WO2020114116A1 - 一种基于密集人群的行人检测方法、存储介质及处理器 - Google Patents

一种基于密集人群的行人检测方法、存储介质及处理器 Download PDF

Info

Publication number
WO2020114116A1
WO2020114116A1 PCT/CN2019/112433 CN2019112433W WO2020114116A1 WO 2020114116 A1 WO2020114116 A1 WO 2020114116A1 CN 2019112433 W CN2019112433 W CN 2019112433W WO 2020114116 A1 WO2020114116 A1 WO 2020114116A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedestrian
detection method
method based
pixels
pedestrian detection
Prior art date
Application number
PCT/CN2019/112433
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
严向荣
Original Assignee
深圳光启空间技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启空间技术有限公司 filed Critical 深圳光启空间技术有限公司
Publication of WO2020114116A1 publication Critical patent/WO2020114116A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • G06V20/53Recognition of crowd images, e.g. recognition of crowd congestion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Definitions

  • the invention relates to the field of target detection, in particular to a pedestrian detection method, storage medium and processor based on dense crowds.
  • Target detection models mainly include R-CNN, Fast-R-CNN, Faster-R-CNN, YOLO, SSD
  • the YOLO target detection model uses gridding and plotting methods, which greatly simplifies the process of generating candidate frames, and the overall performance of the model is superior.
  • YOLOv3 uses the Darknet-53 basic network, using the following 9 anchor points, the length and width are (in pixels): (10, 13), (16, 30), (33, 23), (30, 61), ( 62,45), (59,119), (116,90), (156,198), (373,326).
  • the selection of these trace points is based on 9 anchor points clustered on the COCO dataset.
  • the proportion of the target object in the image is relatively large. When a scene with a small proportion of the target object appears, such as a public area camera, in order to In the monitoring of more areas, the proportion of the portraits in the picture in the whole picture is very small, and pedestrians (targets) gather. In order to be able to detect smaller targets, it is necessary to classify the target classification confidence threshold appropriately Reduction, but this will bring another problem: will recognize multiple people (targets) as a target, which causes the problem of inaccurate identification of targets.
  • the technical problem to be solved by the present invention is to provide a pedestrian detection method based on dense crowd, which can realize the detection of small targets, and at the same time can realize the detection of dense targets (pedestrians).
  • an embodiment of the present invention provides a pedestrian detection method based on dense crowd, including: training the yolo model using the COCO data set; framing the target with a rectangular frame and widening the rectangular frame The sum height is a group and clustered into a preset number of classes to obtain a preset number of group data anchor points;
  • a training model is formed according to the size and proportion of the width and height clustering points of a group of pedestrians; the obtained training model is used to predict the pedestrian to be recognized in the image to identify the pedestrian in the image to be recognized.
  • the size and ratio of the plot points according to the width-height cluster of a group of pedestrians refer to the ratio of the length and width of the rectangle used to frame the target object.
  • the preset number refers to six.
  • the use of the obtained training model to predict the pedestrian to be recognized includes: inputting the image of the pedestrian to be recognized into the training model, and the training model outputs a prediction result of the number of pedestrians.
  • the target sample is 2000-3000.
  • the overlapping degree in which the target object is framed by a rectangular frame is greater than a threshold of 50%.
  • the aspect ratio of the anchor point of the data set is 1:1.
  • the aspect ratio of the anchor point of the data set is 1:1.5.
  • the aspect ratio of the anchor point of the data set is 1:2.
  • an embodiment of the present invention provides a storage medium, the storage medium includes a stored program, wherein the above-mentioned pedestrian detection method based on dense crowd is executed when the program runs.
  • an embodiment of the present invention provides a processor for running a program, wherein the above-mentioned pedestrian detection method based on dense crowd is executed when the program is running.
  • the above technical solution has the following advantages: achieving dense target detection, especially accurate detection of the target when the target is occluded and overlapping; the target can be detected smaller; the detection speed is faster, and it can be generally applied to large shopping mall , Shopping malls, chain stores, airports, stations, museums, exhibition halls and other public places.
  • FIG. 1 is a flowchart of a pedestrian detection method based on a dense crowd of the present invention.
  • FIG. 2 is a schematic diagram of the size of nine drawing points in the prior art.
  • FIG. 3 is a schematic diagram of six tracing points used in the pedestrian detection method based on a dense crowd of the present invention.
  • Fig. 4 is a schematic diagram of a target object predicted by using a COCO data set to train a yolo model using 9 stroke points in the prior art.
  • FIG. 5 is a schematic diagram of a target object predicted by training the yolo model using 6 stroke point size COCO data sets after optimization using the present invention.
  • COCO Common Objects in COntext, which is a data set provided by the Microsoft team that can be used for image recognition.
  • the human visual system is fast and precise, and you can identify the objects and their positions in the image with a single glance at YOLO (You Only Look Once).
  • YOLO is a new target detection method. This method is characterized by rapid detection and high accuracy.
  • YOLO's network structure The model uses a convolutional neural network structure. The initial convolutional layer extracts image features, and the fully connected layer predicts the output probability.
  • FIG. 1 is a flowchart of a pedestrian detection method based on a dense crowd of the present invention. As shown in Figure 1, a pedestrian detection method based on dense crowd includes steps:
  • COCO data set is an open source 80 classification, and the data labeling specification, the samples of each class are more than 2000, so the trained model is a benchmark.
  • the anchor point is a group of 3, which was originally 3 groups, and is now reduced to 2 groups, which reduces the amount of calculation without a significant decrease in performance (the reference is based on yolo-tiny).
  • the target sample is selected from 2000 to 3000. According to the empirical value, it is generally necessary to detect an object classification. Attributes can be detected by training about 2000 to 3000 sample data.
  • the overlapping degree of the target framed by the rectangular frame is greater than the threshold 50%.
  • the ratio (S1/S2) of the union S1 of the predicted target frame and the actual target object to the collection S2 of the predicted target frame and the actual target object is the threshold.
  • the aspect ratio of the anchor point of the data set is set to 1:1. By setting such an aspect ratio, it is easier to frame a square target (such as a pedestrian frame that sits or squats).
  • the aspect ratio of the anchor point of the data set may also be set to 1:1.5.
  • a medium-length bar target such as a frame when a pedestrian spreads his arms or a backpack.
  • the aspect ratio of the anchor point of the data group can also be set to 1:2. By setting such an aspect ratio, this can frame upright pedestrian targets.
  • FIG. 2 is a schematic diagram of the size of nine drawing points in the prior art. As shown in Figure 2, the unit of illustration is pixels, and the length and width of the 9 trace points are (10 pixels, 13 pixels), (16 pixels, 30 pixels), (33 pixels, 23 pixels), (30 pixels, 61 pixels) , (62 pixels, 45 pixels), (59 pixels, 119 pixels), (116 pixels, 90 pixels), (156 pixels, 198 pixels), (373 pixels, 326 pixels).
  • FIG. 3 is a schematic diagram of 6 tracing points used in a pedestrian detection method based on a dense crowd of the present invention. As shown in Figure 3, the COCO data set is used to train the yolo model.
  • the length and width of the six optimized plots are (3 pixels, 5 pixels), (10 pixels, 14 pixels), (23 pixels, 27 pixels), (37 Pixels, 58 pixels), (81 pixels, 82 pixels), (135 pixels, 169 pixels).
  • FIG. 3 is a schematic diagram of a target predicted by using the 9 stroke points in the prior art and using the COCO dataset to train the yolo model.
  • the length and width of the 9 trace points are (10 pixels, 13 pixels), (16 pixels, 30 pixels), (33 pixels, 23 pixels), (30 pixels, 61 pixels), (62 pixels, 45 pixels), (59 pixels , 119 pixels), (116 pixels, 90 pixels), (156 pixels, 198 pixels), (373 pixels, 326 pixels).
  • the anchor point (373 pixels, 326 pixels
  • the anchor point can frame the target, but it is easy to cause a frame Pedestrians are inside the phenomenon, and the output characteristics can easily exceed the threshold.
  • the original non-pedestrian situation is easy to be misjudged as a pedestrian, which is inefficient in detecting pedestrians and wastes time.
  • FIG. 4 is a schematic diagram of a target object predicted by training a yolo model using a 6-point COCO data set after optimization using the present invention.
  • the length and width of the 6 plot points are (3 pixels, 5 pixels), (10 pixels, 14 pixels), (23 pixels, 27 pixels), (37 pixels, 58 pixels), (81 pixels, 82 pixels), (135 pixels, 169 pixels).
  • the detection target is a pedestrian, frame the target with a rectangular frame, use 2000 to 3000 samples, cluster the width and height of the rectangular frame into a group into 6 groups, and obtain a data set similar to the above 6 groups, replace The original 9 sets of data.
  • the number of rectangular frames is reduced from 9 to 6, the amount of calculation is also significantly reduced.
  • the dense crowd-based pedestrian detection method according to the present invention uses the dense crowd-based pedestrian detection method according to the present invention to achieve dense target detection, especially when the target is occluded and overlapped, to achieve accurate detection of the target; the target can be detected smaller; the detection speed is faster and can be universal Applicable to large shopping malls, shopping malls, chain stores, airports, stations, museums, exhibition halls and other public places.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

一种基于密集人群的行人检测方法、存储介质及处理器,其中所述方法包括:采用COCO数据集训练yolo模型(S11);用矩形框将目标物框住,将矩形框的宽和高为一组,聚类到预设个数的类中,得到预设个数的组数据锚点(S12);根据一组行人的宽高聚类描点大小及比例形成训练模型(S13);运用得到的训练模型来对待识别图像的行人进行预测,以识别所述待识别图像中的行人(S14)。该方法可以实现密集目标检测,特别是目标存在遮挡、重叠时实现目标的准确检测;可检测目标更小;检测速度更快,可普遍适用于大型商场、购物中心、连锁店、机场、车站、博物馆、展览馆等公共场所。

Description

一种基于密集人群的行人检测方法、存储介质及处理器 技术领域
本发明涉及目标检测领域,具体的涉及一种基于密集人群的行人检测方法、存储介质及处理器。
背景技术
目标检测模型主要有R-CNN,Fast-R-CNN,Faster-R-CNN, YOLO, SSD
   R-CNN 基于“候选框”的目标检测,大大提升检测速度,但缺点是每一个候选框都要独自经过CNN,这使得花费的时间非常多。
    YOLO目标检测模型采用了网格化和描点的方法,极大简化了候选框的生成过程,模型整体性能优越。
技术问题
YOLOv3使用Darknet-53基础网络,使用如下9个锚点,长宽分别是(单位为像素):(10,13),(16,30),(33,23),(30,61),(62,45),(59,119),(116,90),(156,198),(373,326)。这些描点的选择是在COCO数据集基础上聚类的9个锚点,目标物在图像中的占比都比较大,当出现目标物占比比较小的场景,比如公共区域摄像头,为了尽可能的监控到跟多的区域,画面中的人像在整张图中的占比就非常的小,而且出现行人(目标)聚集的情况,为了能够检测出较小的目标,需要将目标分类置信度阈值适当的降低,但这样会带来另外一个问题:会将多人(目标)识别成一个目标,这样造成识别目标不准确的问题。
技术解决方案
本发明所要解决的技术问题是提供一种基于密集人群的行人检测方法,能够实现小目标的检测,同时能够实现密集目标(行人)检测。
为解决上述技术问题,一方面,本发明一实施例提供了一种基于密集人群的行人检测方法,包括:采用COCO数据集训练yolo模型;用矩形框将目标物框住,将矩形框的宽和高为一组,聚类到预设个数的类中,得到预设个数的组数据锚点;
根据一组行人的宽高聚类描点大小及比例形成训练模型;运用得到的训练模型来对待识别图像的行人进行预测,以识别所述待识别图像中的行人。
优选地,所述根据一组行人的宽高聚类描点大小及比例指的是用于框住目标物的矩形的长和宽的比例。
优选地,所述预设个数指的是六个。
优选地,所述运用得到的训练模型来对待识别图像的行人进行预测包括:将待识别行人的图像输入所述训练模型,所述训练模型输出行人数量的预测结果。
优选地,所述目标物样本为2000~3000份。
优选地,用矩形框将目标物框住的重叠度大于阈值50%。
优选地,数据组锚点长宽比为1:1。
优选地,数据组锚点长宽比为1:1.5。
优选地,数据组锚点长宽比为1:2。
另一方面,本发明一实施例提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述的基于密集人群的行人检测方法。
另一方面,本发明一实施例提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述的基于密集人群的行人检测方法。
有益效果
与现有技术相比,上述技术方案具有以下优点:实现密集目标检测,特别是目标存在遮挡、重叠时实现目标的准确检测;可检测目标更小;检测速度更快,可普遍适用于大型商场、购物中心、连锁店、机场、车站、博物馆、展览馆等公共场所。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本发明一种基于密集人群的行人检测方法流程图。
图2是现有技术中9个描点大小示意图。
图3是本发明基于密集人群的行人检测方法中使用的6个描点示意图。
图4是使用现有技术中9个描点大小、采用COCO数据集训练yolo模型预测的目标物示意图。
图5是使用本发明优化后采用6个描点大小COCO数据集训练yolo模型预测的目标物示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一
COCO的全称是Common Objects in COntext,是微软团队提供的一个可以用来进行图像识别的数据集。人类视觉系统快速且精准,只需瞄一眼YOLO(You Only Look Once)即可识别图像中物品及其位置。YOLO为一种新的目标检测方法,该方法的特点是实现快速检测的同时还达到较高的准确率。YOLO的网络结构:模型采用卷积神经网络结构。开始的卷积层提取图像特征,全连接层预测输出概率。
图1是本发明一种基于密集人群的行人检测方法流程图。如图1所示,一种基于密集人群的行人检测方法,包括步骤:
S11、采用COCO数据集训练yolo模型;COCO数据是开源的80个分类,而且数据标注规范,每个类的样本都超过2000,这样训练出来的模型是一个标杆。
S12、用矩形框将目标物框住,将矩形框的宽和高为一组,聚类到预设个数的类中,得到预设个数的组数据锚点;聚类后训练收敛速度会明显加快,减少慢无目的的搜索,比如一个小目标,使用一个很大的框去框它,要贴近小目标的次数明显比一个和目标物接近的框去框搜索次数多。
S13、根据一组行人的宽高聚类描点大小及比例形成训练模型;聚类后训练收敛速度会明显加快,减少慢无目的的搜索。比如一个小目标,使用一个很大的框去框它,要贴近小目标的次数明显比一个和目标物接近的框去框搜索次数多,减少训练时间。
S14、运用得到的训练模型来对待识别图像的行人进行预测,以识别所述待识别图像中的行人。通过训练模型,可以检测任意目标行人。运用得到的训练模型来对待识别图像的行人进行预测包括:将待识别行人的图像输入训练模型,训练模型输出行人数量的预测结果。
锚点是3个一组,原来是3组,现在减少到2组,这样在性能没有明显下降的情况下减少计算量(参考依据是yolo-tiny)。
具体实施时,目标物样本选2000~3000份。根据经验值,一般要检测一种物体分类,大概通过2000~3000份样本数据来训练就可以检测出属性来。
具体实施时,用矩形框将目标物框住的重叠度大于阈值50%。预测目标框和实际目标物的并集S1与预测目标框和实际目标物的合集S2的比值(S1/S2)为阈值。
具体实施时,数据组锚点长宽比设为1:1。通过设定这样的长宽比,可以更容易框住正方形目标(比如坐下或蹲下的行人框)。
具体实施时,数据组锚点长宽比也可以设为1:1.5。通过设定这样的长宽比,可以框住中等长条形目标(比如行人展开手臂,背包情况下的框)。
具体实施时,数据组锚点长宽比也可以设定为1:2。通过设定这样的长宽比,这样可以框住直立的行人目标。
通过设定不同的锚点长宽比,可以框住不同姿态的目标物,框住目标物概率大,效率高。
如大型商场、购物中心、连锁店、机场、车站、博物馆、展览馆等公共场所,通过嵌入终端的若干个摄像头采集流动中的密集人群视频,对采集视频图像要求精度高的场合,可以选择高清摄像头。然后对视频图像进行视差计算,形成视频中人的图像,通过对人体的形状和高度为分析目标,采集移动的测试图像样本。为了图像分析更有时间性,视频中人的图像截取时带有时间戳信息。使用实施例一的基于密集人群的行人检测方法,可快速、准确地识别出大型商场、购物中心、连锁店、机场、车站、博物馆、展览馆等公共场所出入的行人数量。
实施例二
图2是现有技术中9个描点大小示意图。如图2所示,图示单位为像素,9个描点长宽分别为(10像素,13像素), (16像素,30像素),(33像素,23像素),(30像素,61像素),(62像素,45像素),(59像素,119像素),(116像素,90像素),(156像素,198像素),(373像素,326像素)。图3本发明基于密集人群的行人检测方法中使用的6个描点示意图。如图3所示,采用COCO数据集训练yolo模型,优化后的6个描点长宽分别为(3像素,5像素),(10像素,14像素),(23像素,27像素),(37像素,58像素),(81像素,82像素),(135像素,169像素)。通过对行人数据聚类,这样聚类出来的数据可以加快训练速度。
实施例三
图3是使用现有技术中9个描点大小、采用COCO数据集训练yolo模型预测的目标物示意图。9个描点长宽分别为(10像素,13像素), (16像素,30像素),(33像素,23像素),(30像素,61像素),(62像素,45像素),(59像素,119像素),(116像素,90像素),(156像素,198像素),(373像素,326像素)。采用现有技术中这样方式,则容易将密集在一起的多人,检测成一个人,多人密集在一起时,(373像素,326像素)的锚点可以框住目标物,但是容易造成框内都是行人的现象,输出特征也容易超过阈值,本来非行人的情形容易误判为行人,这样检测行人效率低,且浪费时间。
图4是使用本发明优化后采用6个描点大小COCO数据集训练yolo模型预测的目标物示意图。优化后采用6个描点长宽分别为(3像素,5像素),(10像素,14像素),(23像素,27像素),(37像素,58像素),(81像素,82像素),(135像素,169像素)。当行人密集场景时,因为不常在较大的锚点,即使使用最大的锚点去框目标也最多框住一个行人,这样直接就避免了把多目标框成一个的情况。
   检测目标是行人,用矩形框将目标物框住,使用2000~3000个样本,将矩形框的宽和高为一组聚类到6个类中,得到与上述6组近似的数据组,替换原来的9组数据。同时因为矩形框数量由9个减少到6个,计算量也明显下降。
工业实用性
由上述说明可知,使用根据本发明的基于密集人群的行人检测方法,实现密集目标检测,特别是目标存在遮挡、重叠时实现目标的准确检测;可检测目标更小;检测速度更快,可普遍适用于大型商场、购物中心、连锁店、机场、车站、博物馆、展览馆等公共场所。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种基于密集人群的行人检测方法,其特征在于,包括:
    采用COCO数据集训练yolo模型;
    用矩形框将目标物框住,将矩形框的宽和高为一组,聚类到预设个数的类中,得到预设个数的组数据锚点;
    根据一组行人的宽高聚类描点大小及比例形成训练模型;
    运用得到的训练模型来对待识别图像的行人进行预测,以识别所述待识别图像中的行人。
  2. 根据权利要求1所述的基于密集人群的行人检测方法,其特征在于,所述根据一组行人的宽高聚类描点大小及比例指的是用于框住目标物的矩形的长和宽的比例。
  3. 根据权利要求1所述的基于密集人群的行人检测方法,其特征在于,所述预设个数指的是六个。
  4. 根据权利要求1所述的基于密集人群的行人检测方法,其特征在于,所述运用得到的训练模型来对待识别图像的行人进行预测包括:
    将待识别行人的图像输入所述训练模型,所述训练模型输出行人数量的预测结果。
  5. 根据权利要求1所述的基于密集人群的行人检测方法,其特征在于,所述目标物样本为2000~3000份。
  6. 根据权利要求1所述的基于密集人群的行人检测方法,其特征在于,用矩形框将目标物框住的重叠度大于阈值50%。
  7. 根据权利要求1所述的基于密集人群的行人检测方法,其特征在于,数据组锚点长宽比为1:1或1:1.5或1:2。
  8. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至7中任一项所述的基于密集人群的行人检测方法。
  9. 一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至7中任一项所述的基于密集人群的行人检测方法。
PCT/CN2019/112433 2018-12-06 2019-10-22 一种基于密集人群的行人检测方法、存储介质及处理器 WO2020114116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811485647.2A CN111291587A (zh) 2018-12-06 2018-12-06 一种基于密集人群的行人检测方法、存储介质及处理器
CN201811485647.2 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020114116A1 true WO2020114116A1 (zh) 2020-06-11

Family

ID=70974982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112433 WO2020114116A1 (zh) 2018-12-06 2019-10-22 一种基于密集人群的行人检测方法、存储介质及处理器

Country Status (2)

Country Link
CN (1) CN111291587A (zh)
WO (1) WO2020114116A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111931729A (zh) * 2020-09-23 2020-11-13 平安国际智慧城市科技股份有限公司 基于人工智能的行人检测方法、装置、设备及介质
CN112686340A (zh) * 2021-03-12 2021-04-20 成都点泽智能科技有限公司 一种基于深度神经网络的密集小目标检测方法
CN112966618A (zh) * 2021-03-11 2021-06-15 京东数科海益信息科技有限公司 着装识别方法、装置、设备及计算机可读介质
CN113568407A (zh) * 2021-07-27 2021-10-29 山东中科先进技术研究院有限公司 一种基于深度视觉的人机协作安全预警方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112634202A (zh) * 2020-12-04 2021-04-09 浙江省农业科学院 一种基于YOLOv3-Lite的混养鱼群行为检测的方法、装置及系统
CN113158897A (zh) * 2021-04-21 2021-07-23 新疆大学 一种基于嵌入式YOLOv3算法的行人检测系统
CN115994887B (zh) * 2022-09-06 2024-01-09 江苏济远医疗科技有限公司 一种基于动态锚点的医学图像密集目标分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960195A (zh) * 2017-03-27 2017-07-18 深圳市丰巨泰科电子有限公司 一种基于深度学习的人群计数方法及装置
CN107169421A (zh) * 2017-04-20 2017-09-15 华南理工大学 一种基于深度卷积神经网络的汽车驾驶场景目标检测方法
CN107273836A (zh) * 2017-06-07 2017-10-20 深圳市深网视界科技有限公司 一种行人检测识别方法、装置、模型和介质
CN107316001A (zh) * 2017-05-31 2017-11-03 天津大学 一种自动驾驶场景中小且密集的交通标志检测方法
US10410120B1 (en) * 2019-01-25 2019-09-10 StradVision, Inc. Learning method and testing method of object detector to be used for surveillance based on R-CNN capable of converting modes according to aspect ratios or scales of objects, and learning device and testing device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107624189B (zh) * 2015-05-18 2020-11-20 北京市商汤科技开发有限公司 用于生成预测模型的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960195A (zh) * 2017-03-27 2017-07-18 深圳市丰巨泰科电子有限公司 一种基于深度学习的人群计数方法及装置
CN107169421A (zh) * 2017-04-20 2017-09-15 华南理工大学 一种基于深度卷积神经网络的汽车驾驶场景目标检测方法
CN107316001A (zh) * 2017-05-31 2017-11-03 天津大学 一种自动驾驶场景中小且密集的交通标志检测方法
CN107273836A (zh) * 2017-06-07 2017-10-20 深圳市深网视界科技有限公司 一种行人检测识别方法、装置、模型和介质
US10410120B1 (en) * 2019-01-25 2019-09-10 StradVision, Inc. Learning method and testing method of object detector to be used for surveillance based on R-CNN capable of converting modes according to aspect ratios or scales of objects, and learning device and testing device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUCHU ZHANG ET AL: "Dense Crowd Scene Pedestrian Detection Based on Improved YOLOv2 Network", MODERN COMPUTER, no. 28, 5 October 2018 (2018-10-05), pages 34 - 39, XP009521586, DOI: 10.3969/j.issn.1007-1423.2018.28.009 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111931729A (zh) * 2020-09-23 2020-11-13 平安国际智慧城市科技股份有限公司 基于人工智能的行人检测方法、装置、设备及介质
CN111931729B (zh) * 2020-09-23 2021-01-08 平安国际智慧城市科技股份有限公司 基于人工智能的行人检测方法、装置、设备及介质
CN112966618A (zh) * 2021-03-11 2021-06-15 京东数科海益信息科技有限公司 着装识别方法、装置、设备及计算机可读介质
CN112966618B (zh) * 2021-03-11 2024-02-09 京东科技信息技术有限公司 着装识别方法、装置、设备及计算机可读介质
CN112686340A (zh) * 2021-03-12 2021-04-20 成都点泽智能科技有限公司 一种基于深度神经网络的密集小目标检测方法
CN113568407A (zh) * 2021-07-27 2021-10-29 山东中科先进技术研究院有限公司 一种基于深度视觉的人机协作安全预警方法及系统

Also Published As

Publication number Publication date
CN111291587A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2020114116A1 (zh) 一种基于密集人群的行人检测方法、存储介质及处理器
CN106096577B (zh) 一种摄像头分布地图中的目标追踪方法
CN110609920B (zh) 一种视频监控场景下的行人混合搜索方法及系统
US8582816B2 (en) Method and apparatus for video analytics based object counting
CN104303193B (zh) 基于聚类的目标分类
CN109766868B (zh) 一种基于身体关键点检测的真实场景遮挡行人检测网络及其检测方法
CN103824070B (zh) 一种基于计算机视觉的快速行人检测方法
CN109977782B (zh) 基于目标位置信息推理的跨店经营行为检测方法
WO2020094088A1 (zh) 一种图像抓拍方法、监控相机及监控系统
CN109886245A (zh) 一种基于深度学习级联神经网络的行人检测识别方法
WO2021139049A1 (zh) 检测方法、检测装置、监控设备和计算机可读存储介质
CN110232379A (zh) 一种车辆姿态检测方法及系统
CN102542289A (zh) 一种基于多高斯计数模型的人流量统计方法
CN110969604B (zh) 一种基于深度学习的智能安防实时开窗检测报警系统及方法
CN104463232A (zh) 一种基于hog特征和颜色直方图特征的密度人群计数的方法
CN112464893A (zh) 一种复杂环境下的拥挤度分类方法
CN107103299B (zh) 一种监控视频中的人数统计方法
CN108471497A (zh) 一种基于云台摄像机的船目标实时检测方法
CN111027370A (zh) 一种多目标跟踪及行为分析检测方法
CN112465854A (zh) 基于无锚点检测算法的无人机跟踪方法
WO2023155482A1 (zh) 一种人群快速聚集行为的识别方法、系统、设备及介质
CN109582824A (zh) 一种基于视频结构化的区域安全管理系统及方法
CN107862713A (zh) 针对轮询会场的摄像机偏转实时检测预警方法及模块
Hermina et al. A Novel Approach to Detect Social Distancing Among People in College Campus
CN111144209A (zh) 一种基于异构多分支深度卷积神经网络的监控视频人头检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892484

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19892484

Country of ref document: EP

Kind code of ref document: A1