WO2020113414A1 - 一种光学指纹识别模组及电子装置 - Google Patents
一种光学指纹识别模组及电子装置 Download PDFInfo
- Publication number
- WO2020113414A1 WO2020113414A1 PCT/CN2018/119140 CN2018119140W WO2020113414A1 WO 2020113414 A1 WO2020113414 A1 WO 2020113414A1 CN 2018119140 W CN2018119140 W CN 2018119140W WO 2020113414 A1 WO2020113414 A1 WO 2020113414A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- circuit board
- modulation device
- optical sensor
- gap
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1324—Sensors therefor by using geometrical optics, e.g. using prisms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/145—Illumination specially adapted for pattern recognition, e.g. using gratings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1318—Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
Definitions
- the present application relates to the field of fingerprint identification, in particular to an optical fingerprint identification module and an electronic device.
- Fingerprint identification technology refers to the identification of fingerprint information through the fingerprint identification module sensing and analyzing the signals of the valleys and ridges of the fingerprint. It has the advantages of high security, convenient and fast operation, and is widely used in electronic products.
- the implementation of fingerprint imaging technology includes optical imaging, capacitive imaging, ultrasonic imaging and other technologies. Among them, optical fingerprint recognition technology has gradually become a fingerprint because of its strong penetration ability, support for full-screen placement, and simple product structure design. Identify the mainstream of technology.
- the existing optical fingerprint module usually includes a light source, a lens group and an image sensor parallel to the lens group.
- the finger When in use, the finger needs to be placed on the optical lens of the screen.
- the finger is illuminated by the built-in light source and the light is fingerprinted on the surface of the finger The angle of refraction on the uneven lines and the brightness of the reflected light are different.
- the lens group After the lens group is focused and modulated, a spatial distribution image of light intensity is formed, and then a multi-gray fingerprint image is obtained on the image sensor device, which can realize a large area. Fingerprint image collection.
- the required focal length will be longer, resulting in a longer optical path, which will make the overall size and thickness of the module It becomes larger and cannot meet market design requirements.
- the invention provides an optical fingerprint identification module and an electronic device to solve the problem that the existing optical fingerprint module requires a longer focal length and a longer optical path, which results in a thicker overall module size.
- the present invention provides an optical fingerprint identification module, including: a reflective plate, an optical modulation device, and an optical sensing element;
- the reflective plate and the optical sensing element are arranged up and down, and a first gap is formed between the optical sensing element and the reflective plate, and the optical modulation device is disposed in the first gap, so
- the reflective plate includes a reflective area on one side of the optical modulation device, so that light reflected by the finger enters the sensing area of the optical sensing element after passing through the optical modulation device and the reflective area.
- the reflective plate is divided by the optical modulation device into a side corresponding to the optical modulation device, corresponding to the sensing region where the optical sensing element is located in the first gap The first area, and the reflective area on the other side of the optical modulation device, so that the light reflected by the finger enters the sensing area through the optical modulation device after being reflected by the reflective area.
- the reflective area is a first area on the reflective plate corresponding to the sensing area of the optical sensing element located in the first gap, so that After passing through the optical modulation device, the light enters the sensing area after being reflected in the reflection area.
- a supporting frame is further provided between the reflective plate and the optical sensing element, and the supporting frame is used to support the reflective plate and the optical sensing element to form the In the first gap, there is a second gap between the support frame and the optical modulation device for exposing the sensing area and the first area.
- it further includes: a first support plate supported under the reflective plate, and a first support boss protruding from the first support plate toward the optical sensor element, the The first gap is formed between the first support plate and the optical sensing element, the first support plate is connected to the optical modulation device, and the first support boss and the optical modulation device have A second gap for exposing the sensing area.
- a side of the reflective plate has a second support boss protruding toward the optical sensing element, and there is a space between the second support boss and the optical modulation device A second gap exposed between the sensing area and the first area.
- the optical sensor element includes a main circuit board and an optical sensor chip fixed on the main circuit board, the optical sensor chip facing away from a side surface of the main circuit board The sensing area is provided, and the first gap is formed between the sensing chip and the reflective plate.
- the optical modulation device is located on the optical sensor chip; or, the optical modulation device is located on the main circuit board; or,
- the optical modulation device is located on the support frame; or, the optical modulation device is located on the reflective plate.
- the support frame is located on the optical sensor chip; or, the support frame is located on the main circuit board.
- the optical sensor element includes a main circuit board and an optical sensor chip fixed on the main circuit board, and the first support boss is located on the optical sensor chip; Alternatively, the first support boss is located on the main circuit board.
- the optical sensor element includes a main circuit board and an optical sensor chip fixed on the main circuit board, and the second support boss is located on the optical sensor chip; Alternatively, the second support boss is located on the main circuit board.
- the present invention further includes a light source, the light source is disposed on a side of the optical sensing element close to the optical modulation device, and a first level is formed between the light source and the optical sensing element gap.
- a light source is further included, and the light source is located on a side of the optical sensing element facing away from the optical modulation device.
- the light source includes a light emitting device and a light source circuit board electrically connected to the light emitting device.
- the light source circuit board and the main circuit board of the optical sensor element are provided independently of each other, and the light emitting device is embedded on the light source circuit board.
- the light source circuit board is a part extending from the main circuit board of the optical sensor element, and the light emitting device is embedded on the light source circuit board; or,
- the light emitting device is disposed on a side of the light source circuit board facing away from the optical sensing element.
- the light emitting device includes at least one of a light emitting diode, an organic light emitting diode, a vertical cavity surface emitting laser, a laser diode, and a screen.
- the main circuit board includes a PCB board, a substrate, a flexible board, or a rigid-flexible board.
- the optical modulation element optical modulation device includes a lens monomer, a filter monomer, or a combined element of a lens and a filter.
- the material of the reflector includes glass, silicon, metal, or plastic.
- the material of the support frame includes glass, silicon, metal, or plastic.
- the present invention also provides an electronic device, including any one of the optical fingerprint identification modules mentioned above.
- the invention provides an optical fingerprint identification module and an electronic device.
- an optical modulation device is provided in the first gap, and the reflective plate includes optical modulation The reflection area on the side of the device, so that the light reflected by the finger enters the sensing area after the optical modulation device and the reflection area, so that after the finger is placed on the screen, the light with the fingerprint signal reflected by the finger passes through the reflective plate and After the optical modulation device reflects and modulates to form an optical image signal, it then enters the surface of the optical sensing element, is captured by the sensing area of the optical sensing element, and converts the optical image signal into an electrical signal and transmits it to the outside of the module.
- Fingerprint recognition that is, the light reflected by the finger enters the sensing area and is output after being reflected and modulated.
- the existing optical recognition module it is designed by the position structure between the reflective plate, the optical sensing element and the optical modulation device.
- the light path of the light with fingerprint information reflected from the finger is reflected and folded, so that the thickness of the fingerprint recognition module can be effectively reduced without affecting the fingerprint recognition performance. It solves the problem that the existing optical fingerprint module requires a longer focal length and a longer optical path, resulting in a thicker overall module size.
- FIG. 1 is a schematic diagram of an application scenario of an optical identification module according to Embodiment 1 of the present invention
- FIG. 2 is a schematic cross-sectional view of an optical identification module provided by Embodiment 3 of the present invention.
- FIG. 3 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 4 of the present invention.
- FIG. 4 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 5 of the present invention.
- Embodiment 5 is a top view of an optical fingerprint recognition module provided by Embodiment 5 of the present invention.
- FIG. 6 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 6 of the present invention.
- Embodiment 7 is a top view of an optical fingerprint recognition module provided by Embodiment 6 of the present invention.
- FIG. 8 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 7 of the present invention.
- FIG. 9 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 8 of the present invention.
- Embodiment 10 is a schematic cross-sectional view of an optical fingerprint recognition module provided by Embodiment 9 of the present invention.
- FIG. 11 is a schematic diagram of an application scenario of an optical fingerprint recognition module provided by Embodiment 10 of the present invention.
- FIG. 12 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 11 of the present invention.
- FIG. 13 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 12 of the present invention.
- FIG. 14 is a schematic cross-sectional view of an optical fingerprint recognition module according to Embodiment 13 of the present invention.
- FIG. 15 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 14 of the present invention.
- Optical sensor element-10 main circuit board-11; optical sensor chip-12; screen-20; reflector plate-30; second support boss-31; reflection area-32; optical modulation device-40; support frame -50; first support plate -51; first support boss -52; light source -60; light source circuit board -61; light emitting device -62.
- FIG. 1 is a schematic diagram of an application scenario of an optical identification module according to Embodiment 1 of the present invention.
- the present invention provides an optical fingerprint recognition module, which uses light reflection to illuminate the surface of the finger from the set light source or the screen when the finger is placed on the screen, and the light is uneven on the fingerprint
- the angle of refraction on the line pattern and the brightness of the light reflected back are different, thus forming a distribution image of light intensity, a multi-gray fingerprint image is obtained on the sensor device, and the fingerprint image is compared with the pre-stored fingerprint image The pair realizes the fingerprint identification.
- the optical fingerprint recognition module includes: a reflector 30, an optical modulation device 40, and an optical sensor element 10, wherein the reflector 30 is used to reflect the light reflected by the finger on the screen 20, and optically modulate
- the device 40 is used to modulate the light entering it to form an optical image signal
- the optical sensor element 10 is used to capture the optical image signal thereon, convert it into an electrical signal, and transmit the electrical signal to the module External, for comparison and identification of fingerprints by external circuits.
- the reflective plate 30 and the optical sensor element 10 are disposed up and down, and a first gap is formed between the optical sensor element 10 and the reflective plate 30, and the optical modulation device 40 is disposed in the first gap, the reflective plate 30
- the reflective area 32 on the side of the optical modulation device 40 is included so that the light reflected by the finger is reflected by the reflective area 32 and modulated by the optical modulation device 40 to enter the sensing area, so that after placing the finger on the screen 20, the finger reflects
- the light with fingerprint signal is reflected and modulated by the reflector 30 and the optical modulation device 40 to form an optical image signal, then enters the surface of the optical sensor element 10, and is captured by the sensing area of the optical sensor element 10, and
- the optical image signal is converted into an electrical signal and transmitted to the outside of the module to identify the fingerprint, that is, the light reflected by the finger is reflected and modulated into the sensing area and output, compared with the existing optical recognition module, through the reflective plate 30 ,
- the specific position of the reflective area 32 on the side of the optical modulation device 40 is not limited, and the light reflected by the finger can be reflected in the reflective area 32 and imaged by the optical modulation device 40 .
- the reflecting area 32 may be a first area on the side of the optical modulation device 40 on the reflector 30, corresponding to the sensing area of the optical sensing element 10 located in the first gap, so that The light reflected by the finger first passes through the optical modulation device 40 to form an optical image, and then reflects in the reflection area 32 and enters the sensing area; the reflection area may also be located on the other side of the optical modulation device 40, so that the light reflected by the finger first After being reflected, the reflection area 32 passes through the optical modulation device 40 to form an optical image signal, and then enters the sensing area.
- the reflective area is located on the other side of the optical modulation device on the reflective plate away from the first area, so that the light reflected by the finger is reflected in the reflective area first and then passes through the optical modulation device to form an optical image signal
- the reflector 30 is disposed above the optical sensor element 10, and the screen 20 and the optical sensor element 10 are provided on the side of the optical sensor element 10 opposite to the reflector plate 30
- the surface has a sensing area for capturing the optical image signal irradiated thereon, a first gap is formed between the optical sensing element 10 and the reflective plate 30, an optical modulation device 40 is provided in the gap, and the reflective plate is optically modulated
- the device 40 is divided into a first area on one side of the optical modulation device 40, corresponding to the sensing area of the optical sensor element 10 in the first gap, and the reflective area 32 on the other side of the optical modulation device 40 When placed on the screen 20, the light irradiated on the finger will be
- the reflected light signal contains fingerprint information.
- the inclined reflected light is irradiated on the reflection area 32 of the reflector 30 to cause secondary reflection.
- Enters the optical modulation device 40 enters the first gap after modulation imaging, illuminates the optical sensor element 10 located in the first gap, and is captured by the sensing area on the optical sensor element 10 ,
- the optical sensor element 10 converts the captured optical image signal into an electrical signal, and transmits the electrical signal to the outside of the module to identify the fingerprint, that is, the optical signal with fingerprint information reflected from the finger, It is output after being reflected, modulated, and converted into an electrical signal in sequence, which realizes the folding of the optical path, effectively reduces the thickness of the fingerprint recognition module, and compresses the thickness of the fingerprint recognition module while ensuring the fingerprint recognition performance Thinner to meet the design needs of the market.
- the light irradiated on the finger may be the light emitted from the screen itself, or the light emitted from the light source independently provided, which is not limited in this embodiment.
- the light source 60 may be disposed on the side of the optical sensor element 10 close to the optical modulation device 40, and a first horizontal gap is formed between the light source 60 and the optical sensor element 10 to Ensure that the light reflected from the finger can enter the optical fingerprint recognition module through the first horizontal gap; the light source can also be located on the side of the optical sensor element 10 away from the optical modulation device 40.
- the circuit board used for the light source may be an extension of the main circuit board 11 or a light source circuit board 61 provided separately.
- the type of the light-emitting device 62 of the light source is not limited.
- the light-emitting device 62 may be a positive light-emitting device or a side light-emitting device.
- the light emitting device 62 includes a light emitting diode, an organic light emitting diode, a vertical cavity surface emitting laser or a laser diode.
- the light emitting device 62 may be a positive light emitting device or a side light emitting device, which may be a light emitting diode (LED ), an organic light emitting diode (OLED), a vertical cavity surface emitting laser (VCSEL), or a laser diode, etc., that can emit optical signals, which is not limited in this embodiment.
- the optical modulation device 40 includes a lens element, a filter element, or a combined element of a lens and a filter.
- the optical modulation element 40 may be a lens element, a filter element, or a single element.
- the combined element of the lens and the filter may also be other monomers or combined elements capable of modulating the optical path, which is not limited in this embodiment.
- the material of the reflector 30 includes glass, silicon, metal, or plastic.
- the reflector 30 can be a reflector made of glass, silicon, metal, or plastic, or other materials that can be molded.
- the surface of the reflective plate 30 may be coated with a reflective film or may not be coated with a reflective film, which is not limited in this embodiment.
- an optical modulation device 40 is provided in the first gap, and to support the reflective plate 30 and the optical modulation device 40, a support body may be provided in the first gap, or light reflection may be made
- the other end of the plate 30 away from the optical modulation device 40 has a structure that can play a supporting role.
- the present invention provides an optical fingerprint recognition module.
- an optical modulation device 40 is disposed in the first gap, and the reflector includes a The reflection area 32 on the side of the device 40, so that the light reflected by the finger enters the sensing area after passing through the optical modulation device 40 and the reflection area 32, so that after placing the finger on the screen 20, the finger reflects the fingerprint signal.
- the light is reflected and modulated by the reflector 30 and the optical modulation device 40 to form an optical image signal, then enters the surface of the optical sensor element 10, is captured by the sensing area of the optical sensor element 10, and converts the optical image signal into electricity
- the signal is transmitted to the outside of the module to identify the fingerprint, that is, the light reflected by the finger is reflected and modulated into the sensing area and output, compared with the existing optical recognition module, through the reflective plate 30, the optical sensing element 10 and
- the structural design of the position between the optical modulation devices 40 reflects and folds the optical path of the
- the reflector 30 is divided by the optical modulation device 40 into a sensor located on the side of the optical modulation device 40 and located in the first gap with the optical sensor element 10 The first area corresponding to the area, and the reflective area 32 on the other side of the optical modulation device 40, so that the light reflected by the finger is reflected by the reflective area 32 and enters the sensing area through the optical modulation device 40.
- the optical modulation device 40 divides the reflective plate 30 into a first area and a reflective area 32, the first area is located on the side of the optical modulation device 40, corresponding to the position of the sensing area located in the first gap, the reflective area 32 is located in the optical modulation The other side of the device 40, so that the light reflected by the finger enters the sensing area through the optical modulation device 40 after being reflected in the reflection area 32, that is, the light with the fingerprint signal reflected from the finger on the screen 20 first Irradiated on the reflective plate 30, after being reflected by the reflective plate 30, it enters the optical modulation device 40, after modulation, is imaged on the surface of the optical sensor element 10, is captured by the sensing area of the optical sensor element 10 and the optical image signal It is converted into an electrical signal and passed to the outside of the module to identify the fingerprint.
- the light reflected by the finger is reflected, modulated, and converted into an electrical signal in turn, and then the optical path of the light reflected from the finger and bearing fingerprint information is folded. It can effectively reduce the thickness of the fingerprint recognition module without affecting the fingerprint recognition performance.
- the first gap is formed between the reflector 30 and the optical sensor element 10, and at the same time, the reflector 30 is divided by the optical modulation device 40 into the first A first area corresponding to the sensing area in the gap, and a reflective area 32 located on the other side of the optical modulation device 40, wherein the reflective area 32 is used to ensure that light reflected from the finger can pass through the reflective area 32 and be reflected twice
- the first gap is used to ensure that the sensing area of the optical sensing element 10 is not covered, and the light modulated by the optical modulation element 40 can enter the surface of the optical sensing element 10 and be captured by the sensing area Therefore, there is no other requirement for the size of the first gap and the reflective area 32, and the light reflected by the finger can be reflected by the reflective area 32 and enter the sensing area of the optical sensing element 10 via the optical modulation device 40.
- An optical fingerprint identification module provided by an embodiment of the present invention is divided by the optical modulation device 40 by the reflective plate 30 into a sensing region on the side of the optical modulation device 40 corresponding to the optical sensor element 10 in the first gap
- the first area and the reflective area 32 on the other side of the optical modulation device 40 so that the light reflected by the finger is reflected in the reflective area 32, and then enters the sensing area of the optical sensor element 10 through the optical modulation device 40, so that
- the optical signal with fingerprint information reflected by the finger after being reflected by the reflection area 32, enters the optical modulation device 40 and performs modulation and imaging, enters the first gap and illuminates the optical sensor element 10 and captured by the sensing area on the optical sensing element 10, the optical sensing element 10 converts the captured optical image signal into an electrical signal, and transmits the electrical signal to the outside of the module to identify the fingerprint, and
- the light reflected by the finger is sequentially reflected, modulated, and converted into an electrical signal to output
- FIG. 2 is a schematic cross-sectional view of an optical identification module according to Embodiment 3 of the present invention.
- a support frame 50 is further provided between the reflector 30 and the optical sensor element 10, and the support frame 50 is used to support the reflector 30 and the optical sensor element 10 to form a first gap, and there is a second gap between the support frame 50 and the optical modulation device 40 for exposing the sensing area and the first area.
- a support frame 50 is provided between the reflective plate 30 and the optical sensing element 10 for supporting the reflective plate 30 and the optical sensing element 10 so that the first between the reflective plate 30 and the optical sensing element 10 in the longitudinal direction is formed Gap, and there is a second gap between the support frame 50 and the optical modulation device 40 that can expose the sensing area and the first area, the second gap refers to the space between the optical modulation device 40 and the support frame 50 in the lateral direction Forming a second gap, the first gap and the second gap together form a space for light propagation, so that the optical image signal modulated by the optical modulation device 40 can enter the space and illuminate the surface of the optical sensor element 10 , Captured by the sensing area where the optical sensing element 10 is located in the space, to convert it into an electrical signal output.
- the support frame 50 can also block external ambient light to avoid interference caused by ambient light.
- a supporting frame 50 is provided between the reflective plate 30 and the optical sensor element 10 to form a longitudinal first gap between the reflective plate 30 and the optical sensor element 10
- the space formed by the gap shines on the surface of the optical sensing element 10 and is captured by the sensing area.
- the optical sensing element 10 converts the captured optical image signal into an electrical signal and outputs it outside the module, thereby realizing fingerprint recognition.
- the material of the support frame 50 includes glass, silicon, metal, or plastic.
- the support frame 50 may be a support frame made of glass, silicon, metal, plastic, or other moldable materials. In this embodiment There are no restrictions in the example.
- the optical sensor element 10 includes a main circuit board 11 and an optical sensor chip 12 fixed on the main circuit board 11.
- the side of the optical sensor chip 12 facing away from the main circuit board 11 has The sensing area, and the optical sensing chip 12 and the reflective plate 30 form a first gap.
- the optical sensor element 10 includes a main circuit board 11 and an optical sensor chip 12 disposed on the main circuit board 11, between the optical sensor chip 12 and the reflective plate 30 A first gap is formed in which the side of the optical sensor chip 12 facing away from the main circuit board 11 has a sensing area for capturing optical image signals irradiated thereon.
- the optical sensor chip 12 is used for In order to convert the optical image signal captured by the sensing area into an electrical signal, the surface of the optical sensor chip 12 is also provided with a pad (Pad) for electrically connecting with the main circuit.
- the main circuit board 11 includes a front surface of the circuit board. A gold finger electrically connected to the Pad of the optical sensor chip 12, and a connector or pad provided at the tail of the circuit board and electrically connected to the external circuit of the module, passing between the gold finger and the connector or pad The metal wires are electrically connected, and the main circuit board 11 is used to output the electrical signal output by the optical sensor chip 12 to the outside of the module, so that the external circuit can perform fingerprint comparison and identification according to the electrical signal.
- the main circuit board 11 includes a PCB board, a substrate, a flexible board, or a rigid-flex board.
- the main circuit board 11 may be a PCB circuit board, a substrate, a flexible board, or a rigid-flex board.
- a reinforcement board is further provided on the back of the main circuit board 11.
- the optical modulation device may be located on the optical sensor chip, or on the main circuit board; or, the optical modulation device may be located on the support frame or on the reflective board, where the optical modulation device is located on the support frame ,
- the reflective plate means that when the optical fingerprint recognition module is manufactured, the optical modulation device can be attached to the reflective plate to be arranged on the reflective plate, can also be attached to the support frame, or the support frame and The optical modulation device is first bonded to the reflector to form a whole, which is not limited in this embodiment.
- the optical modulation device 40 is located on the optical sensor chip 12, as shown in FIG. 2, in this embodiment, the optical modulation device 40 is disposed on the optical sensor chip 12, and the reflector 30 Divided into a first area and a reflective area 32, the optical modulation device 40 and the optical sensor chip 12 are perpendicular or form an angle, so that the light emitted from the optical modulation device 40 can be irradiated to the transmission of the optical sensor chip 12 Sense area.
- the support frame 50 is located on the optical sensor chip 12, as shown in FIG. 2, the support frame 50 is located between the optical sensor chip 12 and the reflective plate 30, so that the optical sensor chip 12 and the reflective plate A first gap is formed between 30 and a second gap is formed between the support frame 50 and the optical modulation device 40 to expose the sensing area and the first area, so that the light emitted by the optical modulation device 40 can be modulated It enters into the space formed by the first gap and the second gap, and irradiates the sensing area of the sensor chip, thereby realizing the capture of the optical image signal.
- the optical fingerprint recognition module further includes: a light source 60 disposed on the side of the optical sensor element 10 near the optical modulation device 40 and between the light source 60 and the optical sensor element 10 A first horizontal gap is formed, specifically, a first horizontal gap is formed between the light source 60 and the main circuit board 11 of the optical sensor element 10. As shown in FIG.
- the optical fingerprint recognition module further includes a light source 60, which is located on the side of the optical sensor element 10 close to the optical modulation device 40, and the light source 60 and the main circuit board 11 under the optical sensor element 10 A first horizontal gap is formed between them, so that the light reflected by the finger can enter the reflection area 32 through the first horizontal gap for secondary reflection, so that when the finger is placed on the screen 20, the light emitted by the light source 60 is irradiated through the screen 20 Once reflection occurs on the finger, the reflected light irradiates the reflection area 32 through the first horizontal gap and performs a second reflection, thereby entering the optical modulation device 40.
- a light source 60 which is located on the side of the optical sensor element 10 close to the optical modulation device 40, and the light source 60 and the main circuit board 11 under the optical sensor element 10 A first horizontal gap is formed between them, so that the light reflected by the finger can enter the reflection area 32 through the first horizontal gap for secondary reflection, so that when the finger is placed on the screen 20, the light emitted by the
- the light source 60 includes a light emitting device 62 and a light source circuit board 61 electrically connected to the light emitting device 62.
- the light source circuit board 61 is an independent circuit board, and the light emitting device 62 is located on the side of the light source circuit board 61 facing away from the optical optical sensing element 10.
- the reflective plate 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- a first gap is formed between the plates 30, the optical modulation device 40 is disposed in the first gap, and is located on the optical sensor chip 12, the reflective plate 30 is divided into the first area and the reflective area 32 by the optical modulation device 40, the reflective plate
- the light source 60 includes an LED light emitting device 62 and a light source circuit board 61.
- the light emitting device 62 is disposed on a side of the light source circuit board 61 facing away from the optical optical sensing element 10, and the light source circuit board 61 and the main circuit board 11 There is a first horizontal gap between them.
- the light emitted by the LED light emitting device is reflected by the finger on the screen for the first time and then reflected by the reflective plate for a second time.
- After being modulated by the optical modulation device 40 it is irradiated on the optical sensor chip 12 and converted into an electrical signal.
- the optical path of the light reflected from the finger is folded, the thickness of the fingerprint recognition module is effectively reduced, and the thickness of the fingerprint recognition module is compressed and thinned while ensuring the fingerprint recognition performance.
- the wafer of the optical sensor chip may be first ground and diced, and the cut optical sensor chip may be attached to the main circuit board, and then the optical The modulation device and the support frame are attached to the surface of the optical sensor chip respectively, and a second gap is left to ensure that the sensing area is not covered. Finally, the reflector is attached to the support frame and the optical modulation device.
- Conduct wire bonding operation connect the Pad on the surface of the chip and the lead (Lead) on the surface of the main circuit board through the metal wire, and finally, according to the actual needs, optionally do glue protection on the metal wire, and then connect the LED light emitting device It is mounted on the light source circuit board. All the above bonding can use glue or adhesive film.
- the wire bonding process can be performed between any processes after the bonding of the optical sensor chip is completed.
- FIG. 3 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 4 of the present invention.
- the light source 60 is located on the side of the optical sensor element 10 facing away from the optical modulation device 40, and the light emitting device 62 of the light source 60 is a side light emitting device, and the light source circuit of the light source 60
- the board 61 is a part extending from the main circuit board 11 of the optical sensing element 10, and the side light emitting device is provided on the side of the main circuit board 11 facing the optical sensing element 10, the reflective plate 30, the optical sensing chip 12,
- the arrangement between the main circuit board 11, the optical modulation device 40 and the support frame 50 can be referred to the third embodiment, which will not be repeated in this embodiment.
- the reflector 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- the optical sensor chip 12 and the reflector 30 A first gap is formed therebetween, and an optical modulation device 40 is disposed in the first gap and is located on the optical sensor chip 12, the optical modulation device 40 divides the reflective plate 30 into a first area and a reflective area 32, the reflective plate 30
- a support frame 50 is also provided between the sensor chip and the support frame 50 and the optical modulation device 40 with a second gap.
- a light source 60 is provided on the side of the optical sensor element 10 facing away from the optical modulation device 40.
- the light-emitting device 62 is a side-emitting LED device.
- the light source circuit board 61 of the light source 60 extends from the main circuit board 11.
- the side light-emitting device 62 is located on the side of the main circuit board 11 facing the optical sensor chip 12.
- the light emitted by the side light-emitting device 62 passes through the first reflection of the finger on the screen 20 and then passes through the second reflection of the reflection plate, enters the optical modulation device 40 for modulation, and enters the space formed by the first gap and the second gap.
- the optical sensor chip 12 converts it into an electrical signal and outputs it through the main circuit board 11, which can realize the optical path folding of the light reflected from the finger, effectively reducing the fingerprint recognition module. Thickness, while ensuring fingerprint recognition performance, the thickness of the fingerprint recognition module is compressed and thinned.
- the side-emitting LED is first mounted on the circuit board, then the optical modulation device and the support frame are attached to the reflective board to form a whole, and then the optical sensor
- the wafer of the chip is ground and diced, and the cut optical sensor chip is attached to the main circuit board, and then the integrated reflector, optical modulation device, and supporting frame are attached to the optical sensor chip together.
- wire bonding operation is carried out, and the Pad on the surface of the wafer and the Lead on the surface of the circuit board are electrically connected through the metal wire.
- optional dispensing protection is provided on the metal wire.
- glue or film the above wire bonding process can be between any of the processes after the optical sensor chip is bonded.
- FIG. 4 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 5 of the present invention
- FIG. 5 is a top view of an optical fingerprint identification module according to Embodiment 5 of the present invention.
- the optical fingerprint recognition module further includes: a first support plate 51 supported under the reflective plate 30, and the first support plate 51 is directed toward the optical transmission A first support boss 52 protruding from the sensing element 10, a first gap is formed between the first support plate 51 and the optical sensor element 10, the first support plate 51 is connected to the optical modulation device 40, and the first support boss 52 is connected to There is a second gap for exposing the sensing area of the optical sensing element 10 between the optical modulation devices 40, and the first support boss 52 is located on the optical sensing chip 12 of the optical sensing element 10, which needs to be explained Yes, when the first support plate 51 is connected to the optical modulation device 40, it is necessary to ensure that there is still a first gap between the reflective plate 30 and the optical sensor chip 12.
- the first support plate 51 and the first support boss 52 constitute a support frame.
- the first support plate 51 is supported under the reflective plate 30, and the first support plate 51 has a first protrusion that protrudes toward the optical sensor element 10.
- a support boss 52, the first support plate 51 is connected to the optical modulation device 40, the first support boss 52 is located on the optical sensor chip 12, the first support plate 51 and the optical sensor element 10 form a first gap, the first A second gap is formed between the support boss 52 and the optical modulation device 40, and the first gap between the reflective plate 30 and the optical sensor chip 12 and the second gap together form a space for light propagation, so that
- the optical image signal modulated by the optical modulation device 40 can enter the space and illuminate the surface of the optical sensing element 10 and be captured by the sensing area of the optical sensing element 10 located in the space to convert it into an electrical signal output .
- the optical sensor element 10 includes a main circuit board 11 and an optical sensor chip 12 fixed on the main circuit board 11, the specific arrangement and connection of the main circuit board 11 and the optical sensor chip 12 Refer to Embodiment 3, and details are not repeated in this embodiment.
- the light source 60 is located on the side of the optical sensor element 10 close to the optical modulation device 40, and forms a first horizontal gap with the optical sensor element 10, specifically, the light source circuit board of the light source 60 A first horizontal gap is formed between 61 and the main circuit board 11 of the optical sensing element 10, so that the light reflected by the finger can be irradiated on the reflection area 32 through the first horizontal gap for reflection.
- the light source circuit board 61 of the light source 60 is a part extending from the main circuit board 11, and the light emitting device 62 of the light source 60 is embedded on the light source circuit board, as shown in FIG.
- the light source 60 is provided in the optical
- the sensing element 10 is close to the side of the optical modulation device 40, and forms a first horizontal gap with the main circuit board 11 under the optical sensor chip 12, so that the light reflected by the finger can enter the reflection area through the first horizontal gap 32 Perform secondary reflection.
- the light source circuit board 61 of the light source 60 is a part extending from the main circuit board 11.
- the light emitting device 62 of the light source 60 is embedded on the light source circuit board.
- the light source circuit board with the light emitting device 62 embedded therein is located on the optical sensor chip There is a first horizontal gap between the main circuit boards 11 under 12, so that the light reflected by the finger can be reflected a second time on the reflection area 32 of the reflective plate 30.
- the length of the reflector 30 is greater than the length of the optical sensor chip 12, and the width of the reflector 30 is greater than the width of the optical sensor chip 12, as shown in FIG. 5, in this embodiment, the reflector 30 The length is greater than the length of the optical sensor chip 12.
- the reflective plate 30 grows out of the optical sensor chip 12 to form the reflective area 32, and the corresponding position of the reflective area 32 of the reflective plate 30 on the circuit board is
- the hollow structure is provided with a light-emitting device 62 on the side away from the reflector 30, so that a first horizontal gap can be formed between the power supply and the main circuit board 11 under the optical sensor chip 12.
- the reflective plate 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- the optical sensor chip A first gap is formed between the 12 and the reflective plate 30, the optical modulation device 40 is disposed in the first gap, and is located on the optical sensor chip 12, the reflective plate 30 is divided into a first area and a reflective area by the optical modulation device 40 32.
- a first supporting plate 51 for supporting is provided under the reflecting plate 30.
- the first supporting plate 51 has a first supporting boss 52 protruding toward the optical sensing element 10, and the first supporting plate 51 is connected to the optical modulation device 40.
- the first support boss 52 is located on the optical sensor chip 12, a first gap is formed between the first support plate 51 and the optical sensor chip 12, and a second gap is formed between the first support boss 52 and the optical modulation device 40,
- a light source 60 is provided on the side close to the optical modulation device.
- the light source circuit board 61 of the light source 60 is a part extending from the main circuit board 11.
- the LED light-emitting device 62 of the light source 60 is embedded on the light source circuit board and embedded There is a first horizontal gap between the light source circuit board with the light-emitting device 62 and the main circuit board 11 located under the optical sensor chip 12, so that the light reflected by the finger can be reflected on the reflection area 32 of the reflector 30 a second time Reflected, the light emitted from the light-emitting device 62 passes through the first reflection of the finger on the screen 20 and enters the first horizontal gap to illuminate the reflector 30.
- the optical modulation device 40 After the second reflection of the reflector 30, it enters the optical modulation device 40 for After modulation, it enters the space formed by the first gap and the second gap and illuminates the optical sensor chip 12, which converts it into an electrical signal and outputs it through the main circuit board 11, which can fold the light reflected from the finger
- the optical path of the optical fiber can effectively reduce the thickness of the fingerprint recognition module. While ensuring the fingerprint recognition performance, the thickness of the fingerprint recognition module is compressed and thinned.
- the LED when manufacturing the optical fingerprint identification module, the LED is first mounted on the circuit board, and then the optical modulation device is attached to the first support plate, and the first support boss and the first support
- the board forms a whole, grind and scribe the wafer of the optical sensor chip, paste the cut optical sensor chip to the circuit board, and then stick the optical modulation device and the bracket to the optical sensor together Above the chip, attach the reflector to the bracket.
- wire bonding is performed, and the Pad on the surface of the wafer and the Lead on the surface of the circuit board are electrically connected through the metal wire.
- the metal wire is optional
- glue or film can be used for all the above bonding.
- the above wire bonding process can be between any of the processes after the optical sensor chip is bonded.
- FIG. 6 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 6 of the present invention
- FIG. 7 is a top view of an optical fingerprint identification module according to Embodiment 6 of the present invention.
- the first support boss 52 is located on the main circuit board 11 of the optical sensing element 10
- the light source 60 is located on the side of the optical sensing element 10 facing away from the optical modulation device 40
- the arrangement between the reflective plate 30, the optical sensor chip 12, the main circuit board 11, the optical modulation device 40 and the first support plate 51 can be referred to in the fifth embodiment, which will not be repeated in this embodiment.
- the reflective plate 30 is disposed above the optical sensor element 10, and the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11, wherein, The length of the reflector 30 is greater than the length of the optical sensor chip 12, the width of the reflector 30 is smaller than the width of the optical sensor chip 12, a first gap is formed between the optical sensor chip 12 and the reflector 30, and the optical modulation device 40 is provided In the first gap and located on the optical sensor chip 12, the optical modulation device 40 divides the reflector 30 into a first area and a reflective area 32, and the first support plate 51 is supported under the reflector 30, and is The optical modulation device 40 is connected, the first support boss 52 is located on the main circuit board 11, a first gap is formed between the first support board 51 and the optical sensor chip 12, and between the first support boss 52 and the optical modulation device 40 A second gap is formed.
- a light source 60 is provided on the side of the optical sensor element 10 facing away from the optical modulation device 40.
- the light source circuit board 61 of the light source 60 is a part extending from the main circuit board 11.
- the LED light emitting device 62 of the light source 60 Embedded on the light source circuit board, the light emitted from the light-emitting device 62, after the first reflection of the finger on the screen 20, is then irradiated on the reflective plate 30, and the second reflection through the reflective plate 30 passes through the optical modulation device After 40 modulation, enter the space formed by the first gap and the second gap and illuminate the optical sensor chip 12, the optical sensor chip 12 converts it into an electrical signal and outputs it through the main circuit board 11, to achieve the folding of the optical path , Effectively reducing the thickness of the fingerprint recognition module, while ensuring the fingerprint recognition performance, the thickness of the fingerprint recognition module is compressed and thinned.
- the LED when manufacturing the optical fingerprint recognition module, the LED is first mounted on the circuit board, and then the optical modulation device is attached to the first support board to form a whole, and the optical sensor chip
- the wafer is ground and diced, the cut optical sensor chip is attached to the main circuit board, and then the integrated optical modulation device, the first support plate, and the first support boss are attached to the surface of the main circuit board Then, attach the reflector to the first support board.
- wire bonding is performed, and the Pad on the surface of the wafer and the Lead on the surface of the circuit board are electrically connected by metal wires.
- optional Dispensing protection is applied to the metal wire.
- Glue or film can be used for all the above bonding.
- the above wire bonding process can be between any processes after the optical sensor chip is bonded.
- FIG. 8 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 7 of the present invention.
- the side of the reflector 30 has a second support boss 31 protruding toward the optical sensor element 10, and the second support boss 31 and the optical modulation device 40 There is a second gap for exposing the sensing area of the optical sensing element 10 and the first area, and the second support boss 31 is located on the optical sensing chip 12 of the optical sensing element 10, in this embodiment
- the reflector 30 and the second support boss 31 for support are integrally formed, the second support boss 31 is located between the reflector 30 and the optical sensor chip 12 to form a first gap, and the second support A second gap is formed between the boss 31 and the optical modulation device 40, and the first gap and the second gap form a space for light propagation, so that the optical image signal modulated by the optical modulation device 40 can enter the space and irradiate
- the surface of the optical sensing element 10 is captured by the sensing area where the optical sensing element 10 is located in the space to convert it into an electrical signal output.
- the optical sensor element 10 includes a main circuit board 11 and an optical sensor chip 12 fixed on the main circuit board 11, the specific arrangement and connection of the main circuit board 11 and the optical sensor chip 12 Refer to Embodiment 3, and details are not repeated in this embodiment.
- the light source 60 is not separately provided, and the light emitted by the screen 20 itself can be reflected on the finger once, and then reflected by the reflection plate for the second reflection, and then modulated and converted to output.
- the arrangement between the reflective plate 30, the optical sensor chip 12, the main circuit board 11 and the optical modulation device 40 can be referred to in the third embodiment, which will not be repeated in this embodiment.
- the reflective plate 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- the reflective plate 30 The side has a second support boss 31 protruding toward the optical sensing element 10, the second support boss 31 is used to support the reflector 30 and the optical sensing element 10 to form a first gap, and the second support boss 31 is There is a second gap between the optical modulation device 40 for exposing the sensing area of the optical sensing element 10 and the first area, and the second support boss 31 is located on the optical sensing chip 12 and the finger is placed on the screen 20 When it is on, the light emitted by the screen 20 is irradiated on the finger for the first reflection, and then irradiated on the reflective plate 30, after the second reflection of the reflective plate 30, modulated by the optical modulation device 40, enters the first gap The space formed with the second gap is irradiated onto the optical sensor chip 12, and the optical sensor chip 12 converts it into an electrical signal and
- a silicon etching or injection molding method is used to make the side of the reflector plate have a supporting and protruding second supporting boss, and then the optical modulation device Laminated to the integrated reflector and the second support boss to form a whole, then grind and scribe the wafer of optical sensor chip, and paste the cut optical sensor chip to the main circuit board, after Attach the integral optical modulation device and the second support boss to the optical sensor chip.
- wire bonding is performed to electrically connect the Pad on the surface of the wafer and the Lead on the surface of the circuit board through the metal wire.
- glue protection on the metal wire can use glue or film.
- the above wire bonding process can be any of the processes after the optical sensor chip bonding is completed. between.
- FIG. 9 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 8 of the present invention.
- the optical fingerprint recognition module includes a light source 60, which is located on the side of the optical sensor element 10 facing away from the optical modulation device 40, and the light source circuit board of the light source 60 61 is a separately provided circuit board.
- the light emitting device 62 of the light source 60 is located on the side of the light source circuit board 61 facing away from the optical sensor element 10.
- the reflector 30, the second support boss 31, the optical modulation device 40, the optical The setting manner of the sensor chip 12 and the main circuit board 11 can be referred to the seventh embodiment, which will not be repeated in this embodiment.
- the reflective plate 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- On the reflective plate 30 Has a second support boss 31 protruding toward the optical sensor element 10, the second support boss 31 is used to support the reflector 30 and the optical sensor element 10 to form a first gap, and the second support boss 31 There is a second gap for exposing the sensing area of the optical sensing element 10 and the first area with the optical modulation device 40, the second support boss 31 is located on the optical sensing chip 12, and the optical sensing element 10
- the side facing away from the optical modulation device 40 is provided with a light source 60, the light source circuit board 61 of the light source 60 is a separate circuit board, and the LED light emitting device 62 of the light source 60 is located on a side of the light source circuit board 61 facing away from the optical sensing element 10 Set on the side, when the finger is placed on the screen 20, the light emitted by the light-emitting device
- the optical fingerprint recognition module when manufacturing the optical fingerprint recognition module, first, silicon etching or injection molding is used to provide a second support boss on one side of the reflector, and then the wafer of the optical sensor chip is ground And scribe, affix the cut optical sensor chip to the main circuit board, and then affix the optical modulation device above the optical sensor chip, and then affix the whole reflector and the second support boss to the optical sensor Above the chip, after the bonding is completed, wire bonding is performed, and the Pad on the surface of the wafer and the Lead on the surface of the circuit board are electrically connected through the metal wire, and then, according to actual needs, optional dispensing protection on the metal wire.
- the LED is mounted on the light source circuit board.
- the above bonding can use glue or film.
- the above bonding process can be between any one of the processes after the optical sensor chip is bonded.
- FIG. 10 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 9 of the present invention.
- the second support boss 31 on the side of the reflector 30 is located on the main circuit board 11 of the optical sensor element 10, and the optical modulation device 40 is also located on the main On the circuit board 11, in addition, the light source 60 is located on the side of the optical sensor element 10 facing away from the optical modulation device 40, the light emitting device 62 of the light source 60 is a side light emitting device, and the light source circuit board 61 of the light source 60 is an independent circuit board The light-emitting device 62 is located on the side of the light source circuit board 61 facing the optical sensor element 10, and the arrangement between the reflector 30, the optical sensor chip 12 and the main circuit board 11 can be seen in the eighth embodiment. No more details in the examples.
- the reflective plate 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- the second support boss 31 protruding from the sensor element 10 is used to support the reflector 30 and the optical sensor element 10 to form a first gap, and the second support boss 31 and the optical modulation device 40
- the second support boss 31 and the optical modulation device 40 are respectively located on the main circuit board 11, on the optical sensing element 10
- a light source 60 is provided on the side facing away from the optical modulation device 40, and the light-emitting device 62 of the light source 60 is a side-emitting LED device.
- the light-emitting device 62 is located on the side of the light source circuit board 61 facing the optical sensor element 10, and the finger is placed On the screen 20, the light emitted by the side light-emitting device 62 is irradiated on the finger for the first reflection, and then irradiated on the reflector 30, after the second reflection of the reflector 30, after being modulated by the optical modulation device 40, Entering the space formed by the first gap and the second gap and illuminating the optical sensor chip 12, the optical sensor chip 12 converts it into an electrical signal and outputs it through the main circuit board 11, which can realize the optical path of the light reflected from the finger Folding effectively reduces the thickness of the fingerprint recognition module. While ensuring the fingerprint recognition performance, the thickness of the fingerprint recognition module is compressed and thinned.
- the optical fingerprint identification module when the optical fingerprint identification module is manufactured, first, silicon etching or injection molding is used to make the side of the reflector have a second supporting boss, and then the optical modulation device is attached to the reflector , To form a whole, then grind and scribe the wafer of optical sensor chip, stick the cut optical sensor chip to the main circuit board, and then will form a whole optical modulation device, the second support boss Paste them together on top of the main circuit board. After the bonding is completed, perform wire bonding, electrically connect the Pad on the surface of the wafer and the Lead on the surface of the circuit board through the metal wire, and then optionally make a point on the metal wire according to actual needs. Glue protection, and finally mount the LED to the light source circuit board. Glue or film can be used for all the above bonding, and the above wire bonding process can be between any one of the processes after the bonding of the optical sensor chip is completed.
- FIG. 11 is a schematic diagram of an application scenario of an optical fingerprint identification module according to Embodiment 10 of the present invention.
- the reflective area 32 is the first area on the reflective plate 30 corresponding to the sensing area of the optical sensor element 10 located in the first gap, so that After the light reflected by the finger passes through the optical modulation device 40, it is irradiated on the reflection area 32 and reflected, and then enters the sensing area.
- the reflection area 32 is located in the first area on the reflective plate 30 corresponding to the sensing area in the first gap, so that the light reflected by the finger passes through the optical modulation device 40, shines on the reflection area 32, and enters the sensing area.
- the light with the fingerprint signal reflected from the finger first passes through the optical modulation device 40 and enters the first gap, irradiates the reflection area 32 of the reflection plate 30, and is reflected to the
- the surface of the sensing area is captured by the sensing area of the optical sensing element 10 and converts the optical image signal into an electrical signal to the outside of the module to identify the fingerprint, that is, the light reflected by the finger is modulated, reflected, and converted into electricity in turn
- the optical path of the light reflected from the finger and bearing fingerprint information is folded, which can effectively reduce the thickness of the fingerprint recognition module without affecting the fingerprint recognition performance.
- the reflective plate 30 is disposed above the optical sensor element 10, and a screen 20 is provided on the side of the optical sensor element 10 opposite to the reflective plate 30.
- the optical sensor The surface of the element 10 has a sensing area for capturing the optical image signal irradiated thereon, a first gap is formed between the optical sensing element 10 and the reflective plate 30, an optical modulation device 40 is provided in the gap, and the reflective plate 30
- the first area corresponding to the sensing area where the optical sensor element 10 is located in the first gap is the reflective area 32, so that when the finger is placed on the screen 20, the light irradiated on the finger will be reflected once.
- the reflected light signal contains fingerprint information.
- the inclined reflected light first enters the optical modulation device 40 for modulation and imaging and enters the first gap, irradiates the reflection area 32 of the reflector 30, and secondary reflection enters the transmission.
- the optical sensing element 10 converts the captured optical image signal into an electrical signal, and transmits the electrical signal to the outside of the module to identify the fingerprint, that is, the optical light with fingerprint information reflected from the finger
- the signal is output after being modulated, reflected, and converted into an electrical signal in sequence, which realizes the folding of the optical path, effectively reduces the thickness of the fingerprint recognition module, and ensures the thickness of the fingerprint recognition module while ensuring the performance of the fingerprint recognition. Compression and thinning to meet the design needs of the market.
- a first gap is formed between the reflective plate 30 and the optical sensor element 10, and the reflection area 32 is a first area corresponding to the sensing area in the first gap, wherein, the The first gap is used to ensure that the sensing area of the optical sensing element 10 is not covered, and the light modulated by the optical modulation device 40 can enter the first gap and illuminate on the reflection area 32 located in the first gap, Therefore, there is no other requirement for the size of the first gap and the reflection area 32, and the light reflected by the finger can enter the first gap through the optical modulation device 40, irradiate the reflection area 32 and reflect, and then enter the optical sensor element 10 The sensing area is sufficient.
- An optical fingerprint recognition module provided by an embodiment of the present invention, by setting the reflective area 32 as a first area on the reflective plate 30 corresponding to the sensing area of the optical sensing element 10 located in the first gap, so that After being modulated by the optical modulation device 40, the reflected light enters the first gap and illuminates the reflective area 32, and then illuminates the surface of the sensing area after being reflected, so that when the finger is placed on the screen 20, the After the optical signal of the fingerprint information is modulated by the optical modulation device 40 to form an optical image signal and enters the first gap, it is irradiated on the reflection area 32, and after reflection, it is irradiated on the sensing area of the optical sensor element 10 and transmitted Sensing area capture, the optical sensor element 10 converts the captured optical image signal into an electrical signal, and transmits the electrical signal to the outside of the module to identify the fingerprint, that is, the light reflected by the finger is sequentially modulated, reflected, It is converted into an electrical signal and output, which folds the optical path of the
- FIG. 12 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 11 of the present invention.
- a support frame 50 is further provided between the reflective plate 30 and the optical sensor element 10, and the support frame 50 is used to support the reflective plate 30 and the optical sensor element 10 to form a first gap, and there is a second gap between the support frame 50 and the optical modulation device 40 for exposing the sensing area and the first area.
- a support frame 50 is provided between the reflective plate 30 and the optical sensing element 10 for supporting the reflective plate 30 and the optical sensing element 10 so that the first between the reflective plate 30 and the optical sensing element 10 in the longitudinal direction is formed There is a gap between the support frame 50 and the optical modulation device 40, which can expose the sensing area and the first area, that is, the reflective area 32.
- the second gap refers to the lateral direction between the optical modulation device 40 and the support frame 50
- the second gap forms a second gap in the direction of, the first gap and the second gap together form a space for light propagation, so that the optical image signal modulated by the optical modulation device 40 can enter the space and illuminate the first area That is, the reflection area 32 is reflected to illuminate the surface of the sensing area of the optical sensing element 10, and converts it into an electrical signal for output.
- the support frame 50 can also block external ambient light to avoid interference caused by ambient light.
- a support frame 50 is provided between the reflective plate 30 and the optical sensor element 10 to form a longitudinal first gap between the reflective plate 30 and the optical sensor element 10
- the material of the support frame 50 includes glass, silicon, metal, or plastic.
- the support frame 50 may be a support frame made of glass, silicon, metal, plastic, or other moldable materials. In this embodiment There are no restrictions in the example.
- the shape of the supporting frame is also not limited in this embodiment.
- the supporting frame may include a first supporting plate supported under the reflective plate, and the first supporting plate has a first supporting protrusion protruding from the side facing the optical sensing element It is only necessary to ensure that a first gap is formed between the first support plate and the optical sensor element, and there is only a second gap between the first support boss and the optical modulation device that exposes the reflection area and the sensing area and the reflection area.
- the optical sensor element 10 includes a main circuit board 11 and an optical sensor chip 12 fixed on the main circuit board 11, the specific arrangement between the optical sensor chip 12 and the main circuit board 11 and For the connection relationship, refer to Embodiment 3, and details are not described in this embodiment.
- the optical modulation device 40 is located on the optical sensor chip 12, and the support frame 50 is located on the optical sensor chip 12. As shown in FIG. 12, the optical modulation device 40 is disposed on the optical sensor chip 12, and the support frame 50 is located between the optical sensor chip 12 and the reflective plate 30, so that a first gap is formed between the optical sensor chip 12 and the reflective plate 30, and a second gap is formed between the support frame 50 and the optical modulation device 40, The sensing area and the reflective area 32 are exposed, so that the light reflected by the finger is modulated by the optical modulation device 40, enters the space formed by the first gap and the second gap, irradiates the reflective area 32 after being reflected, and Irradiate on the sensing area, so as to capture the optical image signal.
- the optical fingerprint recognition module further includes a light source 60, which is located on the side of the optical sensor element 10 facing away from the optical modulation device 40, and the light source circuit board 61 of the light source 60 is separately provided
- the light-emitting device 62 of the light source 60 is a side-emitting LED, and is located on the side of the light source circuit board 61 facing away from the optical sensor element 10.
- the reflective plate 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- a first gap is formed between the plates 30, the optical modulation device 40 is disposed in the first gap, and is located on the optical sensor chip 12, the first area of the reflective plate 30 corresponding to the sensing area is the reflective area 32, the reflective plate
- a light source 60 is provided on the side of the optical sensor element 10 facing away from the optical modulation device 40.
- the light source 60 includes an LED light emitting device 62 and a light source circuit board 61.
- the light emitting device 62 is disposed on a side of the light source circuit board 61 facing away from the optical sensor element 10.
- the light emitted by the LED light emitting device after being reflected by the finger on the screen for the first time and then modulated by the optical modulation device 40, is irradiated on the reflection area 32 for a second reflection. After reflection, it enters the sensing area and is captured. It is converted into an electrical signal and output through the main circuit board 11, so that the optical path of the light reflected from the finger is folded, the thickness of the fingerprint recognition module is effectively reduced, and the fingerprint recognition is recognized while ensuring the fingerprint recognition performance The thickness of the module is compressed and thinned.
- the LED light emitting device when manufacturing the optical fingerprint recognition module, can be first mounted on the light source circuit board, and then the optical modulation device can be attached to the support frame to form a whole, and the optical sensor The wafer of the chip is ground and diced, and the cut optical sensor chip is attached to the circuit board, then the integrated optical modulation device and the supporting frame are attached to the optical sensor chip together, and finally the reflective board
- the wire bonding operation is carried out, and the Pad on the surface of the wafer and the Lead on the surface of the circuit board are electrically connected using a metal wire.
- FIG. 13 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 12 of the present invention.
- the support frame 50 is located on the main circuit board 11, and the optical modulation device 40 is also located on the main circuit board 11, the reflector 30, the optical sensor chip 12, and the main circuit
- the setting manner between the boards 11 can be referred to the eleventh embodiment, which will not be repeated in this embodiment.
- the reflective plate 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- the optical sensor chip 12 and the reflective plate 30 A first gap is formed therebetween, and an optical modulation device 40 is provided in the gap, the optical modulation device 40 is located on the main circuit board 11, and the reflection area 32 is a transmission area between the reflective plate 30 and the optical sensor element 10 located in the first gap
- a support frame 50 is further provided between the reflective plate 30 and the optical sensor element 10, and a second gap is formed between the support frame 50 and the optical modulation device 40, and the support frame 50 is also located in the main circuit
- a light source 60 is provided on the side of the optical sensing element 10 facing away from the optical modulation device 40, the light source circuit board 61 of the light source 60 is a separate circuit board, and the light emitting device 62 of the light source 60 is a side-emitting LED, And it is located on the side of
- the light emitted by the side light emitting device 62 irradiates the finger for the first reflection, passes through the optical modulation device 40, and irradiates the reflection area 32 for the second reflection. Capture, so that the optical path of the light reflected from the finger is folded, the thickness of the fingerprint recognition module is effectively reduced, and the thickness of the fingerprint recognition module is compressed and thinned while ensuring the fingerprint recognition performance.
- the LED light emitting device when manufacturing the optical fingerprint recognition module, can be first mounted on the light source circuit board, and then the optical modulation device, the support frame, and the reflective board can be bonded together to form a whole.
- the wafer of the sensor chip is ground and diced, and the cut optical sensor chip is attached to the circuit board, and then the integrated optical modulation device, reflective plate, and support frame are attached to the optical sensor chip together
- wire bonding is performed, and the Pad on the surface of the chip and the Lead on the surface of the circuit board are electrically connected using metal wires.
- optional dispensing protection on the gold wire is provided. Glue or film can be used for bonding, and the wire bonding process can be performed between any processes after the bonding of the optical sensor chip is completed.
- FIG. 14 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 13 of the present invention.
- the side of the reflector 30 has a second support boss 31 protruding toward the optical sensor element 10, and the second support boss 31 and the optical modulation device 40 There is a second gap therebetween for exposing the sensing area of the optical sensing element 10 and the reflection area 32, and the optical modulation device 40 and the second support boss 31 are both located in the optical sensing chip 12 of the optical sensing element 10 on.
- the reflector 30 and the second support boss 31 for support are integrally formed, and the second support boss 31 is located between the reflector 30 and the optical sensor chip 12 to form a first gap, A second gap is formed between the second support boss 31 and the optical modulation device 40, and the first gap and the second gap form a space for light propagation, so that the light reflected by the finger is modulated into the space by the optical modulation device 40, and After being irradiated on the reflection area 32 for reflection, it illuminates the surface of the optical sensing area and is captured by the sensing area of the optical sensing element 10 to convert it into an electrical signal output.
- the optical sensor element 10 includes a main circuit board 11 and an optical sensor chip 12 fixed on the main circuit board 11, the specific arrangement and connection of the main circuit board 11 and the optical sensor chip 12 Refer to Embodiment 3, and details are not repeated in this embodiment.
- the light source 60 is not separately provided, and the light emitted by the screen 20 itself can be reflected on the finger once, and then reflected by the reflection plate for the second reflection, and then modulated and converted to output.
- the arrangement between the reflector 30, the optical sensor chip 12, the main circuit board 11 and the light source can refer to Embodiment 11, which will not be repeated in this embodiment.
- the reflective plate 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- the reflective plate 30 The side has a second support boss 31 protruding toward the optical sensing element 10, the second support boss 31 is used to support the reflector 30 and the optical sensing element 10 to form a first gap, and the second support boss 31 is There is a second gap between the optical modulation device 40 for exposing the sensing area and the reflective area 32, and the second support boss 31 is located on the optical sensing chip 12, when the finger is placed on the screen 20, the screen 20 emits After the first reflection on the finger is irradiated by the light, it enters the space formed by the first gap and the second gap through the optical modulation device 40, and is irradiated on the reflection area 32.
- the optical sensor chip 12 After being reflected for the second time, it illuminates the optical sensor chip On 12, the optical sensor chip 12 converts it into an electrical signal and outputs it through the main circuit board 11 to realize the folding of the optical path, which effectively reduces the thickness of the fingerprint recognition module, and ensures the fingerprint recognition performance, at the same time, the fingerprint The thickness of the identification module is compressed and thinned.
- the optical fingerprint recognition module when the optical fingerprint recognition module is manufactured, first, silicon etching or injection molding is used to make the side of the reflector have a second support boss for support, and then the optical modulation device is attached On the integrated reflector and the second support boss to form a whole, then grind and scribe the wafer of the optical sensor chip, paste the cut optical sensor chip on the main circuit board, and then form An integrated optical modulation device and the second support boss are attached to the optical sensor chip together.
- wire bonding is performed to electrically connect the Pad on the surface of the wafer and the Lead on the surface of the circuit board with metal wires. According to the actual needs, you can choose to do glue protection on the gold wire. All the above bonding can use glue or film.
- the above wire bonding process can be performed between any processes after the optical sensor chip bonding is completed. .
- FIG. 15 is a schematic cross-sectional view of an optical fingerprint identification module according to Embodiment 14 of the present invention.
- the second support boss and the optical modulation device are both located on the main circuit board of the optical sensing element
- the optical fingerprint recognition module further includes a light source 60
- the light source 60 is located on the side of the optical sensor element 10 facing away from the optical modulation device 40
- the light source circuit board 61 of the light source 60 is a separate circuit board
- the light emitting device 62 of the light source 60 is a side-emitting LED, and is located on the light source circuit board 61 It is provided on the side facing away from the optical sensor element 10.
- the arrangement between the reflector 30, the optical sensor chip 12, the main circuit board 11 and the light source can refer to Embodiment 11, which will not be repeated in this embodiment.
- the reflective plate 30 is disposed above the optical sensor element 10.
- the optical sensor element 10 includes an optical sensor chip 12 and a main circuit board 11.
- the reflective plate 30 The side has a second support boss 31 protruding toward the optical sensing element 10, a first gap is formed between the reflective plate 30 and the optical sensing element 10, and there is a space between the second support boss 31 and the optical modulation device 40
- the second gap that exposes the sensing area and the reflective area 32, and the second support boss 31 and the optical modulation device are both located on the main circuit board, and the light emitted from the side light emitting device is irradiated on the finger for the first reflection After passing through the optical modulation device 40, it enters the space formed by the first gap and the second gap, and is irradiated on the reflection area of the reflective plate 30 for a second reflection, and then irradiated onto the sensing area, and the optical sensor chip 12 will After it is converted into an electrical signal and output through the main circuit board 11, the optical path is
- the optical fingerprint recognition module when the optical fingerprint recognition module is manufactured, first, silicon etching or injection molding is used to make the side of the reflector have a second support boss for support, and then the optical modulation device is attached On the integrated reflector and the second support boss to form a whole, then grind and scribe the wafer of optical sensor chip, paste the cut optical sensor chip on the main circuit, and then form a The overall optical modulation device, reflector, and second support boss are attached to the main circuit board together. After the bonding is completed, wire bonding is performed to electrically connect the Pad on the surface of the wafer and the Lead on the surface of the circuit board with metal wires. Then, according to the actual needs, you can optionally do glue protection on the gold wire, and finally mount the LED on the main circuit board. All the above bonding can use glue or film. The above wire bonding process can be used in optical sensing After any process of chip bonding is completed.
- the present invention also provides an electronic device, including the optical fingerprint identification module in the above embodiment, the electronic device includes but is not limited to mobile phones, tablet computers, wearable devices, access control devices, ATM machines, etc. using optical fingerprints Electronic device with identification function.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Optics & Photonics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Image Input (AREA)
Abstract
一种光学指纹识别模组及电子装置,包括:反光板(30)、光学调制器件(40)和光学传感元件(10),反光板(30)和光学传感元件(10)上下设置,且光学传感元件(10)与反光板(30)之间形成第一间隙,光学调制器件(40)设置于第一间隙内,反光板(30)包括位于光学调制器件(40)一侧的反射区(32),以使经手指反射的光经光学调制器件(40)和反射区(32)后进入光学传感元件(10)的传感区域,这样就使手指反射的、带有指纹信号的光经过反光板(30)以及光学调制器件(40)的反射和调制后进入传感区域并输出,对从手指反射、带有指纹信息的光的光路进行了反射折叠,在保证指纹识别性能的前提下,有效的减小指纹识别模组的厚度。
Description
本申请涉及指纹识别领域,尤其涉及一种光学指纹识别模组及电子装置。
指纹识别技术是指通过指纹识别模组感应、分析指纹的谷和脊的信号来识别指纹信息,具有安全性高,且操作方便快捷的优点,而被广泛的应用于电子产品中。指纹成像技术的实现方式有光学成像、电容成像、超声成像等多种技术,其中,光学指纹识别技术因其具有穿透能力强、支持全屏摆放、产品结构设计简单等特点,而逐渐成为指纹识别技术的主流。
目前,现有的光学指纹模组通常包括光源、透镜组和与透镜组平行的图像传感器,使用时,需要将手指放在屏幕的光学镜片上,手指在内置光源照射下,光线在手指表面指纹凹凸不平的线纹上折射的角度及反射回去的光线明暗就不一样,经过透镜组聚焦调制后形成光强空间分布图像,然后在图像传感器件上得到多灰度指纹图像,可以实现较大区域的指纹图像采集。
然而,在现有的光学指纹模组中,为满足指纹图像采集区域以保证指纹识别性能,其所需的焦距就会较长,导致光程变长,这样就会使模组的总体尺寸厚度变大,不能满足市场设计需求。
发明内容
本发明提供一种光学指纹识别模组及电子装置,以解决现有光学指纹模组,其所需焦距较长,光程较长而导致模组总体尺寸较厚的问题。
一方面,本发明提供一种光学指纹识别模组,包括:反光板、光学调制器件和光学传感元件;
其中,所述反光板和所述光学传感元件上下设置,且所述光学传感元件与所述反光板之间形成第一间隙,所述光学调制器件设置于所述第一间隙内,所述反光板包括位于所述光学调制器件一侧的反射区,以使经手指反射的光 经所述光学调制器件和所述反射区后进入所述光学传感元件的传感区域。
在本发明的具体实施方式中,所述反光板被所述光学调制器件分割为位于所述光学调制器件一侧、与所述光学传感元件位于所述第一间隙内的传感区域对应的第一区域,以及位于所述光学调制器件另一侧的所述反射区,以使经手指反射的光在所述反射区反射后经所述光学调制器件进入所述传感区域。
在本发明的具体实施方式中,所述反射区为所述反光板上与所述光学传感元件位于所述第一间隙内的传感区域相对应的第一区域,以使经手指反射的光经过所述光学调制器件后在所述反射区反射后进入所述传感区域。
在本发明的具体实施方式中,所述反光板和所述光学传感元件之间还设有支撑架,所述支撑架用于支撑所述反光板和所述光学传感元件以形成所述第一间隙,所述支撑架与所述光学调制器件之间具有用于使所述传感区域和所述第一区域露出的第二间隙。
在本发明的具体实施方式中,还包括:支撑在所述反光板下的第一支撑板,以及由所述第一支撑板朝所述光学传感元件突出的第一支撑凸台,所述第一支撑板与所述光学传感元件之间形成所述第一间隙,所述第一支撑板与所述光学调制器件连接,所述第一支撑凸台与所述光学调制器件之间具有用于使所述传感区域露出的第二间隙。
在本发明的具体实施方式中,所述反光板一侧具有朝所述光学传感元件突出的第二支撑凸台,所述第二支撑凸台与所述光学调制器件之间具有用于使所述传感区域和所述第一区域露出的第二间隙。
在本发明的具体实施方式中,所述光学传感元件包括主电路板和固定在所述主电路板上的光学传感芯片,所述光学传感芯片背离所述主电路板的一侧表面具有所述传感区域,且所述传感芯片与所述反光板之间形成所述第一间隙。
在本发明的具体实施方式中,所述光学调制器件位于所述光学传感芯片上;或者,所述光学调制器件位于所述主电路板上;或者,
所述光学调制器件位于所述支撑架上;或者,所述光学调制器件位于所述反光板上。
在本发明的具体实施方式中,所述支撑架位于所述光学传感芯片上;或 者,所述支撑架位于所述主电路板上。
在本发明的具体实施方式中,所述光学传感元件包括主电路板和固定在所述主电路板上的光学传感芯片,所述第一支撑凸台位于所述光学传感芯片上;或者,所述第一支撑凸台位于所述主电路板上。
在本发明的具体实施方式中,所述光学传感元件包括主电路板和固定在所述主电路板上的光学传感芯片,所述第二支撑凸台位于所述光学传感芯片上;或者,所述第二支撑凸台位于所述主电路板上。
在本发明的具体实施方式中,还包括:光源,所述光源设置于光学传感元件靠近所述光学调制器件的一侧,且所述光源与所述光学传感元件之间形成第一水平间隙。
在本发明的具体实施方式中,还包括:光源,所述光源位于光学传感元件背离所述光学调制器件的一侧设置。
在本发明的具体实施方式中,所述光源包括发光装置和与所述发光装置电性相连的光源电路板。
在本发明的具体实施方式中,所述光源电路板与所述光学传感元件的主电路板相互独立设置,所述发光装置嵌设在所述光源电路板上。
在本发明的具体实施方式中,所述光源电路板为由所述光学传感元件的主电路板延伸出的一部分,所述发光装置嵌设在所述光源电路板上;或者,
所述发光装置位于所述光源电路板背向所述光学传感元件的一侧上设置。
在本发明的具体实施方式中,所述发光装置包括发光二极管、有机发光二极管、垂直腔面发射激光器、激光二极管和屏幕中的至少一个。
在本发明的具体实施方式中,所述主电路板包括PCB板、基板、软板或软硬结合板。
在本发明的具体实施方式中,所述光学调制元件光学调制器件包括透镜单体、滤光片单体或透镜和滤光片的组合元件。
在本发明的具体实施方式中,所述反光板的材质包括玻璃、硅、金属或塑料。
在本发明的具体实施方式中,所述支撑架的材质包括玻璃、硅、金属或塑料。
另一方面,本发明还提供一种电子装置,包括上述任一所述的光学指纹 识别模组。
本发明提供一种光学指纹识别模组及电子装置,通过将反光板和光学传感元件上下设置并形成第一间隙,在该第一间隙中设置光学调制器件,且该反光板包括位于光学调制器件一侧的反射区,以使经手指反射的光经光学调制器件和反射区后进入传感区域,这样将手指放在屏幕上后,手指反射的、带有指纹信号的光经过反光板以及光学调制器件的反射和调制,形成光学图像信号后,再进入光学传感元件的表面,被光学传感元件的传感区域捕捉,并将光学图像信号转换成电信号传递到模组外部,以识别指纹,即将手指反射的光经过反射和调制后进入传感区域并输出,与现有的光学识别模组相比,通过反光板、光学传感元件及光学调制器件之间的位置结构设计,对从手指反射的、带有指纹信息的光的光路进行了反射折叠,这样就可以有效的减小指纹识别模组的厚度,同时也不会对指纹识别性能造成影响。解决了现有光学指纹模组,其所需焦距较长,光程较长而导致模组总体尺寸较厚的问题。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种光学识别模组应用场景示意图;
图2为本发明实施例三提供的一种光学识别模组的截面示意图;
图3是本发明实施例四提供的一种光学指纹识别模组的截面示意图;
图4是本发明实施例五提供的一种光学指纹识别模组的截面示意图;
图5是本发明实施例五提供的一种光学指纹识别模组的俯视图;
图6是本发明实施例六提供的一种光学指纹识别模组的截面示意图;
图7是本发明实施例六提供的一种光学指纹识别模组的俯视图;
图8是本发明实施例七提供的一种光学指纹识别模组的截面示意图;
图9是本发明实施例八提供的一种光学指纹识别模组的截面示意图;
图10是本发明实施例九提供的一种光学指纹识别模组的截面示意图;
图11是本发明实施例十提供的一种光学指纹识别模组应用场景示意图;
图12是本发明实施例十一提供的一种光学指纹识别模组的截面示意图;
图13是本发明实施例十二提供的一种光学指纹识别模组的截面示意图;
图14是本发明实施例十三提供的一种光学指纹识别模组的截面示意图;
图15是本发明实施例十四提供的一种光学指纹识别模组的截面示意图。
附图标记说明:
光学传感元件-10;主电路板-11;光学传感芯片-12;屏幕-20;反光板-30;第二支撑凸台-31;反射区-32;光学调制器件-40;支撑架-50;第一支撑板-51;第一支撑凸台-52;光源-60;光源电路板-61;发光装置-62。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
实施例一
图1为本发明实施例一提供的一种光学识别模组应用场景示意图。
一方面,本发明提供一种光学指纹识别模组,光学指纹识别是利用光的反射,将手指放在屏幕上时,从设置的光源或屏幕发出的光线照射在手指表面,光线在指纹凹凸不平的线纹上折射的角度及反射回去的光线明暗就不一样,从而形成光强的分布图像,在传感器件上就得到多灰度的指纹图像,将该指纹图像与预先保存的指纹图像进行比对即实现了对指纹的识别。
在本实施例中,该光学指纹识别模组包括:反光板30、光学调制器件40和光学传感元件10,其中,反光板30用于对经屏幕20上手指反射的光进行反射,光学调制器件40用于对进入其中的光线起到调制形成光学图像信号的作用,光学传感元件10用于捕捉其上的光学图像信号,将其转换成电信号, 并将该电信号传递到模组外部,以供外部电路进行指纹的比对识别。
在本实施例中,反光板30和光学传感元件10上下设置,且光学传感元件10与反光板30之间形成第一间隙,光学调制器件40设置于该第一间隙内,反光板30包括位于光学调制器件40一侧的反射区32,以使经手指反射的光经反射区32反射和光学调制器件40调制后进入传感区域,这样,将手指放在屏幕20上后,手指反射的、带有指纹信号的光经过反光板30以及光学调制器件40的反射和调制,形成光学图像信号后,进入光学传感元件10的表面,被光学传感元件10的传感区域捕捉,并将光学图像信号转换成电信号传递到模组外部,以识别指纹,即将手指反射的光经过反射和调制后进入传感区域并输出,与现有的光学识别模组相比,通过反光板30、光学传感元件10及光学调制器件40之间的位置结构设计,对从手指反射、带有指纹信息的光的光路进行了反射折叠,这样就可以有效的减小指纹识别模组的厚度,同时也不会对指纹识别性能造成影响。
需要说明的是,在本实施例中,对反射区32位于光学调制器件40的一侧的具体位置不做限定,能够使经手指反射的光在反射区32反射且经过光学调制器件40成像后,进入传感区域即可,反射区32可以是位于反光板30上光学调制器件40的一侧、与光学传感元件10位于第一间隙内的传感区域相应位置的第一区域,以使经手指反射的光先经过光学调制器件40形成光学图像后,在反射区32反射后进入传感区域;反射区也可以位于光学调制器件40的另一侧,以使经手指反射的光先在反射区32反射后经过光学调制器件40形成光学图像信号后,进入传感区域。
具体的,如图1所示,以反射区为位于反光板上光学调制器件远离第一区域的另一侧,以使经手指反射的光先在反射区反射后经过光学调制器件形成光学图像信号后,进入传感区域为例,具体的,反光板30设置在光学传感元件10的上方,在光学传感元件10与反光板30相背的一侧设置有屏幕20,光学传感元件10表面具有传感区域,用于捕捉照射在其上的光学图像信号,光学传感元件10与反光板30之间形成有第一间隙,在该间隙内设置光学调制器件40,反光板被光学调制器件40分割为位于光学调制器件40一侧、与光学传感元件10位于第一间隙内的传感区域对应的第一区域,以及位于光学调制器件40另一侧的该反射区32,将手指放在屏幕20上时,照射在手指上 的光就会发生一次反射,此时该反射光信号中就包含有指纹信息,该倾斜的反射光照射在反光板30的反射区32发生二次反射,进入光学调制器件40中,经过调制成像后就进入该第一间隙中,照射在位于该第一间隙中的光学传感元件10上,并被该光学传感元件10上的传感区域捕捉,光学传感元件10将捕捉的光学图像信号转换为电学信号,并将该电学信号传递到模组外部,以识别该指纹,也就是说,从手指反射的、带有指纹信息的光学信号,在依次经过反射、调制、转换成电学信号后输出,这样就实现了对光路的折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄,以满足市场的设计需求。
在本实施例中,照射在手指上的光可以是来自于屏幕自身发出的光,也可以是独立设置光源发出的光,在本实施例中不做限制。
其中,该光学指纹识别模组包括光源60时,该光源60可以设置于光学传感元件10靠近光学调制器件40的一侧,且光源60与光学传感元件10间形成第一水平间隙,以保证从手指反射的光可以通过第一水平间隙射进光学指纹识别模组中;该光源也可以位于光学传感元件10远离光学调制器件40的一侧设置。光源所用的电路板可以是主电路板11的延伸部分,也可以是另外设置的光源电路板61。对该光源的发光装置62的类型也不做限制,该发光装置62可以是正发光装置也可以是侧发光装置。
其中,在本实施例中,发光装置62包括发光二极管、有机发光二极管、垂直腔面发射激光器或激光二极管,发光装置62可以是正发光装置,也可以是侧发光装置,其可以是发光二极管(LED)、有机发光二极管(OLED)、垂直腔面发射激光器(VCSEL)或者是激光二极管等可以发出光学信号的元件,在本实施例中不做限制。
在本实施例中,该光学调制器件40包括透镜单体、滤光片单体或透镜和滤光片的组合元件,光学调制器件40可以是透镜单体、滤光片单体,也可以是透镜和滤光片的组合元件,也可以是其它能够起到调制光路作用的单体或组合元件,在本实施例中不做限制。
在本实施例中,该反光板30的材质包括玻璃、硅、金属或塑料,反光板30可以是玻璃材质、硅材质、金属材质、塑料材质的反光板,也可以是其它可以成型的材质,反光板30的表面可以镀有反光膜,也可以不镀反光膜,在 本实施例中不做限制。
需要说明的是,在本实施例中,该第一间隙中设置有光学调制器件40,为支撑该反光板30和光学调制器件40,可在该第一间隙中设置支撑体,或者可以使反光板30远离光学调制器件40的另一端具有可起支撑作用的结构,在本实施例中不做限制,在设置时保证第一空隙以及其中的传感区域不被遮盖即可。
本发明提供一种光学指纹识别模组,通过将反光板30和光学传感元件10上下设置并形成第一间隙,在该第一间隙中设置光学调制器件40,且该反光板包括位于光学调制器件40一侧的反射区32,以使经手指反射的光经光学调制器件40和反射区32后进入传感区域,这样将手指放在屏幕20上后,手指反射的、带有指纹信号的光经过反光板30以及光学调制器件40的反射和调制,形成光学图像信号后,进入光学传感元件10的表面,被光学传感元件10的传感区域捕捉,并将光学图像信号转换成电信号传递到模组外部,以识别指纹,即将手指反射的光经过反射和调制后进入传感区域并输出,与现有的光学识别模组相比,通过反光板30、光学传感元件10及光学调制器件40之间的位置结构设计,对从手指反射、带有指纹信息的光的光路进行了反射折叠,这样就可以有效的减小指纹识别模组的厚度,同时也不会对指纹识别性能造成影响。解决了现有光学指纹模组,其所需焦距较长,光程较长而导致模组总体尺寸较厚的问题。
实施例二
进一步的,在上述实施例一的基础上,在本实施例中,反光板30被光学调制器件40分割为位于光学调制器件40一侧、与光学传感元件10位于第一间隙内的传感区域对应的第一区域,以及位于光学调制器件40另一侧的反射区32,以使经手指反射的光在反射区32反射后经光学调制器件40进入传感区域。光学调制器件40将反光板30分割为第一区域和反射区32,该第一区域位于光学调制器件40一侧、与位于第一间隙的传感区域位置相对应,该反射区32位于光学调制器件40的另一侧,以使经手指反射的光在反射区32反射后经光学调制器件40进入传感区域,也就是说,从屏幕20上的手指反射的、带有指纹信号的光首先照射在反光板30上,经过反光板30的反射后,进入光学调制器 件40,经过调制后成像在光学传感元件10表面,被光学传感元件10的传感区域捕捉并将该光学图像信号转换成电信号传递到模组外部,以识别指纹,即将手指反射的光依次经过反射、调制、转换成电学信号后输出,实现对从手指反射、带有指纹信息的光的光路的折叠,这样就可以有效的减小指纹识别模组的厚度,同时也不会对指纹识别性能造成影响。
需要说明的是,在本实施例中,反光板30和光学传感元件10之间形成第一间隙,同时反光板30被光学调制器件40分割为位于光学调制器件40一侧的、与第一间隙内传感区域相对应的第一区域,以及位于光学调制器件40另一侧的反射区32,其中,该反射区32用于保证从手指反射的光可以经过该反射区32被二次反射后经过光学调制器件40,该第一间隙用于保证光学传感元件10的传感区域不被遮盖,且经过光学调制器件40调制后的光可以进入光学传感元件10表面被传感区域捕捉,因此,对于第一间隙和反射区32的大小并无其它要求,能够使经手指反射的光在反射区32反射后经光学调制器件40进入光学传感元件10的传感区域即可。
本发明实施例提供的一种光学指纹识别模组,通过反光板30被光学调制器件40分为位于光学调制器件40一侧的、与光学传感元件10在第一间隙内的传感区域对应的第一区域和位于光学调制器件40另一侧的反射区32,以使经手指反射的光在反射区32反射后,经光学调制器件40进入光学传感元件10的传感区域,这样将手指放在屏幕20上时,经过手指反射的、带有指纹信息的光学信号,经过反射区32反射后,进入光学调制器件40并进行调制后成像,进入第一间隙中照射在光学传感元件10上,并被光学传感元件10上的传感区域捕捉,光学传感元件10将捕捉的光学图像信号转换为电学信号,并将该电学信号传递到模组外部,以识别该指纹,也就是说将手指反射的光依次经过反射、调制、转换成电学信号后输出,实现了对从手指反射的光光路的折叠,有效的减小了指纹识别模组的厚度。
实施例三
图2为本发明实施例三提供的一种光学识别模组的截面示意图。
进一步的,在上述实施例二的基础上,在本实施例中,反光板30和光学传感元件10之间还设有支撑架50,支撑架50用于支撑反光板30和光学传感元 件10以形成第一间隙,该支撑架50与光学调制器件40之间具有用于使传感区域和第一区域露出的第二间隙。在反光板30和光学传感元件10之间设置支撑架50,用于支撑反光板30和光学传感元件10,使反光板30和光学传感元件10之间在纵向的方向上形成第一间隙,而支撑架50与光学调制器件40之间具有可以使传感区域和第一区域露出的第二间隙,第二间隙是指光学调制器件40与支撑架50之间在横向的方向上间隔形成第二间隙,该第一间隙和第二间隙共同形成了可供光传播的空间,从而使经过光学调制器件40调制后的光学图像信号可以进入该空间并照射在光学传感元件10的表面,被光学传感元件10位于该空间内的传感区域捕捉,以将其转换为电信号输出。另外,该支撑架50还可以起到遮挡外部环境光线的作用,以避免环境光线带来的干扰。
具体的,如图2所示,在本实施例中,反光板30和光学传感元件10之间设有支撑架50,使反光板30和光学传感元件10之间形成纵向的第一间隙,支撑架50与光学调制器件40之间还具有用于使传感区域和第一区域露出的横向的第二间隙,从而使经过光学调制器件40调制后的光能够进入第一间隙和第二间隙形成的空间内,照在光学传感元件10表面上,并被传感区域捕捉,光学传感元件10将捕捉的光学图像信号转换成电学信号并输出模组外部,进而实现指纹的识别。
在本实施例中,支撑架50的材质包括玻璃、硅、金属或塑料,该支撑架50可以是玻璃材质、硅材质、金属材质、塑料材质或者其它能够成型的材质的支撑架,在本实施例中不做限制。
进一步的,在本实施例中,光学传感元件10包括主电路板11和固定在主电路板11上的光学传感芯片12,该光学传感芯片12背离主电路板11的一侧表面具有传感区域,且光学传感芯片12与反光板30形成第一间隙。如图2所示,在本实施例中,光学传感元件10包括主电路板11和设置在该主电路板11上的光学传感芯片12,该光学传感芯片12与反光板30之间形成第一间隙,其中,该光学传感芯片12背离主电路板11的一侧表面具有传感区域,该传感区域用于捕捉照射在其上的光学图像信号,该光学传感芯片12用于将传感区域捕捉的光学图像信号转换为电学信号,该光学传感芯片12的表面还设有用于与主电路电性相连的衬垫(Pad),主电路板11包括设置在电路板正面与光学传感芯片12的Pad电性相连的金手指,以及设置在电路板的尾部,与模组外部电路 电性相连的连接器或焊盘,该金手指与连接器或焊盘之间通过金属线电性相连,该主电路板11用于将光学传感芯片12输出的电学信号输出到模组外部,以使外部电路根据该电学信号进行指纹比对识别。
在本实施例中,主电路板11包括PCB板、基板、软板或软硬结合板,该主电路板11可以是PCB电路板、基板、软板或软硬结合板等类型的电路板,主电路板11为软板时,该主电路板11的背面还设有补强板。
需要说明的是,光学调制器件可以位于光学传感芯片上,或者位于主电路板上;或者,该光学调制器件可以位于支撑架上或者位于反光板上,此处的光学调制器件位于支撑架上,或者反光板上是指在制作该光学指纹识别模组时,光学调制器件可以与反光板贴合以设置在反光板上,也可以贴合设置在支撑架上,或者也可以将支撑架和光学调制器件首先与反光板贴合形成一个整体,在本实施例中不做限制。
其中,在本实施例中,光学调制器件40位于光学传感芯片12上,如图2所示,在本实施例中,光学调制器件40设置在光学传感芯片12上,并将反光板30分割为第一区域和反射区32,该光学调制器件40与光学传感芯片12之间垂直或形成夹角,以使从光学调制器件40中射出的光可以照射到光学传感芯片12的传感区域上。
在本实施例中,支撑架50位于光学传感芯片12上,如图2所示,该支撑架50位于光学传感芯片12与反光板30之间,以使光学传感芯片12与反光板30之间形成第一间隙,同时该支撑架50与光学调制器件40之间形成第二间隙,以使传感区域和第一区域露出,这样就能够使经过光学调制器件40调制后射出的光进入到第一间隙和第二间隙形成的空间中,并照射到传感芯片的传感区域上,从而实现对光学图像信号的捕捉。
进一步的,在本实施例中,该光学指纹识别模组还包括:光源60,光源60设置于光学传感元件10靠近光学调制器件40的一侧,且光源60与光学传感元件10之间形成第一水平间隙,具体的,光源60与光学传感元件10的主电路板11之间形成第一水平间隙。如图2所示,该光学指纹识别模组还包括光源60,该光源60位于光学传感元件10靠近光学调制器件40的一侧,而且光源60与光学传感元件10下的主电路板11之间形成有第一水平间隙,以使经手指反射的光可以通过第一水平间隙进入反射区32进行二次反射,这样将手指放在屏幕 20上时,光源60发出的光经过屏幕20照射在手指上后发生一次反射,反射的光通过该第一水平间隙照射在反射区32并进行第二次反射,从而进入光学调制器件40中。
其中,在本实施例中,光源60包括发光装置62和与该发光装置62电性相连的光源电路板61,如图2所示,该光源电路板61为独立设置的电路板,该发光装置62位于该光源电路板61背向光学光学传感元件10的一侧上设置。
在本实施例中,如图2所示,反光板30设置在光学传感元件10的上方,光学传感元件10包括光学传感芯片12和主电路板11,该光学传感芯片12与反光板30之间形成第一间隙,光学调制器件40设于该第一间隙中,并位于光学传感芯片12上,反光板30被光学调制器件40分割为第一区域和反射区32,反光板30与光学传感芯片12之间还设有支撑架50,该支撑架50与光学调制器件40间具有第二间隙,在光学传感元件10靠近光学调制器件40的一侧还设有光源60,该光源60包括LED发光装置62和光源电路板61,该发光装置62位于该光源电路板61背向光学光学传感元件10的一侧上设置,且该光源电路板61与主电路板11之间具有第一水平间隙。LED发光装置发出的光,经过屏幕上手指第一次反射后再经过反射板的第二次反射,进入光学调制器件40进行调制后,照射到光学传感芯片12上将其转换成电学信号后经过主电路板11输出,这样就实现对从手指反射的光的光路折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,可首先将光学传感芯片的晶圆进行研磨并划片,将切割好的光学传感芯片贴到主电路板上,之后将光学调制器件和支撑架分别贴合到光学传感芯片表面,并留出第二间隙以保证传感区域不被遮盖,最后将反光板贴合到支撑架和光学调制器件上,贴合完成后,进行焊线作业,将晶片表面的Pad与主电路板表面的引脚(Lead)通过金属线电性连接,最后根据实际需求,可选的在金属线上做点胶保护,再将LED发光装置贴装到光源电路板上,上述所有的贴合可以使用胶水或者胶膜,焊线工序可以在光学传感芯片贴合完成后的任意一个工序之间进行。
实施例四
图3是本发明实施例四提供的一种光学指纹识别模组的截面示意图。
与实施例三不同的是,在本实施例中,光源60位于光学传感元件10背离光学调制器件40的一侧设置,且该光源60的发光装置62为侧发光装置,光源60的光源电路板61为由光学传感元件10的主电路板11延伸出的一部分,该侧发光装置位于主电路板11朝向光学传感元件10的一侧上设置,反光板30、光学传感芯片12、主电路板11、光学调制器件40以及支撑架50之间的设置方式可参见实施例三,在本实施例中不再赘述。
具体的,如图3所示,反光板30设置在光学传感元件10的上方,光学传感元件10包括光学传感芯片12和主电路板11,该光学传感芯片12与反光板30之间形成第一间隙,光学调制器件40设于该第一间隙中,并位于光学传感芯片12上,该光学调制器件40将该反光板30分割为第一区域和反射区32,反光板30与传感芯片之间还设有支撑架50,该支撑架50与光学调制器件40间具有第二间隙,在光学传感元件10背离光学调制器件40的一侧设置有光源60,该光源60的发光装置62为侧发光LED装置,该光源60的光源电路板61为主电路板11延伸出的一部分,该侧发光装置62位于主电路板11朝向光学传感芯片12的一侧上设置。侧发光装置62发射的光,经过屏幕20上手指的第一次反射后再经过反射板的第二次反射,进入光学调制器件40进行调制后,进入第一间隙和第二间隙形成的空间并照射到光学传感芯片12上,光学传感芯片12将其转换成电学信号后经过主电路板11输出,可以实现对从手指反射的光的光路折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,首先将侧发光LED贴装到电路板上,然后将光学调制器件和支撑架贴到反光板上组成一个整体,再将光学传感芯片的晶圆进行研磨并划片,将切割好的光学传感芯片贴到主电路板上,之后将组成一个整体的反光板、光学调制器件、支撑架一起贴到光学传感芯片上方,贴合作业完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead通过金属线电性连接,之后根据实际需求,可选的在金属线上做点胶保护,上述所有贴合可以使用胶水或者胶膜,以上的焊线工序,可以在光学传感芯片贴合完成后的任意一个工序之间。
实施例五
图4是本发明实施例五提供的一种光学指纹识别模组的截面示意图,图5是本发明实施例五提供的一种光学指纹识别模组的俯视图。
进一步的,在上述实施例二的基础上,在本实施例中,该光学指纹识别模组还包括:支撑在反光板30下的第一支撑板51,以及由第一支撑板51朝光学传感元件10突出的第一支撑凸台52,该第一支撑板51与光学传感元件10之间形成第一间隙,第一支撑板51与光学调制器件40连接,第一支撑凸台52与光学调制器件40之间具有用于使光学传感元件10的传感区域露出的第二间隙,且该第一支撑凸台52位于光学传感元件10的光学传感芯片12上,需要说明的是,第一支撑板51与光学调制器件40连接时,需保证反光板30与光学传感芯片12之间仍具有第一间隙。如图4所示,第一支撑板51和第一支撑凸台52构成了支撑架,第一支撑板51支撑在反光板30下,第一支撑板51具有朝光学传感元件10突出的第一支撑凸台52,第一支撑板51与光学调制器件40连接,第一支撑凸台52位于光学传感芯片12上,第一支撑板51与光学传感元件10形成第一间隙,第一支撑凸台52与光学调制器件40之间形成了第二间隙,反光板30与光学传感芯片12之间的第一间隙和该第二间隙共同形成了可供光传播的空间,从而使经过光学调制器件40调制后的光学图像信号可以进入该空间并照射在光学传感元件10的表面,并被光学传感元件10位于该空间内的传感区域捕捉,以将其转换为电信号输出。
进一步的,在本实施例中,光学传感元件10包括主电路板11和固定在主电路板11上的光学传感芯片12,主电路板11和光学传感芯片12具体的设置及连接方式参见实施例三,在本实施例中不再赘述。
进一步的,在本实施例中,光源60位于光学传感元件10靠近光学调制器件40的一侧,且与光学传感元件10之间形成第一水平间隙,具体的,光源60的光源电路板61与光学传感元件10的主电路板11之间形成第一水平间隙,以使经手指反射的光能够通过第一水平间隙照射在反射区32上进行反射。该光源60的光源电路板61为由主电路板11延伸出的一部分,光源60的发光装置62嵌设在光源电路板上,如图4所示,在本实施例中,光源60设置在光学传感元件10靠近光学调制器件40的一侧,且与光学传感芯片12下的主电路板11之间形成第一水平间隙,以使经手指反射的光可以通过第一水平间隙进入反射区32进行二次反光。该光源60的光源电路板61为由主电 路板11延伸出的一部分,该光源60的发光装置62嵌设在光源电路板上,嵌设有发光装置62的光源电路板与位于光学传感芯片12下的主电路板11之间具有第一水平间隙,以使经手指反射的光可以在反光板30的反射区32上进行第二次反射。
在本实施例中,反光板30的长度大于光学传感芯片12的长度,反光板30的宽度大于光学传感芯片12的宽度,如图5所示,在本实施例中,反光板30的长度大于光学传感芯片12的长度,在长度方向上,反光板30长出光学传感芯片12的部分就可以形成反射区32,反光板30的反射区32在电路板上的投影相应位置为镂空结构,该镂空结构远离反光板30的一侧设置发光装置62,这样就能使电源与光学传感芯片12下的主电路板11之间形成第一水平间隙。
其中,在本实施例中,反光板30、光学传感芯片12、主电路板11、光学调制器件40之间的设置方式参见实施例三,在本实施例中不再赘述。
具体的,如图4所示,在本实施例中,反光板30设置在光学传感元件10的上方,光学传感元件10包括光学传感芯片12和主电路板11,该光学传感芯片12与反光板30之间形成第一间隙,光学调制器件40设于该第一间隙中,并位于光学传感芯片12上,该反光板30被光学调制器件40分割为第一区域和反射区32,反光板30下设置有用于支撑的第一支撑板51,第一支撑板51具有朝光学传感元件10突出的第一支撑凸台52,第一支撑板51与光学调制器件40相连,第一支撑凸台52位于光学传感芯片12上,第一支撑板51与光学传感芯片12之间形成第一间隙,第一支撑凸台52与光学调制器件40之间形成第二间隙,在靠近光学调制器件的一侧设置有光源60,该光源60的光源电路板61为由主电路板11延伸出的一部分,光源60的LED发光装置62嵌设在光源电路板上,且嵌设有发光装置62的光源电路板与位于光学传感芯片12下的主电路板11之间具有第一水平间隙,以使经手指反射的光可以在反光板30的反射区32上进行第二次反射,这样从发光装置62发出的光,经过屏幕20上手指的第一次反射后进入第一水平间隙照射在反光板30上,经过反光板30的第二次反射,进入光学调制器件40进行调制后,进入第一间隙和第二间隙形成的空间并照射到光学传感芯片12上,光学传感芯片12将其转换成电学信号后经过主电路板11输出,可以折叠从手指反射的 光的光路,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,首先将LED贴装到电路板上,然后将光学调制器件贴合到第一支撑板上,与第一支撑凸台和第一支撑板组成一个整体,将光学传感芯片的晶圆进行研磨并划片,将切割好的光学传感芯片贴到电路板上,之后将组成一个整体的光学调制器件、支架一起贴到光学传感芯片上方,将反光板贴到支架上,贴合完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead通过金属线电性连接,最后根据实际需求,可选的在金属线上做点胶保护,上述所有贴合可以使用胶水或者胶膜,以上的焊线工序,可以在光学传感芯片贴合完成后的任意一个工序之间。
实施例六
图6是本发明实施例六提供的一种光学指纹识别模组的截面示意图,图7是本发明实施例六提供的一种光学指纹识别模组的俯视图。
与实施例五不同的是,在本实施例中,第一支撑凸台52位于光学传感元件10的主电路板11上,且光源60位于光学传感元件10背离光学调制器件40的一侧设置,反光板30、光学传感芯片12、主电路板11、光学调制器件40以及第一支撑板51之间的设置方式可参见实施例五,在本实施例中不再赘述。
具体的,如图6和图7所示,在本实施例中,反光板30设置在光学传感元件10的上方,光学传感元件10包括光学传感芯片12和主电路板11,其中,反光板30的长度大于光学传感芯片12的长度,反光板30的宽度小于光学传感芯片12的宽度,该光学传感芯片12与反光板30之间形成第一间隙,光学调制器件40设于该第一间隙中,并位于光学传感芯片12上,该光学调制器件40将该反光板30分割为第一区域和反射区32,第一支撑板51支撑在反光板30下,且与光学调制器件40相连,第一支撑凸台52位于主电路板11上,第一支撑板51与光学传感芯片12之间形成第一间隙,第一支撑凸台52与光学调制器件40之间形成第二间隙,在光学传感元件10背离光学调制器件40的一侧设置有光源60,该光源60的光源电路板61为由主电路板11延伸出的一部分,光源60的LED发光装置62嵌设在光源电路板上,这样从 发光装置62发出的光,经过屏幕20上手指的第一次反射后再照射再反光板30上,经过反光板30的第二次反射,经过光学调制器件40进行调制后,进入第一间隙和第二间隙形成的空间并照射到光学传感芯片12上,光学传感芯片12将其转换成电学信号后经过主电路板11输出,实现对光路的折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,首先将LED贴装到电路板上,然后将光学调制器件贴合到第一支撑板上,组成一个整体,将光学传感芯片的晶圆进行研磨并划片,将切割好的光学传感芯片贴到主电路板上,之后将组成一个整体的光学调制器件、第一支撑板、第一支撑凸台一起贴到主电路板表面,再将反光板贴到第一支撑板上,贴合完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead通过金属线电性连接,最后根据实际需求,可选的在金属线上做点胶保护,上述的所有贴合可以使用胶水或者胶膜,以上的焊线工序,可以在光学传感芯片贴合完成后的任意一个工序之间。
实施例七
图8是本发明实施例七提供的一种光学指纹识别模组的截面示意图。
进一步的,在上述实施例二的基础上,在本实施例中,反光板30一侧具有朝光学传感元件10突出的第二支撑凸台31,第二支撑凸台31与光学调制器件40之间具有用于使光学传感元件10的传感区域和第一区域露出的第二间隙,且该第二支撑凸台31位于光学传感元件10的光学传感芯片12上,在本实施例中,反光板30与用于支撑的第二支撑凸台31是一体成型的,该第二支撑凸台31位于反光板30和光学传感芯片12之间以形成第一间隙,第二支撑凸台31与光学调制器件40之间形成第二间隙,第一间隙与第二间隙形成可供光传播的空间,以使经过光学调制器件40调制后的光学图像信号可以进入该空间并照射在光学传感元件10的表面,并被光学传感元件10位于该空间内的传感区域捕捉,以将其转换为电信号输出。
进一步的,在本实施例中,光学传感元件10包括主电路板11和固定在主电路板11上的光学传感芯片12,主电路板11和光学传感芯片12具体的设置及连接方式参见实施例三,在本实施例中不再赘述。
在本实施例中,未单独设置光源60,可以使用屏幕20自身发出的光在手指上一次反射后,再经过反射板进行第二次反射之后,经过调制、转换以输出。
在本实施例中,反光板30、光学传感芯片12、主电路板11以及光学调制器件40之间的设置方式可以参见实施例三,在本实施例中不再赘述。
具体的,如图8所示,在本实施例中,反光板30设置在光学传感元件10的上方,该光学传感元件10包括光学传感芯片12和主电路板11,反光板30一侧具有朝光学传感元件10突出的第二支撑凸台31,该第二支撑凸台31用于支撑反光板30和光学传感元件10以形成第一间隙,且第二支撑凸台31与光学调制器件40之间具有用于使光学传感元件10的传感区域和第一区域露出的第二间隙,且该第二支撑凸台31位于光学传感芯片12上,手指放在屏幕20上时,屏幕20发出的光照射在手指上发生第一次反射后,再照射在反光板30上,经过反光板30的第二次反射,经过光学调制器件40进行调制后,进入第一间隙和第二间隙形成的空间并照射到光学传感芯片12上,光学传感芯片12将其转换成电学信号后经过主电路板11输出,实现对光路的折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,首先使用硅蚀刻或者注塑成型的方式,使反光板的一侧具有支撑作用的、突出的第二支撑凸台,然后将光学调制器件贴合到一体的反光板和第二支撑凸台上,形成一个整体,再将光学传感芯片的晶圆进行研磨并划片,将切割好的光学传感芯片贴到主电路板上,之后将组成一个整体的光学调制器件、第二支撑凸台一起贴到光学传感芯片上方,贴合完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead通过金属线电性连接,最后根据实际需求,可选的在金属线上做点胶保护,上述所有贴合可以使用胶水或者胶膜,以上的焊线工序,可以在光学传感芯片贴合完成后的任意一个工序之间。
实施例八
图9是本发明实施例八提供的一种光学指纹识别模组的截面示意图。
与实施例七不同的是,在本实施例中,该光学指纹识别模组包括光源60, 该光源60位于光学传感元件10背离光学调制器件40的一侧设置,该光源60的光源电路板61为单独设置的电路板,该光源60的发光装置62位于光源电路板61背向光学传感元件10的一侧上设置,反光板30、第二支撑凸台31、光学调制器件40、光学传感芯片12以及主电路板11的设置方式可以参见实施例七,在本实施例中不再赘述。
具体的,如图9所示,在本实施例中,反光板30设置在光学传感元件10的上方,该光学传感元件10包括光学传感芯片12和主电路板11,在反光板30的一侧具有朝光学传感元件10突出的第二支撑凸台31,第二支撑凸台31用于支撑反光板30和光学传感元件10以形成第一间隙,且第二支撑凸台31与光学调制器件40之间具有用于使光学传感元件10的传感区域和第一区域露出的第二间隙,该第二支撑凸台31位于光学传感芯片12上,在光学传感元件10背离光学调制器件40的一侧设置有光源60,该光源60的光源电路板61为单独设置的电路板,光源60的LED发光装置62位于光源电路板61背向光学传感元件10的一侧上设置,手指放在屏幕20上时,发光装置62发出的光照射在手指上发生第一次反射后,再照射在反光板30上,经过反光板30的第二次反射,经过光学调制器件40进行调制后,进入第一间隙和第二间隙形成的空间并照射到光学传感芯片12上,光学传感芯片12将其转换成电学信号后经过主电路板11输出,可以折叠从手指反射的光的光路,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,首先使用硅蚀刻或者注塑成型的方式,使反光板的一侧具有第二支撑凸台,然后将光学传感芯片的晶圆进行研磨并划片,将切割好的光学传感芯片贴到主电路板上,再将光学调制器件贴合到光学传感芯片上方,之后将整体的反光板和第二支撑凸台贴到光学传感芯片上方,贴合完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead通过金属线电性连接,然后根据实际需求,可选的在金属线上做点胶保护,最后,将LED贴装到光源电路板上,上述所有贴合可以使用胶水或者胶膜,以上的焊线工序,可以在光学传感芯片贴合完成后的任意一个工序之间。
实施例九
图10是本发明实施例九提供的一种光学指纹识别模组的截面示意图。
与实施例八相比不同的是,在本实施例中,反光板30一侧具有的第二支撑凸台31位于光学传感元件10的主电路板11上,且光学调制器件40也位于主电路板11上,另外,光源60位于光学传感元件10背离光学调制器件40的一侧设置,该光源60的发光装置62为侧发光装置,光源60的光源电路板61为独立设置的电路板,该发光装置62位于光源电路板61朝向光学传感元件10的一侧上设置,反光板30、光学传感芯片12以及主电路板11之间的设置方式可以参见实施例八,在本实施例中不再赘述。
具体的,如图10所示,反光板30设置在光学传感元件10的上方,该光学传感元件10包括光学传感芯片12和主电路板11,在反光板30的一侧具有朝光学传感元件10突出的第二支撑凸台31,第二支撑凸台31用于支撑反光板30和光学传感元件10以形成第一间隙,且第二支撑凸台31与光学调制器件40之间具有用于使光学传感元件10的传感区域和第一区域露出的第二间隙,该第二支撑凸台31和光学调制器件40分别位于主电路板11上,在光学传感元件10背离光学调制器件40的一侧设置有光源60,该光源60的发光装置62为侧发光LED装置,发光装置62位于该光源电路板61朝向光学传感元件10的一侧上设置,手指放在屏幕20上时,侧发光装置62发出的光照射在手指上发生第一次反射后,再照射在反光板30上,经过反光板30的第二次反射,经过光学调制器件40进行调制后,进入第一间隙和第二间隙形成的空间并照射到光学传感芯片12上,光学传感芯片12将其转换成电学信号后经过主电路板11输出,可以实现对从手指反射的光的光路折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,首先使用硅蚀刻或者注塑成型的方式,使反光板的一侧具有第二支撑凸台,然后将光学调制器件贴合到反光板上,形成一个整体,再将光学传感芯片的晶圆进行研磨并划片,将切割好的光学传感芯片贴到主电路板上,之后将组成一个整体的光学调制器件、第二支撑凸台一起贴到主电路板上方,贴合完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead通过金属线电性连接,然后根据实际 需求,可选的在金属线上做点胶保护,最后将LED贴装到光源电路板上。上述所有贴合可以使用胶水或者胶膜,以上的焊线工序可以在光学传感芯片贴合完成后的任意一个工序之间。
实施例十
图11是本发明实施例十提供的一种光学指纹识别模组应用场景示意图。
进一步的,在上述实施例一的基础上,在本实施例中,反射区32为反光板30上与光学传感元件10位于第一间隙内的传感区域对应的第一区域,以使经手指反射的光经过光学调制器件40后,照射在反射区32,并进行反射后进入传感区域。反射区32位于反光板30上与第一间隙内的传感区域对应的第一区域,使经手指反射的光经过光学调制器件40后,照在在反射区32上反射后进入传感区域,这样将手指放在屏幕20上时,从手指反射的、带有指纹信号的光首先经过光学调制器件40后进入第一间隙内,照射在反射板30的反射区32上,并被反射到该传感区域表面,被光学传感元件10的传感区域捕捉并将该光学图像信号转换成电信号传递到模组外部,以识别指纹,即将手指反射的光依次经过调制、反射、转换成电学信号后输出,实现对从手指反射、带有指纹信息的光的光路的折叠,这样就可以有效的减小指纹识别模组的厚度,同时也不会对指纹识别性能造成影响。
具体的,如图11所示,在本实施例中反光板30设置在光学传感元件10的上方,在光学传感元件10与反光板30相背的一侧设置有屏幕20,光学传感元件10表面具有传感区域,用于捕捉照射在其上的光学图像信号,光学传感元件10与反光板30之间形成有第一间隙,在该间隙内设置光学调制器件40,反光板30上与光学传感元件10位于第一间隙内的传感区域对应的第一区域为反射区32,这样将手指放在屏幕20上时,照射在手指上的光就会发生一次反射,此时该反射光信号中就包含有指纹信息,该倾斜的反射光首先进入光学调制器件40调制成像后进入该第一间隙中,照射在反光板30的反射区32上,并发生二次反射进入传感区域,光学传感元件10将捕捉的光学图像信号转换为电学信号,并将该电学信号传递到模组外部,以识别该指纹,也就是说,从手指反射的、带有指纹信息的光学信号,依次经过调制、反射、转换成电学信号后输出,这样就实现了对光路的折叠,有效的减小了指纹识 别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄,以满足市场的设计需求。
需要说明的是,在本实施例中,反光板30和光学传感元件10之间形成第一间隙,同时反射区32为与第一间隙内传感区域相对应的第一区域,其中,该第一间隙用于保证光学传感元件10的传感区域不被遮盖,且经过光学调制器件40调制后的光可以进入第一间隙中,并照射在位于第一间隙中的反射区32上,因此,对于第一间隙和反射区32的大小并无其它要求,能够使经手指反射的光经光学调制器件40进入第一间隙,照射在反射区32上反射后,进入光学传感元件10的传感区域即可。
本发明实施例提供的一种光学指纹识别模组,通过将反射区32设置为反光板30上与光学传感元件10位于第一间隙内的传感区域对应的第一区域,以使经手指反射的光经过光学调制器件40调制后,进入第一间隙并照射在反射区32上,进行反射后照射到传感区域表面,这样将手指放在屏幕20上时,经过手指反射的、带有指纹信息的光学信号,经过光学调制器件40调制形成光学图像信号并进入第一间隙后,照射到反射区32上,进行反射后,照射在光学传感元件10的传感区域上,并被传感区域捕捉,光学传感元件10将捕捉的光学图像信号转换为电学信号,并将该电学信号传递到模组外部,以识别该指纹,也就是说将手指反射的光依次经过调制、反射、转换成电学信号后输出,实现了对从手指反射的光的光路折叠,有效的减小了指纹识别模组的厚度。
实施例十一
图12是本发明实施例十一提供的一种光学指纹识别模组的截面示意图。
进一步的,在上述实施例十的基础上,在本实施例中,反光板30和光学传感元件10之间还设有支撑架50,支撑架50用于支撑反光板30和光学传感元件10以形成第一间隙,该支撑架50与光学调制器件40之间具有用于使传感区域和第一区域露出的第二间隙。在反光板30和光学传感元件10之间设置支撑架50,用于支撑反光板30和光学传感元件10,使反光板30和光学传感元件10之间在纵向的方向上形成第一间隙,而支撑架50与光学调制器件40之间具有可以使传感区域和第一区域即反射区32露出的第二间隙,第 二间隙是指光学调制器件40与支撑架50之间在横向的方向上间隔形成第二间隙,该第一间隙和第二间隙共同形成了可供光传播的空间,从而使经过光学调制器件40调制后的光学图像信号可以进入该空间并照射在第一区域即反射区32上,被反射后照射到光学传感元件10的传感区域表面,并将其转换为电信号输出。另外,该支撑架50还可以起到遮挡外部环境光线的作用,以避免环境光线带来的干扰。
具体的,如图12所示,在本实施例中,反光板30和光学传感元件10之间设有支撑架50,使反光板30和光学传感元件10之间形成纵向的第一间隙,支撑架50与光学调制器件40之间还具有用于使传感区域和反射区32露出的横向的第二间隙,从而使经过光学调制器件40调制后的光能够进入第一间隙和第二间隙形成的空间内,照在反射区上进行反射后,进入传感区域,光学传感元件10将传感区域捕捉的光学图像信号转换成电学信号并输出模组外部,进而实现指纹的识别。
在本实施例中,支撑架50的材质包括玻璃、硅、金属或塑料,该支撑架50可以是玻璃材质、硅材质、金属材质、塑料材质或者其它能够成型的材质的支撑架,在本实施例中不做限制。对支撑架的形状在本实施例中也不做限制,支撑架可以是包括支撑于反光板下的第一支撑板,第一支撑板朝光学传感元件的一侧具有突起的第一支撑凸台,保证第一支撑板与光学传感元件之间形成第一间隙,且第一支撑凸台与光学调制器件之间具有使反射区和传感区域和反射区露出的第二间隙即可。
进一步的,在本实施例中,光学传感元件10包括主电路板11和固定在主电路板11上的光学传感芯片12,光学传感芯片12以及主电路板11之间的具体设置以及连接关系可参见实施例三,在本实施例中不再赘述。
在本实施例中,光学调制器件40位于光学传感芯片12上,支撑架50位于光学传感芯片12上,如图12所示,光学调制器件40设置在光学传感芯片12上,支撑架50位于光学传感芯片12与反光板30之间,以使光学传感芯片12与反光板30之间形成第一间隙,同时该支撑架50与光学调制器件40之间形成第二间隙,以使传感区域和反射区32露出,这样就能够使经手指反射的光经过光学调制器件40调制后,进入第一间隙和第二间隙形成的空间中,照射到反射区32上反射后,并照射到传感区域上,从而实现对光学图像信号 的捕捉。
进一步的,在本实施例中,该光学指纹识别模组还包括光源60,该光源60位于光学传感元件10背离光学调制器件40的一侧设置,该光源60的光源电路板61为单独设置的电路板,该光源60的发光装置62为侧发光LED,且位于光源电路板61背向光学传感元件10的一侧上设置。
在本实施例中,如图12所示,反光板30设置在光学传感元件10的上方,光学传感元件10包括光学传感芯片12和主电路板11,该光学传感芯片12与反光板30之间形成第一间隙,光学调制器件40设于该第一间隙中,并位于光学传感芯片12上,反光板30的与传感区域相应的第一区域为反射区32,反光板30与光学传感芯片12之间还设有支撑架50,该支撑架50与光学调制器件40间具有第二间隙,在光学传感元件10背离光学调制器件40的一侧设置有光源60,该光源60包括LED发光装置62和光源电路板61,该发光装置62位于该光源电路板61背向光学传感元件10的一侧上设置。LED发光装置发出的光,经过屏幕上手指第一次反射后经过光学调制器件40调制后,照射在反射区32进行第二次反射,反射后进入传感区域并被捕捉,光学传感芯片12将其转换成电学信号后经过主电路板11输出,这样就实现对从手指反射的光的光路折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,可首先将LED发光装置贴装到光源电路板上,然后将光学调制器件贴合到支撑架上,组成一个整体,将光学传感芯片的晶圆进行研磨并划片,并将切割好的光学传感芯片贴到电路板上,然后将组成一个整体的光学调制器件、支撑架一起贴到光学传感芯片上方,最后将反光板贴到支撑架上贴合作业完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead使用金属线达成电性连接,最后根据实际客户需求,可选的在金线上做点胶保护;以上所有贴合可以使用胶水或者胶膜,焊线工序可以在光学传感芯片贴合完成后的任意一个工序之间进行。
实施例十二
图13是本发明实施例十二提供的一种光学指纹识别模组的截面示意图。
与实施例十一不同的是,在本实施例中,支撑架50位于主电路板11上, 且光学调制器件40也位于主电路板11上,反光板30、光学传感芯片12以及主电路板11之间的设置方式可以参见实施例十一,在本实施例中不再赘述。
具体的,如图13所示,反光板30设置在光学传感元件10的上方,该光学传感元件10包括光学传感芯片12和主电路板11,光学传感芯片12与反光板30之间形成有第一间隙,在该间隙内设置光学调制器件40,该光学调制器件40位于主电路板11上,反射区32为反光板30上与光学传感元件10位于第一间隙内的传感区域对应的第一区域,反光板30和光学传感元件10之间还设有支撑架50,该支撑架50与光学调制器件40之间形成第二间隙,该支撑架50也位于主电路板11上,在光学传感元件10背离光学调制器件40的一侧设置有光源60,该光源60的光源电路板61为单独设置的电路板,该光源60的发光装置62为侧发光LED,且位于光源电路板61背向光学传感元件10的一侧上设置。手指放在屏幕20上时,侧发光装置62发出的光照射在手指上发生第一次反射后经过光学调制器件40,照射在反射区32进行第二次反射,反射后进入传感区域并被捕捉,这样就实现对从手指反射的光的光路折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,可首先将LED发光装置贴装到光源电路板上,然后将光学调制器件、支撑架、反光板相互贴合组成一个整体,将光学传感芯片的晶圆进行研磨并划片,并将切割好的光学传感芯片贴到电路板上,之后将组成一个整体的光学调制器件、反光板、支撑架一起贴到光学传感芯片上方,贴合作业完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead使用金属线电性连接,最后根据实际需求,可选的在金线上做点胶保护,以上所有贴合可以使用胶水或者胶膜,焊线工序可以在光学传感芯片贴合完成后的任意一个工序之间进行。
实施例十三
图14是本发明实施例十三提供的一种光学指纹识别模组的截面示意图。
进一步的,在上述实施例十的基础上,在本实施例中,反光板30一侧具有朝光学传感元件10突出的第二支撑凸台31,第二支撑凸台31与光学调制器件40之间具有用于使光学传感元件10的传感区域和反射区32露出的第二 间隙,且光学调制器件40和第二支撑凸台31均位于光学传感元件10的光学传感芯片12上。在本实施例中,反光板30与用于支撑的第二支撑凸台31是一体成型的,该第二支撑凸台31位于反光板30和光学传感芯片12之间以形成第一间隙,第二支撑凸台31与光学调制器件40之间形成第二间隙,第一间隙与第二间隙形成可供光传播的空间,以使手指反射的光经过光学调制器件40调制进入该空间,并照射在反射区32上进行反射后,照到光学传感区域的表面,并被光学传感元件10的传感区域捕捉,以将其转换为电信号输出。
进一步的,在本实施例中,光学传感元件10包括主电路板11和固定在主电路板11上的光学传感芯片12,主电路板11和光学传感芯片12具体的设置及连接方式参见实施例三,在本实施例中不再赘述。
在本实施例中,未单独设置光源60,可以使用屏幕20自身发出的光在手指上一次反射后,再经过反射板进行第二次反射之后,经过调制、转换以输出。
在本实施例中,反光板30、光学传感芯片12、主电路板11以及光源之间的设置方式可以参见实施例十一,在本实施例中不再赘述。
具体的,如图14所示,在本实施例中,反光板30设置在光学传感元件10的上方,该光学传感元件10包括光学传感芯片12和主电路板11,反光板30一侧具有朝光学传感元件10突出的第二支撑凸台31,该第二支撑凸台31用于支撑反光板30和光学传感元件10以形成第一间隙,且第二支撑凸台31与光学调制器件40之间具有用于使传感区域和反射区32露出的第二间隙,且该第二支撑凸台31位于光学传感芯片12上,手指放在屏幕20上时,屏幕20发出的光照射在手指上发生第一次反射后,经过光学调制器件40进入第一间隙和第二间隙形成的空间,并照射在反射区32上被第二次反射后,照射到光学传感芯片12上,光学传感芯片12将其转换成电学信号后经过主电路板11输出,实现对光路的折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,首先使用硅蚀刻或者注塑成型的方式,使反光板的一侧具有用于支撑的第二支撑凸台,然后将光学调制器件贴合到一体的反光板和第二支撑凸台上,形成一个整体,再将光学传感芯片的晶圆进行研磨并划片,将切割好的光学传感芯片贴到主电路板上, 之后将组成一个整体的光学调制器件、第二支撑凸台一起贴到光学传感芯片上方,贴合完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead使用金属线电性连接,最后根据实际需求,可选的在金线上做点胶保护,以上所有贴合可以使用胶水或者胶膜,以上的焊线工序,可以在光学传感芯片贴合完成后的任意一个工序之间进行。
实施例十四
图15是本发明实施例十四提供的一种光学指纹识别模组的截面示意图。
与实施例十三不同的是,在本实施例中,第二支撑凸台和光学调制器件均位于光学传感元件的主电路板上,且该光学指纹识别模组还包括光源60,该光源60位于光学传感元件10背离光学调制器件40的一侧设置,该光源60的光源电路板61为单独设置的电路板,该光源60的发光装置62为侧发光LED,且位于光源电路板61背向光学传感元件10的一侧上设置。
在本实施例中,反光板30、光学传感芯片12、主电路板11以及光源之间的设置方式可以参见实施例十一,在本实施例中不再赘述。
具体的,如图15所示,在本实施例中,反光板30设置在光学传感元件10的上方,该光学传感元件10包括光学传感芯片12和主电路板11,反光板30一侧具有朝光学传感元件10突出的第二支撑凸台31,反光板30和光学传感元件10之间形成第一间隙,且第二支撑凸台31与光学调制器件40之间具有用于使传感区域和反射区32露出的第二间隙,且该第二支撑凸台31和光学调制器件均位于主电路板上,从侧发光装置发出的光照射在手指上发生第一次反射后,经过光学调制器件40后,进入第一间隙和第二间隙形成的空间内,并照射在反光板30的反射区进行第二次反射后,照射到传感区域上,光学传感芯片12将其转换成电学信号后经过主电路板11输出,实现对光路的折叠,有效的减小了指纹识别模组的厚度,在保证指纹识别性能的同时,将指纹识别模组厚度压缩变薄。
在本实施例中,在制作该光学指纹识别模组时,首先使用硅蚀刻或者注塑成型的方式,使反光板的一侧具有用于支撑的第二支撑凸台,然后将光学调制器件贴合到一体的反光板和第二支撑凸台上,形成一个整体,再将光学传感芯片的晶圆进行研磨并划片,将切割好的光学传感芯片贴到主电路上, 之后将组成一个整体的光学调制器件、反光板、第二支撑凸台一起贴到主电路板上方,贴合完成后,进行焊线作业,将晶片表面的Pad与电路板表面的Lead使用金属线电性连接,然后根据实际需求,可选的在金线上做点胶保护,最后将LED贴装到主电路板上,以上所有贴合可以使用胶水或者胶膜,以上的焊线工序,可以在光学传感芯片贴合完成后的任意一个工序之间进行。
另一方面,本发明还提供一种电子装置,包括上述实施例中的光学指纹识别模组,该电子装置包括但不限于手机、平板电脑、可穿戴设备、门禁装置、ATM机等使用光学指纹识别功能的电子装置。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的 普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (22)
- 一种光学指纹识别模组,其特征在于,包括:反光板、光学调制器件和光学传感元件;其中,所述反光板和所述光学传感元件上下设置,且所述光学传感元件与所述反光板之间形成第一间隙,所述光学调制器件设置于所述第一间隙内,所述反光板包括位于所述光学调制器件一侧的反射区,以使经手指反射的光经所述光学调制器件和所述反射区后进入所述光学传感元件的传感区域。
- 根据权利要求1所述的光学指纹识别模组,其特征在于,所述反光板被所述光学调制器件分割为位于所述光学调制器件一侧、与所述光学传感元件位于所述第一间隙内的传感区域对应的第一区域,以及位于所述光学调制器件另一侧的所述反射区,以使经手指反射的光在所述反射区反射后经所述光学调制器件进入所述传感区域。
- 根据权利要求1所述的光学指纹识别模组,其特征在于,所述反射区为所述反光板上与所述光学传感元件位于所述第一间隙内的传感区域相对应的第一区域,以使经手指反射的光经过所述光学调制器件后在所述反射区反射后进入所述传感区域。
- 根据权利要求2或3所述的光学指纹识别模组,其特征在于,所述反光板和所述光学传感元件之间还设有支撑架,所述支撑架用于支撑所述反光板和所述光学传感元件以形成所述第一间隙,所述支撑架与所述光学调制器件之间具有用于使所述传感区域和所述第一区域露出的第二间隙。
- 根据权利要求2所述的光学指纹识别模组,其特征在于,还包括:支撑在所述反光板下的第一支撑板,以及由所述第一支撑板朝所述光学传感元件突出的第一支撑凸台,所述第一支撑板与所述光学传感元件之间形成所述第一间隙,所述第一支撑板与所述光学调制器件连接,所述第一支撑凸台与所述光学调制器件之间具有用于使所述传感区域露出的第二间隙。
- 根据权利要求2或3所述的光学指纹识别模组,其特征在于,所述反光板一侧具有朝所述光学传感元件突出的第二支撑凸台,所述第二支撑凸台与所述光学调制器件之间具有用于使所述传感区域和所述第一区域露出的第二间隙。
- 根据权利要求4所述的光学指纹识别模组,其特征在于,所述光学传 感元件包括主电路板和固定在所述主电路板上的光学传感芯片,所述光学传感芯片背离所述主电路板的一侧表面具有所述传感区域,且所述传感芯片与所述反光板之间形成所述第一间隙。
- 根据权利要求7所述的光学指纹识别模组,其特征在于,所述光学调制器件位于所述光学传感芯片上;或者,所述光学调制器件位于所述主电路板上;或者,所述光学调制器件位于所述支撑架上;或者,所述光学调制器件位于所述反光板上。
- 根据权利要求7所述的光学指纹识别模组,其特征在于,所述支撑架位于所述光学传感芯片上;或者,所述支撑架位于所述主电路板上。
- 根据权利要求5所述的光学指纹识别模组,其特征在于,所述光学传感元件包括主电路板和固定在所述主电路板上的光学传感芯片,所述第一支撑凸台位于所述光学传感芯片上;或者,所述第一支撑凸台位于所述主电路板上。
- 根据权利要求6所述的光学指纹识别模组,其特征在于,所述光学传感元件包括主电路板和固定在所述主电路板上的光学传感芯片,所述第二支撑凸台位于所述光学传感芯片上;或者,所述第二支撑凸台位于所述主电路板上。
- 根据权利要求1所述的光学指纹识别模组,其特征在于,还包括:光源,所述光源设置于光学传感元件靠近所述光学调制器件的一侧,且所述光源与所述光学传感元件之间形成第一水平间隙。
- 根据权利要求1所述的光学指纹识别模组,其特征在于,还包括:光源,所述光源位于光学传感元件背离所述光学调制器件的一侧设置。
- 根据权利要求12或13所述的光学指纹识别模组,其特征在于,所述光源包括发光装置和与所述发光装置电性相连的光源电路板。
- 根据权利要求14所述的光学指纹识别模组,其特征在于,所述光源电路板与所述光学传感元件的主电路板相互独立设置,所述发光装置嵌设在所述光源电路板上。
- 根据权利要求14所述的光学指纹识别模组,其特征在于,所述光源电路板为由所述光学传感元件的主电路板延伸出的一部分,所述发光装置嵌 设在所述光源电路板上;或者,所述发光装置位于所述光源电路板背向所述光学传感元件的一侧上设置。
- 根据权利要求14所述的光学指纹识别模组,其特征在于,所述发光装置包括发光二极管、有机发光二极管、垂直腔面发射激光器、激光二极管和屏幕中的至少一个。
- 根据权利要求7所述的光学指纹识别模组,其特征在于,所述主电路板包括PCB板、基板、软板或软硬结合板。
- 根据权利要求1所述的光学指纹识别模组,其特征在于,所述光学调制元件光学调制器件包括透镜单体、滤光片单体或透镜和滤光片的组合元件。
- 根据权利要求1所述的光学指纹识别模组,其特征在于,所述反光板的材质包括玻璃、硅、金属或塑料。
- 根据权利要求4所述的光学指纹识别模组,其特征在于,所述支撑架的材质包括玻璃、硅、金属或塑料。
- 一种电子装置,其特征在于,包括权利要求1-21任一项所述的光学指纹识别模组。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880002642.1A CN109690566B (zh) | 2018-12-04 | 2018-12-04 | 一种光学指纹识别模组及电子装置 |
PCT/CN2018/119140 WO2020113414A1 (zh) | 2018-12-04 | 2018-12-04 | 一种光学指纹识别模组及电子装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/119140 WO2020113414A1 (zh) | 2018-12-04 | 2018-12-04 | 一种光学指纹识别模组及电子装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020113414A1 true WO2020113414A1 (zh) | 2020-06-11 |
Family
ID=66191850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/119140 WO2020113414A1 (zh) | 2018-12-04 | 2018-12-04 | 一种光学指纹识别模组及电子装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109690566B (zh) |
WO (1) | WO2020113414A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021087695A1 (zh) | 2019-11-04 | 2021-05-14 | 深圳市汇顶科技股份有限公司 | 光学指纹装置和电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020078004A (ko) * | 2001-04-04 | 2002-10-18 | (주)니트 젠 | 광학식 지문입력장치 |
CN103530615A (zh) * | 2013-10-21 | 2014-01-22 | 珠海耀阳电子科技有限公司 | 一种光学指纹采集装置及其实现方法 |
CN106412166A (zh) * | 2016-11-23 | 2017-02-15 | 广东欧珀移动通信有限公司 | 终端的壳体组件及终端 |
US20180096186A1 (en) * | 2016-09-30 | 2018-04-05 | Synaptics Incorporated | Optical sensor with angled reflectors |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7158659B2 (en) * | 2003-04-18 | 2007-01-02 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | System and method for multiplexing illumination in combined finger recognition and finger navigation module |
CN2713494Y (zh) * | 2004-05-19 | 2005-07-27 | 闵瑜 | 指纹识别装置 |
CN101256623A (zh) * | 2007-03-02 | 2008-09-03 | 全量工业股份有限公司 | 指纹辨识系统 |
US20080239285A1 (en) * | 2007-03-30 | 2008-10-02 | Chuan Liang Industrial Co., Ltd. | Fingerprint identification system |
CN104537349B (zh) * | 2014-12-25 | 2018-11-27 | 上海箩箕技术有限公司 | 光学指纹成像系统和电子产品 |
CN104656950B (zh) * | 2015-02-15 | 2018-10-23 | 深圳市维亿魄科技有限公司 | 鼠标 |
CN105550662B (zh) * | 2016-01-05 | 2019-03-15 | 京东方科技集团股份有限公司 | 一种指纹识别装置及其制作方法、阵列基板、显示装置 |
CN105844233B (zh) * | 2016-03-21 | 2022-07-05 | 京东方科技集团股份有限公司 | 一种指纹识别模组、指纹识别装置及显示装置 |
US10083338B2 (en) * | 2016-07-25 | 2018-09-25 | Idspire Corporation Ltd. | Optical fingerprint sensor with prism module |
-
2018
- 2018-12-04 WO PCT/CN2018/119140 patent/WO2020113414A1/zh active Application Filing
- 2018-12-04 CN CN201880002642.1A patent/CN109690566B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020078004A (ko) * | 2001-04-04 | 2002-10-18 | (주)니트 젠 | 광학식 지문입력장치 |
CN103530615A (zh) * | 2013-10-21 | 2014-01-22 | 珠海耀阳电子科技有限公司 | 一种光学指纹采集装置及其实现方法 |
US20180096186A1 (en) * | 2016-09-30 | 2018-04-05 | Synaptics Incorporated | Optical sensor with angled reflectors |
CN106412166A (zh) * | 2016-11-23 | 2017-02-15 | 广东欧珀移动通信有限公司 | 终端的壳体组件及终端 |
Also Published As
Publication number | Publication date |
---|---|
CN109690566A (zh) | 2019-04-26 |
CN109690566B (zh) | 2023-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11501555B2 (en) | Under-screen biometric identification apparatus and electronic device | |
US10963667B2 (en) | Under-screen biometric identification apparatus and electronic device | |
CN111414881B (zh) | 显示装置和移动终端 | |
CN113343829B (zh) | 指纹识别装置和电子设备 | |
CN110678874B (zh) | 屏下光学指纹识别系统及电子装置 | |
CN110235143B (zh) | 屏下指纹识别装置和电子设备 | |
US20200302142A1 (en) | Fingerprint identification apparatus and electronic device | |
US10043847B2 (en) | Image capturing module and electrical apparatus | |
WO2020082369A1 (zh) | 屏下生物特征识别装置和电子设备 | |
WO2020035021A1 (zh) | Lcd指纹识别系统、屏下光学指纹识别装置和电子装置 | |
CN214225933U (zh) | 指纹识别的装置和电子设备 | |
US11373436B2 (en) | Fingerprint identification apparatus and electronic device | |
CN109633959A (zh) | 可实现屏内指纹识别的显示装置 | |
CN110036396A (zh) | 指纹识别装置和电子设备 | |
US11302621B2 (en) | Chip package structure and electronic device | |
CN210166797U (zh) | 超声波指纹识别结构及电子装置 | |
CN209859155U (zh) | 指纹识别装置以及电子设备 | |
US11545517B2 (en) | Chip package structure, electronic device and method for preparing a chip package structure | |
WO2020113414A1 (zh) | 一种光学指纹识别模组及电子装置 | |
CN109815941A (zh) | 指纹识别装置以及电子设备 | |
TWI664744B (zh) | 取像裝置及其製造方法 | |
CN109508599A (zh) | 光学指纹识别模组和电子装置 | |
EP3591578B1 (en) | Under-screen biometric identification apparatus and electronic device | |
CN209312046U (zh) | 一种光学指纹识别模组及电子装置 | |
CN209560562U (zh) | 指纹识别装置以及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18942398 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18942398 Country of ref document: EP Kind code of ref document: A1 |