WO2020114177A1 - 手轮控制装置、控制系统及手轮 - Google Patents

手轮控制装置、控制系统及手轮 Download PDF

Info

Publication number
WO2020114177A1
WO2020114177A1 PCT/CN2019/115692 CN2019115692W WO2020114177A1 WO 2020114177 A1 WO2020114177 A1 WO 2020114177A1 CN 2019115692 W CN2019115692 W CN 2019115692W WO 2020114177 A1 WO2020114177 A1 WO 2020114177A1
Authority
WO
WIPO (PCT)
Prior art keywords
handwheel
module
control device
electrical signal
configuration information
Prior art date
Application number
PCT/CN2019/115692
Other languages
English (en)
French (fr)
Inventor
刘长远
Original Assignee
苏州谷夫道自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州谷夫道自动化科技有限公司 filed Critical 苏州谷夫道自动化科技有限公司
Publication of WO2020114177A1 publication Critical patent/WO2020114177A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller

Definitions

  • the utility model relates to the technical field of computer digital control, in particular to a handwheel control device, control system and handwheel.
  • the handwheel is also called manual pulse generator, hand pulse, hand pulse generator or photoelectric encoder. Mainly used in CNC machine tools, vertical machining centers, horizontal machining centers, gantry machining centers and printing machinery.
  • the grating disk rotates at the same speed as the rotating shaft, and forms a detection device with the light emitting element.
  • the detection device detects the rotation angle and direction of the grating disk and converts it into a pulse sequence signal containing position and direction information.
  • the transmission of the above-mentioned pulse signal includes an acquisition circuit and a phase discrimination circuit, and the transmission to the MCU (Microcontroller Unit) through the acquisition circuit and the phase discrimination circuit has the problem of weak anti-interference ability; in addition, the handwheel and The communication transmission method of other devices adopts the parallel bus, which has the disadvantages of slow communication rate and short communication distance.
  • the utility model provides a hand wheel control device, a control system and a hand wheel.
  • a handwheel control device which includes an acquisition module, an optical coupling isolation module, and a main control module, wherein,
  • the collection module is used for collecting rotation parameters generated by the handwheel driving the grating disk to rotate, and converting the rotation parameters into a first electrical signal, and also for transmitting the first electrical signal to the optocoupler isolation Module
  • the optocoupler isolation module is electrically connected to the acquisition module, and is used to convert the first electrical signal into an optical signal at the input end of the optocoupler isolation module, and convert the optical signal to an output end
  • the second electrical signal realizes the unidirectional transmission of the signal
  • the main control module is electrically connected to the optocoupler isolation module, and is used to receive the second electrical signal, and the second electrical signal is used to generate configuration information of the controlled device.
  • the optocoupler isolation module includes: an optocoupler chip, the optocoupler chip includes a light emitting diode and a phototransistor, wherein,
  • the positive electrode of the light-emitting diode is electrically connected to the power source, and the negative electrode is connected to the collection module to receive the first electrical signal; when the light-emitting diode is on, the light-emitting diode connects the first electrical signal Convert to optical signal;
  • the base electrode of the phototransistor receives the optical signal, and outputs the second electrical signal at the collector when the phototransistor is turned on.
  • the negative electrode of the light-emitting diode is also connected to one pole of the transient suppression diode, the other pole of the transient suppression diode is grounded, and the transient suppression diode is used to LED overvoltage protection.
  • the handwheel control device further includes a driving module, the driving module is electrically connected to the main control module, and is configured to receive a second signal transmitted by the main control module according to The second signal generates configuration information of the controlled device.
  • the driving module includes:
  • the master station controller is used to convert the configuration information into EtherCAT message data based on the EtherCAT protocol;
  • the first network interface is used to transmit the EtherCAT message data to the controlled device.
  • the driving module further includes an RS485 communication interface, and the RS485 communication interface is used to transmit the configuration information to the controlled device.
  • the handwheel control device further includes a power supply module, and the power supply module includes an overcurrent protection circuit for overcurrent protection of the handwheel control device.
  • a handwheel control system including the handwheel control device and at least one controlled device according to any embodiment of the present invention, the controlled device includes:
  • the slave station controller is electrically connected to the handwheel control device, and is configured to receive the configuration information through a second network interface and forward the configuration information to the slave station microprocessor;
  • the slave station microprocessor is electrically connected to the slave station controller to read the configuration information and generate a control command for the controlled device based on the configuration information.
  • the configuration information is set to be transmitted using the EtherCAT protocol.
  • a handwheel including the handwheel control device according to any embodiment of the present invention.
  • the technical solution provided by the embodiments of the present invention may include the following beneficial effects: by adding an optical coupling isolation module, the collected electrical signals are photoelectrically converted, and the input and output terminals are isolated from each other, so that the transmission of the electrical signals has a unidirectional It effectively prevents the mutual interference between the input and output.
  • the handwheel control device has good anti-interference performance and electrical insulation performance; the drive module integrates EtherCAT protocol, which greatly improves the data communication rate.
  • the handwheel control device can Adapting to more complicated working conditions, the reliability can be improved.
  • Fig. 1 is a block diagram of a handwheel control device according to an exemplary embodiment.
  • Fig. 2 is a circuit diagram of an optocoupler isolation module according to an exemplary embodiment.
  • Fig. 3 is a block diagram of a handwheel control device according to an exemplary embodiment.
  • Fig. 4 is a block diagram of a handwheel control device according to an exemplary embodiment.
  • Fig. 5 is a structural diagram of a handwheel control system according to an exemplary embodiment.
  • Fig. 1 is a block diagram of a handwheel control device according to an exemplary embodiment. Referring to Fig. 1, it includes an acquisition module 11, an optical coupling isolation module 12, and a main control module 13.
  • the collection module 11 is used to collect rotation parameters generated by the handwheel driving the grating disk to rotate, and convert the rotation parameters into a first electrical signal, and also used to transmit the first electrical signal to the optocoupler isolation module 12.
  • the rotation parameters of the grating disk are detected by the detection device, according to the corresponding relationship between the rotation parameters and the first electrical signal , Convert the above rotation parameters into a pulse sequence containing position and direction information, that is, the first electrical signal.
  • the corresponding relationship between the rotation parameter and the first electrical signal may include that each time the handwheel rotates one scale, corresponding to a set of A and B signals whose phases are different by 90 degrees, the phase of the A signal may be set when the handwheel rotates one scale clockwise.
  • the B signal phase is 90 degrees; when the handwheel turns one scale counterclockwise, the B signal phase exceeds the A signal phase by 90 degrees.
  • the optocoupler isolation module 12 is electrically connected to the collection module 11 for converting the first electrical signal into an optical signal at the input end of the optocoupler isolation module, and converting the light at the output end The signal is converted into a second electrical signal to realize the unidirectional transmission of the signal.
  • the optocoupler isolation module 12 includes a light emitting device and a receiving device, where the light emitting device may include a light emitting diode, and the receiving device may include a photodiode, a phototransistor, an integrated component of a photodiode and a high-speed switching transistor, and the like.
  • the light emitting device is connected to the input end of the optocoupler isolation module 12, and the receiving device is connected to the output end of the optocoupler isolation module 12, because unidirectional optical signal transmission is between the light emitting device and the receiver device , So that the input and output terminals are isolated from each other, thereby reducing the interference of the output signal to the input signal.
  • the input first electrical signal may include two pulse signals A and B.
  • the output may be Including the second electrical signal with a certain delay from the A and B signals.
  • the main control module 13 is electrically connected to the optocoupler isolation module 12 for receiving the second electrical signal, and the second signal is used to generate configuration information of the controlled device.
  • the main control module 13 may include an analog-to-digital conversion unit, an instruction register, a control memory, a timing unit, etc.
  • the analog-to-digital conversion unit is used to convert the received second electrical signal into a digital signal and store it in the control memory Under the control of the timing unit, the microinstructions in the control memory are sequentially read, sent to the instruction register, and the configuration information is generated after decoding.
  • the configuration information includes some parameter information of the controlled device.
  • the controlled device may include a servo motor.
  • the configuration information may include the number of the servo motor, the torque and speed of the servo motor, etc.
  • the utility model adds a photocoupler isolation module to photoelectrically convert the collected electrical signals, and isolates the input end and the output end circuits from each other, so that the transmission of the electrical signal is unidirectional, effectively preventing the mutual input and output ends Interference, hand wheel control device has good anti-interference performance and electrical insulation performance.
  • FIG. 2 is a circuit diagram of an optocoupler isolation module according to an exemplary embodiment.
  • the optocoupler chip includes a light emitting diode and a phototransistor, wherein,
  • the positive electrode of the light-emitting diode is electrically connected to the power source, and the negative electrode is connected to the collection module to receive the first electrical signal; when the light-emitting diode is on, the light-emitting diode connects the first electrical signal Convert to optical signal;
  • the base electrode of the phototransistor receives the optical signal, and outputs the second electrical signal at the collector when the phototransistor is turned on.
  • the optocoupler chip (or optocoupler) includes a light emitting diode and a phototransistor, an input signal (that is, a first electrical signal) A or B, and a pin 2 of the optocoupler chip is connected to the negative electrode of the light emitting diode Connected, the anode of the light-emitting diode is connected to the power supply through pin 1 of the optocoupler chip, when the first signal is low level, such as less than the power supply voltage, the light-emitting diode emits light through the current, the phototransistor A current is generated after being irradiated, the collector and the emitter of the phototransistor are turned on, and when the first signal is at a high level, the phototransistor is turned off.
  • the collector of the phototransistor is electrically connected to the output signal, that is, the second electrical signal, through the pin 4 of the optocoupler chip.
  • the emitter of the phototransistor is grounded. Since the input signal A is a pulse signal, the optocoupler chip can select one of various types such as non-linear 4N25, 4N26, 4N35, and 4N36.
  • the hand wheel rotates to generate a pair of input signals, A signal and B signal. When the input B signal is optically isolated, the same circuit connection method as the A signal can be used.
  • the negative electrode of the light-emitting diode is also connected to one pole of the transient suppression diode, the other pole of the transient suppression diode is grounded, and the transient suppression diode is used to emit light Diode overvoltage protection.
  • the type of the transient suppression diode may include bidirectional, capable of absorbing instantaneous large pulse power in both positive and negative directions, and using a TVS transient suppression diode improves the safety level of the circuit.
  • Fig. 3 is a block diagram of a handwheel control device according to an exemplary embodiment.
  • the handwheel control device further includes a drive module 14, the drive module 14 and the main control module 13 are electrically Connected, the driving module 14 is used to receive the second signal transmitted by the main control module 13 and generate configuration information of the controlled device according to the second signal.
  • the drive module 14 implements the communication between the main control module 13 and the controlled device, so that the controlled device works according to the instructions of the drive module 14 .
  • Fig. 4 is a block diagram of a hand wheel control device according to an exemplary embodiment. Referring to Fig. 4, the difference from the foregoing embodiment is that the driving module 14 includes:
  • the master controller 141 is used to convert the configuration information into EtherCAT message data based on the EtherCAT protocol;
  • the first network interface 142 is used to transmit the EtherCAT message data to the controlled device.
  • the format of the EtherCAT message data may use 0x88A4 as the frame type, the data header is 2 bytes, and the data area is 44 to 1498 ⁇ bytes to form one or more EtherCAT sub-messages.
  • the master station controller 141 writes the configuration information into the data area of the sub-message, and at the same time, the master station controller 141 is also used to control media access and connect with the physical layer chip, which can be Including PHY chip, it has the functions of decoding, sending and receiving and encoding.
  • the physical layer chip then completes the connection with the controlled device through a standard network interface, such as RJ5.
  • the drive module 14 integrates the EtherCAT protocol, which has the advantages of small delay and strong real-time performance, which greatly improves the data communication rate.
  • the handwheel control device can adapt to more complicated working conditions and the reliability is improved.
  • the driving module 14 further includes an RS485 communication interface, and the RS485 communication interface is used to transmit the configuration information to the controlled device.
  • the RS485 communication interface is relatively simple, and can be directly connected to the serial port of the main control module 13 through an RS485 converter, using the same asynchronous serial communication protocol. Through the use of RS485 communication interface, it can be compatible with the drivers of many different devices, which improves the compatibility of the handwheel control device.
  • the handwheel control device further includes a power supply module, and the power supply module includes an overcurrent protection circuit for overcurrent protection of the handwheel control device.
  • the handwheel control device further includes a power supply module, and the power supply module supplies power to the handwheel control device.
  • the power supply module includes an overcurrent protection circuit, such as a self-recovery fuse, to protect against overcurrent self-recovery.
  • an overcurrent protection circuit such as a self-recovery fuse, to protect against overcurrent self-recovery.
  • the self-recovery fuse generates a higher resistance, which is equivalent to cutting off the circuit.
  • the self-recovery fuse drops, the circuit resumes normal operation, and the self-recovery fuse plays an opponent. Overcurrent protection of wheel control device.
  • Fig. 5 is a structural diagram of a handwheel control system according to an exemplary embodiment.
  • the system includes: the handwheel control device and at least one controlled device according to any embodiment of the present invention;
  • the slave station controller 21 is electrically connected to the handwheel control device and is used to receive the configuration information through the second network interface 24 and forward the configuration information to the slave station microprocessor 22;
  • the slave station microprocessor 22 is electrically connected with the slave station controller for reading the configuration information and controlling the hardware device to complete the specified action command;
  • the configuration information is set to be transmitted using the EtherCAT protocol.
  • the slave station controller 21 implements the processing of EtherCAT message data.
  • the slave controller 21 When the EtherCAT message data passes through a controlled device, the slave controller 21 inside extracts the corresponding data from the EtherCAT message data At the same time, it receives the feedback data of the slave station microprocessor 22 and writes the feedback data to the EtherCAT message data.
  • the slave station microprocessor 22 can use an 8-bit, 16-bit single-chip computer or a 32-bit high-performance processor, and the slave station microprocessor 22 reads the EtherCAT The message data controls the controlled device to complete the specified action command, and transmits the feedback data of the controlled hardware device to the slave controller 21.
  • the controlled device may further include a slave station memory 23 for storing configuration data in the EtherCAT message data.
  • a handwheel is proposed, and the handwheel includes the handwheel control device according to any embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种手轮控制装置、控制系统及手轮,包括采集模块(11)、光耦隔离模块(12)和主控模块(13),采集模块(11)用于采集手轮带动光栅盘转动而产生的转动参数,并将转动参数转换成第一电信号;光耦隔离模块(12)用于在光耦隔离模块(12)的输入端将第一电信号转换成光信号,并在输出端将光信号转换成第二电信号;主控模块(13)用于接收第二电信号,第二电信号用于生成被控设备(1…N)的配置信息。通过增设光耦隔离模块(12),有效的阻止了输入端和输出端的相互干扰,手轮控制装置具有较好的抗干扰性能和电绝缘性能。

Description

手轮控制装置、控制系统及手轮 技术领域
本实用新型涉及计算机数字控制技术领域,尤其涉及一种手轮控制装置、控制系统及手轮。
背景技术
手轮也称为手动脉冲发生器、手脉、手摇脉冲发生器或光电编码器。主要用于数控机床、立式加工中心、卧式加工中心、龙门加工中心及印刷机械等。在手轮转动的情况下,光栅盘与旋转轴同速转动,并与发光元件组成检测装置,检测装置检测光栅盘的转动角度和方向,将其转换成含有位置和方向信息的脉冲序列信号。
相关技术中,对上述脉冲信号的传输包括采集电路、鉴相电路,通过采集电路和鉴相电路传输至MCU(Microcontroller Unit,微控制单元),存在抗干扰能力弱的问题;此外,手轮与其他设备的通信传输方式采用并行总线的方式,存在通信速率慢,通信距离短等不足。
发明内容
为克服相关技术中存在的问题,本实用新型提供一种手轮控制装置、控制系统及手轮。
根据本实用新型实施例的第一方面,提供一种手轮控制装置,包括采集模块、光耦隔离模块和主控模块,其中,
所述采集模块,用于采集手轮带动光栅盘转动而产生的转动参数,并将所述转动参数转换成第一电信号,还用于将所述第一电信号传输给所述光耦隔离模块;
所述光耦隔离模块与所述采集模块电性连接,用于在所述光耦隔离模块的输入端将所述第一电信号转换成光信号,并在输出端将所述光信号转换成第二电信号,实现信号的单向传输;
所述主控模块与所述光耦隔离模块电性连接,用于接收所述第二电信号,所述第二电信号用于生成被控设备的配置信息。
在一种可能的实现方式中,所述光耦隔离模块包括:光耦芯片,所述光耦芯片包括发光二极管和光敏三极管,其中,
所述发光二极管的正极与电源电性连接,负极与所述采集模块连接,接收所述第一电 信号;在所述发光二极管导通的情况下,所述发光二极管将所述第一电信号转换成光信号;
所述光敏三极管的基极接收所述光信号,并在所述光敏三极管导通的情况下,在集电极输出所述第二电信号。
在一种可能的实现方式中,所述发光二极管的负极还与瞬态抑制二极管的一极相连接,所述瞬态抑制二极管的另一极接地,所述瞬态抑制二极管用于对所述发光二极管过压保护。
在一种可能的实现方式中,所述手轮控制装置还包括驱动模块,所述驱动模块与所述主控模块电性连接,用于接收所述主控模块传输的第二信号,根据所述第二信号,生成被控设备的配置信息。
在一种可能的实现方式中,所述驱动模块包括:
主站控制器,用于基于EtherCAT协议,将所述配置信息转换为EtherCAT报文数据;
第一网络接口,用于将所述EtherCAT报文数据传输给所述被控设备。
在一种可能的实现方式中,所述驱动模块还包括RS485通信接口,所述RS485通信接口用于将所述配置信息传输给所述被控设备。
在一种可能的实现方式中,所述手轮控制装置还包括电源模块,所述电源模块中包括过流保护电路,用于对所述手轮控制装置进行过流保护。
根据本实用新型实施例的第二方面,提供一种手轮控制系统,包括根据本实用新型任一实施例所述的手轮控制装置及至少一个被控设备,所述被控设备包括:
从站控制器,与所述手轮控制装置电性连接,用于通过第二网络接口接收所述配置信息,并将所述配置信息转发给从站微处理器;
所述从站微处理器,与所述从站控制器进行电性连接,用于读取所述配置信息,并基于所述配置信息生成对所述被控设备的控制命令。
在一种可能的实现方式中,所述配置信息被设置为利用EtherCAT协议进行传输。
根据本实用新型实施例的第三方面,提供一种手轮,所述手轮包括本实用新型任一实施例所述的手轮控制装置。
本实用新型的实施例提供的技术方案可以包括以下有益效果:通过增设光耦隔离模块,将采集到的电信号进行光电转换,将输入端和输出端互相隔离,使得电信号的传输具有单向性,有效的阻止了输入端和输出端的相互干扰,手轮控制装置具有较好的抗干扰性能和电绝缘性能;驱动模块集成了EtherCAT协议,极大地提高了数据通讯速率,手轮控制装置能够适应较为复杂的工况环境,可靠性得以提升。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本实用新型。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本实用新型的实施例,并与说明书一起用于解释本实用新型的原理。
图1是根据一示例性实施例示出的一种手轮控制装置的框图。
图2是根据一示例性实施例示出的一种光耦隔离模块的电路图。
图3是根据一示例性实施例示出的一种手轮控制装置的框图。
图4是根据一示例性实施例示出的一种手轮控制装置的框图。
图5是根据一示例性实施例示出的一种手轮控制系统的结构图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本实用新型相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本实用新型的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种手轮控制装置的框图,参照图1,包括采集模块11、光耦隔离模块12和主控模块13。
所述采集模块11,用于采集手轮带动光栅盘转动而产生的转动参数,并将所述转动参数转换成第一电信号,还用于将所述第一电信号传输给光耦隔离模块12。
手轮在转动的时候,内部的光栅盘与旋转轴也在同速转动,通过检测装置检测光栅盘的转动参数,如转动角度的大小和方向等,根据转动参数与第一电信号的对应关系,将上述转动参数转换成包含位置和方向信息的脉冲序列,即第一电信号。所述转动参数与第一电信号的对应关系可以包括,手轮每旋转一个刻度,对应一组相位相差90度的A、B信号,可以设置手轮顺时针转动一个刻度时,A信号相位超B信号相位90度;手轮逆时针转动一个刻度时,B信号相位超A信号相位90度。
所述光耦隔离模块12与所述采集模块11进行电性连接,用于在所述光耦隔离模块的输入端将所述第一电信号转换成光信号,并在输出端将所述光信号转换成第二电信号,实现信号的单向传输。
所述光耦隔离模块12包括发光器件和接收器件,其中,发光器件可以包括发光二极管,接收器件可以包括光敏二极管、光敏晶体管、光敏二极管与高速开关晶体管的集成组 件等。所述发光器件与光耦隔离模块12的输入端相连接,所述接收器件与所述光耦隔离模块12的输出端相连接,由于所述发光器件与接收器件之间为单向光信号传输,使得输入端与输出端相互隔离,从而降低了输出端信号对输入端信号的干扰。
在所述发光器件上提供一个偏置电流,再把信号电压,即第一电信号,通过电阻耦合到所述发光器件上,所述接收器件接收到在所述偏置电流上增减变化的光信号,电路的输出电流,即第二电信号,将随第一电信号做相应的变化,在本实施例中,输入的第一电信号可以包括A、B两个脉冲信号,输出的可以包括与A、B信号存在一定延迟的第二电信号。
所述主控模块13与所述光耦隔离模块12进行电性连接,用于接收所述第二电信号,所述第二信号用于生成被控设备的配置信息。
所述主控模块13可以包括模数转换单元、指令寄存器、控制存储器、时序单元等,所述模数转换单元用于将接收的第二电信号转换成数字信号,存放到所述控制存储器中,在所述时序单元的控制下,逐次读取所述控制存储器中的微指令,送入到所述指令寄存器,译码后产生所述配置信息。
所述配置信息中包含了被控设备的一些参数信息,比如,被控设备可以包括伺服电机,所述配置信息中可以包含伺服电机的编号、伺服电机的转矩和转速等,通过解析配置信息,实现对被控设备具体参数的改变。
本实用新型通过增设光耦隔离模块,将采集到的电信号进行光电转换,将输入端和输出端电路互相隔离,使得电信号的传输具有单向性,有效的阻止了输入端和输出端的相互干扰,手轮控制装置具有较好的抗干扰性能和电绝缘性能。
图2是根据一示例性实施例示出的一种光耦隔离模块的电路图,参照图2,与上述实施例不同的是,所述光耦芯片包括发光二极管和光敏三极管,其中,
所述发光二极管的正极与电源电性连接,负极与所述采集模块连接,接收所述第一电信号;在所述发光二极管导通的情况下,所述发光二极管将所述第一电信号转换成光信号;
所述光敏三极管的基极接收所述光信号,并在所述光敏三极管导通的情况下,在集电极输出所述第二电信号。
所述光耦芯片(或称光耦合器)包括发光二极管和光敏三极管,输入信号(即第一电信号)A或B,通过所述光耦芯片的引脚2与所述发光二极管的负极相连接,所述发光二极管的正极通过所述光耦芯片的引脚1接电源,当所述第一信号为低电平时,如小于电源电压,所述发光二极管通过电流而发光,所述光敏三极管受到光照后产生电流,所述光敏 三极管的集电极和发射极导通,当所述第一信号为高电平时,所述光敏三极管截止。所述光敏三极管的集电极通过光耦芯片的引脚4与输出信号即第二电信号电性连接。所述光敏三极管的发射极接地。由于输入信号A为脉冲信号,所述光耦芯片可以选择非线性的4N25、4N26、4N35、4N36等多种型号中的一种。在本实用新型中,手轮转动,产生一对输入信号,A信号和B信号,对输入B信号进行光耦隔离处理时,可采用与A信号相同的电路连接方式。
在一种可能的实现方式中,所述发光二极管的负极还与瞬态抑制二极管一极相连接,所述瞬态抑制二极管的另一极接地,所述瞬态抑制二极管用于对所述发光二极管过压保护。
所述瞬态抑制二极管的类型可以包括双向的,能够在正反两个方向上吸收瞬时的大脉冲功率,采用TVS瞬态抑制二极管,提高了电路的安全等级。
图3是根据一示例性实施例示出的一种手轮控制装置的框图,参照图3,所述手轮控制装置还包括驱动模块14,所述驱动模块14与所述主控模块13电性连接,所述驱动模块14用于接收所述主控模块13传输的第二信号,根据所述第二信号,生成被控设备的配置信息。
由于配置信息中包含了被控设备的一些参数信息,因此,所述驱动模块14实现了所述主控模块13和被控设备的通信,使得被控设备按照所述驱动模块14的指令进行工作。
图4是根据一示例性实施例示出的一种手轮控制装置的框图,参照图4,与上述实施例不同的是,所述驱动模块14包括:
主站控制器141,用于基于EtherCAT协议,将所述配置信息转换为EtherCAT报文数据;
第一网络接口142,用于将所述EtherCAT报文数据传输给被控设备。
所述EtherCAT报文数据的格式,可采用0x88A4作为帧类型,数据头为2个字节,数据区44~1498·个字节组成一个或多个EtherCAT子报文。所述主站控制器141将所述配置信息写入子报文的数据区,同时所述主站控制器141还用于控制介质访问,并与物理层芯片进行连接,所述物理层芯片可以包括PHY芯片,具有译码、收发和编码的功能。所述物理层芯片再通过标准的网络接口,如RJ5,完成与被控设备之间的连接。
所述驱动模块14集成了EtherCAT协议,具有延时小,实时性强的优点,极大地提高了数据通讯速率,手轮控制装置能够适应较为复杂的工况环境,可靠性得以提升。
在一种可能的实现方式中,所述驱动模块14还包括RS485通信接口,所述RS485 通信接口用于将所述配置信息传输给被控设备。
所述RS485通信接口较为简单,通过RS485转换器,可以直接与所述主控模块13串口连接,使用相同的异步串行通信协议。通过使用RS485通信接口,可兼容多个不同设备的驱动器,提高了手轮控制装置的兼容性。
在一种可能的实现方式中,所述手轮控制装置还包括电源模块,所述电源模块中包括过流保护电路,用于对所述手轮控制装置进行过流保护。
所述手轮控制装置还包括电源模块,所述电源模块为手轮控制装置的供电。所述电源模块中包括过流保护电路,如自恢复保险丝,进行防过流自恢复的保护。这样,当手轮控制装置中的电流过大时,自恢复保险丝产生较高的电阻,相当于把电路切断,当电路冷却,自恢复保险丝电阻下降,电路恢复正常工作,自恢复保险丝起到对手轮控制装置的过流保护作用。
图5是根据一示例性实施例示出的一种手轮控制系统的结构图。参照图5,该系统包括:本实用新型任一实施例所述的手轮控制装置和至少一个被控设备;
从站控制器21,与所述手轮控制装置电性连接,用于通过第二网络接口24接收所述配置信息,并将所述配置信息转发给从站微处理器22;
从站微处理器22,与所述从站控制器进行电性连接,用于读取所述配置信息,控制硬件设备完成指定的动作命令;
在一种可能的实现方式中,所述配置信息被设置为利用EtherCAT协议进行传输。
所述从站控制器21实现EtherCAT报文数据的处理,当所述EtherCAT报文数据经过某一受控设备时,其内部的所述从站控制器21从所述EtherCAT报文数据中提取对应的数据,同时接收所述从站微处理器22的反馈数据,并将所述反馈数据写入到所述EtherCAT报文数据。
根据所述被控设备控制任务的要求,所述从站微处理器22,可以使用8位、16位的单片机或32位高性能处理器,所述从站微处理器22读取所述EtherCAT报文数据,控制所述被控设备完成指定的动作命令,并将所述被控硬件设备的反馈数据传输给所述从站控制器21。
所述被控设备还可以包括从站存储器23,所述从站存储器23用于存储所述EtherCAT报文数据中的配置数据。
在一种可能的实现方式中,提出了一种手轮,所述手轮包括本实用新型任一实施例所述的手轮控制装置。
本领域技术人员在考虑说明书及实践这里实用新型的发明后,将容易想到本实用新型的其它实施方案。本申请旨在涵盖本实用新型的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本实用新型的一般性原理并包括本实用新型未实用新型的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本实用新型的真正范围和精神由下面的权利要求指出。
应当理解的是,本实用新型并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本实用新型的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种手轮控制装置,其特征在于,包括采集模块、光耦隔离模块和主控模块,其中,
    所述采集模块,用于采集手轮带动光栅盘转动而产生的转动参数,并将所述转动参数转换成第一电信号,还用于将所述第一电信号传输给所述光耦隔离模块;
    所述光耦隔离模块与所述采集模块电性连接,用于在所述光耦隔离模块的输入端将所述第一电信号转换成光信号,并在输出端将所述光信号转换成第二电信号,实现信号的单向传输;
    所述主控模块与所述光耦隔离模块电性连接,用于接收所述第二电信号,所述第二电信号用于生成被控设备的配置信息。
  2. 根据权利要求1所述的手轮控制装置,其特征在于,所述光耦隔离模块包括:光耦芯片,所述光耦芯片包括发光二极管和光敏三极管,其中,
    所述发光二极管的正极与电源电性连接,负极与所述采集模块连接,接收所述第一电信号;在所述发光二极管导通的情况下,所述发光二极管将所述第一电信号转换成光信号;
    所述光敏三极管的基极接收所述光信号,并在所述光敏三极管导通的情况下,在集电极输出所述第二电信号。
  3. 根据权利要求2所述的手轮控制装置,其特征在于,
    所述发光二极管的负极还与瞬态抑制二极管的一极相连接,所述瞬态抑制二极管的另一极接地,所述瞬态抑制二极管用于对所述发光二极管过压保护。
  4. 根据权利要求3所述的手轮控制装置,其特征在于,所述手轮控制装置还包括驱动模块,所述驱动模块与所述主控模块电性连接,用于接收所述主控模块传输的第二信号,根据所述第二信号,生成被控设备的配置信息。
  5. 根据权利要求4所述的手轮控制装置,其特征在于,所述驱动模块包括:
    主站控制器,用于基于EtherCAT协议,将所述配置信息转换为EtherCAT报文数据;
    第一网络接口,用于将所述EtherCAT报文数据传输给所述被控设备。
  6. 根据权利要求5所述的手轮控制装置,其特征在于,所述驱动模块还包括RS485通信接口,所述RS485通信接口用于将所述配置信息传输给所述被控设备。
  7. 根据权利要求6所述的手轮控制装置,其特征在于,所述手轮控制装置还包括电源模块,所述电源模块中包括过流保护电路,用于对所述手轮控制装置进行过流保护。
  8. 一种手轮控制系统,其特征在于,包括:权利要求1-7任意一项所述的手轮控制装置和至少一个被控设备,所述被控设备包括:
    从站控制器,与所述手轮控制装置电性连接,用于通过第二网络接口接收所述配置信息,并将所述配置信息转发给从站微处理器;
    所述从站微处理器与所述从站控制器进行电性连接,用于读取所述配置信息,并基于所述配置信息生成对所述被控设备的控制命令。
  9. 根据权利要求8所述的手轮控制系统,其特征在于,所述配置信息被设置为利用EtherCAT协议进行传输。
  10. 一种手轮,其特征在于,包括权利要求1-7所述的手轮控制装置。
PCT/CN2019/115692 2018-12-07 2019-11-05 手轮控制装置、控制系统及手轮 WO2020114177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201822057044.4 2018-12-07
CN201822057044.4U CN209400911U (zh) 2018-12-07 2018-12-07 手轮控制装置、控制系统及手轮

Publications (1)

Publication Number Publication Date
WO2020114177A1 true WO2020114177A1 (zh) 2020-06-11

Family

ID=67894041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115692 WO2020114177A1 (zh) 2018-12-07 2019-11-05 手轮控制装置、控制系统及手轮

Country Status (2)

Country Link
CN (1) CN209400911U (zh)
WO (1) WO2020114177A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209400911U (zh) * 2018-12-07 2019-09-17 苏州谷夫道自动化科技有限公司 手轮控制装置、控制系统及手轮

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080294957A1 (en) * 2007-01-08 2008-11-27 Oyl Research And Development Centre Sdn. Bhd. Communication Apparatus
CN101800647A (zh) * 2009-12-29 2010-08-11 上海维宏电子科技有限公司 基于rs-485总线的光电隔离中继器
CN103278263A (zh) * 2013-05-03 2013-09-04 国家电网公司 压力式温度计智能检定系统
CN103324144A (zh) * 2013-05-28 2013-09-25 繁昌县倍思生产力促进中心有限公司 基于fpga的四轴运动控制卡
CN206991106U (zh) * 2017-04-24 2018-02-09 广州市锲致智能技术有限公司 一种自动化产线的控制装置
CN209400911U (zh) * 2018-12-07 2019-09-17 苏州谷夫道自动化科技有限公司 手轮控制装置、控制系统及手轮

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080294957A1 (en) * 2007-01-08 2008-11-27 Oyl Research And Development Centre Sdn. Bhd. Communication Apparatus
CN101800647A (zh) * 2009-12-29 2010-08-11 上海维宏电子科技有限公司 基于rs-485总线的光电隔离中继器
CN103278263A (zh) * 2013-05-03 2013-09-04 国家电网公司 压力式温度计智能检定系统
CN103324144A (zh) * 2013-05-28 2013-09-25 繁昌县倍思生产力促进中心有限公司 基于fpga的四轴运动控制卡
CN206991106U (zh) * 2017-04-24 2018-02-09 广州市锲致智能技术有限公司 一种自动化产线的控制装置
CN209400911U (zh) * 2018-12-07 2019-09-17 苏州谷夫道自动化科技有限公司 手轮控制装置、控制系统及手轮

Also Published As

Publication number Publication date
CN209400911U (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
CN109463037B (zh) 伺服系统、电机、绝对式编码器及其信号处理电路
CN109683532A (zh) 一种舵机及多舵机控制器及无人机控制系统
CN104065315A (zh) 一种有刷直流电机多闭环驱动控制器
CN210377112U (zh) 一种用于工控设备的多功能数据采集传输电路
WO2020114177A1 (zh) 手轮控制装置、控制系统及手轮
CN1570440A (zh) 智能型阀门电动装置
CN111092812A (zh) 一种基于MODBUS转Mqtt协议的高可靠性网关装置
CN110635723A (zh) 一种基于磁编码器的永磁同步电机伺服系统
CN102647268B (zh) 半双工通讯收发控制装置及其方法
CN110855581B (zh) 适用于vpx架构的40g和srio复用的国产交换刀片装置
CN202488430U (zh) 一种变频器及正交信号处理电路
CN218416222U (zh) 一种新型电机调速电路
CN201293928Y (zh) 基于profibus-dp协议的现场总线控制模块
CN101436840A (zh) 马达装置及马达控速系统
CN203540016U (zh) 基于篮球投篮综合训练系统的自动计数装置
CN203520392U (zh) 一种勘探电子雷管的通讯电路
CN206422510U (zh) 一种马达的控制保护电路和马达
CN207010693U (zh) 伺服系统、电机、绝对式编码器及其信号处理电路
CN101702615A (zh) 一种基于双单片机的电动机红外遥控转速控制系统
CN210669926U (zh) 一种电动工程机械电机控制电路
CN111082410B (zh) 一种无刷电机的控制电路
CN210072602U (zh) 一种基于无线路由器的通讯转换的新型设备控制装置
CN208820802U (zh) 一种基于电力载波的服务器集群心跳监测电路
CN201563102U (zh) 一种基于双单片机的电动机红外遥控转速控制装置
CN109245638B (zh) 一种多路步进电机驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893972

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19893972

Country of ref document: EP

Kind code of ref document: A1