WO2020111911A1 - High-flame-retardant and low-smoke-emission nonhalogenated resin composition, and utp cable comprising sheath layer formed therefrom - Google Patents

High-flame-retardant and low-smoke-emission nonhalogenated resin composition, and utp cable comprising sheath layer formed therefrom Download PDF

Info

Publication number
WO2020111911A1
WO2020111911A1 PCT/KR2019/016845 KR2019016845W WO2020111911A1 WO 2020111911 A1 WO2020111911 A1 WO 2020111911A1 KR 2019016845 W KR2019016845 W KR 2019016845W WO 2020111911 A1 WO2020111911 A1 WO 2020111911A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogen
resin composition
flame retardant
weight
based resin
Prior art date
Application number
PCT/KR2019/016845
Other languages
French (fr)
Korean (ko)
Inventor
김인하
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority claimed from KR1020190158149A external-priority patent/KR20200066252A/en
Publication of WO2020111911A1 publication Critical patent/WO2020111911A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the present invention relates to a high flame retardant and low smoke non-halogen-based resin composition for forming a sheath layer of a UTP cable and a UTP cable comprising a sheath layer formed therefrom.
  • the present invention relates to a non-halogen-based resin composition that satisfies high flame retardancy and low flame retardancy of C grade or higher based on a CPR (Construction Products Regulation) standard currently applied in Europe, and a UTP cable comprising a sheath layer formed therefrom. will be.
  • UTP cable stands for unshielded twisted pair, also known as unshielded paired cable or unshielded twisted pair.
  • the most common type of UTP cable is a copper wire, which is used as a general telephone line or a signal line connecting the environment of a local area network (LAN).
  • LAN local area network
  • the outer surface of the UTP cable is covered with a sheath material, and the sheath layer of the sheath material is exposed to directly contact the outside.
  • a sheath material In the case of a plenum-class UTP cable, it is used to install in an environment without a duct, and thus, excessive smoke is generated when a fire occurs in a space where the cable or the like is installed.
  • the plenum-class UTP cable should be made of a material having low flame retardancy and high flame retardant properties in that it can be used as a passage for fire diffusion in the case of a highly combustible material.
  • the combustion gas toxicity index required by the new standard CPR class cannot be satisfied.
  • Polyolefin resin is used as a material with relatively low combustion gas hazard.
  • CM and CMX flame retardants are generally satisfied, and various flame retardants based on metal hydroxides are applied to satisfy them.
  • CM flame retardancy is evaluated according to the length of combustion after applying a flame for 20 minutes with a heat of 21 kW according to the UL 1685 standard.
  • An object of the present invention is to provide a UTP cable comprising a non-halogen-based resin composition satisfying high flame retardancy and low smoke retardancy of C grade or higher based on CPR (Construction Products Regulation) standards, and a sheath layer formed therefrom.
  • a non-halogen-based resin composition for forming a sheath layer of a UTP cable a linear low density grafted with ethylene vinyl acetate (EVA) resin having a vinyl acetate content of 15 to 35% by weight, a polyolefin elastomer resin, and a polar group.
  • EVA ethylene vinyl acetate
  • a base resin comprising a polyethylene resin and a non-halogen-based flame retardant
  • the non-halogen-based flame retardant comprises a flame retardant comprising a metal hydroxide and a flame retardant aid comprising an antimony-based flame retardant and a zinc-based flame retardant
  • the non-halogen-based resin It provides a non-halogen-based resin composition, the UTP cable comprising a sheath layer formed from the composition satisfies the C grade or higher of the Construction Products Regulation (CPR) certification.
  • CPR Construction Products Regulation
  • the content of the ethylene vinyl acetate (EVA) resin is 40 to 65 parts by weight
  • the content of the polyolefin elastomer resin is 15 to 40 parts by weight
  • the linear low density polyethylene with the polar group grafted The content of the resin is 15 to 30 parts by weight, it provides a non-halogen-based resin composition.
  • the content of the flame retardant is 180 to 230 parts by weight
  • the content of the antimony-based flame retardant is 20 to 40 parts by weight
  • the content of the zinc-based flame retardant is 5 to 40 parts by weight
  • it may further include a calcium carbonate as a filler, the content of the filler, based on 100 parts by weight of the base resin, characterized in that 5 to 20 parts by weight, provides a non-halogen-based resin composition.
  • the polar group provides a non-halogen-based resin composition, characterized in that it is maleic anhydride.
  • the polyolefin elastomer resin provides a non-halogen-based resin composition, characterized in that it comprises an ethylene octene copolymer.
  • the metal hydroxide is characterized in that it comprises magnesium hydroxide, provides a non-halogen-based resin composition.
  • the antimony flame retardant provides a non-halogen-based resin composition, characterized in that it comprises an antimony trioxide.
  • the zinc-based flame retardant provides a non-halogen-based resin composition, characterized in that it comprises zinc borate.
  • a UTP cable including a sheath layer formed from the non-halogen-based resin composition is provided.
  • the thickness of the sheath layer is characterized in that 0.5 to 0.8 mm, to provide a non-halogen-based resin composition.
  • the thickness of the sheath layer is characterized in that 0.6 to 0.7 mm, to provide a non-halogen-based resin composition.
  • the non-halogen-based resin composition according to the present invention secures the mechanical strength required in the sheath layer of the UTP cable, and at the same time, satisfies the high flame retardancy, low flame retardancy, and low toxicity of combustion gas based on CPR (Construction Products Regulation) standards. It shows effect.
  • the present invention relates to a high flame retardant and low smoke nonhalogen based resin composition for forming a sheath layer of a UTP cable.
  • the non-halogen-based resin composition according to the present invention includes a polyolefin-based base resin and a flame retardant, and may further include other additives such as antioxidants and lubricants.
  • the polyolefin-based base resin may include ethylene vinyl acetate (EVA) resin, polyolefin elastomer resin, and a linear low density polyethylene resin grafted with polar groups, for example, maleic anhydride, glycidyl methacrylate, and the like. have.
  • the polyolefin-based base resin is formed by blending of the specific resin described above to realize mechanical properties and flame retardancy required in the sheath layer of the UTP cable, and sufficient filler loading for the flame retardant.
  • the ethylene vinyl acetate (EVA) resin has a vinyl acetate content of 15 to 35% by weight
  • the polyolefin elastomer resin may include an ethylene octene copolymer.
  • the linear low-density polyethylene resin grafted with the polar group improves the filler loading capacity of the flame retardant for the base resin, thereby improving the flame retardancy of the non-halogen-based resin composition compared to other compositions containing the same amount of flame retardant.
  • the dispersibility of the flame retardant in the base resin it is possible to suppress the mechanical properties of the non-halogen-based resin composition, extrudability, etc. from being lowered due to aggregation of the flame retardant.
  • the flame retardancy of the non-halogen-based resin composition is improved, while the mechanical strength is lowered, and conversely, when it is less than 15% by weight, the non-halogen-based resin The mechanical strength of the composition is improved while the flame retardancy is lowered.
  • the content of the ethylene vinyl acetate (EVA) resin is 40 to 65 parts by weight
  • the content of the polyolefin elastomer resin is 15 to 40 parts by weight
  • the polar group is grafted
  • the content of the linear low density polyethylene resin may be 15 to 30 parts by weight.
  • the flame retardancy of the non-halogen-based resin composition is lowered, whereas when it is more than 65 parts by weight, the strength of the non-halogen-based resin composition may be significantly reduced. have.
  • the content of the polyolefin elastomer is less than 15 parts by weight, the elongation of the non-halogen-based resin composition may be lowered, whereas when it is more than 40 parts by weight, the mechanical strength of the non-halogen-based resin composition may be significantly reduced.
  • the non-halogen-based resin composition has flame retardancy, mechanical strength and elongation, and extruding property due to reduced compatibility with additives such as the base resin and a flame retardant. Whereas, etc. may be greatly reduced, when the content is more than 30 parts by weight, the content of the ethylene vinyl acetate (EVA) resin or the polyolefin elastomer resin is relatively reduced, and thus the flame retardancy or elongation of the non-halogen-based resin composition is selectively significantly reduced. Can be.
  • EVA ethylene vinyl acetate
  • the flame retardant includes a non-halogen-based flame retardant, specifically, a metal hydroxide such as magnesium hydroxide or aluminum hydroxide, preferably a flame retardant containing magnesium hydroxide and an antimony flame retardant, preferably an antimony trioxide and a zinc flame retardant, preferably It may include a flame retardant adjuvant containing zinc borate.
  • a metal hydroxide such as magnesium hydroxide or aluminum hydroxide
  • an antimony flame retardant preferably an antimony trioxide and a zinc flame retardant, preferably It may include a flame retardant adjuvant containing zinc borate.
  • the flame retardant containing the magnesium hydroxide, etc. mainly improves the flame retardant, refractory, and smoke-retardant properties of the non-halogen-based resin composition in the event of a fire, and in particular, the magnesium hydroxide is endothermic, which is decomposed into metal oxides, that is, ceramics and water, at about 340°C or higher as shown below.
  • the magnesium hydroxide is endothermic, which is decomposed into metal oxides, that is, ceramics and water, at about 340°C or higher as shown below.
  • the magnesium hydroxide or the like is a synthetic magnesium hydroxide or a natural magnesium hydroxide of a water-active type, and may or may not be treated with a hydrophobic surface treatment agent such as vinylsilane.
  • a hydrophobic surface treatment agent such as vinylsilane.
  • the surface of the additive having a hydrophilic surface may be surface treated with hydrophobicity, but when the surface of the magnesium hydroxide is treated with hydrophobicity, the flame retardancy of the non-halogen-based resin composition is fine. It may degrade.
  • the surface of the magnesium hydroxide is not surface-treated with another material, and thus the compatibility between the magnesium hydroxide and the base resin is reduced by improving the filler loading of the flame retardant by the linear low density polyethylene resin with the polar group grafted. can do.
  • Melamine cyanurate which has been generally used as a conventional flame retardant aid, has a problem of generating a corrosive combustion gas containing acid after combustion, replacing it with the antimony flame retardant and zinc flame retardant described above, but antimony
  • the system flame retardant has a problem of high cost, and while controlling the content thereof, the reduction in flame retardancy according to this can be solved by the combination of the zinc flame retardant and the specific combination of the base resin described above.
  • the antimony-based flame retardant including the antimony trioxide exhibits a flame retardant synergistic effect together with the metal hydroxide-based flame retardant in the event of a fire, so that the flame retardant and fire-resistant properties of the non-halogen-based resin composition such as lowering the ambient temperature can be maintained.
  • Auxiliary flame retardant, refractory and smoke-retardant properties can be realized, and the zinc-based flame retardant containing zinc borate or the like forms a char when a fire occurs, a sheath layer formed from the non-halogen-based resin composition and a UTP comprising the same
  • the flame retardant may include 180 to 230 parts by weight of the metal hydroxide flame retardant based on 100 parts by weight of the polyolefin base resin, and the flame retardant aid is 20 to 40 parts by weight of the antimony flame retardant based on 100 parts by weight of the polyolefin base resin and
  • the zinc flame retardant may include 5 to 40 parts by weight.
  • the non-halogen-based resin composition may further include 5 to 20 parts by weight of calcium carbonate as a filler to lower its manufacturing cost.
  • the thickness of the sheath layer may be 0.5 to 0.8 mm in order to realize such high flame retardancy and low flame retardancy in the UTP cable including the sheath layer formed from the sheath composition.
  • the thickness of the sheath layer is less than 0.5 mm, the flame retardancy of the non-halogen-based resin composition is greatly reduced, whereas when it is more than 0.8 mm, flexibility of the non-halogen-based resin composition may be reduced.
  • the content of the flame retardant and the flame retardant auxiliary is precisely controlled as described above, thereby minimizing the production cost of the non-halogen-based resin composition, and at the same time, high flame retardancy and low flame retardancy of C grade or higher level of CPR (Construction Products Regulation) certification can be realized. There will be.
  • a non-halogen-based resin composition and sheath layer specimens and UTP cable specimens formed therefrom were prepared with components and contents as shown in Table 1 below.
  • the units of content listed in Table 1 below are parts by weight.
  • Example Comparative example One 2 3 One 2 3 4 5 6 Suzy 1 55 50 60 60 45 55 55 55 Suzy 2 25 30 20 30 20 25 25 25 25 Suzy 3 20 20 20 10 35 20 20 20 20 Flame retardant 1 210 200 190 210 210 165 210 210 210 Flame retardant 2 25 30 35 25 25 25 25 25 25 25 Flame retardant 3 30 30 30 25 30 30 30 - 30 30 Flame retardant 4 - - - - - - 30 - - Antioxidants and other additives 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Total content 375 370 360 375 375 330 375 375 375 Sheath layer thickness (mm) 0.60 0.70 0.60 0.60 0.60 0.60 0.60 0.60 0.85 0.45
  • Tensile strength and elongation were measured for each of the sheath layer specimens according to the standard UL444 (evaluation speed is 200 mm/min), and the tensile strength should be 0.92 kgf/mm2 or more and the elongation rate should be 100% or more.
  • the combustion length of the cable that was naturally extinguished and then propagated vertically after 20 minutes of flame was applied to each UTP cable specimen of Examples and Comparative Examples was measured, and the combustion length was required to satisfy the CPR B rating. It must be 1.5 m or less, and the combustion length must be 2.0 m or less to satisfy the CPR C rating.
  • the flames are applied to each UTP cable specimen of Examples and Comparative Examples for 20 minutes to collect smoke generated during combustion, and measure the content of oxygen consumed, oxygen monoxide and carbon dioxide emitted, and smoke
  • the temperature, flow rate, pressure difference, etc. were measured to comprehensively calculate the heat release rate, and the maximum value was selected.
  • the maximum heat dissipation rate must be 30 kW or less to satisfy the CPR B rating, and the maximum heat dissipation rate must be 60 kW or less to satisfy the CPR C rating.
  • the heat release rate (HRR) values expressed as a function of time were calculated by integrating, and the total heat release rate to satisfy the CPR B class should be 15 MJ or less, and the total heat release rate to satisfy the CPR C class should be 30 MJ or less.
  • the flame propagation rate was obtained by dividing the maximum heat release rate by the time at which the heat release rate became maximum after applying the flame to the cable specimen.
  • the flame propagation speed to satisfy the CPR B rating is 150 W/s or less, and the flame propagation speed to satisfy the CPR C rating should be 300 W/s or less.
  • TSP Total Smoke Production
  • SPR Peak Smoke Production Rate
  • Drip Flame Combustion Test
  • the total amount of smoke was measured after natural extinguishing, and the maximum rate of smoke was calculated from the amount of smoke generated over time. The burning time of the resulting spark was measured. The total smoke amount is 50 m2 or less, the maximum smoke rate is 0.25 m2/s or less, and the burning time of fire should be 10 seconds or less.
  • the sheath layer specimens of Examples and Comparative Examples were heated in a tube furnace of 935° C. or higher for 30 minutes, and then immersed in a distilled water container to measure pH and conductivity.
  • the pH should be 4.3 or higher and the conductivity should be 2.5 ⁇ S/mm or less.
  • the content of the metal hydroxide flame retardant was substantially lower than the standard, and the overall flame retardancy and low flame retardancy were significantly reduced.
  • the toxicity of the combustion gas was greatly increased, and the non-halogen-based resin composition of Comparative Example 5 had an excessive thickness of the sheath layer formed therefrom, thereby deteriorating the transmission characteristics of the UTP cable, whereas the non-halogen-based resin composition of Comparative Example 6 was It was confirmed that the thickness of the sheath layer formed therefrom was lower than the standard, and the flame retardancy was lowered.
  • the non-halogen-based resin composition of Examples 1 to 3 according to the present invention is a material for forming a sheath layer of a UTP cable, and both mechanical properties after heating at room temperature and heating and C-class high flame retardancy and low flame retardancy at the same time Satisfied.

Abstract

The present invention relates to a high-flame-retardant and low-smoke-emission nonhalogenated resin composition for forming the sheath layer of a UTP cable, and a UTP cable comprising a sheath layer formed therefrom. Specifically, the present invention relates to: a nonhalogenated resin composition satisfying a high flame retardancy and a low smoke emission of grade C or higher on the basis of the construction products regulation (CPR) which has recently been applied in Europe; and a UTP cable comprising a sheath layer formed therefrom.

Description

고난연 및 저발연 비할로겐계 수지 조성물 및 이로부터 형성된 시스층을 포함하는 유티피 케이블A UTP cable comprising a high flame retardant and low smoke non-halogen resin composition and a sheath layer formed therefrom
본 발명은 유티피 케이블의 시스층 형성용 고난연 및 저발연 비할로겐계 수지 조성물 및 이로부터 형성된 시스층을 포함하는 유티피 케이블에 관한 것이다. 구체적으로, 본 발명은 최근 유럽에서 적용되는 CPR (Construction Products Regulation) 규격 기준으로 C 등급 이상의 고난연성 및 저발연성을 만족하는 비할로겐계 수지 조성물 및 이로부터 형성된 시스층을 포함하는 유티피 케이블에 관한 것이다.The present invention relates to a high flame retardant and low smoke non-halogen-based resin composition for forming a sheath layer of a UTP cable and a UTP cable comprising a sheath layer formed therefrom. Specifically, the present invention relates to a non-halogen-based resin composition that satisfies high flame retardancy and low flame retardancy of C grade or higher based on a CPR (Construction Products Regulation) standard currently applied in Europe, and a UTP cable comprising a sheath layer formed therefrom. will be.
유티피(UTP) 케이블은 언쉴드 트위스티드 페어(unshielded twisted pair)의 약자로, 비차폐 쌍 케이블 또는 비차폐 연선이라고도 한다. 유티피(UTP) 케이블의 가장 일반적인 형태는 구리선으로서, 일반 전화선이나 랜(LAN; 근거리 통신망)의 환경을 이어주는 신호선으로 이용되고 있다.UTP cable stands for unshielded twisted pair, also known as unshielded paired cable or unshielded twisted pair. The most common type of UTP cable is a copper wire, which is used as a general telephone line or a signal line connecting the environment of a local area network (LAN).
유티피 케이블은 외표면이 시스재료로 피복되어 있으며, 이러한 시스재료에 의한 시스층은 외부와 직접 접촉하도록 노출되어 있다. 플레넘급 유티피 케이블의 경우 덕트가 없는 환경에 포설하는데 이용되므로 상기 케이블 등이 가설된 공간에서 화재가 발생되는 경우에 연기 발생이 과다하게 이루어지게 된다.The outer surface of the UTP cable is covered with a sheath material, and the sheath layer of the sheath material is exposed to directly contact the outside. In the case of a plenum-class UTP cable, it is used to install in an environment without a duct, and thus, excessive smoke is generated when a fire occurs in a space where the cable or the like is installed.
따라서, 플레넘급 유티피 케이블은 연소성이 강한 물질인 경우에는 화재 확산의 통로로 이용될 수 있다는 점에서 발연성이 낮고 난연성이 높은 물성을 갖는 재료가 이용되어야 한다. 허나, 종래의 플레넘급으로 사용되는 절연 및 시스 재질의 경우 신규 규격인 CPR 등급에서 요구하는 연소가스 독성 지수를 만족할 수 없다. 상대적으로 연소 가스 유해성이 낮은 재료로 폴리올레핀 수지를 적용하는데 특히, 폴리올레핀 시스를 적용한 유티피 케이블의 경우 일반적으로 CM 및 CMX 난연을 만족하며 이를 만족하기 위해 금속수산화물을 기반으로 한 다양한 난연제를 적용한다. CM 난연은 UL 1685 규격에 의거, 21kW의 열량으로 20분간 불꽃 인가 후 연소 길이로 난연성을 평가한다.Therefore, the plenum-class UTP cable should be made of a material having low flame retardancy and high flame retardant properties in that it can be used as a passage for fire diffusion in the case of a highly combustible material. However, in the case of insulating and sheath materials used in the conventional plenum class, the combustion gas toxicity index required by the new standard CPR class cannot be satisfied. Polyolefin resin is used as a material with relatively low combustion gas hazard. In particular, in the case of UTP cables with polyolefin sheath, CM and CMX flame retardants are generally satisfied, and various flame retardants based on metal hydroxides are applied to satisfy them. CM flame retardancy is evaluated according to the length of combustion after applying a flame for 20 minutes with a heat of 21 kW according to the UL 1685 standard.
그러나, 최근 유럽에서 새로 적용되는 CPR (Construction Products Regulation) 인증의 경우에는 난연 평가 방법은 유사하나 특정 수준의 연소 길이와 최대열방출율, 총열방출율, 화염전파속도가 요구되며 추가로 연기지수 등이 요구된다.However, in the case of CPR (Construction Products Regulation) certification newly applied in Europe in recent years, the flame retardant evaluation method is similar, but a certain level of combustion length, maximum heat release rate, total heat release rate, flame propagation rate is required, and additional smoke index is required. do.
한편, 종래 CM 난연을 만족하는 폴리올레핀 시스를 적용한 유티피 케이블의 경우 CPR 규격 기준으로 D 등급 수준임이 확인되었으며 보다 높은 등급인 C 등급 이상을 만족하기 위해서는 새로운 저발연 고난연의 시스 재료의 개발이 절실하다.On the other hand, it has been confirmed that the UTP cable applying a polyolefin sheath that satisfies the conventional CM flame retardant is D-class based on the CPR standard, and in order to satisfy the higher grade C or higher, the development of a new low-fueled high-flame retardant sheath material is urgently needed. .
본 발명은 CPR (Construction Products Regulation) 규격 기준으로 C 등급 이상의 고난연성 및 저발연성을 만족하는 비할로겐계 수지 조성물 및 이로부터 형성된 시스층을 포함하는 유티피 케이블을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a UTP cable comprising a non-halogen-based resin composition satisfying high flame retardancy and low smoke retardancy of C grade or higher based on CPR (Construction Products Regulation) standards, and a sheath layer formed therefrom.
상기 과제를 해결하기 위해, 본 발명은,In order to solve the above problems, the present invention,
유티피(UTP) 케이블의 시스층 형성용 비할로겐계 수지 조성물로서, 비닐 아세테이트 함량이 15 내지 35 중량%인 에틸렌 비닐 아세테이트(EVA) 수지, 폴리올레핀 엘라스토머 수지 및 극성기가 그라프트된(grafted) 선형 저밀도 폴리에틸렌 수지를 포함하는 베이스 수지 및 비할로겐계 난연제를 포함하고, 상기 비할로겐계 난연제는 금속수산화물을 포함하는 난연제 및 안티몬계 난연제와 아연계 난연제를 포함하는 난연보조제를 포함하고, 상기 비할로겐계 수지 조성물로부터 형성된 시스층을 포함하는 유티피 케이블이 CPR(Construction Products Regulation) 인증의 C 등급 이상을 만족하는, 비할로겐계 수지 조성물을 제공한다.A non-halogen-based resin composition for forming a sheath layer of a UTP cable, a linear low density grafted with ethylene vinyl acetate (EVA) resin having a vinyl acetate content of 15 to 35% by weight, a polyolefin elastomer resin, and a polar group. A base resin comprising a polyethylene resin and a non-halogen-based flame retardant, the non-halogen-based flame retardant comprises a flame retardant comprising a metal hydroxide and a flame retardant aid comprising an antimony-based flame retardant and a zinc-based flame retardant, and the non-halogen-based resin It provides a non-halogen-based resin composition, the UTP cable comprising a sheath layer formed from the composition satisfies the C grade or higher of the Construction Products Regulation (CPR) certification.
여기서, 상기 베이스 수지 100 중량부를 기준으로, 상기 에틸렌 비닐 아세테이트(EVA) 수지의 함량은 40 내지 65 중량부, 상기 폴리올레핀 엘라스토머 수지의 함량은 15 내지 40 중량부, 상기 극성기가 그라프트된 선형 저밀도 폴리에틸렌 수지의 함량은 15 내지 30 중량부인 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.Here, based on 100 parts by weight of the base resin, the content of the ethylene vinyl acetate (EVA) resin is 40 to 65 parts by weight, the content of the polyolefin elastomer resin is 15 to 40 parts by weight, the linear low density polyethylene with the polar group grafted The content of the resin is 15 to 30 parts by weight, it provides a non-halogen-based resin composition.
또한, 상기 베이스 수지 100 중량부를 기준으로, 상기 난연제의 함량은 180 내지 230 중량부, 상기 안티몬계 난연제의 함량은 20 내지 40 중량부, 상기 아연계 난연제의 함량은 5 내지 40 중량부인 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.In addition, based on 100 parts by weight of the base resin, the content of the flame retardant is 180 to 230 parts by weight, the content of the antimony-based flame retardant is 20 to 40 parts by weight, and the content of the zinc-based flame retardant is 5 to 40 parts by weight To provide a non-halogen-based resin composition.
그리고, 충전제로 칼슘 카보네이트를 추가로 포함할 수 있고, 상기 충전제의 함량은, 상기 베이스 수지 100 중량부를 기준으로, 5 내지 20 중량부인 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.And, it may further include a calcium carbonate as a filler, the content of the filler, based on 100 parts by weight of the base resin, characterized in that 5 to 20 parts by weight, provides a non-halogen-based resin composition.
나아가, 상기 극성기는 무수 말레인산인 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.Furthermore, the polar group provides a non-halogen-based resin composition, characterized in that it is maleic anhydride.
한편, 상기 폴리올레핀 엘라스토머 수지는 에틸렌 옥텐 공중합체를 포함하는 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.On the other hand, the polyolefin elastomer resin provides a non-halogen-based resin composition, characterized in that it comprises an ethylene octene copolymer.
또한, 상기 금속수산화물은 수산화마그네슘을 포함하는 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.In addition, the metal hydroxide is characterized in that it comprises magnesium hydroxide, provides a non-halogen-based resin composition.
그리고, 상기 안티몬계 난연제는 삼산화 안티몬을 포함하는 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.And, the antimony flame retardant provides a non-halogen-based resin composition, characterized in that it comprises an antimony trioxide.
나아가, 상기 아연계 난연제는 붕산아연을 포함하는 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.Furthermore, the zinc-based flame retardant provides a non-halogen-based resin composition, characterized in that it comprises zinc borate.
한편, 상기 비할로겐계 수지 조성물로부터 형성된 시스층을 포함하는 유티피(UTP) 케이블을 제공한다.On the other hand, a UTP cable including a sheath layer formed from the non-halogen-based resin composition is provided.
여기서, 상기 시스층의 두께는 0.5 내지 0.8 mm 인 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.Here, the thickness of the sheath layer is characterized in that 0.5 to 0.8 mm, to provide a non-halogen-based resin composition.
또한, 상기 시스층의 두께는 0.6 내지 0.7 mm 인 것을 특징으로 하는, 비할로겐계 수지 조성물을 제공한다.In addition, the thickness of the sheath layer is characterized in that 0.6 to 0.7 mm, to provide a non-halogen-based resin composition.
본 발명에 따른 비할로겐계 수지 조성물은 유티피 케이블의 시스층에서 요구되는 기계적 강도를 확보하는 동시에 CPR (Construction Products Regulation) 규격 기준으로 C 등급 이상의 고난연성, 저발연성 및 연소가스 저독성을 만족하는 우수한 효과를 나타낸다.The non-halogen-based resin composition according to the present invention secures the mechanical strength required in the sheath layer of the UTP cable, and at the same time, satisfies the high flame retardancy, low flame retardancy, and low toxicity of combustion gas based on CPR (Construction Products Regulation) standards. It shows effect.
이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete, and that the spirit of the present invention is sufficiently conveyed to those skilled in the art.
본 발명은 유티피 케이블의 시스층 형성용 고난연 및 저발연 비할로겐계 수지 조성물에 관한 것이다.The present invention relates to a high flame retardant and low smoke nonhalogen based resin composition for forming a sheath layer of a UTP cable.
본 발명에 따른 비할로겐계 수지 조성물은 폴리올레핀계 베이스 수지 및 난연제를 포함하고, 추가로 산화방지제, 활제 등의 기타 첨가제를 추가로 포함할 수 있다. 여기서, 상기 폴리올레핀계 베이스 수지는 에틸렌 비닐 아세테이트(EVA) 수지, 폴리올레핀 엘라스토머 수지 및 극성기, 예를 들어 무수 말레인산, 글리시딜메타크릴레이트 등이 그라프트된(grafted) 선형 저밀도 폴리에틸렌 수지를 포함할 수 있다.The non-halogen-based resin composition according to the present invention includes a polyolefin-based base resin and a flame retardant, and may further include other additives such as antioxidants and lubricants. Here, the polyolefin-based base resin may include ethylene vinyl acetate (EVA) resin, polyolefin elastomer resin, and a linear low density polyethylene resin grafted with polar groups, for example, maleic anhydride, glycidyl methacrylate, and the like. have.
상기 폴리올레핀계 베이스 수지가 앞서 기술한 특정 수지의 블렌딩에 의해 형성됨으로써 유티피 케이블의 시스층에서 요구되는 기계적 특성 및 난연성을 구현하고 상기 난연제에 대한 충분한 필러로딩성을 구현할 수 있다.The polyolefin-based base resin is formed by blending of the specific resin described above to realize mechanical properties and flame retardancy required in the sheath layer of the UTP cable, and sufficient filler loading for the flame retardant.
구체적으로, 상기 에틸렌 비닐 아세테이트(EVA) 수지는 비닐 아세테이트의 함량이 15 내지 35 중량%이고, 상기 폴리올레핀 엘라스토머 수지는 에틸렌 옥텐 공중합체를 포함할 수 있다.Specifically, the ethylene vinyl acetate (EVA) resin has a vinyl acetate content of 15 to 35% by weight, and the polyolefin elastomer resin may include an ethylene octene copolymer.
한편, 상기 극성기가 그라프트된 선형 저밀도 폴리에틸렌 수지는 상기 베이스 수지에 대한 난연제의 필러 로딩성(filler loading capacity)을 향상시켜 동일한 함량의 난연제를 포함하는 다른 조성물에 비해 상기 비할로겐계 수지 조성물의 난연성을 향상시키는 동시에, 상기 베이스 수지 내에서 상기 난연제의 분산성을 향상시킴으로써 상기 난연제의 응집에 의해 상기 비할로겐계 수지 조성물의 기계적 특성, 압출성 등이 저하되는 것을 억제할 수 있다.On the other hand, the linear low-density polyethylene resin grafted with the polar group improves the filler loading capacity of the flame retardant for the base resin, thereby improving the flame retardancy of the non-halogen-based resin composition compared to other compositions containing the same amount of flame retardant. In addition, by improving the dispersibility of the flame retardant in the base resin, it is possible to suppress the mechanical properties of the non-halogen-based resin composition, extrudability, etc. from being lowered due to aggregation of the flame retardant.
또한, 상기 비닐 아세테이트(EVA) 수지에서 비닐 아세테이트의 함량이 35 중량% 초과인 경우 상기 비할로겐계 수지 조성물의 난연성은 향상되는 반면 기계적 강도는 저하되고, 반대로 15 중량% 미만인 경우 상기 비할로겐계 수지 조성물의 기계적 강도는 향상되는 반면 난연성은 저하된다.In addition, when the content of vinyl acetate in the vinyl acetate (EVA) resin is more than 35% by weight, the flame retardancy of the non-halogen-based resin composition is improved, while the mechanical strength is lowered, and conversely, when it is less than 15% by weight, the non-halogen-based resin The mechanical strength of the composition is improved while the flame retardancy is lowered.
나아가, 상기 폴리올레핀계 베이스 수지 100 중량부를 기준으로, 상기 에틸렌 비닐 아세테이트(EVA) 수지의 함량은 40 내지 65 중량부이고, 상기 폴리올레핀 엘라스토머 수지의 함량은 15 내지 40 중량부이며, 상기 극성기가 그라프트된 선형 저밀도 폴리에틸렌 수지의 함량은 15 내지 30 중량부일 수 있다.Further, based on 100 parts by weight of the polyolefin-based base resin, the content of the ethylene vinyl acetate (EVA) resin is 40 to 65 parts by weight, the content of the polyolefin elastomer resin is 15 to 40 parts by weight, and the polar group is grafted The content of the linear low density polyethylene resin may be 15 to 30 parts by weight.
여기서, 상기 에틸렌 비닐 아세테이트(EVA) 수지의 함량이 40 중량부 미만인 경우 상기 비할로겐계 수지 조성물의 난연성이 저하되는 반면, 65 중량부 초과인 경우 상기 비할로겐계 수지 조성물의 강도가 크게 저하될 수 있다.Here, when the content of the ethylene vinyl acetate (EVA) resin is less than 40 parts by weight, the flame retardancy of the non-halogen-based resin composition is lowered, whereas when it is more than 65 parts by weight, the strength of the non-halogen-based resin composition may be significantly reduced. have.
또한, 상기 폴리올레핀 엘라스토머의 함량이 15 중량부 미만인 경우 상기 비할로겐계 수지 조성물의 신율이 저하될 수 있는 반면, 40 중량부 초과인 경우 상기 비할로겐계 수지 조성물의 기계적 강도가 크게 저하될 수 있다.In addition, when the content of the polyolefin elastomer is less than 15 parts by weight, the elongation of the non-halogen-based resin composition may be lowered, whereas when it is more than 40 parts by weight, the mechanical strength of the non-halogen-based resin composition may be significantly reduced.
그리고, 상기 극성기가 그라프트된 선형 저밀도 폴리에틸렌 수지의 함량이 15 중량부 미만인 경우 상기 베이스 수지와 난연제 등의 첨가제와의 상용성 저하로 상기 비할로겐계 수지 조성물의 난연성, 기계적 강도 및 신율, 압출성 등이 크게 저하될 수 있는 반면, 30 중량부 초과인 경우 상기 에틸렌 비닐 아세테이트(EVA) 수지 또는 상기 폴리올레핀 엘라스토머 수지의 함량이 상대적으로 감소해 상기 비할로겐계 수지 조성물의 난연성 또는 신율이 선택적으로 크게 저하될 수 있다.In addition, when the content of the linear low-density polyethylene resin with the polar group grafted is less than 15 parts by weight, the non-halogen-based resin composition has flame retardancy, mechanical strength and elongation, and extruding property due to reduced compatibility with additives such as the base resin and a flame retardant. Whereas, etc. may be greatly reduced, when the content is more than 30 parts by weight, the content of the ethylene vinyl acetate (EVA) resin or the polyolefin elastomer resin is relatively reduced, and thus the flame retardancy or elongation of the non-halogen-based resin composition is selectively significantly reduced. Can be.
상기 난연제는 비할로겐계 난연제를 포함하고, 구체적으로 수산화마그네슘이나 수산화알루미늄 등의 금속수산화물, 바람직하게는 수산화마그네슘을 포함하는 난연제와 안티몬계 난연제, 바람직하게는 삼산화 안티몬 및 아연계 난연제, 바람직하게는 붕산아연을 포함하는 난연보조제를 포함할 수 있다.The flame retardant includes a non-halogen-based flame retardant, specifically, a metal hydroxide such as magnesium hydroxide or aluminum hydroxide, preferably a flame retardant containing magnesium hydroxide and an antimony flame retardant, preferably an antimony trioxide and a zinc flame retardant, preferably It may include a flame retardant adjuvant containing zinc borate.
상기 수산화마그네슘 등을 포함하는 난연제는 화재 발생시 상기 비할로겐계 수지 조성물의 난연, 내화 및 억연 특성을 주로 향상시키고, 특히 수산화마그네슘은 약 340℃ 이상에서 아래와 같이 산화금속, 즉 세라믹과 물로 분해되는 흡열반응을 유발해 주변 온도를 낮출 뿐만 아니라, 강도가 향상되고 내수성이 우수한 상기 세라믹에 의해 가혹한 조건하에서도 상기 비할로겐계 수지 조성물의 난연, 내화 및 억연 특성을 유지할 수 있도록 하는 기능을 수행할 수 있다.The flame retardant containing the magnesium hydroxide, etc., mainly improves the flame retardant, refractory, and smoke-retardant properties of the non-halogen-based resin composition in the event of a fire, and in particular, the magnesium hydroxide is endothermic, which is decomposed into metal oxides, that is, ceramics and water, at about 340°C or higher as shown below. In addition to lowering the ambient temperature by inducing a reaction, it is possible to perform a function of maintaining the flame retardant, fireproof, and smoke-retardant properties of the non-halogen-based resin composition even under severe conditions by the ceramic having improved strength and excellent water resistance. .
Mg(OH) 2 -> MgO + H 2O - 330kJ/mol at ≥340℃Mg(OH) 2 -> MgO + H 2 O-330kJ/mol at ≥340℃
여기서, 상기 수산화마그네슘 등은 합성 수산화마그네슘이나 수활성 계열의 천연 수산화마그네슘으로서 비닐실란 등의 소수성 표면처리제로 표면처리되거나 처리되지 않을 수 있다. 통상, 베이스 수지와의 상용성을 향상시키기 위해 친수성 표면을 갖는 첨가제의 표면이 소수성으로 표면처리될 수 있으나, 상기 수산화마그네슘의 표면이 소수성으로 처리되는 경우 상기 비할로겐계 수지 조성물의 난연성이 미세하게 저하될 수 있다.Here, the magnesium hydroxide or the like is a synthetic magnesium hydroxide or a natural magnesium hydroxide of a water-active type, and may or may not be treated with a hydrophobic surface treatment agent such as vinylsilane. Usually, to improve compatibility with the base resin, the surface of the additive having a hydrophilic surface may be surface treated with hydrophobicity, but when the surface of the magnesium hydroxide is treated with hydrophobicity, the flame retardancy of the non-halogen-based resin composition is fine. It may degrade.
한편, 상기 수산화마그네슘의 표면이 다른 물질로 표면처리되지 않아 상기 수산화마그네슘과 상기 베이스 수지의 상용성이 저하되는 것을 상기 극성기가 그라프트된 선형 저밀도 폴리에틸렌 수지에 의한 난연제의 필러 로딩성 향상에 의해 보상할 수 있다.On the other hand, the surface of the magnesium hydroxide is not surface-treated with another material, and thus the compatibility between the magnesium hydroxide and the base resin is reduced by improving the filler loading of the flame retardant by the linear low density polyethylene resin with the polar group grafted. can do.
종래 난연보조제로 일반적으로 사용되어 왔던 멜라민 시아누레이트는 연소 후 산(acid)을 포함하는 부식성 연소가스를 발생시키는 문제가 있어, 이를 앞서 기술한 안티몬계 난연제와 아연계 난연제로 대체하고, 다만 안티몬계 난연제는 비용이 높은 문제가 있어 이의 함량을 조절하면서 이에 따른 난연성 저하는 아연계 난연제의 조합 및 앞서 기술한 베이스 수지의 특정 조합에 의해 해결할 수 있다.Melamine cyanurate, which has been generally used as a conventional flame retardant aid, has a problem of generating a corrosive combustion gas containing acid after combustion, replacing it with the antimony flame retardant and zinc flame retardant described above, but antimony The system flame retardant has a problem of high cost, and while controlling the content thereof, the reduction in flame retardancy according to this can be solved by the combination of the zinc flame retardant and the specific combination of the base resin described above.
구체적으로, 상기 삼산화 안티몬 등을 포함하는 안티몬계 난연제는 화재 발생시 금속 수산화물계 난연제와 더불어 난연 상승 작용을 발현하는데, 주변 온도를 낮추는 등의 상기 비할로겐계 수지 조성물의 난연 및 내화특성을 유지할 수 있도록 하는 보조적으로 난연, 내화 및 억연 특성을 구현할 수 있고, 상기 붕산아연 등을 포함하는 아연계 난연제는 화재 발생시 차르(char)를 형성하여 상기 비할로겐계 수지 조성물로부터 형성된 시스층 및 이를 포함하는 유티피 케이블의 구조를 유지시켜 보조적으로 난연, 내화 및 억연 특성을 구현할 수 있다.Specifically, the antimony-based flame retardant including the antimony trioxide exhibits a flame retardant synergistic effect together with the metal hydroxide-based flame retardant in the event of a fire, so that the flame retardant and fire-resistant properties of the non-halogen-based resin composition such as lowering the ambient temperature can be maintained. Auxiliary flame retardant, refractory and smoke-retardant properties can be realized, and the zinc-based flame retardant containing zinc borate or the like forms a char when a fire occurs, a sheath layer formed from the non-halogen-based resin composition and a UTP comprising the same By maintaining the structure of the cable, it is possible to realize flame-retardant, fire-resistant and smoke-free properties.
상기 난연제는 상기 폴리올레핀계 베이스 수지 100 중량부를 기준으로 상기 금속수산화물 난연제 180 내지 230 중량부를 포함할 수 있고, 상기 난연보조제는 상기 폴리올레핀 베이스 수지 100 중량부를 기준으로 상기 안티몬계 난연제 20 내지 40 중량부 및 상기 아연계 난연제 5 내지 40 중량부를 포함할 수 있다. 또한, 상기 비할로겐계 수지 조성물는 이의 제조단가를 낮추기 위해 충전제로서 칼슘 카보네이트 5 내지 20 중량부를 추가로 포함할 수 있다.The flame retardant may include 180 to 230 parts by weight of the metal hydroxide flame retardant based on 100 parts by weight of the polyolefin base resin, and the flame retardant aid is 20 to 40 parts by weight of the antimony flame retardant based on 100 parts by weight of the polyolefin base resin and The zinc flame retardant may include 5 to 40 parts by weight. In addition, the non-halogen-based resin composition may further include 5 to 20 parts by weight of calcium carbonate as a filler to lower its manufacturing cost.
이러한 시스 조성물로부터 형성된 시스층을 포함하는 유티피 케이블에서 이러한 고난연성 및 저발연성을 구현하기 위해 상기 시스층의 두께는 0.5 내지 0.8 mm 일 수 있다. 상기 시스층으 두께가 0.5mm 미만인 경우 상기 비할로겐계 수지 조성물의 난연성이 크게 저하되는 반면, 0.8mm 초과인 경우 상기 비할로겐계 수지 조성물의 유연성이 저하될 수 있다.The thickness of the sheath layer may be 0.5 to 0.8 mm in order to realize such high flame retardancy and low flame retardancy in the UTP cable including the sheath layer formed from the sheath composition. When the thickness of the sheath layer is less than 0.5 mm, the flame retardancy of the non-halogen-based resin composition is greatly reduced, whereas when it is more than 0.8 mm, flexibility of the non-halogen-based resin composition may be reduced.
상기 난연제 및 상기 난연보조제의 함량이 상기와 같이 정밀하게 조절됨으로써 상기 비할로겐계 수지 조성물의 제조비용을 최소화하는 동시에 CPR(Construction Products Regulation) 인증의 C 등급 이상 수준의 고난연성 및 저발연성을 구현할 수 있게 된다.The content of the flame retardant and the flame retardant auxiliary is precisely controlled as described above, thereby minimizing the production cost of the non-halogen-based resin composition, and at the same time, high flame retardancy and low flame retardancy of C grade or higher level of CPR (Construction Products Regulation) certification can be realized. There will be.
[실시예][Example]
1. 제조예1. Manufacturing example
아래 표 1에 나타난 바와 같은 구성성분 및 함량으로 비할로겐계 수지 조성물 및 이로부터 형성된 시스층 시편 및 유티피 케이블 시편을 제조했다. 아래 표 1에 기재된 함량의 단위는 중량부이다.A non-halogen-based resin composition and sheath layer specimens and UTP cable specimens formed therefrom were prepared with components and contents as shown in Table 1 below. The units of content listed in Table 1 below are parts by weight.
실시예Example 비교예Comparative example
1One 22 33 1One 22 33 44 55 66
수지1Suzy 1 5555 5050 6060 6060 4545 5555 5555 5555 5555
수지2Suzy 2 2525 3030 2020 3030 2020 2525 2525 2525 2525
수지3Suzy 3 2020 2020 2020 1010 3535 2020 2020 2020 2020
난연제1Flame retardant 1 210210 200200 190190 210210 210210 165165 210210 210210 210210
난연제2Flame retardant 2 2525 3030 3535 2525 2525 2525 2525 2525 2525
난연제3Flame retardant 3 3030 3030 2525 3030 3030 3030 -- 3030 3030
난연제4Flame retardant 4 -- -- -- -- -- -- 3030 -- --
산화방지제및 기타 첨가제Antioxidants and other additives 1010 1010 1010 1010 1010 1010 1010 1010 1010
총함량Total content 375375 370370 360360 375375 375375 330330 375375 375375 375375
시스층 두께(mm)Sheath layer thickness (mm) 0.600.60 0.700.70 0.600.60 0.600.60 0.600.60 0.600.60 0.600.60 0.850.85 0.450.45
- 수지1 : 에틸렌 비닐 아세테이트(EVA) 수지(비닐 아세테이트 함량 28 중량%)- 수지2 : 폴리올레핀 엘라스토머 수지(에틸렌 옥텐 공중합체)-Resin 1: Ethylene vinyl acetate (EVA) resin (vinyl acetate content: 28 wt%)-Resin 2: Polyolefin elastomer resin (ethylene octene copolymer)
- 수지3 : 무수 말레인산이 그라프트된 선형 저밀도 폴리에틸렌 수지-Resin 3: Linear low density polyethylene resin with maleic anhydride grafted
- 난연제1 : 수산화마그네슘-Flame retardant 1: magnesium hydroxide
- 난연제2 : 삼산화 안티몬-Flame retardant 2: antimony trioxide
- 난연제3 : 붕산아연-Flame retardant 3: zinc borate
- 난연제4 : 멜라민 시아누레이트-Flame retardant 4: melamine cyanurate
- 기타 첨가제 : 활제-Other additives: lubricant
2. 물성 평가2. Property evaluation
(1) 상온 인장강도 및 신장율 평가(1) Evaluation of tensile strength and elongation at room temperature
규격 UL444(평가 속도는 200 mm/min)에 준하여 실시예 및 비교예 각각의 시스층 시편에 대해 인장강도 및 신장율을 측정했고, 인장강도는 0.92 kgf/㎟ 이상 및 신장율은 100% 이상이어야 한다.Tensile strength and elongation were measured for each of the sheath layer specimens according to the standard UL444 (evaluation speed is 200 mm/min), and the tensile strength should be 0.92 kgf/mm2 or more and the elongation rate should be 100% or more.
(2) 가열 후 인장강도 및 신장율 평가(2) Evaluation of tensile strength and elongation after heating
실시예 및 비교예 각각의 시스층 시편을 100℃ 오븐에서 168시간 방치 후 인장강도와 신장율을 측정(평가 속도는 200 mm/min)하였을 때 상온 인장강도 및 신장율을 기준으로 하는 인장잔율 및 신장잔율이 각각 75% 이상 및 50% 이상이어야 한다.When the tensile strength and elongation of each of the cis layer specimens of Examples and Comparative Examples were left in an oven at 100° C. for 168 hours, and the tensile strength and elongation were measured (evaluation speed is 200 mm/min), the tensile and elongation ratios based on the room temperature tensile strength and elongation were measured. It should be 75% or more and 50% or more, respectively.
(3) 유연성 평가(3) Flexibility evaluation
UTP 케이블이 '8'자 형태로 말려 보관되는 포장박스 내부에서 UTP 케이블 인출 시 꺽임(kink) 현상 발생이 육안검사 시 없어야 하고, 미세 꺽임으로 DATA 전송특성이 열화되지 않아야 한다.When the UTP cable is pulled out from the inside of the packaging box where the UTP cable is rolled and stored in an '8' shape, there should be no kink phenomenon during visual inspection, and the data transmission characteristics should not be degraded due to the fine bending.
(4) 난연성 및 발연성 평가(4) Flame retardancy and smokeability evaluation
① 연소 길이 측정① Combustion length measurement
규격 EN 50399에 준하여 실시예 및 비교예 각각의 유티피 케이블 시편에 대해 불꽃을 20분간 인가 후 자연소화 된 다음 수직으로 전파된 케이블의 연소 길이를 측정하였고, CPR B 등급을 만족하기 위해서는 연소길이가 1.5 m 이하여야 하고, CPR C 등급을 만족하기 위해서는 연소길이가 2.0 m 이하여야 한다.According to the standard EN 50399, the combustion length of the cable that was naturally extinguished and then propagated vertically after 20 minutes of flame was applied to each UTP cable specimen of Examples and Comparative Examples was measured, and the combustion length was required to satisfy the CPR B rating. It must be 1.5 m or less, and the combustion length must be 2.0 m or less to satisfy the CPR C rating.
② 최대열방출율(Peak Heat Release Rate, PHRR)② Peak Heat Release Rate (PHRR)
규격 EN 50399에 준하여 실시예 및 비교예 각각의 유티피 케이블 시편에 대해 불꽃을 20분간 인가하여 연소하는 동안 발생하는 연기를 포집하여 소비되는 산소, 방출되는 일산화산소 및 이산화탄소의 함량을 측정하고, 연기의 온도, 유량, 압력차 등을 측정하여 종합적으로 열방출율을 계산하고, 최대값을 선정했다. 이때 CPR B 등급을 만족하기 위해서는 최대열방출율이 30 kW 이하여야 하고, CPR C 등급을 만족하기 위해서는 최대열방출율이 60 kW 이하여야 한다.In accordance with the standard EN 50399, the flames are applied to each UTP cable specimen of Examples and Comparative Examples for 20 minutes to collect smoke generated during combustion, and measure the content of oxygen consumed, oxygen monoxide and carbon dioxide emitted, and smoke The temperature, flow rate, pressure difference, etc. were measured to comprehensively calculate the heat release rate, and the maximum value was selected. At this time, the maximum heat dissipation rate must be 30 kW or less to satisfy the CPR B rating, and the maximum heat dissipation rate must be 60 kW or less to satisfy the CPR C rating.
③ 총열방출율(Total Heat Release, THR)③ Total Heat Release (THR)
시간에 대한 함수로 표현되는 열방출율(HRR) 값들을 적분하여 계산했고, CPR B 등급을 만족하기 위한 총열방출율은 15MJ 이하이고, CPR C 등급을 만족하기 위한 총열방출율은 30MJ 이하여야 한다.The heat release rate (HRR) values expressed as a function of time were calculated by integrating, and the total heat release rate to satisfy the CPR B class should be 15 MJ or less, and the total heat release rate to satisfy the CPR C class should be 30 MJ or less.
④ 화염전파속도(Fire Growth Rate, FIGRA)④ Fire Growth Rate (FIRA)
케이블 시편에 불꽃 인가 후 열방출율이 최대가 되는 시간으로 최대열방출율을 나눠서 화염전파속도를 구했다. CPR B 등급을 만족하기 위한 화염전파속도는 150W/s 이하이고, CPR C 등급을 만족하기 위한 화염전파속도는 300W/s 이하여야 한다.The flame propagation rate was obtained by dividing the maximum heat release rate by the time at which the heat release rate became maximum after applying the flame to the cable specimen. The flame propagation speed to satisfy the CPR B rating is 150 W/s or less, and the flame propagation speed to satisfy the CPR C rating should be 300 W/s or less.
⑤ 총발연량(Total Smoke Production; TSP), 최고발연속도(Peak Smoke Production Rate; SPR) 및 불똥 연소시험(Drip)⑤ Total Smoke Production (TSP), Peak Smoke Production Rate (SPR), and Flame Combustion Test (Drip)
규격 EN 50399에 준하여 실시예 및 비교예 각각의 유티피 케이블 시편에 대해 불꽃을 20분간 인가 후 자연소화된 다음 총발연량을 측정했고, 시간별 발연량으로서부터 최고발연속도를 계산했으며, 케이블에서 떨어져 나온 불똥의 연소시간을 측정했다. 총발연량은 50 ㎡ 이하이고, 최고발연속도는 0.25 ㎡/s 이하이며, 불똥의 연소시간은 10초 이하여야 한다.In accordance with the standard EN 50399, after applying a flame for 20 minutes for each UTP cable specimen in Examples and Comparative Examples, the total amount of smoke was measured after natural extinguishing, and the maximum rate of smoke was calculated from the amount of smoke generated over time. The burning time of the resulting spark was measured. The total smoke amount is 50 ㎡ or less, the maximum smoke rate is 0.25 ㎡/s or less, and the burning time of fire should be 10 seconds or less.
⑥ 연소가스유해성⑥ Hazardous combustion gas
규격 EN 50267-2,3에 준하여 실시예 및 비교예 각각의 시스층 시편을 935℃ 이상의 튜브 퍼니스(tube furnace)에서 30분 동안 가열 후 증류수 용기에 침지 후 pH와 전도도를 측정했다. pH는 4.3 이상이어야 하고 전도도는 2.5 μS/mm 이하여야 한다.According to the standard EN 50267-2,3, the sheath layer specimens of Examples and Comparative Examples were heated in a tube furnace of 935° C. or higher for 30 minutes, and then immersed in a distilled water container to measure pH and conductivity. The pH should be 4.3 or higher and the conductivity should be 2.5 μS/mm or less.
물성 평가 결과는 아래 표 2에 나타난 바와 같다.Table 2 below shows the evaluation results of the properties.
요구기준Requirements criteria 실시예Example 비교예Comparative example
1One 22 33 1One 22 33 44 55 66
상온Room temperature 인장강도(kgf/㎟)Tensile strength (kgf/㎟) 0.92↑0.92↑ 1.151.15 1.081.08 1.121.12 0.880.88 1.101.10 1.131.13 1.211.21 1.291.29 1.101.10
신장율(%)Elongation (%) 100↑100↑ 125.4125.4 132.6132.6 128.7128.7 115.8115.8 75.675.6 129.6129.6 122.4122.4 121.0121.0 127.3127.3
내열(100℃/168h)Heat resistance (100℃/168h) 인장잔율(%)Tensile residual rate (%) 75↑75↑ 97.497.4 92.692.6 95.495.4 88.588.5 90.590.5 81.281.2 89.189.1 92.592.5 92.792.7
신장잔율(%)Elongation residual rate (%) 50↑50↑ 77.877.8 76.576.5 72.172.1 65.765.7 81.281.2 78.278.2 72.572.5 71.771.7 75.775.7
EN50399EN50399 연소길이(m)Combustion length (m) 2.0↓2.0↓ 1.651.65 1.611.61 1.881.88 1.841.84 1.751.75 전소Burnout 1.561.56 1.441.44 2.882.88
최대열방출율(kW)Maximum heat release rate (kW) 60↓60↓ 44.344.3 48.948.9 50.150.1 52.452.4 47.547.5 89.789.7 37.537.5 42.442.4 55.855.8
총열방출율(MJ)Total heat release rate (MJ) 30↓30↓ 19.819.8 22.122.1 18.618.6 19.619.6 20.120.1 60.760.7 18.918.9 19.019.0 28.628.6
화염전파속도(W/s)Flame propagation speed (W/s) 300↓300↓ 221.1221.1 234.9234.9 191.0191.0 209.6209.6 199.0199.0 414.5414.5 189.5189.5 209.1209.1 254.7254.7
총발연량(㎡)Total smoke amount (㎡) 50↓50↓ 44.844.8 32.432.4 29.029.0 36.836.8 41.241.2 76.876.8 35.735.7 34.234.2 51.851.8
최고발연속도(㎡/s)Maximum smoke rate (㎡/s) 0.25↓0.25↓ 0.110.11 0.100.10 0.170.17 0.150.15 0.130.13 0.650.65 0.110.11 0.100.10 0.320.32
Drip(s)Drip(s) 10s↓10s↓ 10s↓10s↓ 10s↓10s↓ 10s↓10s↓ 10s↓10s↓ 10s↓10s↓ 10s↑10s↑ 10s↓10s↓ 10s↓10s↓ 10s↓10s↓
EN50267-2,3EN50267-2,3 pHpH 4.3↑4.3↑ 5.35.3 5.35.3 5.45.4 5.55.5 5.45.4 5.55.5 6.56.5 5.35.3 5.35.3
전도도(μS/mm)Conductivity (μS/mm) 2.5↓2.5↓ 0.70.7 0.70.7 0.60.6 0.60.6 0.60.6 0.70.7 4.74.7 0.70.7 0.70.7
유연성flexibility Pulling 시 Kink 현상Kink phenomenon when pulling XX XX XX XX XX XX XX XX OO XX
상기 표 2에 나타난 바와 같이, 비교예 1의 비할로겐계 수지 조성물은 극성기가 그래프트된 선형저밀도 폴리에틸렌 수지의 함량이 기준 미달로 기계적 강도가 크게 저하되고, 비교예 2의 비할로겐계 수지 조성물은 극성기가 그래프트된 선형저밀도 폴리에틸렌 수지의 함량이 기준 초과로 신장율이 크게 저하된 것으로 확인되었다.As shown in Table 2, in the non-halogen-based resin composition of Comparative Example 1, the content of the linear low-density polyethylene resin grafted with a polar group is significantly lower than the standard, and the mechanical strength is significantly reduced, and the non-halogen-based resin composition of Comparative Example 2 is a polar group It was confirmed that the content of the grafted linear low-density polyethylene resin exceeded the criterion and the elongation was significantly reduced.
또한, 비교예 3의 비할로겐계 수지 조성물은 금속수산화물 난연제 함량이 기준 미달로 전체적인 난연성 및 저발연성이 크게 저하되었고, 비교예 4의 비할로겐계 수지 조성물은 난연보조제로서 멜라민 시아누레이트가 적용되어 연소가스의 유독성이 크게 증가했고, 비교예 5의 비할로겐계 수지 조성물은 이로부터 형성된 시스층의 두께가 과도하여 유티피 케이블의 전송 특성이 저하된 반면, 비교예 6의 비할로겐계 수지 조성물은 이로부터 형성된 시스층의 두께가 기준 미달로 난연성이 저하된 것으로 확인되었다.In addition, in the non-halogen-based resin composition of Comparative Example 3, the content of the metal hydroxide flame retardant was substantially lower than the standard, and the overall flame retardancy and low flame retardancy were significantly reduced. The toxicity of the combustion gas was greatly increased, and the non-halogen-based resin composition of Comparative Example 5 had an excessive thickness of the sheath layer formed therefrom, thereby deteriorating the transmission characteristics of the UTP cable, whereas the non-halogen-based resin composition of Comparative Example 6 was It was confirmed that the thickness of the sheath layer formed therefrom was lower than the standard, and the flame retardancy was lowered.
한편, 본원발명에 따른 실시예 1 내지 3의 비할로겐계 수지 조성물은 유티피 케이블의 시스층 형성용 소재로서 상온 및 가열 후 기계적 특성과 CPR 인증에 따른 C 등급의 고난연성 및 저발연성을 모두 동시에 만족하는 것으로 확인되었다.On the other hand, the non-halogen-based resin composition of Examples 1 to 3 according to the present invention is a material for forming a sheath layer of a UTP cable, and both mechanical properties after heating at room temperature and heating and C-class high flame retardancy and low flame retardancy at the same time Satisfied.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although this specification has been described with reference to preferred embodiments of the present invention, those skilled in the art variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You can do it. Therefore, if the modified implementation basically includes the components of the claims of the present invention, it should be considered that all are included in the technical scope of the present invention.

Claims (12)

  1. 유티피(UTP) 케이블의 시스층 형성용 비할로겐계 수지 조성물로서,As a non-halogen-based resin composition for forming a sheath layer of a UTP cable,
    비닐 아세테이트 함량이 15 내지 35 중량%인 에틸렌 비닐 아세테이트(EVA) 수지, 폴리올레핀 엘라스토머 수지 및 극성기가 그라프트된(grafted) 선형 저밀도 폴리에틸렌 수지를 포함하는 베이스 수지 및 비할로겐계 난연제를 포함하고,Base resin and non-halogen-based flame retardant comprising ethylene vinyl acetate (EVA) resin having a vinyl acetate content of 15 to 35% by weight, a polyolefin elastomer resin, and a linear low density polyethylene resin grafted with polar groups,
    상기 비할로겐계 난연제는 금속수산화물을 포함하는 난연제 및 안티몬계 난연제와 아연계 난연제를 포함하는 난연보조제를 포함하고,The non-halogen-based flame retardant includes a flame retardant comprising a metal hydroxide and a flame retardant aid including an antimony-based flame retardant and a zinc-based flame retardant,
    상기 비할로겐계 수지 조성물로부터 형성된 시스층을 포함하는 유티피 케이블이 CPR(Construction Products Regulation) 인증의 C 등급 이상을 만족하는, 비할로겐계 수지 조성물.A non-halogen-based resin composition, wherein the UTP cable comprising a sheath layer formed from the non-halogen-based resin composition satisfies a C grade or higher of CPR (Construction Products Regulation) certification.
  2. 제1항에 있어서,According to claim 1,
    상기 베이스 수지 100 중량부를 기준으로, 상기 에틸렌 비닐 아세테이트(EVA) 수지의 함량은 40 내지 65 중량부, 상기 폴리올레핀 엘라스토머 수지의 함량은 15 내지 40 중량부, 상기 극성기가 그라프트된 선형 저밀도 폴리에틸렌 수지의 함량은 15 내지 30 중량부인 것을 특징으로 하는, 비할로겐계 수지 조성물.Based on 100 parts by weight of the base resin, the content of the ethylene vinyl acetate (EVA) resin is 40 to 65 parts by weight, the content of the polyolefin elastomer resin is 15 to 40 parts by weight, and the polar group is grafted The content is 15 to 30 parts by weight, characterized in that, non-halogen-based resin composition.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 베이스 수지 100 중량부를 기준으로, 상기 난연제의 함량은 180 내지 230 중량부, 상기 안티몬계 난연제의 함량은 20 내지 40 중량부, 상기 아연계 난연제의 함량은 5 내지 40 중량부인 것을 특징으로 하는, 비할로겐계 수지 조성물.Based on 100 parts by weight of the base resin, the content of the flame retardant is 180 to 230 parts by weight, the content of the antimony-based flame retardant is 20 to 40 parts by weight, characterized in that the content of the zinc-based flame retardant is 5 to 40 parts by weight, Non-halogen-based resin composition.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    충전제로 칼슘 카보네이트를 추가로 포함할 수 있고,The filler may further include calcium carbonate,
    상기 충전제의 함량은, 상기 베이스 수지 100 중량부를 기준으로, 5 내지 20 중량부인 것을 특징으로 하는, 비할로겐계 수지 조성물.The content of the filler, based on 100 parts by weight of the base resin, characterized in that 5 to 20 parts by weight, non-halogen-based resin composition.
  5. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 극성기는 무수 말레인산인 것을 특징으로 하는, 비할로겐계 수지 조성물.The polar group is maleic anhydride, characterized in that the non-halogen-based resin composition.
  6. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 폴리올레핀 엘라스토머 수지는 에틸렌 옥텐 공중합체를 포함하는 것을 특징으로 하는, 비할로겐계 수지 조성물.The polyolefin elastomer resin is characterized in that it comprises an ethylene octene copolymer, non-halogen-based resin composition.
  7. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 금속수산화물은 수산화마그네슘을 포함하는 것을 특징으로 하는, 비할로겐계 수지 조성물.The metal hydroxide is characterized in that it comprises magnesium hydroxide, a non-halogen-based resin composition.
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 안티몬계 난연제는 삼산화 안티몬을 포함하는 것을 특징으로 하는, 비할로겐계 수지 조성물.The antimony-based flame retardant is characterized in that it comprises an antimony trioxide, non-halogen-based resin composition.
  9. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 아연계 난연제는 붕산아연을 포함하는 것을 특징으로 하는, 비할로겐계 수지 조성물.The zinc flame retardant is characterized in that it comprises zinc borate, a non-halogen-based resin composition.
  10. 제1항 또는 제2항의 비할로겐계 수지 조성물로부터 형성된 시스층을 포함하는 유티피(UTP) 케이블.A UTP cable comprising a sheath layer formed from the non-halogen-based resin composition of claim 1.
  11. 제10항에 있어서,The method of claim 10,
    상기 시스층의 두께는 0.5 내지 0.8 mm 인 것을 특징으로 하는, 비할로겐계 수지 조성물.The thickness of the sheath layer is characterized in that 0.5 to 0.8 mm, non-halogen-based resin composition.
  12. 제11항에 있어서,The method of claim 11,
    상기 시스층의 두께는 0.6 내지 0.7 mm 인 것을 특징으로 하는, 비할로겐계 수지 조성물.The thickness of the sheath layer is characterized in that 0.6 to 0.7 mm, non-halogen-based resin composition.
PCT/KR2019/016845 2018-11-30 2019-12-02 High-flame-retardant and low-smoke-emission nonhalogenated resin composition, and utp cable comprising sheath layer formed therefrom WO2020111911A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180151584 2018-11-30
KR10-2018-0151584 2018-11-30
KR10-2019-0158149 2019-12-02
KR1020190158149A KR20200066252A (en) 2018-11-30 2019-12-02 Halogen-free resin composition having high flame retardancy and low emitting smoke and UTP cable comprising a sheath formed from the same

Publications (1)

Publication Number Publication Date
WO2020111911A1 true WO2020111911A1 (en) 2020-06-04

Family

ID=70854131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016845 WO2020111911A1 (en) 2018-11-30 2019-12-02 High-flame-retardant and low-smoke-emission nonhalogenated resin composition, and utp cable comprising sheath layer formed therefrom

Country Status (1)

Country Link
WO (1) WO2020111911A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216073A (en) * 2022-08-24 2022-10-21 广东安拓普聚合物科技有限公司 Oil-resistant corrosion-resistant shore power cable sheath material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702739B1 (en) * 2005-09-30 2007-04-03 엘에스전선 주식회사 Flame retardant resin composition with improved whitening resistance in bending deformation
KR20070087896A (en) * 2006-01-25 2007-08-29 엘에스전선 주식회사 Composition for production improved flame retardant insulating and sheath material of halogen free type, insulating materials and insulatin cable using the same
KR20100092188A (en) * 2009-02-12 2010-08-20 엘에스전선 주식회사 Halogen-free flame retardant composition for manufacturing sheath material of utp cable
KR20150135730A (en) * 2014-05-22 2015-12-03 엘에스전선 주식회사 Flame-retardant polyolefin composition and CMP grade UTP cable including insulation prepared by the same
KR20180081252A (en) * 2017-01-06 2018-07-16 엘에스전선 주식회사 Halogen-free resin composition having high flame retardancy and low emitting smoke and UTP cable comprising a sheath formed from the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702739B1 (en) * 2005-09-30 2007-04-03 엘에스전선 주식회사 Flame retardant resin composition with improved whitening resistance in bending deformation
KR20070087896A (en) * 2006-01-25 2007-08-29 엘에스전선 주식회사 Composition for production improved flame retardant insulating and sheath material of halogen free type, insulating materials and insulatin cable using the same
KR20100092188A (en) * 2009-02-12 2010-08-20 엘에스전선 주식회사 Halogen-free flame retardant composition for manufacturing sheath material of utp cable
KR20150135730A (en) * 2014-05-22 2015-12-03 엘에스전선 주식회사 Flame-retardant polyolefin composition and CMP grade UTP cable including insulation prepared by the same
KR20180081252A (en) * 2017-01-06 2018-07-16 엘에스전선 주식회사 Halogen-free resin composition having high flame retardancy and low emitting smoke and UTP cable comprising a sheath formed from the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216073A (en) * 2022-08-24 2022-10-21 广东安拓普聚合物科技有限公司 Oil-resistant corrosion-resistant shore power cable sheath material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN105761839B (en) A kind of high flexibility fireproof cable and preparation method thereof
CN114709022B (en) Flame-retardant ceramic silicone rubber sheath cable and preparation method thereof
US10854356B2 (en) Fire resistant cable with ceramifiable layer
CN110534249B (en) Long-life double-layer co-extrusion insulation irradiation cross-linking halogen-free low-smoke flame-retardant power cable
WO2020111911A1 (en) High-flame-retardant and low-smoke-emission nonhalogenated resin composition, and utp cable comprising sheath layer formed therefrom
WO2018128229A1 (en) Highly flame retardant and low smoke generating nonhalogenated resin composition, and utp cable including sheath layer formed from same
WO2020145738A1 (en) Highly flame retardant cable
WO2019035526A1 (en) Sheath composition having flame retardancy and water resistance, and cable having sheath layer formed therefrom
KR100341114B1 (en) Composition of flame retardant sheath material and cable using the above composition
KR20200066252A (en) Halogen-free resin composition having high flame retardancy and low emitting smoke and UTP cable comprising a sheath formed from the same
US5814406A (en) Communication cable for use in a plenum
CN114709016B (en) Safety cable suitable for in building
KR20210054207A (en) Halogen-free resin composition having high flame retardancy and low emitting smoke and UTP cable comprising a sheath formed from the same
KR20190121998A (en) Fire resistant cable
CN114410051B (en) Insulation coating composite material and preparation method and application thereof
KR20220036388A (en) Twisted Pair cable having high flame retardancy and low emitting smoke properties
JPH11306873A (en) Fire-resisting wire and cable
WO2023277236A1 (en) Highly heat-resistant and flame-retardant composition for cable coating and polymer composite resin prepared from same composition
JPS6326906A (en) Flame resisting electrically insulating composition
CN212135988U (en) Heat-insulation fire-resistant cable
WO2022108208A1 (en) Non-crosslinked insulation cable
CN115240911A (en) Environment-friendly low-toxicity high-flame-retardant fire-resistant cable and preparation method thereof
JPS62161850A (en) Flame-retardant composition
JPH01186707A (en) Fire-resistant insulating composition
CN112662087A (en) Isolated flexible fireproof cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890823

Country of ref document: EP

Kind code of ref document: A1