WO2020114008A1 - 电磁波信号强度测量装置和方法 - Google Patents

电磁波信号强度测量装置和方法 Download PDF

Info

Publication number
WO2020114008A1
WO2020114008A1 PCT/CN2019/102095 CN2019102095W WO2020114008A1 WO 2020114008 A1 WO2020114008 A1 WO 2020114008A1 CN 2019102095 W CN2019102095 W CN 2019102095W WO 2020114008 A1 WO2020114008 A1 WO 2020114008A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal strength
electromagnetic wave
wave signal
measurement device
module
Prior art date
Application number
PCT/CN2019/102095
Other languages
English (en)
French (fr)
Inventor
王宇鸣
欧清海
邓伟
刘军雨
刘哲
杨润安
海兴垣
王艳茹
曹生彪
Original Assignee
北京中电普华信息技术有限公司
国网信息通信产业集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中电普华信息技术有限公司, 国网信息通信产业集团有限公司 filed Critical 北京中电普华信息技术有限公司
Publication of WO2020114008A1 publication Critical patent/WO2020114008A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics

Definitions

  • This application relates to the technical field of power system communications, and in particular to an electromagnetic wave signal strength measurement device and method.
  • the power terminal communication access network is an important part of the power communication network. It is the basis of the power grid security and stability control system and dispatch automation system. It provides power distribution automation, power information collection, power quality monitoring, distributed energy, and intelligent use. Access and control of various power services such as electricity and electric vehicle charging and replacing power stations.
  • the selection of the terminal installation location of the power terminal communication access network directly affects the stability of the power terminal communication access network, and the electromagnetic wave signal strength of the terminal installation location is an important factor for judging the selection of the terminal installation location.
  • the power communication network is a dedicated network.
  • the electromagnetic wave frequency band allocated to it is the 230MHz (megahertz) frequency band. This frequency band is a discrete frequency band of the private network.
  • the frequency band range is 223.025MHz to 235MHz, with a total of 480 discrete frequency points.
  • the staff can only use the experience to determine the electromagnetic wave signal strength of the terminal installation position, but can not get accurate electromagnetic wave signal strength, reliability Poor, resulting in higher disconnection rate and reinstallation rate of power terminal communication access network terminals, and the quality of power terminal communication access networks cannot be guaranteed.
  • on-site staff and the main station side staff need to be jointly debugged, which greatly reduces work efficiency, wastes a lot of human resources, and requires high professionalism of the staff .
  • the embodiment of the present application is to propose an electromagnetic wave signal strength measurement device and method, which can accurately measure the electromagnetic wave signal strength at least in the environment of the power terminal communication access network, ensure the quality of the power terminal communication access network, and improve Work efficiency and reduce the professional requirements of the staff.
  • An electromagnetic wave signal strength detection device provided by an embodiment of the present application includes a detection module and a central control module;
  • the detection module is configured to detect the intensity of the electromagnetic wave signal at the installation position of the terminal;
  • the central control module is configured to compare the electromagnetic wave signal strength with a preset standard signal strength to obtain a comparison result, and output the electromagnetic wave signal strength and the comparison result as final data.
  • the measurement device further includes a positioning module configured to obtain positioning information of the installation location of the terminal, and the final data further includes the positioning information.
  • the measurement device further includes an image acquisition module configured to acquire image information of the surrounding environment of the terminal installation location, and the final data further includes the image information.
  • the measurement device further includes a clock module configured to provide a real-time clock to obtain time information when measuring the electromagnetic wave signal strength of the terminal installation location, and the final data further includes the time information.
  • the measuring device further includes a data interface device configured to communicate with an external device, and the device debugging and configuration functions of the measuring device can be realized through the data interface device.
  • the measurement device further includes a power management device configured to manage power
  • the power management includes at least monitoring power supply power
  • the final data further includes the power supply power data.
  • the detection module of the measurement device is further configured to detect signal-to-noise ratio information of the electromagnetic wave signal at the installation position of the terminal, and the final data further includes the signal-to-noise ratio information.
  • the measurement device further includes a display device and a control device;
  • the display device is configured to visually display the final data
  • the manipulation device is configured to send a manipulation instruction to the central control module to cause the central control module to output the final data to the display device.
  • An embodiment of the present application provides an electromagnetic wave signal strength measurement device, including at least one processor, the at least one processor is configured to: detect an electromagnetic wave signal strength at a terminal installation position, and compare the electromagnetic wave signal strength with a preset standard signal strength Make a comparison to obtain a comparison result, and output the electromagnetic wave signal strength and the comparison result as final data.
  • An embodiment of the present application provides an electromagnetic wave signal strength measurement method, which includes: detecting the electromagnetic wave signal strength of a terminal installation position; comparing the electromagnetic wave signal strength with a preset standard signal strength, obtaining a comparison result, and comparing the electromagnetic wave signal The intensity and the comparison result are output as final data.
  • the provided electromagnetic wave signal strength measuring device can accurately measure the electromagnetic wave signal strength in the environment of the power terminal communication access network, which can ensure the quality of the power terminal access network, and can also meet the need to record the terminal in actual work.
  • the location information of the installation location, surrounding environment information, working hours and other information requirements are simple to operate. It replaces the joint debugging method of on-site staff and the main station side staff, saves human resources, greatly improves work efficiency and reduces The professional requirements of the staff.
  • FIG. 1 is a schematic structural diagram of an electromagnetic wave signal strength measurement device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a detailed structure of an electromagnetic wave signal strength measurement device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a method for acquiring positioning information of a positioning module in an electromagnetic wave signal strength measurement device provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a work flow of an image acquisition module in an electromagnetic wave signal strength measurement device provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a function menu jump of a display device in an electromagnetic wave signal strength measurement device provided by an embodiment of the present application.
  • an embodiment of the present application provides an electromagnetic wave signal strength measurement device, including a central control module 1 and a detection module 2.
  • the central control module 1 sends an instruction to the detection module 2, the detection module 2 detects the electromagnetic wave signal strength of the terminal installation position and returns the electromagnetic wave signal strength to the central control module 1
  • the central control module 1 compares the electromagnetic wave signal strength with a preset standard signal strength. If the electromagnetic wave signal strength is higher than or equal to the preset standard signal strength, it indicates that the selected terminal installation location meets the requirements. If the electromagnetic wave signal strength is lower than the preset standard signal strength, the installation position of the terminal is changed until the electromagnetic wave signal strength of the changed installation position is higher than or equal to the standard signal strength.
  • the central control module 1 outputs the electromagnetic wave signal strength and the comparison result.
  • the central control module in the embodiment of the present application is used to output the obtained final data, and the final data includes at least the foregoing electromagnetic wave signal strength and comparison result.
  • the preset standard signal strength may be a specific value or a range of values, and the comparison is not specifically limited.
  • the measurement device in the embodiment of the present application specifically the detection module 2 can accurately measure the electromagnetic wave in the environment of the power terminal communication access network, specifically when it is installed at a certain location
  • the signal strength is combined with the central control module 1 to obtain a comparison result.
  • the engineer instead of the traditional working method of selecting the terminal installation position, the engineer only uses experience to determine the electromagnetic wave signal strength of the terminal installation position, and compares the measured electromagnetic wave signal strength with the preset standard signal strength, and then Reliable comparison results are obtained to ensure the quality of the power terminal communication access network.
  • the electromagnetic wave signal strength measured by the detection module 2 may specifically be Reference Signal Receiving Power (RSRP).
  • RSRP Reference Signal Receiving Power
  • the RSRP signal is one of the key parameters that can represent the strength of the electromagnetic wave signal and the physical measurement requirements in the power terminal communication access network, and refers to received on all resource particles (RE) carrying reference signals within a certain symbol The average value of the signal power.
  • the measurement unit of the RSRP signal is decibel milliwatts (dBm).
  • the electromagnetic wave signal strength can be further determined according to which preset sub-standard signal strength range the detected electromagnetic wave signal is located in Good or bad.
  • the RSRP signal R x when the RSRP signal R x is in the range of -85 dBm to -75 dBm (-85 ⁇ R x ⁇ -75), it indicates that the electromagnetic wave signal is better, it can initiate various communication services outdoors, and can obtain a medium rate For data services, low-rate data services can be obtained indoors.
  • the RSRP signal R x is in the range of -75 dBm to -65 dBm (-75 ⁇ R x ⁇ -65), it indicates that the electromagnetic wave signal is good, and various communication services can be initiated outdoors, and high-speed data services can be obtained, indoor You can get a medium rate data service.
  • the RSRP signal R x is higher than or equal to -65 dBm (R x >-65), it indicates that the electromagnetic wave signal is very good.
  • the measurement device specifically the detection module 2 can also acquire the signal-to-noise ratio (SNR) information of the electromagnetic signal of the terminal installation location and the communication connection base station ID (SNR) Cell) information and communication connection spectrum subband number (Subindex) information.
  • the Subindex information indicates the spectrum subband number of the power terminal communication access network accessed during communication.
  • the power terminal communication access network uses a dedicated 230MHz frequency band, which is 223-235MHz, divided into 480 subbands, each sub The band bandwidth is 25KHz.
  • the signal-to-noise ratio of the electromagnetic wave signal can reflect the quality of the electromagnetic wave signal at the installation location of the terminal, and the strength of the electromagnetic wave signal and the signal-to-noise ratio of the electromagnetic wave signal can be simultaneously detected to enable the selected terminal to be installed The location is better, and the quality of the power terminal communication access network is further improved.
  • the central control module 2 is an embedded integrated processor, and the hardware performance of the embedded integrated processor can meet the data processing requirements of the measurement device.
  • the embedded integrated processor is specifically an i.MX6 Cortex-A9 processor, the processor main frequency is 1 GHz (Gigahertz), and the memory-double rate synchronous dynamic random access memory (DDR3 SDARM) specification is 1GB (Gigabyte), the non-volatile memory (EMMC) specification is 4GB.
  • the processor can well meet the hardware requirements of the measurement device.
  • the central control module 1 can also be other processors that can meet the requirements.
  • the electromagnetic wave signal strength measurement device provided by the embodiment of the present application further includes a positioning module 3, which can acquire positioning information of the installation location of the terminal and send the positioning information to the ⁇ module1.
  • the final data output by the central control module 1 may further include the positioning information.
  • the positioning module 3 is a global positioning system (GPS) and a Beidou module. Combining the GPS and the Beidou module can provide accurate double-star positioning information for the device.
  • GPS+Beidou module can also provide real-time time for the measuring device.
  • the positioning information sent by the GPS+Beidou module to the central control module 1 is specifically a recommended positioning information (GPRMC) signal, and the signal structure of the GPRMC signal is:
  • the (1) signal represents UTC time, and its structural format is hhmmss (hour, minute, second);
  • the (2) signal indicates the positioning status, when the value is A, it indicates valid positioning, and when the value is V, it indicates invalid positioning;
  • the (3) signal represents the dimension, and its structural format is ddmm.mmmm (degree minutes);
  • the (4) signal represents the dimension hemisphere, the value N represents the northern hemisphere, and the value S represents the southern hemisphere;
  • the (5) signal represents longitude, and its structural format is dddmm.mmmm (degree minutes);
  • the (6) signal represents the longitude hemisphere, the value E represents east longitude, and the value W represents west longitude;
  • the (7) signal represents the ground rate, and the value range is 000.0 to 999.9;
  • the (8) signal indicates the ground course, the reference datum is north, and the value range is 000.0° ⁇ 359.9°;
  • the (9) signal represents UTC time, and its structural format is ddmmyy (day, month, year);
  • the (10) signal represents the magnetic declination, and the value range is 000.0° ⁇ 180.0°;
  • the (11) signal indicates the direction of magnetic declination, the value E indicates that the direction is east, and the value W indicates that the direction is west;
  • the (12) signal indicates the mode indication, the value A indicates autonomous positioning, the value D indicates differential, the value E indicates estimation, and the value N indicates invalid data.
  • the method for the central control module 1 to obtain and parse the GPRMC signal through the GPS+Beidou module is specifically:
  • the central control module 1 opens the corresponding interface and sends an instruction to the GPS+Beidou module
  • the data buffer in the GPS+Beidou module receives data, determines that the data length is greater than the first threshold value such as 10, and the data head is the address bit of the start symbol $GPRMC, and determines that such data exists in the received data, and from this
  • the start character starts to read data until the end of data reading; specifically, the data is read from the start character by byte and the $GPRMC field is extracted.
  • the extracted data is analyzed according to the GPRMC signal structure to obtain the required information, and the GPS+Beidou module returns the obtained required information to the central control module 1.
  • the measurement device specifically the positioning module 3 uses GPS and Beidou for bidirectional positioning, which can accurately locate the terminal installation position, and can meet the requirement of recording accurate positioning in the selection of the terminal installation position.
  • the electromagnetic wave signal strength measurement device provided by the embodiment of the present application further includes an image acquisition module 4 that acquires image information of the surrounding environment of the terminal installation location and sends the image information Give the central control module 1.
  • the central control module 1 sends an instruction to the image acquisition module 4, the image acquisition module 4 executes the instruction, and returns the acquired image information to the central control module 1, the central control module 1
  • the final output data also includes the image information.
  • the final data is output in the embodiments of the present application, that is, the final data is displayed to facilitate the staff to view, debug, or supervise the displayed data.
  • the image acquisition module 4 is a camera, and the camera can capture image information of the surrounding environment where the terminal installation location is recorded.
  • the camera is an OV5640V2.0 camera module, and the OV5640V2.0 camera module communicates with the central control module 1 through a Mobile Industry Processor (Mobile Industry Interface) (MIPI) interface.
  • the central control module 1 is programmed in the V4L2 framework programming mode, and in combination with the OV5640V2.0 camera module, an image acquisition function including video preview, photographing, image saving and other functions can be realized.
  • the central control module 1 sends an operation instruction to the OV5640V2.0 camera module to control the specific work flow of the OV5640V2.0 camera module as follows:
  • the corresponding program instruction is init_mmap(): apply for memory for the buffer, and set the collection method, and map the buffer to user space by mmap;
  • start_capturing() put an empty video buffer into the video buffer input queue, and call the VIDIOC_STREAMON command to start video collection, process the collected data, and save the collected video data to the video driver In the video buffer;
  • Image frame acquisition the corresponding program instruction is get_frame(): Get a video buffer that has saved one frame of video data from the output queue of the video buffer;
  • the corresponding program instruction is stop_capturing().
  • the measurement device specifically the image acquisition module 4 acquires image information of the surrounding environment of the terminal installation location, which can meet the requirement of recording the surrounding environment information during the selection of the terminal installation location. It should be understood by those skilled in the art that the image acquisition module 4 may also be other devices capable of implementing image acquisition functions.
  • the electromagnetic wave signal strength measurement device provided by the embodiment of the present application further includes a clock module 5, and the clock module 5 may provide a real-time clock for the measurement device to obtain the electromagnetic wave signal strength for the terminal installation location Time information at the time of measurement.
  • the clock module 5 may specifically be a GPS, a Beidou module, or a combination of the two to provide an accurate measurement time for the measurement device.
  • the clock module 5 may also be an independent module.
  • the electromagnetic wave signal strength measurement device includes both a GPS+Beidou module and a clock module 5
  • the clock module 5 and the GPS+Beidou module are combined to form the measurement device Provide real-time clock.
  • the time of the clock module 5 is different from the UTC time acquired by the GPS+Beidou module, the UTC time is used as the real-time clock, and the time of the clock module 5 is adjusted to be the same as the UTC time;
  • the GPS+Beidou module cannot receive the signal and cannot obtain the UTC time
  • the time of the clock module 5 is used as the real-time clock.
  • the measurement device specifically the clock module 5 can provide a real-time clock
  • the central control module 1 can obtain the electromagnetic wave signal strength of the measurement device at the installation position of the terminal in combination with the real-time clock provided by the clock module 5
  • the final data output by the central control module 1 also includes the time information, which can meet the requirement of recording time information during the selection of the terminal installation location.
  • the electromagnetic wave signal strength measurement device provided by the embodiment of the present application further includes a data interface device 6, and the data interface device includes a universal serial bus (USB) interface and an Ethernet interface.
  • the measuring device communicates with the host computer through the USB interface.
  • the electromagnetic wave signal strength measuring device serves as an external storage device, and the host computer can directly read and write data on the device.
  • the measurement device performs network communication with a host computer through a network cable through the Ethernet interface, and then completes functions such as device debugging and configuration.
  • the USB interface is a Type-C communication interface
  • the Ethernet interface is an RJ-45 Gigabit Ethernet interface.
  • the electromagnetic wave signal strength measurement device provided by the embodiment of the present application further includes a power management device 7 that manages the power of the measurement device, and the power management includes at least the power consumption For monitoring, the final data output by the central control module 1 also includes monitored power supply information.
  • the power management also includes power charging and discharging management, system soft shutdown, and power control of various components in the measurement device.
  • the measurement device performs unified management of the power of all components of the measurement device through the power management device 7 to facilitate the design, maintenance, and upgrade of the measurement device.
  • the electromagnetic wave signal strength measurement device provided by the embodiment of the present application further includes a display device 8 and a control device 9.
  • the display device 8 visually displays the final data output by the central control module 1.
  • the manipulation device 9 sends a manipulation instruction to the central control module 1 so that the display device 8 displays the final data output by the central control module 1.
  • the display device 8 can display the RSRP signal and the SNR signal in the form of real-time dynamic curves, and can also display positioning information, image information, time information, and power supply information.
  • the display device 8 is also provided with a corresponding preset standard signal strength indicator line. The preset standard signal strength indicator line is combined with the real-time dynamic curves of the RSRP signal and the SNR signal.
  • the control device 9 which can be regarded as an input device capable of realizing human-computer interaction, such as a keyboard, a mouse, and other input devices, and can also be function keys such as Physical buttons.
  • the data to be viewed, debugged or supervised is selected by the input device, and the display device 8 presents the selected data.
  • the display device 8 combined with the control device 9 can display the data that the worker desires to display based on the operation of the control device 9 by the worker.
  • the display device 8 is provided with a function menu, and the manipulation device 9 in combination with the function menu can realize human-computer interaction.
  • the specific functions of each function interface in the function menu are:
  • Main interface the functions that can be achieved: graphical display of RSRP signal and SNR signal, visualization of positioning information, time information, power supply information, and database storage;
  • Input interface the functions that can be achieved: various information input of the terminal installation location, database storage; where the database is used to compare the results of the terminal installed in different locations with the detection of the terminal location, installation location , The measurement data, the collected images and other final data corresponding storage.
  • Camera interface the functions that can be achieved: the surrounding environment shooting preview of the terminal installation location;
  • Image Save (PhotoSave) interface the functions that can be achieved: store and take photos/retake;
  • Search interface the functions that can be achieved: terminal installation location information query, support all queries and fuzzy queries;
  • TableView TableView interface, the functions that can be achieved: database data list display, list page turning, topping and other operations, database data deletion;
  • Image display (Check) interface the function can be achieved: display the image information queried;
  • CheckMore Signal display
  • Delete (Delete) interface the functions can be achieved: database data deletion and refresh the database data list.
  • each function interface in the function menu are implemented by the central control module 1.
  • the above functional interfaces can be used for staff inquiries, debugging or supervision. Different functional interfaces realize different functions, which can distinguish the functional interfaces more clearly and facilitate the staff to view the single functional interface.
  • the multiple functional interfaces provided by the measuring device in the embodiments of the present application can implement query, debugging, or supervision of various types of information, reflecting the diversity of the interface display of the measuring device, and facilitating the work of the staff.
  • the display device 8 may be a display screen, such as a liquid crystal display screen
  • the control device 9 is specifically an input device such as a keyboard and a mouse that can be used by staff to input queries, debug, or supervise operations.
  • the control device 9 can also be a function key such as a physical key.
  • the liquid crystal screen is also provided with a protective screen, and the combination of the physical keys and the liquid crystal screen can be well adapted to harsh outdoor conditions such as severe cold weather and wearing gloves, which can reduce the difficulty of operation and increase the scope of equipment adaptation.
  • the display device 8 may also be other devices capable of visually displaying the final data
  • the manipulation device 9 may also be any other device capable of implementing manipulation command input functions, for example
  • the display device 8 and the control device 9 may be a display screen with a touch screen function, supporting the touch operation of the worker on the display screen, and presenting the desired display content on the display screen.
  • the visual display of the final data and the manipulation of the measuring device can be realized simultaneously through the touch screen.
  • An embodiment of the present application also provides a method for measuring the strength of an electromagnetic wave signal, including:
  • Step 100 Detect the electromagnetic signal strength of the terminal installation location
  • Step 102 Compare the electromagnetic wave signal strength with a preset standard signal strength to obtain a comparison result, and output the electromagnetic wave signal strength and the comparison result as final data.
  • An embodiment of the present application further provides an electromagnetic wave signal strength measurement device, which includes at least one processor.
  • the execution function of the at least one processor can at least realize the functions of the aforementioned central control module 1 and the detection module 2, and also realize the functions of the aforementioned positioning module 3, clock module 5, and other modules.
  • the embodiment of the method and device for measuring the electromagnetic wave signal strength provided by the above embodiments belongs to the same concept as the electromagnetic wave signal strength measuring device shown in FIG. 1 to FIG. 5. For the specific implementation process, see the description of FIG. 1 to FIG. 5. Repeat.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules is only a division of logical functions.
  • there may be other divisions for example, multiple modules or components may be combined, or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between the displayed or discussed components may be through some interfaces, and the indirect coupling or communication connection of the device or unit may be electrical, mechanical, or other forms of.
  • modules described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functional modules in the embodiments of the present application may all be integrated into one processing module, or each module may be separately used as a module, or two or more modules may be integrated into one module; the above integration
  • the modules can be implemented in the form of hardware, or in the form of hardware plus software function modules.
  • the integrated module described above is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the methods described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as mobile storage devices, ROM, RAM, magnetic disks, or optical disks.
  • the electromagnetic wave signal strength measuring device of the embodiment of the present application can accurately measure the electromagnetic wave signal strength under the environment of the power terminal communication access network, and can ensure the quality of the power terminal access network. At the same time, it can also meet the requirements of recording the location information, surrounding environment information and working hours of the terminal installation position in actual work. The operation is simple and replaces the joint debugging method of the field staff and the main station side staff, saving human resources. , Greatly improving work efficiency and reducing the professional requirements of staff.

Abstract

一种电磁波信号强度测量装置和方法,电磁波信号强度测量装置包括探测模块(2)和中控模块(1);其中,探测模块(2)配置为探测终端安装位置的电磁波信号强度;中控模块(1)配置为将电磁波信号强度与预设标准信号强度作比较,得出比较结果,并将电磁波信号强度和比较结果作为最终数据输出。

Description

电磁波信号强度测量装置和方法
相关申请的交叉引用
本申请基于申请号为201811481438.0、申请日为2018年12月05日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的内容在此以引入方式并入本申请。
技术领域
本申请涉及电力系统通信技术领域,特别是指一种电磁波信号强度测量装置和方法。
背景技术
电力终端通信接入网是电力通信网的重要组成部分,它是电网安全稳定控制系统和调度自动化系统的基础,提供了配电自动化、用电信息采集、电能质量监测、分布式能源、智能用电、电动汽车充换电站等多种电力业务的接入和控制。电力终端通信接入网的终端安装位置选取的好坏直接影响电力终端通信接入网的稳定性,而终端安装位置的电磁波信号强度是评判终端安装位置选取好坏的重要因素。电力通信网为专用网络,为其分配的电磁波频段是230MHz(兆赫兹)频段,此频段为专网离散频段,频段范围是223.025MHz~235MHz,共有480个离散频点。传统的终端安装位置选取工作中,由于电磁波信号强度的物理特性,在周边环境复杂的地区,只能工作人员凭借经验判断终端安装位置的电磁波信号强度,而无法得到精确的电磁波信号强度,可靠性较差,导致电力终端通信接入网终端的掉线率和重装率较高,电力终端通信接入网质量无 法保证。
另外,在传统的终端安装位置选取工作中,需要现场工作人员与主站侧工作人员进行联合调试,极大地降低了工作效率,浪费了大量的人力资源,且对工作人员的专业性要求较高。
发明内容
有鉴于此,本申请实施例在于提出一种电磁波信号强度测量装置和方法,至少能够在电力终端通信接入网环境下能够精确测量出电磁波信号强度,保证电力终端通信接入网质量,同时提高工作效率并降低对工作人员专业性要求。
本申请实施例提供的一种电磁波信号强度检测装置,包括探测模块和中控模块;
所述探测模块,配置为探测终端安装位置的电磁波信号强度;
所述中控模块,配置为将所述电磁波信号强度与预设标准信号强度作比较,得出比较结果,并将所述电磁波信号强度和所述比较结果作为最终数据输出。
上述方案中,所述测量装置还包括定位模块,配置为获取所述终端安装位置的定位信息,所述最终数据还包括所述定位信息。
上述方案中,所述测量装置还包括图像获取模块,配置为获取所述终端安装位置周边环境的图像信息,所述最终数据还包括所述图像信息。
上述方案中,所述测量装置还包括时钟模块,配置为提供实时时钟以获得对所述终端安装位置的电磁波信号强度进行测量时的时间信息,所述最终数据还包括所述时间信息。
上述方案中,所述测量装置还包括数据接口装置,配置为与外部设备进行 通信,通过所述数据接口装置可以实现所述测量装置的设备调试与配置功能。
上述方案中,所述测量装置还包括电源管理装置,配置为对电源进行管理,所述电源管理至少包括对电源电量进行监测,所述最终数据还包括所述电源电量数据。
上述方案中,所述测量装置所述探测模块,还配置为探测所述终端安装位置的电磁波信号的信噪比信息,所述最终数据还包括所述信噪比信息。
上述方案中,所述测量装置还包括显示装置和操控装置;
所述显示装置,配置为将所述最终数据可视化显示;
所述操控装置,配置为向所述中控模块发送操控指令以使所述中控模块向所述显示装置输出所述最终数据。
本申请实施例提供一种电磁波信号强度测量装置,包括至少一个处理器,所述至少一个处理器,用于:探测终端安装位置的电磁波信号强度,将所述电磁波信号强度与预设标准信号强度作比较,得出比较结果,并将所述电磁波信号强度和所述比较结果作为最终数据输出。
本申请实施例提供一种电磁波信号强度测量方法,包括:探测终端安装位置的电磁波信号强度;将所述电磁波信号强度与预设标准信号强度作比较,得出比较结果,并将所述电磁波信号强度和所述比较结果作为最终数据输出。
本申请实施例中,所提供的电磁波信号强度测量装置可以在电力终端通信接入网环境下精确测量电磁波信号强度,能够保证电力终端接入网的质量,同时还能够满足实际工作中需要记录终端安装位置的定位信息、周边环境信息以及工作时间等信息的要求,操作简单,代替了现场工作人员与主站侧工作人员联合调试的工作方式,节省人力资源,极大地提高了工作效率并且降低了对工作人员的专业性要求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例所提供的电磁波信号强度测量装置结构示意图;
图2为本申请实施例所提供的电磁波信号强度测量装置的详细结构示意图;
图3为本申请实施例所提供的电磁波信号强度测量装置中定位模块的定位信息获取方法示意图;
图4为本申请实施例所提供的电磁波信号强度测量装置中图像获取模块的工作流程示意图;
图5为本申请实施例所提供的电磁波信号强度测量装置中显示装置的功能菜单跳转示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本申请进一步详细说明。
需要说明的是,本申请实施例中所有使用“第一”和“第二”的表述均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”“第二”仅为了表述的方便,不应理解为对本申请实施例的限定,后续实施例对此不再一一说明。
如图1所示,本申请实施例提供一种电磁波信号强度测量装置,包括中控模块1和探测模块2。在工作时,所述中控模块1向所述探测模块2发送指令,所述探测模块2探测得到所述终端安装位置的电磁波信号强度并将所述电磁波信号强度返回给所述中控模块1,所述中控模块1将所述电磁波信号强度与预设标准信号强度作比较,若所述电磁波信号强度高于或等于预设标准信号强度,说明所选取的终端安装位置符合要求。若电磁波信号强度低于预设标准信号强度,则改变终端的安装位置直至改变安装的位置的电磁波信号强度高于或等于标准信号强度。所述中控模块1将所述电磁波信号强度与所述比较结果进行输出。本申请实施例中的中控模块用于将得到的最终数据进行输出,该最终数据至少包括前述的电磁波信号强度和比较结果。其中,预设的标准信号强度可以是具体数值,也可以是数值范围,对比不做具体限定。
与人工估算信号强度的方式相比,本申请实施例中的测量装置、具体是所述探测模块2可以精确测量电力终端通信接入网环境下、具体是在安装在某个位置处时的电磁波信号强度,结合中控模块1得出比较结果。使用本申请实施例中的测量装置代替传统的终端安装位置选取工作中工程师仅仅凭借经验判断终端安装位置的电磁波信号强度的工作方式,将测量得到的电磁波信号强度与预设标准信号强度对比,进而得到可靠的比较结果,使得电力终端通信接入网质量得到保证。
作为一种实现方式,所述探测模块2测量得到的所述电磁波信号强度具体可以为参考信号接收功率(Reference Signal Receiving Power,RSRP)。所述RSRP信号是所述电力终端通信接入网中可以代表电磁波信号强度的关键参数以及物理测量需求之一,是指在某个符号内承载参考信号的所有资源粒子(RE)上接收到的信号功率的平均值。所述RSRP信号的衡量单位为分贝毫 瓦(dBm)。在比较出探测出的电磁波信号强度高于或等于预设标准信号强度如-85dBm的情况下,还可以根据探测出的电磁波信号位于预设的哪个子标准信号强度范围内,进一步确定电磁波信号强度的好坏。例如,当所述RSRP信号R x处于-85dBm至-75dBm范围内(-85<R x<-75)时,说明电磁波信号较好,在室外可以能够发起各种通信业务,可以获得中等速率的数据业务,在室内可以获得低速率的数据业务。当所述RSRP信号R x处于-75dBm至-65dBm范围内(-75<R x<-65)时,说明电磁波信号好,在室外能够发起各种通信业务,可以获得高速率的数据业务,室内可以获得中等速率的数据业务。当所述RSRP信号R x高于或等于-65dBm(R x>-65)时,说明电磁波信号非常好。
作为一种实现方式,所述测量装置、具体是所述探测模块2还能获取所述终端安装位置的电磁波信号的信噪比(Signal to Interference plus Noise Ratio,SNR)信息、通信连接基站ID(Cell id)信息和通信连接频谱子带号(Subindex)信息。所述Subindex信息表示在通信时所接入的电力终端通信接入网的频谱子带编号,所述电力终端通信接入网使用专用230MHz频段,为223~235MHz,共分480个子带,每子带带宽为25KHz。在实际应用中,所述电磁波信号的信噪比能反映所述终端安装位置的电磁波信号质量,将所述电磁波信号强度与所述电磁波信号的信噪比同时进行探测,可以使选取的终端安装位置更优,进一步提高了所述电力终端通信接入网的质量。
作为一种实现方式,所述中控模块2为嵌入式集成处理器,所述嵌入式集成处理器的硬件性能能够满足所述测量装置对数据处理的需求。可选的,所述嵌入式集成处理器具体为i.MX6 Cortex-A9处理器,所述处理器主频为1GHz(吉赫兹),内存-双倍速率同步动态随机存储器(DDR3 SDARM)规格为1GB(吉字节),非易失性存储器(EMMC)规格为4GB。所述处理器能够很好地 满足所述测量装置对硬件的需求。本领域技术人员应当理解的是,所述中控模块1还可以为其他的可以满足要求的处理器。
如图2所示,本申请实施例所提供的电磁波信号强度测量装置还包括定位模块3,所述定位模块3可以获取所述终端安装位置的定位信息并将所述定位信息发送给所述中控模块1。所述中控模块1输出的所述最终数据中还可以包括所述定位信息。
作为一种实现方式,所述定位模块3为全球定位系统(GPS)和北斗模块,将GPS和北斗模块相结合能够为所述装置提供精确的双星定位信息。所述GPS+北斗模块还可以为所述测量装置提供实时时间。
所述GPS+北斗模块发送给所述中控模块1的所述定位信息具体为推荐定位信息(GPRMC)信号,所述GPRMC信号的信号结构为:
$GPRMC,(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12)*cc(CR)(LF)。
其中,所述(1)信号表示世界统一时间(UTC)时间,其结构格式是hhmmss(时分秒);
所述(2)信号表示定位状态,取值为A时表示有效定位,取值为V表示无效定位;
所述(3)信号表示维度,其结构格式是ddmm.mmmm(度分);
所述(4)信号表示维度半球,取值为N表示北半球,取值为S表示南半球;
所述(5)信号表示经度,其结构格式是dddmm.mmmm(度分);
所述(6)信号表示经度半球,取值为E表示东经,取值为W表示西经;
所述(7)信号表示地面速率,取值范围是000.0~999.9;
所述(8)信号表示地面航向,参考基准为北方,取值范围是000.0°~359.9°;
所述(9)信号表示UTC时间,其结构格式是ddmmyy(日月年);
所述(10)信号表示磁偏角,取值范围是000.0°~180.0°;
所述(11)信号表示磁偏角方向,取值E表示方向为东,取值W表示方向为西;
所述(12)信号表示模式指示,取值A表示自主定位,取值D表示差分,取值E表示估算,取值N表示数据无效。
如图3所示,所述中控模块1通过所述GPS+北斗模块结合获取并解析所述GPRMC信号的方法具体为:
中控模块1打开对应接口,向所述GPS+北斗模块发送指令;
所述GPS+北斗模块中的数据缓冲区接收数据,判断数据长度大于第一阈值如10且数据头为起始符$GPRMC的地址位,判断接收数据中存在这样的数据的情况下,并从该起始符开始读取数据,直至数据读取结束;具体的,按字节从起始符开始进行数据的读取,并提取$GPRMC字段。
根据所述GPRMC信号结构对提取的数据进行解析,得到所需要的信息,所述GPS+北斗模块将得到的所需要的信息返回给所述中控模块1。
所述测量装置、具体是所述定位模块3利用GPS和北斗进行双向定位,能够对所述终端安装位置进行精确定位,可满足在所述终端安装位置选取工作中记录精确定位的需求。
如图2所示,本申请实施例所提供的电磁波信号强度测量装置还包括图像获取模块4,所述图像获取模块4获取所述终端安装位置周边环境的图像信息,并将所述图像信息发送给所述中控模块1。工作时,所述中控模块1向所述图像获取模块4发送指令,所述图像获取模块4执行指令,将获取得到的所述图像信息返回给所述中控模块1,所述中控模块1输出的所述最终数据中也包括 所述图像信息。本领域技术人员应该理解,本申请实施例中将最终数据进行输出,也即对最终数据进行展示是为了方便工作人员对展示的数据进行查看、调试或监督。
作为一种实现方式,所述图像获取模块4为摄像头,所述摄像头可以拍摄记录所述终端安装位置的周边环境的图像信息。可选的,所述摄像头为OV5640V2.0摄像头模块,所述OV5640V2.0摄像头模块通过移动产业处理器(Mobile Industry Processor Interface,MIPI)接口与所述中控模块1通信。所述中控模块1采用V4L2框架编程模式编程,结合所述OV5640V2.0摄像头模块可以实现包括视频预览、拍照、图像保存等功能在内的图像采集功能。
如图4所示,所述中控模块1向所述OV5640V2.0摄像头模块发送操作指令操控所述OV5640V2.0摄像头模块的具体工作流程为:
打开设备,对应程序指令为open_device();
初始化设备,设定属性,对应程序指令为init_device():查询设备可实现的功能,所支持的功能返回到struct v4l2_capability结构体变量中;
缓冲区内存申请,对应程序指令为init_mmap():为缓冲区申请内存,并设定采集方式,将缓冲区采用mmap的方式映射到用户空间;
开始拍照,对应的程序指令为start_capturing():投放一个空的视频缓冲区到视频缓冲区输入队列中,并调用VIDIOC_STREAMON命令启动视频采集,处理采集的数据,把采集到的视频数据保存到视频驱动的视频缓冲区中;
图像帧采集,对应的程序指令为get_frame():从视频缓冲区的输出队列中取得一个已经保存有一帧视频数据的视频缓冲区;
停止拍照,关闭视频设备,对应的程序指令为stop_capturing()。
所述测量装置、具体是所述图像获取模块4获取所述终端安装位置周边环 境的图像信息,能够满足在所述终端安装位置选取工作中记录周边环境信息的需求。本领域技术人员应当理解的是,所述图像获取模块4还可以为其他能够实现图像获取功能的装置。
如图2所示,本申请实施例提供的电磁波信号强度测量装置还包括时钟模块5,所述时钟模块5可以为所述测量装置提供实时时钟,以获得对所述终端安装位置的电磁波信号强度进行测量时的时间信息。可以理解,该时钟模块5具体可以是GPS,也可以是北斗模块,还可以是二者的结合,用于为测量装置提供精确的测量时间。
此外,时钟模块5还可以是独立的模块,在所述电磁波信号强度测量装置同时包括有GPS+北斗模块与时钟模块5时,所述时钟模块5与所述GPS+北斗模块相结合为所述测量装置提供实时时钟。当所述时钟模块5的时间与所述GPS+北斗模块获取的UTC时间不同时,以所述UTC时间为所述实时时钟,并将所述时钟模块5的时间调整为与所述UTC时间相同;当所GPS+北斗模块无法接收信号而无法获取UTC时间时,以所述时钟模块5的时间为实时时钟。
所述测量装置、具体是时钟模块5可以提供实时时钟,所述中控模块1结合所述时钟模块5所提供的实时时钟能够获取所述测量装置在对所述终端安装位置的电磁波信号强度进行测量时的时间信息,所述中控模块1所输出的最终数据中还包括所述时间信息,能够满足在所述终端安装位置选取工作中记录时间信息的需求。
如图2所示,本申请实施例提供的电磁波信号强度测量装置还包括数据接口装置6,所述数据接口装置包括通用串行总线(USB)接口和以太网接口。所述测量装置通过所述USB接口实现与上位机的通信,此时所述电磁波信号 强度测量装置作为外存储设备,上位机可直接对该设备数据进行读写操作。所述测量装置通过所述以太网接口,使用网线与上位机进行网络通信,进而完成设备调试与配置等功能。在实际应用中,所述USB接口为C类型(Type-C)通信接口,所述以太网接口为RJ-45千兆以太网接口。
如图2所示,本申请实施例提供的电磁波信号强度测量装置还包括电源管理装置7,所述电源管理装置7对所述测量装置的电源进行管理,所述电源管理至少包括对电源电量进行监测,所述中控模块1输出的所述最终数据还包括监测到的电源电量信息。所述电源管理还包括电源充放电管理、系统软关机以及对所述测量装置中各个组件的电源控制。
所述测量装置通过所述电源管理装置7对所述测量装置的所有组件电源进行统一管理,方便所述测量装置的设备设计、维护与升级。
如图2所示,本申请实施例提供的电磁波信号强度测量装置还包括显示装置8和操控装置9。其中,所述显示装置8将所述中控模块1所输出的所述最终数据可视化显示。所述操控装置9向所述中控模块1发送操控指令以使得所述显示装置8将中控模块1输出的最终数据进行显示。所述显示装置8可以将所述RSRP信号和所述SNR信号以实时动态曲线的形式显示,同时还可以显示定位信息、图像信息、时间信息以及电源电量信息。所述显示装置8还设置有相对应的预设标准信号强度标示线,所述预设标准信号强度标示线与所述RSRP信号和所述SNR信号的实时动态曲线相结合,可以直观看出所选取的所述终端安装位置是否符合要求。可以理解,工作人员想要查看、调试或监督哪些数据,可通过操控装置9来实现,可以认为操控装置9为能够实现人机交互的装置诸如键盘、鼠标等输入装置,还可以为功能按键如物理按键。通过输入装置对要查看、调试或监督的数据进行选择,显示装置8进行所选择数据的 呈现。所述显示装置8与所述操控装置9相结合可以基于工作人员对操控装置9的操作来显示工作人员期望显示的数据。
如图5所示,在本申请的一些可选实施例所提供的电磁波信号强度测量装置中所述显示装置8设置有功能菜单,所述操控装置9结合所述功能菜单可以实现人机交互。所述功能菜单中各功能界面具体功能为:
主(Main)界面,所能实现的功能:RSRP信号与SNR信号的图形化显示,定位信息、时间信息、电源电量信息的可视化,数据库存储;
输入(Input)界面,所能实现的功能:终端安装位置的各项信息输入,数据库存储;其中,数据库用于将安装在不同位置的终端与对终端的位置进行探测得到的比较结果、安装位置、测量时间、采集的图像等得到的最终数据之间进行对应存储。
摄像(Camera)界面,所能实现的功能:终端安装位置周边环境拍摄预览;
图像保存(PhotoSave)界面,所能实现的功能:存储拍摄照片/重拍;
查询(Search)界面,所能实现的功能:终端安装位置信息查询,支持全部查询和模糊查询;
列表(TableView)界面,所能实现的功能:数据库数据列表显示,列表翻页、回顶等操作,数据库数据删除;
图像显示(Check)界面,所能实现的功能:显示所查询的图像信息;
信号显示(CheckMore)界面,所能实现的功能:显示所查询的信号测量数据;
删除(Delete)界面,所能实现的功能:数据库数据删除并刷新数据库数据列表。
所述功能菜单中各功能界面的功能由所述中控模块1实现。以上功能界面 均可用于工作人员的查询、调试或监督,不同的功能界面实现不同的功能,可将功能界面区分得更为清晰,方便工作人员对单一功能界面的查看。且本申请实施例中的测量装置提供的多个功能界面能够实现对各类信息的查询、调试或监督,体现了测量装置的界面显示的多样性,方便工作人员的工作开展。
作为一种实现方式,所述显示装置8可以为显示屏,如液晶显示屏,所述操控装置9具体为可供工作人员输入查询、调试或监督操作的装置如键盘、鼠标等输入装置。所述操控装置9还可以为功能按键如物理按键。所述液晶屏还设置有保护屏,所述物理按键与所述液晶屏相结合的方式能够很好适应户外严寒、戴手套操作等苛刻条件,可以降低操作难度、增加设备适应范围。本领域技术人员应当理解的是,所述显示装置8还可以为其他能够实现将所述最终数据可视化显示的装置,所述操控装置9还可以为所其他能够实现操控指令输入功能的装置,例如所述显示装置8与所述操控装置9可以为具有触屏功能的显示屏,支持工作人员在显示屏上的触控操作,并在显示屏上进行期望展示内容的呈现。通过触控显示屏可以同时实现最终数据的可视化显示与对所述测量装置的操控。
本申请实施例还提供一种电磁波信号强度测量方法,包括:
步骤100:探测终端安装位置的电磁波信号强度;
步骤102:将所述电磁波信号强度与预设标准信号强度作比较,得出比较结果,并将所述电磁波信号强度和所述比较结果作为最终数据输出。
本申请实施例还提供一种电磁波信号强度测量装置,至少包括:至少一个处理器。所述至少一个处理器的执行功能至少能够实现前述中控模块1和探测模块2的功能,还能够实现前述定位模块3、时钟模块5等模块的功能。
上述实施例提供的电磁波信号强度测量方法和装置实施例与图1至图5 所示的电磁波信号强度测量装置属于同一构思,其具体实现过程详见对图1至图5的描述,这里不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个模块或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的模块可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能模块可以全部集成在一个处理模块中,也可以是各模块分别单独作为一个模块,也可以两个或两个以上模块集成在一个模块中;上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
或者,本申请上述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包 括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本申请的不同方面的许多其它变化,为了简明它们没有在细节中提供。因此,凡在本申请的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请实施例的电磁波信号强度测量装置可以在电力终端通信接入网环境下精确测量电磁波信号强度,能够保证电力终端接入网的质量。同时还能够满足实际工作中需要记录终端安装位置的定位信息、周边环境信息以及工作时间等信息的要求,操作简单,代替了现场工作人员与主站侧工作人员联合调试 的工作方式,节省人力资源,极大地提高了工作效率并且降低了对工作人员的专业性要求。

Claims (10)

  1. 一种电磁波信号强度测量装置,包括探测模块和中控模块;其中,
    所述探测模块,配置为探测终端安装位置的电磁波信号强度;
    所述中控模块,配置为将所述电磁波信号强度与预设标准信号强度作比较,得出比较结果,并将所述电磁波信号强度和所述比较结果作为最终数据输出。
  2. 根据权利要求1所述的测量装置,其中,还包括定位模块,配置为获取所述终端安装位置的定位信息,所述最终数据还包括所述定位信息。
  3. 根据权利要求1所述的测量装置,其中,还包括图像获取模块,配置为获取所述终端安装位置周边环境的图像信息,所述最终数据还包括所述图像信息。
  4. 根据权利要求1所述的测量装置,其中,还包括时钟模块,配置为提供实时时钟以获得对所述终端安装位置的电磁波信号强度进行测量时的时间信息,所述最终数据还包括所述时间信息。
  5. 根据权利要求1所述的测量装置,其中,还包括数据接口装置,配置为与外部设备进行通信,通过所述数据接口装置可以实现所述测量装置的设备调试与配置功能。
  6. 根据权利要求1所述的测量装置,其中,还包括电源管理装置,配置为对电源进行管理,所述电源管理至少包括对电源电量进行监测,所述最终数据还包括所述电源电量数据。
  7. 根据权利要求1所述的测量装置,其中,所述探测模块,还配置为探测所述终端安装位置的电磁波信号的信噪比信息,所述最终数据还包括所述信 噪比信息。
  8. 根据权利要求1至7任意一项所述的测量装置,其中,所述测量装置还包括显示装置和操控装置;
    所述显示装置,配置为将所述最终数据可视化显示;
    所述操控装置,配置为向所述中控模块发送操控指令以使所述中控模块向所述显示装置输出所述最终数据。
  9. 一种电磁波信号强度测量装置,包括至少一个处理器,所述至少一个处理器,用于:探测终端安装位置的电磁波信号强度,将所述电磁波信号强度与预设标准信号强度作比较,得出比较结果,并将所述电磁波信号强度和所述比较结果作为最终数据输出。
  10. 一种电磁波信号强度测量方法,包括:
    探测终端安装位置的电磁波信号强度;
    将所述电磁波信号强度与预设标准信号强度作比较,得出比较结果,并将所述电磁波信号强度和所述比较结果作为最终数据输出。
PCT/CN2019/102095 2018-12-05 2019-08-22 电磁波信号强度测量装置和方法 WO2020114008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811481438.0 2018-12-05
CN201811481438.0A CN109581073A (zh) 2018-12-05 2018-12-05 一种电磁波信号强度测量装置

Publications (1)

Publication Number Publication Date
WO2020114008A1 true WO2020114008A1 (zh) 2020-06-11

Family

ID=65926187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102095 WO2020114008A1 (zh) 2018-12-05 2019-08-22 电磁波信号强度测量装置和方法

Country Status (2)

Country Link
CN (1) CN109581073A (zh)
WO (1) WO2020114008A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581073A (zh) * 2018-12-05 2019-04-05 北京国电通网络技术有限公司 一种电磁波信号强度测量装置
CN111800815A (zh) * 2020-05-22 2020-10-20 中国电力科学研究院有限公司 一种230MHz离散载波通信网络的定点测试系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132118A1 (en) * 2004-12-22 2006-06-22 Matsushita Electric Industrial Co., Ltd. Electromagnetic wave analysis apparatus and design support apparatus
CN103267901A (zh) * 2013-04-19 2013-08-28 中国科学院深圳先进技术研究院 一种电磁波强度检测装置及方法
CN103323683A (zh) * 2013-06-09 2013-09-25 中国科学院深圳先进技术研究院 一种便携式电磁波强度检测装置及方法
CN104734337A (zh) * 2013-12-20 2015-06-24 西安欣东源电气有限公司 一种基于互联网的输变电电磁波强度传输监控报警系统
CN106199216A (zh) * 2016-08-02 2016-12-07 海信集团有限公司 辐射值显示方法及装置
CN106304181A (zh) * 2016-09-13 2017-01-04 乐视控股(北京)有限公司 移动通信网络的信号强度提示方法和装置
CN109581073A (zh) * 2018-12-05 2019-04-05 北京国电通网络技术有限公司 一种电磁波信号强度测量装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132118A1 (en) * 2004-12-22 2006-06-22 Matsushita Electric Industrial Co., Ltd. Electromagnetic wave analysis apparatus and design support apparatus
CN103267901A (zh) * 2013-04-19 2013-08-28 中国科学院深圳先进技术研究院 一种电磁波强度检测装置及方法
CN103323683A (zh) * 2013-06-09 2013-09-25 中国科学院深圳先进技术研究院 一种便携式电磁波强度检测装置及方法
CN104734337A (zh) * 2013-12-20 2015-06-24 西安欣东源电气有限公司 一种基于互联网的输变电电磁波强度传输监控报警系统
CN106199216A (zh) * 2016-08-02 2016-12-07 海信集团有限公司 辐射值显示方法及装置
CN106304181A (zh) * 2016-09-13 2017-01-04 乐视控股(北京)有限公司 移动通信网络的信号强度提示方法和装置
CN109581073A (zh) * 2018-12-05 2019-04-05 北京国电通网络技术有限公司 一种电磁波信号强度测量装置

Also Published As

Publication number Publication date
CN109581073A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN109361577B (zh) 一种基于分布式传感器的数据监测方法和系统
CN111192375A (zh) 一种红外体温检测的人脸识别考勤门禁机
WO2020114008A1 (zh) 电磁波信号强度测量装置和方法
CN208672025U (zh) 一种基于物联网的矿山地质环境数据采集装置及系统
CN103323683A (zh) 一种便携式电磁波强度检测装置及方法
WO2022142685A1 (zh) 传染病的传染概率预测方法及装置、存储介质、电子设备
US11234192B2 (en) Power saving remote sensor system and methods
CN205209529U (zh) 远程环境监测设备
CN102506991A (zh) 分布式城市环境噪声实时自动监测系统
CN109831495A (zh) 一种基于NB-IoT的智能无线甲烷监测装置、系统及方法
CN104730487A (zh) 电能表的监测装置
CN110351338A (zh) 一种基于NB-IoT技术的低功耗温湿度传感器
CN108398184A (zh) 一种施工噪声检测系统
CN208581240U (zh) 一种便携式终端信号测试仪
CN207010859U (zh) 一种远程控制视频监控系统
CN205451057U (zh) 一种工业遗产数字化展示系统
CN201947279U (zh) 车载移动式多媒体广播场强覆盖路测仪
CN106338960A (zh) 一种分布式生产车间智能数据监测传输装置
CN110308857A (zh) 一种基于触控手势的圈选查询装置
CN108731793A (zh) 一种手持式噪声检测仪
CN210952919U (zh) 一种室内外环境监测系统
CN211477413U (zh) 可定位的体温检测装置和基于物联网的体温检测监控系统
CN210836235U (zh) 一种红外体温检测的人脸识别考勤门禁机
US11276155B2 (en) Automated inspection system and automated inspection method including a data collection device that generates exposure parameter determination information
CN209460098U (zh) 一种空气质量监测仪及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892631

Country of ref document: EP

Kind code of ref document: A1