the polymer A, the polymerization initiator, and When the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 70% by volume.
(Bステージシートの作製)
 このワニスを使用し、アプリケーターを用いて乾燥後の厚みが200μmとなるようにPETフィルム上に塗布した後、70℃で10分間乾燥させた。その後、PETフィルムと逆面に銅箔を設置し、プレス機にて加圧(プレス温度:室温、プレス圧:2MPa、加圧時間:2分)を行い、PETフィルム及び銅箔付きBステージシートを得た。
(Preparation of B stage sheet)
Using this varnish, a PET film was applied using an applicator so that the thickness after drying was 200 μm, and then dried at 70° C. for 10 minutes. After that, a copper foil is placed on the opposite side of the PET film, and pressure is applied (press temperature: room temperature, press pressure: 2 MPa, pressurization time: 2 minutes) with a press machine, and a PET film and a B stage sheet with copper foil are applied. Got
(樹脂シートの硬化)
 PETフィルム及び銅箔付きBステージシートからPETフィルムを剥がし、PETフィルムを剥がした面に銅箔を設置し、プレス機にて圧着(プレス温度:室温、プレス圧:2MPa、加圧時間:12時間)することで、硬化樹脂シートを得た。
(Curing of resin sheet)
Peel off the PET film from the PET film and B stage sheet with copper foil, place the copper foil on the surface from which the PET film was peeled off, and press-bond with a press machine (press temperature: room temperature, press pressure: 2 MPa, pressurizing time: 12 hours). By doing so, a cured resin sheet was obtained.
(Bステージシートの硬化性)
 Bステージシートの硬化性の評価のため、アプリケーターを用いて乾燥後の厚みが200μmとなるようにPETフィルム上に前述のワニス状の樹脂組成物を塗布した後、70℃で10分間乾燥させてBステージ化前サンプルを準備した。
 さらに、PETフィルム及び銅箔付きBステージシートからPETフィルムを剥がし、Bステージ化後サンプルを準備した。
 示差走査熱量測定計(パーキンエルマー社製、型番DSC8500)を用いて、Bステージ化前後のサンプルを10℃/分で20℃から300℃まで昇温し、発熱量を測定した。
 硬化率Aは下記の式にて算出した。
 硬化率A(%)=(Bステージ化後サンプルの発熱量/Bステージ化前サンプルの発熱量)×100
<硬化性の評価>
 以下の基準に基づいて硬化性を評価した。
A:硬化率50%以上
B:硬化率50%未満
(B stage sheet curability)
To evaluate the curability of the B stage sheet, the above varnish-shaped resin composition was applied onto a PET film using an applicator so that the thickness after drying was 200 μm, and then dried at 70° C. for 10 minutes. A sample before being B-staged was prepared.
Furthermore, the PET film was peeled off from the PET film and the B stage sheet with the copper foil, and after the B stage, a sample was prepared.
Using a differential scanning calorimeter (manufactured by Perkin Elmer, model number DSC8500), the sample before and after the B stage was heated from 20°C to 300°C at 10°C/min, and the calorific value was measured.
The curing rate A was calculated by the following formula.
Curing rate A (%) = (heat generation amount of sample after B stage conversion/heat generation amount of sample before B stage conversion) x 100
<Evaluation of curability>
The curability was evaluated based on the following criteria.
A: Curing rate 50% or more B: Curing rate less than 50%
(PETフィルム剥離性)
 PETフィルム及び銅箔付きBステージシートからPETフィルムを剥がしたときのPETフィルムに付着した樹脂シートの割合(樹脂転写率)を以下の式に基づき算出した。
 樹脂転写率(%)=(PETフィルムに付着した樹脂シートの質量/剥離前の樹脂シートの質量)×100
<剥離性の評価>
 以下の基準に基づいて剥離性を評価した。
A:樹脂転写率5%未満
B:樹脂転写率5%以上
(PET film peelability)
The ratio of the resin sheet attached to the PET film (resin transfer rate) when the PET film was peeled off from the PET film and the B-stage sheet with copper foil was calculated based on the following formula.
Resin transfer rate (%)=(mass of resin sheet attached to PET film/mass of resin sheet before peeling)×100
<Evaluation of peelability>
The peelability was evaluated based on the following criteria.
A: Resin transfer rate of less than 5% B: Resin transfer rate of 5% or more
(硬化の確認)
 硬化の確認のため、前述のBステージシートの硬化性と同様、Bステージ化前サンプルを準備した。
 さらに、前述の硬化樹脂シートを硬化後サンプルとして用いた。
 示差走査熱量測定計(パーキンエルマー社製、型番DSC8500)を用いて、Bステージ化前サンプルと硬化後サンプルを10℃/分で20℃から300℃まで昇温し、発熱量を測定した。
 硬化率Bは下記の式にて算出した。
 硬化率B(%)=(硬化後サンプルの発熱量/Bステージ化前サンプルの発熱量)×100
<硬化性の評価>
 以下の基準に基づいて硬化性を評価した。
A:硬化率20%未満
B:硬化率20%以上
(Curing confirmation)
For confirmation of curing, a sample before being B-staged was prepared in the same manner as the curability of the B-stage sheet described above.
Further, the above-mentioned cured resin sheet was used as a sample after curing.
Using a differential scanning calorimeter (manufactured by Perkin Elmer, model number DSC8500), the pre-B-stage sample and the post-curing sample were heated from 20° C. to 300° C. at 10° C./min, and the calorific value was measured.
The curing rate B was calculated by the following formula.
Curing rate B (%)=(calorific value of sample after curing/calorific value of sample before B stage conversion)×100
<Evaluation of curability>
The curability was evaluated based on the following criteria.
A: Curing rate less than 20% B: Curing rate 20% or more
(熱伝導率の測定)
 硬化樹脂シートの銅箔をエッチングして取り除き、熱伝導率評価用の樹脂シートを得た。得られた樹脂シートを縦10mm、横10mmに切って試料を得た。試料をグラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社の商品名:LFA447 nanoflash)にて熱拡散率を評価した。この値と、アルキメデス法で測定した密度と、DSC(示差走査熱量測定装置;Perkin Elmer社の商品名:DSC Pyris1)にて測定した比熱との積から、硬化樹脂シートの熱伝導率を求めた。結果を表1に示す。
(Measurement of thermal conductivity)
The copper foil of the cured resin sheet was removed by etching to obtain a resin sheet for evaluating thermal conductivity. The obtained resin sheet was cut into a length of 10 mm and a width of 10 mm to obtain a sample. After blackening the sample with graphite spray, the thermal diffusivity was evaluated by the xenon flash method (trade name: LFA447 nanoflash of NETZSCH). The thermal conductivity of the cured resin sheet was obtained from the product of this value, the density measured by the Archimedes method, and the specific heat measured by DSC (differential scanning calorimeter; product name of Perkin Elmer: DSC Pyris1). .. The results are shown in Table 1.
<実施例2>
(樹脂組成物の調製)
 多量体Bを9.76質量%と、重合開始剤を0.1質量%と、重合促進剤を0.01質量%と、無機充填材1を50.34質量%と、無機充填材2を18.30質量%と、無機充填材3を7.63質量%と、添加剤を0.08質量%と、溶剤を13.78質量%と、を混合し、ワニス状の樹脂組成物を調製した。
 無機充填材1の密度を3.98g/cm、無機充填材2の密度を3.98g/cm、無機充填材3の密度を3.98g/cm並びに多量体A、重合開始剤及び重合促進剤の密度を1.2g/cmとして、樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
<Example 2>
(Preparation of resin composition)
9.76% by mass of the polymer B, 0.1% by mass of the polymerization initiator, 0.01% by mass of the polymerization accelerator, 50.34% by mass of the inorganic filler 1, and 2 of the inorganic filler. 18.30% by mass, 7.63% by mass of the inorganic filler 3, 0.08% by mass of the additive, and 13.78% by mass of the solvent are mixed to prepare a varnish-like resin composition. did.
The density of the inorganic filler 1 is 3.98 g/cm 3 , the density of the inorganic filler 2 is 3.98 g/cm 3 , the density of the inorganic filler 3 is 3.98 g/cm 3 , the polymer A, the polymerization initiator, and When the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 70% by volume.
<実施例3>
(樹脂組成物の調製)
 多量体Aを15.00質量%と、重合開始剤を0.15質量%と、重合促進剤を0.01質量%と、無機充填材4を33.34質量%と、無機充填材2を7.54質量%と、無機充填材3を7.54質量%と、添加剤を0.05質量%と、溶剤を36.37質量%と、を混合し、ワニス状の樹脂組成物を調製した。
 無機充填材4の密度を2.20g/cm、無機充填材2の密度を3.98g/cm、無機充填材3の密度を3.98g/cm並びに多量体A、重合開始剤及び重合促進剤の密度を1.2g/cmとして、樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、60体積%であった。
<Example 3>
(Preparation of resin composition)
Polymer A 15.00 mass %, polymerization initiator 0.15 mass %, polymerization accelerator 0.01 mass %, inorganic filler 4 33.34 mass %, inorganic filler 2 7.54% by mass, 7.54% by mass of the inorganic filler 3, 0.05% by mass of the additive, and 36.37% by mass of the solvent are mixed to prepare a varnish-like resin composition. did.
The density of the inorganic filler 4 is 2.20 g/cm 3 , the density of the inorganic filler 2 is 3.98 g/cm 3 , the density of the inorganic filler 3 is 3.98 g/cm 3 , the polymer A, the polymerization initiator, and When the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 60% by volume.
<比較例1>
(樹脂組成物の調製)
 樹脂Aを5.53質量%と、硬化剤Aを4.30質量%と、硬化促進剤を0.2質量%と、無機充填材1を50.24質量%と、無機充填材2を18.27質量%と、無機充填材3を7.61質量%と、添加剤を0.08質量%と、溶剤を13.77質量%と、を混合し、ワニス状の樹脂組成物を調製した。
 無機充填材1の密度を3.98g/cm、無機充填材2の密度を3.98g/cm、無機充填材3の密度を3.98g/cm並びに多量体A、重合開始剤及び重合促進剤の密度を1.2g/cmとして、樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
<Comparative Example 1>
(Preparation of resin composition)
The resin A is 5.53% by mass, the curing agent A is 4.30% by mass, the curing accelerator is 0.2% by mass, the inorganic filler 1 is 50.24% by mass, and the inorganic filler 2 is 18%. A varnish-like resin composition was prepared by mixing 0.27% by mass, 7.61% by mass of the inorganic filler 3, 0.08% by mass of the additive, and 13.77% by mass of the solvent. ..
The density of the inorganic filler 1 is 3.98 g/cm 3 , the density of the inorganic filler 2 is 3.98 g/cm 3 , the density of the inorganic filler 3 is 3.98 g/cm 3 , the polymer A, the polymerization initiator, and When the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 70% by volume.
<比較例2>
(樹脂組成物の調製)
 樹脂Aを6.57質量%と、硬化剤Bを3.29質量%と、無機充填材1を50.34質量%と、無機充填材2を18.30質量%と、無機充填材3を7.63質量%と、添加剤を0.08質量%と、溶剤を13.79質量%と、を混合し、ワニス状の樹脂組成物を調製した。
 無機充填材1の密度を3.98g/cm、無機充填材2の密度を3.98g/cm、無機充填材3の密度を3.98g/cm並びに多量体A、重合開始剤及び重合促進剤の密度を1.2g/cmとして、樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
<Comparative example 2>
(Preparation of resin composition)
6.57% by mass of the resin A, 3.29% by mass of the curing agent B, 50.34% by mass of the inorganic filler 1, 18.30% by mass of the inorganic filler 2 and 3 of the inorganic filler 3. 7.63% by mass, 0.08% by mass of the additive, and 13.79% by mass of the solvent were mixed to prepare a varnish-shaped resin composition.
The density of the inorganic filler 1 is 3.98 g/cm 3 , the density of the inorganic filler 2 is 3.98 g/cm 3 , the density of the inorganic filler 3 is 3.98 g/cm 3 , the polymer A, the polymerization initiator, and When the density of the polymerization accelerator was 1.2 g/cm 3 and the ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated, it was 70% by volume.
<比較例3>
(樹脂組成物の調製)
 アクリル酸ブチルを6.15質量%と、アクリル酸エチルを2.93質量%と、2-ヒドロキシエチルアクリレートを0.68質量%と、重合開始剤を0.10質量%と、重合促進剤を0.01質量%と、無機充填材1を50.34質量%と、無機充填材2を18.30質量%と、無機充填材3を7.63質量%、添加剤を0.08質量%と、溶剤を13.78質量%と、を混合し、ワニス状の樹脂組成物を調製した。
 無機充填材1の密度を3.98g/cm、無機充填材2の密度を3.98g/cm、無機充填材3の密度を3.98g/cm並びに、アクリル酸ブチル、アクリル酸エチル、2-ヒドロキシエチルアクリレート、重合開始剤及び重合促進剤の密度を1.2g/cmとして、樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
<Comparative example 3>
(Preparation of resin composition)
Butyl acrylate 6.15% by mass, ethyl acrylate 2.93% by mass, 2-hydroxyethyl acrylate 0.68% by mass, polymerization initiator 0.10% by mass, and polymerization accelerator 0.01% by mass, 50.34% by mass of the inorganic filler 1, 18.30% by mass of the inorganic filler 2, 7.63% by mass of the inorganic filler 3, and 0.08% by mass of the additive. And 13.78 mass% of a solvent were mixed to prepare a varnish-like resin composition.
The density of the inorganic filler 1 is 3.98 g/cm 3 , the density of the inorganic filler 2 is 3.98 g/cm 3 , the density of the inorganic filler 3 is 3.98 g/cm 3 , and butyl acrylate and ethyl acrylate. The ratio of the inorganic filler to the total volume of the total solid content of the resin composition was calculated by setting the densities of the 2-hydroxyethyl acrylate, the polymerization initiator and the polymerization accelerator to be 1.2 g/cm 3 and found to be 70% by volume. there were.
 実施例2、3及び比較例1~3について、実施例1と同様の条件にて、Bステージシートの硬化性、PETフィルム剥離性、硬化の確認及び熱伝導率の測定を行った。
 結果を表1に示す。なお、表1中の「-」はデータ無しを意味する。
Regarding Examples 2 and 3 and Comparative Examples 1 to 3, under the same conditions as in Example 1, the curability of the B stage sheet, the PET film peeling property, the confirmation of curing, and the measurement of the thermal conductivity were performed.
The results are shown in Table 1. In addition, "-" in Table 1 means that there is no data.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~3では、Bステージの硬化性について、加熱処理をせずとも樹脂シートの硬化が進んだため、硬化率Aの値が高くなったと推測される。更に、実施例1~3では、加熱処理をせずとも硬化が十分に進んでいるため、硬化率Bの値が低くなったと推測される。
 以上により、実施例1~3では、室温条件にて樹脂シートの硬化が可能であることが分かった。更に、嫌気性条件下にて硬化されるため、意図せぬ硬化が生じにくく、ポットライフに優れることも推測される。
In Examples 1 to 3, regarding the curability of the B stage, it is presumed that the value of the curing rate A increased because the curing of the resin sheet proceeded without the heat treatment. Furthermore, in Examples 1 to 3, the curing progressed sufficiently even without heat treatment, so it is presumed that the value of the curing rate B became low.
From the above, it was found that in Examples 1 to 3, the resin sheet could be cured under room temperature conditions. Furthermore, since it is cured under anaerobic conditions, unintentional curing is unlikely to occur and the pot life is presumed to be excellent.
 比較例1では、Bステージの硬化性について、加熱処理をせずとも樹脂シートの硬化が進んだため、硬化率Aの値が高くなったと推測される。しかし、比較例1では、加熱処理をせずとも硬化する実施例1と同様の動作を行った場合では硬化が十分に進んでいないため、硬化率Bの値が高くなったと推測される。
 比較例2では、Bステージシートの硬化性について、ワニス状の樹脂組成物をPETフィルム状に塗布した後、乾燥した際に硬化してしまい、硬化率Aの値が低かった、
 以上により、比較例1、2では、被着体と貼り付ける前に樹脂シートの意図しない硬化が進んでしまい、ポットライフが不良であることが分かった。
In Comparative Example 1, regarding the curability of the B stage, it is presumed that the value of the curing rate A increased because the curing of the resin sheet proceeded without heat treatment. However, in Comparative Example 1, it is presumed that the value of the curing rate B became high because the curing did not proceed sufficiently when the same operation as in Example 1 in which the curing was performed without the heat treatment was performed.
In Comparative Example 2, regarding the curability of the B-stage sheet, the varnish-shaped resin composition was applied to a PET film and then cured when dried, and the value of the curing rate A was low.
From the above, in Comparative Examples 1 and 2, it was found that unintended curing of the resin sheet proceeded before being attached to the adherend, and the pot life was poor.
 また、比較例3では、嫌気硬化性官能基を有する単量体を用いているため、PETフィルムに樹脂が残りやすく、PETフィルム剥離性が不十分であった。 Further, in Comparative Example 3, since the monomer having the anaerobic curable functional group was used, the resin was likely to remain on the PET film, and the PET film releasability was insufficient.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的且つ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually noted to be incorporated by reference, Incorporated herein by reference.
102:樹脂シートの硬化物、104:放熱ベース基板、106:金属板、108:半導体チップ、110:はんだ層、112:モールド樹脂、114:封止材 102: cured product of resin sheet, 104: heat dissipation base substrate, 106: metal plate, 108: semiconductor chip, 110: solder layer, 112: mold resin, 114: sealing material

Claims (13)

  1.  側鎖に嫌気硬化性官能基を有する多量体を含み、
     酸素の供給が抑制された嫌気性条件にて用いられる樹脂組成物。
    Including a multimer having an anaerobic curable functional group in the side chain,
    A resin composition used under anaerobic conditions in which supply of oxygen is suppressed.
  2.  前記多量体は、前記嫌気硬化性官能基を側鎖末端に有する請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the multimer has the anaerobic curable functional group at a side chain end.
  3.  無機充填材を更に含む請求項1又は請求項2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, further comprising an inorganic filler.
  4.  無機充填材の含有率が全固形分に対して40体積%~90体積%である請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein the content of the inorganic filler is 40% by volume to 90% by volume based on the total solid content.
  5.  請求項1~請求項4のいずれか1項に記載の樹脂組成物のシート状成形体である樹脂シート。 A resin sheet which is a sheet-shaped molded product of the resin composition according to any one of claims 1 to 4.
  6.  2つの主面がそれぞれ被着体と接着され、かつ少なくとも一方の主面が前記被着体の金属及び金属イオンの少なくとも一方を含む表面と接着されて用いられる請求項5に記載の樹脂シート。 The resin sheet according to claim 5, wherein the two main surfaces are used by being adhered to an adherend, respectively, and at least one main surface is used by being adhered to a surface containing at least one of metal and metal ions of the adherend.
  7.  2つの主面の少なくとも一方は、金属及び金属イオンの少なくとも一方を含む金属含有層と接着されて用いられる請求項5又は請求項6に記載の樹脂シート。 The resin sheet according to claim 5 or 6, wherein at least one of the two main surfaces is used by being bonded to a metal-containing layer containing at least one of a metal and a metal ion.
  8.  樹脂シートの厚さが30μm~400μmである請求項5~請求項7のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 5 to 7, wherein the resin sheet has a thickness of 30 µm to 400 µm.
  9.  5℃~70℃の温度で硬化させる請求項5~請求項8のいずれか1項に記載の樹脂シート。 The resin sheet according to any one of claims 5 to 8, which is cured at a temperature of 5°C to 70°C.
  10.  金属支持体と、前記金属支持体上に配置された請求項5~請求項9のいずれか1項に記載の樹脂シートの硬化物と、前記硬化物上に配置された金属箔と、を備える金属基板。 A metal support, a cured product of the resin sheet according to any one of claims 5 to 9 disposed on the metal support, and a metal foil disposed on the cured product. Metal substrate.
  11.  金属板、はんだ層及び半導体チップがこの順に積層された半導体モジュールと、金属を含む放熱部材と、前記半導体モジュールの前記金属板と前記放熱部材との間に配置された請求項5~請求項9のいずれか1項に記載の樹脂シートの硬化物と、を備えるパワー半導体装置。 10. A semiconductor module in which a metal plate, a solder layer, and a semiconductor chip are laminated in this order, a heat dissipation member containing metal, and the semiconductor module is arranged between the metal plate and the heat dissipation member of the semiconductor module. A cured product of the resin sheet according to claim 1.
  12.  金属支持体と、請求項5~請求項9のいずれか1項に記載の樹脂シートと、金属箔とをこの順に積層する工程と、
     前記樹脂シートを酸素の供給が抑制された嫌気性条件にて硬化させる工程と、
     を含む金属基板の製造方法。
    A step of laminating a metal support, the resin sheet according to any one of claims 5 to 9 and a metal foil in this order;
    Curing the resin sheet under anaerobic conditions in which the supply of oxygen is suppressed,
    A method of manufacturing a metal substrate including:
  13.  前記硬化させる工程では、前記樹脂シートを5℃~70℃の温度にて硬化させる請求項12に記載の金属基板の製造方法。 The method for manufacturing a metal substrate according to claim 12, wherein in the curing step, the resin sheet is cured at a temperature of 5°C to 70°C.
PCT/JP2018/045188 2018-12-07 2018-12-07 Resin composition, resin sheet, metal substrate, power semiconductor device, and production method for metal substrate WO2020115914A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045188 WO2020115914A1 (en) 2018-12-07 2018-12-07 Resin composition, resin sheet, metal substrate, power semiconductor device, and production method for metal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045188 WO2020115914A1 (en) 2018-12-07 2018-12-07 Resin composition, resin sheet, metal substrate, power semiconductor device, and production method for metal substrate

Publications (1)

Publication Number Publication Date
WO2020115914A1 true WO2020115914A1 (en) 2020-06-11

Family

ID=70974160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045188 WO2020115914A1 (en) 2018-12-07 2018-12-07 Resin composition, resin sheet, metal substrate, power semiconductor device, and production method for metal substrate

Country Status (1)

Country Link
WO (1) WO2020115914A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114101A1 (en) * 2020-11-27 2022-06-02 大阪有機化学工業株式会社 Elasatomer-forming composition, elastomer, laminate, armature device, actuator, sensor, and method for manufacturing elasatomer-forming composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204199A (en) * 2009-02-27 2010-09-16 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition
WO2013141314A1 (en) * 2012-03-22 2013-09-26 日立化成株式会社 Photocurable resin composition, image display device, and method for producing same
JP2015001591A (en) * 2013-06-14 2015-01-05 日立化成株式会社 Photosensitive resin composition, photosensitive element, mask material for sandblasting, and method for working surface of workpiece
JP2017179002A (en) * 2016-03-28 2017-10-05 日立化成株式会社 Curable resin composition, cured product and resin sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204199A (en) * 2009-02-27 2010-09-16 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition
WO2013141314A1 (en) * 2012-03-22 2013-09-26 日立化成株式会社 Photocurable resin composition, image display device, and method for producing same
JP2015001591A (en) * 2013-06-14 2015-01-05 日立化成株式会社 Photosensitive resin composition, photosensitive element, mask material for sandblasting, and method for working surface of workpiece
JP2017179002A (en) * 2016-03-28 2017-10-05 日立化成株式会社 Curable resin composition, cured product and resin sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114101A1 (en) * 2020-11-27 2022-06-02 大阪有機化学工業株式会社 Elasatomer-forming composition, elastomer, laminate, armature device, actuator, sensor, and method for manufacturing elasatomer-forming composition

Similar Documents

Publication Publication Date Title
TWI295312B (en) B-stageable die attach adhesives
TWI391465B (en) A circuit connecting material, a connecting structure, and a method of manufacturing the same
JP5419318B2 (en) Resin composition and semiconductor device produced using resin composition
JP6287200B2 (en) Dicing tape for dicing and die bonding integrated tape
TW201033316A (en) Composition for circuit connection film and circuit connection film using the same
JP5941640B2 (en) Composite magnetic material
TWI600743B (en) Resin paste composition for adhering conductor element and semiconductor device
TW201011085A (en) Re-releasable adhesive agent and re-releasable adhesive sheet
JP2014154704A (en) Dicing/die bonding integrated tape
TWI656189B (en) Substrate, subsequent sheet with dicing sheet, and method of manufacturing semiconductor device
WO2020115914A1 (en) Resin composition, resin sheet, metal substrate, power semiconductor device, and production method for metal substrate
KR20230150308A (en) A composition containing a compound having a polyoxyalkylene chain and a compound having a poly(meth)acrylate chain
JP2009164500A (en) Adhesive, and semiconductor package
US11879075B2 (en) Resin composition for bonding semiconductors, adhesive film for semiconductor using the same, dicing die bonding film, and method for dicing semiconductor wafer
WO2020115913A1 (en) Resin sheet, resin composition, metal substrate, power semiconductor device, and method for producing metal substrate
JP2017103471A (en) Dicing tape for integrated dicing and die-bonding tape
JP6436199B2 (en) Manufacturing method of dicing die bonding integrated tape
JP5604828B2 (en) Resin composition and semiconductor device produced using resin composition
JP6291731B2 (en) Connection material, connection material for solar cell, solar cell module using the same, and manufacturing method thereof
JP6175935B2 (en) Solar cell connection material, solar cell module using the same, and manufacturing method thereof
JP2011082368A (en) Resin composition, and semiconductor device fabricated by using the same
WO2023223979A1 (en) Composition that contains compound having polyoxyalkylene chain and acrylic copolymer
CN104250523B (en) Connecting material, solar battery connecting material, solar cell module and its manufacturing method
EP4183848A1 (en) Dicing die bonding film
WO2017078087A1 (en) Adhesive composition and structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP