WO2020115822A1 - Ammonia vaporizer - Google Patents

Ammonia vaporizer Download PDF

Info

Publication number
WO2020115822A1
WO2020115822A1 PCT/JP2018/044609 JP2018044609W WO2020115822A1 WO 2020115822 A1 WO2020115822 A1 WO 2020115822A1 JP 2018044609 W JP2018044609 W JP 2018044609W WO 2020115822 A1 WO2020115822 A1 WO 2020115822A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaporizer
ammonia
pipe
heat exchange
steam
Prior art date
Application number
PCT/JP2018/044609
Other languages
French (fr)
Japanese (ja)
Inventor
博昭 谷川
泰孝 和田
昭人 織田
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to JP2019527579A priority Critical patent/JPWO2020115822A1/en
Priority to PCT/JP2018/044609 priority patent/WO2020115822A1/en
Publication of WO2020115822A1 publication Critical patent/WO2020115822A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases

Definitions

  • the present invention relates to an ammonia vaporizer.
  • Patent Document 1 An ammonia vaporizer that vaporizes liquid ammonia into ammonia gas is known (see Patent Document 1).
  • the liquid ammonia sent from the ammonia storage tank is vaporized by the heat of the vapor into ammonia gas.
  • ⁇ Liquid ammonia exchanges heat with vapor to vaporize it, but it is desired to reduce the amount of vapor used.
  • the present invention has been made in view of the above problems, and an object thereof is to reduce the amount of vapor used when vaporizing liquid ammonia to generate ammonia gas.
  • An ammonia vaporizer includes a first vaporizer that vaporizes liquid ammonia to produce ammonia gas, and a liquid that is connected to the first vaporizer and remains in the vaporization treatment of the first vaporizer.
  • a second vaporizer for vaporizing ammonia to produce ammonia gas.
  • the liquid ammonia remaining in the vaporization process of the first vaporizer is vaporized in the second vaporizer, thereby reducing the amount of vapor used in the vaporization process of the second vaporizer. be able to.
  • FIG. 1 is a schematic diagram showing a thermal power generation system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a thermal power generation system according to a second embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a thermal power generation system according to a first embodiment of the present invention.
  • the thermal power generation system 1 includes an ammonia vaporizer 100, a boiler 200, a turbine 300, a generator 400, and a condenser 500.
  • the ammonia gas generated by the ammonia vaporizer according to the present embodiment is used, for example, when heating the boiler of the thermal power plant.
  • the ammonia vaporizer 100 includes an ammonia storage tank 30, a first vaporizer 10, a second vaporizer 20, and a pump 40.
  • the ammonia storage tank 30 and the first vaporizer 10 are connected via a first pipe 11.
  • the first vaporizer 10 and the second vaporizer 20 are connected via a second pipe 12.
  • the third pipe 13 is connected to the second vaporizer 20.
  • the third pipe 13 is connected to the burner 210.
  • the first vaporizer 10 is connected to an inlet side pipe into which seawater that is the first heat exchange medium flows and an outlet side pipe from which seawater flows out.
  • the inlet side pipe is the fourth pipe 14 and the fifth pipe 15, and the outlet side pipe is the sixth pipe 16. That is, the pump 40 is connected to the fourth pipe 14, and the pump 40 and the first vaporizer 10 are connected to each other via the fifth pipe 15.
  • the outlet side pipe is the sixth pipe 16.
  • the second vaporizer 20 is connected to an inlet side pipe into which steam as a second heat exchange medium flows and an outlet side pipe from which steam flows out.
  • the inlet side pipe is the seventh pipe 17, and the outlet side pipe is the eighth pipe 18.
  • the first vaporizer 10 performs vaporization treatment that heats liquid ammonia to produce ammonia gas.
  • the boiling point of ammonia is ⁇ 33.3° C., which is lower than the temperature of seawater (eg, 20° C.). Therefore, liquid ammonia exchanges heat with seawater to become ammonia gas.
  • the second vaporizer 20 performs vaporization treatment that heats the liquid ammonia remaining in the vaporization treatment of the first vaporizer 10 into ammonia gas.
  • the boiling point of ammonia is ⁇ 33.3° C., which is lower than the temperature of steam (eg, 600° C.). Therefore, the liquid ammonia exchanges heat with the vapor to become ammonia gas.
  • a boiler 210 is provided in the boiler 200.
  • ammonia gas is burned to generate heat, and the water in the boiler 200 is turned into steam.
  • the boiler 200 is connected to the turbine 300 via the ninth pipe 201. Steam circulates inside the ninth pipe 201.
  • a generator 400 is connected to the turbine 300. When the turbine 300 rotates, the generator 400 connected to the turbine 300 generates electric power.
  • the turbine 300 is connected to the condenser 500 via the tenth pipe 202. Steam circulates inside the tenth pipe 202.
  • the condenser 500 is connected to the boiler 200 via the eleventh pipe 203. Water circulates inside the tenth pipe 202.
  • the ammonia vaporizer 100 will be described.
  • Liquid ammonia is stored inside the ammonia storage tank 30. Since the ammonia storage tank 30 and the first vaporizer 10 are connected by the first pipe 11, liquid ammonia flows into the first vaporizer 10 from the first pipe 11. Further, seawater flows into the first vaporizer 10 from the fifth pipe 15.
  • the temperature of seawater (for example, 20° C.) is higher than ⁇ 33.3° C., which is the boiling point of ammonia. Therefore, when heat exchange is performed between the liquid ammonia and seawater, the liquid ammonia is vaporized to become ammonia gas.
  • the entire amount of liquid ammonia flowing in from the first pipe 11 is not vaporized into ammonia gas.
  • the liquid ammonia remaining in the vaporization process and the ammonia gas are mixed with each other through the second pipe 12 2 to the vaporizer 20.
  • the seawater flows out from the sixth pipe 16 after the heat exchange is completed.
  • the first vaporizer 10 cannot completely vaporize the liquid ammonia, the liquid ammonia and ammonia gas remaining in the vaporization flow into the second vaporizer 20 from the second pipe 12.
  • the ammonia gas vaporized in the first vaporizer 10 and the liquid ammonia that has been left without being vaporized in the first vaporizer 10 flow through the second pipe 12.
  • the temperature of the vapor is, for example, 600° C., which is higher than ⁇ 33.3° C., which is the boiling point of ammonia. Therefore, when heat exchange is performed between the liquid ammonia and the vapor, the liquid ammonia is vaporized to become ammonia gas.
  • the liquid ammonia that has not been completely vaporized in the first vaporizer 10 is vaporized again to be ammonia gas, so that the amount of vapor used can be reduced.
  • Ammonia gas obtained by vaporization in the second vaporizer 20 is sent to the burner 210 from the third pipe 13.
  • the steam flows out from the eighth pipe 18 after the heat exchange is completed.
  • the temperature of the steam that is the second heat exchange medium (for example, 600° C.) is higher than the temperature of seawater that is the first heat exchange medium (for example, 20° C.).
  • the ammonia gas obtained by the vaporization process in the second vaporizer 20 is burned to generate heat, and the water in the boiler 200 is turned into steam.
  • the steam of the boiler 200 is sent to the turbine 300, and the turbine 300 is rotated by the steam.
  • power is generated by the generator 400 connected to the turbine 300.
  • the steam from the turbine 300 is sent to the condenser 500 via the tenth pipe 202.
  • the condenser 500 the steam discharged from the turbine 300 is cooled and condensed to return to water.
  • the water is sent to the boiler 200 via the eleventh pipe 203.
  • part of the steam discharged from the boiler 200 may be sent to the second vaporizer 20 via the seventh pipe 17.
  • the ammonia vaporizer 100 includes the first vaporizer 10 that vaporizes liquid ammonia into ammonia gas, and the first vaporizer that is connected to the first vaporizer 10.
  • the second vaporizer 20 which vaporizes the liquid ammonia remaining in the vaporization treatment of 10 to produce ammonia gas.
  • the first vaporizer 10 and the second vaporizer 20 are connected in series. Therefore, the amount of vapor used in the vaporization process of the second vaporizer 20 is further reduced by vaporizing the liquid ammonia remaining in the vaporization process of the first vaporizer 10 by the second vaporizer 20.
  • the liquid ammonia is vaporized as much as possible by the vaporization process of the first vaporizer 10, and the liquid ammonia that is left untreated by the first vaporizer 10 is vaporized by the second vaporizer 20 to finally obtain the final result.
  • most of the liquid ammonia charged into the first vaporizer 10 can be vaporized into ammonia gas.
  • seawater that exchanges heat with liquid ammonia
  • second Heat exchange medium steam that exchanges heat with liquid ammonia
  • the first heat exchange medium used in the first vaporizer 10 and the heat exchange medium used in the second vaporizer 20 are different from each other in this manner, the first heat exchange medium and the second heat exchange medium are individually selected. be able to. Therefore, for example, the temperature of the second heat exchange medium can be higher than that of the first heat exchange medium.
  • the temperature of steam (second heat exchange medium) is higher than that of seawater (first heat exchange medium). That is, the temperature of steam is, for example, 600° C., and the temperature of seawater is, for example, 20° C. Therefore, when liquid ammonia remains in the first vaporizer 10, the remaining liquid ammonia can be vaporized more reliably in the second vaporizer 20. As a result, the amount of steam used in the vaporization process of the second vaporizer 20 can be further reduced.
  • the first heat exchange medium is seawater. Seawater is present in large quantities and can be obtained at a low cost, so that the cost of vaporizing liquid ammonia can be suppressed.
  • the second heat exchange medium is steam. Since vapor is hotter than seawater, liquid ammonia can be vaporized with higher efficiency. Further, steam is less polluting than exhaust gas, and is desirable from the viewpoint of environmental protection.
  • the steam discharged from the boiler 200 is used as the steam that is the second heat exchange medium, it is not necessary to newly install a device that generates the steam, and thus the cost of the vaporization process of ammonia can be suppressed. ..
  • FIG. 2 is a schematic diagram showing a thermal power generation system according to a second embodiment of the present invention.
  • the ammonia gas generated by the ammonia vaporizer according to the present embodiment is used, for example, when heating a boiler of a thermal power plant.
  • the ammonia thermal power generation system 1A includes an ammonia vaporizer 100A, a boiler 200, a turbine 300, a generator 400, and a condenser 500.
  • the ammonia vaporizer 100A includes an ammonia storage tank 30, a first vaporizer 10, a second vaporizer 20, and a filter 50.
  • differences from the first embodiment will be mainly described.
  • the first vaporizer 10 is connected to an inlet side pipe into which exhaust gas that is the first heat exchange medium flows and an outlet side pipe from which exhaust gas flows out.
  • the fourth pipe 14 is connected to the filter 50, and the filter 50 and the first vaporizer 10 are connected to each other via the fifth pipe 15.
  • the outlet side pipe is the sixth pipe 16.
  • the exhaust gas flowing inside the fourth pipe 14 is purified when passing through the filter 50, and is sent to the first vaporizer 10 via the fifth pipe 15.
  • the exhaust gas that uses heat according to the present embodiment is discharged from, for example, a boiler and a gas turbine.
  • the first vaporizer 10 performs vaporization treatment that heats liquid ammonia to produce ammonia gas.
  • the temperature of the exhaust gas is 500° C., for example.
  • the boiling point of ammonia is ⁇ 33.3° C., which is lower than the temperature of exhaust gas. Therefore, the liquid ammonia exchanges heat with the exhaust gas to become ammonia gas.
  • Liquid ammonia flows into the first vaporizer 10 from the first pipe 11. Further, the exhaust gas flows into the first vaporizer 10 from the fifth pipe 15.
  • the temperature of the exhaust gas is higher than ⁇ 33.3° C., which is the boiling point of ammonia. Therefore, when heat exchange is performed between the liquid ammonia and the exhaust gas, the liquid ammonia is vaporized to become ammonia gas. Note that the exhaust gas flows out of the first vaporizer 10 through the sixth pipe 16 after the heat exchange is completed.
  • the ammonia gas obtained by the vaporization process in the second vaporizer 20 is burned to generate heat, and the water in the boiler 200 is turned into steam.
  • the steam of the boiler 200 is sent to the turbine 300, and the turbine 300 is rotated by the steam.
  • power is generated by the generator 400 connected to the turbine 300.
  • the steam from the turbine 300 is sent to the condenser 500 via the tenth pipe 202.
  • the condenser 500 the steam discharged from the turbine 300 is cooled and condensed to return to water. Water is sent to the boiler 200 through the eleventh pipe.
  • part of the steam discharged from the boiler 200 may be sent to the second vaporizer 20 via the seventh pipe 17. Further, the exhaust gas generated when heating the boiler 200 may be sent to the first vaporizer 10 via the fourth pipe 14 and the fifth pipe 15.
  • the first heat exchange medium according to this embodiment is exhaust gas, it is possible to effectively use the exhaust gas.
  • the temperature of the steam (second heat exchange medium) is higher than the temperature of the exhaust gas (first heat exchange medium).
  • the temperature of the steam is, for example, 600° C.
  • the temperature of the exhaust gas is, for example, 500° C. Therefore, when liquid ammonia remains in the vaporization process of the first vaporizer 10, the remaining liquid ammonia can be vaporized more reliably in the second vaporizer 20. As a result, the amount of steam used in the vaporization process of the second vaporizer 20 can be further reduced.
  • the exhaust gas generated when heating the boiler 200 is used as the exhaust gas which is the first heat exchange medium of the second embodiment. According to this, the exhaust gas can be effectively used. Further, the cost of vaporizing ammonia can be suppressed.
  • the ammonia vaporizers 100 and 100A two vaporizers, a first vaporizer 10 and a second vaporizer 20, are provided in a connected state.
  • more than two vaporizers may be connected in series.
  • sea water and exhaust gas were made into an example as a 1st heat exchange medium, and steam was made into an example as a 2nd heat exchange medium, the heat exchange medium is not limited to these and various heat exchange media may be applied. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This ammonia vaporizer comprises a first vaporizer whereby liquid ammonia is vaporized and turned into ammonia gas, and a second vaporizer connected to the first vaporizer, whereby liquid ammonia left over from the vaporization by the first vaporizer is vaporized and turned into ammonia gas. The left-over liquid ammonia from the vaporization by the first vaporizer is vaporized by the second vaporizer, allowing the amount of steam used in the vaporization by the second vaporizer to be reduced further.

Description

アンモニア気化器Ammonia vaporizer
 本発明は、アンモニア気化器に関する。 The present invention relates to an ammonia vaporizer.
 液体アンモニアをアンモニアガスに気化させるアンモニア気化器が知られている(特許文献1参照)。特許文献1では、アンモニア貯蔵タンクから送られる液体アンモニアを蒸気の熱によって気化させてアンモニアガスにする。 An ammonia vaporizer that vaporizes liquid ammonia into ammonia gas is known (see Patent Document 1). In Patent Document 1, the liquid ammonia sent from the ammonia storage tank is vaporized by the heat of the vapor into ammonia gas.
特開2009-11918号公報JP, 2009-11918, A
 液体アンモニアは蒸気と熱交換して気化させるが、使用する蒸気の量を低減することが望まれている。 ㆍLiquid ammonia exchanges heat with vapor to vaporize it, but it is desired to reduce the amount of vapor used.
 本発明は、前記の課題に鑑みてなされたもので、液体アンモニアを気化させてアンモニアガスを生成する際に、使用する蒸気の量を低減させることを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to reduce the amount of vapor used when vaporizing liquid ammonia to generate ammonia gas.
 本発明に係るアンモニア気化器は、液体アンモニアを気化処理してアンモニアガスにする第1の気化器と、前記第1の気化器に接続され当該第1の気化器の前記気化処理で残存した液体アンモニアを気化処理してアンモニアガスにする第2の気化器と、を備える。 An ammonia vaporizer according to the present invention includes a first vaporizer that vaporizes liquid ammonia to produce ammonia gas, and a liquid that is connected to the first vaporizer and remains in the vaporization treatment of the first vaporizer. A second vaporizer for vaporizing ammonia to produce ammonia gas.
 本発明によれば、第1の気化器の気化処理で残存した液体アンモニアを第2の気化器で気化処理することによって、第2の気化器の気化処理で使用する蒸気の量をより少なくすることができる。 According to the present invention, the liquid ammonia remaining in the vaporization process of the first vaporizer is vaporized in the second vaporizer, thereby reducing the amount of vapor used in the vaporization process of the second vaporizer. be able to.
図1は、本発明の第1実施形態に係る火力発電システムを示す模式図である。FIG. 1 is a schematic diagram showing a thermal power generation system according to a first embodiment of the present invention. 図2は、本発明の第2実施形態に係る火力発電システムを示す模式図である。FIG. 2 is a schematic diagram showing a thermal power generation system according to a second embodiment of the present invention.
 以下に、本発明の各実施の形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Each embodiment of the present invention will be described below with reference to the drawings. It should be noted that the disclosure is merely an example, and a person having ordinary skill in the art can easily think of an appropriate modification while keeping the gist of the invention, and is naturally included in the scope of the invention. Further, in order to make the description clearer, the drawings may schematically show the width, thickness, shape, etc. of each part as compared with the actual mode, but this is merely an example, and the interpretation of the present invention will be understood. It is not limited.
 また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Also, in this specification and each drawing, elements similar to those described above in regard to a drawing thereinabove are designated by the same reference numerals, and detailed description thereof may be appropriately omitted.
 [第1実施形態]
 まず、本発明の第1実施形態について説明する。図1は、本発明の第1実施形態に係る火力発電システムを示す模式図である。
[First Embodiment]
First, a first embodiment of the present invention will be described. FIG. 1 is a schematic diagram showing a thermal power generation system according to a first embodiment of the present invention.
 第1実施形態に係る火力発電システム1は、アンモニア気化器100と、ボイラ200と、タービン300と、発電機400と、復水器500と、を含む。なお、本実施形態に係るアンモニア気化器で生成されるアンモニアガスは、例えば、火力発電所のボイラを加熱する際に用いられる。 The thermal power generation system 1 according to the first embodiment includes an ammonia vaporizer 100, a boiler 200, a turbine 300, a generator 400, and a condenser 500. The ammonia gas generated by the ammonia vaporizer according to the present embodiment is used, for example, when heating the boiler of the thermal power plant.
 アンモニア気化器100は、アンモニア貯留タンク30と、第1の気化器10と、第2の気化器20と、ポンプ40と、を備える。 The ammonia vaporizer 100 includes an ammonia storage tank 30, a first vaporizer 10, a second vaporizer 20, and a pump 40.
 アンモニア貯留タンク30と第1の気化器10とは、第1配管11を介して接続されている。第1の気化器10と第2の気化器20とは、第2配管12を介して接続されている。また、第2の気化器20には、第3配管13が接続されている。第3配管13は、バーナー210に接続される。 The ammonia storage tank 30 and the first vaporizer 10 are connected via a first pipe 11. The first vaporizer 10 and the second vaporizer 20 are connected via a second pipe 12. The third pipe 13 is connected to the second vaporizer 20. The third pipe 13 is connected to the burner 210.
 第1の気化器10には、第1の熱交換媒体である海水が流入する入口側配管と、海水が流出する出口側配管と、が接続されている。入口側配管は、第4配管14及び第5配管15であり、出口側配管は、第6配管16である。即ち、ポンプ40には、第4配管14が接続され、ポンプ40と第1の気化器10とは、第5配管15を介して接続されている。出口側配管は、第6配管16である。ポンプ40が稼動すると、海から第4配管14を介して海水が吸い上げられ、第5配管15を介して第1の気化器10に送られる。 The first vaporizer 10 is connected to an inlet side pipe into which seawater that is the first heat exchange medium flows and an outlet side pipe from which seawater flows out. The inlet side pipe is the fourth pipe 14 and the fifth pipe 15, and the outlet side pipe is the sixth pipe 16. That is, the pump 40 is connected to the fourth pipe 14, and the pump 40 and the first vaporizer 10 are connected to each other via the fifth pipe 15. The outlet side pipe is the sixth pipe 16. When the pump 40 operates, seawater is sucked from the sea through the fourth pipe 14 and sent to the first vaporizer 10 through the fifth pipe 15.
 第2の気化器20には、第2の熱交換媒体である蒸気が流入する入口側配管と、蒸気が流出する出口側配管とが接続されている。入口側配管は、第7配管17であり、出口側配管は、第8配管18である。 The second vaporizer 20 is connected to an inlet side pipe into which steam as a second heat exchange medium flows and an outlet side pipe from which steam flows out. The inlet side pipe is the seventh pipe 17, and the outlet side pipe is the eighth pipe 18.
 第1の気化器10は、液体アンモニアに熱を与える気化処理を行ってアンモニアガスにする。アンモニアの沸点は、-33.3℃であり、海水の温度(例えば、20℃)よりも低い。従って、液体アンモニアは、海水と熱交換をしてアンモニアガスとなる。 The first vaporizer 10 performs vaporization treatment that heats liquid ammonia to produce ammonia gas. The boiling point of ammonia is −33.3° C., which is lower than the temperature of seawater (eg, 20° C.). Therefore, liquid ammonia exchanges heat with seawater to become ammonia gas.
 第2の気化器20は、第1の気化器10の気化処理で残存した液体アンモニアに熱を与える気化処理を行ってアンモニアガスにする。アンモニアの沸点は、-33.3℃であり、蒸気の温度(例えば、600℃)よりも低い。従って、液体アンモニアは、蒸気と熱交換をしてアンモニアガスとなる。 The second vaporizer 20 performs vaporization treatment that heats the liquid ammonia remaining in the vaporization treatment of the first vaporizer 10 into ammonia gas. The boiling point of ammonia is −33.3° C., which is lower than the temperature of steam (eg, 600° C.). Therefore, the liquid ammonia exchanges heat with the vapor to become ammonia gas.
 ボイラ200には、バーナー210が設けられている。バーナー210では、アンモニアガスを燃焼させて熱を発生させ、ボイラ200の水を蒸気にする。ボイラ200は、第9配管201を介してタービン300に接続されている。第9配管201の内部は、蒸気が流通する。タービン300には、発電機400が連結されている。タービン300が回転すると、タービン300に連結された発電機400によって発電がされる。タービン300は、第10配管202を介して復水器500に接続されている。第10配管202の内部は、蒸気が流通する。復水器500は、第11配管203を介してボイラ200に接続されている。第10配管202の内部は、水が流通する。 A boiler 210 is provided in the boiler 200. In the burner 210, ammonia gas is burned to generate heat, and the water in the boiler 200 is turned into steam. The boiler 200 is connected to the turbine 300 via the ninth pipe 201. Steam circulates inside the ninth pipe 201. A generator 400 is connected to the turbine 300. When the turbine 300 rotates, the generator 400 connected to the turbine 300 generates electric power. The turbine 300 is connected to the condenser 500 via the tenth pipe 202. Steam circulates inside the tenth pipe 202. The condenser 500 is connected to the boiler 200 via the eleventh pipe 203. Water circulates inside the tenth pipe 202.
 以下、図1を参照して、火力発電システム1の全体の流れを説明する。 The overall flow of the thermal power generation system 1 will be described below with reference to FIG.
 まず、アンモニア気化器100を説明する。
 アンモニア貯留タンク30の内部には、液体アンモニアが収容されている。アンモニア貯留タンク30と第1の気化器10は、第1配管11で接続されているため、第1の気化器10には、第1配管11から液体アンモニアが流入する。また、海水が、第5配管15から第1の気化器10に流入する。ここで、前述したように、海水の温度(例えば、20℃)は、アンモニアの沸点である-33.3℃よりも高い。よって、液体アンモニアと海水とで熱交換が行われると、液体アンモニアが気化処理されてアンモニアガスとなる。ただし、第1配管11から流入した液体アンモニアの全量がアンモニアガスに気化しない場合もあり、その場合は、気化処理で残存した液体アンモニアとアンモニアガスとが混合された状態で第2配管12から第2の気化器20へ送られる。なお、海水は、熱交換が終了したのち、第6配管16から流出する。
First, the ammonia vaporizer 100 will be described.
Liquid ammonia is stored inside the ammonia storage tank 30. Since the ammonia storage tank 30 and the first vaporizer 10 are connected by the first pipe 11, liquid ammonia flows into the first vaporizer 10 from the first pipe 11. Further, seawater flows into the first vaporizer 10 from the fifth pipe 15. Here, as described above, the temperature of seawater (for example, 20° C.) is higher than −33.3° C., which is the boiling point of ammonia. Therefore, when heat exchange is performed between the liquid ammonia and seawater, the liquid ammonia is vaporized to become ammonia gas. However, in some cases, the entire amount of liquid ammonia flowing in from the first pipe 11 is not vaporized into ammonia gas. In that case, the liquid ammonia remaining in the vaporization process and the ammonia gas are mixed with each other through the second pipe 12 2 to the vaporizer 20. The seawater flows out from the sixth pipe 16 after the heat exchange is completed.
 第2の気化器20には、第7配管17から蒸気が流入する。また、第1の気化器10で液体アンモニアの全量を気化処理しきれなかった場合は、気化処理で残存した液体アンモニアとアンモニアガスとが第2配管12から第2の気化器20へ流入する。換言すると、第1の気化器10で気化処理されたアンモニアガスと、第1の気化器10で気化処理しきれずに残存された液体アンモニアと、が第2配管12を流れる。ここで、蒸気の温度は、例えば600℃であり、アンモニアの沸点である-33.3℃よりも高い。よって、液体アンモニアと蒸気とで熱交換が行われると、液体アンモニアが気化処理されてアンモニアガスとなる。このように、第2の気化器20では、第1の気化器10で気化処理しきれずに残存した液体アンモニアを再び気化処理してアンモニアガスにするため、使用する蒸気の量を低減できる。第2の気化器20で気化処理して得られたアンモニアガスが第3配管13からバーナー210へ送られる。蒸気は、熱交換が終了したのち、第8配管18から流出する。なお、第2の熱交換媒体である蒸気の温度(例えば、600℃)は、第1の熱交換媒体である海水の温度(例えば、20℃)よりも高温である。 Steam flows into the second vaporizer 20 through the seventh pipe 17. When the first vaporizer 10 cannot completely vaporize the liquid ammonia, the liquid ammonia and ammonia gas remaining in the vaporization flow into the second vaporizer 20 from the second pipe 12. In other words, the ammonia gas vaporized in the first vaporizer 10 and the liquid ammonia that has been left without being vaporized in the first vaporizer 10 flow through the second pipe 12. Here, the temperature of the vapor is, for example, 600° C., which is higher than −33.3° C., which is the boiling point of ammonia. Therefore, when heat exchange is performed between the liquid ammonia and the vapor, the liquid ammonia is vaporized to become ammonia gas. As described above, in the second vaporizer 20, the liquid ammonia that has not been completely vaporized in the first vaporizer 10 is vaporized again to be ammonia gas, so that the amount of vapor used can be reduced. Ammonia gas obtained by vaporization in the second vaporizer 20 is sent to the burner 210 from the third pipe 13. The steam flows out from the eighth pipe 18 after the heat exchange is completed. The temperature of the steam that is the second heat exchange medium (for example, 600° C.) is higher than the temperature of seawater that is the first heat exchange medium (for example, 20° C.).
 バーナー210では、第2の気化器20で気化処理して得られたアンモニアガスを燃焼させて熱を発生させ、ボイラ200の水を蒸気にする。ボイラ200の蒸気がタービン300に送られ、当該蒸気によってタービン300が回転する。タービン300が回転すると、タービン300に連結された発電機400によって発電が行われる。タービン300からの蒸気は、第10配管202を介して復水器500に送られる。復水器500では、タービン300から排出された蒸気を冷却及び凝縮させて水に戻す。水は、第11配管203を介してボイラ200へ送られる。 In the burner 210, the ammonia gas obtained by the vaporization process in the second vaporizer 20 is burned to generate heat, and the water in the boiler 200 is turned into steam. The steam of the boiler 200 is sent to the turbine 300, and the turbine 300 is rotated by the steam. When the turbine 300 rotates, power is generated by the generator 400 connected to the turbine 300. The steam from the turbine 300 is sent to the condenser 500 via the tenth pipe 202. In the condenser 500, the steam discharged from the turbine 300 is cooled and condensed to return to water. The water is sent to the boiler 200 via the eleventh pipe 203.
 ここで、ボイラ200から排出される蒸気の一部は、第7配管17を介して第2の気化器20に送ってもよい。 Here, part of the steam discharged from the boiler 200 may be sent to the second vaporizer 20 via the seventh pipe 17.
 以上説明したように、本実施形態に係るアンモニア気化器100は、液体アンモニアを気化処理してアンモニアガスにする第1の気化器10と、第1の気化器10に接続され第1の気化器10の気化処理で残存した液体アンモニアを気化処理してアンモニアガスにする第2の気化器20と、を備える。 As described above, the ammonia vaporizer 100 according to the present embodiment includes the first vaporizer 10 that vaporizes liquid ammonia into ammonia gas, and the first vaporizer that is connected to the first vaporizer 10. The second vaporizer 20 which vaporizes the liquid ammonia remaining in the vaporization treatment of 10 to produce ammonia gas.
 このように、アンモニア気化器100では、第1の気化器10と第2の気化器20とが直列に接続されている。従って、第1の気化器10の気化処理で残存した液体アンモニアを第2の気化器20で気化処理することによって、第2の気化器20の気化処理で使用する蒸気の量をより少なくすることができる。即ち、第1の気化器10の気化処理で液体アンモニアを極力多く気化させ、第1の気化器10で処理しきれずに残存した液体アンモニアを第2の気化器20で気化させることにより、最終的に使用する蒸気の量をより少なくする。これにより、第1の気化器10に投入した液体アンモニアのうち大部分の量を気化させてアンモニアガスにすることができる。 In this way, in the ammonia vaporizer 100, the first vaporizer 10 and the second vaporizer 20 are connected in series. Therefore, the amount of vapor used in the vaporization process of the second vaporizer 20 is further reduced by vaporizing the liquid ammonia remaining in the vaporization process of the first vaporizer 10 by the second vaporizer 20. You can That is, the liquid ammonia is vaporized as much as possible by the vaporization process of the first vaporizer 10, and the liquid ammonia that is left untreated by the first vaporizer 10 is vaporized by the second vaporizer 20 to finally obtain the final result. Use less steam for. As a result, most of the liquid ammonia charged into the first vaporizer 10 can be vaporized into ammonia gas.
 第1の気化器10の気化処理では、液体アンモニアと熱交換する海水(第1の熱交換媒体)を用い、第2の気化器20の気化処理では、液体アンモニアと熱交換する蒸気(第2の熱交換媒体)を用いる。 In the vaporization process of the first vaporizer 10, seawater (first heat exchange medium) that exchanges heat with liquid ammonia is used, and in the vaporization process of the second vaporizer 20, steam that exchanges heat with liquid ammonia (second Heat exchange medium).
 このように、第1の気化器10で用いる熱交換媒体と第2の気化器20で用いる熱交換媒体を別にしたため、第1の熱交換媒体と第2の熱交換媒体とを個別に選択することができる。従って、例えば、第2の熱交換媒体を、第1の熱交換媒体よりも高温のものとすることが可能となる。 Since the heat exchange medium used in the first vaporizer 10 and the heat exchange medium used in the second vaporizer 20 are different from each other in this manner, the first heat exchange medium and the second heat exchange medium are individually selected. be able to. Therefore, for example, the temperature of the second heat exchange medium can be higher than that of the first heat exchange medium.
 蒸気(第2の熱交換媒体)の温度は、海水(第1の熱交換媒体)の温度よりも高温である。即ち、蒸気の温度は、例えば600℃であり、海水の温度は、例えば20℃である。よって、第1の気化器10で液体アンモニアが残存した場合、この残存した液体アンモニアを第2の気化器20でより確実に気化させることができる。これにより、第2の気化器20の気化処理で使用する蒸気の量をより少なくすることができる。 The temperature of steam (second heat exchange medium) is higher than that of seawater (first heat exchange medium). That is, the temperature of steam is, for example, 600° C., and the temperature of seawater is, for example, 20° C. Therefore, when liquid ammonia remains in the first vaporizer 10, the remaining liquid ammonia can be vaporized more reliably in the second vaporizer 20. As a result, the amount of steam used in the vaporization process of the second vaporizer 20 can be further reduced.
 第1の熱交換媒体は、海水である。海水は、大量に存在し安価なコストで得られるため、液体アンモニアの気化処理のコストを抑制することができる。 The first heat exchange medium is seawater. Seawater is present in large quantities and can be obtained at a low cost, so that the cost of vaporizing liquid ammonia can be suppressed.
 第2の熱交換媒体は、蒸気である。蒸気は、海水よりも高温であるため、液体アンモニアをより高い効率で気化させることができる。また、蒸気は、排ガスよりも低公害であるため、環境保護の観点から望ましい。 The second heat exchange medium is steam. Since vapor is hotter than seawater, liquid ammonia can be vaporized with higher efficiency. Further, steam is less polluting than exhaust gas, and is desirable from the viewpoint of environmental protection.
 また、ボイラ200から排出される蒸気を第2熱交換媒体である前記蒸気として利用すれば、蒸気を発生させる装置を新たに設ける必要がないため、アンモニアの気化処理のコストを抑制することができる。 Further, if the steam discharged from the boiler 200 is used as the steam that is the second heat exchange medium, it is not necessary to newly install a device that generates the steam, and thus the cost of the vaporization process of ammonia can be suppressed. ..
 [第2実施形態]
 次いで、本発明の第2実施形態について説明する。図2は、本発明の第2実施形態に係る火力発電システムを示す模式図である。なお、本実施形態に係るアンモニア気化器で生成されるアンモニアガスは、例えば、火力発電所のボイラを加熱する際に用いられる。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 2 is a schematic diagram showing a thermal power generation system according to a second embodiment of the present invention. The ammonia gas generated by the ammonia vaporizer according to the present embodiment is used, for example, when heating a boiler of a thermal power plant.
 第2実施形態に係るアンモニアの火力発電システム1Aは、アンモニア気化器100Aと、ボイラ200と、タービン300と、発電機400と、復水器500と、を含む。アンモニア気化器100Aは、アンモニア貯留タンク30と、第1の気化器10と、第2の気化器20と、フィルタ50と、を備える。以下、第1実施形態と相違する点を中心に説明する。 The ammonia thermal power generation system 1A according to the second embodiment includes an ammonia vaporizer 100A, a boiler 200, a turbine 300, a generator 400, and a condenser 500. The ammonia vaporizer 100A includes an ammonia storage tank 30, a first vaporizer 10, a second vaporizer 20, and a filter 50. Hereinafter, differences from the first embodiment will be mainly described.
 第1の気化器10には、第1の熱交換媒体である排ガスが流入する入口側配管と、排ガスが流出する出口側配管と、が接続されている。フィルタ50には、第4配管14が接続され、フィルタ50と第1の気化器10とは、第5配管15を介して接続されている。出口側配管は、第6配管16である。第4配管14の内部を流れる排ガスは、フィルタ50を通る際に浄化され、第5配管15を介して第1の気化器10に送られる。なお、本実施形態に係る熱利用する排ガスは、例えば、ボイラおよびガスタービンから排出される。 The first vaporizer 10 is connected to an inlet side pipe into which exhaust gas that is the first heat exchange medium flows and an outlet side pipe from which exhaust gas flows out. The fourth pipe 14 is connected to the filter 50, and the filter 50 and the first vaporizer 10 are connected to each other via the fifth pipe 15. The outlet side pipe is the sixth pipe 16. The exhaust gas flowing inside the fourth pipe 14 is purified when passing through the filter 50, and is sent to the first vaporizer 10 via the fifth pipe 15. The exhaust gas that uses heat according to the present embodiment is discharged from, for example, a boiler and a gas turbine.
 第1の気化器10は、液体アンモニアに熱を与える気化処理を行ってアンモニアガスにする。排ガスの温度は、例えば500℃である。アンモニアの沸点は、-33.3℃であり、排ガスの温度よりも低い。従って、液体アンモニアは、排ガスと熱交換をしてアンモニアガスとなる。 The first vaporizer 10 performs vaporization treatment that heats liquid ammonia to produce ammonia gas. The temperature of the exhaust gas is 500° C., for example. The boiling point of ammonia is −33.3° C., which is lower than the temperature of exhaust gas. Therefore, the liquid ammonia exchanges heat with the exhaust gas to become ammonia gas.
 以下、図2を参照して、火力発電システム1Aの全体の流れを説明する。
 まず、アンモニア気化器100Aを説明する。
Hereinafter, the overall flow of the thermal power generation system 1A will be described with reference to FIG.
First, the ammonia vaporizer 100A will be described.
 第1の気化器10には、第1配管11から液体アンモニアが流入する。また、排ガスが、第5配管15から第1の気化器10に流入する。ここで、前述したように、排ガスの温度は、アンモニアの沸点である-33.3℃よりも高い。よって、液体アンモニアと排ガスとで熱交換が行われると、液体アンモニアが気化処理されてアンモニアガスとなる。なお、排ガスは、熱交換が終了したのち、第6配管16から第1の気化器10外へ流出する。 Liquid ammonia flows into the first vaporizer 10 from the first pipe 11. Further, the exhaust gas flows into the first vaporizer 10 from the fifth pipe 15. Here, as described above, the temperature of the exhaust gas is higher than −33.3° C., which is the boiling point of ammonia. Therefore, when heat exchange is performed between the liquid ammonia and the exhaust gas, the liquid ammonia is vaporized to become ammonia gas. Note that the exhaust gas flows out of the first vaporizer 10 through the sixth pipe 16 after the heat exchange is completed.
 第2の気化器20には、第7配管17から蒸気が流入する。また、第1の気化器10で液体アンモニアの全量を気化処理しきれなかった場合は、液体アンモニアとアンモニアガスとが第2配管12から第2の気化器20へ流入する。よって、液体アンモニアと蒸気とで熱交換が行われると、液体アンモニアが気化処理されてアンモニアガスとなる。このように、第2の気化器20では、第1の気化器10で気化処理しきれずに残存した液体アンモニアを再び気化処理してアンモニアガスにするため、使用する蒸気の量を低減できる。第3配管13からは、第2の気化器20で気化処理して得られたアンモニアガスが流出する。蒸気は、熱交換が終了したのち、第8配管18から流出する。なお、第2の熱交換媒体である蒸気の温度(例えば、600℃)は、第1の熱交換媒体である排ガスの温度(例えば、500℃)よりも高温である。 Steam flows into the second vaporizer 20 through the seventh pipe 17. If the first vaporizer 10 cannot completely vaporize the liquid ammonia, the liquid ammonia and the ammonia gas flow into the second vaporizer 20 from the second pipe 12. Therefore, when heat exchange is performed between the liquid ammonia and the vapor, the liquid ammonia is vaporized to become ammonia gas. As described above, in the second vaporizer 20, the liquid ammonia that has not been completely vaporized in the first vaporizer 10 is vaporized again to be ammonia gas, so that the amount of vapor used can be reduced. Ammonia gas obtained by the vaporization process in the second vaporizer 20 flows out from the third pipe 13. The steam flows out from the eighth pipe 18 after the heat exchange is completed. The temperature of the steam that is the second heat exchange medium (for example, 600° C.) is higher than the temperature of the exhaust gas that is the first heat exchange medium (for example, 500° C.).
 バーナー210では、第2の気化器20で気化処理して得られたアンモニアガスを燃焼させて熱を発生させ、ボイラ200の水を蒸気にする。ボイラ200の蒸気がタービン300に送られ、当該蒸気によってタービン300が回転する。タービン300が回転すると、タービン300に連結された発電機400によって発電がなされる。タービン300からの蒸気は、第10配管202を介して復水器500に送られる。復水器500では、タービン300から排出された蒸気を冷却及び凝縮させて水に戻す。水は第11配管を介してボイラ200へ送られる。 In the burner 210, the ammonia gas obtained by the vaporization process in the second vaporizer 20 is burned to generate heat, and the water in the boiler 200 is turned into steam. The steam of the boiler 200 is sent to the turbine 300, and the turbine 300 is rotated by the steam. When the turbine 300 rotates, power is generated by the generator 400 connected to the turbine 300. The steam from the turbine 300 is sent to the condenser 500 via the tenth pipe 202. In the condenser 500, the steam discharged from the turbine 300 is cooled and condensed to return to water. Water is sent to the boiler 200 through the eleventh pipe.
 ここで、ボイラ200から排出される蒸気の一部は、第7配管17を介して第2の気化器20に送ってもよい。また、ボイラ200を加熱する際に発生する排ガスを第4配管14及び第5配管15を介して第1の気化器10に送ってもよい。 Here, part of the steam discharged from the boiler 200 may be sent to the second vaporizer 20 via the seventh pipe 17. Further, the exhaust gas generated when heating the boiler 200 may be sent to the first vaporizer 10 via the fourth pipe 14 and the fifth pipe 15.
 以上説明したように、本実施形態に係る第1の熱交換媒体は、排ガスであるため、排ガスの有効利用を図ることができる。 As described above, since the first heat exchange medium according to this embodiment is exhaust gas, it is possible to effectively use the exhaust gas.
 また、蒸気(第2の熱交換媒体)の温度は、排ガス(第1の熱交換媒体)の温度よりも高温である。蒸気の温度は、例えば600℃であり、排ガスの温度は、例えば500℃である。よって、第1の気化器10の気化処理で液体アンモニアが残存した場合、この残存した液体アンモニアを第2の気化器20でより確実に気化させることができる。これにより、第2の気化器20の気化処理で使用する蒸気の量をより少なくすることができる。 Also, the temperature of the steam (second heat exchange medium) is higher than the temperature of the exhaust gas (first heat exchange medium). The temperature of the steam is, for example, 600° C., and the temperature of the exhaust gas is, for example, 500° C. Therefore, when liquid ammonia remains in the vaporization process of the first vaporizer 10, the remaining liquid ammonia can be vaporized more reliably in the second vaporizer 20. As a result, the amount of steam used in the vaporization process of the second vaporizer 20 can be further reduced.
 さらに、ボイラ200を加熱する際に発生する排ガスを、第2実施形態の第1熱交換媒体である前記排ガスとして利用する。これによれば、排ガスの有効利用を図ることができる。また、アンモニアの気化処理のコストを抑制することができる。 Further, the exhaust gas generated when heating the boiler 200 is used as the exhaust gas which is the first heat exchange medium of the second embodiment. According to this, the exhaust gas can be effectively used. Further, the cost of vaporizing ammonia can be suppressed.
 なお、前記実施形態の具体的構成はあくまで一例であってこれに限られるものでなく、適宜変更可能である。 It should be noted that the specific configuration of the above embodiment is merely an example and is not limited to this, and can be changed as appropriate.
 例えば、アンモニア気化器100,100Aでは、2つの気化器である第1の気化器10及び第2の気化器20が接続された状態で設けられている。しかし、3つ以上の気化器が直列に接続されてもよい。また、第1の熱交換媒体として海水及び排ガスを一例とし、第2の熱交換媒体として蒸気を一例としたが、熱交換媒体はこれらに限定されず、種々の熱交換媒体を適用することができる。 For example, in the ammonia vaporizers 100 and 100A, two vaporizers, a first vaporizer 10 and a second vaporizer 20, are provided in a connected state. However, more than two vaporizers may be connected in series. Moreover, although sea water and exhaust gas were made into an example as a 1st heat exchange medium, and steam was made into an example as a 2nd heat exchange medium, the heat exchange medium is not limited to these and various heat exchange media may be applied. it can.
10 第1の気化器
20 第2の気化器
200 ボイラ
100,100A アンモニア気化器
10 1st vaporizer 20 2nd vaporizer 200 Boiler 100,100A Ammonia vaporizer

Claims (8)

  1.  液体アンモニアを気化処理してアンモニアガスにする第1の気化器と、前記第1の気化器に接続され当該第1の気化器の前記気化処理で残存した液体アンモニアを気化処理してアンモニアガスにする第2の気化器と、を備える
     アンモニア気化器。
    A first vaporizer that vaporizes liquid ammonia to produce ammonia gas, and liquid ammonia that is connected to the first vaporizer and that remains in the vaporization process of the first vaporizer is vaporized to form ammonia gas. And a second vaporizer that does.
  2.  前記第1の気化器の前記気化処理では、前記液体アンモニアと熱交換する第1の熱交換媒体を用い、前記第2の気化器の前記気化処理では、前記液体アンモニアと熱交換する第2の熱交換媒体を用いる
     請求項1に記載のアンモニア気化器。
    In the vaporization process of the first vaporizer, a first heat exchange medium that exchanges heat with the liquid ammonia is used, and in the vaporization process of the second vaporizer, a second heat exchange medium that exchanges heat with the liquid ammonia is used. The ammonia vaporizer according to claim 1, wherein a heat exchange medium is used.
  3.  前記第2の熱交換媒体の温度は、前記第1の熱交換媒体の温度よりも高温である
     請求項2に記載のアンモニア気化器。
    The ammonia vaporizer according to claim 2, wherein the temperature of the second heat exchange medium is higher than the temperature of the first heat exchange medium.
  4.  前記第1の熱交換媒体は、海水である
     請求項2又は3に記載のアンモニア気化器。
    The ammonia vaporizer according to claim 2, wherein the first heat exchange medium is seawater.
  5.  前記第1の熱交換媒体は、排ガスである
     請求項2又は3に記載のアンモニア気化器。
    The ammonia vaporizer according to claim 2 or 3, wherein the first heat exchange medium is exhaust gas.
  6.  ボイラおよびガスタービンから発生する排ガスを、前記排ガスとして利用する
     請求項5に記載のアンモニア気化器。
    The ammonia vaporizer according to claim 5, wherein exhaust gas generated from a boiler and a gas turbine is used as the exhaust gas.
  7.  前記第2の熱交換媒体は、蒸気である
     請求項2又は3に記載のアンモニア気化器。
    The ammonia vaporizer according to claim 2 or 3, wherein the second heat exchange medium is steam.
  8.  ボイラから排出される蒸気を、前記蒸気として利用する
     請求項7に記載のアンモニア気化器。
    The ammonia vaporizer according to claim 7, wherein the steam discharged from the boiler is used as the steam.
PCT/JP2018/044609 2018-12-04 2018-12-04 Ammonia vaporizer WO2020115822A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019527579A JPWO2020115822A1 (en) 2018-12-04 2018-12-04 Ammonia vaporizer
PCT/JP2018/044609 WO2020115822A1 (en) 2018-12-04 2018-12-04 Ammonia vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044609 WO2020115822A1 (en) 2018-12-04 2018-12-04 Ammonia vaporizer

Publications (1)

Publication Number Publication Date
WO2020115822A1 true WO2020115822A1 (en) 2020-06-11

Family

ID=70973851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044609 WO2020115822A1 (en) 2018-12-04 2018-12-04 Ammonia vaporizer

Country Status (2)

Country Link
JP (1) JPWO2020115822A1 (en)
WO (1) WO2020115822A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002814A1 (en) * 2021-07-21 2023-01-26 三菱重工業株式会社 Ammonia fuel supply unit, power generation plant, and method for operating boiler
WO2023248542A1 (en) * 2022-06-24 2023-12-28 株式会社Ihi Power generation system
KR20240064586A (en) 2021-09-09 2024-05-13 쥬가이로 고교 가부시키가이샤 combustion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914588A (en) * 1995-04-26 1997-01-17 Ebara Corp Liquefied gas supply system
JP2010271014A (en) * 2009-05-25 2010-12-02 Chugoku Electric Power Co Inc:The Ammonia supply system
JP2016510278A (en) * 2012-12-28 2016-04-07 ゼネラル・エレクトリック・カンパニイ Aircraft and method for managing evaporated cryogenic fuel
KR20170033649A (en) * 2015-09-17 2017-03-27 현대중공업 주식회사 A ReGasification System Of Liquefied Gas
KR20170033675A (en) * 2015-09-17 2017-03-27 현대중공업 주식회사 A ReGasification System Of Liquefied Gas
KR20170049663A (en) * 2015-10-27 2017-05-11 현대중공업 주식회사 A ReGasification System Of Liquefied Gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914588A (en) * 1995-04-26 1997-01-17 Ebara Corp Liquefied gas supply system
JP2010271014A (en) * 2009-05-25 2010-12-02 Chugoku Electric Power Co Inc:The Ammonia supply system
JP2016510278A (en) * 2012-12-28 2016-04-07 ゼネラル・エレクトリック・カンパニイ Aircraft and method for managing evaporated cryogenic fuel
KR20170033649A (en) * 2015-09-17 2017-03-27 현대중공업 주식회사 A ReGasification System Of Liquefied Gas
KR20170033675A (en) * 2015-09-17 2017-03-27 현대중공업 주식회사 A ReGasification System Of Liquefied Gas
KR20170049663A (en) * 2015-10-27 2017-05-11 현대중공업 주식회사 A ReGasification System Of Liquefied Gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002814A1 (en) * 2021-07-21 2023-01-26 三菱重工業株式会社 Ammonia fuel supply unit, power generation plant, and method for operating boiler
KR20240064586A (en) 2021-09-09 2024-05-13 쥬가이로 고교 가부시키가이샤 combustion device
WO2023248542A1 (en) * 2022-06-24 2023-12-28 株式会社Ihi Power generation system

Also Published As

Publication number Publication date
JPWO2020115822A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP7173245B2 (en) power generation system
WO2020115822A1 (en) Ammonia vaporizer
RU2480591C2 (en) Operation method of thermodynamic circuit, and thermodynamic circuit itself
JP7251225B2 (en) power generation system
JP5062380B2 (en) Waste heat recovery system and energy supply system
JP6819323B2 (en) Thermal cycle equipment
US20140345276A1 (en) Organic rankine cycle for concentrated solar power system with saturated liquid storage and method
JP2010243012A (en) Exhaust gas heat recovery device
JP2014514525A (en) Method and apparatus for producing steam for use in industrial processes
CA2830815A1 (en) Organic rankine cycle for concentrated solar power system
JP2005098240A (en) Power generation system
JP2012082750A (en) Waste heat recovery power generator and vessel equipped with waste heat recovery power generator
KR102239301B1 (en) Floating marine structure with electric power generator
JP4824098B2 (en) High humidity gas turbine equipment
JPH05113108A (en) Cold heat power generator utilizing liquefied natural gas
WO2016051758A1 (en) Gas turbine
JP6193730B2 (en) Boiler system
JP2013221508A (en) Combined power and water production system and method
KR20210073627A (en) Combined system of power generation, desalination using unused heat
KR101847019B1 (en) Floating vessel including device of heat exchange of medium and method of heat exchange of medium of the floating vessel
JP5799853B2 (en) Binary power generation system
KR102403854B1 (en) Power generating system using LNG gas
JP6868022B2 (en) How to generate electricity using a combined cycle
JPS5922043B2 (en) Cold energy power generation plant
KR102238746B1 (en) Floating marine structure with electric power generator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019527579

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942127

Country of ref document: EP

Kind code of ref document: A1