WO2020114197A1 - 可检测生物阻抗和心电的可穿戴设备、测量系统及方法 - Google Patents

可检测生物阻抗和心电的可穿戴设备、测量系统及方法 Download PDF

Info

Publication number
WO2020114197A1
WO2020114197A1 PCT/CN2019/116906 CN2019116906W WO2020114197A1 WO 2020114197 A1 WO2020114197 A1 WO 2020114197A1 CN 2019116906 W CN2019116906 W CN 2019116906W WO 2020114197 A1 WO2020114197 A1 WO 2020114197A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
wearable device
impedance
bio
electrode
Prior art date
Application number
PCT/CN2019/116906
Other languages
English (en)
French (fr)
Inventor
蔡露
钟远琅
曾昭能
Original Assignee
深圳市优创亿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市优创亿科技有限公司 filed Critical 深圳市优创亿科技有限公司
Publication of WO2020114197A1 publication Critical patent/WO2020114197A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters

Definitions

  • the invention relates to the technical field of smart wearable devices, in particular to a wearable device, a measurement system and a method which can detect bio-impedance and electrocardiogram.
  • the World Health Organization has identified obesity as one of the ten chronic diseases. Obesity, high blood pressure, high blood fat, and high blood sugar are also called “death quartets", and may become the number one killer in the 21st century. Diabetes, hypertension, cardiovascular diseases and other diseases caused by overweight and obesity increase year by year and tend to be younger. People with long-term obesity have a significantly increased incidence of diabetes
  • the mainstream method for obtaining the body composition is to detect the biological impedance of the human body, and then calculate it through the relevant calculation formula of the biological impedance.
  • the body composition mainly includes fat, muscle, water, protein and other information. Among them, fat rate is an important indicator to judge human obesity.
  • the ECG drawn by the ECG signal has an irreplaceable role in the detection process of cardiovascular diseases. It is simple, fast, and inexpensive, and has high clinical application value.
  • ECG products there are many ECG products on the market that are used in the wearable field, and there are great differences.
  • the 24-hour dynamic electrocardiogram equipment used in the hospital is inconvenient to carry, and the multi-electrode is connected to the body, which is easy to cause itching and other discomfort; Apple Watch can detect ECG signals, but it is expensive; other ECG bracelet products have different standards and accuracy Can not guarantee.
  • the present invention proposes a wearable device that can detect bio-impedance and ECG, which can detect both human body composition and ECG signals, thereby detecting the degree of human obesity and predicting cardiovascular disease, with low cost and accuracy High, easy to carry, and has high application value.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and to provide a wearable device, measurement system and method that can detect bio-impedance and electrocardiogram.
  • the technical solution of the present invention is as follows:
  • the present invention provides a wearable device capable of detecting bio-impedance and ECG, including: a housing, a strap, and four electrode sheets for detecting bio-impedance and ECG information,
  • the belt is connected to the casing, two electrode pieces of the four electrode pieces are arranged on the front of the casing, and the other two electrode pieces are arranged on the back of the casing;
  • the housing is provided with a processor module, a signal generation module, a bioimpedance measurement module, an electrocardiogram measurement module, a charging module, a display module, and a communication module.
  • the processor module is connected to the signal generation module and the bioimpedance measurement module, respectively .
  • the bio-impedance measurement module needs to use the four electrode pads when detecting the bio-impedance, the bio-impedance measurement module is connected to the four electrode pads respectively, and the electrocardiogram measurement module needs to use it when measuring the electrocardiogram signal
  • the three electrode sheets include: two electrode sheets on the back of the housing and one electrode sheet on the front.
  • the invention also provides a measurement system capable of detecting bio-impedance and electrocardiogram, including the above-mentioned wearable device, an intelligent terminal connected with the communication module, and a cloud server connected with the intelligent terminal.
  • the present invention also provides a measurement method that can detect bio-impedance and electrocardiogram.
  • the methods for measuring bio-impedance include:
  • the electrical signal forms a loop between the wearable device and the human body through the four electrode sheets;
  • the electrical signals are measured through the channel switching method, and the voltages of the corresponding resistances of the two channels are respectively measured. Then, through the principle of equal current in the series circuit, an equation is constructed for the measurement results of the two channels, and the bio-impedance measurement is completed ;
  • Methods of measuring ECG include:
  • the generated electrical signal flows through the three electrode pads of the wearable device casing to form a circuit
  • the ECG measurement module amplifies and filters the electrical signal, converts it into a digital signal through an analog-to-digital converter, and inputs it to the processor module for analysis and processing. It completes the measurement of the ECG signal and draws the corresponding ECG.
  • the present invention provides a wearable device, a measurement system and a method that can detect bio-impedance and electrocardiogram, which can simultaneously realize the measurement functions of bio-impedance and electrocardiogram signal.
  • the four-electrode method is used to measure bio-impedance. Three electrodes are shared among the four electrodes to complete the ECG measurement, optimize the structure of the device, reduce the volume of the device, reduce the cost, and at the same time ensure the measurement accuracy.
  • FIG. 1 is a schematic diagram of a measurement system capable of detecting bio-impedance and electrocardiogram of the present invention.
  • FIG. 2 is a schematic diagram of the connection between the bio-impedance measurement module and the ECG measurement module in the present invention.
  • FIG. 3 is a front structural view of a wearable device capable of detecting bio-impedance and electrocardiogram of the present invention.
  • FIG. 4 is a rear structural view of a wearable device capable of detecting bio-impedance and electrocardiogram of the present invention.
  • the present invention provides a wearable device capable of detecting bio-impedance and ECG, including: a housing, a strap, and four electrode pieces P1 and P2 for detecting bio-impedance and ECG information , P3, P4, the strap is connected to the case, two of the four electrode pieces P1, P2, P3, P4 are placed on the front of the case, and the other two electrode pieces P3, P4 Located on the back of the housing.
  • the housing is provided with a processor module U1, a signal generation module, a bio-impedance measurement module U2, an electrocardiogram measurement module U3, a charging module, a display module, and a communication module.
  • the processor module and the signal generation module, bio Impedance measurement module, ECG measurement module, charging module, display module and communication module are connected, the signal generator module is also connected to the bioimpedance measurement module, the charging module is used to provide working power to the entire device,
  • the communication module preferably uses wireless communication, such as Bluetooth.
  • the four electrode pads P1, P2, P3, and P4 are required for the bioimpedance measurement module U2 to detect the bioimpedance.
  • the bioimpedance measurement module U2 and the four electrode pads P1, P2, P3, and P4 are respectively Connection, the ECG measurement module U3 needs to use three of the electrode pads P2, P3, P4 when measuring the ECG signal.
  • the three electrode pads P2, P3, P4 include: two electrode pads on the back of the housing P3, P4 and a front electrode P2.
  • the bioimpedance measurement module U2 includes: a voltage follower A1, first to fourth resistors Rref, Rb1, Rb2, Rb3, first to fourth capacitors C1, C2, C3, C4, a first gate switch S1, a first Two strobe switch S2 and instrument amplifier module U4, the input negative pole of the voltage follower A1 is connected to the first output terminal, the input positive pole is connected to the signal generation module, and the processor module controls the signal generation module to generate a 50kHz Sine wave excitation signal to provide an excitation signal to the bioimpedance measurement module U2, and the voltage follower A1 is used to improve the load carrying capacity of the sine wave excitation source.
  • the instrument amplifier module U4 has a first input terminal, a second input terminal, and a second output terminal, the second output terminal is connected to the processor module U1, and the first input terminal of the instrument amplifier module U4 is connected to all
  • the common terminal S13 of the first strobe switch S1 is connected
  • the second input terminal of the instrumentation amplifier module U4 is connected to the common terminal S23 of the second strobe switch S2
  • the first to fourth resistors Rref, Rb1 , Rb2, Rb3 are connected in series, one end is connected to the first output end of the voltage follower A1, the other end is connected to the ground
  • the first strobe end S11 of the first strobe switch S1 and the voltage follower A1 Is connected to the first output terminal
  • the second gate terminal S12 of the first gate switch S1 is connected between the second resistor R1 and the third resistor R2
  • the first gate terminal of the second gate switch S2 S21 is connected between the first resistor Rref and the second resistor r1,
  • the function of the instrument amplifier module U4 has two points: 1. Increase the input resistance, reduce the output resistance, and improve the ability to extract weak signals; 2. Make a differential amplifier to extract the voltage drop of the first resistance Rref and the biological impedance Rx .
  • the two electrode pads P3 and P4 on the back of the casing are in contact with the wrist of one hand, and then the two fingers of the other hand are respectively in contact with the two electrode pads P1 and P2 on the front of the casing.
  • the electrode sheets P1, P2-human body-electrode sheets P3, P4 form a loop.
  • the first to fourth capacitors C1, C2, C3, and C4 play an AC coupling (direct-to-interchange) role.
  • the first resistor Rref is a reference resistor of known resistance
  • the second resistor Rb1, the third resistor Rb2, and the fourth resistor Rb3 are known bias resistors, mainly to provide a fixed bias voltage to the input terminal of the instrumentation amplifier U4 Through the change of bias voltage, it can be distinguished whether it is under test at this time.
  • the resistance Rx1 is the resistance between the two fingers in contact with the electrode sheets P1 and P2
  • the resistance Rx2 is the skin resistance between the electrode sheets P3 and P4 in contact with the wrist
  • the resistance Rx is the whole body
  • the resistance is the desired biological impedance.
  • the first gating switch S1 and the second gating switch S2 are single-pole double-throw switches.
  • the processor module U1 controls the first gating switch S1 and the second gating switch S2 to switch measurement channels and measure corresponding voltages.
  • U4 is an instrumentation amplifier, which is mainly used to improve the ability to extract weak signals.
  • the voltage follower A1 is used to improve the load capacity of the excitation signal source.
  • the processor module U1 turns on the common terminal S13 and the first gate terminal S11 of the first gate switch S1, and the common terminal S23 and the first gate gate of the second gate switch S2
  • the strobe terminal S21 is connected, at this time, the voltage Uref across the first resistor Rref can be measured, Uref is amplified by the instrumentation amplifier, and then converted into a digital signal by the analog-to-digital converter ADC1, and because the first resistor Rref is a known resistance, Then the current I1 of the bioimpedance measurement module circuit can be obtained.
  • the common terminal S13 and the second gate terminal S12 of the first gate switch S1 are turned on, and the common terminal S23 and the second gate terminal S22 of the second gate switch S2 are turned on. It is the voltage Ux across the total resistance Rs after the third resistance Rb2 and the bio-impedance Rx are connected in parallel, and the current I2 flowing through the total resistance Rs after the third resistor Rb2 and the bio-impedance Rx are connected in parallel can also be obtained.
  • Rx (Ux*Rref*Rb2)/(Uref*Rb2-Ux*Rref), combined with personal parameters such as height, age, weight, gender, etc., the body fat composition of the human body can be calculated through the correlation.
  • the processor module U1 sends the related calculation results to the outside intelligent terminal through the communication module.
  • the ECG measurement module U3 includes: a preamplifier circuit U31 connected to the three electrode pieces P2, P3, P4, a high-pass filter circuit U32 connected to the preamplifier circuit U31, and the high-pass filter circuit A 50 Hz trap circuit U33 connected to U32, a main amplifier circuit U34 connected to the 50 Hz trap circuit U33, and a low-pass filter circuit U35 connected to the main amplifier circuit U34.
  • the preamplifier circuit U31 is connected to another electrode sheet P2 on the front of the casing and two electrode sheets P3 and P4 on the back of the casing, respectively.
  • Preamplifier circuit U31 The design of the preamplifier circuit U31 directly affects the quality of the signal. Since the extracted ECG signal is a weak signal with unstable high internal resistance, in order to reduce the influence of the internal resistance of the signal source, it must be Increase the amplifier input impedance. In general, the internal resistance of the signal source is 100k ⁇ , then the input impedance of the amplifier should be greater than 1M ⁇ . In addition, the amplitude range of the ECG signal is 0.5 to 5 mV, and the frequency response is 0.0 5 to 100 Hz, which is a weak signal, so the amplifier gain required is high. The amplification factor of the preamplifier circuit U31 is about 10 times.
  • High-pass filter circuit U32 Due to the weak ECG signal, multi-stage amplification is required, but the multi-stage direct-coupled DC amplifier is likely to cause baseline drift. An RC coupling circuit is used between the two stages of amplifiers to achieve the effect of high-pass filtering while isolating the DC signal.
  • the ECG signal is particularly susceptible to 50Hz power frequency interference due to its low frequency, so it needs to be suppressed with a band stop filter (ie, 50Hz notch circuit U33).
  • the 50 Hz notch circuit U33 is a second-order voltage-controlled voltage source band stop filter (Butterworth response).
  • the main amplifier circuit U34 the amplitude of the ECG signal is very small, generally only about 1mv, and the voltage input range of the chip that the system performs analog-to-digital conversion is 0 ⁇ 5V, and the previous magnification of the pre-amplifier circuit U31 is about 10 times, so The entire measurement module also requires a 100-amplifier main amplifier circuit U34 to amplify the signal.
  • Low-pass filter circuit U35 There is serious interference of high-frequency harmonics higher than 100 Hz during the acquisition of the ECG signal, so the low-pass filter circuit must be processed.
  • the low-pass filter circuit used in the present invention is a second-order voltage-controlled power supply type low-pass filter.
  • Electrodes P2, P3, P4 are needed to measure ECG information, and these three electrodes are shared with the bioimpedance measurement module U2.
  • the electrode pads P3, P4 on the back of the case and one hand When the wrist is in contact, use one finger of the other hand to contact the electrode sheet P2 on the front of the case, so that the electrode sheet P2-body-electrode sheet P3, P4 forms a loop.
  • the ECG signals transmitted through the three electrode pads P2, P3, and P4 are processed by the above five circuits to obtain stable and obvious ECG analog signals, which are then converted by the analog-to-digital converter ADC2 and then passed into processing.
  • the corresponding module U1 performs corresponding processing, and then sends to the external intelligent terminal through the communication module.
  • the wearable device may further include a fifth capacitor C5 and a single-touch button, one end of the fifth capacitor C5 is connected to another electrode sheet P2 on the front of the housing, and the other end is connected to the single-touch button,
  • the fifth capacitor C5 plays an AC coupling role.
  • the wearable device is a smart wearable device worn on the wrist.
  • the present invention also provides a measurement system capable of detecting bio-impedance and electrocardiogram, including: the above-mentioned wearable device, an intelligent terminal connected to the communication module, and a cloud server connected to the intelligent terminal .
  • the bio-impedance measurement module U2 and the electrocardiogram measurement module U3 detect the bio-impedance Rx and the electrocardiogram signal in the above-mentioned method, pass it into the processor module U1 for corresponding processing, and then pass it to the mobile phone APP through the communication module, and display details At the same time, the ECG information is drawn, and some necessary data will be transferred to the cloud through the APP for subsequent big data analysis.
  • the invention also provides a measurement method capable of detecting bio-impedance and electrocardiogram, which is applied to a wearable device, and the specific measurement method is as follows:
  • the method for measuring the bioimpedance includes: wearing the wearable device on the wrist, and making the two electrode sheets on the back of the casing of the wearable device completely contact the wrist. Fully contact the two fingers of the other hand with the two electrode pads on the front of the housing of the wearable device. Under the action of the sine wave excitation signal generated by the signal generator, the electrical signal forms a loop between the wearable device and the human body through the four electrode sheets.
  • the bio-impedance measurement module the electrical signals are measured through the channel switching method, and the voltages of the corresponding resistances of the two channels are respectively measured. Then, through the principle of equal current in the series circuit, an equation is constructed for the measurement results of the two channels, and the bio-impedance measurement is completed .
  • the method of measuring the electrocardiogram includes: wearing the wearable device on the wrist, and making the two electrode pads on the back of the wearable device housing completely contact with the wrist; placing a finger of the other hand with the wrist One electrode pad on the front of the wearable device housing is in full contact; relying on the rhythmic pulsation of the heart to make blood circulate in the body, and the generated electrical signal flows through the three electrode pads of the wearable device housing to form a circuit
  • the ECG measurement module amplifies and filters the electrical signal, converts it into a digital signal through an analog-to-digital converter, and inputs it to the processor module for analysis and processing. It completes the measurement of the ECG signal and draws the corresponding ECG.
  • the processor module transmits to the mobile phone APP through the communication module, displays detailed ECG information, and simultaneously draws an ECG, and some necessary data will be transmitted to the cloud through the APP for subsequent big data analysis
  • the present invention provides a wearable device, measurement system and method that can detect bio-impedance and electrocardiogram, which can simultaneously achieve the measurement functions of bio-impedance and electrocardiogram signal.
  • the four-electrode method is used to measure bio-impedance, and then Three of these four electrodes share three electrodes to complete ECG measurement, optimize the device structure, reduce the device volume, reduce costs, and at the same time ensure measurement accuracy.

Abstract

一种可检测生物阻抗和心电的可穿戴设备、测量系统及方法,可穿戴设备包括:壳体、表带以及用于检测生物阻抗和心电信息的四个电极片(P1、P2、P3、P4),表带与壳体连接,四个电极片(P1、P2、P3、P4)的两个电极片(P1、P2)设于壳体正面,另外两个电极片(P3、P4)设于壳体的背面,可穿戴设备可以同时实现生物阻抗和心电信号的测量功能,采用四电极法测量生物阻抗,再在这四个电极片(P1、P2、P3、P4)上共用其中的三个电极片(P2、P3、P4)完成心电测量,优化设备结构,减小设备体积,降低成本,同时保证测量精度。

Description

可检测生物阻抗和心电的可穿戴设备、测量系统及方法 技术领域
本发明涉及智能穿戴设备技术领域,尤其涉及一种可检测生物阻抗和心电的可穿戴设备、测量系统及方法。
背景技术
世界卫生组织将肥胖定为十大慢性病之一。肥胖与高血压、高血脂、高血糖并称为“死亡四重奏”,可能成为21世纪的头号杀手。因超重和肥胖引发的糖尿病、高血压、心血管病等疾病逐年增加且呈年轻化趋势。长期持续肥胖者,糖尿病发病率明显提高。
我国心血管病防治工作已取得初步成效,但仍面临严峻挑战。总体上看,中国心血管病患病率及死亡率仍处于上升阶段。
鉴于以上提到的肥胖及心血管疾病的严重性,尽早发现并进行防治工作变得尤为重要。
目前,获得人体成分的主流方法就是通过检测人体的生物阻抗,再通过生物阻抗的相关计算式计算得出。人体成分主要包括脂肪、肌肉、水分、蛋白质等信息。其中,脂肪率是判断人体肥胖的一个重要指标。而心电信号绘制的心电图在心血管疾病的检测过程中具有不可替代的作用,简单、快速、价格低廉,有着较高的临床应用价值。
目前市面上采用四电极法测量生物阻抗或人体成分的智能穿戴产品少之又少,大多是采用八电极法测量生物阻抗或人体成分的,如韩国的Inbody体脂秤或人体成分分析仪,采用的是八电极法,不属于可穿戴领域产品,成本高,不易于携带;小米、华为体脂称采用的是四电极法,不属于可穿戴领域产品,体积大,同样不易于携带。
市面上应用于可穿戴领域的心电产品较多,差异性大。医院用的24小时动态心电图设备携带不方便,并且多电极与身体连接,容易造成身体瘙痒等不适;苹果手表可检测心电信号,但价格昂贵;其他心电手环产品标准不一,准确性无 法保证。
另一个值得注意的是,想要在一个设备上能够检测人体脂肪和心电信号,目前市面上还尚未有这样的可穿戴产品。针对以上问题,本发明提出了一种可检测生物阻抗和心电的可穿戴设备,既可检测人体成分,又可检测心电信号,进而检测人体肥胖程度和预测心血管疾病,成本低、精度高、便于携带,具有较高的应用价值。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明的目的是克服现有技术的不足,提供一种可检测生物阻抗和心电的可穿戴设备、测量系统及方法。
本发明的技术方案如下:本发明提供一种可检测生物阻抗和心电的可穿戴设备,包括:壳体、表带以及用于检测生物阻抗和心电信息的四个电极片,所述表带与壳体连接,四个电极片的两个电极片设于所述壳体正面,另外两个电极片设于所述壳体的背面;
所述壳体内设有处理器模块、信号发生模块、生物阻抗测量模块、心电测量模块、充电模块、显示模块及通信模块,所述处理器模块分别与所述信号发生模块、生物阻抗测量模块、心电测量模块、充电模块、显示模块及通信模块连接,所述信号发生器模块还与所述生物阻抗测量模块连接;
所述生物阻抗测量模块检测生物阻抗时需要用到所述四个电极片,所述生物阻抗测量模块分别与所述四个电极片连接,所述心电测量模块测量心电信号时需要用到其中三个电极片,所述三个电极片包括:壳体的背面的两个电极片和正面的一个电极片。
本发明还提供一种可检测生物阻抗和心电的测量系统,包括:上述的可穿戴设备、与所述通信模块连接的智能终端、以及与所述智能终端连接的云端服务器。
本发明还提供一种可检测生物阻抗和心电的测量方法,测量生物阻抗的方法包 括:
将可穿戴设备佩戴在手腕上,并使所述可穿戴设备壳体背面的两个电极片与手腕完全接触;
将另外一只手的两只手指与所述可穿戴设备壳体的正面的两个电极片完全接触;
在信号发生器产生的正弦波激励信号的作用下,电信号通过四个电极片使可穿戴设备与人体形成回路;
在生物阻抗测量模块内,对电信号通过通道切换的方式,分别测出两个通道相应电阻的电压,再通过串联电路电流相等原理,对两通道测量的结果构建方程式,并完成生物阻抗的测量;
测量心电的方法包括:
将可穿戴设备佩戴在手腕上,并使所述可穿戴设备壳体背面的两个电极片与手腕完全接触;
将另外一只手的一只手指与所述可穿戴设备壳体的正面的一个电极片完全接触;
依靠心脏的有节律性的搏动,使得血液在体内循环流动,产生的电信号流经所述可穿戴设备壳体的三个电极片上形成回路;
心电测量模块通过对电信号的放大和滤波处理,再经模数转换器转换成数字信号,并输入到处理器模块进行分析处理,完成心电信号的测量,并绘制相应的心电图。
采用上述方案,本发明提供一种可检测生物阻抗和心电的可穿戴设备、测量系统及方法,可以同时实现生物阻抗和心电信号的测量功能,采用四电极法测量生物阻抗,再在这四个电极上共用其中的三个电极完成心电测量,优化设备结构,减小设备体积,降低成本,同时保证测量精度。
发明的有益效果
对附图的简要说明
附图说明
图1为本发明可检测生物阻抗和心电的测量系统的示意图。
图2为本发明中生物阻抗测量模块与心电测量模块的连接示意图。
图3为本发明可检测生物阻抗和心电的可穿戴设备的正面结构图。
图4为本发明可检测生物阻抗和心电的可穿戴设备的背面结构图。
发明实施例
本发明的实施方式
以下结合附图和具体实施例,对本发明进行详细说明。
请参阅图1至图4,本发明提供一种可检测生物阻抗和心电的可穿戴设备,包括:壳体、表带以及用于检测生物阻抗和心电信息的四个电极片P1、P2、P3、P4,所述表带与壳体连接,四个电极片P1、P2、P3、P4中的两个电极片P1、P2设于所述壳体正面,另外两个电极片P3、P4设于所述壳体的背面。
所述壳体内设有处理器模块U1、信号发生模块、生物阻抗测量模块U2、心电测量模块U3、充电模块、显示模块及通信模块,所述处理器模块分别与所述信号发生模块、生物阻抗测量模块、心电测量模块、充电模块、显示模块及通信模块连接,所述信号发生器模块还与所述生物阻抗测量模块连接,所述充电模块用于给整个设备提供工作电源,所述通信模块优选采用无线通信方式通信,如蓝牙方式。所述生物阻抗测量模块U2检测生物阻抗时需要用到所述四个电极片P1、P2、P3、P4,所述生物阻抗测量模块U2分别与所述四个电极片P1、P2、P3、P4连接,所述心电测量模块U3测量心电信号时需要用到其中三个电极片P2、P3、P4,所述三个电极片P2、P3、P4包括:壳体的背面的两个电极片P3、P4和正面的一个电极片P2。
所述生物阻抗测量模块U2与所述处理器模块U1之间设有模数转换器,所述心电测量模块U3与所述处理器模块U1之间设有模数转换器。所述处理器模块包括有信号发生模块。所述生物阻抗测量模块U2包括:电压跟随器A1、第一至第四电阻Rref、Rb1、Rb2、Rb3、第一至第四电容C1、C2、C3、C4、第一选通开关S1、第二选通开关S2及仪表放大模块U4,所述电压跟随器A1的输入负极与其第一输出端连接,其输入正极与所述信号发生模块连接,所述处理器模块控制信号发生模块产生一个50kHz的正弦波激励信号,以提供激励信号给所述生物阻抗测量模块U2,所述电压跟随器A1用于提高正弦波激 励源的带负载能力。所述仪表放大模块U4具有第一输入端、第二输入端及第二输出端,所述第二输出端与所述处理器模块U1连接,所述仪表放大模块U4的第一输入端与所述第一选通开关S1的公共端S13连接,所述仪表放大模块U4的第二输入端与所述第二选通开关S2的公共端S23连接,所述第一至第四电阻Rref、Rb1、Rb2、Rb3串联后一端与所述电压跟随器A1的第一输出端连接,另一端连接至地线,所述第一选通开关S1的第一选通端S11与所述电压跟随器A1的第一输出端连接,所述第一选通开关S1的第二选通端S12连接至第二电阻R1与第三电阻R2之间,所述第二选通开关S2的第一选通端S21连接至第一电阻Rref与第二电阻r1之间,所述第二选通开关S2的第二选通端S22连接至第三电阻R2与第四电阻R3之间,所述第一电容C1一端连接至第一电阻Rref与第二电阻R1之间,另一端连接至壳体正面的一个电极片P1,所述第二电容C2一端连接至第二电阻R1与第三电阻R2之间,另一端连接至壳体正面的另一个电极片P2,所述第三电容C3一端连接至第三电阻R2与第四电阻R3之间,另一端连接至壳体背面的一个电极片P3,所述第四电容C4一端连接至地线,另一端连接至壳体背面的另一个电极片P4。所述仪表放大模块U4的作用有两点:1、提高输入电阻,降低输出电阻,提高对微弱信号的提取能力;2、做差分放大器,用来提取第一电阻Rref和生物阻抗Rx的压降。
当测量生物阻抗时,壳体背面的两电极片P3、P4与一只手的手腕相接触,再用另一只手的两根手指分别与壳体正面的两电极片P1、P2相接触,这样电极片P1、P2-人体-电极片P3、P4形成回路。
生物阻抗测量模块U2中,第一至第四电容C1、C2、C3、C4起到交流耦合(隔直通交)作用。第一电阻Rref为已知阻值的参考电阻,第二电阻Rb1、第三电阻Rb2、第四电阻Rb3为已知偏置电阻,主要是为了给仪表放大器U4输入端提供一个固定的偏置电压,通过偏置电压的变化,可辨别出此时是否在测试中。在图2中,电阻Rx1为与电极片P1、P2相接触的两根手指之间的电阻,电阻Rx2为与手腕相接触的电极片P3、P4之间的皮肤电阻,电阻Rx为人体的整体电阻,即为所求的生物阻抗。第一选通开关S1和第二选通开关S2为单刀双掷开关,由处理器模块U1控制第一选通开关S1和第 二选通开关S2来切换测量通道,测量相应的电压。U4为仪表放大器,主要是用于提高对微弱信号的提取能力,同时为了获取第一电阻Rref和电阻Rx的压降,电压跟随器A1为了提高激励信号源的带负载能力。
为了测量生物阻抗,即电阻Rx,首先通过处理器模块U1将第一选通开关S1的公共端S13和第一选通端S11接通,将第二选通开关S2的公共端S23和第一选通端S21接通,此时可测量第一电阻Rref两端的电压Uref,Uref经仪表放大器放大后,再经模数转换器ADC1转成数字信号,又因第一电阻Rref为已知电阻,则可求得生物阻抗测量模块电路的电流I1。
接着通过处理器模块将第一选通开关S1的公共端S13和第二选通端S12接通,将第二选通开关S2的公共端S23和第二选通端S22接通,此时测量的是第三电阻Rb2和生物阻抗Rx并联后的总电阻Rs两端的电压Ux,同样可求得流经第三电阻Rb2和生物阻抗Rx并联后总电阻Rs的电流I2。
其中,总电阻Rs的计算关系式为:Rs=(Rx*Rb2)/(Rx+Rb2)。
又由于串联电路电流相等原理,即I1=I2,可得出方程式Uref/Rref=Ux/Rs,将Rs关系式带入方程式,即可求出Rx,即生物阻抗Rx计算关系式为:
Rx=(Ux*Rref*Rb2)/(Uref*Rb2-Ux*Rref),再结合人为输入的身高、年龄、体重、性别等个人参数,即可通过相关关系式计算出人体的体脂成分。
处理器模块U1将相关的计算结果通过通信模块发送给外界智能终端。
所述心电测量模块U3包括:与所述三个电极片P2、P3、P4连接的前置放大电路U31、与所述前置放大电路U31连接的高通滤波电路U32、与所述高通滤波电路U32连接的50Hz陷波电路U33、与所述50Hz陷波电路U33连接的主放大电路U34以及与所述主放大电路U34连接的低通滤波电路U35。所述前置放大电路U31分别与所述壳体正面的另一电极片P2及壳体背面的两个电极片P3、P4连接。
前置放大电路U31:所述前置放大电路U31设计的好坏直接影响信号的质量,由于被提取的心电信号是不稳定的高内阻的微弱信号,为了减少信号源内阻的影响,必须提高放大器输入阻抗。一般情况下,信号源的内阻为100kΩ,则放大器的输入阻抗应大于1MΩ。另外,心电信号的幅度范围为0.5~5mV,频响为0.0 5~100Hz,属于微弱信号,因而需要的放大器增益较高。所述前置放大电路U31放大倍数约为10倍。
高通滤波电路U32:由于心电信号微弱,需要多级放大,但多级直接耦合的直流放大器容易引起基线飘移。在两级放大器之间采用RC耦合电路,在隔离直流信号的同时达到高通滤波的效果。
50Hz陷波电路U33:心电信号由于频率低,特别容易受到50Hz的工频干扰,因此需要用带阻滤波器(即50Hz陷波电路U33)予以抑制。所述50Hz陷波电路U33为二阶压控电压源带阻滤波器(巴特沃斯响应)。
主放大电路U34:心电信号的幅度很小,一般只有1mv左右,而系统进行模数转换的芯片的电压输入范围是0~5V,而此前前置放大电路U31放大倍数约为10倍,因此整个测量模块还需要一个100放大的主放大电路U34对信号进行放大。
低通滤波电路U35:心电信号在采集过程中存在高于100Hz高频谐波的严重干扰,因此必须进行低通滤波电路的处理。本发明采用的低通滤波电路为二阶压控电源型低通滤波器。
测量心电信息需用到P2、P3、P4三个电极片,与生物阻抗测量模块U2共用这三个电极,当测量心电信息时,壳体背面的电极片P3、P4与一只手的手腕相接触,再用另一只手的一根手指与壳体正面的电极片P2相接触,这样电极片P2-人体-电极片P3、P4形成回路。经所述三个电极片P2、P3、P4传输进来的心电信号,经上述五大电路的处理后,得到稳定、明显的心电模拟信号,再经模数转换器ADC2转换后,传入处理器模块U1进行相应的处理,之后通过所述通信模块发送至外界智能终端。
另外,所述可穿戴设备还可以包括第五电容C5与单点触摸按键,所述第五电容C5一端与壳体正面的另一电极片P2连接,另一端与所述单点触摸按键连接,第五电容C5起到交流耦合作用。
在本实施例中,所述可穿戴设备为佩戴于手腕上的智能可穿戴设备。
请参阅图1,本发明还提供一种可检测生物阻抗和心电的测量系统,包括:上述的可穿戴设备、与所述通信模块连接的智能终端、以及与所述智能终端连接的云端服务器。
所述生物阻抗测量模块U2和心电测量模块U3上述方法检测到生物阻抗Rx和心电信号,传入处理器模块U1进行相应的处理,之后通过所述通信模块传到手机APP,并显示详细的心电信息,同时绘制心电图,部分必要数据将通过APP传到云端进行后续的大数据分析。
本发明还提供一种可检测生物阻抗和心电的测量方法,其应用于可穿戴设备中,具体测量方法如下:
1、测量生物阻抗的方法包括:将可穿戴设备佩戴在手腕上,并使所述可穿戴设备壳体背面的两个电极片与手腕完全接触。将另外一只手的两只手指与所述可穿戴设备壳体的正面的两个电极片完全接触。在信号发生器产生的正弦波激励信号的作用下,电信号通过四个电极片使可穿戴设备与人体形成回路。在生物阻抗测量模块内,对电信号通过通道切换的方式,分别测出两个通道相应电阻的电压,再通过串联电路电流相等原理,对两通道测量的结果构建方程式,并完成生物阻抗的测量。
2、测量心电的方法包括:将可穿戴设备佩戴在手腕上,并使所述可穿戴设备壳体背面的两个电极片与手腕完全接触;将另外一只手的一只手指与所述可穿戴设备壳体的正面的一个电极片完全接触;依靠心脏的有节律性的搏动,使得血液在体内循环流动,产生的电信号流经所述可穿戴设备壳体的三个电极片上形成回路;心电测量模块通过对电信号的放大和滤波处理,再经模数转换器转换成数字信号,并输入到处理器模块进行分析处理,完成心电信号的测量,并绘制相应的心电图。
具体的,处理器模块通过所述通信模块传到手机APP,并显示详细的心电信息,同时绘制心电图,部分必要数据将通过APP传到云端进行后续的大数据分析
综上所述,本发明提供一种可检测生物阻抗和心电的可穿戴设备、测量系统及方法,可以同时实现生物阻抗和心电信号的测量功能,采用四电极法测量生物阻抗,再在这四个电极上共用其中的三个电极完成心电测量,优化设备结构,减小设备体积,降低成本,同时保证测量精度。
以上仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范 围之内。

Claims (10)

  1. 一种可检测生物阻抗和心电的可穿戴设备,其特征在于,包括:壳体、表带以及用于检测生物阻抗和心电信息的四个电极片,所述表带与壳体连接,四个电极片的两个电极片设于所述壳体正面,另外两个电极片设于所述壳体的背面;所述壳体内设有处理器模块、信号发生模块、生物阻抗测量模块、心电测量模块、充电模块、显示模块及通信模块,所述处理器模块分别与所述信号发生模块、生物阻抗测量模块、心电测量模块、充电模块、显示模块及通信模块连接,所述信号发生器模块还与所述生物阻抗测量模块连接;所述生物阻抗测量模块检测生物阻抗时需要用到所述四个电极片,所述生物阻抗测量模块分别与所述四个电极片连接,所述心电测量模块测量心电信号时需要用到其中三个电极片,所述三个电极片包括:壳体的背面的两个电极片和正面的一个电极片。
  2. 根据权利要求1所述的可检测生物阻抗和心电的可穿戴设备,其特征在于,所述生物阻抗测量模块与所述处理器模块之间设有模数转换器,所述心电测量模块与所述处理器模块之间设有模数转换器。
  3. 根据权利要求1所述的可检测生物阻抗和心电的可穿戴设备,其特征在于,所述处理器模块包括有信号发生模块;所述生物阻抗测量模块包括:电压跟随器、第一至第四电阻、第一至第四电容、第一选通开关、第二选通开关及仪表放大模块,所述电压跟随器的输入负极与其第一输出端连接,其输入正极与所述信号发生模块连接,所述仪表放大模块具有第一输入端、第二输入端及第二输出端,所述第二输出端与所述处理器模块连接,所述仪表放大模块的第一输入端与所述第一选通开关的公共端连接,所述仪表放大模块的第二输入端与所述第二选通开关的公共端连接,所述第一至第四电阻串联后一端与所述电压跟随器的第一输出端连接 ,另一端连接至地线,所述第一选通开关的第一选通端与所述电压跟随器的第一输出端连接,所述第一选通开关的第二选通端连接至第二电阻与第三电阻之间,所述第二选通开关的第一选通端连接至第一电阻与第二电阻之间,所述第二选通开关的第二选通端连接至第三电阻与第四电阻之间,所述第一电容一端连接至第一电阻与第二电阻之间,另一端连接至壳体正面的一个电极片,所述第二电容一端连接至第二电阻与第三电阻之间,另一端连接至壳体正面的另一个电极片,所述第三电容一端连接至第三电阻与第四电阻之间,另一端连接至壳体背面的一个电极片,所述第四电容一端连接至地线,另一端连接至壳体背面的另一个电极片。
  4. 根据权利要求1所述的可检测生物阻抗和心电的可穿戴设备,其特征在于,所述心电测量模块包括:与所述三个电极片连接的前置放大电路、与所述前置放大电路连接的高通滤波电路、与所述高通滤波电路连接的50Hz陷波电路、与所述50Hz陷波电路连接的主放大电路以及与所述主放大电路连接的低通滤波电路。
  5. 根据权利要求4所述的可检测生物阻抗和心电的可穿戴设备,其特征在于,所述前置放大电路分别与所述壳体正面的另一电极片及壳体背面的两个电极片连接。
  6. 根据权利要求3所述的可检测生物阻抗和心电的可穿戴设备,其特征在于,还包括第五电容与单点触摸按键,所述第五电容一端与壳体正面的另一电极片连接,另一端与所述单点触摸按键连接。
  7. 根据权利要求3所述的可检测生物阻抗和心电的可穿戴设备,其特征在于,所述处理器模块控制所述信号发生模块输出50kHz的正弦波激励信号给所述生物阻抗测量模块。
  8. 根据权利要求1所述的可检测生物阻抗和心电的可穿戴设备,其特征在于,所述可穿戴设备为佩戴于手腕上的智能可穿戴设备。
  9. 一种可检测生物阻抗和心电的测量系统,其特征在于,包括:权 利要求1所述的可穿戴设备、与所述通信模块连接的智能终端、以及与所述智能终端连接的云端服务器。
  10. 一种可检测生物阻抗和心电的测量方法,其特征在于,测量生物阻抗的方法包括:将可穿戴设备佩戴在手腕上,并使所述可穿戴设备壳体背面的两个电极片与手腕完全接触;将另外一只手的两只手指与所述可穿戴设备壳体的正面的两个电极片完全接触;在信号发生器产生的正弦波激励信号的作用下,电信号通过四个电极片使可穿戴设备与人体形成回路;在生物阻抗测量模块内,对电信号通过通道切换的方式,分别测出两个通道相应电阻的电压,再通过串联电路电流相等原理,对两通道测量的结果构建方程式,并完成生物阻抗的测量;测量心电的方法包括:将可穿戴设备佩戴在手腕上,并使所述可穿戴设备壳体背面的两个电极片与手腕完全接触;将另外一只手的一只手指与所述可穿戴设备壳体的正面的一个电极片完全接触;依靠心脏的有节律性的搏动,使得血液在体内循环流动,产生的电信号流经所述可穿戴设备壳体的三个电极片上形成回路;心电测量模块通过对电信号的放大和滤波处理,再经模数转换器转换成数字信号,并输入到处理器模块进行分析处理,完成心电信号的测量,并绘制相应的心电图。
PCT/CN2019/116906 2018-12-06 2019-11-09 可检测生物阻抗和心电的可穿戴设备、测量系统及方法 WO2020114197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811489648.4 2018-12-06
CN201811489648.4A CN109381180A (zh) 2018-12-06 2018-12-06 可检测生物阻抗和心电的可穿戴设备、测量系统及方法

Publications (1)

Publication Number Publication Date
WO2020114197A1 true WO2020114197A1 (zh) 2020-06-11

Family

ID=65429255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116906 WO2020114197A1 (zh) 2018-12-06 2019-11-09 可检测生物阻抗和心电的可穿戴设备、测量系统及方法

Country Status (2)

Country Link
CN (1) CN109381180A (zh)
WO (1) WO2020114197A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109381180A (zh) * 2018-12-06 2019-02-26 深圳市优创亿科技有限公司 可检测生物阻抗和心电的可穿戴设备、测量系统及方法
US11272854B1 (en) 2020-09-02 2022-03-15 Analog Devices International Unlimited Company Noise cancellation in impedance measurement circuits
CN112957026B (zh) * 2021-02-05 2021-08-13 上海爻火微电子有限公司 接入阻抗的检测电路及电子设备
CN114569077B (zh) * 2022-02-28 2023-03-24 深圳市医未医疗科技有限公司 一种基于移动终端的心肌梗死检测系统及方法
CN115208361B (zh) * 2022-06-13 2023-04-11 曦成半导体技术(上海)有限公司 一种生物电模拟发生器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172691A1 (en) * 2006-05-16 2013-07-04 Bao Tran Health monitoring appliance
CN103622688A (zh) * 2013-01-10 2014-03-12 中国科学院电子学研究所 一种可贴式心电、心阻抗集成监测传感器
CN104042207A (zh) * 2014-06-20 2014-09-17 中国科学院苏州生物医学工程技术研究所 具有反馈放松功能的智能手环
CN104545854A (zh) * 2015-01-30 2015-04-29 中国科学院电子学研究所 基于心电与阻抗信号的无袖带动态血压监测设备
CN108888257A (zh) * 2018-04-28 2018-11-27 无锡商业职业技术学院 一种基于共享电极的多参数穿戴式健康检测设备
CN109381180A (zh) * 2018-12-06 2019-02-26 深圳市优创亿科技有限公司 可检测生物阻抗和心电的可穿戴设备、测量系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11096629B2 (en) * 2015-09-14 2021-08-24 Stichting Imec Nederland Bio-impedance spectroscopy system and method for bio-impedance measurement
KR101885311B1 (ko) * 2016-06-03 2018-09-11 한국과학기술원 웨어러블 디바이스를 이용한 맥파 속도 측정 방법 및 장치
CN106725423A (zh) * 2016-12-02 2017-05-31 华南理工大学 一种检测人体心电信号的可穿戴设备
CN107865653B (zh) * 2017-12-20 2024-04-05 歌尔科技有限公司 一种提升体脂率测量准确度的电极复用电路及可穿戴设备
CN209915984U (zh) * 2018-12-06 2020-01-10 深圳市优创亿科技有限公司 可检测生物阻抗和心电的可穿戴设备及测量系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172691A1 (en) * 2006-05-16 2013-07-04 Bao Tran Health monitoring appliance
CN103622688A (zh) * 2013-01-10 2014-03-12 中国科学院电子学研究所 一种可贴式心电、心阻抗集成监测传感器
CN104042207A (zh) * 2014-06-20 2014-09-17 中国科学院苏州生物医学工程技术研究所 具有反馈放松功能的智能手环
CN104545854A (zh) * 2015-01-30 2015-04-29 中国科学院电子学研究所 基于心电与阻抗信号的无袖带动态血压监测设备
CN108888257A (zh) * 2018-04-28 2018-11-27 无锡商业职业技术学院 一种基于共享电极的多参数穿戴式健康检测设备
CN109381180A (zh) * 2018-12-06 2019-02-26 深圳市优创亿科技有限公司 可检测生物阻抗和心电的可穿戴设备、测量系统及方法

Also Published As

Publication number Publication date
CN109381180A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2020114197A1 (zh) 可检测生物阻抗和心电的可穿戴设备、测量系统及方法
Lin et al. Development of novel non-contact electrodes for mobile electrocardiogram monitoring system
CN102657524B (zh) 一种非接触式心电传感器及其应用
CN106236051A (zh) 一种基于ppg与ecg的智能无袖带血压健康监测手表
KR20190065102A (ko) 심전도 측정 장치
CN106388809A (zh) 一种用于心电检测的智能手表
Arcelus et al. Design of a capacitive ECG sensor for unobtrusive heart rate measurements
Ko et al. Ultralow-power bioimpedance IC with intermediate frequency shifting chopper
CN105997050A (zh) 一种穿戴式非接触心电采集装置及方法
CN209915984U (zh) 可检测生物阻抗和心电的可穿戴设备及测量系统
Xue et al. Design of amplifier for wearable human ECG sensor with low power and low noise
Svärd et al. Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG
Ding et al. A novel front-end design for bioelectrical signal wearable acquisition
CN201847678U (zh) 腰带式无线心率检测装置
Peng et al. A low noise, non-contact capacitive cardiac sensor
CN205386149U (zh) 一种集成的便携式心电与皮电监测仪
WO2018018570A1 (zh) 用于心电测量的装置和方法
CN109602395B (zh) 一种无创多通道动脉系统检测方法及装置
KR20060005094A (ko) 휴대형 심전도-호흡신호 동시측정 장치
CN109171722A (zh) 一种生物阻抗测量电路、生物阻抗测量方法及可穿戴设备
CN206197932U (zh) 基于ppg与ecg的智能无袖带血压健康监测手表
Santonico et al. Contactless detection of ECG Signals: sensor architecture and simulation
Yan et al. A low-power portable ECG touch sensor with two dry metal contact electrodes
Ramos et al. A wireless, compact, and scalable bioimpedance measurement system for energy-efficient multichannel body sensor solutions
Islam et al. Design and Implementation of 12 Channel Electrocardiogram Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19893352

Country of ref document: EP

Kind code of ref document: A1