WO2020113899A1 - 基于巴特勒矩阵的集成二维多波束激光雷达发射系统 - Google Patents

基于巴特勒矩阵的集成二维多波束激光雷达发射系统 Download PDF

Info

Publication number
WO2020113899A1
WO2020113899A1 PCT/CN2019/084897 CN2019084897W WO2020113899A1 WO 2020113899 A1 WO2020113899 A1 WO 2020113899A1 CN 2019084897 W CN2019084897 W CN 2019084897W WO 2020113899 A1 WO2020113899 A1 WO 2020113899A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
channel
phase
array
phase shifter
Prior art date
Application number
PCT/CN2019/084897
Other languages
English (en)
French (fr)
Inventor
陆梁军
朱晨
周林杰
刘娇
陈建平
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2020113899A1 publication Critical patent/WO2020113899A1/zh
Priority to US17/061,126 priority Critical patent/US11874362B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • G02B6/2813Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable

Definitions

  • the invention relates to the field of radar, in particular to an integrated two-dimensional multi-beam laser radar transmission system based on a Butler matrix.
  • Lidar is a radar system that acquires target-related information by detecting the scattered light characteristics of long-range targets. Since the concept of lidar was put forward in the last century, many countries, enterprises and research institutes have conducted in-depth research and exploration on its production methods. By studying the characteristics of beams and improving the preparation methods of traditional radars, the performance of lidar is getting better and better. Lidar uses laser as the light source and adopts photoelectric detection methods, which can realize three-dimensional imaging, tracking, guidance, detection and accurate distance measurement functions, so it is particularly attractive in national defense and civil use. Generally, lidar uses mechanical methods to change the beam guidance. This technology has the disadvantages of large volume, slow scanning speed, and large inertia. Recently, researchers have proposed the use of integrated optical phased array technology to achieve beam steering.
  • the lidar technology based on the phase control array uses phase delay to control the wavefront to achieve beam steering. This makes radar equipment no longer rely solely on mechanical beam guidance, which can greatly improve the response speed, target capacity and reliability of radar equipment.
  • the large-scale integrated phase control array is large and expensive, and it has been mostly used in military applications.
  • silicon-based optoelectronic integration technology large-scale integration costs And the size is gradually decreasing, creating conditions for the application of optical phased array lidar in military and civilian fields.
  • phased array two-dimensional dynamic beam control chip (Vol.23, No. 5/OPTICSEXPRESS) on the hybrid silicon platform, which is the first fully integrated "two-dimensional rotatable laser chip".
  • Intel Labs proposed a two-dimensional non-uniform transmitter-spaced optical phased array-oriented solution (Vol.3, No.8/Optica), The performance of the non-uniform phased array has been verified.
  • the performance index on the phased axis can be 500 and the deflection angle is 80°. It can achieve extremely small beam dispersion (0.14°) and 6000 resolutions in two dimensions. point.
  • lidar implementation schemes are only single-beam lidars.
  • the radar output signal has low anti-interference ability and low survivability, and the transmitted beam energy and radar data rate are not fully utilized.
  • the object of the present invention is to provide an integrated two-dimensional multi-beam laser radar transmission system based on a Butler matrix.
  • Integrated two-dimensional multi-beam lidar launch system based on Butler matrix specifically N ⁇ M integrated two-dimensional multi-beam lidar launch system
  • the system includes tunable laser array, frequency-modulated continuous wave modulation array, N ⁇ N Butler optical matrix Network, N ⁇ M optical beam expansion network, M-channel phase shifter array and M-channel 2D laser radar transmitter.
  • the adjustable laser array is a narrow linewidth laser array, and the narrow linewidth continuous light output by the adjustable laser array N channels of FM continuous optical signals are generated by the FM continuous wave modulation array; after processing by N ⁇ N Butler matrix network and N ⁇ M optical beam expansion network, the energy of each channel of the FM continuous optical signals is equally divided into M channels Output ports, the output signals of adjacent output ports have equal phase difference; the M-channel phase shifter array generates an equal-phase phase with continuously adjustable phase difference for the M-channel optical signals output from the M-channel output ports;
  • the tunable laser array is composed of N tunable lasers, and the N tunable lasers can simultaneously emit N channels of narrow linewidth continuous light with equal light intensity, and the wavelength of each channel of narrow linewidth continuous light can be Adjustable and adjustable range is in human eye safe area.
  • the modulator is an electro-optic modulator or an I/Q modulator.
  • the N ⁇ N Butler optical matrix network includes N/2 ⁇ n 90° optical mixers, N/2 ⁇ (n-1) phase shifters and connecting waveguides, and the N ⁇ N Butler
  • the optical matrix network has N input ports and N output ports, in which the i-th input port is connected to the FM continuous wave modulator described in the i-th channel, and the optical signal of each input port is equally distributed to all output ports Adjacent output ports have a fixed phase difference, and optical signals input from different input ports have different phase differences at the output port, thereby forming N different beams.
  • the 90° optical mixer is a 2 ⁇ 2 multimode interferometer or a directional coupler, the 90° optical mixer has two input ports and two output ports; the phase shifter is based on thermal light Phase shifter of effect or electro-optic effect, the phase adjustment range of the phase shifter is 0 ⁇ 2 ⁇ .
  • the N ⁇ M optical beam expansion network includes a K-level expansion array and a connecting waveguide connecting adjacent two-level expansion arrays
  • the beam network divides and spreads the N optical signals output by the N ⁇ N Butler optical matrix network into M optical signals equally.
  • the adjacent output signals have the same phase difference, and the phase difference of the output signal is consistent with the phase difference of the input signal.
  • the 1 ⁇ 2 optical beam splitter is a 1 ⁇ 2MMI structure or a 1 ⁇ 2Y bifurcated structure
  • the 180° phase shifter is a 180° phase shifter based on a thermo-optic effect or an electro-optic effect, and the 180° shift
  • the phase adjustment range of the phase device is 0 ⁇ 2 ⁇ .
  • the output ports are connected, and the M-channel phase shifter array shifts the phase of the input optical signal so that the phase of the output signal has an equidistance relationship and the equidistance is continuously adjustable;
  • the M-channel phase shifter is based on the thermo-optic effect Or a phase shifter with electro-optic effect, the phase range adjusted by the phase shifter is 0 ⁇ 2 ⁇ .
  • the angle of the transmitting beam in the direction of the grating perpendicular to the transmitting end can be deflected by adjusting the phase shift of the M-channel phase shifter array, and the angle of the transmitting beam in the direction of the grating parallel to the transmitting end can be deflected by adjusting the wavelength of the adjustable laser array to This realizes a two-dimensional adjustable transmit beam, and because different input optical signals have different equidistant phases at the output port, N different beams can be realized.
  • the above solution can be realized by monolithic or heterogeneous photon integration technology, including material platforms such as silicon, silicon nitride, III/V, etc., to realize a miniaturized and low-cost multi-beam two-dimensional laser radar transmitting chip.
  • the present invention can generate two-dimensional multi-beams. Compared with the one-dimensional single-beam radar, it improves the radar anti-jamming capability and survivability, fully utilizes the transmitted beam energy, and increases the radar data rate.
  • the frequency-modulated continuous wave is used as the optical emission signal, which has higher anti-interference and detection sensitivity, thereby achieving low emission power and long-distance detection.
  • the invention has the advantages of flexible structure, simple control, strong expandability, easy integration, small size and low power consumption.
  • Figure 1 is a schematic diagram of an integrated two-dimensional multi-beam lidar launch system based on Butler matrix
  • FIG. 2 is a schematic diagram of an embodiment of a 4 ⁇ 16 integrated two-dimensional multi-beam laser radar transmission system based on a Butler matrix;
  • Figure 3a is a schematic diagram of the structure of a 90° optical mixer using a 2 ⁇ 2 multimode interferometer
  • Figure 3b is a schematic diagram of the structure of a 90° optical mixer using a directional coupler
  • Figure 4a is a schematic diagram of the structure of 1 ⁇ 2 optical beam splitter using 1 ⁇ 2MMI;
  • Fig. 4b is a schematic diagram of the structure of the 1 ⁇ 2 optical beam splitter adopting the 1 ⁇ 2Y bifurcation;
  • Figure 5a is a block diagram of a frequency modulation continuous wave modulation based on an electro-optic modulator
  • Figure 5b is a block diagram of a frequency modulation continuous wave modulation based on IQ modulator
  • Figure 6a is a top view of a shallow etched grating structure
  • Figure 6b is a cross-sectional view of a shallow etched grating structure
  • FIG. 7a is a top view of a double-layer silicon nitride grating
  • 7b is a cross-sectional view of a double-layer silicon nitride grating structure.
  • a component when a component is said to be “fixed” to another component, it can be directly on another component or it can also exist in a centered component.
  • a component When a component is considered to be “connected” to another component, it can be directly connected to another component or there can be centered components at the same time.
  • a component When a component is considered to be “set on” another component, it may be set directly on another component or there may be a centered component at the same time.
  • the terms “vertical”, “horizontal”, “left”, “right” and similar expressions used herein are for illustrative purposes only.
  • an N ⁇ M integrated two-dimensional multi-beam lidar transmission system based on a Butler matrix the system includes a tunable laser array, a frequency modulated continuous wave (FMCW) modulation array, an N ⁇ N Butler (Bulter) optical matrix network, N ⁇ M optical beam expansion network, M-channel phase shifter array and M-channel 2D laser radar transmitter.
  • FMCW frequency modulated continuous wave
  • N ⁇ N Butler (Bulter) optical matrix network N ⁇ M optical beam expansion network
  • M-channel phase shifter array M-channel 2D laser radar transmitter.
  • the narrow linewidth continuous light with the same light intensity output by the tunable laser array is respectively input into a frequency modulation continuous wave (FMCW) modulation array to modulate the optical signal to generate a frequency modulation continuous optical signal.
  • FMCW frequency modulation continuous wave
  • Sent into N ⁇ N Butler optical matrix network the energy of each optical signal is divided into N output ports, the phases are arranged in equal difference, and the phase difference of the optical signals input from different ports is different; then N ⁇ M optical beam expansion
  • the network further divides the optical signal equally into M channels, and the equidistance phase remains unchanged.
  • the M-channel phase shifter array generates an equal-difference phase with continuously adjustable phase difference for the M-channel optical signals, and finally transmits through the M-channel 2D laser radar transmitting end to realize up to N different 2D adjustable transmit beams.
  • FIG. 2 is a schematic diagram of a Butler matrix-based 4 ⁇ 16 integrated two-dimensional multi-beam lidar transmission system.
  • the tunable laser array of this system scheme has a total of 4 tunable lasers, frequency modulated continuous wave (FMCW) modulation array has 4 frequency modulation continuous wave (FMCW) modulators and a chirped RF modulation signal generator.
  • FMCW frequency modulated continuous wave
  • FMCW frequency modulation continuous wave
  • This solution uses a 4 ⁇ 4 Butler optical matrix network, a 4 ⁇ 16 optical beam expansion network, a 16-channel phase shifter array, and a 16-channel lidar transmitter.
  • the 4 ⁇ 4 Butler optical matrix network has 4 optical mixers, using a 2 ⁇ 2 multimode interferometer (MMI) structure; there are two 45° phase shifters, using a thermal phase shifter structure.
  • the 4 ⁇ 16 optical beam expansion network has a two-stage expansion array, which contains 12 1 ⁇ 2 optical beam splitters and 12 180° phase shifters.
  • the 1 ⁇ 2 optical beam splitter adopts a 1 ⁇ 2MMI structure
  • the phase shifter adopts a thermal phase shifter structure.
  • the 16-channel phase shifter array uses a thermal phase shifter structure.
  • the 16-channel lidar transmitter uses a 16-way unidirectional silicon waveguide array antenna structure.
  • the phase shifters in the 4 ⁇ 4 Butler optical matrix network and the 4 ⁇ 16 optical beam expansion network only produce a fixed phase shift amount, and the phase shift amount of the 16-way phase shifter array needs to be continuously adjustable.
  • optical signal processing flow emitted by each tunable laser is basically the same, the optical signal processing flow emitted by the first tunable laser will be described as an example.
  • the first tunable laser emits a narrow linewidth continuous optical signal from 1500 to 1600 nm, which is transmitted to the first frequency-modulated continuous wave modulator of a frequency-modulated continuous wave (FMCW) modulation array through a silicon waveguide.
  • FMCW frequency-modulated continuous wave
  • the first FM continuous wave modulator modulates the chirped RF signal onto the first optical signal to produce a FM continuous optical signal. And sent to the first input port of 4 ⁇ 4 Butler optical matrix network.
  • the frequency-modulated continuous optical signal is transmitted to the 4 output ports of the Butler optical matrix network equally through the corresponding 2 ⁇ 2MMI optical mixer and 45° phase shifter in the Butler optical matrix network.
  • the phases of the four output ports They are 45°, 90°, 135° and 180° respectively, and the power is 1/4.
  • the optical signals of the four output ports of the Butler optical matrix network are transmitted to the first-stage expansion array of the 4 ⁇ 16 optical beam-expansion network through their respective silicon waveguides, and then pass through the corresponding 1 ⁇ 2MMI and 180° phase shift of the first-stage expansion array.
  • the original 4 arrays are expanded into 8 arrays, the phases are 45°, 90°, 135°, 180°, 225°, 270°, 315°, 0°, and the power is 1/8.
  • the optical signals of the 8 output ports of the first-stage expansion array of the 4 ⁇ 16 optical beam expansion network are transmitted to the second-stage expansion array of the 4 ⁇ 16 optical beam expansion network through their respective silicon waveguides.
  • the original 8 elements are expanded into 16 elements, the phases are 45°, 90°, 135°, 180°, 225°, 270°, 315°, 0°, 45 °, 90°, 135°, 180°, 225°, 270°, 315°, 0°, the power is 1/16. Therefore, the optical signal input from the first channel generates 16 channels of optical signals at the output end of the beam expansion network with equal energy distribution and a phase difference of 45°.
  • the optical signals of the 16 output ports of the second-stage expansion array of the 4 ⁇ 16 lidar beam expansion system are transmitted to the 16-channel phase shifter array through their respective silicon waveguides.
  • These 16-channel phase shifters load the input optical signals respectively Phase. Therefore, the phases of adjacent ports have an equivalence relationship, and the equivalence is By changing The phase difference can be adjusted continuously.
  • the 16 optical signals passing through the 16-channel phase shifter are finally transmitted to the 16-channel lidar transmitting end through a silicon waveguide with equal optical path difference.
  • the angle of the transmission beam in the direction perpendicular to the transmitting end can be adjusted by adjusting the 16-channel phase shifter array.
  • the phase shift is used for deflection.
  • the angle in the direction parallel to the transmitting end can be deflected by adjusting the wavelength of the tunable laser array, which can realize a two-dimensional 16-element beam.
  • the flow of the optical signals emitted by other tunable lasers is basically the same, except that the input ports into the 4 ⁇ 4 Butler optical matrix network are different, and the phase differences of the output ports are different, respectively: Eventually, the angles of beam emission are different, and three new two-dimensional 16-element beams are formed.
  • Figures 3a and 3b are schematic diagrams of the two structures of the optical coupler.
  • Figure 3a is a 2 ⁇ 2 MMI.
  • Figure 3b is a directional coupler. They have two input ports (input 1, input 2) and two output ports (output 1. Output 2).
  • the optical signal changes from input 1 to output 1, the phase changes by 0 degrees, and the power becomes 1/2.
  • the phase of the optical signal increases by 90 degrees, and the power becomes 1/2.
  • the optical signal changes from input 2 to output 2, the phase changes by 0 degrees, and the power becomes 1/2.
  • the optical signal goes from input 2 to output 1, the phase increases by 90 degrees, and the power becomes 1/2 of the original.
  • Figures 4a and 4b are two schematic diagrams of the structure of the 1 ⁇ 2 optical beam splitter.
  • Figure 4a is the 1 ⁇ 2MMI and
  • Figure 4b is the 1 ⁇ 2Y bifurcation. They all have one input port (input 1) and two outputs. Port (output 1, output 2), where the optical signal changes from input 1 to output 1, the phase changes by 0 degrees, and the power becomes 1/2.
  • the optical signal goes from input 1 to output 2, the phase changes by 0 degrees, and the power becomes 1/2 of the original.
  • Fig. 5a is a block diagram of a FM continuous wave modulation structure based on an electro-optic modulator
  • Fig. 5b is a block diagram of a FM continuous wave modulation structure based on an IQ modulator.
  • They are all light sources with a wavelength of f0 emitted by a tunable laser source.
  • the chirped radio frequency modulation signal generator generates a chirped radio frequency signal with a frequency range of f1 to f2.
  • the electro-optic modulator modulates the chirped radio frequency signal onto the carrier optical signal, and the generated FM continuous wave signal is a double-sideband modulation signal.
  • the IQ modulator divides the optical signal into two channels, and carries out carrier modulation on the optical signal separately.
  • the two carriers are orthogonal to each other, and the two modulated optical signals are transmitted together to form a frequency-modulated continuous wave signal.
  • the frequency of such a FM CW signal modulated at different times follows the frequency change of the chirped
  • Fig. 6a is a top view of a shallow etched grating structure
  • Fig. 6b is a cross-sectional view of a shallow etched grating structure.
  • the structure is mainly a periodic shallow etching of a ridge silicon waveguide, so that the thickness of the waveguide is 400nm, 384nm, 400nm, 384nm... ...A periodic change with a period of 490nm.
  • the ridge waveguide has a ridge layer thickness of 200 nm and a slab layer thickness of 200 nm. Such a grating can achieve a wider steering angle and a smaller beam divergence.
  • FIG. 7a is a top view of a single-layer grating in a double-layer silicon nitride (SiN) grating
  • FIG. 7b is a cross-sectional view of a double-layer silicon nitride (SiN) grating structure.
  • Its structure is mainly to shallowly etch the width of the two-layer silicon nitride waveguide periodically, so that the width of the waveguide exhibits periodic changes of 1000nm, 900nm, 1000nm, 900nm...
  • the thickness of the two-layer silicon nitride waveguide is 200 nm, with an interval of 100 nm from top to bottom and a shift of 200 nm from side to side. Due to the small change in effective refractive index, such a grating can achieve uniform emission over millimeter-order lengths.
  • the scheme has simple structure and control, can improve the resolution of the lidar, improve the anti-jamming ability and survivability of the radar, make full use of the transmitted beam energy, increase the radar data rate, and greatly improve the performance of the radar.
  • the use of integrated photonic technology also has the advantages of small size and low power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于巴特勒矩阵的集成二维多波束激光雷达发射系统,包括可调激光器阵列、调频连续波调制阵列、N×N巴特勒光学矩阵网络、N×M光学扩束网络、M路移相器阵列和M路二维激光雷达发射端,可调激光器阵列输出的窄线宽连续光经过调频连续波调制阵列产生N路调频连续光信号,经过N×N巴特勒矩阵网络和N×M光学扩束网络处理后,每一路调频连续光信号的能量均分到M路输出端口,M路移相器阵列对M路光信号产生相位差连续可调的等差相位;通过M路二维激光雷达发射端将相位差连续可调的M路光信号发射,实现不多于N个不同的二维可调发射波束。系统简单且能提高雷达的分辨率、抗干扰能力和生存能力,充分利用了发射波束能量。

Description

基于巴特勒矩阵的集成二维多波束激光雷达发射系统 技术领域
本发明涉及雷达领域,尤其涉及一种基于巴特勒矩阵的集成二维多波束激光雷达发射系统。
背景技术
激光雷达是一种通过探测远距离目标的散射光特性来获取目标相关信息的雷达系统。自从上世纪激光雷达的概念提出以来,许多国家、企业和研究单位都对其制作方法进行了深入地研究和探索。通过研究波束的特性和改善传统雷达的制备方法,激光雷达的各项性能越来越优异。激光雷达以激光器为光源,采用光电探测手段,能够实现三维成像、跟踪、制导、检测和精准测距功能,因而在国防和民用方面都特别有吸引力。通常激光雷达多采用机械方式改变光束导向,该技术存在体积大、扫描速度慢、惯性大等缺点。最近研究人员提出采用集成光学相控阵技术来实现光束导向,以其低功耗,低重量,小体积和高速等特点,受到研究者的广泛青睐,是未来激光雷达发展的一项关键技术。基于相位控制阵列的激光雷达技术是通过相位延迟控制波前,实现波束导向。这使得雷达设备不再仅仅依靠机械光束导向,可以极大地提高雷达设备的反应速度,目标容量与可靠性。当然,由于波长对激光雷达天线尺寸的限制,大规模集成相位控制阵列体积较大,成本高昂,此前多见于军事应用领域,但是随着硅基光电子集成技术的发展和进步,大规模的集成成本和尺寸在逐步下降,为光学相控阵激光雷达在军事和民用领域的应用创造了条件。
自从提出将光学相控阵技术应用到激光雷达方面后,很多研究团队和实验室都展开了深入的研究,并且取得了很大的进展。早在2009年,比利时根特大学和瑞士洛桑联邦理工学院的联合研究小组就在硅平台上实现了16通道的二维光学相控阵列装置(Vol.34,No.9/OPTICSLETTERS),相邻波导间的间隔为2um,热光相位的可调制范围为2.3°,波长可调制范围为14.1°,由于采用等间隔的相控阵列,波导之间的串扰比较大;2015年,加州大学的研究小组在混合硅平台上实现了完全集成的32通道光栅相控阵列二维动态波束调控芯片(Vol.23,No.5/OPTICSEXPRESS),是首个完全集成的“二维可旋转激光芯片”,不过在远场只能实现5.5dB的背景抑制;2016年,Intel实验室提出了一种两维非均匀发射端间隔光相控阵导向的解决方案(Vol.3,No.8/Optica),对非均匀相控阵列的性能进行了验证,相控轴上可以实现分辨点为500,偏转角度为80°的性能指标,在两维上可以实现极小光束色散(0.14°)和6000个分辨点。
然而,上述激光雷达的实现方案大多都只是单波束激光雷达,雷达输出信号抗干扰能力、生存能力低,发射波束能量和雷达数据率得不到充分利用。
公开于该背景技术部分的信息仅仅指在增加对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
为了能够提高雷达抗干扰能力和生存能力、充分利用发射波束能 量、提高雷达数据率,提出了建立二维多波束激光雷达的发射方案。具体的,本发明的目的在于提供一种基于巴特勒矩阵的集成二维多波束激光雷达发射系统。
本发明的目的采用以下技术方案实现:
基于巴特勒矩阵的集成二维多波束激光雷达发射系统,具体为N×M集成二维多波束激光雷达发射系统,系统包括可调激光器阵列、调频连续波调制阵列、N×N巴特勒光学矩阵网络、N×M光学扩束网络、M路移相器阵列和M路二维激光雷达发射端,所述可调激光器阵列为窄线宽激光器阵列,可调激光器阵列输出的窄线宽连续光经过所述调频连续波调制阵列产生N路调频连续光信号;经过N×N巴特勒矩阵网络和N×M光学扩束网络处理后,每一路所述调频连续光信号的能量均分到M路输出端口,相邻的输出端口的输出信号具有相等的相位差;所述M路移相器阵列对M路输出端口输出的M路光信号产生相位差连续可调的等差相位;通过所述M路二维激光雷达发射端将相位差连续可调的M路光信号发射,实现不多于N个不同的二维可调发射波束,其中N=2 n(n=1,2,…),M=2 K×N(K=1,2,…)。
优选的,所述可调激光器阵列由N个可调激光器构成,所述N个可调激光器可同时发射出光强相等的N路窄线宽连续光,每路窄线宽连续光的波长可调,可调范围在人眼安全区域。
优选的,所述调频连续波调制阵列由N个调频连续波调制器和一个啁啾射频调制信号发生器构成,其中第i路所述调频连续波调制器与第i路所述可调激光器相连(i=1,2,…,N),所述啁啾射频调制信 号发生器将发出的啁啾射频信号加载到所述调频连续波调制器上产生调频连续光信号;所述调频连续波调制器为电光调制器或I/Q调制器。
优选的,所述N×N巴特勒光学矩阵网络包括N/2×n个90°光学混合器、N/2×(n-1)个移相器和连接波导,所述N×N巴特勒光学矩阵网络有N个输入端口和N个输出端口,其中第i路输入端口与第i路所述调频连续波调制器相连,每个输入端口的光信号都均分到所有输出端口,并且相邻输出端口具有固定相同的相位差,从不同输入端口输入的光信号在输出端口的相位差不相同,由此形成N个不同的波束。
优选的,所述90°光学混合器为2×2多模干涉器或定向耦合器,所述90°光学混合器有两个输入端口和两个输出端口;所述移相器为基于热光效应或电光效应的移相器,所述移相器的相位调节范围为0~2π。
优选的,所述N×M光学扩束网络包括K级扩展阵列和连接相邻两级扩展阵列的连接波导,第k级扩展阵列由N×k个1×2光分束器和N×k个180°移相器组成,其中(k=1,2,..,.K);所述N×M光学扩束网络有N个输入端口和M个输出端口,其中M=N×2K(K=1,2,…),所述N×M光学扩束网络的第i路输入端口与所述N×N巴特勒光学矩阵网络的第i路输出端口相连,所述N×M光学扩束网络将N×N巴特勒光学矩阵网络输出的N路光信号均分扩束为M路光信号,相邻输出信号具有相等的相位差,输出信号的相位差与输入信 号的相位差一致。
优选的,所述1×2光分束器为1×2MMI结构或1×2Y分叉结构,所述180°移相器为基于热光效应或电光效应的180°移相器,180°移相器的相位调节范围为0~2π。
优选的,所述的M路移相器阵列包括M路移相器,第m(m=1,2,…,M)路移相器与所述N×M光学扩束网络的第m路输出端口相连,所述M路移相器阵列对输入的光信号进行相移,使得输出信号相位具有等差关系,且等差量连续可调;所述M路移相器为基于热光效应或电光效应的移相器,移相器调节的相位范围为0~2π。
优选的,所述M路二维激光雷达发射端包括M路光栅发射器,第m(m=1,2,…,M)路光栅发射器与第m路移相器相连,并将M路光信号进行发射,其中所述M路光栅发射器为双层氮化硅光栅或浅刻蚀硅波导光栅。
优选的,发射波束在垂直发射端光栅方向的角度可通过调节M路移相器阵列的相移进行偏转,发射波束在平行发射端光栅方向的角度可通过调节可调激光器阵列波长进行偏转,以此实现二维可调发射波束,并因不同输入光信号在输出端口具有不同的等差相位,可实现N个不同的光束。
优选的,上述方案可以通过单片或者异质光子集成技术来实现,包括硅、氮化硅,III/V等材料平台,实现小型化、低成本的多波束二维激光雷达发射芯片。
相比现有技术,本发明的有益效果在于:
1)本发明能够产生二维多波束,与一维单波束雷达相比,提高了雷达抗干扰能力和生存能力、充分利用了发射波束能量、提高了雷达数据率。
2)采用调频连续波作为光发射信号,具有更高的抗干扰性和探测灵敏度,从而实现低发射功率、远距离探测。
3)本发明具有结构灵活、控制简单、可扩展性强、易于集成、尺寸小、功耗低的优点。
附图说明
图1为基于巴特勒矩阵的集成二维多波束激光雷达发射系统示意图;
图2为基于巴特勒矩阵的4×16集成二维多波束激光雷达发射系统实施例示意图;
图3a为90°光学混合器采用2×2多模干涉器的结构示意图;
图3b为90°光学混合器采用定向耦合器的结构示意图;
图4a为1×2光分束器采用1×2MMI结构示意图;
图4b为1×2光分束器采用1×2Y分叉的结构示意图;
图5a为基于电光调制器的调频连续波调制结构框图;
图5b为基于IQ调制器的调频连续波调制结构框图;
图6a为浅刻蚀光栅结构俯视图;
图6b为浅刻蚀光栅结构截面图;
图7a为双层氮化硅光栅俯视图;
图7b为双层氮化硅光栅结构截面图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参见图1,基于巴特勒矩阵的N×M集成二维多波束激光雷达发射系统,系统包括可调激光器阵列、调频连续波(FMCW)调制阵列、N×N巴特勒(Bulter)光学矩阵网络、N×M光学扩束网络、M路移相器阵列和M路二维激光雷达发射端。
所述的可调激光器阵列输出的光强相等的窄线宽连续光分别输入到调频连续波(FMCW)调制阵列,对光信号进行调制,产生调频连续光信号。送入N×N巴特勒光学矩阵网络,每路光信号的能量均分到N个输出端口,相位呈等差排列,并且从不同端口输入的光信号相位差不同;然后N×M光学扩束网络进一步将光信号均分到M路,等差相位保持不变。M路移相器阵列对M路光信号产生相位差连续可调的等差相位,最后通过M路二维激光雷达发射端发射,实现最多N个不同的二维可调发射波束。
参见图2的实施例为基于巴特勒矩阵的4×16集成二维多波束激光雷达发射系统示意图,如图2所示,该系统方案的可调激光器阵列共有4个可调激光器,调频连续波(FMCW)调制阵列共有4个调频连续波(FMCW)调制器和一个啁啾射频调制信号发生器。本方案采用了4×4的巴特勒光学矩阵网络,4×16光学扩束网络,16路移相器阵列,16路激光雷达发射端。
其中,4×4的巴特勒光学矩阵网络有4个光学混合器,采用了2×2多模干涉器(MMI)的结构;有2个45°移相器,采用热调移相器结构。4×16光学扩束网络有2级扩展阵列,含有12个1×2光分束器和12个180°移相器。1×2光分束器采用了1×2MMI结构,移相器采用了热调移相器结构。16路移相器阵列采用了热调移相器结构。16路激光雷达发射端采用16路单向硅波导阵列天线结构。4×4的巴特勒光学矩阵网络和4×16光学扩束网络中的移相器只产生固定移相量,16路移相器阵列的移相量需要连续可调。
由于每个可调激光器发射出的光信号处理流程基本一致,以第一个可调激光器发射的光信号处理流程为例进行说明。
第一个可调激光器发射出1500~1600nm的窄线宽连续光信号,通过硅波导传输到调频连续波(FMCW)调制阵列的第一个调频连续波调制器。
第一个调频连续波调制器将啁啾射频信号调制到第一个光信号上,产生调频连续光信号。并送入4×4巴特勒光学矩阵网络的第一个输入端口。
调频连续光信号通过巴特勒光学矩阵网络中相应的2×2MMI光学混合器和45°移相器,等分地传送到巴特勒光学矩阵网络的4个输出端口,此时四个输出端口的相位分别为45°、90°、135°和180°,功率都为1/4。
巴特勒光学矩阵网络的4个输出端口的光信号通过各自的硅波导传送到4×16光学扩束网络的第一级扩展阵列,经过第一级扩展阵列相应的1×2MMI和180°移相器后,原来的4阵元扩束成8阵元,相位分别是45°、90°、135°、180°、225°、270°、315°、0°,功率都为1/8。
4×16光学扩束网络的第一级扩展阵列8个输出端口的光信号通过各自的硅波导传输到4×16光学扩束网络的第二级扩展阵列,经过第二级扩展阵列相应的1×2MMI和180°移相器后,原来的8阵元扩束成16阵元,相位分别是45°、90°、135°、180°、225°、270°、315°、0°、45°、90°、135°、180°、225°、270°、 315°、0°,功率都为1/16。因此,从第一路输入的光信号在扩束网络输出端产生能量均分,相位差为45°的16路光信号。
4×16激光雷达扩束系统的第二级扩展阵列16个输出端口的光信号通过各自的硅波导传输到16路移相器阵列中,这16路移相器分别对输入光信号加载
Figure PCTCN2019084897-appb-000001
的相位。因此,相邻端口相位具有等差关系,等差量为
Figure PCTCN2019084897-appb-000002
通过改变
Figure PCTCN2019084897-appb-000003
可以实现相位差连续可调。
经过16路移相器的16路光信号最后通过等光程差的硅波导传送到16路激光雷达发射端进行发射,发射波束在垂直发射端方向的角度可通过调节16路移相器阵列的相移进行偏转,在平行发射端方向的角度可通过调节可调激光器阵列波长进行偏转,可以实现二维16阵元发射波束。
其他可调激光器发射出的光信号出流程基本一致,只是进入4×4的巴特勒光学矩阵网络的输入端口不一样,则输出端口的相位差不一样,分别为
Figure PCTCN2019084897-appb-000004
最终导致波束发射的角度不同,形成3个新的二维16阵元波束。
图3a和图3b为光学耦合器的两种结构示意图,图3a为2×2MMI,图3b为定向耦合器,他们都有2个输入口(输入1、输入2)和2个输出口(输出1、输出2)。其中,光信号从输入1到输出1,相位变化0度,功率变为原来的1/2。光信号从输入1到输出2,相位增加90度,功率变为原来的1/2。类似地,光信号从输入2到输出2,相位变化0度,功率变为原来的1/2。光信号从输入2到输出1, 相位增加90度,功率变为原来的1/2。
图4a和图4b为1×2光分束器的两种结构示意图,图4a为1×2MMI,图4b为1×2Y分叉,他们都有1个输入口(输入1)和2个输出口(输出1、输出2),其中,光信号从输入1到输出1,相位变化0度,功率变为原来的1/2。光信号从输入1到输出2,相位变化0度,功率变为原来的1/2。
图5a为基于电光调制器的调频连续波调制结构框图,图5b为基于IQ调制器的调频连续波调制结构框图。他们都是先由可调激光源发出波长为f0的光源。啁啾射频调制信号发生器产生啁啾射频信号,频率范围在f1~f2。电光调制器将啁啾射频信号调制到载波光信号上,所产生的调频连续波信号是双边带调制信号。IQ调制器是将光信号分为两路,分别对光信号进行载波调制,两路载波相互正交,两路调制后的光信号一起发射形成调频连续波信号。这样的调频连续波信号在不同时间上调制的频率跟随啁啾射频信号的频率变化而变化。
图6a为浅刻蚀光栅结构俯视图,图6b为浅刻蚀光栅结构截面图其结构主要是对脊形硅波导进行周期性的浅刻蚀,使波导的厚度呈现400nm,384nm,400nm,384nm……的周期性变化,周期为490nm。脊形波导的脊形层厚200nm,平板层厚200nm。这样的光栅能实现较宽的转向角和较小的光束发散。
图7a为双层氮化硅(SiN)光栅中单层光栅的俯视图,图7b为双层氮化硅(SiN)光栅结构截面图。其结构主要是对两层氮化硅波导的宽度进行周期性的浅刻蚀,使波导的宽度呈现1000nm,900nm, 1000nm,900nm……的周期性变化。两层氮化硅波导的厚度为200nm,上下间隔100nm,左右偏移200nm,这样的光栅由于有效折射率变化小,能实现在毫米级长度上的均匀发射。
基于此发明此种方案结构与控制简单,能够提高激光雷达的分辨率,提高了雷达抗干扰能力和生存能力,充分利用了发射波束能量,提高了雷达数据率,使雷达的性能大大提升。采用集成光子技术,也具有尺寸小、功耗低的优点。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 基于巴特勒矩阵的集成二维多波束激光雷达发射系统,系统包括可调激光器阵列、调频连续波调制阵列、N×N巴特勒光学矩阵网络、N×M光学扩束网络、M路移相器阵列和M路二维激光雷达发射端,其特征在于:所述可调激光器阵列为窄线宽激光器阵列,可调激光器阵列输出的窄线宽连续光经过所述调频连续波调制阵列产生N路调频连续光信号;经过N×N巴特勒矩阵网络和N×M光学扩束网络处理后,每一路所述调频连续光信号的能量均分到M路输出端口,相邻的输出端口的输出信号具有相等的相位差;所述M路移相器阵列对M路输出端口输出的M路光信号产生相位差连续可调的等差相位;通过所述M路二维激光雷达发射端将相位差连续可调的M路光信号发射,实现不多于N个不同的二维可调发射波束,其中N=2 n(n=1,2,…),M=2 K×N(K=1,2,…)。
  2. 根据权利要求1所述的雷达发射系统,其特征在于:所述可调激光器阵列由N个可调激光器构成,所述N个可调激光器可同时发射出光强相等的N路窄线宽连续光,每路窄线宽连续光的波长可调,可调范围在人眼安全区域。
  3. 根据权利要求2所述的雷达发射系统,其特征在于:所述调频连续波调制阵列由N个调频连续波调制器和一个啁啾射频调制信号发生器构成,其中第i路所述调频连续波调制器与第i路所述可调激光器相连(i=1,2,…,N),所述啁啾射频调制信号发生器将发出的啁啾射频信号加载到所述调频连续波调制器上产生调频连续光信号;所 述调频连续波调制器为电光调制器或I/Q调制器。
  4. 根据权利要求3所述的雷达发射系统,其特征在于:所述N×N巴特勒光学矩阵网络包括N/2×n个90°光学混合器、N/2×(n-1)个移相器和连接波导,所述N×N巴特勒光学矩阵网络有N个输入端口和N个输出端口,其中第i路输入端口与第i路所述调频连续波调制器相连,每个输入端口的光信号都均分到所有输出端口,并且相邻输出端口具有固定相同的相位差,从不同输入端口输入的光信号在输出端口的相位差不相同,由此形成N个不同的波束。
  5. 根据权利要求4所述的雷达发射系统,其特征在于:所述90°光学混合器为2×2多模干涉器或定向耦合器,所述90°光学混合器有两个输入端口和两个输出端口;所述移相器为基于热光效应或电光效应的移相器,所述移相器的相位调节范围为0~2π。
  6. 根据权利要求4所述的雷达发射系统,其特征在于:所述N×M光学扩束网络包括K级扩展阵列和连接相邻两级扩展阵列的连接波导,第k级扩展阵列由N×k个1×2光分束器和N×k个180°移相器组成,其中(k=1,2,..,.K);所述N×M光学扩束网络有N个输入端口和M个输出端口,其中M=N×2K(K=1,2,…),所述N×M光学扩束网络的第i路输入端口与所述N×N巴特勒光学矩阵网络的第i路输出端口相连,所述N×M光学扩束网络将N×N巴特勒光学矩阵网络输出的N路光信号均分扩束为M路光信号,相邻输出信号具有相等的相位差,输出信号的相位差与输入信号的相位差一致。
  7. 根据权利要求6所述的雷达发射系统,其特征在于:所述1×2 光分束器为1×2MMI结构或1×2Y分叉结构,所述180°移相器为基于热光效应或电光效应的180°移相器,180°移相器的相位调节范围为0~2π。
  8. 根据权利要求6所述的雷达发射系统,其特征在于:所述的M路移相器阵列包括M路移相器,第m(m=1,2,…,M)路移相器与所述N×M光学扩束网络的第m路输出端口相连,所述M路移相器阵列对输入的光信号进行相移,使得输出信号相位具有等差关系,且等差量连续可调;所述M路移相器为基于热光效应或电光效应的移相器,移相器调节的相位范围为0~2π。
  9. 根据权利要求8所述的雷达发射系统,其特征在于:所述M路二维激光雷达发射端包括M路光栅发射器,第m(m=1,2,…,M)路光栅发射器与第m路移相器相连,并将M路光信号进行发射,其中所述M路光栅发射器为双层氮化硅光栅或浅刻蚀硅波导光栅。
  10. 根据权利要求9所述的雷达发射系统,其特征在于:发射波束在垂直发射端光栅方向的角度可通过调节M路移相器阵列的相移进行偏转,发射波束在平行发射端光栅方向的角度可通过调节可调激光器阵列波长进行偏转,以此实现二维可调发射波束,并因不同输入光信号在输出端口具有不同的等差相位,可实现N个不同的光束。
PCT/CN2019/084897 2018-12-06 2019-04-29 基于巴特勒矩阵的集成二维多波束激光雷达发射系统 WO2020113899A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/061,126 US11874362B2 (en) 2018-12-06 2020-10-01 Integrated two-dimensional multi-beam lidar transmitter based on butler matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811484764.7 2018-12-06
CN201811484764.7A CN109633611B (zh) 2018-12-06 2018-12-06 基于巴特勒矩阵的集成二维多波束激光雷达发射系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/061,126 Continuation US11874362B2 (en) 2018-12-06 2020-10-01 Integrated two-dimensional multi-beam lidar transmitter based on butler matrix

Publications (1)

Publication Number Publication Date
WO2020113899A1 true WO2020113899A1 (zh) 2020-06-11

Family

ID=66071407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084897 WO2020113899A1 (zh) 2018-12-06 2019-04-29 基于巴特勒矩阵的集成二维多波束激光雷达发射系统

Country Status (3)

Country Link
US (1) US11874362B2 (zh)
CN (1) CN109633611B (zh)
WO (1) WO2020113899A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986957A (zh) * 2021-03-16 2021-06-18 长沙思木锐信息技术有限公司 一种波束引导布线结构、光扫描装置及其校准方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633611B (zh) * 2018-12-06 2020-02-07 上海交通大学 基于巴特勒矩阵的集成二维多波束激光雷达发射系统
KR102200681B1 (ko) * 2019-09-02 2021-01-11 한국과학기술원 광위상배열 기반의 무선 데이터 송수신이 가능한 3차원 영상 센서를 구성하는 소자 시스템
CN112289884A (zh) * 2020-11-11 2021-01-29 中国科学院上海微系统与信息技术研究所 一种激光冗余的光电集成电路
CN113114373B (zh) * 2021-04-12 2022-01-28 吉林大学 一种基于模式分集的二维光纤波束形成方法
CN113558749A (zh) * 2021-07-12 2021-10-29 杭州电子科技大学 一种可变辐射方向的电可控射频消融装置
CN113595647B (zh) * 2021-07-21 2022-08-05 联合微电子中心有限责任公司 光子波束成形单元、发射系统和接收系统
CN113608228B (zh) * 2021-08-02 2023-05-26 中国科学院空天信息创新研究院 一种基于Blass矩阵的二维多波束激光雷达快速扫描装置和方法
CN113659353B (zh) * 2021-08-02 2022-08-05 电子科技大学 一种小型化输出相差360°连续可调的巴特勒矩阵
EP4231045A1 (de) * 2022-02-16 2023-08-23 Sick Ag Optoelektronischer sensor
US11609392B1 (en) * 2022-02-24 2023-03-21 X Development Llc Photonic coupler
CN114609723A (zh) * 2022-02-25 2022-06-10 浙江大学 一种无需复杂相位较正的光调控器
CN114815056B (zh) * 2022-04-18 2023-06-27 扬州大学 一种基于交错偏移的夹层高效发射光栅天线及其制作方法
CN114883764B (zh) * 2022-05-23 2024-02-02 中国人民解放军63660部队 一种宽频带高功率微波移相器
CN117031409B (zh) * 2023-09-28 2024-01-12 广州中雷电科科技有限公司 远距离雷达探测方法、存储介质和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921341A (zh) * 2006-09-12 2007-02-28 京信通信技术(广州)有限公司 具有可变波束宽度的波束形成网络
US20140269790A1 (en) * 2013-03-15 2014-09-18 Digital Signal Corporation System and method for increasing coherence length in lidar systems
CN108306110A (zh) * 2017-12-14 2018-07-20 富华科精密工业(深圳)有限公司 巴特勒矩阵结构及带有该巴特勒矩阵结构的电子装置
CN108646430A (zh) * 2018-03-22 2018-10-12 浙江大学 一种基于热光开关和硅光相控阵的单波长多线扫描系统
CN108761439A (zh) * 2018-05-07 2018-11-06 上海交通大学 基于波分复用的集成多波束光相控阵延迟网络
CN109633611A (zh) * 2018-12-06 2019-04-16 上海交通大学 基于巴特勒矩阵的集成二维多波束激光雷达发射系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2595941C2 (ru) * 2014-05-06 2016-08-27 Общество с ограниченной ответственностью "Радио Гигабит" Система радиорелейной связи с подстройкой луча
US10261389B2 (en) * 2016-06-22 2019-04-16 Massachusetts Institute Of Technology Methods and systems for optical beam steering
JP7062013B2 (ja) * 2017-04-25 2022-05-02 アナログ フォトニクス エルエルシー 波長分割多重通信lidar

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921341A (zh) * 2006-09-12 2007-02-28 京信通信技术(广州)有限公司 具有可变波束宽度的波束形成网络
US20140269790A1 (en) * 2013-03-15 2014-09-18 Digital Signal Corporation System and method for increasing coherence length in lidar systems
CN108306110A (zh) * 2017-12-14 2018-07-20 富华科精密工业(深圳)有限公司 巴特勒矩阵结构及带有该巴特勒矩阵结构的电子装置
CN108646430A (zh) * 2018-03-22 2018-10-12 浙江大学 一种基于热光开关和硅光相控阵的单波长多线扫描系统
CN108761439A (zh) * 2018-05-07 2018-11-06 上海交通大学 基于波分复用的集成多波束光相控阵延迟网络
CN109633611A (zh) * 2018-12-06 2019-04-16 上海交通大学 基于巴特勒矩阵的集成二维多波束激光雷达发射系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986957A (zh) * 2021-03-16 2021-06-18 长沙思木锐信息技术有限公司 一种波束引导布线结构、光扫描装置及其校准方法

Also Published As

Publication number Publication date
US11874362B2 (en) 2024-01-16
US20210018603A1 (en) 2021-01-21
CN109633611A (zh) 2019-04-16
CN109633611B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020113899A1 (zh) 基于巴特勒矩阵的集成二维多波束激光雷达发射系统
CN109613512B (zh) 基于诺伦矩阵的n×m集成多波束激光雷达发射系统
US12025741B2 (en) Three-dimensional scanning LiDAR based on one-dimensional optical phased arrays
WO2020181630A1 (zh) 硅基混合集成激光雷达芯片系统
JP7140784B2 (ja) モジュラー三次元光学検知システム
US8659748B2 (en) Scanning non-scanning LIDAR
CN109270550B (zh) 扫描光束发射器件、激光雷达装置及探测方法
JP7076822B2 (ja) 光受信器アレイ、及びライダー装置
WO2022062105A1 (zh) 一种阵列式相干测距芯片及其系统
CN103414519B (zh) 光控微波波束形成器
CN112748420A (zh) 一种基于一维光学相控阵的主瓣栅瓣多点扫描激光雷达
CN108303689B (zh) 一种光控雷达阵列动态可重构和差波束的装置
CN215867107U (zh) 一种光学相控阵的激光雷达发射接收装置
CN114879208A (zh) 一种调频连续波激光雷达系统
CN102215062B (zh) 合成孔径激光成像雷达的多通道光学接收机系统
CN113608228A (zh) 一种基于Blass矩阵的二维多波束激光雷达快速扫描装置和方法
CN102230963B (zh) 合成孔径激光成像雷达的多子孔径光学接收天线系统
CN114966717A (zh) 一种基于准直光束的侦测系统和方法、激光雷达系统
US11567177B2 (en) Optical phased array lidar
US12032094B2 (en) Chip-scale silicon-based hybrid-integrated LiDAR system
Liu et al. Research on high-resolution wide-swath SAR based on microwave photonics
CN108693540B (zh) 相控阵激光雷达
Preussler et al. Photonically synchronized radar for advanced driver assistance systems
Baba FMCW LiDAR Incorporating Slow-Light Grating Beam Scanners
Voskerchyan et al. Flexible and highly scalable concept for an FMCW LiDAR PIC based on Tilted Grating Couplers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892875

Country of ref document: EP

Kind code of ref document: A1