WO2020113515A1 - 深部岩石保质取芯装置及其取芯方法 - Google Patents

深部岩石保质取芯装置及其取芯方法 Download PDF

Info

Publication number
WO2020113515A1
WO2020113515A1 PCT/CN2018/119535 CN2018119535W WO2020113515A1 WO 2020113515 A1 WO2020113515 A1 WO 2020113515A1 CN 2018119535 W CN2018119535 W CN 2018119535W WO 2020113515 A1 WO2020113515 A1 WO 2020113515A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
liquid
storage cavity
valve
coring device
Prior art date
Application number
PCT/CN2018/119535
Other languages
English (en)
French (fr)
Inventor
谢和平
刘涛
陈领
高明忠
张茹
吴一凡
何志强
Original Assignee
深圳大学
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 四川大学 filed Critical 深圳大学
Priority to PCT/CN2018/119535 priority Critical patent/WO2020113515A1/zh
Priority to US16/708,432 priority patent/US20200182000A1/en
Publication of WO2020113515A1 publication Critical patent/WO2020113515A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/10Formed core retaining or severing means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/08Coating, freezing, consolidating cores; Recovering uncontaminated cores or cores at formation pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/02Core bits

Definitions

  • the invention belongs to the technical field of scientific drilling, and in particular relates to a deep-quality rock quality coring device and a coring method.
  • the quality assurance technology of deep rock drilling cores is basically in a qualitative and relative quality assurance state, and it is impossible to achieve complete quality assurance of the cores taken.
  • the core will be contaminated by formation water or drilling fluid at the bottom of the well, which will affect the in-situ quality, oil and gas content and humidity of the core.
  • the influence of air causes the microbial environment to change and affect scientific research.
  • the loss of oil and gas resources inside the core will distort the resource assessment. Therefore, the basic premise of scientific exploration of deep rocks is to achieve in-situ quality preservation and core extraction.
  • the technical problem to be solved by the embodiments of the present invention is to provide a deep rock quality coring device and a coring method thereof, aiming to solve the problem that the deep rock coring technology in the prior art cannot achieve complete quality coring and lead to the original core Bit quality is affected.
  • the embodiment of the present invention is realized in this way, and provides a deep rock quality coring device.
  • the deep rock quality core-retaining device includes a drilling tool, a drill bit, a center rod, and a storage core body for storing the core; the drill bit is installed at the lower end of the drilling tool, and the lower end of the center rod is connected to the storage core body , And the center rod can drive the storage core body to move in the axial direction of the drill in the drilling tool, a liquid storage cavity with an open lower end is opened in the center rod, and the storage core body is provided with A core chamber with an open lower end, a first valve for controlling the communication or blocking between the liquid chamber and the core chamber is installed at the upper end of the core body, and an inner wall of the drill is installed for sealing Cover or open the second valve that opens at the lower end of the core storage cavity;
  • a first liquid is stored in the liquid storage cavity, and the first valve covers the lower end opening of the liquid storage cavity, so that the liquid storage cavity
  • the storage core cavity is blocked, a second liquid is stored in the storage core cavity, and the lower end opening of the storage core cavity is closed by a membrane.
  • a liquid flow path is provided on the inner wall of the core body.
  • the liquid storage chamber communicates with the core chamber through the liquid flow path.
  • the liquid flow path includes a plurality of flow paths and a plurality of openings that communicate with each other.
  • the liquid storage chamber, the flow path, the openings, and the core storage chamber communicate in sequence.
  • the plurality of flow paths extend along the axial direction of the core body.
  • the plurality of flow paths are evenly distributed along the circumferential direction of the storage core body.
  • the openings are distributed at equal intervals along the axial direction of the core body.
  • first valve is an electrically controlled valve
  • second valve is a flap valve
  • the inner wall of the lower end of the drilling tool is provided with a clamping claw for clamping the core.
  • the first liquid is water or ethanol
  • the second liquid is a solution formed by mixing polysulfone and DMF/NMP or a solution formed by mixing polyvinylidene fluoride and DMF/NMP.
  • An embodiment of the present invention also provides a core taking method for a deep rock quality core taking device as described above.
  • the core taking method includes the following steps:
  • the first valve is closed to block the liquid storage cavity from the core storage cavity, and then the second liquid is stored in the core storage cavity, And the lower end opening of the core storage cavity is closed by a membrane to prevent the second liquid from leaking;
  • the drilling tool is started, and the drilling tool drives the drill bit to perform rock breaking work.
  • the core breaks through the membrane and begins to enter the core storage cavity.
  • the second liquid starts to be discharged due to the entry of the core.
  • the second liquid always wraps the core to avoid the contamination of the core with other liquids;
  • the core removal is completed, the drilling tool stops working, the second valve is closed, the second valve covers the opening at the lower end of the storage cavity, and then the first valve is opened so that The liquid storage cavity and the core storage cavity are in communication with each other.
  • the first liquid in the liquid storage cavity enters the core storage cavity, it mixes with the second liquid around the core to form a mass transfer phase transition between substances
  • the sealing membrane wraps the core, which isolates the core from the outside world, avoids the microbial living environment on the core from changing, and prevents the loss of oil and gas resources inside the core, which can distort the resource assessment and ultimately achieve the purpose of quality preservation.
  • the core of the deep rock quality preservation device of the present invention when the core breaks through the membrane and enters the storage cavity, because the second liquid always wraps the core, it avoids the contamination of the core by other liquids in the deep part of the formation. And after the core enters the storage core cavity, the first liquid in the liquid storage cavity enters into the storage cavity and the second liquid mixes, and the mass transfer phase transition occurs between the substances to form a sealing film to wrap the core and isolate the core from contact with the outside world. To avoid changes in the microbial living environment on the core, at the same time, it can prevent the loss of oil and gas resources in the core and cause distortion in resource assessment. Eventually, the purpose of quality preservation and core extraction is fully achieved, ensuring the in-situ quality status of the core and laying the foundation for deep rock scientific research Foundation.
  • FIG. 1 is a schematic structural diagram of a deep rock quality coring device provided by an embodiment of the present invention before extracting a core;
  • FIG. 2 is a schematic diagram of an enlarged structure of area A in FIG. 1;
  • FIG. 3 is a schematic diagram of the cross-sectional structure in the direction of B-B in FIG. 1.
  • Drilling tool 1. Drilling tool; 2. Drill bit; 3. Center rod; 4. Core body; 5. Claw; 6. First valve; 7. Second valve; 30. Liquid storage chamber; 40. Core storage chamber; 41 ⁇ Diversion road; 42 ⁇ Opening.
  • the deep rock quality coring device includes a drilling tool 1, a drill bit 2, a center rod 3, and a storage core body 4 for storing a core, wherein the drill bit 2 is installed at the lower end of the drilling tool 1, and the lower end of the center rod 3 is connected to the storage core
  • the main body 4 and the center rod 3 can drive the core body 4 to move in the axial direction of the drill 1 in the drill 1 to start the drill 1 to drive the drill 2 to perform rock breaking operation and drive the center rod 3 to drive the reservoir
  • the core body 4 performs the core extraction operation.
  • the inner wall of the lower end of the drilling tool 1 is provided with claws 5 to facilitate clamping of the core, so that the core is pulled off, and a liquid storage chamber 30 with an open lower end is opened in the center rod 3 and a core body 4 is opened
  • the core chamber 40 with the lower end opened, and the liquid chamber 30 communicates with the upper end of the core chamber 40 through the opening at the lower end.
  • a first valve 6 is installed on the upper end of the storage core body 4.
  • the first valve 6 is an electrically controlled valve, which controls the liquid storage chamber 30 and the core storage chamber 40 to communicate or block each other by opening and closing the first valve 6.
  • a second valve 7 is installed on the inner wall of the drill 1.
  • the second valve 7 is an electronically controlled flap valve. The second valve 7 is opened and closed to cover or open the lower end opening of the core chamber 40.
  • the lower end opening of the liquid storage chamber 30 is closed by closing the first valve 6 ,
  • the liquid storage chamber 30 and the core storage chamber 40 are blocked to prevent the first liquid from flowing into the core storage chamber 40;
  • the second liquid (not shown) is stored in the core storage chamber 40, and passes through the membrane ( (Not shown in the figure) the lower end opening of the core chamber 40 is closed to prevent the second liquid from flowing out.
  • the core enters the storage cavity 40 and discharges part of the second liquid.
  • the first valve 6 is opened to allow the first liquid in the storage cavity 30 to enter the storage cavity It mixes with the second liquid in 40. After the first liquid and the second liquid are mixed with each other, a mass transfer phase transition occurs between the substances to form a sealing film to wrap the core and isolate the core from the outside world.
  • the inner wall of the core body 4 is provided with a liquid flow path.
  • the liquid storage chamber 30 communicates with the core chamber 40 through the liquid flow path.
  • the liquid flow path includes a plurality of flow paths 41 and a plurality of openings 42 that communicate with each other.
  • the liquid storage chamber 30, the flow path 41, the opening 42 and the core storage chamber 40 communicate in sequence;
  • a plurality of flow paths 41 extend along the axial direction of the core body 4, and the plurality of flow paths 41 are evenly distributed along the circumferential direction of the core body 4, and the above-mentioned openings 42 are equally spaced along the axial direction of the core body 4 Therefore, the first liquid can flow into the storage cavity 40 quickly and uniformly to be mixed with the second liquid.
  • the first liquid may be water or ethanol
  • the second liquid is a solution formed by mixing polysulfone and DMF/NMP or a solution formed by mixing polyvinylidene fluoride and DMF/NMP, that is, the second
  • the liquid can be polysulfone and DMF (N, N-Dimethylformamide N,N-dimethylformamide) mixed solution can be polysulfone and NMP (N-methyl-2-pyrrolidone N-methylpyrrolidone) mixed solution can also be formed by mixing polyvinylidene fluoride and DMF (N, N-Dimethylformamide N, N-dimethylformamide)
  • the solution can also be polyvinylidene fluoride and NMP (N-methyl-2-pyrrolidone N-methylpyrrolidone) mixed to form a solution.
  • the first liquid and the second liquid may also be other liquids capable of forming a sealed protective layer on the core after the two are mixed.
  • the embodiment of the present invention further includes a core taking method of the deep rock quality core taking device as described above.
  • the core taking method includes the following steps:
  • the second liquid in this embodiment is a solution formed by mixing polysulfone and DMF/NMP or a solution formed by mixing polyvinylidene fluoride and DMF/NMP.
  • the liquid is a viscous liquid, which can be obtained by having A sticky film (such as plastic wrap) closes the lower opening of the storage core cavity.
  • the drilling tool 1 After storing the first liquid and the second liquid, the drilling tool 1 is started, and the drilling tool 1 drives the drill bit 2 to perform rock breaking work. During the process of rock extraction, the core passes through the claw 5 and starts to break through the membrane After entering the core chamber 40 of the core body 4, the second liquid in the core chamber 40 begins to slowly discharge due to the entry of the core. During the process of entering the core chamber 40, the second liquid will always The core is wrapped to avoid contamination of the core with other liquids.
  • the drilling tool 1 stops working, and the central rod 3 is driven to lift the core body 4 upward.
  • the driving claw 5 clamps the core.
  • the core is pulled off, it goes up until it crosses the second valve 7, and then the second valve 7 is closed, so that the second valve 7 covers the lower end opening of the core storage chamber 40 to cover the core in the core storage chamber 40.
  • the first valve 6 is opened, and the liquid storage chamber 30 and the core storage chamber 40 communicate with each other, so that after the first liquid in the liquid storage chamber 30 enters the core storage chamber 40 through the liquid flow path, it can communicate with the second liquid around the core
  • the mass transfer phase transition between the mixed materials forms a sealing membrane to wrap the core.
  • the core is in a state of quality preservation throughout.
  • the second liquid always wraps the core, which avoids the formation of other deep parts.
  • the liquid causes pollution to the rock core, and after the core enters the storage cavity 40, the first liquid in the storage cavity 30 enters the storage cavity 40 and the second liquid mixes to cause a mass transfer phase transition between the substances to form a sealing membrane to wrap the rock Core to isolate the core from contact with the outside world, thereby avoiding the change of the microbial living environment on the core, and at the same time preventing the loss of oil and gas resources inside the core and resulting in distortion of resource assessment, and finally fully achieving the purpose of quality and core, ensuring the core in situ
  • the quality status has laid the foundation for deep rock scientific exploration and research.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种深部岩石保质取芯装置及其取芯方法,适用于科学钻探技术领域。深部岩石保质取芯装置包括钻具(1)、钻头(2)、中心杆(3)以及储芯本体(4),钻头(2)安装在钻具(1)的下端,中心杆(3)的下端连接储芯本体(4),并且中心杆(3)能够带动储芯本体(4)在钻具(1)内沿钻具(1)的轴向方向移动,中心杆(3)内开设有下端开口的储液腔(30),储芯本体(4)内开设有下端开口的储芯腔(40),储芯本体(4)的上端安装有用于控制储液腔(30)与储芯腔(40)相互连通或阻断的第一阀门(6),钻具(1)的内壁上安装用于封盖或打开储芯腔(40)下端开口的第二阀门(7)。在取芯过程中能够避免岩芯上的微生物生存环境改变,同时可以防止岩芯内部油气资源的丧失而导致资源评估失真,最终充分达到保质取芯目的,保证了岩芯原位品质状态。

Description

深部岩石保质取芯装置及其取芯方法 技术领域
本发明属于科学钻探技术领域,尤其涉及一种深部岩石保质取芯装置及其取芯方法。
背景技术
目前,深部岩石钻探取芯的保质技术基本处于定性的相对保质状态,无法做到所取岩芯完全保质。在钻进岩层取芯及取出岩芯过程中,岩芯会受到井底地层水或钻井液等的污染而造成岩芯原位品质、油气含量及湿度等受到影响,并且岩芯取出后会由于空气的影响导致微生物生存环境改变而影响科学研究;同时,岩芯内部油气资源的丧失会导致资源评估失真,所以对深部岩石科学探索的基本前提是实现原位保质取芯。
在国内已经开展了大量的科学钻探研究,但岩石取芯技术无法做到完全保质取芯,这对于探知原位环境、油气资源勘探、深地医学研究都十分不利,亟需提供岩石原位保质取芯技术来为深部岩石科学探索研究奠定基础。
技术问题
本发明实施例所要解决的技术问题在于提供一种深部岩石保质取芯装置及其取芯方法,旨在解决现有技术中的深部岩石取芯技术无法做到完全保质取芯而导致岩芯原位品质受到影响的问题。
技术解决方案
本发明实施例是这样实现的,提供一种深部岩石保质取芯装置。该深部岩石保质取芯装置包括钻具、钻头、中心杆以及用于储存岩芯的储芯本体;所述钻头安装在所述钻具的下端,所述中心杆的下端连接所述储芯本体,并且所述中心杆能够带动所述储芯本体在所述钻具内沿钻具的轴向方向移动,所述中心杆内开设有下端开口的储液腔,所述储芯本体内开设有下端开口的储芯腔,所述储芯本体的上端安装有用于控制所述储液腔与所述储芯腔相互连通或阻断的第一阀门,所述钻具的内壁上安装用于封盖或打开所述储芯腔下端开口的第二阀门;
当所述深部岩石保质取芯装置提取岩芯前,所述储液腔内存储有第一液体,所述第一阀门封盖所述储液腔的下端开口,使所述储液腔与所述储芯腔阻断,所述储芯腔内存储有第二液体,并通过膜状物封闭所述储芯腔的下端开口。
进一步地,所述储芯本体的内壁上设有液体流路,当打开所述第一阀门后,所述储液腔通过所述液体流路与所述储芯腔连通。
进一步地,所述液体流路包括相互连通的若干分流路和若干开孔,当打开所述第一阀门后,所述储液腔、分流路、开孔以及储芯腔依次连通。
进一步地,所述的若干分流路沿所述储芯本体的轴向方向延伸。
进一步地,所述的若干分流路沿所述储芯本体的圆周方向均匀分布。
进一步地,所述的若干开孔沿所述储芯本体的轴向方向等间距分布。
进一步地,所述第一阀门为电控阀门,所述第二阀门为翻板阀。
进一步地,所述钻具的下端内壁设置有用于夹紧岩芯的卡爪。
进一步地,所述第一液体为水或乙醇,所述第二液体为聚砜与DMF/NMP相混合后形成的溶液或者聚偏氟乙烯与DMF/NMP相混合后形成的溶液。
本发明实施例还提供一种如上所述的深部岩石保质取芯装置的取芯方法,该取芯方法包括如下步骤:
首先在所述储液腔内存储所述第一液体后,将第一阀门关闭,使所述储液腔与所述储芯腔阻断,然后在所述储芯腔内存储第二液体,并通过膜状物将所述储芯腔的下端开口封闭,防止第二液体泄露;
启动所述钻具,所述钻具驱动所述钻头进行破岩工作,在破岩提取岩芯过程中,岩芯冲破膜状物开始进入所述储芯腔内,此时储芯腔内的第二液体由于岩芯的进入开始排出,在岩芯进入储芯腔的过程中,第二液体始终将岩芯包裹,避免其他液体对岩芯的污染;
岩芯进入所述储芯腔后,取芯结束,钻具停止工作,关闭第二阀门,使所述第二阀门封盖所述储芯腔下端开口,然后打开所述第一阀门,使所述储液腔与所述储芯腔相互连通,所述储液腔内的所述第一液体进入储芯腔内后,与岩芯周围的第二液体混合发生物质间的传质相变形成密封膜包裹岩芯,使岩芯与外界隔绝,避免岩芯上的微生物生存环境改变,同时可以防止岩芯内部油气资源的丧失而导致资源评估失真,最终充分达到保质取芯目的。
有益效果
本发明的深部岩石保质取芯装置在提取岩芯过程中,岩芯冲破膜状物进入储芯腔时,由于第二液体始终将岩芯包裹,避免了地层深部其他液体对岩芯造成污染,并且在岩芯进入储芯腔后,储液腔内的第一液体进入储芯腔与第二液体混合发生物质间的传质相变形成密封膜包裹岩芯,隔绝岩芯与外界接触,从而避免岩芯上的微生物生存环境改变,同时可以防止岩芯内部油气资源的丧失而导致资源评估失真,最终充分达到保质取芯目的,保证了岩芯原位品质状态,为深部岩石科学探索研究奠定了基础。
附图说明
图1是本发明实施例提供的深部岩石保质取芯装置在提取岩芯前的结构示意图;
图2是图1中的A区域放大结构示意图;
图3是图1中B-B方向的断面结构示意图。
在附图中,各附图标记表示:
1、钻具;2、钻头;3、中心杆;4、储芯本体;5、卡爪;6、第一阀门;7、第二阀门;30、储液腔;40、储芯腔;41、分流路;42、开孔。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1至图3所示,是本发明实施例提供的深部岩石保质取芯装置。该深部岩石保质取芯装置包括钻具1、钻头2、中心杆3以及用于储存岩芯的储芯本体4,其中,钻头2安装在钻具1的下端,中心杆3的下端连接储芯本体4,并且中心杆3能够带动储芯本体4在钻具1内沿钻具1的轴向方向移动,以通过启动钻具1来带动钻头2进行破岩作业,通过驱动中心杆3带动储芯本体4进行提取岩芯作业。在钻具1的下端内壁设置有卡爪5,以便于对岩芯夹紧,使岩芯被拉断,在中心杆3内开设有下端开口的储液腔30,储芯本体4内开设有下端开口的储芯腔40,储液腔30通过其下端开口与储芯腔40的上端连通。在储芯本体4的上端安装有第一阀门6,该第一阀门6为电控阀门,通过打开与关闭第一阀门6来控制储液腔30与储芯腔40进行相互连通或相互阻断。钻具1的内壁上安装有第二阀门7,第二阀门7为电控的翻板阀,通过打开与关闭第二阀门7来封盖或打开储芯腔40的下端开口。
当深部岩石保质取芯装置在提取岩芯前,在储液腔30内存储有一定量的第一液体(图中未示出),通过关闭第一阀门6来封盖储液腔30的下端开口,使储液腔30与储芯腔40阻断,防止第一液体流入储芯腔40内;在储芯腔40内存储有第二液体(图中未示出),并通过膜状物(图中未示出)封闭储芯腔40的下端开口,防止第二液体流出。当深部岩石保质取芯装置在提取岩芯后,岩芯进入储芯腔40内将部分第二液体排出,同时,打开第一阀门6,使储液腔30内的第一液体进入储芯腔40内与第二液体相混合,第一液体与第二液体相互混合后发生物质间的传质相变形成一层密封膜包裹岩芯,使岩芯与外界隔离。
上述实施例中,储芯本体4的内壁上设有液体流路,当打开第一阀门6后,储液腔30通过液体流路与储芯腔40连通。具体地,液体流路包括相互连通的若干分流路41和若干开孔42,当打开第一阀门6后,储液腔30、分流路41、开孔42以及储芯腔40依次连通;上述的若干分流路41沿储芯本体4的轴向方向延伸,并且该若干分流路41沿储芯本体4的圆周方向均匀分布,上述的若干开孔42沿储芯本体4的轴向方向等间距分布,从而能够使第一液体能够迅速并均匀地流入储芯腔40内与第二液体相混合。
在本实施例中,第一液体可以为水或乙醇,第二液体为聚砜与DMF/NMP相混合后形成的溶液或者聚偏氟乙烯与DMF/NMP相混合后形成的溶液,即第二液体可以为聚砜与DMF(N,N-Dimethylformamide N,N-二甲基甲酰胺)相混合后形成的溶液,可以为聚砜与NMP (N-methyl-2-pyrrolidone N-甲基吡咯烷酮)相混合后形成的溶液,也可以为聚偏氟乙烯与DMF(N,N-Dimethylformamide N,N-二甲基甲酰胺)相混合后形成的溶液,还可以为聚偏氟乙烯与NMP (N-methyl-2-pyrrolidone N-甲基吡咯烷酮)相混合后形成的溶液。在其他实施方式中,第一液体和第二液体也可为在两者混合后能够对岩芯形成密封保护层的其它液体。
本发明实施例还包括一种如上所述的深部岩石保质取芯装置的取芯方法,该取芯方法包括如下步骤:
首先在储液腔30内存储第一液体后,将第一阀门6关闭,使储液腔30与储芯腔40阻断,然后在储芯腔40内存储第二液体,并通过膜状物将储芯腔40的下端开口封闭,防止第二液体泄露。本实施例中的第二液体为聚砜与DMF/NMP相混合后形成的溶液或者聚偏氟乙烯与DMF/NMP相混合后形成的溶液,该液体为具有粘稠状的液体,可通过具有粘黏性的膜状物(如保鲜膜)封闭储芯腔的下端开口。
在存储好第一液体和第二液体后,启动钻具1,钻具1驱动钻头2进行破岩工作,在破岩提取岩芯过程中,岩芯经过卡爪5,并冲破膜状物开始进入储芯本体4的储芯腔40内,此时储芯腔40内的第二液体由于岩芯的进入开始慢慢排出,在岩芯进入储芯腔40的过程中,第二液体始终将岩芯包裹,以避免其他液体对岩芯的污染。
在岩芯进入储芯腔40后,取芯结束,钻具1停止工作,驱动中心杆3带动储芯本体4向上提升,在中心杆3上升瞬间,驱动卡爪5夹紧岩芯,由于岩芯被拉断后上行,直至越过第二阀门7后,关闭第二阀门7,使第二阀门7封盖储芯腔40下端开口,以封盖岩芯于储芯腔40内。然后打开第一阀门6,储液腔30与储芯腔40相互连通,使储液腔30内的第一液体通过液体流路进入储芯腔40内后,能够与岩芯周围的第二液体混合发生物质间的传质相变形成密封膜包裹岩芯,在整个取芯过程中,岩芯全程处于保质状态。
综上所述,本发明的深部岩石保质取芯装置在提取岩芯过程中,在岩芯冲破膜状物进入储芯腔40时,由于第二液体始终将岩芯包裹,避免了地层深部其他液体对岩芯造成污染,并且在岩芯进入储芯腔40后,储液腔30内的第一液体进入储芯腔40与第二液体混合发生物质间的传质相变形成密封膜包裹岩芯,隔绝岩芯与外界接触,从而避免岩芯上的微生物生存环境改变,同时可以防止岩芯内部油气资源的丧失而导致资源评估失真,最终充分达到保质取芯目的,保证了岩芯原位品质状态,为深部岩石科学探索研究奠定了基础。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种深部岩石保质取芯装置,其特征在于,包括钻具、钻头、中心杆以及用于储存岩芯的储芯本体;所述钻头安装在所述钻具的下端,所述中心杆的下端连接所述储芯本体,并且所述中心杆能够带动所述储芯本体在所述钻具内沿钻具的轴向方向移动,所述中心杆内开设有下端开口的储液腔,所述储芯本体内开设有下端开口的储芯腔,所述储芯本体的上端安装有用于控制所述储液腔与所述储芯腔相互连通或阻断的第一阀门,所述钻具的内壁上安装用于封盖或打开所述储芯腔下端开口的第二阀门;
    当所述深部岩石保质取芯装置提取岩芯前,所述储液腔内存储有第一液体,所述第一阀门封盖所述储液腔的下端开口,使所述储液腔与所述储芯腔阻断,所述储芯腔内存储有第二液体,并通过膜状物封闭所述储芯腔的下端开口。
  2. 如权利要求1所述的深部岩石保质取芯装置,其特征在于,所述储芯本体的内壁上设有液体流路,当打开所述第一阀门后,所述储液腔通过所述液体流路与所述储芯腔连通。
  3. 如权利要求2所述的深部岩石保质取芯装置,其特征在于,所述液体流路包括相互连通的若干分流路和若干开孔,当打开所述第一阀门后,所述储液腔、分流路、开孔以及储芯腔依次连通。
  4. 如权利要求3所述的深部岩石保质取芯装置,其特征在于,所述的若干分流路沿所述储芯本体的轴向方向延伸。
  5. 如权利要求4所述的深部岩石保质取芯装置,其特征在于,所述的若干分流路沿所述储芯本体的圆周方向均匀分布。
  6. 如权利要求5所述的深部岩石保质取芯装置,其特征在于,所述的若干开孔沿所述储芯本体的轴向方向等间距分布。
  7. 如权利要求1所述的深部岩石保质取芯装置,其特征在于,所述第一阀门为电控阀门,所述第二阀门为翻板阀。
  8. 如权利要求1所述的深部岩石保质取芯装置,其特征在于,所述钻具的下端内壁设置有用于夹紧岩芯的卡爪。
  9. 如权利要求1所述的深部岩石保质取芯装置,其特征在于,所述第一液体为水或乙醇,所述第二液体为聚砜与DMF/NMP相混合后形成的溶液或者聚偏氟乙烯与DMF/NMP相混合后形成的溶液。
  10. 一种如权利要求1至9中任意一项所述的深部岩石保质取芯装置的取芯方法,其特征在于,包括如下步骤:
    首先在所述储液腔内存储所述第一液体后,将第一阀门关闭,使所述储液腔与所述储芯腔阻断,然后在所述储芯腔内存储第二液体,并通过膜状物将所述储芯腔的下端开口封闭,防止第二液体泄露;
    启动所述钻具,所述钻具驱动所述钻头进行破岩工作,在破岩提取岩芯过程中,岩芯冲破膜状物开始进入所述储芯腔内,此时储芯腔内的第二液体由于岩芯的进入开始排出,在岩芯进入储芯腔的过程中,第二液体始终将岩芯包裹,避免其他液体对岩芯的污染;
    岩芯进入所述储芯腔后,取芯结束,钻具停止工作,关闭第二阀门,使所述第二阀门封盖所述储芯腔下端开口,然后打开所述第一阀门,使所述储液腔与所述储芯腔相互连通,所述储液腔内的所述第一液体进入储芯腔内后,与岩芯周围的第二液体混合发生物质间的传质相变形成密封膜包裹岩芯,使岩芯与外界隔离。
PCT/CN2018/119535 2018-12-06 2018-12-06 深部岩石保质取芯装置及其取芯方法 WO2020113515A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/119535 WO2020113515A1 (zh) 2018-12-06 2018-12-06 深部岩石保质取芯装置及其取芯方法
US16/708,432 US20200182000A1 (en) 2018-12-06 2019-12-09 Deep rock quality assurance coring device and coring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119535 WO2020113515A1 (zh) 2018-12-06 2018-12-06 深部岩石保质取芯装置及其取芯方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/708,432 Continuation-In-Part US20200182000A1 (en) 2018-12-06 2019-12-09 Deep rock quality assurance coring device and coring method thereof

Publications (1)

Publication Number Publication Date
WO2020113515A1 true WO2020113515A1 (zh) 2020-06-11

Family

ID=70970803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119535 WO2020113515A1 (zh) 2018-12-06 2018-12-06 深部岩石保质取芯装置及其取芯方法

Country Status (2)

Country Link
US (1) US20200182000A1 (zh)
WO (1) WO2020113515A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109441383B (zh) * 2018-11-08 2023-11-10 深圳大学 取芯钻机钻取控制机构
CN111764854B (zh) * 2020-07-29 2023-08-22 四川大学 深部岩石原位保质取芯装置及其随钻成膜取芯方法
CN111734332B (zh) * 2020-07-29 2023-08-22 四川大学 一种随钻成膜模拟装置及随钻成膜取芯方法
CN113085032A (zh) * 2021-05-08 2021-07-09 上海市政工程设计研究总院(集团)有限公司 一种用于切割岩石标准岩芯试件的装置及使用方法
CN113898307B (zh) * 2021-09-30 2023-02-28 四川大学 原位自触发随钻成膜保质取心装置的柔性储液释放机构
CN113803010B (zh) * 2021-09-30 2022-05-24 四川大学 一种深部原位环境高温高压模拟舱
CN114458204A (zh) * 2022-01-26 2022-05-10 四川大学 一种用于保真取芯器运行的控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2402798Y (zh) * 1999-12-13 2000-10-25 胜利石油管理局钻井工艺研究院 一种保形密闭取心工具
US20150176355A1 (en) * 2013-12-20 2015-06-25 National Oilwell Varco, L.P. Adjustable coring assembly and method of using same
CN204646156U (zh) * 2015-06-01 2015-09-16 中国地质大学(武汉) 一种密闭取芯钻具
CN106124242A (zh) * 2016-06-01 2016-11-16 四川大学 原位保真取芯系统及取芯方法
CN107816328A (zh) * 2017-11-13 2018-03-20 四川川庆石油钻采科技有限公司 一种密闭取心工具及密闭取心钻井工艺
CN109403900A (zh) * 2018-12-06 2019-03-01 深圳大学 深部岩石保质取芯装置及其取芯方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2402798Y (zh) * 1999-12-13 2000-10-25 胜利石油管理局钻井工艺研究院 一种保形密闭取心工具
US20150176355A1 (en) * 2013-12-20 2015-06-25 National Oilwell Varco, L.P. Adjustable coring assembly and method of using same
CN204646156U (zh) * 2015-06-01 2015-09-16 中国地质大学(武汉) 一种密闭取芯钻具
CN106124242A (zh) * 2016-06-01 2016-11-16 四川大学 原位保真取芯系统及取芯方法
CN107816328A (zh) * 2017-11-13 2018-03-20 四川川庆石油钻采科技有限公司 一种密闭取心工具及密闭取心钻井工艺
CN109403900A (zh) * 2018-12-06 2019-03-01 深圳大学 深部岩石保质取芯装置及其取芯方法

Also Published As

Publication number Publication date
US20200182000A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
WO2020113515A1 (zh) 深部岩石保质取芯装置及其取芯方法
CN109403900B (zh) 深部岩石保质取芯装置及其取芯方法
CN111764854B (zh) 深部岩石原位保质取芯装置及其随钻成膜取芯方法
CN101725330B (zh) 一种免钻塞固井工具
CN212716508U (zh) 深部岩石原位保质取芯装置
CN106284335A (zh) 灌注桩质量缺陷处理方法
CN209261521U (zh) 深部岩石保质取芯装置
CN206556916U (zh) 一种土壤渗流水原位分层采样装置
JPH05325945A (ja) 電池用電解液の注入方法
CN105401974A (zh) 一种瓦斯智能抽采系统及方法
CN102706890B (zh) 蜂窝钎焊件的检测装置及检测方法
CN107132076A (zh) 一种压载舱取水装置及其应用
CN207130277U (zh) 一种细胞自动培养包装系统
CN114000844B (zh) 原位自触发随钻成膜保质取心装置的底部密封机构
CN110645361B (zh) 一种排气蝶阀
CN105711262B (zh) 一种再生墨盒的注墨机及注墨方法
CN208430507U (zh) 灌注桩桩头用钢筋笼
CN209890272U (zh) 一种应用在清洗管路系统中的加料装置
CN207178344U (zh) 一种顺序阀
CN206334639U (zh) 用于研究油田堵水化学堵剂的高温高压反应装置
CN116181262B (zh) 一种可燃冰原位随钻成膜保质取心装置及取心方法
CN101482194B (zh) 助力式电动调压阀
CN217233428U (zh) 用于井口放喷的钻杆结构
CN114604476B (zh) 一种可逆封堵型不规则样品侧壁防渗装置
CN108374652A (zh) 一种储层保护气举排液控制装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942582

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18942582

Country of ref document: EP

Kind code of ref document: A1