WO2020111848A1 - System and method for melting aluminum and recycling black dross - Google Patents

System and method for melting aluminum and recycling black dross Download PDF

Info

Publication number
WO2020111848A1
WO2020111848A1 PCT/KR2019/016655 KR2019016655W WO2020111848A1 WO 2020111848 A1 WO2020111848 A1 WO 2020111848A1 KR 2019016655 W KR2019016655 W KR 2019016655W WO 2020111848 A1 WO2020111848 A1 WO 2020111848A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
aqueous solution
aluminum
water
evaporator
Prior art date
Application number
PCT/KR2019/016655
Other languages
French (fr)
Korean (ko)
Inventor
안병두
신용국
윤수현
Original Assignee
(주)디에스리퀴드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디에스리퀴드 filed Critical (주)디에스리퀴드
Publication of WO2020111848A1 publication Critical patent/WO2020111848A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/10Centrifuges combined with other apparatus, e.g. electrostatic separators; Sets or systems of several centrifuges
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0007Preliminary treatment of ores or scrap or any other metal source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an aluminum melting and black dross recycling system and method for performing an aluminum scrap melting process and a black dross recycling process.
  • Aluminum melting furnace that supplies aluminum molten metal to such an aluminum casting apparatus.
  • the aluminum melting furnace is a device that melts aluminum scrap molded to a certain size with high heat.
  • a heating chamber having a burner for heating the aluminum molten metal, a molten metal stirring chamber provided with a molten metal pump for pumping the aluminum molten metal discharged from the heating chamber, and aluminum compression to the aluminum molten metal discharged from the molten metal stirring chamber It includes a charging chamber for charging a chip mass.
  • the aluminum compaction chip mass is also referred to as an aluminum mass, and is a compaction of a number of aluminum chips that are frequently generated during production or processing of aluminum products.
  • the aluminum compaction chip mass contains a large number of voids in the process of compressing the aluminum chip. Therefore, in the conventional aluminum melting furnace, heat is not easily transferred to the center of the aluminum compressed chip mass inputted into the aluminum molten metal, so that the melting efficiency decreases, and the aluminum compression chamber mass is floated to the surface of the aluminum molten metal and is brought into contact with the atmosphere to produce aluminum oxide. There was a problem.
  • a conventional aluminum melting furnace is pumped in a molten metal stirring chamber, and then the aluminum compressed chip mass is introduced into the aluminum molten metal transferred to the charging chamber, but in this case, aluminum is still used due to the low specific gravity of the aluminum compressed chip mass. Dissolution proceeds while the compressed chip mass is suspended in the aluminum melt. Therefore, the conventional aluminum melting furnace has a problem that the melting efficiency is low and the production rate of aluminum oxide is high, so that the real rate of pure aluminum is lowered.
  • aluminum is a highly oxidizing metal
  • aluminum oxide is generated in the process of dissolving aluminum in an aluminum melt.
  • the recovery rate of aluminum decreases.
  • a paint or other inclusion is interposed in the aluminum mass that is introduced into the aluminum melt. When this inclusion increases, the purity of the aluminum decreases.
  • a flux (F) that prevents oxidation of aluminum and can also trap inclusions is introduced into the aluminum melt.
  • the dross generated by the flux treatment of the molten aluminum is referred to as a black dross.
  • the present invention is to solve the above-mentioned problems, and an object thereof is to provide an aluminum melting and black dross recycling system having an improved structure so as to increase the melting efficiency of aluminum scrap.
  • the present invention has an object to provide an aluminum dissolution and black dross recycling system with an improved structure to reduce the amount of aluminum oxide produced.
  • the present invention has an object to provide an aluminum dissolution and black dross recycling system with an improved structure so as to increase the dissolution recovery rate of pure aluminum.
  • an object of the present invention is to provide an aluminum melting and black dross recycling system with an improved structure to facilitate recycling of materials contained in the black dross.
  • an object of the present invention is to provide an improved aluminum dissolving and black dross recycling system so that chloride salts contained in the flux for flux treatment of aluminum scrap can be smoothly recovered from the black dross.
  • Black dross recycling method for solving the above problems, (a) when dissolving aluminum scrap in an aluminum melt, the aluminum scrap is flux treated with a flux containing sodium chloride and potassium chloride Crushing and grinding the generated black dross into aluminum particles and dross particulate powder; (b) hydrolyzing the dross particulate powder with water to produce an aqueous solution in which soluble solids containing sodium chloride and potassium chloride are dissolved; And (c) evaporating the water contained in the aqueous solution using a plurality of evaporation modules to deposit the soluble solids from the aqueous solution, inducing the evaporation of the water under different environmental conditions for each of the evaporation modules, thereby evaporating the water. And depositing the sodium chloride and the potassium chloride according to different precipitation order and precipitation time for each module.
  • each of the evaporation modules after heating the aqueous solution to a predetermined reference temperature using a reboiler, the evaporator adjusted so that the evaporation temperature of the water to the reference temperature using an evaporator The evaporation of the water is induced under the internal pressure of to precipitate the soluble solids.
  • the reference temperature is individually determined for each of the evaporation modules according to the precipitation order and the precipitation time of the sodium chloride and the potassium chloride to be implemented in the evaporation module among the evaporation modules.
  • step (c) at least one evaporation module among the evaporation modules uses a reboiler, solubility of the sodium chloride in the aqueous solution is greater than a predetermined first reference value compared to the solubility of the potassium chloride.
  • the evaporator is used to induce evaporation of the water under the internal pressure of the evaporator adjusted so that the evaporation temperature of the water becomes the first reference temperature. Precipitation is preferred over the potassium chloride.
  • step (c) at least one of the evaporation modules of the evaporation module, the difference between the solubility of the sodium chloride and the solubility of the potassium chloride in the aqueous solution using the reboiler is lower than a predetermined second reference value
  • the evaporator is used to induce evaporation of the water under the internal pressure of the evaporator adjusted so that the evaporation temperature of the water becomes the second reference temperature, so that the sodium chloride and the potassium chloride are Precipitate together.
  • the solubility of the potassium chloride in the aqueous solution using the reboiler is less than a predetermined third reference value compared to the solubility of the sodium chloride
  • the potassium chloride is preferentially compared to the sodium chloride under the internal pressure of the evaporator adjusted so that the evaporation temperature of the water becomes the third reference temperature using the evaporator. Precipitate.
  • At least one evaporation module among the evaporation modules may be vacuum pressure selectively applied from a pressure regulating member to induce reduced pressure evaporation of the water under a vacuum atmosphere according to the predetermined reference temperature. The internal pressure of the evaporator is thereby maintained in a vacuum.
  • step (d) further comprising the step of centrifuging the soluble solids precipitate precipitated from the aqueous solution and the aqueous solution mixed with the soluble solids precipitate, and in step (c), the evaporation modules are reused to obtain (d) In step ), the soluble solid content is re-precipitated from the aqueous solution separated from the soluble solid content precipitate.
  • the method further comprises (e) drying and storing the soluble solid precipitate separated from the aqueous solution in the step (d).
  • the evaporation module heats the aqueous solution by exchanging the original steam and the aqueous solution supplied from an external steam source, and in the step (c) , At least one evaporation module among the evaporation modules is generated by evaporation of the water in the at least one evaporation module, or generated by evaporation of the water in another evaporation module among the evaporation modules.
  • the aqueous solution is heated by exchanging the generated steam with the aqueous solution to heat the aqueous solution.
  • (f) further comprising the step of centrifuging the insoluble solids and the aqueous solution dispersed or precipitated in the aqueous solution, and in the step (c), using the evaporation modules, from the aqueous solution separated from the insoluble solids The soluble solid content is precipitated.
  • step (g) the aqueous solution in step (f) using condensed water generated by cooling the original steam or the generated steam by the aqueous solution or condensed water generated by condensing the original steam or the generated steam by the aqueous solution And it further comprises the step of washing the insoluble solids separated.
  • Black dross recycling apparatus for solving the above-described problem, when the aluminum scrap is dissolved in an aluminum melt, the aluminum scrap is generated by flux treatment with a flux containing sodium chloride and potassium chloride
  • the black dross recycling apparatus for recycling dross hydrolysis reaction of dross particulate powder, which is a crushed product of the black dross, with water, produces an aqueous solution in which soluble solids containing the sodium chloride and the potassium chloride are dissolved.
  • Precipitation includes a precipitation unit having a plurality of evaporation modules.
  • the solubility of the potassium chloride in the aqueous solution induces the evaporation of the water under a temperature condition that is lower than the solubility of the sodium chloride by a predetermined reference value or more,
  • the potassium chloride is preferentially precipitated over the sodium chloride.
  • the at least one evaporation module uses the generated steam generated by evaporation of the water in at least one of the evaporation modules as the heat source for heating the aqueous solution in the evaporation module.
  • the at least one evaporation module induces reduced pressure evaporation of the water under a vacuum atmosphere so that the water can be evaporated under the temperature condition.
  • At least one evaporation module among the plurality of evaporation modules induces the evaporation of the water under a temperature condition in which the solubility of the sodium chloride in the aqueous solution is lower than a predetermined reference value compared to the solubility of the potassium chloride,
  • the sodium chloride is preferentially precipitated over the potassium chloride.
  • each of the evaporation modules a reboiler for heating the aqueous solution to a predetermined reference temperature; And an evaporator that receives the aqueous solution heated to the reference temperature from the reboiler and induces the evaporation of the water under an internal pressure adjusted so that the evaporation temperature of the water becomes the predetermined reference temperature, thereby depositing the soluble solids. do.
  • each of the evaporation modules further includes a circulation pump for circulating the aqueous solution in the predetermined order in the reboiler and the evaporator.
  • the precipitation unit further includes a centrifugal separator for centrifuging the soluble solids precipitate and the aqueous solution, where the soluble solids are precipitated and crystallized.
  • a centrifugal separator for centrifuging the soluble solids precipitate and the aqueous solution, where the soluble solids are precipitated and crystallized.
  • the precipitating unit stores the soluble solid content precipitate discharged in a slurry state mixed with the aqueous solution from the evaporator of at least one of the evaporation modules, and the soluble solid content precipitate in the slurry state is added to the centrifuge. It further comprises a deposit storage tank to transfer.
  • the centrifuge redistributes the aqueous solution separated from the soluble solids precipitate to the evaporation modules.
  • it further comprises a soluble solids storage unit for drying and storing the soluble solids precipitate separated from the aqueous solution by the winshim separator.
  • the reboiler of at least one of the evaporation modules heats the aqueous solution using the original steam supplied from an external steam source as a heat source, and at least another evaporation module of the evaporation modules.
  • the reboiler of the steam generated by the evaporation of the water in the evaporator of the at least one evaporation module or the steam generated by the evaporation of the water in the evaporator of another evaporation module among the evaporation modules The aqueous solution is heated by using as a heat source.
  • the reference temperature and the internal pressure for each of the evaporation modules are individually determined according to the type of chloride salt to be preferentially precipitated in the evaporation module among the sodium chloride and the potassium chloride.
  • the reference temperature in the evaporation module to preferentially precipitate the potassium chloride among the evaporation modules is a temperature at which the solubility of the potassium chloride in the aqueous solution is lowered by a predetermined reference value or more than the solubility of the sodium chloride. Is set to be the evaporation temperature of the water, and the internal pressure in the evaporation module to preferentially precipitate the potassium chloride among the evaporation modules is adjusted such that the water contained in the aqueous solution is evaporated at the evaporation temperature.
  • the reference temperature in the evaporation module to preferentially precipitate the sodium chloride among the evaporation modules is a temperature at which the solubility of the sodium chloride in the aqueous solution is lowered by a predetermined reference value or more than the solubility of the potassium chloride. Is set to be the evaporation temperature of the water, and the internal pressure in the evaporation module to preferentially precipitate the sodium chloride among the evaporation modules is adjusted such that the water contained in the aqueous solution is evaporated at the evaporation temperature.
  • the precipitation unit by adjusting the internal pressure of the evaporator of at least one of the evaporation module of the evaporation module, a pressure control member capable of inducing the reduced pressure evaporation of the water under a vacuum atmosphere according to the reference temperature in the evaporator It is further provided.
  • the pressure regulating member includes: a vacuum tank in which a predetermined vacuum pressure is maintained; And at least one vacuum regulating valves that regulate the internal pressure by selectively applying the vacuum pressure to the evaporator of the at least one evaporation module.
  • the precipitation unit further includes a raw water supply pump that supplies the aqueous solution generated in the water decomposition unit to the evaporator of at least one of the evaporation modules.
  • the evaporator of the at least one evaporation module the at least one evaporation so that the aqueous solution supplied from the raw water supply pump can be delivered to the evaporator of at least one evaporation module of the evaporation modules. It is connected to the evaporator of the module.
  • the aluminum dissolving and black dross recycling system and method according to the present invention has the following effects.
  • the flux is a non-metallic inclusions ( ⁇ , Inclusion) by selectively trapping the black dross generated by vortexing to form a spherical black dross, by forming a spherical black dross, aluminum metal contained in the black dross It is possible to reduce the amount of can increase the dissolution recovery rate of pure aluminum.
  • the present invention can improve economic efficiency by recycling materials of economic value included in the spherical black dross.
  • the present invention recycles materials contained in the spherical black dross into aluminum particles, soluble solids, insoluble solids, and hydrolysis gas according to their characteristics, and discards them without being recycled among the materials included in the spherical black dross. It is possible to further improve the economic efficiency by minimizing the substances.
  • the present invention by using a plurality of evaporation modules individually, by precipitating the chloride salts contained in the soluble solids from the aqueous solution produced by the hydrolysis reaction of black dross in a variety of ways, by adding a high value of potassium chloride, other fluxes The constituent chloride salts can be recycled more effectively.
  • FIG. 1 is a block diagram schematically showing an aluminum dissolving and black dross recycling system according to a preferred embodiment of the present invention.
  • Figure 2 is a schematic diagram schematically showing the aluminum melting furnace of Figure 1;
  • FIG. 3 is a cross-sectional view of the dissolution chamber and the flow force imparting chamber of FIG. 2;
  • FIG. 4 is a schematic view showing an aspect in which spherical black dross is formed in the melting chamber of FIG. 2.
  • Figure 5 is a photograph of a spherical black dross formed in the melting chamber of Figure 2;
  • FIG. 6 is a plan view of a melting chamber showing a state in which spherical black dross is suspended on the surface of the aluminum molten metal accommodated in the melting chamber of FIG. 2.
  • FIG. 7 is a schematic view schematically showing the black dross recycling apparatus of FIG. 1;
  • FIG. 9 is a schematic view schematically showing the configuration of the precipitation unit of FIG. 7.
  • Figure 11 is a photograph of the soluble solids precipitated and dried.
  • FIG. 12 is a SEM-EDS chart of qualitative analysis of the soluble solids shown in FIG. 11.
  • FIG. 13 is a chart showing the composition ratio of soluble solids shown in FIG. 11;
  • Fig. 15 is a photograph of insoluble solids subjected to calcination.
  • FIG. 16 is a SEM-EDS chart of qualitative analysis of the insoluble solids subjected to the calcination treatment shown in FIG. 15.
  • Fig. 17 is a chart showing the composition ratio of the insoluble solid content subjected to the calcination treatment shown in Fig. 15;
  • 18 is a flow chart schematically showing a method for recycling aluminum melting and black dross according to another preferred embodiment of the present invention.
  • FIG. 19 is a flow chart for explaining the details of the aluminum dissolving step and the crushing and grinding of the spherical black dross described in FIG. 18.
  • FIG. 20 is a flow chart for explaining the details of the dross powder water decomposition step and the water decomposition product recycling step described in FIG. 18.
  • FIG. 1 is a block diagram schematically showing an aluminum melting and black dross recycling system according to a preferred embodiment of the present invention.
  • an aluminum melting and black dross recycling system 1 includes: an aluminum melting furnace 2 for dissolving aluminum scrap in a flux-treated aluminum molten metal; And a black dross recycling apparatus 3 for recycling black dross formed by inclusions contained in the aluminum molten metal trapped in the flux when the aluminum scrap is dissolved in the aluminum molten metal.
  • the aluminum melting and black dross recycling system 1 dissolves aluminum scrap in a flux-treated aluminum molten metal so as to secure an aluminum molten metal for manufacturing an aluminum casting, and recycles the components contained in the black dross. It is to handle the black dross so that it can be done.
  • FIG. 2 is a schematic view schematically showing the aluminum melting furnace of FIG. 1.
  • the aluminum melting furnace 2 includes a heating chamber 10 in which the aluminum molten metal M is heated, and a melting chamber in which aluminum scrap A and flux F are respectively introduced into the aluminum molten metal M. (20) and a flow force imparting chamber (20) that provides a flow force to the aluminum molten metal (M).
  • the aluminum melting furnace 2 has a plurality of spaces partitioned by walls having a refractory material.
  • the heating chamber 10, the melting chamber 20, and the fluid force imparting chamber 30 are respectively provided in a state independent of the other spaces in any one of a plurality of spaces of the aluminum melting furnace 2.
  • the heating chamber 10 is a space for heating the aluminum molten metal M to a predetermined temperature.
  • the heating chamber 10 communicates with the second flow passage 29 of the melting chamber 20 to be described later, and receives the aluminum molten metal M from the melting chamber 20.
  • the heating chamber 10 is formed of a closed structure blocked from the outside, except for portions connected to the first flow passage 16 and the second flow passage 29, which will be described later, so that heat loss can be minimized.
  • the heating chamber 10 includes a heating unit 12 for heating the aluminum molten metal M, and a hot water outlet for discharging the aluminum molten metal M to the outside of the aluminum melting furnace 2 ( 14) and a first flow passage 16 for transferring the aluminum molten metal M accommodated in the heating chamber 10 to the flow force imparting chamber 30.
  • the heating unit 12 is a device for heating the aluminum molten metal M to a predetermined temperature.
  • the heating unit 12 may be a burner installed on walls partitioning the heating chamber 10.
  • the heating temperature of the aluminum molten metal M is not particularly limited.
  • the temperature of the aluminum molten metal M may be measured by a temperature sensor (not shown) installed in the heating chamber 10, and the heating unit 12 receives the temperature of the aluminum molten metal M from the temperature sensor, and The molten metal M can be heated to a predetermined heating temperature.
  • the hot water outlet 14 is an outlet for discharging the aluminum molten metal M heated in the heating chamber 10 to the outside of the aluminum melting furnace 2.
  • the hot water outlet 14 may be connected to an aluminum casting apparatus for manufacturing an aluminum casting, or may be connected to a molten metal transport container for transferring the aluminum molten metal M.
  • An opening/closing valve 18 for selectively opening and closing the outlet 14 may be installed in the outlet 14.
  • the first flow passage 16 is a passage for transferring the aluminum molten metal M accommodated in the heating chamber 10 to the flow force imparting chamber 30.
  • the first flow passage 16 is formed through a wall partitioning the heating chamber 10 and the flow force imparting chamber 30, and the aluminum molten metal M has a first flow passage ( 16) is introduced into the flow force imparting chamber (30).
  • FIG. 3 is a cross-sectional view of the dissolution chamber and the flow force imparting chamber shown in FIG. 2, and is a view showing an aspect in which spherical black dross is formed in the dissolution chamber of FIG. 2 shown in FIG. 4, and the dissolution of FIG. 2 shown in FIG. This is a picture of a spherical black dross formed in a thread.
  • the melting chamber 20 is a space for introducing the flux F and the aluminum scrap A into the molten aluminum M.
  • the melting chamber 20 communicates with the third flow passage 34 of the flow force imparting chamber 30 to be described later, and receives the aluminum molten metal M from the flow force imparting chamber 30.
  • the melting chamber 20 is formed of an open structure in which at least a portion of the upper surface is opened so that the flux (F) and the aluminum scrap (A) can be introduced into the aluminum molten metal (M), and is relatively smaller than the heating chamber (10). It has a volume. That is, the melting chamber 20 is formed of an open structure so that the aluminum scrap (A) can be dissolved into the melting chamber 20 to perform the melting operation, and the heating chamber 10 is relatively reduced to reduce heat loss. It has a small volume.
  • the melting chamber 20 the vortex unit 21 to generate a vortex (V) orbiting and descending to the molten aluminum (M), and the flux (F) vortex (V) Flux supply unit (23) to be put in, raw material supply unit (25) to put aluminum scrap (A) into vortex (V), and aluminum molten metal (M) accommodated in melting chamber (20) in heating chamber (10)
  • the vortex unit 21 is a member for forming a vortex V that pivots and descends on the aluminum molten metal M accommodated in the melting chamber 20.
  • the vortex unit 21 is installed in the melting chamber 20 such that at least a portion is immersed in the aluminum molten metal M.
  • the vortex unit 21 is preferably installed on one side of the melting chamber 20 so as not to be located in line with the third flow passage 34, but is limited to this It is not.
  • the vortex unit 21 has a rotating shaft having a lower end immersed in the aluminum molten metal M and an upper end extending outward of the aluminum molten metal M and axially coupled with a drive motor (not shown) ( 21a), and a stirring impeller 21b axially coupled to the lower end of the rotating shaft 21a.
  • a drive motor not shown
  • the stirring impeller 21b rotates around the rotating shaft 21a in the aluminum molten metal M accommodated in the melting chamber 20 by rotating about the rotating shaft 21a.
  • a descending vortex (V) is produced.
  • the flux supply unit 23 is a device for introducing the flux F supplied from an external flux source (not shown) into the aluminum molten metal M accommodated in the melting chamber 20.
  • the flux (F) is a mixed salt having a specific gravity smaller than that of aluminum, and is formed of a material having high affinity with inclusions. As shown in FIG. 3, the flux supply unit 23 injects this flux F into the vortex V generated by the vortex unit 21. Then, the flux (F) is rapidly immersed in the molten aluminum (M) by the vortex (V) to dissolve and then spread evenly over the melting chamber (20).
  • the present invention is not limited thereto, and the flux supply unit 23 may also input the flux F into a portion other than the vortex V.
  • the timing for introducing the flux F is not particularly limited.
  • the flux F may be pre-injected into the vortex V before the raw material supply unit 25 injects the aluminum scrap A into the vortex V. Then, the flux F is immersed and dissolved in the molten aluminum M while turning and descending by the vortex V.
  • the flux (F) has a smaller specific gravity than aluminum
  • the flux (F) dissolved in the aluminum molten metal (M) rises to the surface of the aluminum molten metal (M), and the molten flux layer on the surface of the aluminum molten metal (M), That is, a salt bath layer is formed.
  • the molten flux layer can prevent the aluminum melt (M) and the aluminum script (A) introduced into the aluminum melt (M) from contacting oxygen in the atmosphere, thereby reducing the amount of aluminum oxide.
  • the flux (F) has a composition capable of selectively trapping inclusions and forming a molten flux layer.
  • the flux (F) may include 93-97 parts by weight of a mixture of sodium chloride (NaCl) and potassium chloride (KCl) in equal parts by weight, and 3-7 parts by weight of cryolite (Cryolite, Potassium Cryolite). More preferably, the flux (F) may include 4 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and 5 parts by weight of potassium aluminum fluoride (KAlF 4 ).
  • the flux supply unit 23 simultaneously or simultaneously with the raw material supply unit 25 or at this time the flux (F) vortex (V) Can be put in. That is, even after the introduction of the aluminum scrap (A), the flux (F) is continuously or intermittently supplied in accordance with the supply trend of the aluminum scrap (A).
  • the flux (F) is preferably supplied in the same amount as the amount of inclusions to be captured using this, but is not limited thereto. Therefore, the supply amount of the flux F can be adjusted according to the supply amount of the aluminum scrap A and the type of the aluminum scrap A. That is, when the aluminum scrap A containing the paint or other large amount of inclusions is supplied, the supply amount of the flux F is increased, and when the high-purity aluminum scrap A is supplied, the supply amount of the flux F is supplied. Can be reduced.
  • the raw material supply unit 25 is a device for introducing the aluminum scrap A supplied from an external raw material supply source (not shown) into the aluminum molten metal M accommodated in the melting chamber 20.
  • the raw material supply unit 25 injects aluminum scrap A into the vortex V generated by the vortex unit 21. Then, the aluminum scrap (A) can be rapidly immersed and dissolved in the aluminum molten metal (M) while turning and descending by the vortex (V), so that the contact between the aluminum scrap (A) immersed in the aluminum molten metal (M) and the atmosphere is more By effectively blocking, the amount of aluminum oxide generated can be further reduced.
  • the injection timing of the aluminum scrap (A) is not particularly limited.
  • the raw material supply unit 25 may start to input the aluminum scrap A after the molten flux layer is formed on the surface of the aluminum molten metal M. Then, the aluminum scrap (A) may be immersed in the aluminum molten metal (M) with a molten flux layer formed on the surface of the molten aluminum (M). For this reason, since the contact between the aluminum scrap A immersed in the aluminum molten metal M and the atmosphere is more effectively blocked, the generation amount of aluminum oxide can be further reduced.
  • the aluminum scrap (A) has a diameter of 5 cm or less.
  • the type of the aluminum scrap (A) is not particularly limited.
  • the aluminum scrap (A) may be aluminum waste can scrap (UBCs, A 3XXX series, A 5XXXX series) mainly containing aluminum, magnesium, and aluminum alloy. Table 1 shows the chemical composition of the aluminum waste can scrap.
  • the flux layer for the flux that is, the flux (F) weakens the cohesive force of the inclusions and molten aluminum to dissociate the inclusions and molten aluminum, and selectively captures the molten aluminum and the dissociated inclusions to form black dross (B 1 ).
  • the black dross (B 1 ) the volume is increased in the above-described formation process, has a specific gravity lower than that of molten aluminum, and thereby rises to the surface of the molten aluminum (M).
  • the black dross (B 1 ), the vortex (V) is lowered by turning, and when it reaches the lower end of the vortex (V) is released from the vortex (V), and then After rising to the surface of the aluminum molten metal (M), it is again joined to the vortex (V) by the suction force of the vortex (V). Therefore, the black dross (B 1 ) is combined with other black dross (B 1 ) produced on the surface of the aluminum molten metal (M) through this process. As illustrated in FIG.
  • a spherical black dross B 2 in which a plurality of black drosses B 1 are aggregated into a spherical shape is formed. That is, the vortex unit 21 repeatedly descends and floats the black dross (B 1 ) through the vortex (V), so that a plurality of black dross (B 1 ) are spherically shaped black dross (B) 2 ).
  • the chemical composition of the spherical black dross (B 2 ) is not particularly limited.
  • aluminum scrap (A) is aluminum waste can scrap (UBCs scrap) and flux (F) is 47.5 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and potassium aluminum fluoride ( KAlF 4 ) When it contains 5 parts by weight.
  • flux (F) is 47.5 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and potassium aluminum fluoride ( KAlF 4 ) When it contains 5 parts by weight.
  • the chemical composition of the spherical black dross (B 2 ) is shown in Table 2.
  • composition (%) Al 5-10 Al 2 O 3 25-35 Mg 5-10 MgO 5-10 NaCl 20-30 KCl 20-30
  • a general black dross for example, a conventional black dross formed by fluxing a white dross in a conventional aluminum can dissolution process has an aluminum content of about 50% or more, while a spherical black dross (B 2 ) is about It has an aluminum content of 10% or less. Therefore, by forming the spherical black dross (B 2 ), the recovery rate of dissolution of pure aluminum can be improved.
  • the dross reprocessing process to recover the aluminum trapped in the dross by reprocessing the dross using the exothermic flux and the reprocessing indenter can be omitted, so such dross The cost of reprocessing can be reduced.
  • the second flow passage 29 is a passage for transferring the aluminum molten metal M in which the aluminum scrap A is dissolved to the heating chamber 10.
  • the second flow passage 29 is formed through a wall partitioning the melting chamber 20 and the heating chamber 10, and the aluminum molten metal M is the second flow passage 29. It flows into the heating chamber 10 through.
  • the flow force imparting chamber 30 is a space for applying a flow force to the aluminum molten metal M so that the aluminum molten metal M can circulate between the heating chamber 10 and the melting chamber 20.
  • the flow force imparting chamber 30 communicates with the first flow passage 16 of the heating chamber 10 and receives the aluminum molten metal M from the heating chamber 10.
  • the flow force imparting chamber 30 is preferably installed between the first flow passage 16 and the melting chamber 20 of the heating chamber 10.
  • the present invention is not limited thereto, and the flow force imparting chamber 30 may be installed between the second flow passage 29 and the heating chamber 10 of the melting chamber 20.
  • the fluid force imparting chamber 30 accelerates the aluminum molten metal M, and the acceleration unit 32 that provides the fluid force to the aluminum molten metal M, and the fluid force is applied It includes a third flow passage 34 for transferring the molten aluminum (M) to the melting chamber (20).
  • the acceleration unit 32 is installed in the flow force imparting chamber 30 so that at least a portion is immersed in the aluminum molten metal M.
  • the acceleration unit 32 receives the driving force from a driving motor (undocing) provided outside the fluid force imparting chamber 30, to the fluid force imparting chamber 30. It may be a molten metal pump capable of circulating the accommodated aluminum molten metal (M).
  • the third flow passage 34 is a passage for transferring the aluminum molten metal M to which the flow force is applied by the acceleration unit 32 to the flow force applying chamber 30.
  • the third flow passage 34 penetrates through the lower portion of the wall partitioning the flow force imparting chamber 30 and the melting chamber 20 so as to face the impeller of the acceleration unit 32. Is formed, the aluminum molten metal (M) flows into the melting chamber 20 through the third flow passage 34.
  • the flow force imparting chamber 30 provided with the acceleration unit 32 between the heating chamber 10 and the melting chamber 20 is not limited thereto. That is, the vortex unit 20 of the melting chamber 20 forms a vortex (V) to raise and lower the aluminum molten metal (M), and at the same time, the flow force for circulating the aluminum melting furnace (2) to the aluminum molten metal (M). Since it can be applied, the flow force imparting chamber 30 and the acceleration unit 32 provided therein can be omitted.
  • FIG. 6 is a plan view of a melting chamber showing a state in which spherical black dross is suspended on the surface of the aluminum molten metal accommodated in the melting chamber of FIG. 2.
  • the reference diameter of the spherical black dross (B 2 ) is not particularly limited.
  • aluminum scrap (A) is aluminum waste can scrap (UBCs scrap) and flux (F) is 47.5 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and 5 parts by weight of potassium aluminum fluoride (KAlF 4 )
  • flux (F) is 47.5 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and 5 parts by weight of potassium aluminum fluoride (KAlF 4 )
  • the reference diameter of the spherical black dross (B 2 ) is 2 cm to 5 cm.
  • the dissolution chamber 20 separates the spherical black dross (B 2 ) from the vortex (V). 27) may be further included.
  • the separating unit 27 has a shape capable of pulling the spherical black dross B 2 floating on the surface of the aluminum molten metal M away from the vortex V. 27a and a connecting rod 27b connecting the driving device (not shown) and the separation plate 27a.
  • the driving device is preferably a work vehicle provided outside the melting chamber 20, but is not limited thereto.
  • the separation unit 27 As the separation unit 27 is provided in this way, the spherical black dross B 2 having a predetermined reference diameter is pulled away from the vortex V using the separation plate 27a to be separated from the vortex V. Can be. Thus, a spherical black dross (B 2) can be prevented from dropping because of the formation efficiency of the dense doemeuro spherical black dross (B 2).
  • the separation unit 27 may also perform the function of discharging the spherical black dross B 2 from the aluminum molten metal M and discharging it to the outside.
  • the temperature of the aluminum molten metal M accommodated in the melting chamber is generally about 700° C. or less, but in the aluminum melting furnace 2, the temperature of the aluminum molten metal M accommodated in the melting chamber 20 is about 730° C. or more. Can be elevated. For this reason, the aluminum melting furnace 2 can further improve the melting efficiency of the aluminum scrap A compared to the conventional aluminum melting furnace.
  • FIG. 7 is a schematic diagram schematically showing the black dross recycling apparatus of FIG. 1.
  • a spherical black dross B 2 in which black dross B 1 is aggregated into a spherical shape is formed.
  • the spherical black dross (B 2 ) is relatively low compared to the normal black dross, it contains not only a certain proportion of aluminum, but also a certain proportion of materials of economic value such as aluminum oxide and flux (F). . Therefore, when such a spherical black dross (B 2 ) is disposed of through a method such as landfill without reprocessing, materials contained in the spherical black dross (B 2 ) cannot be recycled, and economical efficiency is reduced. There is a possibility that environmental pollution is caused by the spherical black dross (B 2 ).
  • an aluminum melting and black dross recycling system (1) spherical black dross (B 2) a spherical black to recycle the materials contained in the dross (B 2) a black to enable recycling process It includes a dross recycling device (3).
  • the black dross recycling apparatus 3 crushes and crushes the spherical black dross (B 2 ) into aluminum grains (N) and dross particulate powder (P 2 )/
  • the pulverization unit 40 and the water decomposition unit 50 that decomposes the dross particulate powder (P 2 ) into water and decomposes it into soluble solid content (S), insoluble solid content (I), and hydrolysis gas (G).
  • the precipitation unit 60 for concentrating the aqueous solution (Q) in which the soluble solid content (S) is dissolved so that the soluble solid content (S) precipitates, and storing the soluble solid content for drying and storing the precipitate (S 1 ) of the soluble solid content (S)
  • the crushing/crushing unit 40 is a device for crushing and crushing spherical black dross (B 2 ).
  • the crusher 41 is a device for crushing a spherical black dross (B 2 ) and dividing it into aluminum particles (N) and dross powder (P 1 ).
  • aluminum particles and the aluminum alloy particles included in the spherical black dross (B 2 ) aluminum particles and aluminum alloy particles having a relatively large particle size are aggregated due to heat generated when crushing the spherical black dross (B 2 ). It becomes an aluminum granule (Aluminum Granule) and an aluminum alloy granule (Aluminum Alloy Granule). Further, among the aluminum particles and the aluminum alloy particles included in the spherical black dross (B 2 ), aluminum particles and aluminum alloy particles having a relatively small particle size become aluminum powder and aluminum alloy powder without being aggregated.
  • the aluminum grains N and the aluminum alloy grains will be collectively referred to as aluminum grains N.
  • the crusher 41 using the properties of the above-described aluminum particles, crushes the spherical black dross (B 2 ) supplied from the aluminum melting furnace 2 and divides it into aluminum particles (N) and dross powder (P 1 ). do.
  • the first separating member 42 is a member for separating the aluminum grains N and the dross powder P 1 among the crushed products of the spherical black dross B 2 .
  • the structure of the first separating member 42 is not particularly limited.
  • the first separating member 42 may be configured as a vibrating screen having a predetermined first reference particle size.
  • the first reference particle size is preferably about 10 mm, but is not limited thereto.
  • the aluminum particles N are transferred to the aluminum storage unit 80 and also the dross powder P 1 ) Is transferred to the grinder 43.
  • the pulverizer 43 is a device for pulverizing dross powder P 1 and dividing it into aluminum granules N and dross particulate powder P 2 .
  • insoluble solids (I) such as aluminum oxide and magnesium oxide, are preferably atomized to facilitate recycling. Therefore, the pulverizer 43 for pulverizing the dross powder P 1 is provided.
  • the pulverizer 43 is pulverized dross powder P 1 received from the first separating member 42 and is divided into aluminum particles N and pulverized into fine-grained dross particulate powder P 2 .
  • the second separating member 44 is a member for separating the aluminum granules N and the dross particulate powder P 2 from the pulverized product of the dross powder P 1 .
  • the structure of the second separating member 44 is not particularly limited.
  • the second separation member 44 may be configured as a Trommel Screen having a predetermined second reference particle size.
  • the second reference particle size is preferably 0.5 mm, but is not limited thereto.
  • the second separating member 44 after separating the aluminum granules (N) and dross particulate powder (P 2 ) received from the grinder 43, the aluminum granules (N) is transferred to the aluminum granule storage unit 80 And also the dross particulate powder (P 2 ) is delivered to the water decomposition unit 50.
  • the water decomposition unit 50 is a device for decomposing water of the dross particulate powder P 2 received from the second separation member 44.
  • the dross particulate powder (P 2 ) is a dark gray powder, including substances having various physicochemical properties such as flux (F), aluminum, aluminum-magnesium alloy, magnesium, and oxide. It has a form.
  • this dross particulate powder (P 2) preferably the conversion and decomposition in order to recycle the materials to facilitate the recycling of the materials contained in the dross fine powder (P 2) contained in the To this dross fine powder (P 2 ) Is a water decomposition unit 50 capable of decomposing water.
  • the water decomposition unit 50, the dross particulate powder (P 2 ) is decomposed into water and water to decompose into soluble solids (S), insoluble solids (I) and hydrolysis gas (G), dross particulate powder (P) 2 ) a reactor 52 for stirring with water, a gas collector 54 for collecting hydrolysis gas (G), and a first centrifuge 56 for centrifuging the aqueous solution (Q) and insoluble solids (I) It may include.
  • Reactor 52 the fine particles by stirring the dross powder (P 2) and water, dross is a device for decomposing a particulate powder (P 2) water.
  • the reactor 52 may be configured as a general reactor capable of stirring substances in a gas, liquid, or solid phase.
  • the reactor 52 is stirred in the dross particulate powder (P 2 ) and water mixed at a predetermined mixing ratio to decompose the dross particulate powder (P 2 ) into water.
  • the mixing ratio of the dross particulate powder (P 2 ) and water is preferably 1:2, but is not limited thereto.
  • the soluble solid component (S) having solubility in water is soluble in water, and thus contains the soluble solid component (S) as a solute and also water An aqueous solution (Q) containing as is produced.
  • the soluble solid content (S) mainly includes chloride salts contained in flux (F), such as sodium chloride (NaCl) and potassium chloride (KCl).
  • an insoluble solid (I) having an insolubility that does not dissolve in water is dispersed or precipitated in an aqueous solution (Q).
  • the insoluble solid content (I) mainly includes aluminum, aluminum-magnesium alloy, magnesium, aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), and spinel oxide (MgAl 2 O 4 ).
  • the hydrolysis reaction product mainly includes metals and metal compounds contained in spherical black dross (B 2 ) such as aluminum (Al), magnesium (Mg), and aluminum carbide (Al 4 C 3 ).
  • metals and metal compounds contained in spherical black dross (B 2 ) such as aluminum (Al), magnesium (Mg), and aluminum carbide (Al 4 C 3 ).
  • aluminum carbide (Al 4 C 3 ) is not the first material of the aluminum waste cans, and is a by-product produced in the process of manufacturing the aluminum waste can scrap by processing the aluminum waste cans.
  • the water-decomposed solid content produced by the hydrolysis reaction described above mainly contains insoluble solid content such as aluminum oxide, magnesium oxide, aluminum oxide alloy, and carbon components, and thus is dispersed or precipitated in an aqueous solution (Q). Therefore, the insoluble solid content (I) already contained in the spherical black dross (B 2 ) and the insoluble solid content generated by the water decomposition reaction are dispersed or precipitated in the aqueous solution Q, respectively.
  • the insoluble solid content (I) already included in the spherical black dross (B 2 ) and the insoluble solid content generated by the water decomposition reaction will be collectively referred to as an insoluble solid content (I). .
  • the hydrolysis gas (G) mainly includes methane gas (CH 4 ) and hydrogen gas (H 2 ).
  • the methane gas and the hydrogen gas account for about 99% of the generated amount of the hydrolysis gas (G).
  • the water decomposition reaction of aluminum, aluminum alloy, and aluminum carbide mainly proceeds, and hydrogen gas and methane gas are mainly generated.
  • a predetermined time has elapsed since the start of the water decomposition process, the water decomposition reaction of aluminum and aluminum alloy mainly proceeds, and hydrogen gas is mainly generated.
  • the component analysis of the hydrolysis gas (G) is preferably carried out using the GC (Gas Chromatography) analysis method of ASTM D1945-03, but is not limited thereto.
  • the method for measuring the amount of hydrolysis gas (G) generated is not particularly limited.
  • the generation amount of hydrolysis gas (G) can be measured by the following method. First, spherical black dross (B 2 ) having a diameter of 2 cm to 5 cm is crushed and ground. Next, a 0.5 cm (500 ⁇ m) passage in the pulverized product of the spherical black dross (B 2 ) is obtained as a reaction sample. Thereafter, 100 g of the reaction sample and 1 L of distilled water are introduced into a sealed glass-made flask having a 2 L capacity.
  • reaction sample and distilled water are stirred at 100 rpm to 200 rpm using a reactor installed in a glass flask to decompose the reaction sample by water.
  • hydrolysis gas (G) generated by water decomposition of the reaction sample is collected by distillation of water from distilled water using a graduated cylinder. Water decomposition of 100 g of the reaction sample through such a test process can capture 8L to 12L of hydrolysis gas (G).
  • the gas collector 54 is a device for collecting the hydrolysis gas G generated in the reactor 52.
  • the structure of the gas collector 54 is not particularly limited, and the gas collector 54 may be configured as a general gas collector capable of collecting gas from an aqueous solution.
  • the gas collector 54 collects the hydrolysis gas G from the aqueous solution Q accommodated in the reactor 52 and delivers it to the gas storage unit 100.
  • the gas collector 54 can increase the purity of the gas that is actually recyclable among the gases contained in the hydrolysis gas G, or separate a specific gas suitable for the purpose of recycling from other gases.
  • a gas separation purifier 54a capable of separating and purifying gases contained in the hydrolysis gas G may be provided.
  • the method for separating and purifying the gas separation purifier 54a is not particularly limited.
  • the gas separation purifier 54a may separate and purify the gas contained in the hydrolysis gas G through a pressure swing adsorption method.
  • the gas separation purifier 54a may convert methane gas purified from the hydrolysis gas G through hydrogen methane reforming to convert it to hydrogen gas.
  • the gas collector 54 may further include at least one of a moisture trap 54b, a moisture eliminator (not shown) and a desulfurizer (not shown). As shown in FIG. 7, such a water trap 54b, a water remover, and a desulfurizer are preferably installed upstream of the gas separation purifier 54a, but are not limited thereto.
  • the first centrifugal separator 56 is a device for centrifuging an aqueous solution (Q) and an insoluble solid content (I).
  • the first centrifuge 56 is preferably composed of a B.S.P centrifuge, but is not limited thereto.
  • the first centrifugal separator 56 may include a first filter having a predetermined third reference particle size to separate the aqueous solution (Q) and insoluble solids (I).
  • the first filter is a nonwoven filter, and the third reference particle size is preferably 7 ⁇ m to 15 ⁇ m, but is not limited thereto.
  • the first centrifugal separator 56 after centrifuging the aqueous solution (Q) and the insoluble solid content (I) using a first filter, the aqueous solution (Q) is transferred to the precipitation unit 60 and the insoluble solid content (I) is Transfer to the insoluble solids storage unit 90.
  • the insoluble solid content (I) and the aqueous solution (Q) are separated by the first centrifugal separator 56, but some of the aqueous solution (Q) is not separated and can be adsorbed on the surface of the insoluble solid content (I).
  • the aqueous solution (Q) contains soluble solids (S)
  • sodium oxide (Na 2 O) and potassium oxide (K 2 0) are generated from chlorides contained in the soluble solid (S).
  • the durability of a product manufactured by recycling insoluble solids (I) by potassium may be deteriorated.
  • the first centrifugal separator 56 washes the insoluble solid (I) adsorbed with the aqueous solution (Q) using distilled water so that the chlorine concentration of the insoluble solid (I) is less than or equal to a predetermined reference chlorine concentration, and then insoluble
  • the distilled water used for washing solid (I) and insoluble solid (I) can be centrifuged.
  • the washing process of the insoluble solid content (I) using such distilled water may be repeatedly performed until the chlorine concentration of the insoluble solid content (I) becomes below the reference chlorine concentration.
  • the reference chlorine concentration is preferably 300 ppm, but is not limited thereto.
  • the first centrifugal separator 56 it is preferable to wash the insoluble solid (I) by using the condensate (D) transferred from the condensate storage tank 660 of the precipitation unit 60 to be described later as distilled water, It is not limited.
  • FIG. 9 is a schematic diagram schematically showing the configuration of the precipitation unit of FIG. 7, and FIG. 10 is a solubility graph of an aqueous chloride salt solution.
  • the precipitation unit 60 is a device for concentrating the aqueous solution Q so that the soluble solid content S is precipitated from the aqueous solution Q.
  • the precipitation unit 60 includes a raw water supply pump 610 for pumping and supplying an aqueous solution Q delivered from the first centrifugal separator 56 of the water decomposition unit 50, and raw water Evaporated water contained in the aqueous solution (Q) so that the aqueous solution (Q) supplied from the feed pump (610) is concentrated to precipitate soluble solids (S) from the aqueous solution (Q), respectively, but contained in the aqueous solution under different environmental conditions
  • a condenser 650 for condensing steam generated in at least one of 640, a condensate storage tank 660 in which condensate D generated in the evaporation modules 620, 630, 640 or
  • the precipitation unit 60 includes a plurality of evaporation modules 620, 630, and 640, which are respectively provided so that chloride salts contained in the soluble solid component S can be precipitated according to different precipitation orders and precipitation times.
  • the number of evaporation modules installed is not particularly limited.
  • the first to third evaporation modules 620 and 630 allow the chloride salts contained in the soluble solids (S) to be precipitated according to three different precipitation methods and precipitation times, respectively.
  • the precipitation unit 60 will be described as an example in which a total of three evaporation modules are installed.
  • the raw water supply pump 610 pumps an aqueous solution (Q) delivered in a separated state from the insoluble solids (I) from the first centrifugal separator (56) to at least one of the evaporation modules (620, 630, 640) It is provided to supply to the evaporation modules (620, 630, 640).
  • the raw water supply pump 610 is supplied to the third evaporation module 640 located in the last step of the energy transfer step, which will be described later, among the evaporation modules 620, 630, and 640. Can be prepared.
  • the suction portion of the raw water supply pump 610 may be connected to the first centrifugal separator 56 through the flow path 611a, and the discharge portion of the raw water supply pump 610 may be connected to the first evaporation module through the flow path 644a ( 620).
  • a part of the aqueous solution Q supplied to the third evaporation module 640 by the raw water supply pump 610 is connected to the third evaporation module 640 and the second evaporation module 630 ), and a part of the aqueous solution Q delivered to the second evaporation module 630 may be delivered to the first evaporation module 620 connected to the second evaporation module 630. That is, the evaporation modules 620, 630, and 640 are interconnected to receive the aqueous solution Q along the opposite direction of the energy transfer direction.
  • the aqueous solution Q is supplied to a predetermined water level before the precipitation operation of the soluble solids S through heating of the aqueous solution Q begins.
  • a predetermined water level Preferably, but not limited to.
  • Each of these evaporation modules 620, 630, and 640 may be provided to be directly connected to the raw water supply pump 610.
  • the aqueous solution supplied from the raw water supply pump 610 can be directly charged to each evaporation module 620, 630, 640 without going through other evaporation modules 620, 630, 640.
  • the evaporation modules 620, 630 such that the aqueous solution Q supplied from the raw water supply pump 610 is sequentially delivered to the evaporation modules 620, 630, 640 in a direction opposite to the energy transfer direction. , 640)
  • the precipitation unit 60 will be described on the basis of the interconnection.
  • the evaporation modules 620, 630, and 640 are arranged step by step, one for each step of a predetermined energy transfer step. For example, when the energy transfer step is composed of a total of three steps, a first evaporation module 620 may be disposed in the first step, and a second evaporation module 630 may be disposed in the second step. In a third step, a third evaporation module 640 may be disposed.
  • Aqueous solution temperature Solubility in aqueous solution (Q) (%) Solubility in aqueous single chloride salt solution (%) NaCl KCl NaCl KCl 100°C 28 35 38 57 75°C 29 28 38 50 50°C 30 22 35 42
  • the solubility of sodium chloride and the solubility of potassium chloride in an aqueous solution (Q) in which the soluble solids (S) are dissolved are, respectively, the solubility of sodium chloride and only potassium chloride in a single chloride salt aqueous solution in which only sodium chloride is dissolved.
  • Solubility of potassium chloride in aqueous single chloride salt solution is relatively low. This change in solubility is due to the common ionic effect caused by chlorine ions (Cl -) commonly contained in sodium chloride and potassium chloride, solubility of sodium chloride in aqueous solution (Q) and solubility of potassium chloride are respectively the single chloride salt solution described above. It is due to the decrease compared to the field.
  • the solubility of sodium chloride in the aqueous solution (Q) gradually increases as the temperature of the aqueous solution (Q) decreases, and the solubility of potassium chloride in the aqueous solution (Q) of the aqueous solution (Q) The temperature increases gradually. Therefore, as the temperature of the aqueous solution Q increases, sodium chloride preferentially precipitates compared to potassium chloride, and as the temperature of the aqueous solution Q decreases, potassium chloride precipitates preferentially compared to sodium chloride.
  • the precipitation process of chloride salt is concentrated in a single evaporation module, using high temperature steam (hereinafter referred to as'primary vapor') of about 100° C. or higher supplied from an external steam source as a heat source for heating the aqueous solution.
  • high temperature steam hereinafter referred to as'primary vapor'
  • sodium chloride is preferentially precipitated, and then potassium chloride is subsequently precipitated.
  • the precipitation unit 60 is provided with a plurality of evaporation modules (620, 630, 640) having different environmental conditions from each other.
  • the environmental conditions the evaporation temperature of the aqueous solution (Q), the internal pressure of the evaporation modules (620, 630, 640), the solubility of each of the chloride salts in the aqueous solution (Q), such as the precipitation of soluble solids (S) refers to conditions related to regulation.
  • the evaporation modules (620, 630, 640) through the adjustment of the environmental conditions of each, the order of precipitation, precipitation time, other evaporation modules of sodium chloride and potassium chloride, each evaporation module (620, 630) , 640).
  • any one of the evaporation modules 620, 630, and 640 may determine the environmental conditions of the evaporation modules 620, 630, and 640 such that sodium chloride preferentially precipitates from a point earlier than potassium chloride.
  • the other of the evaporation modules 620, 630, and 640 may determine the environmental conditions of the evaporation modules 620, 630, and 640 such that sodium chloride and potassium chloride precipitate together from about the same time point.
  • another of the evaporation modules 620, 630, and 640 may determine the environmental conditions of the evaporation modules 620, 630, and 640 such that potassium chloride is preferentially precipitated from a point earlier than sodium chloride.
  • the precipitation unit 60 can smoothly recover potassium chloride having high added value through a preferential precipitation process of potassium chloride, it is possible to minimize the amount of potassium chloride that is discarded without being recovered from the aqueous solution (Q). The time required for the process can be reduced.
  • the evaporation modules 620, 630, 640 when heating the aqueous solution (Q) using the original steam (E), when the water contained in the aqueous solution (Q) evaporates and releases the steam (hereinafter referred to as'generated steam') to the atmosphere, the generated steam The energy efficiency of the precipitation process is reduced due to the significant heat loss in the waste heat.
  • the evaporation modules 620, 630, 640 generate steam (E 1 , E 2 , E 3 ) generated by the evaporation modules 620, 630, 640 located in a specific step of a predetermined energy transfer step. It is preferable that the evaporation modules (620, 630, 640) located at a later stage of a predetermined energy transfer stage are used as a heat source for heating the aqueous solution (Q) compared to the specific stage.
  • the first evaporation module 620 in which the precipitation process is performed in an atmosphere in which the aqueous solution Q has the highest temperature may be provided to use the original vapor E as a heat source.
  • the second evaporation module 630 in which the precipitation process is performed under a lower temperature atmosphere than the first evaporation module 620 can use the generated steam E 1 generated in the first evaporation module 620 as a heat source Can be provided.
  • the third evaporation module 640 in which the precipitation process is performed under a lower temperature atmosphere than the second evaporation module 630 can use the generated steam E 2 generated in the second evaporation module 630 as a heat source Can be provided.
  • the precipitation unit 60 can minimize the waste heat of the generated steam (E 1 , E 2 ) emitted to the outside without being recovered, thereby improving the energy efficiency of the precipitation process.
  • the structure of the evaporation modules 620, 630, 640 is not particularly limited.
  • the reference temperature may be individually determined for each of the evaporation modules (620, 630, 640) according to the precipitation order and the precipitation time of sodium chloride and potassium chloride to be implemented using the evaporation module among the evaporation modules (620,630, 640). have.
  • the first evaporation module 620 includes a first reboiler 621 that heats the aqueous solution Q to a first predetermined reference temperature, and an aqueous solution Q heated to a first predetermined reference temperature. It is delivered from the first reboiler 621 and induces the evaporation of water under an internal pressure controlled so that the evaporation temperature of the water contained in the aqueous solution (Q) becomes a predetermined first reference temperature, thereby precipitating soluble solids (S) 1 may have an evaporator 622 and a first circulation pump 623 for circulating the aqueous solution Q to the first reboiler 621 and the first evaporator 622 in a predetermined order.
  • the first reference temperature is determined to induce evaporation of water under environmental conditions where the solubility of sodium chloride in aqueous solution (Q) is lower than the solubility of potassium chloride by a predetermined first reference value or higher, so that sodium chloride can be preferentially precipitated compared to potassium chloride. It is desirable to lose.
  • the first reference value is not particularly limited, and the temperature of the aqueous solution Q having a solubility characteristic such that precipitation of potassium chloride can be started as a ratio only after a considerable time has elapsed from the start time of the precipitation of sodium chloride is the first evaporator 622 It is preferably set to be the evaporation temperature of water in ).
  • the first reference temperature in the first reboiler 621 may be 100°C to 110°C in which the solubility of sodium chloride in aqueous solution Q is about 28% and the solubility of potassium chloride is about 35%.
  • the second evaporation module 630 includes a second reboiler 631 which heats the aqueous solution Q to a predetermined second reference temperature, and an aqueous solution Q heated to a predetermined second reference temperature.
  • the agent which is delivered from the second reboiler 631 and induces the evaporation of water under an internal pressure controlled so that the evaporation temperature of the water contained in the aqueous solution Q becomes a predetermined second reference temperature, thereby precipitating soluble solids (S) 2 may have an evaporator 632 and a second circulation pump 633 for circulating the aqueous solution Q to the second reboiler 631 and the second evaporator 632 in a predetermined order.
  • the second reference temperature is preferably determined so that the difference between the solubility of sodium chloride and the solubility of potassium chloride in the aqueous solution (Q) is less than a predetermined second reference value to induce evaporation of water and precipitate sodium chloride and potassium chloride together.
  • the second reference value is not particularly limited, and the difference between the start time of the precipitation of sodium chloride and the start time of the potassium chloride is small, so that the temperature of the aqueous solution (Q) having solubility characteristics that sodium chloride and potassium chloride can be precipitated together is the second evaporator It is preferred to be set to be the evaporation temperature of water at (632).
  • the second reference temperature may be from about 70° C. to about °C solubility of sodium chloride in aqueous solution (Q) is about 29% and solubility of potassium chloride is about 28%.
  • the third evaporation module 640 includes a third reboiler 641 for heating the aqueous solution Q to a predetermined third reference temperature, and an aqueous solution Q heated to a predetermined third reference temperature.
  • the agent which is delivered from the third reboiler 641 and induces evaporation of water under an internal pressure controlled so that the evaporation temperature of the water contained in the aqueous solution Q becomes a predetermined third reference temperature, thereby precipitating soluble solids (S) 3 may have an evaporator 642, a first circulation pump 643 for circulating the aqueous solution Q to the third reboiler 641 and the third evaporator 642 in a predetermined order.
  • the third reference temperature is determined so that the solubility of potassium chloride in aqueous solution (Q) is lower than the solubility of sodium chloride by an evaporation of water under environmental conditions that is lower than the predetermined third reference value, so that potassium chloride can be preferentially precipitated over sodium chloride. It is desirable to lose.
  • the third reference value is not particularly limited, and the temperature of the aqueous solution Q having a solubility characteristic such that precipitation of sodium chloride can be started as a ratio only after a considerable time has elapsed from the start time of the precipitation of potassium chloride is the third evaporator 642 It is preferably set to be the evaporation temperature of water in ).
  • the third reference temperature may be about 50° C. to 60° C., in which the solubility of sodium chloride in aqueous solution (Q) is about 30% and the solubility of potassium chloride is about 22%.
  • the first evaporation module 620 will be described with focus on the content of the aqueous solution Q and precipitation of the soluble solid content S.
  • the first evaporation module 620 is an evaporation module that is located in the first step of a predetermined energy transfer step and proceeds with a precipitation process of soluble solids (S) using an aqueous solution (Q) and high temperature original steam (E). .
  • the first reboiler 621 may have a shell and tube structure capable of heating the aqueous solution Q to a first reference temperature by exchanging heat between the aqueous solution Q and the original steam E.
  • an aqueous solution duct (not shown) through which the aqueous solution Q is passed may be formed in the center of the first reboiler 621, and the original vapor (E) may be provided in the outer circumference surrounding the center of the first reboiler 621.
  • the first reboiler 621 includes a first inlet 621a through which an aqueous solution Q is introduced, a first outlet 621b through which an aqueous solution Q is discharged, and external
  • the second inlet 621c through which the original steam E supplied from the steam source flows in, the second outlet 621d through which the condensate D generated by condensing the original steam E is discharged, and the second outlet ( It may have a first condensate trap (621e) and the like is collected from the condensate (D) discharged from 621d.
  • the first evaporator 622 may have a hollow structure in which a space for evaporating water contained in the aqueous solution Q transferred from the first reboiler 621 is formed. As illustrated in FIG. 9, the first evaporator 622 includes first and second inlets 622a and 622b into which the aqueous solution Q is introduced, and a first outlet 622c from which the aqueous solution Q is discharged.
  • a second outlet (622d) through which the generated vapor (E 1 ) generated by evaporation of water is discharged, and a precipitate (S 1 ) of soluble solids (S) precipitated from an aqueous solution (Q) (hereinafter,'soluble solids precipitates) (Referred to as (S 1 )') may have a third discharge port 622e or the like.
  • the aqueous solution Q discharged from the discharge portion of the second circulation pump 633 is supplied to the first inlet 622a of the first evaporator 622 through the flow path 624a. That is, the first evaporator 622 is supplied with an aqueous solution Q via the second evaporator 632 through the second circulation pump 633.
  • An aqueous solution Q discharged from the first outlet 622c of the first evaporator 622 is supplied to the suction part of the first circulation pump 623 through the flow path 624b, and the first reboiler 621
  • the aqueous solution Q discharged from the discharge portion of the first circulation pump 623 is supplied to the 1 inlet 621a through the flow path 624c.
  • the original steam E is supplied to the second inlet 621c of the first reboiler 621 through the flow path 624d.
  • the aqueous solution Q supplied to the first reboiler 621 is heated by the original steam E, and the original steam E supplied to the first reboiler 621 is cooled by the aqueous solution Q And condensed to phase change into condensed water (D).
  • an aqueous solution Q discharged from the first outlet 621b of the first reboiler 621 in a state heated by the original steam E is the flow path 624e ).
  • the condensate D discharged from the second outlet 621d of the first reboiler 621 is transferred to the first condensate trap 621e of the first reboiler 621 through the flow path 624f and collected. .
  • the aqueous solution Q When the aqueous solution Q is repeatedly circulated between the first reboiler 621 and the first evaporator 622 by the first circulation pump 623, the aqueous solution Q is heated by the original vapor E Accordingly, the temperature of the aqueous solution Q is raised to the first reference temperature.
  • the first reference temperature is about 100 °C to 110 °C
  • the evaporator temperature of the water contained in the aqueous solution (Q) supplied to the first evaporator 622 is about 100 °C to 110 °C first evaporator ( It is preferred that the internal pressure of 622) is maintained at about +20 kPa.
  • the first evaporator 622 Since the internal pressure of about +20 kPa can be achieved by using the vapor pressure of the generated steam E 1 generated in the first evaporator 622, the first evaporator 622 has a separate pressure for adjusting the internal pressure.
  • the installation of the adjustment member is not essential.
  • Water contained in the aqueous solution (Q) supplied to the first evaporator 622 may be evaporated under an atmosphere of about 100 °C to 110 °C and about +20 kPa. Then, the aqueous solution (Q) may be concentrated by evaporation of water, and sodium chloride may be preferentially precipitated among chloride salts contained in the soluble solid (S). Therefore, in the first evaporator 622, sodium chloride is mainly precipitated at the beginning of the precipitation process, and the amount of potassium chloride increases as the end of the precipitation process progresses.
  • the soluble solids precipitate S 1 discharged from the third outlet 622e of the first evaporator 622 may be stored in the precipitate storage tank 6 through the flow path 624g.
  • the second evaporation module 630 will be described with reference to the contents of concentration of the aqueous solution Q and precipitation of the soluble solid content S.
  • the second evaporation module 630 is located in the second step of the predetermined energy transfer step, except that the precipitation process of the soluble solids (S) is performed using an aqueous solution (Q) and generated steam (E1) , Has a structure similar to the first evaporation module 620 described above.
  • the aqueous solution Q discharged from the discharge portion of the third circulation pump 643 is supplied to the first inlet 632a of the second evaporator 632 through the flow path 634a. That is, the second evaporator 632 is supplied with an aqueous solution Q via the third evaporator 642 through the third circulation pump 643.
  • the inlet of the second circulation pump 633 is supplied with an aqueous solution Q discharged from the first outlet 632c of the second evaporator 632 through the flow path 634b, and the second reboiler 631
  • the aqueous solution Q discharged from the discharge portion of the second circulation pump 633 is supplied to the 1 inlet 631a through the flow path 634c.
  • the generated vapor E 1 generated in the first evaporator 622 is supplied to the second inlet 631c of the second reboiler 631 through the flow path 634d.
  • the aqueous solution Q supplied to the second reboiler 631 and the generated steam E 1 are heat exchanged.
  • the second inlet 632b of the second evaporator 632 has an aqueous solution Q discharged from the first outlet 631b of the second reboiler 631 in a state heated by the generated steam E 1 . 634e).
  • condensate D discharged from the second outlet 631d of the second reboiler 631 is collected and collected in the second condensate trap 631e of the second reboiler 631 through the flow path 634f. .
  • the aqueous solution Q When the aqueous solution Q is repeatedly circulated between the second reboiler 631 and the second evaporator 632 by the second circulation pump 633, the generated steam E 1 supplied from the first evaporator 622 As the aqueous solution Q is heated by ), the temperature of the aqueous solution Q increases to the second reference temperature.
  • the second reference temperature is about 70 °C to °C
  • the evaporation temperature of the water contained in the aqueous solution (Q) supplied to the second evaporator 632 is about 70 °C to 80 °C second evaporator (632 )
  • the internal pressure of the vacuum should be reduced to about -60 kPa.
  • the flow passage 644f connected to the second outlet 641d of the third reboiler 641 is connected to the condenser 650 by the flow passage 644i at the front end of the third condensate trap 641e, and the flow passage ( 644i) is provided with a vacuum control valve 644j. Then, among the generated steam E 2 supplied from the second evaporator 632 to the third reboiler 641, the remaining generated steam E 2 that is not condensed in the steam duct is condenser 650 through the flow path 644i. Can be passed on.
  • the internal pressure of the second evaporator 632 and the internal pressure of the steam duct of the third reboiler 641 are It can be interlocked with each other. Therefore, the internal pressure of the second evaporator 632 is selectively reduced by receiving the vacuum pressure of the pressure regulating member 670 and the negative pressure of the condenser 650 through the vacuum regulating valve 674, thereby maintaining the vacuum state. Can be.
  • Water contained in the aqueous solution (Q) supplied to the second evaporator 632 may be evaporated under reduced pressure under an atmosphere of about 70 °C to 80 °C and about -60 kPa. Then, the aqueous solution (Q) can be concentrated by evaporation under reduced pressure of water, and the sodium chloride and potassium chloride contained in the soluble solid (S) can be precipitated together from almost the same time point.
  • the soluble solids precipitate S 1 discharged from the third outlet 632e of the second evaporator 632 may be stored in the precipitate storage tank 680 through a flow path 634g.
  • the third evaporation module 640 will be described with focus on the content of the aqueous solution Q and precipitation of the soluble solid content S.
  • the third evaporation module 640 is located in the third step of the predetermined energy transfer step, except that the precipitation process of the soluble solids (S) using the aqueous solution (Q) and the generated steam (E2), It has a structure similar to the first evaporation module 620 described above.
  • the aqueous solution Q discharged from the discharge portion of the raw water supply pump 610 is supplied to the first inlet 642a of the third evaporator 642 through the flow passage 644a. That is, the third evaporator 642 is supplied with an aqueous solution Q directly from the raw water supply pump 610.
  • An aqueous solution Q discharged from the first outlet 642c of the third evaporator 642 is supplied to the suction part of the third circulation pump 643 through the flow passage 644b, and the third reboiler 641
  • the aqueous solution Q discharged from the discharge portion of the third circulation pump 643 is supplied to the 1 inlet 621a through the flow path 644c.
  • the generated steam (E 2 ) generated in the second evaporator 632 is supplied to the second inlet 641c of the third reboiler 641 through the flow path 644d.
  • the aqueous solution Q supplied to the third reboiler 641 and the generated steam E 2 are heat exchanged.
  • an aqueous solution Q discharged from the first outlet 641b of the third reboiler 641 in a state heated by the generated steam E 2 is a flow path ( 644e).
  • condensed water D discharged from the second outlet 641d of the third reboiler 641 is transferred to the fourth condensate trap 641e of the third reboiler 641 and is collected through the flow passage 644f. .
  • the temperature of the aqueous solution Q increases to a third reference temperature.
  • the third reference temperature is about 50 °C to 60 °C
  • the evaporation temperature of the water contained in the aqueous solution (Q) supplied to the third evaporator 642 to be about 50 °C to 60 °C third evaporator ( 642) the internal pressure should be reduced to about -80 kPa in vacuum.
  • the second outlet 642d of the third evaporator 642 is connected to the condenser 650 through the flow path 644h, and the condenser 650 is connected to the pressure regulating member 670.
  • the internal pressure of the third evaporator 642 is reduced by the vacuum pressure applied from the pressure regulating member 670 and the negative pressure generated by condensation of the vapors E 2 and E 3 in the condenser 650, It can be kept in a vacuum.
  • the water contained in the aqueous solution (Q) supplied to the third evaporator 642 may be evaporated under reduced pressure under an atmosphere of about 50°C to 60°C and about -80 MPa. Then, the aqueous solution (Q) can be concentrated by evaporation under reduced pressure, and potassium chloride among the chloride salts contained in the soluble solid (S) can be preferentially precipitated from the aqueous solution (Q). Therefore, in the third evaporator 642, potassium chloride is mainly precipitated at the beginning of the precipitation process, and the amount of sodium chloride increases as the end of the precipitation process progresses.
  • the soluble solids precipitate S 1 discharged from the third outlet 642e of the third evaporator 642 may be stored in the precipitate storage tank 680 through a flow path 644g.
  • the condenser 650 is the generated vapor transmission from the third evaporator (642) (E 3) and the third the generated vapor (E 2) transmitted from the reboiler a second evaporator 632 via 641, respectively, cooled and It is prepared to condense.
  • the cooling source for cooling the generated steam (E 2 , E 3 ) is preferably cooling water supplied from an external cooling water supply source (not shown), but is not limited thereto.
  • the condenser 650 includes an inlet 651 connected to the third evaporator 642 and the third reboiler 641 through flow paths 644h and 644i, respectively.
  • the generated condensate (D) is discharged outlet (653), the condensate (D) discharged from the outlet (653) is transferred through the flow path (659) and trapped condensate trap (655), and the pressure regulating member (670) It may have a vent hole 657 and the like.
  • the condensate storage tank 660 is connected to the condensate traps 621e, 631e, 641e, 655 through the flow paths 624f, 634f, 644f, 659, 662, respectively, and the condensate traps 621e, 631e, 641e, Condensed water (D) transferred from 655) is stored.
  • the condensate storage tank 660 is preferably supplied as distilled water for washing the insoluble solids (I) to the first centrifugal separator 56 through the flow path 664, but is not limited thereto. .
  • the pressure regulating member 670 is provided to selectively apply vacuum pressure to each of the second evaporator 632 and the third evaporator 642.
  • the pressure regulating member 670 includes a vacuum tank 672 where the internal pressure is kept constant in a vacuum state, and a vacuum regulating valve that selectively applies the vacuum pressure of the vacuum tank 672 to the condenser 650. (674).
  • the vacuum tank 672 is provided to maintain a constant internal pressure in a vacuum state by a vacuum pump (not shown).
  • the internal pressure of the vacuum tank 672 is not particularly limited.
  • the internal pressure of the vacuum tank 672 may be kept constant at about -95 kPa in a vacuum state.
  • the vacuum tank 672 may be connected to the vent port 658 of the condenser 650 through the flow path 676.
  • the vacuum control valve 674 is installed in the flow path 676 to selectively apply the vacuum pressure of the vacuum tank 672 to the condenser 650. Then, the vacuum pressure of the vacuum tank 672 can be selectively applied to the second evaporator 632 via the vacuum control valves 644j, 674, the condenser 650, and the third reboiler 641, , It may be selectively applied to the third evaporator 642 via the vacuum control valve 674 and the condenser 650.
  • the pressure regulating member 670, the internal pressure of the second evaporator 632 and the internal pressure of the third evaporator 642, respectively, are included in the aqueous solution (Q) can be kept constant so that reduced pressure evaporation of water is induced. have.
  • the precipitate storage tank 680 is connected to the third outlets 622e, 632e, and 642e of each of the first to third evaporators 622, 632, and 642 through the flow paths 624g, 634g, 644g, and 682.
  • a flow path 682 in which the flow paths 624g, 634g, and 644g are joined may be provided with a precipitate recovery pump 684 capable of pumping the soluble solids precipitate S 1 toward the precipitate storage tank 680.
  • the soluble solids precipitate S 1 discharged from each of the first to third evaporators 622, 632, and 642 may be stored in the precipitate storage tank 680.
  • the soluble solids precipitate (S 1 ) is dispersed and precipitated in the aqueous solution (Q) and is accommodated in each of the first to third evaporators 622, 632, and 642, so that it is available when the precipitate recovery pump 684 is operated.
  • the solid content precipitate S 1 may be discharged from each of the first to third evaporators 622, 632, and 642 in a slurry state mixed with the aqueous solution Q and stored in the precipitate storage tank 680.
  • each of the first to third circulation pumps 623, 633, and 643 may be connected to the flow path 682 by each of the flow paths 624h, 634h, and 644k.
  • Each of the flow paths 624h, 634h, and 644k may be provided with an on-off valve that can selectively open and close each of the flow paths 624h, 634h, and 644k. Accordingly, each of the first to third circulation pumps 623, 633, and 643 may selectively deliver the aqueous solution Q to the precipitate storage tank 680 through the flow paths 624h, 634h, and 644k, respectively.
  • each of the first to third circulation pumps 623, 633, and 643 discharges the aqueous solution Q from each of the evaporation modules 620, 630, and 640 according to the precipitation pattern of the soluble solids S,
  • the chloride salt concentration of the aqueous solution (Q) can be maintained at a level suitable for precipitation of the soluble solid (S).
  • the second centrifugal separator 690 receives the soluble solid content precipitate (S 1 ) in a slurry state mixed with the aqueous solution (Q) from the precipitate storage tank 680 to obtain a soluble solid content precipitate (S 1 ) and an aqueous solution (Q). It is provided to enable centrifugation.
  • the second centrifuge 690 is preferably composed of a ContaVex centrifuge, but is not limited thereto.
  • the second centrifugal separator 690 may have a second filter having a predetermined fourth reference particle size to separate the soluble solid precipitate (S 1 ) and the aqueous solution (Q).
  • the second filter is a wire mesh filter, and the fourth reference particle size is preferably 0.05 mm to 0.3 mm, but is not limited thereto.
  • the aqueous solution Q separated from the soluble solids precipitate S 1 by the second centrifugal separator 690 may include residual soluble solids S that have not yet been precipitated by the evaporation modules 620, 630, and 640. have. Therefore, the second centrifugal separator 690 can deliver the soluble solids precipitate S 1 to the soluble solids storage unit 70 and suction the aqueous solution Q through the flow path 692 through the raw water supply pump 610 You can redistribute it to wealth.
  • the aqueous solution (Q) re-delivered to the raw water supply pump (610) is mixed with the aqueous solution (Q) supplied from the first centrifugal separator (56) to be re-supplied to the evaporation modules (620, 630, 640). have.
  • the second centrifugal separator 690 can further increase the recovery rate of the soluble solid content (S) through the precipitation process.
  • FIG. 11 is a photograph of soluble solids precipitated and dried
  • FIG. 12 is a SEM-EDS chart that qualitatively analyzes the soluble solids shown in FIG. 11
  • FIG. 13 is a chart showing the composition ratio of soluble solids shown in FIG. 11 .
  • the soluble solids storage unit 70 is a device for drying and storing the soluble solids precipitate S 1 received from the second centrifuge 66.
  • the structure of the soluble solid content storage unit 70 is not particularly limited.
  • the soluble solid content storage unit 70 includes a soluble solid content dryer (72) for drying the soluble solid content precipitate (S 1 ) and a dried product of the soluble solid content (S) dried by the soluble solid content dryer (72).
  • It may include a soluble solid content storage chamber 74 for storing the'soluble solids (S 2 )'.
  • the soluble solids dryer 72 is a device for drying the soluble solids precipitate S 1 separated from the aqueous solution Q1 by the second centrifugal separator 66.
  • the soluble solids precipitate (S 1 ) and the aqueous solution (Q 1 ) are separated by the second centrifugal separator 66, but some of the aqueous solutions (Q1) are not separated from the soluble solids precipitate (S 1 ) and the soluble solids precipitate (S) It can be adsorbed on the surface of 1 ). For this reason, the soluble solid precipitate (S 1 ) separated from the aqueous solution (Q1) by the second centrifugal separator (66) is present in a slurry state by the aqueous solution (Q1) adsorbed on the surface. However, since the soluble solids precipitate S 1 is not easily recycled when present in a slurry state, a soluble solids dryer 72 is provided to solve this.
  • the soluble solid content dryer 72 dries the soluble solid content precipitate S 1 discharged from the second centrifugal separator 66 so that the soluble solid content S contains moisture below a predetermined reference moisture.
  • the reference moisture is preferably about 0.3%, but is not limited thereto.
  • the soluble solid content dried product (S 2 ) dried by the soluble solid content dryer 72 has a white powder form, and chlorides such as sodium chloride (NaCl) and potassium chloride (KCl). It mainly contains salt.
  • the soluble solid content dryer 72 delivers the soluble solid content dried product S 2 to the soluble solid content storage chamber 74 as described above.
  • the soluble solids storage chamber 74 is a device for storing the soluble solids dry matter S 2 from which moisture is removed by the soluble solids dryer 72.
  • the soluble solid content storage chamber 74 may be configured as a general storage chamber capable of storing a storage object.
  • the soluble solid content storage chamber 74 receives the soluble solid content dried product S 2 from the soluble solid content dryer 72 and stores it in an isolated state from the outside.
  • the soluble solids dry matter S 2 stored in the soluble solids storage chamber 74 mainly contains chloride salts contained in the flux F, and thus is recycled as the flux F It is preferred.
  • the present invention is not limited thereto, and the soluble solid content dried product S 2 may be recycled in various fields requiring mixed salt.
  • the aluminum granule storage unit 80 is a device for storing the aluminum granules N discharged from the crushing/grinding unit 40.
  • the structure of the aluminum grain storage unit 80 is not particularly limited.
  • the aluminum particle storage unit 80 is capable of storing aluminum particles N separated and discharged from the first separation member 42 and the second separation member 44.
  • a grain storage chamber 82 may be included.
  • the insoluble solid content storage unit 90 is a device for drying and storing the insoluble solid content (I) received from the first centrifugal separator (56).
  • the structure of the insoluble solid content storage unit 90 is not particularly limited.
  • the insoluble solid content storage unit 90 includes an insoluble solid content dryer 92 for drying the insoluble solid content I and an insoluble solid content kiln for firing the insoluble solid content I dried by the insoluble solid content dryer 92. (94) and an insoluble solid content storage chamber 96 for storing the insoluble solid content (I) calcined by the insoluble solid content firing furnace 94.
  • the insoluble solid content dryer 92 is a device for drying the insoluble solid content I separated from the aqueous solution Q by the first centrifugal separator 56.
  • the insoluble solid (I) is separated by distilled water and the first centrifugal separator (56), but some of the distilled water can be adsorbed on the surface of the insoluble solid (I) without being separated from the insoluble solid (I). For this reason, the insoluble solid content (I) discharged from the first centrifugal separator 56 is present in a slurry state, containing about 30 to 40% moisture. However, when the insoluble solid content (I) is present in a slurry state, since the transport and recycling of the insoluble solid content (I) is not easy, an insoluble solid content dryer 92 is provided to solve this.
  • the insoluble solid content dryer 92 dries the insoluble solid content I discharged from the first centrifugal separator 56 so that the insoluble solid content I contains moisture below a predetermined reference moisture.
  • the reference moisture is not particularly limited, and is preferably set differently depending on the purpose of recycling the insoluble solid content (I). For example, when the insoluble solid (I) is recycled as a cement raw material, the reference moisture is about 40%. For example, when insoluble solids (I) are recycled as brick refractory or ceramic materials, the reference moisture is about 0.5%. For reference, when recycling the insoluble solid content (I) as a brick refractory material or ceramic material, a material fired at about 1,200°C is required, and thus, a relatively low standard compared to recycling the insoluble solid content (I) as a cement raw material. Moisture is required.
  • the insoluble solid content (I) dried by the insoluble solid content dryer 92 (hereinafter referred to as'insoluble solid content dried product I 1 ') is dark gray due to the carbon component adsorbed on the surface. It has a powder form.
  • the insoluble solid content dried product I 1 is transferred to the insoluble solid content kiln 94.
  • FIG. 15 is a photograph of the calcined insoluble solids
  • FIG. 16 is a SEM-EDS chart of qualitative analysis of the calcined insoluble solids shown in FIG. 15
  • FIG. 17 is a composition ratio of the calcined insoluble solids shown in FIG. It is a chart showing.
  • the insoluble solid content kiln 94 is a device for firing the insoluble solid content dried product I 1 .
  • the finely divided aluminum, magnesium, and aluminum alloys contained in the dross particulate powder (P 2 ) are decomposed by water, aluminum hydroxide, magnesium hydroxide, and aluminum alloy hydrates (hereinafter referred to as'hydrates') may be formed. Since these hydrates are insoluble solids (I), they are separated from the aqueous solution (Q) by the first centrifugal separator 56 and transferred to the insoluble solids dryer 92. However, since hydrates are materials that are unstable compared to aluminum oxide, magnesium oxide, and aluminum alloy oxides (hereinafter referred to as'oxides'), insoluble solids (I) containing such hydrates are not suitable for recycling.
  • the insoluble solids storage unit 90 the insoluble solid dry product (I 1) to the firing process of transition to the oxide of the hydrate included in the water-insoluble solid dry product (I 1) It includes an insoluble solid content kiln 94.
  • the insoluble solid content kiln 94 heats the insoluble solid content dried product I 1 to about 800° C. or higher to cause the hydrates to fire. Then, the hydrates are calcined and transferred to oxides, and at the same time, the carbon component adsorbed on the surface of the insoluble solid content I 1 is burned. Therefore, as shown in FIG. 15, the insoluble solid content dried product I 1 (hereinafter referred to as'insoluble solid content calcined product I 2 )'calcined by the insoluble solid content calcination furnace 94 is light yellow powder. Becomes.
  • the insoluble solid content calcination furnace 94 delivers the insoluble solid content calcined product I 2 to the insoluble solid content storage chamber 96.
  • the insoluble solid content dryer 92 may be omitted.
  • the insoluble solids storage chamber 96 is a device for storing the insoluble solids fired product I 2 .
  • the insoluble solid content storage chamber 96 may be configured as a general storage chamber capable of storing a storage object.
  • the insoluble solid content storage chamber 96 receives the insoluble solid content calcined product I 2 from the insoluble solid content calcination furnace 94 and stores it in an isolated state from the outside. 16 and 17, the insoluble solid content calcined product I 2 mainly includes aluminum oxide, magnesium oxide, and aluminum oxide alloy, and thus, after additional rehabilitation, ceramic material, refractory material, and cement material It is preferably recycled.
  • the additional recycling process of the insoluble solid content calcined product (I 2 ) is not particularly limited.
  • an additional recycling process of the insoluble solid content fired material (I 2 ) may include a spinel manufacturing process in which aluminum oxide and magnesium oxide are fired at a temperature of about 2000° C. and transferred to spinel (MgAl 2 0 4 ).
  • the gas storage unit 100 is a device for storing the hydrolysis gas G collected by the gas collector 54.
  • the gas storage unit 100 may be configured as a gas storage chamber generally used to store gas. As shown in FIG. 7, the gas storage unit 100 receives and stores the hydrolysis gas G from the gas collector 54.
  • the general dross reprocessing machine regenerates the normal black dross by injecting an exothermic flux such as cornerstone (NaNO 3 ) into the normal black dross.
  • an exothermic flux such as cornerstone (NaNO 3 ) into the normal black dross.
  • NH 3 ammonia gas
  • SiH 4 silane gas
  • the spherical black dross (B 2 ) is a hydrolysis gas (G) generated by treatment by the black dross recycling apparatus 3, hydrogen, methane, ethane, ethane, includes gas such as propane, propene, etc. do. Since these gases are not usable as the ammonia gas and silane gas described above as gases usable as an energy source, recycling is easy. In addition, since hydrogen and methane having excellent properties as an energy source occupy most of the hydrolysis gas (G), the hydrolysis gas (G) has a very good recycling value.
  • the hydrolysis gas (G) is preferably recycled as an energy source for driving the aluminum melting and black dross recycling system 1 according to the present invention.
  • the present invention is not limited thereto, and the hydrolysis gas (G) may be transported to the outside by a gas transfer facility, and may be recycled as an energy source in various industrial fields such as heating and power generation.
  • the black dross recycling apparatus 3 is preferably processed to be recyclable for the above-described spherical black dross (B 2 ), but is not limited thereto. That is, the black dross recycling apparatus 3 may process the normal black dross formed in a different manner from the old black dross B 2 to be recyclable.
  • FIG. 18 is a flowchart schematically showing a method of dissolving aluminum and recycling black dross according to another preferred embodiment of the present invention
  • FIG. 19 is a detail of a step of crushing and crushing an aluminum melting step and a spherical black dross described in FIG. 18.
  • 20 is a flowchart for explaining details of the dross powder water decomposition step and the water decomposition product recycling step described in FIG. 18.
  • the step of dissolving aluminum (S 100), and the spherical black dross generated when dissolving aluminum (B 2 ) The step of crushing and crushing (S 200), and the step of decomposing water of the dross particulate powder (P 2 ) formed by crushing and crushing the spherical black dross (B 2 ) (S 300), and the dross particulate powder (P) And treating at least one of the water decomposition products of 2 ) to be recyclable (S400).
  • the aluminum scrap (A) is a step (S 140) of recovering the spherical black dross (B 2 ) generated by the flux treatment by the molten flux layer.
  • step (S 110) of forming a vortex (V) in the aluminum molten metal (M) the aluminum molten metal (M) is stirred using the aforementioned vortex unit (21) that can be rotationally driven, and the aluminum molten metal (M) is turned to descend. Vortex V can be formed.
  • the flux F may be introduced into the vortex V of the aluminum molten metal M formed in step S 110.
  • the flux (F) may include 93-97 parts by weight of a mixture of sodium chloride (NaCl) and potassium chloride (KCl) in equal parts by weight, and 3-7 parts by weight of cryolite (Cryolite, Potassium Cryolite). More preferably, the flux (F) may include 4 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and 5 parts by weight of potassium aluminum fluoride (KAlF 4 ).
  • a molten flux layer formed by dissolving the flux (F) that is, a salt bath layer is formed on the surface of the aluminum molten metal (M).
  • the aluminum scrap (A) may be aluminum scrap can scrap (UBCs, A 3XXX series, A 5XXXX series) mainly containing aluminum, magnesium, and aluminum alloy.
  • the aluminum scrap (A) injected into the vortex (V) is dissolved in the aluminum molten metal (M).
  • the inclusions contained in the aluminum molten metal (M) are captured in the molten flux layer, that is, the flux (F) to form a black dross (B 1 ), the black dross (B 1 ) is in the vortex (V)
  • a spherical black dross (B 2 ) in which black dross (B 1 ) is aggregated into a spherical shape is formed.
  • the aluminum molten metal (M) in which the aluminum scrap (A) is dissolved is passed through the outlet of the aluminum melting furnace (2).
  • the spherical black dross (B 2 ) suspended on the surface of the aluminum molten metal M can be discharged from the aluminum molten metal M using the separation unit 27 described above.
  • the spherical black dross (B 2) the step of grinding and crushing (S 200), the method comprising crushing the spherical black dross (B 2) recovered from the aluminum molten metal (M) (S 210), and aluminum
  • step (S 210) for crushing the spherical black dross (B 2) it can be crushed using the aforementioned spherical black dross (B 2) a number of times in step S 140 crusher 41
  • the aluminum granules (N) and the dross powder (P 1 ) among the crushed products of the spherical black dross (B 2 ) formed in the step S 210. 1 ) can be separated using the first separation member 42 described above.
  • the first separating member 42 may be configured as a vibrating screen having a particle size of about 10 mm.
  • Pulverizing the dross powder (P 1) (S 230) in, the dross powder (P 1) separate from the aluminum grains (N) in step S 220 may be pulverized using a grinder (43).
  • the aluminum granules (N) and the dross particulate powder among the pulverized powder of the dross powder (P 1 ) formed in step S 230 (P 2 ) can be separated using the second separation member 44 described above.
  • the second separating member 44 may be composed of a Trommel Screen having a particle size of about 0.5 mm.
  • the step (200) of crushing and crushing the spherical black dross (B 2 ), aluminum particles separated from the dross powder (P 1 ) and the dross particulate powder (P 2 ) in steps S 220 and S 240 (N) recycling step (S 250) may be further included.
  • the aluminum grains N may be introduced into the vortex V of the aluminum molten metal M described above.
  • the reactor 52 uses the dross particulate powder (P 2 ) re-separated from the aluminum particles (N) in step S 240. It can be performed by decomposing water.
  • the reactor 52 may stir the dross particulate powder (P 2 ) and water mixed in a ratio of 1: 2 to decompose the dross particulate powder (P 2 ) into water.
  • the step of treating at least one of the water decomposition products of the dross particulate powder (P 2 ) to be recyclable (S 400), the soluble solid (S) is dissolved in water is produced Separating and separating the hydrolysis gas (G) from the aqueous solution (Q) (S 410), separating the insoluble solid (I) and the aqueous solution (Q) from each other (S 420), and the hydrolysis gas (G ) Is processed to be recyclable (S 430), the step of treating soluble solids (S) to be recyclable (S 440), and the step of treating insoluble solids (I) to be recyclable (S 450). do.
  • the hydrolysis gas (G) from the aqueous solution (Q) accommodated in the above-described reactor 52 using a gas collector 54 Can be captured.
  • the step of separating the insoluble solid (I) and the aqueous solution (Q) from each other (S 420), the step of centrifuging the aqueous solution (Q) and the insoluble solid (I) (S 421), And washing the insoluble solid (I) with distilled water (S 422) and centrifuging the insoluble solid (I) and distilled water (S 423).
  • the first centrifugation of the insoluble solid (I) and the aqueous solution (Q) separated from the hydrolysis gas (G) in step S 410 Centrifugation may be performed using a separator 56.
  • step S 422 In the step of washing the insoluble solid (I) with distilled water (S 422), in step S 421, the insoluble solid (I) is washed with distilled water so that chlorine adsorbed to the insoluble solid (I) is separated from the insoluble solid (I). Can be. Even if the insoluble solid content (I) and the aqueous solution (Q) are centrifuged in step S 421, some of the aqueous solution (Q) may remain adsorbed to the insoluble solid content (I), and the aqueous solution (Q) contains a chloride salt. Soluble solid content (S) is dissolved. Accordingly, the insoluble solid (I) is washed with distilled water to remove the chloride salt adsorbed on the insoluble solid (I). In the step of washing the insoluble solid (I) with distilled water (S 422), it is preferable to use the condensed water (D) produced in step S 445 to be described later as distilled water, but is not limited thereto.
  • D conden
  • the insoluble solid content (I) and distilled water may be centrifuged using the above-described first centrifugal separator (56).
  • steps S 422 and S 423 may be repeatedly performed until the concentration of the chloride salt adsorbed on the insoluble solid content (I) becomes below a predetermined reference concentration.
  • the reference concentration is preferably about 300 ppm, but is not limited thereto.
  • the step of treating the hydrolysis gas (G) to be recyclable includes the step of separating and purifying the hydrolyzed gas (G) (S 432), and the step of storing the separated and purified hydrolyzed gas (G) (S 433).
  • the moisture trap included in the moisture contained in the hydrolysis gas (G) collected by the gas collector 54 in step S 410 ( 54b), can be removed using a water remover (not shown) and a desulfurizer (not shown).
  • step (S 432) of separating and purifying the hydrolysis gas (G) the purity of the gas that is actually recyclable among the hydrolysis gases (G) from which moisture is removed in step S431 is increased, or the purpose of recycling in the gas separation gas (G)
  • the hydrolysis gas (G) can be separated and purified using the above-described gas separation and purification (54a) so that a specific gas suitable for separation from other gases.
  • step (S 433) of storing the hydrolysis gas (G) the hydrolysis gas (G) separated and purified in step S432 may be stored in the gas storage unit 100 described above.
  • step (S 441) of precipitating the soluble solid (S) by evaporating the water contained in the insoluble solid (I) and the centrifuged aqueous solution (Q) in step S 421 using each of the evaporation modules (620,630, 640)
  • the soluble solid content (S) is precipitated from the aqueous solution (Q), but evaporation of water is induced under different environmental conditions for each of the evaporation modules (620, 630, 640), and thus different precipitation for each evaporation modules (620, 630, 640)
  • sodium chloride and potassium chloride contained in the soluble solid (S) may be precipitated.
  • the evaporation modules (620, 630, 640) is separated from the insoluble solids (I) and the aqueous solution pumped by the raw water supply pump (610) (Q ) Is supplied.
  • the insoluble solids (I) and the separated aqueous solution (Q) can be supplied to the third evaporator 642 of the third evaporation module 640 by the raw water supply pump 610, the third evaporator 642 Part of the aqueous solution (Q) supplied to) may be supplied to the second evaporator 632 of the second evaporation module 630 by the third circulation pump 643, and the aqueous solution supplied to the second evaporator 632 A portion of (Q) may be supplied to the first evaporator 622 of the first evaporation module 620 by the second circulation pump 633.
  • the evaporation modules (620, 630, 640) is used directly or indirectly as a heat source using the high temperature source steam (E) supplied from an external steam source Soluble solids (S) can be precipitated by heating the aqueous solution (Q) to evaporate the water.
  • the supply of the original steam (E) is preferably started in a state in which the aqueous solution (Q) is charged to a predetermined water level in the evaporator (622, 632, 642) of each of the evaporation modules (620, 630, 640).
  • the first reboiler 621 of the first evaporation module 620 may heat the aqueous solution by exchanging the original steam (E) and the aqueous solution.
  • the second reboiler 631 of the second evaporation module 630 heat-exchanges the generated vapor (E 1 ) generated by the evaporation of water in the first evaporator 622 with the aqueous solution (Q), and thus the aqueous solution (Q) Can be heated.
  • the third reboiler 641 of the third evaporation module 640 heats the generated vapor (E 2 ) generated by the evaporation of water from the second evaporator 632 with the aqueous solution (Q), and thus the aqueous solution (Q) Can be heated.
  • the evaporator 622, 632, 642 is used to induce evaporation of water under the internal pressure of the evaporator 622, 632, 642 controlled so that the evaporation temperature of the water becomes a reference temperature to precipitate soluble solids (S).
  • the reference temperature is the evaporation modules (620, 630, 640) of the evaporation modules (620, 630, 640) according to the deposition order and precipitation time of sodium chloride and potassium chloride to be implemented in the evaporation modules (620, 630, 640) Each can be set individually.
  • the first evaporation module 620 uses the first reboiler 621 to reduce the solubility of sodium chloride in the aqueous solution Q by at least a predetermined first reference value compared to the solubility of potassium chloride.
  • the first evaporator is induced by evaporating water under the internal pressure of the first evaporator 622, which is adjusted so that the evaporation temperature of water is the first reference temperature using the first evaporator 622, In (622), sodium chloride can be preferentially precipitated from a significantly earlier time point than potassium chloride.
  • the first reference temperature and the internal pressure of the first evaporator 622 are not particularly solved.
  • the first reference temperature may be about 100° C. to 110° C., in which the solubility of sodium chloride in the aqueous solution (Q) is about 28% and the solubility of potassium chloride is about 35%, and the internal pressure of the first evaporator (622). May be about 20 kPa which is an evaporation pressure of water of about 100°C to 110°C.
  • the second evaporation module 630 uses a second reboiler 631, a second reference temperature at which the solubility of sodium chloride in the aqueous solution Q and the solubility of potassium chloride are lowered below a predetermined second reference value.
  • the evaporation of water is induced using the second evaporator 632 so that the evaporation temperature of the water is adjusted to the second reference temperature, thereby inducing evaporation of water to reduce sodium chloride and potassium chloride. It can be precipitated together from almost the same time point.
  • the second reference temperature may be from about 70° C. to 80° C., where the solubility of sodium chloride in aqueous solution (Q) is about 29% and the solubility of potassium chloride is about 28%, and the internal pressure of the second evaporator (632). May be about -60 kPa which is an evaporation pressure of water of about 70°C to 80°C.
  • the third evaporation module 640 uses a third reboiler 641, a third criterion in which the solubility of potassium chloride in the aqueous solution Q is lowered by a predetermined third reference value or more compared to the solubility of sodium chloride.
  • the evaporation of water is induced by using the third evaporator 642 to induce evaporation of water under the internal pressure of the third evaporator 642 adjusted so that the evaporation temperature of the water becomes the third reference temperature.
  • potassium chloride can be preferentially precipitated from a significantly earlier point than sodium chloride.
  • the third reference temperature may be about 50° C. to 60° C., in which the solubility of sodium chloride in aqueous solution (Q) is about 30% and the solubility of potassium chloride is about 22%, and the internal pressure of the second evaporator (642). May be about -80 kPa, which is an evaporation pressure of water of about 50°C to 60°C.
  • the second reference temperature is about 70°C to 80°C
  • the third reference temperature is about 50°C to 60°C
  • the internal pressure of the second evaporator 632 and the internal pressure of the third evaporator 642 should be maintained in a vacuum state lower than atmospheric pressure.
  • the second evaporation module 630 and the third evaporation module 640 respectively, the pressure control member 670 to induce reduced pressure evaporation of water under a vacuum atmosphere according to the second reference temperature or the third reference temperature
  • the internal pressure may be kept constant by a vacuum pressure selectively applied from.
  • the condensate D generated by condensation in the condenser 650 may be stored in the condensate storage tank 660.
  • the condensate D stored in the condensate storage tank 660 may be transferred to the first centrifugal separator 56 (S 445). Then, in step S 422, the insoluble solids (I) separated from the aqueous solution (Q) by the first centrifugal separator (56) can be washed using the condensate (D) transferred from the condensate storage tank (660) as distilled water. .
  • step (S 442) of centrifuging the soluble solids precipitate (S 1 ) and the aqueous solution (Q) the soluble solids precipitate (S 1 ) and the soluble solids precipitate (S 1 ) precipitated from the aqueous solution (Q) in step S 441 are
  • the remaining aqueous solution Q precipitated may be centrifuged using the second centrifuge 690 described above.
  • the aqueous solution (Q) separated from the soluble solids precipitate (S 1 ) is evaporated so that the soluble solids (S) remaining dissolved in the aqueous solution (S) without precipitation can be precipitated from the aqueous solution (Q).
  • step S 441 the evaporation modules 620, 630, and 640 are used to reprecipitate the soluble solids (S) from the aqueous solution (Q) separated from the soluble solids precipitate (S 1 ) in step S 442. .
  • step (S 443) for drying the soluble solid precipitate (S 1) it can be dried using an aqueous solution of the aforementioned soluble solid content of the soluble solid precipitate (S 1) separated from the (Q) dryer 72 at S 442 step . Drying this soluble solid precipitate (S 1) (S 443), the soluble solid precipitate (S 1) one or desirable to perform up to and including a moisture of not more than 0.3%, and the like.
  • Storing the soluble solid dry product (S 2) (S 444) In, can be stored in a soluble solid the reservoir chamber 74 above the soluble solid dry product (S 2) and dried at S 443 step.
  • the step of treating the insoluble solid content (I) to be recyclable includes: drying the insoluble solid content (I) (S 451) and firing the insoluble solid content (I 1 ). It includes a step (S 452) and a step (S 453) of storing the insoluble solid content fired material (I 2 ).
  • step S 420 in step S 420, the water adsorbed on the insoluble solid (I) without being separated from the insoluble solid (I) is dried using the above-described insoluble solid content dryer (92). can do.
  • step (S 451) of drying the insoluble solid content (I) when recycling the insoluble solid content (I) as a cement raw material, it is preferable to perform it until the insoluble solid content dry matter (I 1 ) contains 40% or less of moisture. Do.
  • the step of drying the insoluble solid content (I 1 ) (S 451) when recycling the insoluble solid content (I) as a brick refractory material or ceramic material, the insoluble solid content (I 1 ) contains less than 0.5% moisture It is preferable to perform until, but is not limited to.
  • the insoluble solid dry product (I 1) may be fired using an insoluble solid dry product (I 1) of the above water-insoluble solid content of the baking furnace 94, dried at S 451 step.
  • the insoluble solid content (I 1 ) may include hydroxides such as aluminum hydroxide, magnesium hydroxide, and aluminum alloy hydrates having unstable properties, so that these hydroxides are converted to aluminum oxide, magnesium oxide, and aluminum alloy oxides having relatively stable properties. It is to fire insoluble solids (I 1 ).
  • Storing a water-insoluble solid matter fired product (I 2) (S 453) In, can be stored in a water insoluble solid content storage chamber 96 above the water-insoluble solids fired product (I 2) in the firing step S 452.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention pertains to a method for recycling black dross, the method comprising: (a) a step in which black dross, generated when aluminum scraps are flux-treated with a flux containing sodium chloride and potassium chloride while being melted in molten aluminum, is crushed and pulverized into aluminum particles and dross particulate powder; (b) a step in which the dross particulate powder is hydrolyzed with water to produce an aqueous solution in which soluble solids including sodium chloride and potassium chloride are dissolved; and (c) a step for precipitating the soluble solids from the aqueous solution by using a plurality of evaporation modules to evaporate the water contained in the aqueous solution, wherein the evaporation modules each induce the evaporation of the water under different environmental conditions so that the sodium chloride and the potassium chloride are precipitated in a different precipitation order and at a different precipitation time by each of the evaporation modules.

Description

알루미늄 용해 및 블랙 드로스 재활용 시스템 및 방법Aluminum melting and black dross recycling system and method
본 발명은 알루미늄 스크랩의 용해 공정과, 블랙 드로스의 재활용 공정을 수행하기 위한 알루미늄 용해 및 블랙 드로스 재활용 시스템 및 방법에 관한 것이다.The present invention relates to an aluminum melting and black dross recycling system and method for performing an aluminum scrap melting process and a black dross recycling process.
자동차, 가전 제품 및 건축용 자재 등으로 사용되고 있는 많은 알루미늄 부품은 알루미늄 주조 장치를 이용하여 제조한다. 이러한 알루미늄 주조 장치에 알루미늄 용탕을 공급하는 것이 알루미늄 용해로이다. 알루미늄 용해로는 일정한 크기로 성형된 알루미늄 스크랩을 고열로 용해시키는 장치이다.Many aluminum parts used in automobiles, home appliances, and construction materials are manufactured using aluminum casting devices. It is an aluminum melting furnace that supplies aluminum molten metal to such an aluminum casting apparatus. The aluminum melting furnace is a device that melts aluminum scrap molded to a certain size with high heat.
종래의 알루미늄 용해로는, 알루미늄 용탕을 가열하는 버너를 구비하는 승온실, 승온실에서 배출된 알루미늄 용탕을 펌핑하는 용탕 펌프를 구비하는 용탕 교반실, 및 상기 용탕 교반실에서 배출된 알루미늄 용탕에 알루미늄 압축칩 덩어리를 장입시키는 장입실을 포함한다.Conventional aluminum melting furnace, a heating chamber having a burner for heating the aluminum molten metal, a molten metal stirring chamber provided with a molten metal pump for pumping the aluminum molten metal discharged from the heating chamber, and aluminum compression to the aluminum molten metal discharged from the molten metal stirring chamber It includes a charging chamber for charging a chip mass.
여기서, 알루미늄 압축칩 덩어리는, 알루미늄 괴라고도 하며, 알루미늄 제품의 생산이나 가공 시 많이 발생하는 다수의 알루미늄 칩을 압축한 것이다. 그런데, 알루미늄 압축칩 덩어리는 알루미늄 칩을 압축하는 과정에서 다수의 공극을 함유하게 된다. 따라서, 종래 알루미늄 용해로는, 알루미늄 용탕에 투입된 알루미늄 압축칩 덩어리의 중심부까지 열이 잘 전달되지 못해 용해 효율이 떨어지고, 알루미늄 압축실 덩어리가 알루미늄 용탕의 표면으로 부상되어 대기와 접촉됨으로써 알루미늄 산화물이 생성되는 문제점이 있었다.Here, the aluminum compaction chip mass is also referred to as an aluminum mass, and is a compaction of a number of aluminum chips that are frequently generated during production or processing of aluminum products. However, the aluminum compaction chip mass contains a large number of voids in the process of compressing the aluminum chip. Therefore, in the conventional aluminum melting furnace, heat is not easily transferred to the center of the aluminum compressed chip mass inputted into the aluminum molten metal, so that the melting efficiency decreases, and the aluminum compression chamber mass is floated to the surface of the aluminum molten metal and is brought into contact with the atmosphere to produce aluminum oxide. There was a problem.
종래의 알루미늄 용해로는, 상술한 문제점을 해결하기 위하여 용탕 교반실에서 펌핑된 후 장입실로 전달된 알루미늄 용탕에 알루미늄 압축칩 덩어리를 투입하지만, 이러한 경우에도 알루미늄 압축칩 덩어리의 낮은 비중으로 인해 여전히 알루미늄 압축칩 덩어리가 알루미늄 용탕에 부유된 상태로 용해가 진행된다. 따라서, 종래의 알루미늄 용해로는, 용해 효율이 떨어지고, 알루미늄 산화물의 생성량이 많아 순수 알루미늄의 실수율이 떨어진다는 문제점이 있다.In order to solve the above-mentioned problems, a conventional aluminum melting furnace is pumped in a molten metal stirring chamber, and then the aluminum compressed chip mass is introduced into the aluminum molten metal transferred to the charging chamber, but in this case, aluminum is still used due to the low specific gravity of the aluminum compressed chip mass. Dissolution proceeds while the compressed chip mass is suspended in the aluminum melt. Therefore, the conventional aluminum melting furnace has a problem that the melting efficiency is low and the production rate of aluminum oxide is high, so that the real rate of pure aluminum is lowered.
한편, 알루미늄은 산화성이 강한 금속이므로, 알루미늄을 알루미늄 용탕에 용해하는 과정에서 알루미늄 산화물이 발생된다. 이러한 알루미늄 산화물의 발생량이 증가하면 알루미늄의 회수율이 떨어진다. 또한, 일반적으로 알루미늄 용탕에 투입되는 알루미늄 덩어리에는 도료 기타 개재물이 개재된다. 이러한 개재물이 증가하면, 알루미늄의 순도가 감소된다.Meanwhile, since aluminum is a highly oxidizing metal, aluminum oxide is generated in the process of dissolving aluminum in an aluminum melt. When the amount of aluminum oxide generated increases, the recovery rate of aluminum decreases. In addition, in general, a paint or other inclusion is interposed in the aluminum mass that is introduced into the aluminum melt. When this inclusion increases, the purity of the aluminum decreases.
이러한 알루미늄 산화물과 개재물로 인한 문제점을 해결하기 위하여, 알루미늄의 산화를 방지하고 또한 개재물의 포획이 가능한 플럭스(F)를 투입하여 알루미늄 용탕에 투입하고 있다. 이와 같이 알루미늄 용탕을 플럭스 처리하여 발생한 드로스를 블랙 드로스라고 한다.In order to solve the problems caused by these aluminum oxides and inclusions, a flux (F) that prevents oxidation of aluminum and can also trap inclusions is introduced into the aluminum melt. The dross generated by the flux treatment of the molten aluminum is referred to as a black dross.
그런데, 종래에는, 알루미늄, 알루미늄 산화물 및 플럭스 등 블랙 드로스에 포함된 물질들을 용도에 맞게 재활용할 수 있도록 블랙 드로스를 효과적으로 재활용 가능한 방법이 제안되지 않았다. 따라서, 블랙 드로스는 토양에 매립되어 폐기 처분되고 있으며, 이로 인해 환경 오염의 우려와 자원 낭비가 발생한다는 문제점이 있었다.However, in the related art, a method capable of effectively recycling the black dross has not been proposed so that materials contained in the black dross such as aluminum, aluminum oxide, and flux can be recycled according to the use. Therefore, the black dross is buried in the soil and disposed of, which causes a problem of environmental pollution and waste of resources.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 알루미늄 스크랩의 용해 효율을 높일 수 있도록 구조를 개선한 알루미늄 용해 및 블랙 드로스 재활용 시스템을 제공하는데 그 목적이 있다.The present invention is to solve the above-mentioned problems, and an object thereof is to provide an aluminum melting and black dross recycling system having an improved structure so as to increase the melting efficiency of aluminum scrap.
나아가, 본 발명은 알루미늄 산화물의 생성량을 줄일 수 있도록 구조를 개선한 알루미늄 용해 및 블랙 드로스 재활용 시스템을 제공하는데 그 목적이 있다.Further, the present invention has an object to provide an aluminum dissolution and black dross recycling system with an improved structure to reduce the amount of aluminum oxide produced.
나아가, 본 발명은 순수 알루미늄의 용해 회수율을 높일 수 있도록 구조를 개선한 알루미늄 용해 및 블랙 드로스 재활용 시스템을 제공하는데 그 목적이 있다.Furthermore, the present invention has an object to provide an aluminum dissolution and black dross recycling system with an improved structure so as to increase the dissolution recovery rate of pure aluminum.
나아가, 본 발명은 블랙 드로스에 포함된 물질들을 재활용하기 용이하도록 구조를 개선한 알루미늄 용해 및 블랙 드로스 재활용 시스템을 제공하는데 그 목적이 있다.Furthermore, an object of the present invention is to provide an aluminum melting and black dross recycling system with an improved structure to facilitate recycling of materials contained in the black dross.
나아가, 본 발명은 알루미늄 스크랩을 플럭스 처리하기 위한 플럭스에 포함된 염화물염들을 블랙 드로스로부터 원활하게 회수할 수 있도록 개선한 알루미늄 용해 및 블랙 드로스 재활용 시스템을 제공하는데 그 목적이 있다.Furthermore, an object of the present invention is to provide an improved aluminum dissolving and black dross recycling system so that chloride salts contained in the flux for flux treatment of aluminum scrap can be smoothly recovered from the black dross.
상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 블랙 드로스 재활용 방법은, (a) 알루미늄 용탕에서 알루미늄 스크랩을 용해시킬 때 상기 알루미늄 스크랩이 염화나트륨과 염화칼륨을 포함하는 플럭스에 의해 플럭스 처리되어 발생한 블랙 드로스를 파쇄 및 분쇄하여 알루미늄 알갱이와 드로스 미립자 파우더로 분할하는 단계; (b) 상기 드로스 미립자 파우더를 물과 가수분해 반응시켜, 염화나트륨과 염화칼륨을 포함하는 가용성 고형분이 용해된 수용액을 생성하는 단계; 및 (c) 복수의 증발 모듈들을 각각 이용해 상기 수용액에 포함된 상기 물을 증발시켜 상기 수용액으로부터 상기 가용성 고형분을 석출시키되, 상기 증발 모듈들마다 서로 상이한 환경 조건 하에서 상기 물의 증발을 유도하여, 상기 증발 모듈들마다 서로 상이한 석출 순서 및 석출 시기에 따라 상기 염화나트륨과 상기 염화칼륨을 석출시키는 단계를 포함한다.Black dross recycling method according to a preferred embodiment of the present invention for solving the above problems, (a) when dissolving aluminum scrap in an aluminum melt, the aluminum scrap is flux treated with a flux containing sodium chloride and potassium chloride Crushing and grinding the generated black dross into aluminum particles and dross particulate powder; (b) hydrolyzing the dross particulate powder with water to produce an aqueous solution in which soluble solids containing sodium chloride and potassium chloride are dissolved; And (c) evaporating the water contained in the aqueous solution using a plurality of evaporation modules to deposit the soluble solids from the aqueous solution, inducing the evaporation of the water under different environmental conditions for each of the evaporation modules, thereby evaporating the water. And depositing the sodium chloride and the potassium chloride according to different precipitation order and precipitation time for each module.
바람직하게, 상기 (c) 단계에서, 상기 증발 모듈들 각각은, 리보일러를 이용해 미리 정해진 기준 온도로 상기 수용액을 가열한 후, 증발기를 이용해 상기 물의 증발 온도가 상기 기준 온도가 되도록 조절된 상기 증발기의 내부 압력 하에서 상기 물의 증발을 유도하여, 상기 가용성 고형분을 석출시킨다.Preferably, in the step (c), each of the evaporation modules, after heating the aqueous solution to a predetermined reference temperature using a reboiler, the evaporator adjusted so that the evaporation temperature of the water to the reference temperature using an evaporator The evaporation of the water is induced under the internal pressure of to precipitate the soluble solids.
바람직하게, 상기 기준 온도는, 상기 증발 모듈들 중 당해 증발 모듈에서 구현하고자 하는 상기 염화나트륨과 상기 염화칼륨의 석출 순서 및 석출 시기에 따라 상기 증발 모듈들마다 개별적으로 정해진다.Preferably, the reference temperature is individually determined for each of the evaporation modules according to the precipitation order and the precipitation time of the sodium chloride and the potassium chloride to be implemented in the evaporation module among the evaporation modules.
바람직하게, 상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 리보일러를 이용해 상기 수용액에서의 상기 염화나트륨의 용해도가 상기 염화칼륨의 용해도에 비해 미리 정해진 제1 기준 값 이상만큼 낮아지는 제1 기준 온도로 상기 수용액을 가열한 후, 상기 증발기를 이용해 상기 물의 상기 증발 온도가 상기 제1 기준 온도가 되도록 조절된 상기 증발기의 내부 압력 하에서 상기 물의 증발을 유도하여, 상기 염화나트륨을 상기 염화칼륨에 비해 우선적으로 석출시킨다.Preferably, in step (c), at least one evaporation module among the evaporation modules uses a reboiler, solubility of the sodium chloride in the aqueous solution is greater than a predetermined first reference value compared to the solubility of the potassium chloride. After heating the aqueous solution to a first reference temperature that is lowered by as much as possible, the evaporator is used to induce evaporation of the water under the internal pressure of the evaporator adjusted so that the evaporation temperature of the water becomes the first reference temperature. Precipitation is preferred over the potassium chloride.
상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 리보일러를 이용해 상기 수용액에서의 상기 염화나트륨의 용해도와 상기 염화칼륨의 용해도의 차이가 미리 정해진 제2 기준 값 이하로 낮아지는 제2 기준 온도로 상기 수용액을 가열한 후, 상기 증발기를 이용해 상기 물의 상기 증발 온도가 상기 제2 기준 온도가 되도록 조절된 상기 증발기의 내부 압력 하에서 상기 물의 증발을 유도하여, 상기 염화나트륨과 상기 염화칼륨을 함께 석출시킨다.In step (c), at least one of the evaporation modules of the evaporation module, the difference between the solubility of the sodium chloride and the solubility of the potassium chloride in the aqueous solution using the reboiler is lower than a predetermined second reference value After heating the aqueous solution to a second reference temperature, the evaporator is used to induce evaporation of the water under the internal pressure of the evaporator adjusted so that the evaporation temperature of the water becomes the second reference temperature, so that the sodium chloride and the potassium chloride are Precipitate together.
바람직하게, 상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 리보일러를 이용해 상기 수용액에서의 상기 염화칼륨의 용해도가 상기 염화나트륨의 용해도에 비해 미리 정해진 제3 기준 값 이하로 낮아지는 제3 기준 온도로 상기 수용액을 가열한 후, 상기 증발기를 이용해 상기 물의 상기 증발 온도가 상기 제3 기준 온도가 되도록 조절된 상기 증발기의 내부 압력 하에서, 상기 염화칼륨을 상기 염화나트륨에 비해 우선적으로 석출시킨다.Preferably, in step (c), at least one of the evaporation modules of the evaporation modules, the solubility of the potassium chloride in the aqueous solution using the reboiler is less than a predetermined third reference value compared to the solubility of the sodium chloride After heating the aqueous solution to a third reference temperature lowered to, the potassium chloride is preferentially compared to the sodium chloride under the internal pressure of the evaporator adjusted so that the evaporation temperature of the water becomes the third reference temperature using the evaporator. Precipitate.
상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 미리 정해진 기준 온도에 따라 진공 분위기 하에서 상기 물의 감압 증발을 유도할 수 있도록, 압력 조절 부재로부터 선택적으로 인가되는 진공압에 의해 당해 증발기의 내부 압력이 진공 상태로 유지된다.In step (c), at least one evaporation module among the evaporation modules may be vacuum pressure selectively applied from a pressure regulating member to induce reduced pressure evaporation of the water under a vacuum atmosphere according to the predetermined reference temperature. The internal pressure of the evaporator is thereby maintained in a vacuum.
바람직하게, (d) 상기 수용액으로부터 석출된 가용성 고형분 석출물 및 상기 가용성 고형분 석출물과 혼합된 상기 수용액을 원심 분리하는 단계를 더 포함하고, 상기 (c) 단계에서는, 상기 증발 모듈들을 재이용하여 상기 (d) 단계에서 상기 가용성 고형분 석출물과 분리된 상기 수용액으로부터 상기 가용성 고형분을 재석출시킨다.Preferably, (d) further comprising the step of centrifuging the soluble solids precipitate precipitated from the aqueous solution and the aqueous solution mixed with the soluble solids precipitate, and in step (c), the evaporation modules are reused to obtain (d) In step ), the soluble solid content is re-precipitated from the aqueous solution separated from the soluble solid content precipitate.
바람직하게, (e) 상기 (d) 단계에서 상기 수용액과 분리된 상기 가용성 고형분 석출물을 건조하여 저장하는 단계를 더 포함한다.Preferably, the method further comprises (e) drying and storing the soluble solid precipitate separated from the aqueous solution in the step (d).
바람직하게, 상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 외부의 증기 공급원으로부터 공급된 원증기와 상기 수용액을 열교환시켜 상기 수용액을 가열하고, 상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 다른 하나의 증발 모듈은, 상기 적어도 어느 하나의 증발 모듈에서 상기 물이 증발되어 발생한 발생 증기 또는 상기 증발 모듈들 중 또 다른 어느 하나의 증발 모듈에서 상기 물이 증발되어 발생한 발생 증기와 상기 수용액을 열교환시켜 상기 수용액을 가열한다.Preferably, in step (c), at least one of the evaporation modules, the evaporation module heats the aqueous solution by exchanging the original steam and the aqueous solution supplied from an external steam source, and in the step (c) , At least one evaporation module among the evaporation modules is generated by evaporation of the water in the at least one evaporation module, or generated by evaporation of the water in another evaporation module among the evaporation modules. The aqueous solution is heated by exchanging the generated steam with the aqueous solution to heat the aqueous solution.
바람직하게, (f) 상기 수용액에 분산 또는 침전된 불용성 고형분 및 상기 수용액을 원심 분리하는 단계를 더 포함하고, 상기 (c) 단계에서는, 상기 증발 모듈들을 이용해, 상기 불용성 고형분과 분리된 상기 수용액으로부터 상기 가용성 고형분을 석출시킨다.Preferably, (f) further comprising the step of centrifuging the insoluble solids and the aqueous solution dispersed or precipitated in the aqueous solution, and in the step (c), using the evaporation modules, from the aqueous solution separated from the insoluble solids The soluble solid content is precipitated.
바람직하게, (g) 상기 원증기 또는 상기 발생 증기가 상기 수용액에 의해 냉각되어 생성된 응축수 또는 상기 원증기 또는 상기 발생 증기가 응축기에 의해 응축되어 생성된 응축수를 이용해 상기 (f) 단계에서 상기 수용액과 분리된 상기 불용성 고형분을 세척하는 단계를 더 포함한다.Preferably, (g) the aqueous solution in step (f) using condensed water generated by cooling the original steam or the generated steam by the aqueous solution or condensed water generated by condensing the original steam or the generated steam by the aqueous solution And it further comprises the step of washing the insoluble solids separated.
상술한 과제를 해결하기 위한 본 발명의 다른 바람직한 실시에 따른 블랙 드로스 재활용 장치는, 알루미늄 용탕에서 알루미늄 스크랩을 용해시킬 때 상기 알루미늄 스크랩이 염화나트륨과 염화칼륨을 포함하는 플럭스에 의해 플럭스 처리되어 발생하는 블랙 드로스를 재활용하기 위한 블랙 드로스 재활용 장치에 있어서, 상기 블랙 드로스의 파분쇄물인 드로스 미립자 파우더를 물과 가수분해 반응시켜, 상기 염화나트륨과 상기 염화칼륨을 포함하는 가용성 고형분이 용해된 수용액을 생성하는 물 분해 유닛; 및 상기 수용액에 포함된 상기 물을 증발시켜 상기 수용액으로부터 상기 가용성 고형분을 각각 석출시키되, 서로 상이한 환경 조건 하에서 상기 물의 증발을 유도하여, 서로 상이한 석출 순서 및 석출 시기에 따라 상기 염화나트륨과 상기 염화칼륨을 석출시키는 복수의 증발 모듈들을 구비하는 석출 유닛을 포함한다.Black dross recycling apparatus according to another preferred embodiment of the present invention for solving the above-described problem, when the aluminum scrap is dissolved in an aluminum melt, the aluminum scrap is generated by flux treatment with a flux containing sodium chloride and potassium chloride In the black dross recycling apparatus for recycling dross, hydrolysis reaction of dross particulate powder, which is a crushed product of the black dross, with water, produces an aqueous solution in which soluble solids containing the sodium chloride and the potassium chloride are dissolved. Water decomposition unit; And evaporating the water contained in the aqueous solution to deposit the soluble solids from the aqueous solution, respectively, and inducing the evaporation of the water under different environmental conditions, thereby depositing the sodium chloride and the potassium chloride according to different precipitation sequences and precipitation times. Precipitation includes a precipitation unit having a plurality of evaporation modules.
바람직하게, 상기 복수의 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 수용액에서의 상기 염화칼륨의 용해도가 상기 염화나트륨의 용해도에 비해 미리 정해진 기준 값 이상만큼 낮은 온도 조건 하에서 상기 물의 증발을 유도하여, 상기 염화칼륨을 상기 염화나트륨에 비해 우선적으로 석출시킨다.Preferably, at least one evaporation module of the plurality of evaporation modules, the solubility of the potassium chloride in the aqueous solution induces the evaporation of the water under a temperature condition that is lower than the solubility of the sodium chloride by a predetermined reference value or more, The potassium chloride is preferentially precipitated over the sodium chloride.
바람직하게, 상기 적어도 어느 하나의 상기 증발 모듈은, 상기 증발 모듈들 중 적어도 다른 하나의 상기 증발 모듈에서 상기 물이 증발되어 발생한 발생 증기를 당해 증발 모듈에서 상기 수용액을 가열하기 위한 열원으로서 이용한다.Preferably, the at least one evaporation module uses the generated steam generated by evaporation of the water in at least one of the evaporation modules as the heat source for heating the aqueous solution in the evaporation module.
바람직하게, 상기 적어도 어느 하나의 증발 모듈은, 상기 온도 조건 하에서 상기 물이 증발될 수 있도록, 진공 분위기 하에서 상기 물의 감압 증발을 유도한다.Preferably, the at least one evaporation module induces reduced pressure evaporation of the water under a vacuum atmosphere so that the water can be evaporated under the temperature condition.
바람직하게, 상기 복수의 증발 모듈들 중 적어도 다른 하나의 증발 모듈은, 상기 수용액에서의 상기 염화나트륨의 용해도가 상기 염화칼륨의 용해도에 비해 미리 정해진 기준 값 이상만큼 낮은 온도 조건 하에서 상기 물의 증발을 유도하여, 상기 염화나트륨을 상기 염화칼륨에 비해 우선적으로 석출시킨다.Preferably, at least one evaporation module among the plurality of evaporation modules induces the evaporation of the water under a temperature condition in which the solubility of the sodium chloride in the aqueous solution is lower than a predetermined reference value compared to the solubility of the potassium chloride, The sodium chloride is preferentially precipitated over the potassium chloride.
바람직하게, 상기 증발 모듈들은 각각, 상기 수용액을 미리 정해진 기준 온도로 가열하는 리보일러; 및 상기 기준 온도로 가열된 상기 수용액을 상기 리보일러로부터 전달받으며, 상기 물의 증발 온도가 상기 미리 정해진 기준 온도가 되도록 조절된 내부 압력 하에서 상기 물의 증발을 유도하여, 상기 가용성 고형분을 석출시키는 증발기를 구비한다.Preferably, each of the evaporation modules, a reboiler for heating the aqueous solution to a predetermined reference temperature; And an evaporator that receives the aqueous solution heated to the reference temperature from the reboiler and induces the evaporation of the water under an internal pressure adjusted so that the evaporation temperature of the water becomes the predetermined reference temperature, thereby depositing the soluble solids. do.
바람직하게, 상기 증발 모듈들은 각각, 상기 수용액을 미리 정해진 순서를 따라 상기 리보일러 및 상기 증발기에 순환시키는 순환 펌프를 더 구비한다.Preferably, each of the evaporation modules further includes a circulation pump for circulating the aqueous solution in the predetermined order in the reboiler and the evaporator.
바람직하게, 상기 석출 유닛은, 상기 가용성 고형분이 석출되어 결정화된 가용성 고형분 석출물 및 상기 수용액을 원심 분리하는 원심 분리기를 더 구비한다.Preferably, the precipitation unit further includes a centrifugal separator for centrifuging the soluble solids precipitate and the aqueous solution, where the soluble solids are precipitated and crystallized.
바람직하게, 상기 석출 유닛은, 상기 증발 모듈들 중 적어도 하나의 상기 증발기에서 상기 수용액과 혼합된 슬러리 상태로 배출된 상기 가용성 고형분 석출물이 저장되며, 상기 슬러리 상태의 상기 가용성 고형분 석출물을 상기 원심 분리기에 전달하는 석출물 저장 탱크를 더 구비한다.Preferably, the precipitating unit stores the soluble solid content precipitate discharged in a slurry state mixed with the aqueous solution from the evaporator of at least one of the evaporation modules, and the soluble solid content precipitate in the slurry state is added to the centrifuge. It further comprises a deposit storage tank to transfer.
바람직하게, 상기 원심 분리기는, 상기 가용성 고형분 석출물과 분리된 상기 수용액을 상기 증발 모듈들에 재전달한다.Preferably, the centrifuge redistributes the aqueous solution separated from the soluble solids precipitate to the evaporation modules.
바람직하게, 상기 윈심 분리기에 의해 상기 수용액과 분리된 상기 가용성 고형분 석출물을 건조하여 저장하는 가용성 고형분 저장 유닛을 더 포함한다.Preferably, it further comprises a soluble solids storage unit for drying and storing the soluble solids precipitate separated from the aqueous solution by the winshim separator.
바람직하게, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈의 상기 리보일러는, 외부의 증기 공급원으로부터 공급된 원증기를 열원으로서 이용해 상기 수용액을 가열하고, 상기 증발 모듈들 중 적어도 다른 하나의 증발 모듈의 상기 리보일러는, 상기 적어도 어느 하나의 증발 모듈의 상기 증발기에서 상기 물이 증발되어 발생한 발생 증기 또는 상기 증발 모듈들 중 또 다른 어느 하나의 증발 모듈의 상기 증발기에서 상기 물이 증발되어 발생한 발생 증기를 열원으로서 이용해 상기 수용액을 가열한다.Preferably, the reboiler of at least one of the evaporation modules heats the aqueous solution using the original steam supplied from an external steam source as a heat source, and at least another evaporation module of the evaporation modules The reboiler of the steam generated by the evaporation of the water in the evaporator of the at least one evaporation module or the steam generated by the evaporation of the water in the evaporator of another evaporation module among the evaporation modules The aqueous solution is heated by using as a heat source.
바람직하게, 상기 증발 모듈들 각각에 대한 상기 기준 온도 및 상기 내부 압력은, 상기 염화나트륨과 상기 염화칼륨 중 당해 증발 모듈에서 우선적으로 석출시키고자 하는 염화물염의 종류에 따라 개별적으로 정해진다.Preferably, the reference temperature and the internal pressure for each of the evaporation modules are individually determined according to the type of chloride salt to be preferentially precipitated in the evaporation module among the sodium chloride and the potassium chloride.
바람직하게, 상기 증발 모듈들 중 상기 염화칼륨을 우선적으로 석출시키고자 하는 증발 모듈에서의 상기 기준 온도는, 상기 수용액에서의 상기 염화칼륨의 용해도가 상기 염화나트륨의 용해도에 비해 미리 정해진 기준 값 이상만큼 낮아지는 온도가 상기 물의 증발 온도가 되도록 정해지고, 상기 증발 모듈들 중 상기 염화칼륨을 우선적으로 석출시키고자 하는 증발 모듈에서의 상기 내부 압력은, 상기 수용액에 포함된 상기 물이 상기 증발 온도에서 증발되도록 조절된다.Preferably, the reference temperature in the evaporation module to preferentially precipitate the potassium chloride among the evaporation modules is a temperature at which the solubility of the potassium chloride in the aqueous solution is lowered by a predetermined reference value or more than the solubility of the sodium chloride. Is set to be the evaporation temperature of the water, and the internal pressure in the evaporation module to preferentially precipitate the potassium chloride among the evaporation modules is adjusted such that the water contained in the aqueous solution is evaporated at the evaporation temperature.
바람직하게, 상기 증발 모듈들 중 상기 염화나트륨을 우선적으로 석출시키고자 하는 증발 모듈에서의 상기 기준 온도는, 상기 수용액에서의 상기 염화나트륨의 용해도가 상기 염화칼륨의 용해도에 비해 미리 정해진 기준 값 이상만큼 낮아지는 온도가 상기 물의 증발 온도가 되도록 정해지고, 상기 증발 모듈들 중 상기 염화나트륨을 우선적으로 석출시키고자 하는 증발 모듈에서의 상기 내부 압력은, 상기 수용액에 포함된 상기 물이 상기 증발 온도에서 증발되도록 조절된다.Preferably, the reference temperature in the evaporation module to preferentially precipitate the sodium chloride among the evaporation modules is a temperature at which the solubility of the sodium chloride in the aqueous solution is lowered by a predetermined reference value or more than the solubility of the potassium chloride. Is set to be the evaporation temperature of the water, and the internal pressure in the evaporation module to preferentially precipitate the sodium chloride among the evaporation modules is adjusted such that the water contained in the aqueous solution is evaporated at the evaporation temperature.
바람직하게, 상기 석출 유닛은, 상기 증발 모듈들 중 적어도 하나의 증발 모듈의 상기 증발기의 상기 내부 압력을 조절하여, 당해 증발기에서 상기 기준 온도에 따라 진공 분위기 하에서 상기 물의 감압 증발을 유도 가능한 압력 조절 부재를 더 구비한다.Preferably, the precipitation unit, by adjusting the internal pressure of the evaporator of at least one of the evaporation module of the evaporation module, a pressure control member capable of inducing the reduced pressure evaporation of the water under a vacuum atmosphere according to the reference temperature in the evaporator It is further provided.
바람직하게, 상기 압력 조절 부재는, 미리 정해진 진공압이 유지되는 진공 탱크; 및 상기 진공압을 상기 적어도 어느 하나의 증발 모듈의 상기 증발기에 선택적으로 인가하여 상기 내부 압력을 조절하는 적어도 하나의 진공 조절 밸브들을 갖는다.Preferably, the pressure regulating member includes: a vacuum tank in which a predetermined vacuum pressure is maintained; And at least one vacuum regulating valves that regulate the internal pressure by selectively applying the vacuum pressure to the evaporator of the at least one evaporation module.
바람직하게, 상기 석출 유닛은, 상기 물 분해 유닛에서 생성된 상기 수용액을 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈의 상기 증발기에 공급하는 원수 공급 펌프를 더 구비한다.Preferably, the precipitation unit further includes a raw water supply pump that supplies the aqueous solution generated in the water decomposition unit to the evaporator of at least one of the evaporation modules.
바람직하게, 상기 적어도 어느 하나의 증발 모듈의 상기 증발기는, 상기 원수 공급 펌프로부터 공급된 상기 수용액을 상기 증발 모듈들 중 적어도 다른 하나의 증발 모듈의 상기 증발기에 전달할 수 있도록, 상기 적어도 다른 하나의 증발 모듈의 상기 증발기와 연결된다.Preferably, the evaporator of the at least one evaporation module, the at least one evaporation so that the aqueous solution supplied from the raw water supply pump can be delivered to the evaporator of at least one evaporation module of the evaporation modules. It is connected to the evaporator of the module.
본 발명에 따른 알루미늄 용해 및 블랙 드로스 재활용 시스템 및 방법은 다음과 같은 효과를 갖는다.The aluminum dissolving and black dross recycling system and method according to the present invention has the following effects.
첫째, 본 발명은, 플럭스가 비금속 개재물(介在物, Inclusion)을 선택적으로 포획하여 생성된 블랙 드로스를 와류를 통해 구형으로 결집하여 구형 블랙 드로스를 형성함으로써, 블랙 드로스에 포함된 알루미늄 메탈의 양을 줄일 수 있어 순수 알루미늄의 용해 회수율을 증대시킬 수 있다.First, the present invention, the flux is a non-metallic inclusions (介在物, Inclusion) by selectively trapping the black dross generated by vortexing to form a spherical black dross, by forming a spherical black dross, aluminum metal contained in the black dross It is possible to reduce the amount of can increase the dissolution recovery rate of pure aluminum.
둘째, 본 발명은, 구형 블랙 드로스에 포함된 경제적 가치가 있는 물질들을 재활용하여, 경제성을 향상시킬 수 있다.Second, the present invention can improve economic efficiency by recycling materials of economic value included in the spherical black dross.
셋째, 본 발명은, 구형 블랙 드로스에 포함된 물질들을 그 성격에 따라 알루미늄 알갱이, 가용성 고형분, 불용성 고형분 및 가수분해 가스로 재활용하여, 구형 블랙 드로스에 포함된 물질들 중 재활용되지 못한 채 폐기되는 물질들을 최소화시켜 경제성을 더욱 향상시킬 수 있다.Third, the present invention recycles materials contained in the spherical black dross into aluminum particles, soluble solids, insoluble solids, and hydrolysis gas according to their characteristics, and discards them without being recycled among the materials included in the spherical black dross. It is possible to further improve the economic efficiency by minimizing the substances.
넷째, 본 발명은, 복수의 증발 모듈들을 개별적으로 이용해, 블랙 드로스를 가수분해 반응시켜 생성한 수용액으로부터 가용성 고형분에 포함된 염화물염들을 다양한 방식으로 석출시킴으로써, 고부가가치를 갖는 염화칼륨, 기타 플럭스의 구성 성분인 염화물염들을 더욱 효과적으로 재활용할 수 있다.Fourth, the present invention, by using a plurality of evaporation modules individually, by precipitating the chloride salts contained in the soluble solids from the aqueous solution produced by the hydrolysis reaction of black dross in a variety of ways, by adding a high value of potassium chloride, other fluxes The constituent chloride salts can be recycled more effectively.
도 1은 본 발명의 바람직한 실시예에 따른 알루미늄 용해 및 블랙 드로스 재활용 시스템을 개략적으로 나타내는 블록도.1 is a block diagram schematically showing an aluminum dissolving and black dross recycling system according to a preferred embodiment of the present invention.
도 2는 도 1의 알루미늄 용해로를 개략적으로 나타내는 개략도.Figure 2 is a schematic diagram schematically showing the aluminum melting furnace of Figure 1;
도 3은 도 2의 용해실과 유동력 부여실의 단면도.3 is a cross-sectional view of the dissolution chamber and the flow force imparting chamber of FIG. 2;
도 4는 도 2의 용해실에서 구형 블랙 드로스가 형성되는 양상을 나타내는 모식도.4 is a schematic view showing an aspect in which spherical black dross is formed in the melting chamber of FIG. 2.
도 5는 도 2의 용해실에서 형성된 구형 블랙 드로스의 사진.Figure 5 is a photograph of a spherical black dross formed in the melting chamber of Figure 2;
도 6은 도 2의 용해실에 수용된 알루미늄 용탕의 표면에 구형 블랙 드로스가 부유된 상태를 나타내는 용해실의 평면도.6 is a plan view of a melting chamber showing a state in which spherical black dross is suspended on the surface of the aluminum molten metal accommodated in the melting chamber of FIG. 2.
도 7은 도 1의 블랙 드로스 재활용 장치를 개략적으로 나타내는 개략도.7 is a schematic view schematically showing the black dross recycling apparatus of FIG. 1;
도 8은 미립화된 드로스 파우더의 사진.8 is a photograph of the atomized dross powder.
도 9는 도 7의 석출 유닛의 구성을 개략적으로 나타내는 개략도.9 is a schematic view schematically showing the configuration of the precipitation unit of FIG. 7.
도 10은 염화물염 수용액의 용해도 그래프.10 is a solubility graph of an aqueous chloride salt solution.
도 11은 석출 및 건조 처리한 가용성 고형분의 사진.Figure 11 is a photograph of the soluble solids precipitated and dried.
도 12는 도 11에 도시된 가용성 고형분을 정성 분석한 SEM-EDS 차트.12 is a SEM-EDS chart of qualitative analysis of the soluble solids shown in FIG. 11.
도 13은 도 11에 도시된 가용성 고형분의 조성비를 나타내는 도표.13 is a chart showing the composition ratio of soluble solids shown in FIG. 11;
도 14는 건조 처리한 불용성 고형분의 사진.14 is a photograph of insoluble solids that have been dried.
도 15는 소성 처리한 불용성 고형분의 사진Fig. 15 is a photograph of insoluble solids subjected to calcination.
도 16은 도 15에 도시된 소성 처리한 불용성 고형분을 정성 분석한 SEM-EDS 차트.16 is a SEM-EDS chart of qualitative analysis of the insoluble solids subjected to the calcination treatment shown in FIG. 15.
도 17은 도 15에 도시된 소성 처리한 불용성 고형분의 조성비를 나타내는 도표.Fig. 17 is a chart showing the composition ratio of the insoluble solid content subjected to the calcination treatment shown in Fig. 15;
도 18은 본 발명의 다른 바람직한 실시예에 따른 알루미늄 용해 및 블랙 드로스 재활용 방법을 개략적으로 나타내는 순서도.18 is a flow chart schematically showing a method for recycling aluminum melting and black dross according to another preferred embodiment of the present invention.
도 19는 도 18에 기재된 알루미늄 용해 단계와 구형 블랙 드로스를 파쇄 및 분쇄하는 단계의 세부적인 내용을 설명하기 위한 순서도.19 is a flow chart for explaining the details of the aluminum dissolving step and the crushing and grinding of the spherical black dross described in FIG. 18.
도 20은 도 18에 기재된 드로스 파우더 물 분해 단계와 물 분해물 재활용 단계의 세부적인 내용을 설명하기 위한 순서도.FIG. 20 is a flow chart for explaining the details of the dross powder water decomposition step and the water decomposition product recycling step described in FIG. 18.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과하고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the present specification and claims should not be interpreted as being limited to ordinary or lexical meanings, and the inventor can appropriately define the concept of terms in order to best describe his or her invention. Based on the principle that it should be interpreted as meanings and concepts consistent with the technical spirit of the present invention. Therefore, the embodiments shown in the embodiments and the drawings described in this specification are only the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention. It should be understood that there may be equivalents and variations.
도면에서 각 구성요소 또는 그 구성요소를 이루는 특정 부분의 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 따라서, 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그러한 설명은 생략하도록 한다.In the drawings, the size of each component or a specific part constituting the component is exaggerated, omitted, or schematically illustrated for convenience and clarity. Therefore, the size of each component does not entirely reflect the actual size. When it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the description will be omitted.
도 1은 본 발명의 바람직한 실시예에 따른 알루미늄 용해 및 블랙 드로스 재활용 시스템을 개략적으로 나타내는 블록도이다.1 is a block diagram schematically showing an aluminum melting and black dross recycling system according to a preferred embodiment of the present invention.
도 1을 참조하면, 본 발명의 바람직한 실시예에 따른 알루미늄 용해 및 블랙 드로스 재활용 시스템(1)은, 알루미늄 스크랩을 플럭스 처리된 알루미늄 용탕에 용해하기 위한 알루미늄 용해로(2); 및 알루미늄 스크랩을 알루미늄 용탕에 용해할 때 알루미늄 용탕에 포함된 개재물이 플럭스에 포획되어 형성된 블랙 드로스를 재활용하기 위한 블랙 드로스 재활용 장치(3)를 포함한다. 이러한 알루미늄 용해 및 블랙 드로스 재활용 시스템(1)은, 알루미늄 주조물을 제조하기 위한 알루미늄 용탕을 확보할 수 있도록 알루미늄 스크랩을 플럭스 처리된 알루미늄 용탕에 용해함과 함께, 블랙 드로스에 포함된 성분들을 재활용할 수 있도록 블랙 드로스를 처리하기 위한 것이다.Referring to FIG. 1, an aluminum melting and black dross recycling system 1 according to a preferred embodiment of the present invention includes: an aluminum melting furnace 2 for dissolving aluminum scrap in a flux-treated aluminum molten metal; And a black dross recycling apparatus 3 for recycling black dross formed by inclusions contained in the aluminum molten metal trapped in the flux when the aluminum scrap is dissolved in the aluminum molten metal. The aluminum melting and black dross recycling system 1 dissolves aluminum scrap in a flux-treated aluminum molten metal so as to secure an aluminum molten metal for manufacturing an aluminum casting, and recycles the components contained in the black dross. It is to handle the black dross so that it can be done.
이하에서는, 설명의 편의를 위해 알루미늄 용해로(2)에 대해 먼저 설명한 후 블랙 드로스 재활용 장치(3)에 대해 설명하기로 한다.Hereinafter, for convenience of description, the aluminum melting furnace 2 is first described, and then the black dross recycling apparatus 3 will be described.
도 2는 도 1의 알루미늄 용해로를 개략적으로 나타내는 개략도이다.FIG. 2 is a schematic view schematically showing the aluminum melting furnace of FIG. 1.
도 2를 참조하면, 알루미늄 용해로(2)는, 알루미늄 용탕(M)이 가열되는 가열실(10)과, 알루미늄 스크랩(A)과 플럭스(F)가 각각 알루미늄 용탕(M)에 투입되는 용해실(20)과, 알루미늄 용탕(M)에 유동력을 부여하는 유동력 부여실(20)을 포함한다.Referring to FIG. 2, the aluminum melting furnace 2 includes a heating chamber 10 in which the aluminum molten metal M is heated, and a melting chamber in which aluminum scrap A and flux F are respectively introduced into the aluminum molten metal M. (20) and a flow force imparting chamber (20) that provides a flow force to the aluminum molten metal (M).
도 2에 도시된 바와 같이, 알루미늄 용해로(2)는, 내화물 재질을 갖는 벽체들에 의하여 구획된 다수의 공간들을 구비한다. 가열실(10), 용해실(20) 및 유동력 부여실(30)은 각각, 알루미늄 용해로(2)의 다수의 공간들 중 어느 하나의 공간에 다른 공간들과 독립된 상태로 마련된다.As shown in Fig. 2, the aluminum melting furnace 2 has a plurality of spaces partitioned by walls having a refractory material. The heating chamber 10, the melting chamber 20, and the fluid force imparting chamber 30 are respectively provided in a state independent of the other spaces in any one of a plurality of spaces of the aluminum melting furnace 2.
가열실(10)은, 알루미늄 용탕(M)을 미리 정해진 온도로 가열하기 위한 공간이다.The heating chamber 10 is a space for heating the aluminum molten metal M to a predetermined temperature.
가열실(10)은, 후술할 용해실(20)의 제2 유동 통로(29)와 연통되어 용해실(20)로부터 알루미늄 용탕(M)을 전달받는다. 가열실(10)은 열손실이 최소화될 수 있도록 후술할 제1 유동 통로(16) 및 제2 유동 통로(29)와 연결된 부분을 제외한 나머지 부분은 외부와 차단된 밀폐 구조로 형성된다.The heating chamber 10 communicates with the second flow passage 29 of the melting chamber 20 to be described later, and receives the aluminum molten metal M from the melting chamber 20. The heating chamber 10 is formed of a closed structure blocked from the outside, except for portions connected to the first flow passage 16 and the second flow passage 29, which will be described later, so that heat loss can be minimized.
도 2에 도시된 바와 같이, 가열실(10)은, 알루미늄 용탕(M)을 가열하는 가열 유닛(12)과, 알루미늄 용탕(M)을 알루미늄 용해로(2)의 외부로 배출하기 위한 출탕구(14)와, 가열실(10)에 수용된 알루미늄 용탕(M)을 유동력 부여실(30)로 전달하기 위한 제1 유동 통로(16)를 포함한다.As shown in FIG. 2, the heating chamber 10 includes a heating unit 12 for heating the aluminum molten metal M, and a hot water outlet for discharging the aluminum molten metal M to the outside of the aluminum melting furnace 2 ( 14) and a first flow passage 16 for transferring the aluminum molten metal M accommodated in the heating chamber 10 to the flow force imparting chamber 30.
가열 유닛(12)은, 알루미늄 용탕(M)을 미리 정해진 온도로 가열하기 위한 장치이다.The heating unit 12 is a device for heating the aluminum molten metal M to a predetermined temperature.
도 2에 도시된 바와 같이, 가열 유닛(12)은, 가열실(10)을 구획하는 벽체들에 설치되는 버너일 수 있다. 알루미늄 용탕(M)의 가열 온도는 특별히 한정되지 않는다. 알루미늄 용탕(M)의 온도는 가열실(10)에 설치된 온도 센서(미도시)에 의하여 측정될 수 있으며, 가열 유닛(12)은, 온도 센서로부터 알루미늄 용탕(M)의 온도를 입력받아, 알루미늄 용탕(M)을 미리 정해진 가열 온도로 가열할 수 있다.As shown in FIG. 2, the heating unit 12 may be a burner installed on walls partitioning the heating chamber 10. The heating temperature of the aluminum molten metal M is not particularly limited. The temperature of the aluminum molten metal M may be measured by a temperature sensor (not shown) installed in the heating chamber 10, and the heating unit 12 receives the temperature of the aluminum molten metal M from the temperature sensor, and The molten metal M can be heated to a predetermined heating temperature.
출탕구(14)는, 가열실(10)에서 가열된 알루미늄 용탕(M)을 알루미늄 용해로(2)의 외부로 배출하기 위한 출구이다The hot water outlet 14 is an outlet for discharging the aluminum molten metal M heated in the heating chamber 10 to the outside of the aluminum melting furnace 2.
출탕구(14)는, 알루미늄 주조물을 제조하기 위한 알루미늄 주조 장치와 연결되거나 또는 알루미늄 용탕(M)을 이송하기 위한 용탕 이송 용기와 연결될 수 있다. 출탕구(14)에는, 출탕구(14)를 선택적으로 개폐하는 개폐 밸브(18)가 설치될 수 있다. The hot water outlet 14 may be connected to an aluminum casting apparatus for manufacturing an aluminum casting, or may be connected to a molten metal transport container for transferring the aluminum molten metal M. An opening/closing valve 18 for selectively opening and closing the outlet 14 may be installed in the outlet 14.
제1 유동 통로(16)는, 가열실(10)에 수용된 알루미늄 용탕(M)을 유동력 부여실(30)로 전달하기 위한 통로이다.The first flow passage 16 is a passage for transferring the aluminum molten metal M accommodated in the heating chamber 10 to the flow force imparting chamber 30.
도 2에 도시된 바와 같이, 제1 유동 통로(16)는 가열실(10)과 유동력 부여실(30)을 구획하는 벽체가 관통되어 형성되며, 알루미늄 용탕(M)은 제1 유동 통로(16)를 통해 유동력 부여실(30)로 유입된다.2, the first flow passage 16 is formed through a wall partitioning the heating chamber 10 and the flow force imparting chamber 30, and the aluminum molten metal M has a first flow passage ( 16) is introduced into the flow force imparting chamber (30).
도 3은 도 2에 도시된 용해실과 유동력 부여실의 단면도이며, 도 4에 도시된 도 2의 용해실에서 구형 블랙 드로스가 형성되는 양상을 나타내는 도면이며, 도 5에 도시된 도 2의 용해실에서 형성된 구형 블랙 드로스의 사진이다.3 is a cross-sectional view of the dissolution chamber and the flow force imparting chamber shown in FIG. 2, and is a view showing an aspect in which spherical black dross is formed in the dissolution chamber of FIG. 2 shown in FIG. 4, and the dissolution of FIG. 2 shown in FIG. This is a picture of a spherical black dross formed in a thread.
용해실(20)은, 플럭스(F)와 알루미늄 스크랩(A)을 알루미늄 용탕(M)에 투입하기 위한 공간이다.The melting chamber 20 is a space for introducing the flux F and the aluminum scrap A into the molten aluminum M.
용해실(20)은, 후술할 유동력 부여실(30)의 제3 유동 통로(34)와 연통되어 알루미늄 용탕(M)을 유동력 부여실(30)로부터 전달받는다. 용해실(20)은, 플럭스(F)와 알루미늄 스크랩(A)을 알루미늄 용탕(M)에 투입할 수 있도록 상면의 적어도 일부분이 개방된 개방 구조로 형성되며, 가열실(10)보다 상대적으로 작은 용적을 갖는다. 즉, 용해실(20)은, 알루미늄 스크랩(A)을 용해실(20)에 투입하여 용해 작업을 수행할 수 있도록 개방 구조로 형성되고, 열손실을 줄일 수 있도록 가열실(10)보다 상대적으로 작은 용적을 갖는 것이다.The melting chamber 20 communicates with the third flow passage 34 of the flow force imparting chamber 30 to be described later, and receives the aluminum molten metal M from the flow force imparting chamber 30. The melting chamber 20 is formed of an open structure in which at least a portion of the upper surface is opened so that the flux (F) and the aluminum scrap (A) can be introduced into the aluminum molten metal (M), and is relatively smaller than the heating chamber (10). It has a volume. That is, the melting chamber 20 is formed of an open structure so that the aluminum scrap (A) can be dissolved into the melting chamber 20 to perform the melting operation, and the heating chamber 10 is relatively reduced to reduce heat loss. It has a small volume.
도 2 및 도 3에 도시된 바와 같이, 용해실(20)은, 알루미늄 용탕(M)에 선회 하강하는 와류(V)를 생성하는 와류 유닛(21)과, 플럭스(F)를 와류(V)에 투입하는 플럭스 공급 유닛(23)과, 알루미늄 스크랩(A)을 와류(V)에 투입하는 원재료 공급 유닛(25)과, 용해실(20)에 수용된 알루미늄 용탕(M)을 가열실(10)로 전달하기 위한 제2 유동 통로(29)를 포함한다.2 and 3, the melting chamber 20, the vortex unit 21 to generate a vortex (V) orbiting and descending to the molten aluminum (M), and the flux (F) vortex (V) Flux supply unit (23) to be put in, raw material supply unit (25) to put aluminum scrap (A) into vortex (V), and aluminum molten metal (M) accommodated in melting chamber (20) in heating chamber (10) It includes a second flow passage 29 for delivery to the.
와류 유닛(21)은, 용해실(20)에 수용된 알루미늄 용탕(M)에 선회 하강하는 와류(V)를 형성하기 위한 부재이다.The vortex unit 21 is a member for forming a vortex V that pivots and descends on the aluminum molten metal M accommodated in the melting chamber 20.
와류 유닛(21)은 적어도 일부분이 알루미늄 용탕(M)에 침지되도록 용해실(20)에 설치된다. 와류 유닛(21)에 의하여 생성된 와류(V)와 제3 유동 통로(34)를 통해 용해실(20)로 유입되는 알루미늄 용탕(M)의 유동이 직접적으로 대면할 경우에는, 알루미늄 용탕(M)의 유동이 방해 받을 우려가 있다. 이를 방지하기 위하여, 도 2에 도시된 바와 같이, 와류 유닛(21)은 제3 유동 통로(34)와 일직선 상에 위치하지 않도록 용해실(20)의 일측에 설치되는 것이 바람직하나, 이에 한정되는 것은 아니다.The vortex unit 21 is installed in the melting chamber 20 such that at least a portion is immersed in the aluminum molten metal M. When the flow of the aluminum molten metal M flowing into the melting chamber 20 through the vortex V generated by the vortex unit 21 and the third flow passage 34 directly faces the aluminum molten metal M ) Flow may be hindered. In order to prevent this, as shown in Figure 2, the vortex unit 21 is preferably installed on one side of the melting chamber 20 so as not to be located in line with the third flow passage 34, but is limited to this It is not.
도 3에 도시된 바와 같이, 와류 유닛(21)은, 알루미늄 용탕(M)에 침지되는 하단 및 알루미늄 용탕(M)의 외부로 연장되어 구동 모터(미도시)와 축 결합되는 상단을 갖는 회전축(21a), 및 회전축(21a)의 하단에 축 결합되는 교반 임펠러(21b)를 포함한다. 도 3에 도시된 바와 같이, 구동 모터가 구동되면, 교반 임펠러(21b)가 회전축(21a)을 중심으로 회전함으로써 용해실(20)에 수용된 알루미늄 용탕(M)에는 회전축(21a)을 중심으로 선회 하강하는 와류(V)가 생성된다.As shown in FIG. 3, the vortex unit 21 has a rotating shaft having a lower end immersed in the aluminum molten metal M and an upper end extending outward of the aluminum molten metal M and axially coupled with a drive motor (not shown) ( 21a), and a stirring impeller 21b axially coupled to the lower end of the rotating shaft 21a. As shown in FIG. 3, when the driving motor is driven, the stirring impeller 21b rotates around the rotating shaft 21a in the aluminum molten metal M accommodated in the melting chamber 20 by rotating about the rotating shaft 21a. A descending vortex (V) is produced.
플럭스 공급 유닛(23)은, 외부의 플럭스 공급원(미도시)으로부터 공급된 플럭스(F)를 용해실(20)에 수용된 알루미늄 용탕(M)에 투입하기 위한 장치이다.The flux supply unit 23 is a device for introducing the flux F supplied from an external flux source (not shown) into the aluminum molten metal M accommodated in the melting chamber 20.
플럭스(F)는, 알루미늄보다 비중이 작은 혼합염으로서, 개재물과 친화력이 높은 재질로 형성된다. 도 3에 도시된 바와 같이, 플럭스 공급 유닛(23)은, 이러한 플럭스(F)를 와류 유닛(21)에 의하여 생성된 와류(V)에 투입한다. 그러면, 와류(V)에 의하여 플럭스(F)가 알루미늄 용탕(M)에 신속하게 침지되어 용해된 후 용해실(20)에 고르게 퍼질 수 있다. 다만, 이에 한정되는 것은 아니며, 플럭스 공급 유닛(23)은 와류(V)가 아닌 다른 부분에 플럭스(F)를 투입할 수도 있다.The flux (F) is a mixed salt having a specific gravity smaller than that of aluminum, and is formed of a material having high affinity with inclusions. As shown in FIG. 3, the flux supply unit 23 injects this flux F into the vortex V generated by the vortex unit 21. Then, the flux (F) is rapidly immersed in the molten aluminum (M) by the vortex (V) to dissolve and then spread evenly over the melting chamber (20). However, the present invention is not limited thereto, and the flux supply unit 23 may also input the flux F into a portion other than the vortex V.
플럭스(F) 투입 시기는 특별히 한정되지 않는다. 예를 들어, 플럭스 공급 유닛(23)은, 원재료 공급 유닛(25)이 와류(V)에 알루미늄 스크랩(A)을 투입하기 이전에 플럭스(F)를 와류(V)에 미리 투입할 수 있다. 그러면, 플럭스(F)는 와류(V)에 의해 선회 하강하면서 알루미늄 용탕(M)에 침지되어 용해된다. 그런데, 플럭스(F)는 알루미늄 보다 작은 비중을 가지므로, 알루미늄 용탕(M)에 용해된 플럭스(F)는 알루미늄 용탕(M)의 표면으로 부상하여 알루미늄 용탕(M)의 표면에 용융 플럭스층, 즉, 염욕층을 형성한다. 이러한 용융 플럭스층은, 알루미늄 용탕(M) 및 알루미늄 용탕(M)에 투입된 알루미늄 스크립(A)이 대기 중의 산소와 접촉되는 것을 차단하여, 알루미늄 산화물의 발생량을 줄일 수 있다.The timing for introducing the flux F is not particularly limited. For example, in the flux supply unit 23, the flux F may be pre-injected into the vortex V before the raw material supply unit 25 injects the aluminum scrap A into the vortex V. Then, the flux F is immersed and dissolved in the molten aluminum M while turning and descending by the vortex V. However, since the flux (F) has a smaller specific gravity than aluminum, the flux (F) dissolved in the aluminum molten metal (M) rises to the surface of the aluminum molten metal (M), and the molten flux layer on the surface of the aluminum molten metal (M), That is, a salt bath layer is formed. The molten flux layer can prevent the aluminum melt (M) and the aluminum script (A) introduced into the aluminum melt (M) from contacting oxygen in the atmosphere, thereby reducing the amount of aluminum oxide.
이러한 플럭스(F)는 개재물을 선택적으로 포획 가능함과 동시에 용융 플럭스층을 형성 가능한 조성을 갖는다. 바람직하게, 플럭스(F)는, 염화나트륨(NaCl)과 염화칼륨(KCl)이 동일한 중량부로 혼합된 혼합물 93-97 중량부 및 빙정석류(Cryolite, Potassium Cryolite) 3-7 중량부를 포함할 수 있다. 더욱 바람직하게, 플럭스(F)는, 염화나트륨(NaCl) 47.5 중량부, 염화칼륨(KCl) 47.5 중량부 및 포타슘 알루미늄 플루오라이드(KAlF 4) 5 중량부를 포함할 수 있다.The flux (F) has a composition capable of selectively trapping inclusions and forming a molten flux layer. Preferably, the flux (F) may include 93-97 parts by weight of a mixture of sodium chloride (NaCl) and potassium chloride (KCl) in equal parts by weight, and 3-7 parts by weight of cryolite (Cryolite, Potassium Cryolite). More preferably, the flux (F) may include 4 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and 5 parts by weight of potassium aluminum fluoride (KAlF 4 ).
한편, 후술할 원재료 공급 유닛(25)에 의해 알루미늄 스크랩(A)의 투입이 시작되면, 플럭스 공급 유닛(23)은 원재료 공급 유닛(25)과 동시 또는 이시에 플럭스(F)를 와류(V)에 투입할 수 있다. 즉, 알루미늄 스크랩(A)의 투입이 시작된 이후에도 플럭스(F)는 알루미늄 스크랩(A)의 공급 추이에 맞추어 계속적 또는 단속적으로 공급되는 것이다.On the other hand, when the input of the aluminum scrap (A) is started by the raw material supply unit 25 to be described later, the flux supply unit 23 simultaneously or simultaneously with the raw material supply unit 25 or at this time the flux (F) vortex (V) Can be put in. That is, even after the introduction of the aluminum scrap (A), the flux (F) is continuously or intermittently supplied in accordance with the supply trend of the aluminum scrap (A).
플럭스(F)는 이를 이용하여 포획하고자 하는 개재물의 양과 동일한 양이 공급되는 것이 바람직하나, 이에 한정되는 것은 아니다. 따라서, 플럭스(F)의 공급량은 알루미늄 스크랩(A)의 공급량과 알루미늄 스크랩(A)의 종류에 따라 조절될 수 있다. 즉, 도료 기타 다량의 개재물을 포함하는 알루미늄 스크랩(A)이 공급되는 경우에는 플럭스(F)의 공급량이 증가되고, 순도가 높은 알루미늄 스크랩(A)이 공급되는 경우에는 플럭스(F)의 공급량이 감소될 수 있다.The flux (F) is preferably supplied in the same amount as the amount of inclusions to be captured using this, but is not limited thereto. Therefore, the supply amount of the flux F can be adjusted according to the supply amount of the aluminum scrap A and the type of the aluminum scrap A. That is, when the aluminum scrap A containing the paint or other large amount of inclusions is supplied, the supply amount of the flux F is increased, and when the high-purity aluminum scrap A is supplied, the supply amount of the flux F is supplied. Can be reduced.
원재료 공급 유닛(25)은, 외부의 원재료 공급원(미도시)으로부터 공급된 알루미늄 스크랩(A)을 용해실(20)에 수용된 알루미늄 용탕(M)에 투입하기 위한 장치이다.The raw material supply unit 25 is a device for introducing the aluminum scrap A supplied from an external raw material supply source (not shown) into the aluminum molten metal M accommodated in the melting chamber 20.
도 3에 도시된 바와 같이, 원재료 공급 유닛(25)은, 와류 유닛(21)에 의하여 생성된 와류(V)에 알루미늄 스크랩(A)을 투입한다. 그러면, 알루미늄 스크랩(A)은 와류(V)에 의해 선회 하강하면서 알루미늄 용탕(M)에 신속히 침지되어 용해될 수 있으므로, 알루미늄 용탕(M)에 침지된 알루미늄 스크랩(A)과 대기의 접촉이 더욱 효과적으로 차단됨으로써 알루미늄 산화물의 발생량을 더욱 줄일 수 있다.As illustrated in FIG. 3, the raw material supply unit 25 injects aluminum scrap A into the vortex V generated by the vortex unit 21. Then, the aluminum scrap (A) can be rapidly immersed and dissolved in the aluminum molten metal (M) while turning and descending by the vortex (V), so that the contact between the aluminum scrap (A) immersed in the aluminum molten metal (M) and the atmosphere is more By effectively blocking, the amount of aluminum oxide generated can be further reduced.
알루미늄 스크랩(A)의 투입 시기는 특별히 한정되지 않는다. 예를 들어, 원재료 공급 유닛(25)은, 알루미늄 용탕(M)의 표면에 용융 플럭스층이 형성된 이후에 알루미늄 스크랩(A)의 투입을 시작할 수 있다. 그러면, 알루미늄 스크랩(A)은, 알루미늄 용탕(M)의 표면에 용융 플럭스층이 형성된 상태로 알루미늄 용탕(M)에 침지될 수 있다. 이로 인해, 알루미늄 용탕(M)에 침지된 알루미늄 스크랩(A)과 대기의 접촉이 더욱 효과적으로 차단되므로, 알루미늄 산화물의 발생량을 더욱 줄일 수 있다.The injection timing of the aluminum scrap (A) is not particularly limited. For example, the raw material supply unit 25 may start to input the aluminum scrap A after the molten flux layer is formed on the surface of the aluminum molten metal M. Then, the aluminum scrap (A) may be immersed in the aluminum molten metal (M) with a molten flux layer formed on the surface of the molten aluminum (M). For this reason, since the contact between the aluminum scrap A immersed in the aluminum molten metal M and the atmosphere is more effectively blocked, the generation amount of aluminum oxide can be further reduced.
알루미늄 스크랩(A)의 직경이 큰 경우에는 열 전달율이 떨어지는 문제점이 있다. 따라서, 알루미늄 스크랩(A)은 5 ㎝ 이하의 직경을 갖는 것이 바람직하다. 이러한 알루미늄 스크랩(A)의 종류는 특별히 한정되지 않는다. 예를 들어, 알루미늄 스크랩(A)은, 알루미늄, 마그네슘 및 알루미늄 합금을 주로 포함하는 알루미늄 폐캔 스크랩(UBCs, A 3XXX 계열, A 5XXXX 계열)일 수 있다. 이러한 알루미늄 폐캔 스크랩의 화학 조성은 표 1과 같다.When the diameter of the aluminum scrap (A) is large, there is a problem that the heat transfer rate is lowered. Therefore, it is preferable that the aluminum scrap (A) has a diameter of 5 cm or less. The type of the aluminum scrap (A) is not particularly limited. For example, the aluminum scrap (A) may be aluminum waste can scrap (UBCs, A 3XXX series, A 5XXXX series) mainly containing aluminum, magnesium, and aluminum alloy. Table 1 shows the chemical composition of the aluminum waste can scrap.
부품part Al 합금계열Al alloy 화학조성 (%)Chemical composition (%)
SiSi FeFe CuCu MnMn ZnZn MgMg
몸체Body A 3004A 3004 < 0.3<0.3 < 0.70<0.70 < 0.25<0.25 1.0-1.51.0-1.5 < 0.25<0.25 0.8-1.30.8-1.3
뚜껑Lid A 5052A 5052 < 0.25<0.25 < 0.40<0.40 < 0.10<0.10 < 0.10<0.10 < 0.10<0.10 2.2-2.82.2-2.8
Tab A 5182A 5182 < 0.2<0.2 < 0.35<0.35 < 0.15<0.15 0.2-0.50.2-0.5 < 0.25<0.25 4.0-5.04.0-5.0
한편, 알루미늄 스크랩(A)의 개재물(介在物, Inclusions)은, 알루미늄 스크랩(A)이 알루미늄 용탕(M)에 장입되어 용해될 때, 용융 알루미늄과 응집되는 성질을 갖는다. 그런데, 용용 플럭스층 즉, 플럭스(F)는, 개재물과 용융 알루미늄의 응집력을 약화시켜 개재물과 용융 알루미늄을 해리시키고, 용융 알루미늄과 해리된 개재물을 선택적으로 포획하여 블랙 드로스(B 1)를 형성한다. 블랙 드로스(B 1)는, 전술한 형성 과정에서 부피가 증가되어 용융 알루미늄보다 낮은 비중을 가지며, 이로 인해 알루미늄 용탕(M)의 표면으로 부상한다.On the other hand, inclusions (介在物, Inclusions) of the aluminum scrap (A), when the aluminum scrap (A) is charged and dissolved in the molten aluminum (M), has a property of agglomeration with molten aluminum. However, the flux layer for the flux, that is, the flux (F), weakens the cohesive force of the inclusions and molten aluminum to dissociate the inclusions and molten aluminum, and selectively captures the molten aluminum and the dissociated inclusions to form black dross (B 1 ). do. The black dross (B 1 ), the volume is increased in the above-described formation process, has a specific gravity lower than that of molten aluminum, and thereby rises to the surface of the molten aluminum (M).
또한, 도 3 및 도 4에 도시된 바와 같이, 블랙 드로스(B 1)는, 와류(V)에 의해 선회 하강하다가 와류(V)의 하단에 도달하면 와류(V)로부터 이탈되며, 그 다음에는 알루미늄 용탕(M)의 표면으로 부상된 후 다시 와류(V)의 흡입력에 의해 와류(V)에 합류된다. 따라서, 블랙 드로스(B 1)는, 이러한 과정을 통해 알루미늄 용탕(M)의 표면에서 생성된 다른 블랙 드로스(B 1)와 결합된다. 도 5에 도시된 바와 같이, 이러한 과정이 반복되면, 다수의 블랙 드로스(B 1)가 구형으로 결집된 구형 블랙 드로스(B 2)가 형성된다. 즉, 와류 유닛(21)은, 와류(V)를 통해 블랙 드로스(B 1)를 반복적으로 하강 및 부상시킴으로써, 다수의 블랙 드로스(B 1)가 구형으로 결집된 구형 블랙 드로스(B 2)를 형성하는 것이다. 이러한 구형 블랙 드로스(B 2)의 화학 조성은 특별히 한정되지 않는다. 예를 들어, 전술한 바와 같이, 알루미늄 스크랩(A)은 알루미늄 폐캔 스크랩(UBCs 스크랩)이고 또한 플럭스(F)는 염화나트륨(NaCl) 47.5 중량부, 염화칼륨(KCl) 47.5 중량부 및 포타슘 알루미늄 플루오라이드(KAlF 4) 5 중량부를 포함하는 경우에. 구형 블랙 드로스(B 2)의 화학 조성은 표 2와 같다.In addition, as shown in Figures 3 and 4, the black dross (B 1 ), the vortex (V) is lowered by turning, and when it reaches the lower end of the vortex (V) is released from the vortex (V), and then After rising to the surface of the aluminum molten metal (M), it is again joined to the vortex (V) by the suction force of the vortex (V). Therefore, the black dross (B 1 ) is combined with other black dross (B 1 ) produced on the surface of the aluminum molten metal (M) through this process. As illustrated in FIG. 5, when this process is repeated, a spherical black dross B 2 in which a plurality of black drosses B 1 are aggregated into a spherical shape is formed. That is, the vortex unit 21 repeatedly descends and floats the black dross (B 1 ) through the vortex (V), so that a plurality of black dross (B 1 ) are spherically shaped black dross (B) 2 ). The chemical composition of the spherical black dross (B 2 ) is not particularly limited. For example, as described above, aluminum scrap (A) is aluminum waste can scrap (UBCs scrap) and flux (F) is 47.5 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and potassium aluminum fluoride ( KAlF 4 ) When it contains 5 parts by weight. The chemical composition of the spherical black dross (B 2 ) is shown in Table 2.
조성 화학물질Composition chemicals 화학조성 (%)Chemical composition (%)
AlAl 5-105-10
Al 2O 3 Al 2 O 3 25-3525-35
MgMg 5-105-10
MgOMgO 5-105-10
NaClNaCl 20-3020-30
KClKCl 20-3020-30
구형 블랙 드로스(B 2)는, 블랙 드로스(B 1)가 알루미늄 용탕(M)을 하강 및 부상하기를 반복하면서 점진적으로 형성되므로, 이러한 하강 및 부상 과정 없이 일회적으로 형성되는 일반적인 블랙 드로스에 비해 개재물의 제거 성능이 뛰어나다. 이로 인해, 구형 블랙 드로스(B 2)를 형성할 경우에는 일반적인 블랙 드로스를 형성하는 경우에 비해 드로스 중의 알루미늄 함유율을 저감시킬 수 있다. 즉, 일반적인 블랙 드로스, 예를 들어, 종래의 알루미늄 폐캔 용해 공정에서 화이트 드로스를 플럭스 처리하여 형성한 일반 블랙 드로스는 약 50% 이상의 알루미늄 함유율을 가지나, 구형 블랙 드로스(B 2)는 약 10% 이하의 알루미늄의 함유율을 갖는다. 따라서, 구형 블랙 드로스(B 2)를 형성함으로써, 순수 알루미늄의 용해 회수율을 향상시킬 수 있다. 또한, 구형 블랙 블록 드로스(B2)를 형성함으로써, 발열제 플럭스 및 재처리 압입기를 이용해 드로스를 재처리하여 드로스에 포획된 알루미늄을 회수하는 드로스 재처리 과정을 생략 가능하므로, 이러한 드로스 재처리에 소요되는 비용을 절감할 수 있다.Spherical black dross (B 2 ), because the black dross (B 1 ) is gradually formed while repeatedly descending and floating the aluminum molten metal (M), the general black dross formed once without such a descent and injury process Compared to this, the inclusion removal performance is excellent. For this reason, when forming a spherical black dross (B 2 ), the aluminum content in the dross can be reduced compared to the case of forming a normal black dross. That is, a general black dross, for example, a conventional black dross formed by fluxing a white dross in a conventional aluminum can dissolution process has an aluminum content of about 50% or more, while a spherical black dross (B 2 ) is about It has an aluminum content of 10% or less. Therefore, by forming the spherical black dross (B 2 ), the recovery rate of dissolution of pure aluminum can be improved. In addition, by forming the spherical black block dross (B2), the dross reprocessing process to recover the aluminum trapped in the dross by reprocessing the dross using the exothermic flux and the reprocessing indenter can be omitted, so such dross The cost of reprocessing can be reduced.
제2 유동 통로(29)는, 알루미늄 스크랩(A)이 용해된 알루미늄 용탕(M)을 가열실(10)로 전달하기 위한 통로이다.The second flow passage 29 is a passage for transferring the aluminum molten metal M in which the aluminum scrap A is dissolved to the heating chamber 10.
도 2에 도시된 바와 같이, 제2 유동 통로(29)는 용해실(20)과 가열실(10)을 구획하는 벽체가 관통되어 형성되며, 알루미늄 용탕(M)은 제2 유동 통로(29)를 통해 가열실(10)로 유입된다.As shown in FIG. 2, the second flow passage 29 is formed through a wall partitioning the melting chamber 20 and the heating chamber 10, and the aluminum molten metal M is the second flow passage 29. It flows into the heating chamber 10 through.
다음으로, 유동력 부여실(30)은, 알루미늄 용탕(M)이 가열실(10)과 용해실(20) 사이를 순환할 수 있도록 알루미늄 용탕(M)에 유동력을 부여하기 위한 공간이다.Next, the flow force imparting chamber 30 is a space for applying a flow force to the aluminum molten metal M so that the aluminum molten metal M can circulate between the heating chamber 10 and the melting chamber 20.
유동력 부여실(30)은, 가열실(10)의 제1 유동 통로(16)와 연통되어 알루미늄 용탕(M)을 가열실(10)로부터 전달받는다.The flow force imparting chamber 30 communicates with the first flow passage 16 of the heating chamber 10 and receives the aluminum molten metal M from the heating chamber 10.
도 2에 도시된 바와 같이, 유동력 부여실(30)은, 가열실(10)의 제1 유동 통로(16)와 용해실(20) 사이에 설치되는 것이 바람직하다. 다만, 이에 한정되는 것은 아니며, 유동력 부여실(30)은 용해실(20)의 제2 유동 통로(29)와 가열실(10) 사이에 설치될 수도 있다.As shown in FIG. 2, the flow force imparting chamber 30 is preferably installed between the first flow passage 16 and the melting chamber 20 of the heating chamber 10. However, the present invention is not limited thereto, and the flow force imparting chamber 30 may be installed between the second flow passage 29 and the heating chamber 10 of the melting chamber 20.
도 2 및 도 3에 도시된 바와 같이, 유동력 부여실(30)은, 알루미늄 용탕(M)을 가속하여 알루미늄 용탕(M)에 유동력을 부여하는 가속 유닛(32), 및 유동력이 부여된 알루미늄 용탕(M)을 용해실(20)로 전달하는 제3 유동 통로(34)를 포함한다.2 and 3, the fluid force imparting chamber 30 accelerates the aluminum molten metal M, and the acceleration unit 32 that provides the fluid force to the aluminum molten metal M, and the fluid force is applied It includes a third flow passage 34 for transferring the molten aluminum (M) to the melting chamber (20).
가속 유닛(32)은, 적어도 일부분이 알루미늄 용탕(M)에 침지되도록 유동력 부여실(30)에 설치된다. 예를 들어, 도 3에 도시된 바와 같이, 가속 유닛(32)은, 유동력 부여실(30)의 외부에 마련된 구동 모터(미도싱)로부터 구동력을 제공받아, 유동력 부여실(30)에 수용된 알루미늄 용탕(M)을 순환시킬 수 있는 용탕 펌프일 수 있다.The acceleration unit 32 is installed in the flow force imparting chamber 30 so that at least a portion is immersed in the aluminum molten metal M. For example, as shown in FIG. 3, the acceleration unit 32 receives the driving force from a driving motor (undocing) provided outside the fluid force imparting chamber 30, to the fluid force imparting chamber 30. It may be a molten metal pump capable of circulating the accommodated aluminum molten metal (M).
제3 유동 통로(34)는, 가속 유닛(32)에 의하여 유동력이 부여된 알루미늄 용탕(M)을 유동력 부여실(30)로 전달하기 위한 통로이다.The third flow passage 34 is a passage for transferring the aluminum molten metal M to which the flow force is applied by the acceleration unit 32 to the flow force applying chamber 30.
도 2 및 도 3에 도시된 바와 같이, 제3 유동 통로(34)는 유동력 부여실(30)과 용해실(20)을 구획하는 벽체의 하부가 가속 유닛(32)의 임펠러와 대면하도록 관통되어 형성되며, 알루미늄 용탕(M)은 제3 유동 통로(34)를 통해 용해실(20)로 유입된다.2 and 3, the third flow passage 34 penetrates through the lower portion of the wall partitioning the flow force imparting chamber 30 and the melting chamber 20 so as to face the impeller of the acceleration unit 32. Is formed, the aluminum molten metal (M) flows into the melting chamber 20 through the third flow passage 34.
한편, 본 명세서에서는 가열실(10)과 용해실(20) 사이에 가속 유닛(32)을 구비한 유동력 부여실(30)이 마련되는 것으로 설명하였으나 이에 한정되는 것은 아니다. 즉, 용해실(20)의 와류 유닛(20)은 와류(V)를 형성함으로써 알루미늄 용탕(M)을 승하강시킴과 동시에 알루미늄 용해로(2)를 순환하기 위한 유동력을 알루미늄 용탕(M)에 부여할 수 있으므로, 유동력 부여실(30)과 이에 마련된 가속 유닛(32)은 생략 가능하다.On the other hand, in the present specification, it has been described that the flow force imparting chamber 30 provided with the acceleration unit 32 between the heating chamber 10 and the melting chamber 20 is not limited thereto. That is, the vortex unit 20 of the melting chamber 20 forms a vortex (V) to raise and lower the aluminum molten metal (M), and at the same time, the flow force for circulating the aluminum melting furnace (2) to the aluminum molten metal (M). Since it can be applied, the flow force imparting chamber 30 and the acceleration unit 32 provided therein can be omitted.
도 6은 도 2의 용해실에 수용된 알루미늄 용탕의 표면에 구형 블랙 드로스가 부유된 상태를 나타내는 용해실의 평면도이다.FIG. 6 is a plan view of a melting chamber showing a state in which spherical black dross is suspended on the surface of the aluminum molten metal accommodated in the melting chamber of FIG. 2.
많은 개수의 구형 블랙 드로스(B 2)가 와류(V)에 밀집되면, 와류(V)에 의한 구형 블랙 드로스(B 2)의 하강 및 부상 작용이 약화되어 구형 블랙 드로스(B 2)의 형성 효율이 감소될 우려가 있다. 따라서, 미리 정해진 기준 직경만큼 성장한 구형 블랙 드로스(B 2)를 와류(V)로부터 이탈시켜 와류(V)에 위치한 구형 블랙 드로스(B 2)의 밀도를 적정 수준으로 조절하는 것이 바람직하다.When a large number of spherical black dross (B 2 ) is concentrated in the vortex (V), the descending and floating action of the spherical black dross (B 2 ) by the vortex (V) is weakened, and the spherical black dross (B 2 ) There is a fear that the formation efficiency of. Therefore, it is preferable to adjust the density of the spherical black dross (B 2 ) located in the vortex (V) to an appropriate level by separating the spherical black dross (B 2 ) grown by a predetermined reference diameter from the vortex (V).
구형 블랙 드로스(B 2)의 기준 직경은, 특별히 한정되지 않는다. 예를 들어, 알루미늄 스크랩(A)은 알루미늄 폐캔 스크랩(UBCs 스크랩)이고 또한 플럭스(F)는 염화나트륨(NaCl) 47.5 중량부, 염화칼륨(KCl) 47.5 중량부 및 포타슘 알루미늄 플루오라이드(KAlF 4) 5 중량부를 포함하는 경우에, 구형 블랙 드로스(B 2)의 기준 직경은 2 cm 내지 5 cm 이다.The reference diameter of the spherical black dross (B 2 ) is not particularly limited. For example, aluminum scrap (A) is aluminum waste can scrap (UBCs scrap) and flux (F) is 47.5 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and 5 parts by weight of potassium aluminum fluoride (KAlF 4 ) In the case of containing a part, the reference diameter of the spherical black dross (B 2 ) is 2 cm to 5 cm.
이와 같이 기준 직경만큼 성장한 구형 블랙 드로스(B 2)를 와류(V)로부터 이탈시키기 위하여, 용해실(20)은, 구형 블랙 드로스(B 2)를 와류(V)로부터 분리하는 분리 유닛(27)을 더 포함할 수 있다.In order to detach the spherical black dross (B 2 ) grown by the reference diameter from the vortex (V), the dissolution chamber 20 separates the spherical black dross (B 2 ) from the vortex (V). 27) may be further included.
도 3에 도시된 바와 같이, 분리 유닛(27)은, 알루미늄 용탕(M)의 표면에 부유된 구형 블랙 드로스(B 2)를 와류(V)로부터 먼 쪽으로 끌어당길 수 있는 형상을 갖는 분리판(27a)과, 구동 장치(미도시)와 분리판(27a)을 연결하는 연결봉(27b)을 포함한다. 여기서, 구동 장치는, 용해실(20)의 외부에 마련된 작업 차량인 것이 바람직하나, 이에 한정되는 것은 아니다.As shown in FIG. 3, the separating unit 27 has a shape capable of pulling the spherical black dross B 2 floating on the surface of the aluminum molten metal M away from the vortex V. 27a and a connecting rod 27b connecting the driving device (not shown) and the separation plate 27a. Here, the driving device is preferably a work vehicle provided outside the melting chamber 20, but is not limited thereto.
이와 같이 분리 유닛(27)이 마련됨에 따라, 미리 정해진 기준 직경을 갖는 구형 블랙 드로스(B 2)를 분리판(27a)을 이용해 와류(V)로부터 먼 쪽으로 끌어당겨 와류(V)로부터 이탈시킬 수 있다. 따라서, 구형 블랙 드로스(B 2)가 밀집됨으로 인해 구형 블랙 드로스(B 2)의 형성 효율이 떨어지는 것을 방지할 수 있다. 여기서, 분리 유닛(27)은, 구형 블랙 드로스(B 2)를 알루미늄 용탕(M)에서 퍼내서 외부로 배출하는 기능도 함께 수행할 수 있다.As the separation unit 27 is provided in this way, the spherical black dross B 2 having a predetermined reference diameter is pulled away from the vortex V using the separation plate 27a to be separated from the vortex V. Can be. Thus, a spherical black dross (B 2) can be prevented from dropping because of the formation efficiency of the dense doemeuro spherical black dross (B 2). Here, the separation unit 27 may also perform the function of discharging the spherical black dross B 2 from the aluminum molten metal M and discharging it to the outside.
한편, 도 6에 도시된 바와 같이, 분리 유닛(27)을 이용하여 구형 블랙 드로스(B 2)를 와류(V)로부터 먼 쪽으로 끌어낸 경우에는, 용해실(20)에 수용된 알루미늄 용탕(M)의 표면은 와류(V)로부터 이탈된 구형 블랙 드로스(B 2)로 덮인다. 그러므로, 용해실(20)에 수용된 알루미늄 용탕(M)은 이를 덮은 구형 블랙 드로스(B 2)에 의하여 대기와 차단되며, 구형 블랙 드로스(B 2)는 용해실(20)에 수용된 알루미늄 용탕(M)에 대한 보온 효과를 지니게 된다. 따라서, 구형 블랙 드로스(B 2)에 의하여 알루미늄 용탕(M)의 열 손실이 최소화됨으로써, 알루미늄 용탕(M)이 구형 블랙 드로스(B 2)에 의해 덮이지 않은 경우에 비해 알루미늄 용탕(M)의 온도가 상승된다.Meanwhile, as shown in FIG. 6, when the spherical black dross B 2 is pulled away from the vortex V using the separation unit 27, the aluminum molten metal M accommodated in the melting chamber 20 ) Is covered with a spherical black dross (B 2 ) deviating from the vortex (V). Therefore, the aluminum molten metal (M) accommodated in the melting chamber 20 is blocked from the atmosphere by the spherical black dross (B 2 ) covering it, and the spherical black dross (B 2 ) is the aluminum molten metal accommodated in the melting chamber (20). It has a warming effect on (M). Therefore, being a heat loss of the aluminum molten metal (M) minimized by the rectangular black dross (B 2), the molten aluminum compared with the case the aluminum molten metal (M) is not covered by the spherical black dross (B 2) (M ) Temperature rises.
종래의 알루미늄 용해로는 일반적으로 용해실에 수용된 알루미늄 용탕(M)의 온도가 약 700 ℃ 이하이나, 알루미늄 용해로(2)는 용해실(20)에 수용된 알루미늄 용탕(M)의 온도가 약 730 ℃ 이상으로 상승될 수 있다. 이로 인해, 알루미늄 용해로(2)는, 종래의 알루미늄 용해로에 비해 알루미늄 스크랩(A)의 용해 효율이 더욱 향상될 수 있다.In the conventional aluminum melting furnace, the temperature of the aluminum molten metal M accommodated in the melting chamber is generally about 700° C. or less, but in the aluminum melting furnace 2, the temperature of the aluminum molten metal M accommodated in the melting chamber 20 is about 730° C. or more. Can be elevated. For this reason, the aluminum melting furnace 2 can further improve the melting efficiency of the aluminum scrap A compared to the conventional aluminum melting furnace.
도 7은 도 1의 블랙 드로스 재활용 장치를 개략적으로 나타내는 개략도이다.7 is a schematic diagram schematically showing the black dross recycling apparatus of FIG. 1.
전술한 알루미늄 용해로(2)를 이용해 알루미늄 스크랩(A)을 용해하면 블랙 드로스(B 1)가 구형으로 결집된 구형 블랙 드로스(B 2)가 형성된다. 구형 블랙 드로스(B 2)는 일반적인 블랙 드로스에 상대적으로 비해 낮기는 하지만 소정 비율의 알루미늄을 포함할 뿐만 아니라 알루미늄 산화물, 플럭스(F) 등과 같이 경제적인 가치가 있는 물질들을 소정 비율만큼 포함한다. 따라서, 이러한 구형 블랙 드로스(B 2)를 재처리 과정 없이 매립 등의 방법을 통해 그대로 폐기하는 경우에는, 구형 블랙 드로스(B 2)에 포함된 물질들을 재활용할 수 없어 경제성이 떨어질 뿐만 아니라 구형 블랙 드로스(B 2)로 인해 환경 오염이 야기될 우려가 있다.When the aluminum scrap (A) is melted using the above-described aluminum melting furnace 2, a spherical black dross B 2 in which black dross B 1 is aggregated into a spherical shape is formed. Although the spherical black dross (B 2 ) is relatively low compared to the normal black dross, it contains not only a certain proportion of aluminum, but also a certain proportion of materials of economic value such as aluminum oxide and flux (F). . Therefore, when such a spherical black dross (B 2 ) is disposed of through a method such as landfill without reprocessing, materials contained in the spherical black dross (B 2 ) cannot be recycled, and economical efficiency is reduced. There is a possibility that environmental pollution is caused by the spherical black dross (B 2 ).
이를 해결하기 위하여, 알루미늄 용해 및 블랙 드로스 재활용 시스템(1)은, 구형 블랙 드로스(B 2)에 포함된 물질들을 재활용할 수 있도록 구형 블랙 드로스(B 2)를 재활용 가능하게 처리하는 블랙 드로스 재활용 장치(3)를 포함하는 것이다.To solve this problem, an aluminum melting and black dross recycling system (1), spherical black dross (B 2) a spherical black to recycle the materials contained in the dross (B 2) a black to enable recycling process It includes a dross recycling device (3).
도 7에 도시된 바와 같이, 블랙 드로스 재활용 장치(3)는, 구형 블랙 드로스(B 2)를 파쇄 및 분쇄하여 알루미늄 알갱이(N)와 드로스 미립자 파우더(P 2)로 분할하는 파쇄/분쇄 유닛(40)과, 드로스 미립자 파우더(P 2)를 물과 물 분해 반응시켜 가용성 고형분(S), 불용성 고형분(I) 및 가수분해 가스(G)로 분해하는 물 분해 유닛(50)과, 가용성 고형분(S)이 석출되도록 가용성 고형분(S)이 용해된 수용액(Q)을 농축하는 석출 유닛(60)과, 가용성 고형분(S)의 석출물(S 1)을 건조하여 저장하는 가용성 고형분 저장 유닛(70)과, 알루미늄 알갱이(N)를 저장하는 알루미늄 알갱이 저장 유닛(80)과, 불용성 고형분(I)을 건조 및 소성하여 저장하는 불용성 고형분 저장 유닛(90)과, 가수분해 가스(G)를 저장하는 가스 저장 유닛(100)을 포함할 수 있다.As shown in FIG. 7, the black dross recycling apparatus 3 crushes and crushes the spherical black dross (B 2 ) into aluminum grains (N) and dross particulate powder (P 2 )/ The pulverization unit 40 and the water decomposition unit 50 that decomposes the dross particulate powder (P 2 ) into water and decomposes it into soluble solid content (S), insoluble solid content (I), and hydrolysis gas (G). , The precipitation unit 60 for concentrating the aqueous solution (Q) in which the soluble solid content (S) is dissolved so that the soluble solid content (S) precipitates, and storing the soluble solid content for drying and storing the precipitate (S 1 ) of the soluble solid content (S) The unit 70, an aluminum granule storage unit 80 for storing aluminum granules N, an insoluble solid content storage unit 90 for drying and storing insoluble solids I, and hydrolysis gas G It may include a gas storage unit 100 for storing.
먼저, 파쇄/분쇄 유닛(40)은, 구형 블랙 드로스(B 2)를 파쇄 및 분쇄하기 위한 장치이다.First, the crushing/crushing unit 40 is a device for crushing and crushing spherical black dross (B 2 ).
파쇄/분쇄 유닛(40)은, 구형 블랙 드로스(B 2)를 파쇄하는 파쇄기(41)와, 구형 블랙 드로스(B 2)의 파쇄물 중 알루미늄 알갱이(N)와 드로스 파우더(P 1)를 분리하는 제1 분리 부재(42)와, 드로스 파우더(P 1)를 분쇄하는 분쇄기(43)와, 드로스 파우더(P 1)의 분쇄물 중 알루미늄 알갱이(N)와 분쇄기(43)에 의해 분쇄되어 미립화된 드로스 미립자 파우더(P 2)를 분리하는 제2 분리 부재(44)를 포함할 수 있다.Crushing / milling unit 40, the aluminum grains (N) and dross powder (P 1) of the lysate of the crusher 41, and a rectangular black dross (B 2) for crushing the spherical black dross (B 2) the first separating member 42 and the dross powder, aluminum granules (N) and a grinder (43) of the pulverized product of the grinder 43, and a dross powder (P 1) crushing (P 1) to separate the It may include a second separating member 44 for separating the pulverized by pulverized dross particulate powder (P 2 ).
파쇄기(41)는, 구형 블랙 드로스(B 2)를 파쇄하여 알루미늄 알갱이(N)와 드로스 파우더(P 1)로 분할하기 위한 장치이다.The crusher 41 is a device for crushing a spherical black dross (B 2 ) and dividing it into aluminum particles (N) and dross powder (P 1 ).
구형 블랙 드로스(B 2)에 포함된 알루미늄 입자들과 알루미늄 합금 입자들 중 상대적으로 입도가 큰 알루미늄 입자들과 알루미늄 합금 입자들은 구형 블랙 드로스(B 2)를 파쇄할 때 발생한 열로 인해 응집되어 알루미늄 알갱이(Aluminum Granule)와 알루미늄 합금 알갱이(Aluminum Alloy Granule)가 된다. 또한, 구형 블랙 드로스(B 2)에 포함된 알루미늄 입자들과 알루미늄 합금 입자들 중 상대적으로 입도가 작은 알루미늄 입자들과 알루미늄 합금 입자들은 응집되지 못한 채 알루미늄 파우더와 알루미늄 합금 파우더가 된다. 설명의 편의를 위해 이하에서는, 알루미늄 알갱이(N)와 알루미늄 합금 알갱이를 통칭하여 알루미늄 알갱이(N)로 명명하기로 한다.Among the aluminum particles and the aluminum alloy particles included in the spherical black dross (B 2 ), aluminum particles and aluminum alloy particles having a relatively large particle size are aggregated due to heat generated when crushing the spherical black dross (B 2 ). It becomes an aluminum granule (Aluminum Granule) and an aluminum alloy granule (Aluminum Alloy Granule). Further, among the aluminum particles and the aluminum alloy particles included in the spherical black dross (B 2 ), aluminum particles and aluminum alloy particles having a relatively small particle size become aluminum powder and aluminum alloy powder without being aggregated. Hereinafter, for convenience of description, the aluminum grains N and the aluminum alloy grains will be collectively referred to as aluminum grains N.
파쇄기(41)는, 전술한 알루미늄 입자의 특성을 이용하여, 알루미늄 용해로(2)로부터 공급받은 구형 블랙 드로스(B 2)를 파쇄하여 알루미늄 알갱이(N)와 드로스 파우더(P 1)로 분할한다. 드로스 파우더(P 1)는, 구형 블랙 드로스(B 2)의 물질들 중 상대적으로 입도가 큰 알루미늄 입자를 제외한 나머지 물질들을 파우더 형태로 포함한다.The crusher 41, using the properties of the above-described aluminum particles, crushes the spherical black dross (B 2 ) supplied from the aluminum melting furnace 2 and divides it into aluminum particles (N) and dross powder (P 1 ). do. The dross powder (P 1 ), among the materials of the spherical black dross (B 2 ), includes the remaining materials, except for the aluminum particles having a relatively large particle size, in powder form.
제1 분리 부재(42)는, 구형 블랙 드로스(B 2)의 파쇄물 중 알루미늄 알갱이(N)와 드로스 파우더(P 1)를 서로 분리하기 위한 부재이다.The first separating member 42 is a member for separating the aluminum grains N and the dross powder P 1 among the crushed products of the spherical black dross B 2 .
제1 분리 부재(42)의 구조는 특별히 한정되지 않는다. 예를 들어, 제1 분리 부재(42)는, 미리 정해진 제1 기준 입도를 갖는 진동 스크린으로 구성될 수 있다. 제1 기준 입도는 약 10 ㎜인 것이 바람직하다, 이에 한정되는 것은 아니다.The structure of the first separating member 42 is not particularly limited. For example, the first separating member 42 may be configured as a vibrating screen having a predetermined first reference particle size. The first reference particle size is preferably about 10 mm, but is not limited thereto.
이러한 제1 분리 부재(42)는, 알루미늄 알갱이(N)와 드로스 파우더(P 1)를 분리한 후, 알루미늄 알갱이(N)는 알루미늄 저장 유닛(80)으로 전달하고 또한 드로스 파우더(P 1)는 분쇄기(43)로 전달한다.After the first separation member 42 separates the aluminum particles N and the dross powder P 1 , the aluminum particles N are transferred to the aluminum storage unit 80 and also the dross powder P 1 ) Is transferred to the grinder 43.
분쇄기(43)는, 드로스 파우더(P 1)를 분쇄하여 알루미늄 알갱이(N)와 드로스 미립자 파우더(P 2)로 분할하기 위한 장치이다.The pulverizer 43 is a device for pulverizing dross powder P 1 and dividing it into aluminum granules N and dross particulate powder P 2 .
드로스 파우더(P 1)에 포함된 물질들 중 산화 알루미늄과, 산화 마그네슘 같은 불용성 고형분(I)은, 이를 용이하게 재활용하기 위해서는 미립화되는 것이 바람직하다. 따라서, 드로스 파우더(P 1)를 분쇄하여 미립화시키기 위한 분쇄기(43)가 마련되는 것이다.Among the materials contained in the dross powder (P 1 ), insoluble solids (I), such as aluminum oxide and magnesium oxide, are preferably atomized to facilitate recycling. Therefore, the pulverizer 43 for pulverizing the dross powder P 1 is provided.
그런데, 이러한 분쇄기(43)를 이용해 드로스 파우더(P 1)를 분쇄하는 중 드로스 파우더(P 1)에 포함된 일부의 알루미늄 입자들이 응집되어 알루미늄 알갱이(N)가 생성될 수 있다. 따라서, 분쇄기(43)는, 제1 분리 부재(42)로부터 전달받은 드로스 파우더(P 1)를 분쇄하여 알루미늄 알갱이(N)와 분쇄되어 미립화된 드로스 미립자 파우더(P 2)로 분할한다.However, while crushing the dross powder (P 1 ) using the grinder 43, some aluminum particles contained in the dross powder (P 1 ) are aggregated to generate aluminum particles (N). Therefore, the pulverizer 43 is pulverized dross powder P 1 received from the first separating member 42 and is divided into aluminum particles N and pulverized into fine-grained dross particulate powder P 2 .
제2 분리 부재(44)는, 드로스 파우더(P 1)의 분쇄물 중 알루미늄 알갱이(N)와 드로스 미립자 파우더(P 2)를 서로 분리하기 위한 부재이다.The second separating member 44 is a member for separating the aluminum granules N and the dross particulate powder P 2 from the pulverized product of the dross powder P 1 .
제2 분리 부재(44)의 구조는 특별히 한정되지 않는다. 예를 들어, 제2 분리 부재(44)는, 미리 정해진 제2 기준 입도를 갖는 트롬멜 스크린(Trommel Screen)으로 구성될 수 있다. 제2 기준 입도는, 0.5 ㎜ 인 것이 바람직하나, 이에 한정되는 것은 아니다.The structure of the second separating member 44 is not particularly limited. For example, the second separation member 44 may be configured as a Trommel Screen having a predetermined second reference particle size. The second reference particle size is preferably 0.5 mm, but is not limited thereto.
제2 분리 부재(44)는, 분쇄기(43)로부터 전달받은 알루미늄 알갱이(N)와 드로스 미립자 파우더(P 2)를 분리한 후, 알루미늄 알갱이(N)는 알루미늄 알갱이 저장 유닛(80)으로 전달하고 또한 드로스 미립자 파우더(P 2)는 물 분해 유닛(50)으로 전달한다.The second separating member 44, after separating the aluminum granules (N) and dross particulate powder (P 2 ) received from the grinder 43, the aluminum granules (N) is transferred to the aluminum granule storage unit 80 And also the dross particulate powder (P 2 ) is delivered to the water decomposition unit 50.
도 8은 드로스 미립자 파우더의 사진이다.8 is a photograph of dross particulate powder.
다음으로, 물 분해 유닛(50)은, 제2 분리 부재(44)로부터 전달받은 드로스 미립자 파우더(P 2)를 물 분해하기 위한 장치이다.Next, the water decomposition unit 50 is a device for decomposing water of the dross particulate powder P 2 received from the second separation member 44.
도 8에 도시된 바와 같이, 드로스 미립자 파우더(P 2)는, 플럭스(F), 알루미늄, 알루미늄-마그네슘 합금, 마그네슘 및 산화물 등 다양한 물리 화학적인 성격을 갖는 물질들을 포함하여, 짙은 회색의 파우더 형태를 갖는다.As shown in FIG. 8, the dross particulate powder (P 2 ) is a dark gray powder, including substances having various physicochemical properties such as flux (F), aluminum, aluminum-magnesium alloy, magnesium, and oxide. It has a form.
이러한 드로스 미립자 파우더(P 2)에 포함된 물질들을 재활용하기 위해서는 드로스 미립자 파우더(P 2)에 포함된 물질들을 재활용하기 용이하게 전환 및 분해시키는 바람직하므로, 이를 위하여 드로스 미립자 파우더(P 2)를 물 분해 가능한 물 분해 유닛(50)이 마련되는 것이다.Since this dross particulate powder (P 2) preferably the conversion and decomposition in order to recycle the materials to facilitate the recycling of the materials contained in the dross fine powder (P 2) contained in the To this dross fine powder (P 2 ) Is a water decomposition unit 50 capable of decomposing water.
물 분해 유닛(50)은, 드로스 미립자 파우더(P 2)가 물과 물 분해 반응되어 가용성 고형분(S), 불용성 고형분(I) 및 가수분해 가스(G)로 분해되도록 드로스 미립자 파우더(P 2)를 물과 교반하는 반응기(52)와, 가수분해 가스(G)를 포집하는 가스 포집기(54)와, 수용액(Q)과 불용성 고형분(I)을 원심 분리하는 제1 원심 분리기(56)를 포함할 수 있다.The water decomposition unit 50, the dross particulate powder (P 2 ) is decomposed into water and water to decompose into soluble solids (S), insoluble solids (I) and hydrolysis gas (G), dross particulate powder (P) 2 ) a reactor 52 for stirring with water, a gas collector 54 for collecting hydrolysis gas (G), and a first centrifuge 56 for centrifuging the aqueous solution (Q) and insoluble solids (I) It may include.
반응기(52)는, 드로스 미립자 파우더(P 2)와 물을 교반하여, 드로스 미립자 파우더(P 2)를 물 분해하기 위한 장치이다. Reactor 52, the fine particles by stirring the dross powder (P 2) and water, dross is a device for decomposing a particulate powder (P 2) water.
반응기(52)는 기체, 액체, 고체 상의 물질들을 교반 가능한 일반적인 반응기로 구성될 수 있다. 이러한 반응기(52)는, 미리 정해진 혼합 비율로 혼합된 드로스 미립자 파우더(P 2)와 물을 교반하여, 드로스 미립자 파우더(P 2)를 물 분해한다. 드로스 미립자 파우더(P 2)와 물의 혼합 비율은, 1 : 2 인 것이 바람직하나, 이에 한정되는 것은 아니다. The reactor 52 may be configured as a general reactor capable of stirring substances in a gas, liquid, or solid phase. The reactor 52 is stirred in the dross particulate powder (P 2 ) and water mixed at a predetermined mixing ratio to decompose the dross particulate powder (P 2 ) into water. The mixing ratio of the dross particulate powder (P 2 ) and water is preferably 1:2, but is not limited thereto.
이하에서는, 드로스 미립자 파우더(P 2)를 물과 교반할 경우에 발생하는 물리 화학적인 현상을 드로스 미립자 파우더(P 2)에 포함된 물질들의 성질 별로 나누어 설명한다.Hereinafter, the physicochemical phenomenon that occurs when the dross particulate powder (P 2 ) is stirred with water will be described by dividing the properties of the substances contained in the dross particulate powder (P 2 ) by properties.
먼저, 드로스 미립자 파우더(P 2)에 포함된 물질들 중 물에 용해되는 가용성을 갖는 가용성 고형분(S)은 물에 용해되며, 이로 인해 가용성 고형분(S)을 용질로서 포함하고 또한 물을 용매로서 포함하는 수용액(Q)이 생성된다. 이러한 가용성 고형분(S)은, 염화나트륨(NaCl)과, 염화칼륨(KCl) 등 플럭스(F)에 함유된 염화물염들을 주로 포함한다. 드로스 미립자 파우더(P 2)와 물의 혼합 비율이 1 : 2인 경우에, 수용액(Q) 중 염화물염의 농도는 약 20 %가 된다.First, among the substances contained in the dross particulate powder (P 2 ), the soluble solid component (S) having solubility in water is soluble in water, and thus contains the soluble solid component (S) as a solute and also water An aqueous solution (Q) containing as is produced. The soluble solid content (S) mainly includes chloride salts contained in flux (F), such as sodium chloride (NaCl) and potassium chloride (KCl). When the mixing ratio of the dross particulate powder (P 2 ) and water is 1:1, the concentration of the chloride salt in the aqueous solution (Q) is about 20%.
다음으로, 드로스 미립자 파우더(P 2)에 포함된 물질들 중 물에 용해되지 않는 불용성을 갖는 불용성 고형분(I)은 수용액(Q)에 분산 또는 침전된다. 불용성 고형분(I)은, 알루미늄, 알루미늄-마그네슘 합금, 마그네슘, 산화 알루미늄(Al 2O 3), 산화 마그네슘(MgO) 및 스피넬 산화물(MgAl 2O 4)를 주로 포함한다.Next, among the substances contained in the dross particulate powder (P 2 ), an insoluble solid (I) having an insolubility that does not dissolve in water is dispersed or precipitated in an aqueous solution (Q). The insoluble solid content (I) mainly includes aluminum, aluminum-magnesium alloy, magnesium, aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), and spinel oxide (MgAl 2 O 4 ).
다음으로, 드로스 미립자 파우더(P 2)에 포함된 물질들 중 물과 가수분해 반응되는 성질을 갖는 가수분해 반응물은 물에 의해 가수분해된다. 이러한 가수분해 반응에 의해 물 분해 고형분과 가수분해 가스(G)가 생성되고, 이에 수반하여 반응열이 발생한다. 가수분해 반응물은, 알루미늄(Al)과, 마그네슘(Mg)과, 알루미늄 카바이드(Al 4C 3) 등 구형 블랙 드로스(B 2)에 포함된 금속과 금속 화합물들을 주로 포함한다. 여기서, 알루미늄 카바이드(Al 4C 3)는, 알루미늄 폐캔의 최초 물질은 아니며, 알루미늄 폐캔을 가공하여 알루미늄 폐캔 스크랩을 제조하는 과정에서 생성된 부산물이다.Next, among the substances contained in the dross particulate powder (P 2 ), a hydrolysis reaction product having a property of hydrolyzing with water is hydrolyzed by water. The hydrolysis reaction generates water decomposition solids and hydrolysis gas (G), and consequently, heat of reaction is generated. The hydrolysis reaction product mainly includes metals and metal compounds contained in spherical black dross (B 2 ) such as aluminum (Al), magnesium (Mg), and aluminum carbide (Al 4 C 3 ). Here, aluminum carbide (Al 4 C 3 ) is not the first material of the aluminum waste cans, and is a by-product produced in the process of manufacturing the aluminum waste can scrap by processing the aluminum waste cans.
이러한 가수분해 반응물과 물의 가수분해 반응을 살펴보면, 반응식 1 내지 반응식 3과 같이, 알루미늄과 물이 가수분해 반응됨에 따라 산화 알루미늄과 수소가 생성되고, 마그네슘과 물이 가수분해 반응됨에 따라 산화 마그네슘과 수소가 생성되고, 알루미늄 카바이드와 물이 가수분해 반응됨에 따라 산화 알루미늄과 메탄이 생성된다. 특히, 알루미늄, 알루미늄 합금이 물과 접촉되면 가수분해 반응이 격렬하게 일어나 물의 온도는 약 90 ℃ 이상으로 상승되므로, 전술한 가수분해 반응은 이러한 온도 상승에 의해 더욱 촉진될 수 있다. Looking at the hydrolysis reaction of the hydrolysis reaction product and water, as shown in Reaction Schemes 1 to 3, aluminum oxide and hydrogen are generated as the aluminum and water are hydrolyzed, and magnesium oxide and hydrogen as the magnesium and water are hydrolyzed. Is produced, and aluminum oxide and methane are generated as the aluminum carbide and water are hydrolyzed. In particular, when the aluminum or aluminum alloy is in contact with water, the hydrolysis reaction occurs violently and the temperature of the water rises to about 90° C. or higher, so the above-described hydrolysis reaction can be further promoted by this temperature increase.
<반응식 1><Scheme 1>
2Al + 3H 2O → Al 2O 3 + 3H 2 + Heat2Al + 3H 2 O → Al 2 O 3 + 3H 2 + Heat
<반응식 2><Reaction Scheme 2>
Mg + H 2O → MgO + H 2 + HeatMg + H 2 O → MgO + H 2 + Heat
<반응식 3><Scheme 3>
Al 4C 3 + 6H 2O → 2Al 2O 3 + 3CH 4 + HeatAl 4 C 3 + 6H 2 O → 2Al 2 O 3 + 3CH 4 + Heat
전술한 가수분해 반응에 의해 생성된 물 분해 고형분은, 산화 알루미늄, 산화 마그네슘, 산화 알루미늄 합금, 카본 성분 등 불용성 고형분을 주로 포함하므로, 수용액(Q)에 분산 또는 침전된다. 따라서, 수용액(Q)에는, 구형 블랙 드로스(B 2)에 이미 포함되어 있던 불용성 고형분(I)과, 물 분해 반응에 의해 생성된 불용성 고형분이 각각 분산 또는 침전된다. 설명의 편의를 위해 이하에서는, 구형 블랙 드로스(B 2)에 이미 포함되어 있던 불용성 고형분(I)과, 물 분해 반응에 의해 생성된 불용성 고형분을 통칭하여 불용성 고형분(I)이라고 명명하기로 한다.The water-decomposed solid content produced by the hydrolysis reaction described above mainly contains insoluble solid content such as aluminum oxide, magnesium oxide, aluminum oxide alloy, and carbon components, and thus is dispersed or precipitated in an aqueous solution (Q). Therefore, the insoluble solid content (I) already contained in the spherical black dross (B 2 ) and the insoluble solid content generated by the water decomposition reaction are dispersed or precipitated in the aqueous solution Q, respectively. For convenience of description, hereinafter, the insoluble solid content (I) already included in the spherical black dross (B 2 ) and the insoluble solid content generated by the water decomposition reaction will be collectively referred to as an insoluble solid content (I). .
한편, 전술한 알루미늄, 마그네슘, 알루미늄 카바이드 이외에도 드로스 미립자 파우더(P 2)에 포함된 미량의 가수분해 반응물들이 가수분해 반응됨으로써, 다양한 가수분해 가스(G)가 생성된다. 이러한 가수분해 가스(G)의 조성 비율은 아래의 표 3과 같다.Meanwhile, in addition to the above-described aluminum, magnesium, and aluminum carbide, a small amount of hydrolysis reactants contained in the dross particulate powder (P 2 ) is hydrolyzed, thereby generating various hydrolysis gases (G). The composition ratio of the hydrolysis gas (G) is shown in Table 3 below.
구분division 가스 성분(%)Gas composition (%)
수소Hydrogen 메탄methane 에탄ethane 에텐Ethen 프로판Propane 프로펜Propene 황화수소Hydrogen sulfide
초기 포집(다량)Initial capture (large) 48.1448.14 51.5551.55 0.0200.020 0.0090.009 0.0090.009 0.0120.012 0.00470.0047
말기 포집(소량)Terminal capture (small amount) 92.1392.13 7.587.58 0.0030.003 0.0010.001 0.0010.001 0.0010.001 0.00200.0020
표 3에 기재된 바와 같이, 가수분해 가스(G)는, 주로 메탄 가스(CH 4)와 수소 가스(H 2)를 포함한다. 이러한 메탄 가스와 수소 가스는 가수분해 가스(G)의 발생량의 약 99%을 차지한다. 물 분해 공정 초기에는, 알루미늄, 알루미늄 합금, 알루미늄 카바이드의 물 분해 반응이 주로 진행되어 수소 가스와 메탄 가스가 주로 발생한다. 물 분해 공정의 시작 후 소정의 시간이 경과된 물 분해 공정 말기에는, 알루미늄, 알루미늄 합금의 물 분해 반응이 주로 진행되어 수소 가스가 주로 발생한다. 이러한 가수분해 가스(G)의 성분 분석은, ASTM D1945-03의 GC(Gas Chromatography) 분석 방법을 이용해 실시하는 것이 바람직하나, 이에 한정되는 것은 아니다.As shown in Table 3, the hydrolysis gas (G) mainly includes methane gas (CH 4 ) and hydrogen gas (H 2 ). The methane gas and the hydrogen gas account for about 99% of the generated amount of the hydrolysis gas (G). In the early stage of the water decomposition process, the water decomposition reaction of aluminum, aluminum alloy, and aluminum carbide mainly proceeds, and hydrogen gas and methane gas are mainly generated. At the end of the water decomposition process, a predetermined time has elapsed since the start of the water decomposition process, the water decomposition reaction of aluminum and aluminum alloy mainly proceeds, and hydrogen gas is mainly generated. The component analysis of the hydrolysis gas (G) is preferably carried out using the GC (Gas Chromatography) analysis method of ASTM D1945-03, but is not limited thereto.
한편, 가수분해 가스(G)의 발생량 측정 방법은 특별히 한정되지 않는다. 예를 들어, 다음과 같은 방법을 통해 가수분해 가스(G)의 발생량을 측정할 수 있다. 먼저, 지름 2㎝ 내지 5㎝의 구형 블랙 드로스(B 2)를 파쇄 및 분쇄한다. 다음으로, 구형 블랙 드로스(B 2)의 파분쇄물 중 0.5㎝(500㎛) 통과분을 반응 시료로서 획득한다. 이후에, 반응 시료 100g과 증류수 1L를 2L 용량을 갖는 밀폐된 유리 재질 플라스크에 투입한다. 다음으로, 유리 재질 플라스크에 설치된 반응기를 이용해 반응 시료와 증류수를 100rpm 내지 200 rpm으로 교반하여, 반응 시료를 물 분해한다. 이후에, 반응 시료의 물 분해에 의해 발생된 가수분해 가스(G)를 눈금이 새겨진 실린더를 이용해 증류수로부터 수상 치환하여 포집한다. 이러한 시험 과정을 통해 100g의 반응 시료를 물 분해하면 8L 내지 12L의 가수분해 가스(G)를 포집할 수 있다.Meanwhile, the method for measuring the amount of hydrolysis gas (G) generated is not particularly limited. For example, the generation amount of hydrolysis gas (G) can be measured by the following method. First, spherical black dross (B 2 ) having a diameter of 2 cm to 5 cm is crushed and ground. Next, a 0.5 cm (500 μm) passage in the pulverized product of the spherical black dross (B 2 ) is obtained as a reaction sample. Thereafter, 100 g of the reaction sample and 1 L of distilled water are introduced into a sealed glass-made flask having a 2 L capacity. Next, the reaction sample and distilled water are stirred at 100 rpm to 200 rpm using a reactor installed in a glass flask to decompose the reaction sample by water. Subsequently, the hydrolysis gas (G) generated by water decomposition of the reaction sample is collected by distillation of water from distilled water using a graduated cylinder. Water decomposition of 100 g of the reaction sample through such a test process can capture 8L to 12L of hydrolysis gas (G).
가스 포집기(54)는, 반응기(52)에서 생성된 가수분해 가스(G)를 포집하기 위한 장치이다.The gas collector 54 is a device for collecting the hydrolysis gas G generated in the reactor 52.
가스 포집기(54)의 구조는 특별히 한정되지 않으며, 가스 포집기(54)는 가스를 수용액으로부터 포집 가능한 일반적인 가스 포집기로 구성될 수 있다. 가스 포집기(54)는, 반응기(52)에 수용된 수용액(Q)으로부터 가수분해 가스(G)를 포집하여 가스 저장 유닛(100)으로 전달한다.The structure of the gas collector 54 is not particularly limited, and the gas collector 54 may be configured as a general gas collector capable of collecting gas from an aqueous solution. The gas collector 54 collects the hydrolysis gas G from the aqueous solution Q accommodated in the reactor 52 and delivers it to the gas storage unit 100.
도 7에 도시된 바와 같이, 가스 포집기(54)는, 가수분해 가스(G)에 포함된 가스들 중 실제로 재활용 가능한 가스의 순도를 높이거나 재활용 목적에 맞는 특정 가스를 다른 가스들로부터 분리할 수 있도록, 가수분해 가스(G)에 포함된 가스들을 분리 및 정제 가능한 가스 분리 정제기(54a)를 구비할 수 있다. 이러한 가스 분리 정제기(54a)의 분리 정제 방법은 특별히 한정되지 않는다. 예를 들어, 가스 분리 정제기(54a)는, 가수분해 가스(G)에 포함된 가스들을 압력순환흡착(Pressure swing adsorption) 방법을 통해 분리 정제할 수 있다. 또한, 가스 분리 정제기(54a)는, 가수분해 가스(G)로부터 분리 정제된 메탄 가스를 수증기 메탄 개질(Steam Methane Reforming)을 통해 개질하여 수소 가스로 전환할 수 있다.As shown in FIG. 7, the gas collector 54 can increase the purity of the gas that is actually recyclable among the gases contained in the hydrolysis gas G, or separate a specific gas suitable for the purpose of recycling from other gases. Thus, a gas separation purifier 54a capable of separating and purifying gases contained in the hydrolysis gas G may be provided. The method for separating and purifying the gas separation purifier 54a is not particularly limited. For example, the gas separation purifier 54a may separate and purify the gas contained in the hydrolysis gas G through a pressure swing adsorption method. In addition, the gas separation purifier 54a may convert methane gas purified from the hydrolysis gas G through hydrogen methane reforming to convert it to hydrogen gas.
한편, 가수분해 가스(G)는, 격렬한 가수분해 반응에 의해 발생되므로, 미량의 수분을 포함할 수 있다. 이를 해결하기 위하여, 가스 포집기(54)는, 수분 트랩기(54b), 수분 제거기(미도시) 및 탈황기(미도시) 중 적어도 하나를 더 포함할 수 있다. 도 7에 도시된 바와 같이, 이러한 수분 트랩기(54b), 수분 제거기 및 탈황기는, 가스 분리 정제기(54a)의 상류에 설치되는 것이 바람직하나 이에 한정되는 것은 아니다.On the other hand, since the hydrolysis gas (G) is generated by violent hydrolysis reaction, it may contain a trace amount of moisture. To solve this, the gas collector 54 may further include at least one of a moisture trap 54b, a moisture eliminator (not shown) and a desulfurizer (not shown). As shown in FIG. 7, such a water trap 54b, a water remover, and a desulfurizer are preferably installed upstream of the gas separation purifier 54a, but are not limited thereto.
제1 원심 분리기(56)는 수용액(Q)과 불용성 고형분(I)을 원심 분리하기 위한 장치이다.The first centrifugal separator 56 is a device for centrifuging an aqueous solution (Q) and an insoluble solid content (I).
제1 원심 분리기(56)는 B.S.P 원심 분리기로 구성되는 것이 바람직하나, 이에 한정되는 것은 아니다. 제1 원심 분리기(56)는, 수용액(Q)과 불용성 고형분(I)을 분리 가능하도록 미리 정해진 제3 기준 입도를 갖는 제1 필터를 포함할 수 있다. 제1 필터는 부직포 필터이고, 제3 기준 입도는 7㎛ 내지 15㎛인 것이 바람직하나, 이에 한정되는 것은 아니다.The first centrifuge 56 is preferably composed of a B.S.P centrifuge, but is not limited thereto. The first centrifugal separator 56 may include a first filter having a predetermined third reference particle size to separate the aqueous solution (Q) and insoluble solids (I). The first filter is a nonwoven filter, and the third reference particle size is preferably 7 μm to 15 μm, but is not limited thereto.
이러한 제1 원심 분리기(56)는, 수용액(Q)과 불용성 고형분(I)을 제1 필터를 이용해 원심 분리한 후, 수용액(Q)은 석출 유닛(60)으로 전달하고 불용성 고형분(I)은 불용성 고형분 저장 유닛(90)으로 전달한다.The first centrifugal separator 56, after centrifuging the aqueous solution (Q) and the insoluble solid content (I) using a first filter, the aqueous solution (Q) is transferred to the precipitation unit 60 and the insoluble solid content (I) is Transfer to the insoluble solids storage unit 90.
한편, 불용성 고형분(I)과 수용액(Q)은 제1 원심 분리기(56)에 의해 분리되지만, 수용액(Q) 중 일부는 분리되지 못하고 불용성 고형분(I)의 표면에 흡착될 수 있다. 그런데, 수용액(Q)은 가용성 고형분(S)을 포함하므로, 불용성 고형분(I)을 재활용하여 제조한 제조물이 가용성 고형분(S)에 포함된 염화물들에 의해 부식될 우려가 있다. 또한, 불용성 고형분(I)을 건조 또는 소성할 때 가용성 고형분(S)에 포함된 염화물들로부터 산화 나트늄(Na 2O), 산화 칼륨 (K 20)이 발생하므로, 이러한 산화 나트늄과 산화 칼륨에 의해 불용성 고형분(I)을 재활용하여 제조한 제조물의 내구성이 떨어질 우려가 있다.On the other hand, the insoluble solid content (I) and the aqueous solution (Q) are separated by the first centrifugal separator 56, but some of the aqueous solution (Q) is not separated and can be adsorbed on the surface of the insoluble solid content (I). However, since the aqueous solution (Q) contains soluble solids (S), there is a fear that the products prepared by recycling the insoluble solids (I) will be corroded by chlorides contained in the soluble solids (S). In addition, when drying or firing the insoluble solid (I), sodium oxide (Na 2 O) and potassium oxide (K 2 0) are generated from chlorides contained in the soluble solid (S). There is a concern that the durability of a product manufactured by recycling insoluble solids (I) by potassium may be deteriorated.
이를 방지하기 위하여, 제1 원심 분리기(56)는 불용성 고형분(I)의 염소 농도가 미리 정해진 기준 염소 농도 이하가 되도록 증류수를 이용해 수용액(Q)이 흡착된 불용성 고형분(I)을 세척한 후 불용성 고형분(I)과 불용성 고형분(I)의 세척에 사용된 증류수를 원심 분리할 수 있다. 이러한 증류수를 이용한 불용성 고형분(I)의 세척 공정은, 불용성 고형분(I)의 염소 농도가 기준 염소 농도 이하에 될까지 반복적으로 수행될 수 있다. 이러한 기준 염소 농도는 300 ppm 인 것이 바람직하나, 이에 한정되는 것은 아니다. 여기서, 제1 원심 분리기(56)는, 후술할 석출 유닛(60)의 응축수 저장 탱크(660)로부터 전달된 응축수(D)를 증류수로서 이용하여 불용성 고형분(I)을 세척하는 것이 바람직하나, 이에 한정되는 것은 아니다.To prevent this, the first centrifugal separator 56 washes the insoluble solid (I) adsorbed with the aqueous solution (Q) using distilled water so that the chlorine concentration of the insoluble solid (I) is less than or equal to a predetermined reference chlorine concentration, and then insoluble The distilled water used for washing solid (I) and insoluble solid (I) can be centrifuged. The washing process of the insoluble solid content (I) using such distilled water may be repeatedly performed until the chlorine concentration of the insoluble solid content (I) becomes below the reference chlorine concentration. The reference chlorine concentration is preferably 300 ppm, but is not limited thereto. Here, the first centrifugal separator 56, it is preferable to wash the insoluble solid (I) by using the condensate (D) transferred from the condensate storage tank 660 of the precipitation unit 60 to be described later as distilled water, It is not limited.
도 9는 도 7의 석출 유닛의 구성을 개략적으로 나타내는 개략도이고, 도 10은 염화물염 수용액의 용해도 그래프이다.9 is a schematic diagram schematically showing the configuration of the precipitation unit of FIG. 7, and FIG. 10 is a solubility graph of an aqueous chloride salt solution.
다음으로 석출 유닛(60)은 가용성 고형분(S)이 수용액(Q)으로부터 석출되도록 수용액(Q)을 농축시키기 위한 장치이다.Next, the precipitation unit 60 is a device for concentrating the aqueous solution Q so that the soluble solid content S is precipitated from the aqueous solution Q.
도 9에 도시된 바와 같이, 석출 유닛(60)은, 물 분해 유닛(50)의 제1 원심 분리기(56)로부터 전달된 수용액(Q)을 펌핑하여 공급하는 원수 공급 펌프(610)와, 원수 공급 펌프(610)로부터 공급된 수용액(Q)이 농축되도록 수용액(Q)에 포함된 물을 증발시켜 가용성 고형분(S)을 수용액(Q)으로부터 각각 석출시키되, 서로 상이한 환경 조건 하에서 수용액에 포함된 물의 증발을 각각 유도하여, 서로 상이한 석출 순서 및 석출 시기에 따라 염화나트륨(NaCl)과 염화칼륨(KCl)을 석출시키는 복수의 증발 모듈들(620, 630, 640)과, 증발 모듈들(620, 630, 640) 중 적어도 하나에서 발생하는 증기를 응축하는 응축기(650)와, 증발 모듈들(620, 630, 640) 또는 응축기(650)에서 발생한 응축수(D)가 저장되는 응축수 저장 탱크(660)와, 증발 모듈들(620, 630, 640) 중 적어도 하나에 진공압을 선택적으로 인가하는 압력 조절 부재(670)와, 가용성 고형분(S)이 석출된 가용성 고형분 석출물(S 1)이 저장되는 석출물 저장 탱크(6)와, 가용성 고형분 석출물(S 1)과 수용액(Q)을 원심 분리하는 제2 원심 분리기(690) 등을 구비할 수 있다.As shown in FIG. 9, the precipitation unit 60 includes a raw water supply pump 610 for pumping and supplying an aqueous solution Q delivered from the first centrifugal separator 56 of the water decomposition unit 50, and raw water Evaporated water contained in the aqueous solution (Q) so that the aqueous solution (Q) supplied from the feed pump (610) is concentrated to precipitate soluble solids (S) from the aqueous solution (Q), respectively, but contained in the aqueous solution under different environmental conditions A plurality of evaporation modules (620, 630, 640) and evaporation modules (620, 630,) for inducing evaporation of water to precipitate sodium chloride (NaCl) and potassium chloride (KCl) according to different deposition order and precipitation timing, respectively A condenser 650 for condensing steam generated in at least one of 640, a condensate storage tank 660 in which condensate D generated in the evaporation modules 620, 630, 640 or condenser 650 is stored, A pressure regulating member 670 for selectively applying vacuum pressure to at least one of the evaporation modules 620, 630, and 640, and a precipitate storage tank in which soluble solids precipitate S 1 from which soluble solids S are deposited is stored. (6) and a second centrifuge 690 for centrifuging the soluble solid precipitate (S 1 ) and the aqueous solution (Q).
석출 유닛(60)은, 가용성 고형분(S)에 포함된 염화물염들을 서로 상이한 석출 순서 및 석출 시기에 따라 석출시킬 수 있도록 각각 마련되는 복수의 증발 모듈들(620, 630, 640)을 구비한다. 증발 모듈의 설치 개수는 특별히 한정되지 않는다. 설명의 편의를 위해 이하에서는, 가용성 고형분(S)에 포함된 염화물염들을 서로 상이한 3가지 방식의 석출 순서 및 석출 시기에 따라 각각 석출시킬 수 있도록, 제1 내지 제3 증발 모듈들(620, 630, 640) 등 총 3개의 증발 모듈이 설치되는 경우를 예로 들어 석출 유닛(60)에 대해 설명하기로 하나.The precipitation unit 60 includes a plurality of evaporation modules 620, 630, and 640, which are respectively provided so that chloride salts contained in the soluble solid component S can be precipitated according to different precipitation orders and precipitation times. The number of evaporation modules installed is not particularly limited. For convenience of description, hereinafter, the first to third evaporation modules 620 and 630 allow the chloride salts contained in the soluble solids (S) to be precipitated according to three different precipitation methods and precipitation times, respectively. , 640) The precipitation unit 60 will be described as an example in which a total of three evaporation modules are installed.
원수 공급 펌프(610)는, 제1 원심 분리기(56)로부터 불용성 고형분(I)과 분리된 상태로 전달된 수용액(Q)을 펌핑하여, 증발 모듈들(620, 630, 640) 중 적어도 하나의 증발 모듈들(620, 630, 640)에 공급하도록 마련된다. 예를 들어, 도 9에 도시된 바와 같이, 원수 공급 펌프(610)는 증발 모듈들(620, 630, 640) 중 후술할 에너지 전달 단계의 마지막 단계에 위치한 제3 증발 모듈(640)에 공급하도록 마련될 수 있다. 이를 위하여, 원수 공급 펌프(610)의 흡입부는 유로(611a)를 통해 제1 원심 분리기(56)와 연결될 수 있고, 원수 공급 펌프(610)의 토출부는 유로(644a)를 통해 제1 증발 모듈(620)과 연결될 수 있다.The raw water supply pump 610 pumps an aqueous solution (Q) delivered in a separated state from the insoluble solids (I) from the first centrifugal separator (56) to at least one of the evaporation modules (620, 630, 640) It is provided to supply to the evaporation modules (620, 630, 640). For example, as shown in FIG. 9, the raw water supply pump 610 is supplied to the third evaporation module 640 located in the last step of the energy transfer step, which will be described later, among the evaporation modules 620, 630, and 640. Can be prepared. To this end, the suction portion of the raw water supply pump 610 may be connected to the first centrifugal separator 56 through the flow path 611a, and the discharge portion of the raw water supply pump 610 may be connected to the first evaporation module through the flow path 644a ( 620).
한편, 도 9에 도시된 바와 같이, 원수 공급 펌프(610)에 의해 제3 증발 모듈(640)에 공급된 수용액(Q)의 일부는 제3 증발 모듈(640)과 연결된 제2 증발 모듈(630)로 전달될 수 있고, 제2 증발 모듈(630)에 전달된 수용액(Q)의 일부는 제2 증발 모듈(630)과 연결된 제1 증발 모듈(620)에 전달될 수 있다. 즉, 증발 모듈들(620, 630, 640)은 에너지 전달 방향의 반대 방향을 따라 수용액(Q)을 전달받을 수 있도록 상호 연결되는 것이다. 이 경우에, 증발 모듈들(620, 630, 640) 각각에는, 수용액(Q)의 가열을 통한 가용성 고형분(S)의 석출 작업이 시작되기 이전에 미리 정해진 수위까지 수용액(Q)이 공급되는 것이 바람직하나 이에 한정되는 것은 아니다.Meanwhile, as illustrated in FIG. 9, a part of the aqueous solution Q supplied to the third evaporation module 640 by the raw water supply pump 610 is connected to the third evaporation module 640 and the second evaporation module 630 ), and a part of the aqueous solution Q delivered to the second evaporation module 630 may be delivered to the first evaporation module 620 connected to the second evaporation module 630. That is, the evaporation modules 620, 630, and 640 are interconnected to receive the aqueous solution Q along the opposite direction of the energy transfer direction. In this case, to each of the evaporation modules 620, 630, and 640, the aqueous solution Q is supplied to a predetermined water level before the precipitation operation of the soluble solids S through heating of the aqueous solution Q begins. Preferably, but not limited to.
이러한 증발 모듈들(620, 630, 640)은 각각, 원수 공급 펌프(610)와 직접 연결되도록 마련될 수도 있다. 이 경우에, 원수 공급 펌프(610)로부터 공급된 수용액은 다른 증발 모듈(620, 630, 640)을 경유하지 않고 각각의 증발 모듈(620, 630, 640)에 직접적으로 충전될 수 있다. 설명의 편의를 위해, 원수 공급 펌프(610)로부터 공급된 수용액(Q)이 에너지 전달 방향과는 반대 방향으로 증발 모듈들(620, 630, 640)에 순차적으로 전달되도록 증발 모듈들(620, 630, 640)이 상호 연결되는 경우를 기준으로 석출 유닛(60)에 대해 설명하기로 한다.Each of these evaporation modules 620, 630, and 640 may be provided to be directly connected to the raw water supply pump 610. In this case, the aqueous solution supplied from the raw water supply pump 610 can be directly charged to each evaporation module 620, 630, 640 without going through other evaporation modules 620, 630, 640. For convenience of explanation, the evaporation modules 620, 630 such that the aqueous solution Q supplied from the raw water supply pump 610 is sequentially delivered to the evaporation modules 620, 630, 640 in a direction opposite to the energy transfer direction. , 640) The precipitation unit 60 will be described on the basis of the interconnection.
증발 모듈들(620, 630, 640)은, 미리 정해진 에너지 전달 단계의 각각의 단계마다 하나씩 단계적으로 배치된다. 예를 들어, 에너지 전달 단계가 총 3 단계로 구성되는 경우에, 제1 단계에는 제1 증발 모듈(620)이 배치될 수 있고, 제2 단계에는 제2 증발 모듈(630)이 배치될 수 있고, 제3 단계에는 제3 증발 모듈(640)이 배치될 수 있다.The evaporation modules 620, 630, and 640 are arranged step by step, one for each step of a predetermined energy transfer step. For example, when the energy transfer step is composed of a total of three steps, a first evaporation module 620 may be disposed in the first step, and a second evaporation module 630 may be disposed in the second step. In a third step, a third evaporation module 640 may be disposed.
수용액 온도Aqueous solution temperature 수용액(Q)에서의용해도(%)Solubility in aqueous solution (Q) (%) 단일 염화물염 수용액에서의 용해도(%)Solubility in aqueous single chloride salt solution (%)
NaClNaCl KCl KCl NaClNaCl KClKCl
100℃100℃ 2828 3535 3838 5757
75℃75℃ 2929 2828 3838 5050
50℃50℃ 3030 2222 3535 4242
도 10 및 표 4를 참조하면, 가용성 고형분(S)이 용해된 수용액(Q)에서의 염화나트륨의 용해도 및 염화칼륨의 용해도는 각각, 염화나트륨만 용해된 단일 염화물염 수용액에서의 염화나트륨의 용해도 및 염화칼륨만 용해된 단일 염화물염 수용액에서의 염화칼륨의 용해도에 비해 상대적으로 낮다. 이러한 용해도 변화는, 염화나트륨과 염화칼륨이 공통적으로 포함하는 염소 이온(Cl -)에 의해 야기되는 공통 이온 효과로 인해, 수용액(Q)에서의 염화나트륨의 용해도와 염화칼륨의 용해도가 각각 전술한 단일 염화물염 용액들에 비해 감소됨에 기인한 것이다.10 and Table 4, the solubility of sodium chloride and the solubility of potassium chloride in an aqueous solution (Q) in which the soluble solids (S) are dissolved are, respectively, the solubility of sodium chloride and only potassium chloride in a single chloride salt aqueous solution in which only sodium chloride is dissolved. Solubility of potassium chloride in aqueous single chloride salt solution is relatively low. This change in solubility is due to the common ionic effect caused by chlorine ions (Cl -) commonly contained in sodium chloride and potassium chloride, solubility of sodium chloride in aqueous solution (Q) and solubility of potassium chloride are respectively the single chloride salt solution described above. It is due to the decrease compared to the field.
또한, 도 10 및 표 4를 참조하면, 수용액(Q)에서의 염화나트륨의 용해도는 수용액(Q)의 온도가 낮아질수록 점진적으로 증가하고, 수용액(Q)에서의 염화칼륨의 용해도는 수용액(Q)의 온도가 높아질수록 점진적으로 증가한다. 따라서, 수용액(Q)의 온도가 높아질수록 염화나트륨이 염화칼륨에 비해 우선적으로 석출되고, 수용액(Q)의 온도가 낮아질수록 염화칼륨이 염화나트륨에 비해 우선적으로 석출된다.10 and Table 4, the solubility of sodium chloride in the aqueous solution (Q) gradually increases as the temperature of the aqueous solution (Q) decreases, and the solubility of potassium chloride in the aqueous solution (Q) of the aqueous solution (Q) The temperature increases gradually. Therefore, as the temperature of the aqueous solution Q increases, sodium chloride preferentially precipitates compared to potassium chloride, and as the temperature of the aqueous solution Q decreases, potassium chloride precipitates preferentially compared to sodium chloride.
일반적으로 염화물염의 석출 공정은, 단일의 증발 모듈에서, 외부의 증기 공급원으로부터 공급된 약 100 ℃ 이상인 고온의 증기(이하, '원증기'라고 함)를 수용액을 가열하기 위한 열원으로 이용해 수용액을 농축시킴으로써 진행한다. 이처럼 단일의 증발 모듈에서, 원증기를 열원으로 이용해 약 100 ℃ 에 이상의 고온으로 가열된 수용액을 대상으로 가용성 고형분의 석출 공정을 진행하면, 염화나트륨이 우선적으로 석출된 후 염화칼륨이 후속적으로 석출된다. 이로 인해, 수용액에 포함된 물의 상당량이 증발되어 수용액에서의 염화물염의 농도가 고농도까지 상승된 후에야 비로서 염화칼륨이 석출되기 시작된다. 그러면, 수용액과 혼합되어 점성이 강한 슬러리 상태인 염화나트륨 석출물은, 증발 모듈의 내면에 강하게 달라붙어 유착되거나, 염화칼륨의 석출을 방해하게 된다. 따라서, 종래의 단일 증발 모듈을 이용한 염화물염 석출 공정에 의하면, 염화나트륨에 비해 고부가가치를 갖는 염화칼륨을 석출을 통해 원할하게 회수하기 어렵다는 문제점이 있다.In general, the precipitation process of chloride salt is concentrated in a single evaporation module, using high temperature steam (hereinafter referred to as'primary vapor') of about 100° C. or higher supplied from an external steam source as a heat source for heating the aqueous solution. To proceed. In such a single evaporation module, when the precipitation process of a soluble solid content is performed on an aqueous solution heated to a high temperature of about 100° C. or higher by using the original steam as a heat source, sodium chloride is preferentially precipitated, and then potassium chloride is subsequently precipitated. Due to this, a significant amount of water contained in the aqueous solution is evaporated, and the potassium chloride starts to precipitate as a ratio only after the concentration of the chloride salt in the aqueous solution is raised to a high concentration. Then, the sodium chloride precipitate, which is mixed with the aqueous solution and has a viscous slurry, strongly adheres to the inner surface of the evaporation module and adheres, or interferes with the precipitation of potassium chloride. Therefore, according to the conventional chloride salt precipitation process using a single evaporation module, there is a problem that it is difficult to smoothly recover potassium chloride having a high added value compared to sodium chloride through precipitation.
그런데, 석출 유닛(60)은 서로 상이한 환경 조건을 갖는 복수의 증발 모듈들(620, 630, 640)을 구비한다. 여기서, 환경 조건이라, 수용액(Q)의 증발 온도, 증발 모듈들(620, 630, 640)의 내부 압력, 수용액(Q)에서의 염화물염들 각각의 용해도 등, 가용성 고형분(S)의 석출 양상 조절에 관련된 조건을 말한다.However, the precipitation unit 60 is provided with a plurality of evaporation modules (620, 630, 640) having different environmental conditions from each other. Here, as the environmental conditions, the evaporation temperature of the aqueous solution (Q), the internal pressure of the evaporation modules (620, 630, 640), the solubility of each of the chloride salts in the aqueous solution (Q), such as the precipitation of soluble solids (S) Refers to conditions related to regulation.
이러한 석출 유닛(60)에 의하면, 증발 모듈들(620, 630, 640) 각각의 환경 조건의 조절을 통해, 석출 순서, 석출 시기, 기타 염화나트륨과 염화칼륨의 석출 양상을 각각의 증발 모듈(620, 630, 640)마다 개별적으로 정해할 수 있다.According to the precipitation unit 60, the evaporation modules (620, 630, 640) through the adjustment of the environmental conditions of each, the order of precipitation, precipitation time, other evaporation modules of sodium chloride and potassium chloride, each evaporation module (620, 630) , 640).
예를 들어, 증발 모듈들(620, 630, 640) 어느 하나는 염화나트륨이 염화칼륨에 비해 상당히 이른 시점부터 우선적으로 석출되도록 당해 증발 모듈(620, 630, 640)의 환경 조건을 정할 수 있다.For example, any one of the evaporation modules 620, 630, and 640 may determine the environmental conditions of the evaporation modules 620, 630, and 640 such that sodium chloride preferentially precipitates from a point earlier than potassium chloride.
예를 들어, 증발 모듈들(620, 630, 640) 중 다른 하나는 염화나트륨과 염화칼륨이 거의 동일한 시점부터 함께 석출되도록 당해 증발 모듈(620, 630, 640)의 환경 조건을 정할 수 있다.For example, the other of the evaporation modules 620, 630, and 640 may determine the environmental conditions of the evaporation modules 620, 630, and 640 such that sodium chloride and potassium chloride precipitate together from about the same time point.
예를 들어, 증발 모듈들(620, 630, 640) 또 다른 하나는 염화칼륨이 염화나트륨에 비해 상당히 이른 시점부터 우선적으로 석출되도록 당해 증발 모듈(620, 630, 640)의 환경 조건을 정할 수 있다.For example, another of the evaporation modules 620, 630, and 640 may determine the environmental conditions of the evaporation modules 620, 630, and 640 such that potassium chloride is preferentially precipitated from a point earlier than sodium chloride.
이러한 석출 유닛(60)은, 염화칼륨의 우선적인 석출 공정을 통해 고부가가치를 갖는 염화칼륨을 원활하게 회수할 수 있으므로, 수용액(Q)으로부터 회수되지 못한 채 폐기되는 염화칼륨의 양을 최소화시킬 수 있고, 석출 공정에 소요되는 시간을 줄일 수 있다.Since the precipitation unit 60 can smoothly recover potassium chloride having high added value through a preferential precipitation process of potassium chloride, it is possible to minimize the amount of potassium chloride that is discarded without being recovered from the aqueous solution (Q). The time required for the process can be reduced.
한편, 원증기(E)를 이용해 수용액(Q)을 가열할 때 수용액(Q)에 포함된 물이 증발되어 발생하는 증기(이하, '발생 증기'라고 함)를 대기 중으로 그대로 방출하면, 발생 증기가 갖는 폐열에 상당한 열 손실로 인해 석출 공정의 에너지 효율이 감소하게 된다. 이를 해결하기 위해, 증발 모듈들(620, 630, 640)은, 미리 정해진 에너지 전달 단계의 특정 단계에 위치한 증발 모듈(620, 630, 640)에서 발생한 발생 증기(E 1, E 2, E 3)를 상기 특정 단계에 비해 미리 정해진 에너지 전달 단계의 후단계에 위치한 증발 모듈(620, 630, 640)에서 수용액(Q)을 가열하기 위한 열원으로 이용할 수 있도록 마련되는 것이 바람직하다.On the other hand, when heating the aqueous solution (Q) using the original steam (E), when the water contained in the aqueous solution (Q) evaporates and releases the steam (hereinafter referred to as'generated steam') to the atmosphere, the generated steam The energy efficiency of the precipitation process is reduced due to the significant heat loss in the waste heat. To solve this, the evaporation modules 620, 630, 640 generate steam (E 1 , E 2 , E 3 ) generated by the evaporation modules 620, 630, 640 located in a specific step of a predetermined energy transfer step. It is preferable that the evaporation modules (620, 630, 640) located at a later stage of a predetermined energy transfer stage are used as a heat source for heating the aqueous solution (Q) compared to the specific stage.
예를 들어, 수용액(Q)이 가장 고온을 갖는 분위기 하에서 석출 공정이 진행되는 제1 증발 모듈(620)은 원증기(E)를 열원으로 이용 가능하게 마련될 수 있다. 예를 들어, 제1 증발 모듈(620)에 비해 낮은 온도 분위기 하에서 석출 공정이 진행되는 제2 증발 모듈(630)은 제1 증발 모듈(620)에서 발생한 발생 증기(E 1)를 열원으로 이용 가능하게 마련될 수 있다. 예를 들어, 제2 증발 모듈(630)에 비해 낮은 온도 분위기 하에서 석출 공정이 진행되는 제3 증발 모듈(640)은 제2 증발 모듈(630)에서 발생한 발생 증기(E 2)를 열원으로 이용 가능하게 마련될 수 있다. 이를 통해, 석출 유닛(60)은, 회수되지 못한 채 외부로 방사되는 발생 증기(E 1, E 2)의 폐열을 최소화 가능하므로, 석출 공정의 에너지 효율을 향상시킬 수 있다.For example, the first evaporation module 620 in which the precipitation process is performed in an atmosphere in which the aqueous solution Q has the highest temperature may be provided to use the original vapor E as a heat source. For example, the second evaporation module 630 in which the precipitation process is performed under a lower temperature atmosphere than the first evaporation module 620 can use the generated steam E 1 generated in the first evaporation module 620 as a heat source Can be provided. For example, the third evaporation module 640 in which the precipitation process is performed under a lower temperature atmosphere than the second evaporation module 630 can use the generated steam E 2 generated in the second evaporation module 630 as a heat source Can be provided. Through this, the precipitation unit 60 can minimize the waste heat of the generated steam (E 1 , E 2 ) emitted to the outside without being recovered, thereby improving the energy efficiency of the precipitation process.
이하에서는, 전술한 수용액(Q) 및 에너지의 전달 방식에 따라 가용성 고형분(S)의 석출 공정을 진행 가능하게 증발 모듈들(620, 630, 640)이 마련되는 경우를 기준으로 각각의 증발 모듈의 구조에 대해 설명하기로 한다.Hereinafter, based on the case where the evaporation modules 620, 630, and 640 are provided to enable the precipitation process of the soluble solid content (S) according to the above-described aqueous solution (Q) and energy delivery method, The structure will be described.
증발 모듈들(620, 630, 640)의 구조는 특별히 한정되지 않는다.The structure of the evaporation modules 620, 630, 640 is not particularly limited.
증발 모듈들(620, 630, 640) 각각은, 미리 정해진 기준 온도로 수용액(Q)을 가열한 후, 수용액(Q)에 포함된 물의 증발 온도가 기준 온도가 되도록 조절된 압력 분위기 하에서 물의 증발을 유도하여, 가용성 고형분(S)을 석출시킬 수 있도록 마련된다. 여기서, 기준 온도는, 증발 모듈들(620,630, 640) 중 당해 증발 모듈을 이용해 구현하고자 하는 염화나트륨과 염화칼륨의 석출 순서 및 석출 시기에 따라 증발 모듈들(620, 630, 640)마다 개별적으로 정해질 수 있다.Each of the evaporation modules (620, 630, 640), after heating the aqueous solution (Q) to a predetermined reference temperature, the evaporation of water under a pressure atmosphere controlled so that the evaporation temperature of the water contained in the aqueous solution (Q) becomes the reference temperature Induction, it is provided to precipitate the soluble solid (S). Here, the reference temperature may be individually determined for each of the evaporation modules (620, 630, 640) according to the precipitation order and the precipitation time of sodium chloride and potassium chloride to be implemented using the evaporation module among the evaporation modules (620,630, 640). have.
예를 들어, 제1 증발 모듈(620)은, 수용액(Q)을 미리 정해진 제1 기준 온도로 가열하는 제1 리보일러(621)와, 미리 정해진 제1 기준 온도로 가열된 수용액(Q)을 제1 리보일러(621)로부터 전달받으며, 수용액(Q)에 포함된 물의 증발 온도가 미리 정해진 제1 기준 온도가 되도록 조절된 내부 압력 하에서 물의 증발을 유도하여, 가용성 고형분(S)을 석출시키는 제1 증발기(622)와, 수용액(Q)을 미리 정해진 순서를 따라 제1 리보일러(621)와 제1 증발기(622)에 순환시키는 제1 순환 펌프(623) 등을 가질 수 있다.For example, the first evaporation module 620 includes a first reboiler 621 that heats the aqueous solution Q to a first predetermined reference temperature, and an aqueous solution Q heated to a first predetermined reference temperature. It is delivered from the first reboiler 621 and induces the evaporation of water under an internal pressure controlled so that the evaporation temperature of the water contained in the aqueous solution (Q) becomes a predetermined first reference temperature, thereby precipitating soluble solids (S) 1 may have an evaporator 622 and a first circulation pump 623 for circulating the aqueous solution Q to the first reboiler 621 and the first evaporator 622 in a predetermined order.
제1 기준 온도는 수용액(Q)에서의 염화나트륨의 용해도가 염화칼륨의 용해도에 비해 미리 정해진 제1 기준 값 이상만큼 낮은 환경 조건 하에서 물의 증발을 유도하여, 염화나트륨을 염화칼륨에 비해 우선적으로 석출시킬 수 있도록 정해지는 것이 바람직하다. 제1 기준 값은, 특별히 한정되지 않으며, 염화나트륨의 석출 시작 시점으로부터 상당한 시간이 경과된 후에야 염화칼륨의 석출이 비로서 시작될 수 있을 정도의 용해도 특성을 갖는 수용액(Q)의 온도가 제1 증발기(622)에서의 물의 증발 온도가 되도록 설정되는 것이 바람직하다. 예를 들어, 제1 리보일러(621)에서의 제1 기준 온도는, 수용액(Q)에서의 염화나트륨의 용해도가 약 28 % 이고 염화칼륨의 용해도가 약 35 % 인 100 ℃ 내지 110 ℃ 일 수 있다.The first reference temperature is determined to induce evaporation of water under environmental conditions where the solubility of sodium chloride in aqueous solution (Q) is lower than the solubility of potassium chloride by a predetermined first reference value or higher, so that sodium chloride can be preferentially precipitated compared to potassium chloride. It is desirable to lose. The first reference value is not particularly limited, and the temperature of the aqueous solution Q having a solubility characteristic such that precipitation of potassium chloride can be started as a ratio only after a considerable time has elapsed from the start time of the precipitation of sodium chloride is the first evaporator 622 It is preferably set to be the evaporation temperature of water in ). For example, the first reference temperature in the first reboiler 621 may be 100°C to 110°C in which the solubility of sodium chloride in aqueous solution Q is about 28% and the solubility of potassium chloride is about 35%.
예를 들어, 제2 증발 모듈(630)은, 수용액(Q)을 미리 정해진 제2 기준 온도로 가열하는 제2 리보일러(631)와, 미리 정해진 제2 기준 온도로 가열된 수용액(Q)을 제2 리보일러(631)로부터 전달받으며, 수용액(Q)에 포함된 물의 증발 온도가 미리 정해진 제2 기준 온도가 되도록 조절된 내부 압력 하에서 물의 증발을 유도하여, 가용성 고형분(S)을 석출시키는 제2 증발기(632)와, 수용액(Q)을 미리 정해진 순서를 따라 제2 리보일러(631)와 제2 증발기(632)에 순환시키는 제2 순환 펌프(633) 등을 가질 수 있다.For example, the second evaporation module 630 includes a second reboiler 631 which heats the aqueous solution Q to a predetermined second reference temperature, and an aqueous solution Q heated to a predetermined second reference temperature. The agent which is delivered from the second reboiler 631 and induces the evaporation of water under an internal pressure controlled so that the evaporation temperature of the water contained in the aqueous solution Q becomes a predetermined second reference temperature, thereby precipitating soluble solids (S) 2 may have an evaporator 632 and a second circulation pump 633 for circulating the aqueous solution Q to the second reboiler 631 and the second evaporator 632 in a predetermined order.
제2 기준 온도는 수용액(Q)에서의 염화나트륨의 용해도와 염화칼륨의 용해도의 차이가 미리 정해진 제2 기준 값 이하인 환경 조건 하에서 물의 증발을 유도하여, 염화나트륨과 염화칼륨을 함께 석출시킬 수 있도록 정해지는 것이 바람직하다. 제2 기준 값은, 특별히 한정되지 않으며, 염화나트륨의 석출 시작 시점과 염화칼륨의 석출 시작 시점의 차이가 작아 염화나트륨과 염화칼륨이 주로 함께 석출될 수 있는 용해도 특성을 갖는 수용액(Q)의 온도가 제2 증발기(632)에서의 물의 증발 온도가 되도록 설정되는 것이 바람직하다. 예를 들어, 제2 기준 온도는 수용액(Q)에서의 염화나트륨의 용해도가 약 29 %이고 염화칼륨의 용해도가 약 28% 인 약 70 ℃ 내지 ℃ 일 수 있다.The second reference temperature is preferably determined so that the difference between the solubility of sodium chloride and the solubility of potassium chloride in the aqueous solution (Q) is less than a predetermined second reference value to induce evaporation of water and precipitate sodium chloride and potassium chloride together. Do. The second reference value is not particularly limited, and the difference between the start time of the precipitation of sodium chloride and the start time of the potassium chloride is small, so that the temperature of the aqueous solution (Q) having solubility characteristics that sodium chloride and potassium chloride can be precipitated together is the second evaporator It is preferred to be set to be the evaporation temperature of water at (632). For example, the second reference temperature may be from about 70° C. to about ℃ solubility of sodium chloride in aqueous solution (Q) is about 29% and solubility of potassium chloride is about 28%.
예를 들어, 제3 증발 모듈(640)은, 수용액(Q)을 미리 정해진 제3 기준 온도로 가열하는 제3 리보일러(641)와, 미리 정해진 제3 기준 온도로 가열된 수용액(Q)을 제3 리보일러(641)로부터 전달받으며, 수용액(Q)에 포함된 물의 증발 온도가 미리 정해진 제3 기준 온도가 되도록 조절된 내부 압력 하에서 물의 증발을 유도하여, 가용성 고형분(S)을 석출시키는 제3 증발기(642)와, 수용액(Q)을 미리 정해진 순서를 따라 제3 리보일러(641) 및 제3 증발기(642)에 순환시키는 제1 순환 펌프(643) 등을 가질 수 있다.For example, the third evaporation module 640 includes a third reboiler 641 for heating the aqueous solution Q to a predetermined third reference temperature, and an aqueous solution Q heated to a predetermined third reference temperature. The agent which is delivered from the third reboiler 641 and induces evaporation of water under an internal pressure controlled so that the evaporation temperature of the water contained in the aqueous solution Q becomes a predetermined third reference temperature, thereby precipitating soluble solids (S) 3 may have an evaporator 642, a first circulation pump 643 for circulating the aqueous solution Q to the third reboiler 641 and the third evaporator 642 in a predetermined order.
제3 기준 온도는 수용액(Q)에서의 염화칼륨의 용해도가 염화나트륨의 용해도에 비해 미리 정해진 제3 기준 값 이상만큼 낮은 환경 조건 하에서 물의 증발을 유도하여, 염화칼륨을 염화나트륨에 비해 우선적으로 석출시킬 수 있도록 정해지는 것이 바람직하다. 제3 기준 값은, 특별히 한정되지 않으며, 염화칼륨의 석출 시작 시점으로부터 상당한 시간이 경과된 후에야 염화나트륨의 석출이 비로서 시작될 수 있을 정도의 용해도 특성을 갖는 수용액(Q)의 온도가 제3 증발기(642)에서의 물의 증발 온도가 되도록 설정되는 것이 바람직하다. 예를 들어, 제3 기준 온도는 수용액(Q)에서의 염화나트륨의 용해도가 약 30% 이고 염화칼륨의 용해도가 약 22 %인 약 50 ℃ 내지 60 ℃ 일 수 있다.The third reference temperature is determined so that the solubility of potassium chloride in aqueous solution (Q) is lower than the solubility of sodium chloride by an evaporation of water under environmental conditions that is lower than the predetermined third reference value, so that potassium chloride can be preferentially precipitated over sodium chloride. It is desirable to lose. The third reference value is not particularly limited, and the temperature of the aqueous solution Q having a solubility characteristic such that precipitation of sodium chloride can be started as a ratio only after a considerable time has elapsed from the start time of the precipitation of potassium chloride is the third evaporator 642 It is preferably set to be the evaporation temperature of water in ). For example, the third reference temperature may be about 50° C. to 60° C., in which the solubility of sodium chloride in aqueous solution (Q) is about 30% and the solubility of potassium chloride is about 22%.
이하에서는, 수용액(Q)의 농축과, 가용성 고형분(S)의 석출에 대한 내용을 중심으로 제1 증발 모듈(620)에 대해 설명하기로 한다.Hereinafter, the first evaporation module 620 will be described with focus on the content of the aqueous solution Q and precipitation of the soluble solid content S.
제1 증발 모듈(620)은, 미리 정해진 에너지 전달 단계의 제1 단계에 위치하여, 수용액(Q)과 고온의 원증기(E)를 이용해 가용성 고형분(S)의 석출 공정을 진행하는 증발 모듈이다.The first evaporation module 620 is an evaporation module that is located in the first step of a predetermined energy transfer step and proceeds with a precipitation process of soluble solids (S) using an aqueous solution (Q) and high temperature original steam (E). .
제1 리보일러(621)는 수용액(Q)과 원증기(E)를 열교환하여 수용액(Q)을 제1 기준 온도로 가열 가능한 쉘 앤 튜브 구조를 가질 수 있다. 이를 위하여, 제1 리보일러(621)의 중심부에는 수용액(Q)이 통과되는 수용액 덕트(미도시)가 형성될 수 있고, 제1 리보일러(621)의 중심부를 둘러싸는 외주부에는 원증기(E)가 통과되는 증기 덕트(미도시)가 형성될 수 있다. 도 9에 도시된 바와 같이, 이러한 제1 리보일러(621)는, 수용액(Q)이 유입되는 제1 유입구(621a)와, 수용액(Q)이 배출되는 제1 배출구(621b)와, 외부의 증기 공급원으로부터 공급된 원증기(E)가 유입되는 제2 유입구(621c)와, 원증기(E)가 응축되어 생성된 응축수(D)가 배출되는 제2 배출구(621d)와, 제2 배출구(621d)에서 배출된 응축수(D)가 포집되는 제1 응축수 트랩(621e) 등을 가질 수 있다.The first reboiler 621 may have a shell and tube structure capable of heating the aqueous solution Q to a first reference temperature by exchanging heat between the aqueous solution Q and the original steam E. To this end, an aqueous solution duct (not shown) through which the aqueous solution Q is passed may be formed in the center of the first reboiler 621, and the original vapor (E) may be provided in the outer circumference surrounding the center of the first reboiler 621. ) May be formed through a steam duct (not shown). As shown in FIG. 9, the first reboiler 621 includes a first inlet 621a through which an aqueous solution Q is introduced, a first outlet 621b through which an aqueous solution Q is discharged, and external The second inlet 621c through which the original steam E supplied from the steam source flows in, the second outlet 621d through which the condensate D generated by condensing the original steam E is discharged, and the second outlet ( It may have a first condensate trap (621e) and the like is collected from the condensate (D) discharged from 621d.
제1 증발기(622)는 제1 리보일러(621)로부터 전달된 수용액(Q)에 포함된 물의 증발을 유도하는 공간이 내부에 형성되는 중공 구조를 가질 수 있다. 도 9에 도시된 바와 같이, 이러한 제1 증발기(622)는, 수용액(Q)이 각각 유입되는 제1 및 제2 유입구(622a, 622b)와, 수용액(Q)이 배출되는 제1 배출구(622c)와, 물이 증발되어 발생한 발생 증기(E 1)가 배출되는 제2 배출구(622d)와, 수용액(Q)으로부터 석출된 가용성 고형분(S)의 석출물(S 1)(이하, '가용성 고형분 석출물(S 1)'이라고 함)이 배출되는 제3 배출구(622e) 등을 가질 수 있다.The first evaporator 622 may have a hollow structure in which a space for evaporating water contained in the aqueous solution Q transferred from the first reboiler 621 is formed. As illustrated in FIG. 9, the first evaporator 622 includes first and second inlets 622a and 622b into which the aqueous solution Q is introduced, and a first outlet 622c from which the aqueous solution Q is discharged. ), a second outlet (622d) through which the generated vapor (E 1 ) generated by evaporation of water is discharged, and a precipitate (S 1 ) of soluble solids (S) precipitated from an aqueous solution (Q) (hereinafter,'soluble solids precipitates) (Referred to as (S 1 )') may have a third discharge port 622e or the like.
제1 증발기(622)의 제1 유입구(622a)에는 제2 순환 펌프(633)의 토출부로부터 토출된 수용액(Q)이 유로(624a)를 통해 공급된다. 즉, 제1 증발기(622)에는 제2 증발기(632)를 경유한 수용액(Q)이 제2 순환 펌프(633)를 통해 공급되는 것이다.The aqueous solution Q discharged from the discharge portion of the second circulation pump 633 is supplied to the first inlet 622a of the first evaporator 622 through the flow path 624a. That is, the first evaporator 622 is supplied with an aqueous solution Q via the second evaporator 632 through the second circulation pump 633.
제1 순환 펌프(623)의 흡입부에는 제1 증발기(622)의 제1 배출구(622c)로부터 배출된 수용액(Q)이 유로(624b)를 통해 공급되고, 제1 리보일러(621)의 제1 유입구(621a)에는 제1 순환 펌프(623)의 토출부로부터 토출된 수용액(Q)이 유로(624c)를 통해 공급된다. 또한, 제1 리보일러(621)의 제2 유입구(621c)에는 원증기(E)가 유로(624d)를 통해 공급된다. 그러면, 제1 리보일러(621)에 공급된 수용액(Q)은 원증기(E)에 의해 가열되고, 제1 리보일러(621)에 공급된 원증기(E)는 수용액(Q)에 의해 냉각 및 응축되어 응축수(D)로 상변화된다.An aqueous solution Q discharged from the first outlet 622c of the first evaporator 622 is supplied to the suction part of the first circulation pump 623 through the flow path 624b, and the first reboiler 621 The aqueous solution Q discharged from the discharge portion of the first circulation pump 623 is supplied to the 1 inlet 621a through the flow path 624c. In addition, the original steam E is supplied to the second inlet 621c of the first reboiler 621 through the flow path 624d. Then, the aqueous solution Q supplied to the first reboiler 621 is heated by the original steam E, and the original steam E supplied to the first reboiler 621 is cooled by the aqueous solution Q And condensed to phase change into condensed water (D).
제1 증발기(622)의 제2 유입구(622b)에는 원증기(E)에 의해 가열된 상태로 제1 리보일러(621)의 제1 배출구(621b)로부터 배출된 수용액(Q)이 유로(624e)를 통해 공급된다. 또한, 제1 리보일러(621)의 제1 응축수 트랩(621e)에는 제1 리보일러(621)의 제2 배출구(621d)로부터 배출된 응축수(D)가 유로(624f)를 통해 전달되어 포집된다.In the second inlet 622b of the first evaporator 622, an aqueous solution Q discharged from the first outlet 621b of the first reboiler 621 in a state heated by the original steam E is the flow path 624e ). In addition, the condensate D discharged from the second outlet 621d of the first reboiler 621 is transferred to the first condensate trap 621e of the first reboiler 621 through the flow path 624f and collected. .
수용액(Q)이 제1 순환 펌프(623)에 의해 제1 리보일러(621)와 제1 증발기(622) 사이에서 반복적으로 순환하게 되면, 원증기(E)에 의해 수용액(Q)이 가열됨에 따라 수용액(Q)의 온도가 제1 기준 온도까지 상승하게 된다. 그런데, 제1 기준 온도가 약 100 ℃ 내지 110 ℃ 인 경우에, 제1 증발기(622)에 공급된 수용액(Q)에 포함된 물의 증발 온도가 약 100 ℃ 내지 110 ℃ 가 되기 위해서는 제1 증발기(622)의 내부 압력이 약 +20 ㎪ 정도로 유지되는 것이 바람직하다. 이러한 약 +20 ㎪ 의 정도의 내부 압력은 제1 증발기(622)에서 발생하는 발생 증기(E 1)의 증기압을 이용해 달성 가능하므로, 제1 증발기(622)에는 내부 압력을 조절하기 위한 별도의 압력 조절 부재의 설치가 필수적으로 요구되지 않는다.When the aqueous solution Q is repeatedly circulated between the first reboiler 621 and the first evaporator 622 by the first circulation pump 623, the aqueous solution Q is heated by the original vapor E Accordingly, the temperature of the aqueous solution Q is raised to the first reference temperature. By the way, when the first reference temperature is about 100 ℃ to 110 ℃, the evaporator temperature of the water contained in the aqueous solution (Q) supplied to the first evaporator 622 is about 100 ℃ to 110 ℃ first evaporator ( It is preferred that the internal pressure of 622) is maintained at about +20 kPa. Since the internal pressure of about +20 ㎪ can be achieved by using the vapor pressure of the generated steam E 1 generated in the first evaporator 622, the first evaporator 622 has a separate pressure for adjusting the internal pressure. The installation of the adjustment member is not essential.
이러한 제1 증발기(622)에 공급된 수용액(Q)에 포함된 물은 약 100 ℃ 내지 110 ℃ 및 약 +20 ㎪ 의 분위기 하에서 증발될 수 있다. 그러면, 수용액(Q)은 물의 증발에 의해 농축될 수 있고, 가용성 고형분(S)에 포함된 염화물염들 중 염화나트륨이 우선적으로 석출될 수 있다. 따라서, 제1 증발기(622)에서는, 석출 공정의 초기에는 염화나트륨이 주로 석출되다가 석출 공정의 말기로 갈수록 염화칼륨의 석출량이 증가하게 된다. 이러한 제1 증발기(622)의 제3 배출구(622e)로부터 배출된 가용성 고형분 석출물(S 1)은 유로(624g)를 통해 석출물 저장 탱크(6)에 저장될 수 있다.Water contained in the aqueous solution (Q) supplied to the first evaporator 622 may be evaporated under an atmosphere of about 100 ℃ to 110 ℃ and about +20 ㎪. Then, the aqueous solution (Q) may be concentrated by evaporation of water, and sodium chloride may be preferentially precipitated among chloride salts contained in the soluble solid (S). Therefore, in the first evaporator 622, sodium chloride is mainly precipitated at the beginning of the precipitation process, and the amount of potassium chloride increases as the end of the precipitation process progresses. The soluble solids precipitate S 1 discharged from the third outlet 622e of the first evaporator 622 may be stored in the precipitate storage tank 6 through the flow path 624g.
이하에서는, 수용액(Q)의 농축과, 가용성 고형분(S)의 석출에 대한 내용을 중심으로 제2 증발 모듈(630)에 대해 설명하기로 한다.Hereinafter, the second evaporation module 630 will be described with reference to the contents of concentration of the aqueous solution Q and precipitation of the soluble solid content S.
제2 증발 모듈(630)은, 미리 정해진 에너지 전달 단계의 제2 단계에 위치하여, 수용액(Q)과 발생 증기(E1)를 이용해 가용성 고형분(S)의 석출 공정을 진행한다는 점을 제외하고는, 전술한 제1 증발 모듈(620)과 유사한 구조를 갖는다.The second evaporation module 630 is located in the second step of the predetermined energy transfer step, except that the precipitation process of the soluble solids (S) is performed using an aqueous solution (Q) and generated steam (E1) , Has a structure similar to the first evaporation module 620 described above.
제2 증발기(632)의 제1 유입구(632a)에는 제3 순환 펌프(643)의 토출부로부터 토출된 수용액(Q)이 유로(634a)를 통해 공급된다. 즉, 제2 증발기(632)에는 제3 증발기(642)를 경유한 수용액(Q)이 제3 순환 펌프(643)를 통해 공급되는 것이다.The aqueous solution Q discharged from the discharge portion of the third circulation pump 643 is supplied to the first inlet 632a of the second evaporator 632 through the flow path 634a. That is, the second evaporator 632 is supplied with an aqueous solution Q via the third evaporator 642 through the third circulation pump 643.
제2 순환 펌프(633)의 흡입부에는 제2 증발기(632)의 제1 배출구(632c)로부터 배출된 수용액(Q)이 유로(634b)를 통해 공급되고, 제2 리보일러(631)의 제1 유입구(631a)에는 제2 순환 펌프(633)의 토출부로부터 토출된 수용액(Q)이 유로(634c)를 통해 공급된다. 또한, 제2 리보일러(631)의 제2 유입구(631c)에는 제1 증발기(622)에서 발생한 발생 증기(E 1)가 유로(634d)를 통해 공급된다. 이처럼 제2 리보일러(631)에 공급된 수용액(Q)과 발생 증기(E 1)는 열교환된다. 그러면, 제2 리보일러(631)에 공급된 수용액(Q)은 발생 증기(E 1)에 의해 가열되고, 제2 리보일러(631)에 공급된 발생 증기(E 1)는 수용액(Q)에 의해 냉각 및 응축되어 응축수(D)로 상변화된다.The inlet of the second circulation pump 633 is supplied with an aqueous solution Q discharged from the first outlet 632c of the second evaporator 632 through the flow path 634b, and the second reboiler 631 The aqueous solution Q discharged from the discharge portion of the second circulation pump 633 is supplied to the 1 inlet 631a through the flow path 634c. In addition, the generated vapor E 1 generated in the first evaporator 622 is supplied to the second inlet 631c of the second reboiler 631 through the flow path 634d. As described above, the aqueous solution Q supplied to the second reboiler 631 and the generated steam E 1 are heat exchanged. Then, in the second reboiler 631 of an aqueous solution (Q) is generated vapor (E 1) generated vapor (E 1) supplying the heated, second reboiler 631 by the feed in an aqueous solution (Q) Cooling and condensation by the phase change to condensed water (D).
제2 증발기(632)의 제2 유입구(632b)에는 발생 증기(E 1)에 의해 가열된 상태로 제2 리보일러(631)의 제1 배출구(631b)로부터 배출된 수용액(Q)이 유로(634e)를 통해 공급된다. 또한, 제2 리보일러(631)의 제2 응축수 트랩(631e)에는 제2 리보일러(631)의 제2 배출구(631d)로부터 배출된 응축수(D)가 유로(634f)를 통해 전달되어 포집된다.The second inlet 632b of the second evaporator 632 has an aqueous solution Q discharged from the first outlet 631b of the second reboiler 631 in a state heated by the generated steam E 1 . 634e). In addition, condensate D discharged from the second outlet 631d of the second reboiler 631 is collected and collected in the second condensate trap 631e of the second reboiler 631 through the flow path 634f. .
수용액(Q)이 제2 순환 펌프(633)에 의해 제2 리보일러(631)와 제2 증발기(632) 사이에서 반복적으로 순환하게 되면, 제1 증발기(622)로부터 공급된 발생 증기(E 1)에 의해 수용액(Q)이 가열됨에 따라 수용액(Q)의 온도가 제2 기준 온도까지 상승하게 된다. 그런데, 제2 기준 온도가 약 70 ℃ 내지 ℃ 인 경우에, 제2 증발기(632)에 공급된 수용액(Q)에 포함된 물의 증발 온도가 약 70 ℃ 내지 80 ℃ 가 되기 위해서는 제2 증발기(632)의 내부 압력이 진공 상태인 약 -60 ㎪ 정도까지 감압되어야 한다.When the aqueous solution Q is repeatedly circulated between the second reboiler 631 and the second evaporator 632 by the second circulation pump 633, the generated steam E 1 supplied from the first evaporator 622 As the aqueous solution Q is heated by ), the temperature of the aqueous solution Q increases to the second reference temperature. By the way, when the second reference temperature is about 70 ℃ to ℃, the evaporation temperature of the water contained in the aqueous solution (Q) supplied to the second evaporator 632 is about 70 ℃ to 80 ℃ second evaporator (632 ) The internal pressure of the vacuum should be reduced to about -60 ㎪.
이를 위하여, 제3 리보일러(641)의 제2 배출구(641d)와 연결된 유로(644f)는 제3 응축수 트랩(641e)의 전단에서 유로(644i)에 의해 응축기(650)와 연결되고, 유로(644i)에는 진공 조절 밸브(644j)가 설치된다. 그러면, 제2 증발기(632)에서 제3 리보일러(641)로 공급된 발생 증기(E 2) 중 증기 덕트에서 응축되지 않은 잔여 발생 증기(E 2)는 유로(644i)를 통해 응축기(650)에 전달될 수 있다. 그런데, 제2 증발기(632)는 제3 리보일러(641)와 유로(644d)에 의해 연결되므로, 제2 증발기(632)의 내부 압력과 제3 리보일러(641)의 증기 덕트의 내부 압력은 서로 연동될 수 있다. 따라서, 제2 증발기(632)의 내부 압력은, 압력 조절 부재(670)의 진공압 및 응축기(650)의 부압을 진공 조절 밸브(674)를 통해 선택적으로 전달받아 감압됨으로써, 진공 상태로 유지될 수 있다.To this end, the flow passage 644f connected to the second outlet 641d of the third reboiler 641 is connected to the condenser 650 by the flow passage 644i at the front end of the third condensate trap 641e, and the flow passage ( 644i) is provided with a vacuum control valve 644j. Then, among the generated steam E 2 supplied from the second evaporator 632 to the third reboiler 641, the remaining generated steam E 2 that is not condensed in the steam duct is condenser 650 through the flow path 644i. Can be passed on. However, since the second evaporator 632 is connected by the third reboiler 641 and the flow path 644d, the internal pressure of the second evaporator 632 and the internal pressure of the steam duct of the third reboiler 641 are It can be interlocked with each other. Therefore, the internal pressure of the second evaporator 632 is selectively reduced by receiving the vacuum pressure of the pressure regulating member 670 and the negative pressure of the condenser 650 through the vacuum regulating valve 674, thereby maintaining the vacuum state. Can be.
이러한 제2 증발기(632)에 공급된 수용액(Q)에 포함된 물은 약 70 ℃ 내지 80 ℃ 및 약 -60 ㎪ 의 분위기 하에서 감압 증발될 수 있다. 그러면, 수용액(Q)은 물의 감압 증발에 의해 농축될 수 있고, 가용성 고형분(S)에 포함된 염화나트륨과 염화칼륨이 거의 동일한 시점부터 함께 석출될 수 있다. 이러한 제2 증발기(632)의 제3 배출구(632e)로부터 배출된 가용성 고형분 석출물(S 1)은 유로(634g)를 통해 석출물 저장 탱크(680)에 저장될 수 있다.Water contained in the aqueous solution (Q) supplied to the second evaporator 632 may be evaporated under reduced pressure under an atmosphere of about 70 ℃ to 80 ℃ and about -60 ㎪. Then, the aqueous solution (Q) can be concentrated by evaporation under reduced pressure of water, and the sodium chloride and potassium chloride contained in the soluble solid (S) can be precipitated together from almost the same time point. The soluble solids precipitate S 1 discharged from the third outlet 632e of the second evaporator 632 may be stored in the precipitate storage tank 680 through a flow path 634g.
이하에서는, 수용액(Q)의 농축과, 가용성 고형분(S)의 석출에 대한 내용을 중심으로 제3 증발 모듈(640)에 대해 설명하기로 한다.Hereinafter, the third evaporation module 640 will be described with focus on the content of the aqueous solution Q and precipitation of the soluble solid content S.
제3 증발 모듈(640)은, 미리 정해진 에너지 전달 단계의 제3 단계에 위치하여 수용액(Q)과 발생 증기(E2)를 이용해 가용성 고형분(S)의 석출 공정을 진행한다는 점을 제외하고는, 전술한 제1 증발 모듈(620)과 유사한 구조를 갖는다.The third evaporation module 640 is located in the third step of the predetermined energy transfer step, except that the precipitation process of the soluble solids (S) using the aqueous solution (Q) and the generated steam (E2), It has a structure similar to the first evaporation module 620 described above.
제3 증발기(642)의 제1 유입구(642a)에는 원수 공급 펌프(610)의 토출부로부터 토출된 수용액(Q)이 유로(644a)를 통해 공급된다. 즉, 제3 증발기(642)에는 수용액(Q)이 원수 공급 펌프(610)로부터 직접적으로 공급되는 것이다.The aqueous solution Q discharged from the discharge portion of the raw water supply pump 610 is supplied to the first inlet 642a of the third evaporator 642 through the flow passage 644a. That is, the third evaporator 642 is supplied with an aqueous solution Q directly from the raw water supply pump 610.
제3 순환 펌프(643)의 흡입부에는 제3 증발기(642)의 제1 배출구(642c)로부터 배출된 수용액(Q)이 유로(644b)를 통해 공급되고, 제3 리보일러(641)의 제1 유입구(621a)에는 제3 순환 펌프(643)의 토출부로부터 토출된 수용액(Q)이 유로(644c)를 통해 공급된다. 또한, 제3 리보일러(641)의 제2 유입구(641c)에는 제2 증발기(632)에서 발생한 발생 증기(E 2)가 유로(644d)를 통해 공급된다. 이처럼 제3 리보일러(641)에 공급된 수용액(Q)과 발생 증기(E 2)는 열교환된다. 그러면, 제3 리보일러(641)에 공급된 수용액(Q)은 발생 증기(E 2)에 의해 가열되고, 제3 리보일러(641)에 공급된 발생 증기(E 2)는 수용액(Q)에 의해 냉각 및 응축되어 응축수(D)로 상변화된다.An aqueous solution Q discharged from the first outlet 642c of the third evaporator 642 is supplied to the suction part of the third circulation pump 643 through the flow passage 644b, and the third reboiler 641 The aqueous solution Q discharged from the discharge portion of the third circulation pump 643 is supplied to the 1 inlet 621a through the flow path 644c. In addition, the generated steam (E 2 ) generated in the second evaporator 632 is supplied to the second inlet 641c of the third reboiler 641 through the flow path 644d. As described above, the aqueous solution Q supplied to the third reboiler 641 and the generated steam E 2 are heat exchanged. Then, in the third reboiler 641 of an aqueous solution (Q) are generated steam is heated by the (E 2), the generated vapor (E 2) fed to the third reboiler 641 is supplied to an aqueous solution (Q) Cooling and condensation by the phase change to condensed water (D).
제3 증발기(642)의 제2 유입구(642b)에는 발생 증기(E 2)에 의해 가열된 상태로 제3 리보일러(641)의 제1 배출구(641b)로부터 배출된 수용액(Q)이 유로(644e)를 통해 공급된다. 또한, 제3 리보일러(641)의 제4 응축수 트랩(641e)에는 제3 리보일러(641)의 제2 배출구(641d)로부터 배출된 응축수(D)가 유로(644f)를 통해 전달되어 포집된다.In the second inlet 642b of the third evaporator 642, an aqueous solution Q discharged from the first outlet 641b of the third reboiler 641 in a state heated by the generated steam E 2 is a flow path ( 644e). In addition, condensed water D discharged from the second outlet 641d of the third reboiler 641 is transferred to the fourth condensate trap 641e of the third reboiler 641 and is collected through the flow passage 644f. .
수용액(Q)이 제3 순환 펌프(643)에 의해 제3 리보일러(641)와 제3 증발기(642) 사이에서 반복적으로 순환하게 되면, 제2 증발기(632)로부터 공급된 발생 증기(E 2)에 의해 수용액(Q)이 가열됨에 따라 수용액(Q)의 온도가 제3 기준 온도까지 상승하게 된다. 그런데, 제3 기준 온도가 약 50 ℃ 내지 60 ℃ 인 경우에, 제3 증발기(642)에 공급된 수용액(Q)에 포함된 물의 증발 온도가 약 50 ℃ 내지 60 ℃ 가 되기 위해서는 제3 증발기(642)의 내부 압력이 진공 상태인 약 -80 ㎪ 정도까지 감압되어야 한다.When the aqueous solution Q is repeatedly circulated between the third reboiler 641 and the third evaporator 642 by the third circulation pump 643, the generated steam E 2 supplied from the second evaporator 632 As the aqueous solution Q is heated by ), the temperature of the aqueous solution Q increases to a third reference temperature. By the way, when the third reference temperature is about 50 ℃ to 60 ℃, the evaporation temperature of the water contained in the aqueous solution (Q) supplied to the third evaporator 642 to be about 50 ℃ to 60 ℃ third evaporator ( 642) the internal pressure should be reduced to about -80 kPa in vacuum.
이를 위하여, 제3 증발기(642)의 제2 배출구(642d)는 유로(644h)를 통해 응축기(650)와 연결되고, 응축기(650)는 압력 조절 부재(670)와 연결된다. 이를 통해, 제3 증발기(642)의 내부 압력은, 압력 조절 부재(670)로부터 인가되는 진공압 및 응축기(650)에서 발생 증기(E 2, E 3)가 응축되어 형성된 부압에 의해 감압됨으로써, 진공 상태로 유지될 수 있다.To this end, the second outlet 642d of the third evaporator 642 is connected to the condenser 650 through the flow path 644h, and the condenser 650 is connected to the pressure regulating member 670. Through this, the internal pressure of the third evaporator 642 is reduced by the vacuum pressure applied from the pressure regulating member 670 and the negative pressure generated by condensation of the vapors E 2 and E 3 in the condenser 650, It can be kept in a vacuum.
이러한 제3 증발기(642)에 공급된 수용액(Q)에 포함된 물은 약 50 ℃ 내지 60 ℃ 및 약 -80 ㎪ 의 분위기 하에서 감압 증발될 수 있다. 그러면, 수용액(Q)은 감압 증발에 의해 농축될 수 있고, 가용성 고형분(S)에 포함된 염화물염들 중 염화칼륨이 수용액(Q)으로부터 우선적으로 석출될 수 있다. 따라서, 제3 증발기(642)에서는, 석출 공정의 초기에는 염화칼륨이 주로 석출되다가 석출 공정의 말기로 갈수록 염화나트륨의 석출량이 증가하게 된다. 이러한 제3 증발기(642)의 제3 배출구(642e)로부터 배출된 가용성 고형분 석출물(S 1)은 유로(644g)를 통해 석출물 저장 탱크(680)에 저장될 수 있다.The water contained in the aqueous solution (Q) supplied to the third evaporator 642 may be evaporated under reduced pressure under an atmosphere of about 50°C to 60°C and about -80 MPa. Then, the aqueous solution (Q) can be concentrated by evaporation under reduced pressure, and potassium chloride among the chloride salts contained in the soluble solid (S) can be preferentially precipitated from the aqueous solution (Q). Therefore, in the third evaporator 642, potassium chloride is mainly precipitated at the beginning of the precipitation process, and the amount of sodium chloride increases as the end of the precipitation process progresses. The soluble solids precipitate S 1 discharged from the third outlet 642e of the third evaporator 642 may be stored in the precipitate storage tank 680 through a flow path 644g.
응축기(650)는 제3 증발기(642)로부터 전달된 발생 증기(E 3) 및 제3 리보일러(641)를 경유하여 제2 증발기(632)로부터 전달된 발생 증기(E 2)를 각각 냉각 및 응축시킬 수 있도록 마련된다. 발생 증기(E 2, E 3)를 냉각하기 위한 냉원은, 외부의 냉각수 공급원(미도시)으로부터 공급되는 냉각수인 것이 바람직하나, 이에 한정되는 것은 아니다. 도 9에 도시된 바와 같이, 이러한 응축기(650)는, 유로들(644h, 644i)을 통해 제3 증발기(642) 및 제3 리보일러(641)와 각각 연결되는 유입구(651)와, 내부에서 생성된 응축수(D)가 배출되는 배출구(653)와, 배출구(653)에서 배출된 응축수(D)가 유로(659)를 통해 전달되어 포집되는 응축수 트랩(655)과, 압력 조절 부재(670)와 연결되는 벤트구(657) 등을 가질 수 있다.The condenser 650 is the generated vapor transmission from the third evaporator (642) (E 3) and the third the generated vapor (E 2) transmitted from the reboiler a second evaporator 632 via 641, respectively, cooled and It is prepared to condense. The cooling source for cooling the generated steam (E 2 , E 3 ) is preferably cooling water supplied from an external cooling water supply source (not shown), but is not limited thereto. As shown in FIG. 9, the condenser 650 includes an inlet 651 connected to the third evaporator 642 and the third reboiler 641 through flow paths 644h and 644i, respectively. The generated condensate (D) is discharged outlet (653), the condensate (D) discharged from the outlet (653) is transferred through the flow path (659) and trapped condensate trap (655), and the pressure regulating member (670) It may have a vent hole 657 and the like.
응축수 저장 탱크(660)는, 유로들(624f, 634f, 644f, 659, 662)을 통해 응축수 트랩들(621e, 631e, 641e, 655)과 각각 연결되며, 응축수 트랩들(621e, 631e, 641e, 655)로부터 각각 전달된 응축수(D)가 저장된다. 이러한 응축수 저장 탱크(660)는, 응축수(D)를 유로(664)를 통해 제1 원심 분리기(56)에 불용성 고형분(I)을 세척하기 위한 증류수로서 공급하는 것이 바람직하나, 이에 한정되는 것은 아니다.The condensate storage tank 660 is connected to the condensate traps 621e, 631e, 641e, 655 through the flow paths 624f, 634f, 644f, 659, 662, respectively, and the condensate traps 621e, 631e, 641e, Condensed water (D) transferred from 655) is stored. The condensate storage tank 660 is preferably supplied as distilled water for washing the insoluble solids (I) to the first centrifugal separator 56 through the flow path 664, but is not limited thereto. .
압력 조절 부재(670)는, 제2 증발기(632) 및 제3 증발기(642) 각각에 진공압을 선택적으로 인가 가능하도록 마련된다. 예를 들어, 압력 조절 부재(670)는, 내부 압력이 진공 상태로 일정하게 유지되는 진공 탱크(672)와, 진공 탱크(672)의 진공압을 응축기(650)에 선택적으로 인가하는 진공 조절 밸브(674) 등을 가질 수 있다.The pressure regulating member 670 is provided to selectively apply vacuum pressure to each of the second evaporator 632 and the third evaporator 642. For example, the pressure regulating member 670 includes a vacuum tank 672 where the internal pressure is kept constant in a vacuum state, and a vacuum regulating valve that selectively applies the vacuum pressure of the vacuum tank 672 to the condenser 650. (674).
진공 탱크(672)는 진공 펌프(미도시)에 의해 내부 압력이 진공 상태로 일정하게 유지되도록 마련된다. 진공 탱크(672)의 내부 압력은 특별히 한정되는 않는다. 예를 들어, 진공 탱크(672)의 내부 압력은 진공 상태인 약 -95 ㎪ 으로 일정하게 유지될 수 있다. 이러한 진공 탱크(672)는 유로(676)를 통해 응축기(650)의 벤트구(658)와 연결될 수 있다.The vacuum tank 672 is provided to maintain a constant internal pressure in a vacuum state by a vacuum pump (not shown). The internal pressure of the vacuum tank 672 is not particularly limited. For example, the internal pressure of the vacuum tank 672 may be kept constant at about -95 kPa in a vacuum state. The vacuum tank 672 may be connected to the vent port 658 of the condenser 650 through the flow path 676.
진공 조절 밸브(674)는, 진공 탱크(672)의 진공압을 응축기(650)에 선택적으로 인가할 수 있도록 유로(676)에 설치된다. 그러면, 진공 탱크(672)의 진공압은, 진공 조절 밸브들(644j, 674), 응축기(650) 및 제3 리보일러(641)를 매개로 제2 증발기(632)에 선택적으로 인가될 수 있고, 진공 조절 밸브(674), 응축기(650)를 매개로 제3 증발기(642)에 선택적으로 인가될 수 있다. 이를 통해, 압력 조절 부재(670)는, 제2 증발기(632)의 내부 압력과 제3 증발기(642)의 내부 압력을 각각 수용액(Q)에 포함됨 물의 감압 증발이 유도되도록 일정하게 유지하게 할 수 있다.The vacuum control valve 674 is installed in the flow path 676 to selectively apply the vacuum pressure of the vacuum tank 672 to the condenser 650. Then, the vacuum pressure of the vacuum tank 672 can be selectively applied to the second evaporator 632 via the vacuum control valves 644j, 674, the condenser 650, and the third reboiler 641, , It may be selectively applied to the third evaporator 642 via the vacuum control valve 674 and the condenser 650. Through this, the pressure regulating member 670, the internal pressure of the second evaporator 632 and the internal pressure of the third evaporator 642, respectively, are included in the aqueous solution (Q) can be kept constant so that reduced pressure evaporation of water is induced. have.
석출물 저장 탱크(680)는, 유로들(624g, 634g, 644g, 682)을 통해 제1 내지 제3 증발기들(622, 632, 642) 각각의 제3 배출구(622e, 632e, 642e)와 연결된다. 또한, 유로들(624g, 634g, 644g)이 합류되는 유로(682)에는, 가용성 고형분 석출물(S 1)을 석출물 저장 탱크(680)를 향해 펌핑 가능한 석출물 회수 펌프(684)가 설치될 수 있다. 이에, 제1 내지 제3 증발기들(622, 632, 642) 각각에서 배출된 가용성 고형분 석출물(S 1)은 석출물 저장 탱크(680)에 저장될 수 있다.The precipitate storage tank 680 is connected to the third outlets 622e, 632e, and 642e of each of the first to third evaporators 622, 632, and 642 through the flow paths 624g, 634g, 644g, and 682. . Further, a flow path 682 in which the flow paths 624g, 634g, and 644g are joined may be provided with a precipitate recovery pump 684 capable of pumping the soluble solids precipitate S 1 toward the precipitate storage tank 680. Thus, the soluble solids precipitate S 1 discharged from each of the first to third evaporators 622, 632, and 642 may be stored in the precipitate storage tank 680.
그런데, 가용성 고형분 석출물(S 1)은 수용액(Q)에 분산 및 침전된 상태로 제1 내지 제3 증발기들(622, 632, 642) 각각에 수용되므로, 석출물 회수 펌프(684)의 가동 시 가용성 고형분 석출물(S 1)은 수용액(Q)과 혼합된 슬러리 상태로 제1 내지 제3 증발기들(622, 632, 642) 각각으로부터 배출되어 석출물 저장 탱크(680)에 저장될 수 있다.However, the soluble solids precipitate (S 1 ) is dispersed and precipitated in the aqueous solution (Q) and is accommodated in each of the first to third evaporators 622, 632, and 642, so that it is available when the precipitate recovery pump 684 is operated. The solid content precipitate S 1 may be discharged from each of the first to third evaporators 622, 632, and 642 in a slurry state mixed with the aqueous solution Q and stored in the precipitate storage tank 680.
한편, 도 9에 도시된 바와 같이, 제1 내지 제3 순환 펌프(623, 633, 643)들 각각의 토출부는 유로들(624h, 634h, 644k) 각각에 의해 유로(682)와 연결될 수 있다. 유로들(624h, 634h, 644k) 각각에는 유로들(624h, 634h, 644k) 각각을 선택적으로 개폐 가능한 개폐 밸브가 설치될 수 있다. 따라서, 제1 내지 제3 순환 펌프(623, 633, 643)들 각각은 수용액(Q)을 유로들(624h, 634h, 644k) 각각을 통해 석출물 저장 탱크(680)에 선택적으로 전달할 수 있다. 이를 통해, 제1 내지 제3 순환 펌프(623, 633, 643)들 각각은 가용성 고형분(S)의 석출 양상에 따라 수용액(Q)을 증발 모듈들(620, 630, 640) 각각으로부터 배출하여, 수용액(Q)의 염화물염 농도를 가용성 고형분(S)의 석출에 적합한 수준으로 유지시킬 수 있다.Meanwhile, as illustrated in FIG. 9, the discharge portions of the first to third circulation pumps 623, 633, and 643 may be connected to the flow path 682 by each of the flow paths 624h, 634h, and 644k. Each of the flow paths 624h, 634h, and 644k may be provided with an on-off valve that can selectively open and close each of the flow paths 624h, 634h, and 644k. Accordingly, each of the first to third circulation pumps 623, 633, and 643 may selectively deliver the aqueous solution Q to the precipitate storage tank 680 through the flow paths 624h, 634h, and 644k, respectively. Through this, each of the first to third circulation pumps 623, 633, and 643 discharges the aqueous solution Q from each of the evaporation modules 620, 630, and 640 according to the precipitation pattern of the soluble solids S, The chloride salt concentration of the aqueous solution (Q) can be maintained at a level suitable for precipitation of the soluble solid (S).
제2 원심 분리기(690)는, 수용액(Q)과 혼합된 슬러리 상태인 가용성 고형분 석출물(S 1)을 석출물 저장 탱크(680)로부터 전달받아, 가용성 고형분 석출물(S 1) 및 수용액(Q)을 원심 분리하게 가능하게 마련된다.The second centrifugal separator 690 receives the soluble solid content precipitate (S 1 ) in a slurry state mixed with the aqueous solution (Q) from the precipitate storage tank 680 to obtain a soluble solid content precipitate (S 1 ) and an aqueous solution (Q). It is provided to enable centrifugation.
제2 원심 분리기(690)는 콘타벡스 원심 분리기로 구성되는 것이 바람직하나, 이에 한정되는 것은 아니다. 제2 원심 분리기(690)는 가용성 고형분 석출물(S 1)과 수용액(Q)을 분리 가능하도록 미리 정해진 제4 기준 입도를 갖는 제2 필터를 가질 수 있다. 제2 필터는 철망 필터이고, 제4 기준 입도는 0.05 ㎜ 내지 0.3 ㎜ 인 것이 바람직하나, 이에 한정되는 것은 아니다.The second centrifuge 690 is preferably composed of a ContaVex centrifuge, but is not limited thereto. The second centrifugal separator 690 may have a second filter having a predetermined fourth reference particle size to separate the soluble solid precipitate (S 1 ) and the aqueous solution (Q). The second filter is a wire mesh filter, and the fourth reference particle size is preferably 0.05 mm to 0.3 mm, but is not limited thereto.
제2 원심 분리기(690)에 의해 가용성 고형분 석출물(S 1)과 분리된 수용액(Q)에는, 증발 모듈들(620, 630, 640)에 의해 아직 석출되지 못한 잔여 가용성 고형분(S)이 포함될 수 있다. 따라서, 제2 원심 분리기(690)는, 가용성 고형분 석출물(S 1)을 가용성 고형분 저장 유닛(70)에 전달할 수 있고, 수용액(Q)을 유로(692)를 통해 원수 공급 펌프(610)의 흡입부에 재전달할 수 있다. 이처럼 원수 공급 펌프(610)에 재전달된 수용액(Q)은, 제1 원심 분리기(56)로부터 공급된 수용액(Q)과 혼합되어, 증발 모듈들(620, 630, 640)에 재공급될 수 있다. 이를 통해, 제2 원심 분리기(690)는, 석출 공정을 통한 가용성 고형분(S)의 회수율을 더욱 높일 수 있다.The aqueous solution Q separated from the soluble solids precipitate S 1 by the second centrifugal separator 690 may include residual soluble solids S that have not yet been precipitated by the evaporation modules 620, 630, and 640. have. Therefore, the second centrifugal separator 690 can deliver the soluble solids precipitate S 1 to the soluble solids storage unit 70 and suction the aqueous solution Q through the flow path 692 through the raw water supply pump 610 You can redistribute it to wealth. The aqueous solution (Q) re-delivered to the raw water supply pump (610) is mixed with the aqueous solution (Q) supplied from the first centrifugal separator (56) to be re-supplied to the evaporation modules (620, 630, 640). have. Through this, the second centrifugal separator 690 can further increase the recovery rate of the soluble solid content (S) through the precipitation process.
도 11은 석출 및 건조 처리한 가용성 고형분의 사진이고, 도 12는 도 11에 도시된 가용성 고형분을 정성 분석한 SEM-EDS 차트이며, 도 13은 도 11에 도시된 가용성 고형분의 조성비를 나타내는 도표이다.FIG. 11 is a photograph of soluble solids precipitated and dried, FIG. 12 is a SEM-EDS chart that qualitatively analyzes the soluble solids shown in FIG. 11, and FIG. 13 is a chart showing the composition ratio of soluble solids shown in FIG. 11 .
다음으로, 가용성 고형분 저장 유닛(70)은 제2 원심 분리기(66)로부터 전달받은 가용성 고형분 석출물(S 1)을 건조하여 저장하기 위한 장치이다.Next, the soluble solids storage unit 70 is a device for drying and storing the soluble solids precipitate S 1 received from the second centrifuge 66.
가용성 고형분 저장 유닛(70)의 구조는 특별히 한정되지 않는다. 예를 들어, 가용성 고형분 저장 유닛(70)은, 가용성 고형분 석출물(S 1)을 건조하는 가용성 고형분 건조기(72)와, 가용성 고형분 건조기(72)에 의해 건조된 가용성 고형분(S)의 건조물(이하, '가용성 고형분 건조물(S 2)'이라고 함)을 저장하는 가용성 고형분 저장 챔버(74)를 포함할 수 있다.The structure of the soluble solid content storage unit 70 is not particularly limited. For example, the soluble solid content storage unit 70 includes a soluble solid content dryer (72) for drying the soluble solid content precipitate (S 1 ) and a dried product of the soluble solid content (S) dried by the soluble solid content dryer (72). , It may include a soluble solid content storage chamber 74 for storing the'soluble solids (S 2 )'.
가용성 고형분 건조기(72)는 제2 원심 분리기(66)에 의해 수용액(Q1)과 분리된 가용성 고형분 석출물(S 1)을 건조하기 위한 장치이다.The soluble solids dryer 72 is a device for drying the soluble solids precipitate S 1 separated from the aqueous solution Q1 by the second centrifugal separator 66.
가용성 고형분 석출물(S 1)과 수용액(Q 1)은 제2 원심 분리기(66)에 의해 분리되지만, 수용액(Q1) 중 일부는 가용성 고형분 석출물(S 1)과 분리되지 못한 채 가용성 고형분 석출물(S 1)의 표면에 흡착될 수 있다. 이로 인해, 제2 원심 분리기(66)에 의해 수용액(Q1)과 분리된 가용성 고형분 석출물(S 1)은 표면에 흡착된 수용액(Q1)에 의해 슬러리 상태로 존재한다. 그런데, 가용성 고형분 석출물(S 1)이 슬러리 상태로 존재하면 재활용하기 용이하지 않으므로, 이를 해결하기 위해 가용성 고형분 건조기(72)가 마련되는 것이다.The soluble solids precipitate (S 1 ) and the aqueous solution (Q 1 ) are separated by the second centrifugal separator 66, but some of the aqueous solutions (Q1) are not separated from the soluble solids precipitate (S 1 ) and the soluble solids precipitate (S) It can be adsorbed on the surface of 1 ). For this reason, the soluble solid precipitate (S 1 ) separated from the aqueous solution (Q1) by the second centrifugal separator (66) is present in a slurry state by the aqueous solution (Q1) adsorbed on the surface. However, since the soluble solids precipitate S 1 is not easily recycled when present in a slurry state, a soluble solids dryer 72 is provided to solve this.
이러한 가용성 고형분 건조기(72)는, 가용성 고형분(S)이 미리 정해진 기준 수분 이하의 수분을 포함하도록 제2 원심 분리기(66)에서 배출된 가용성 고형분 석출물(S 1)을 건조한다. 기준 수분은, 약 0.3% 인 것이 바람직하나 이에 한정되는 것은 아니다.The soluble solid content dryer 72 dries the soluble solid content precipitate S 1 discharged from the second centrifugal separator 66 so that the soluble solid content S contains moisture below a predetermined reference moisture. The reference moisture is preferably about 0.3%, but is not limited thereto.
도 11 및 도 12에 도시된 바와 같이, 가용성 고형분 건조기(72)에 의해 건조된 가용성 고형분 건조물(S 2)은, 백색의 파우더 형태를 갖는고, 염화나트륨(NaCl), 염화칼륨(KCl) 등의 염화물염을 주로 포함한다. 가용성 고형분 건조기(72)는, 이와 같이 가용성 고형분 건조물(S 2)을 가용성 고형분 저장 챔버(74)로 전달한다.11 and 12, the soluble solid content dried product (S 2 ) dried by the soluble solid content dryer 72 has a white powder form, and chlorides such as sodium chloride (NaCl) and potassium chloride (KCl). It mainly contains salt. The soluble solid content dryer 72 delivers the soluble solid content dried product S 2 to the soluble solid content storage chamber 74 as described above.
가용성 고형분 저장 챔버(74)는 가용성 고형분 건조기(72)에 의해 수분이 제거된 가용성 고형분 건조물(S 2)을 저장하기 위한 장치이다.The soluble solids storage chamber 74 is a device for storing the soluble solids dry matter S 2 from which moisture is removed by the soluble solids dryer 72.
가용성 고형분 저장 챔버(74)는 저장 대상물을 저장 가능한 일반적인 저장 챔버로 구성될 수 있다. 이러한 가용성 고형분 저장 챔버(74)는, 가용성 고형분 건조기(72)로부터 가용성 고형분 건조물(S 2)을 전달받아 외부와 격리된 상태로 저장한다. 도 12 및 도 13에 도시된 바와 같이, 가용성 고형분 저장 챔버(74)에 저장된 가용성 고형분 건조물(S 2)은, 플럭스(F)에 함유된 염화물염들을 주로 포함하므로, 플럭스(F)로서 재활용되는 것이 바람직하다. 다만, 이에 한정되는 것은 아니며, 가용성 고형분 건조물(S 2)은, 혼합 염분이 필요한 다양한 분야에서 재활용될 수 있다.The soluble solid content storage chamber 74 may be configured as a general storage chamber capable of storing a storage object. The soluble solid content storage chamber 74 receives the soluble solid content dried product S 2 from the soluble solid content dryer 72 and stores it in an isolated state from the outside. As shown in FIGS. 12 and 13, the soluble solids dry matter S 2 stored in the soluble solids storage chamber 74 mainly contains chloride salts contained in the flux F, and thus is recycled as the flux F It is preferred. However, the present invention is not limited thereto, and the soluble solid content dried product S 2 may be recycled in various fields requiring mixed salt.
다음으로, 알루미늄 알갱이 저장 유닛(80)은, 파쇄/분쇄 유닛(40)에서 배출된 알루미늄 알갱이(N)를 저장하기 위한 장치이다.Next, the aluminum granule storage unit 80 is a device for storing the aluminum granules N discharged from the crushing/grinding unit 40.
알루미늄 알갱이 저장 유닛(80)의 구조는 특별히 한정되지 않는다. 예를 들어, 도 7에 도시된 바와 같이, 알루미늄 알갱이 저장 유닛(80)은, 제1 분리 부재(42)와 제2 분리 부재(44)에서 분리되어 배출된 알루미늄 알갱이(N)를 저장 가능한 알루미늄 알갱이 저장 챔버(82)를 포함할 수 있다.The structure of the aluminum grain storage unit 80 is not particularly limited. For example, as illustrated in FIG. 7, the aluminum particle storage unit 80 is capable of storing aluminum particles N separated and discharged from the first separation member 42 and the second separation member 44. A grain storage chamber 82 may be included.
다음으로, 불용성 고형분 저장 유닛(90)은, 제1 원심 분리기(56)로부터 전달받은 불용성 고형분(I)을 건조 및 소성하여 저장하기 위한 장치이다.Next, the insoluble solid content storage unit 90 is a device for drying and storing the insoluble solid content (I) received from the first centrifugal separator (56).
불용성 고형분 저장 유닛(90)의 구조는 특별히 한정되지 않는다. 예를 들어, 불용성 고형분 저장 유닛(90)은, 불용성 고형분(I)을 건조하는 불용성 고형분 건조기(92)와, 불용성 고형분 건조기(92)에 의해 건조된 불용성 고형분(I)을 소성하는 불용성 고형분 소성로(94)와, 불용성 고형분 소성로(94)에 의해 소성된 불용성 고형분(I)을 저장하는 불용성 고형분 저장 챔버(96)를 포함할 수 있다.The structure of the insoluble solid content storage unit 90 is not particularly limited. For example, the insoluble solid content storage unit 90 includes an insoluble solid content dryer 92 for drying the insoluble solid content I and an insoluble solid content kiln for firing the insoluble solid content I dried by the insoluble solid content dryer 92. (94) and an insoluble solid content storage chamber 96 for storing the insoluble solid content (I) calcined by the insoluble solid content firing furnace 94.
도 14는 건조 처리한 불용성 고형분의 사진이다.14 is a photograph of insoluble solids that have been dried.
불용성 고형분 건조기(92)는 제1 원심 분리기(56)에 의해 수용액(Q)과 분리된 불용성 고형분(I)을 건조하기 위한 장치이다.The insoluble solid content dryer 92 is a device for drying the insoluble solid content I separated from the aqueous solution Q by the first centrifugal separator 56.
불용성 고형분(I)은 증류수와 제1 원심 분리기(56)에 의해 분리되지만, 일부의 증류수는 불용성 고형분(I)과 분리되지 못한 채 불용성 고형분(I)의 표면에 흡착될 수 있다. 이로 인해, 제1 원심 분리기(56)에서 배출된 불용성 고형분(I)은, 약 30 ~ 40%의 수분을 포함하여, 슬러리 상태로 존재한다. 그런데, 불용성 고형분(I)이 슬러리 상태로 존재하면 불용성 고형분(I)의 이송 및 재활용이 용이하지 않으므로, 이를 해결하기 위해 불용성 고형분 건조기(92)가 마련되는 것이다.The insoluble solid (I) is separated by distilled water and the first centrifugal separator (56), but some of the distilled water can be adsorbed on the surface of the insoluble solid (I) without being separated from the insoluble solid (I). For this reason, the insoluble solid content (I) discharged from the first centrifugal separator 56 is present in a slurry state, containing about 30 to 40% moisture. However, when the insoluble solid content (I) is present in a slurry state, since the transport and recycling of the insoluble solid content (I) is not easy, an insoluble solid content dryer 92 is provided to solve this.
이러한 불용성 고형분 건조기(92)는, 불용성 고형분(I)이 미리 정해진 기준 수분 이하의 수분을 포함하도록 제1 원심 분리기(56)에서 배출된 불용성 고형분(I)을 건조한다.The insoluble solid content dryer 92 dries the insoluble solid content I discharged from the first centrifugal separator 56 so that the insoluble solid content I contains moisture below a predetermined reference moisture.
기준 수분은, 특별히 한정되지 않으며, 불용성 고형분(I)의 재활용 목적에 따라 상이하게 설정되는 것이 바람직하다. 예를 들어, 불용성 고형분(I)을 시멘트 원료로 재활용할 경우에, 기준 수분은 약 40 %이다. 예를 들어, 불용성 고형분(I)을 벽돌 내화물 또는 세라믹 재료로 재활용할 경우에, 기준 수분은 약 0.5 %이다. 참고적으로, 불용성 고형분(I)을 벽돌 내화물 또는 세라믹 재료로 재활용할 경우에는 약 1,200 ℃에서 소성한 재료를 필요로 하므로, 불용성 고형분(I)을 시멘트 원료로 재활용하는 경우에 비해 상대적으로 낮은 기준 수분이 요구된다.The reference moisture is not particularly limited, and is preferably set differently depending on the purpose of recycling the insoluble solid content (I). For example, when the insoluble solid (I) is recycled as a cement raw material, the reference moisture is about 40%. For example, when insoluble solids (I) are recycled as brick refractory or ceramic materials, the reference moisture is about 0.5%. For reference, when recycling the insoluble solid content (I) as a brick refractory material or ceramic material, a material fired at about 1,200°C is required, and thus, a relatively low standard compared to recycling the insoluble solid content (I) as a cement raw material. Moisture is required.
도 14에 도시된 바와 같이, 불용성 고형분 건조기(92)에 의해 건조된 불용성 고형분(I)(이하, '불용성 고형분 건조물(I 1)'이라고 함)은, 표면에 흡착된 카본 성분으로 인해 짙은 회색의 파우더 형태를 갖는다. 이러한 불용성 고형분 건조물(I 1)은 불용성 고형분 소성로(94)에 전달된다.As shown in FIG. 14, the insoluble solid content (I) dried by the insoluble solid content dryer 92 (hereinafter referred to as'insoluble solid content dried product I 1 ') is dark gray due to the carbon component adsorbed on the surface. It has a powder form. The insoluble solid content dried product I 1 is transferred to the insoluble solid content kiln 94.
도 15는 소성 처리한 불용성 고형분의 사진이고, 도 16은 도 15에 도시된 소성 처리한 불용성 고형분을 정성 분석한 SEM-EDS 차트이며, 도 17은 도 15에 도시된 소성 처리한 불용성 고형분의 조성비를 나타내는 도표이다.15 is a photograph of the calcined insoluble solids, FIG. 16 is a SEM-EDS chart of qualitative analysis of the calcined insoluble solids shown in FIG. 15, and FIG. 17 is a composition ratio of the calcined insoluble solids shown in FIG. It is a chart showing.
불용성 고형분 소성로(94)는 불용성 고형분 건조물(I 1)을 소성하기 위한 장치이다.The insoluble solid content kiln 94 is a device for firing the insoluble solid content dried product I 1 .
드로스 미립자 파우더(P 2)에 포함된 미분의 알루미늄, 마그네슘, 알루미늄 합금이 물 분해될 때, 수산화 알루미늄, 수산화 마그네슘 및 알루미늄 합금 수화물(이하, '수화물들'이라고 함)이 형성될 수 있다. 이러한 수화물들은 불용성 고형분(I)이므로, 제1 원심 분리기(56)에 의해 수용액(Q)과 분리되어 불용성 고형분 건조기(92)로 전달된다. 그런데, 수화물들은 산화 알루미늄, 산화 마그네슘 및 알루미늄 합금 산화물(이하, '산화물들'이라고 함)에 비해 불안정한 물질이므로, 이러한 수화물들을 포함한 불용성 고형분(I)은 재활용하기에 적합하지 않다.When the finely divided aluminum, magnesium, and aluminum alloys contained in the dross particulate powder (P 2 ) are decomposed by water, aluminum hydroxide, magnesium hydroxide, and aluminum alloy hydrates (hereinafter referred to as'hydrates') may be formed. Since these hydrates are insoluble solids (I), they are separated from the aqueous solution (Q) by the first centrifugal separator 56 and transferred to the insoluble solids dryer 92. However, since hydrates are materials that are unstable compared to aluminum oxide, magnesium oxide, and aluminum alloy oxides (hereinafter referred to as'oxides'), insoluble solids (I) containing such hydrates are not suitable for recycling.
이를 해결하기 위하여, 도 7에 도시된 바와 같이, 불용성 고형분 저장 유닛(90)은, 불용성 고형분 건조물(I 1)을 소성 처리하여 불용성 고형분 건조물(I 1)에 포함된 수화물들을 산화물들로 전이시키는 불용성 고형분 소성로(94)를 포함하는 것이다.To solve this problem, as shown in Figure 7, the insoluble solids storage unit 90, the insoluble solid dry product (I 1) to the firing process of transition to the oxide of the hydrate included in the water-insoluble solid dry product (I 1) It includes an insoluble solid content kiln 94.
불용성 고형분 소성로(94)는, 불용성 고형분 건조물(I 1)을 약 800 ℃ 이상으로 가열하여 수화물들을 소성 반응시킨다. 그러면, 수화물들은 소성되어 산화물들로 전이되며, 이와 동시에 불용성 고형분 건조물(I 1)의 표면에 흡착된 카본 성분은 연소된다. 따라서, 도 15에 도시된 바와 같이, 불용성 고형분 소성로(94)에 의해 소성된 불용성 고형분 건조물(I 1)(이하, '불용성 고형분 소성물(I 2)'이라고 함)은, 옅은 노란색의 파우더 형태가 된다. 불용성 고형분 소성로(94)는, 이러한 불용성 고형분 소성물(I 2)을 불용성 고형분 저장 챔버(96)에 전달한다.The insoluble solid content kiln 94 heats the insoluble solid content dried product I 1 to about 800° C. or higher to cause the hydrates to fire. Then, the hydrates are calcined and transferred to oxides, and at the same time, the carbon component adsorbed on the surface of the insoluble solid content I 1 is burned. Therefore, as shown in FIG. 15, the insoluble solid content dried product I 1 (hereinafter referred to as'insoluble solid content calcined product I 2 )'calcined by the insoluble solid content calcination furnace 94 is light yellow powder. Becomes. The insoluble solid content calcination furnace 94 delivers the insoluble solid content calcined product I 2 to the insoluble solid content storage chamber 96.
한편, 불용성 고형분 소성로(94)가 마이크로웨이브 소성로와 같이 건조 공정과 소성 공정을 연속적으로 수행 가능한 구조를 갖는 경우에는, 전술한 불용성 고형분 건조기(92)는 생략될 수 있다.On the other hand, when the insoluble solid content kiln 94 has a structure capable of continuously performing a drying process and a firing process, such as a microwave kiln, the insoluble solid content dryer 92 may be omitted.
불용성 고형분 저장 챔버(96)는 불용성 고형분 소성물(I 2)을 저장하기 위한 장치이다.The insoluble solids storage chamber 96 is a device for storing the insoluble solids fired product I 2 .
불용성 고형분 저장 챔버(96)는 저장 대상물을 저장 가능한 일반적인 저장 챔버로 구성될 수 있다. 이러한 불용성 고형분 저장 챔버(96)는, 불용성 고형분 소성로(94)로부터 불용성 고형분 소성물(I 2)을 전달받아 외부와 격리된 상태로 저장한다. 도 16 및 도 17에 도시된 바와 같이, 불용성 고형분 소성물(I 2)은, 산화 알루미늄, 산화 마그네슘 및 산화 알루미늄 합금을 주로 포함하므로, 추가적인 재활정 공정을 거친 후 세라믹 재료, 내화물 재료, 시멘트 재료로서 재활용되는 것이 바람직하다. 불용성 고형분 소성물(I 2)의 추가적인 재활용 공정은, 특별히 한정되지 않는다. 예를 들어, 불용성 고형분 소성물(I 2)의 추가적인 재활용 공정은, 산화 알루미늄과 산화 마그네슘을 약 2000 ℃ 로 고온 소성하여 스피넬(MgAl 20 4)로 전이시키는 스피넬 제조 공정을 포함할 수 있다.The insoluble solid content storage chamber 96 may be configured as a general storage chamber capable of storing a storage object. The insoluble solid content storage chamber 96 receives the insoluble solid content calcined product I 2 from the insoluble solid content calcination furnace 94 and stores it in an isolated state from the outside. 16 and 17, the insoluble solid content calcined product I 2 mainly includes aluminum oxide, magnesium oxide, and aluminum oxide alloy, and thus, after additional rehabilitation, ceramic material, refractory material, and cement material It is preferably recycled. The additional recycling process of the insoluble solid content calcined product (I 2 ) is not particularly limited. For example, an additional recycling process of the insoluble solid content fired material (I 2 ) may include a spinel manufacturing process in which aluminum oxide and magnesium oxide are fired at a temperature of about 2000° C. and transferred to spinel (MgAl 2 0 4 ).
다음으로, 가스 저장 유닛(100)은 가스 포집기(54)에 의해 포집된 가수분해 가스(G)를 저장하기 위한 장치이다.Next, the gas storage unit 100 is a device for storing the hydrolysis gas G collected by the gas collector 54.
가스 저장 유닛(100)은 가스를 저장하기 위해 일반적으로 사용되는 가스 저장 챔버로 구성될 수 있다. 도 7에 도시된 바와 같이, 이러한 가스 저장 유닛(100)은, 가스 포집기(54)로부터 가수분해 가스(G)를 전달받아 저장한다.The gas storage unit 100 may be configured as a gas storage chamber generally used to store gas. As shown in FIG. 7, the gas storage unit 100 receives and stores the hydrolysis gas G from the gas collector 54.
일반 드로스 재처리기(압입기)는, 일반 블랙 드로스에 초석(NaNO 3)과 같은 발열제 플럭스를 투입하여, 일반 블랙 드로스를 재처리하다. 이와 같이 재처리된 일반 블랙 드로스를 물 분해하면, 일반 블랙 드로스에 포함된 질화 알루미늄과 규소화 알루미늄으로부터 인체에 유독한 암모니아 가스(NH 3)와 실란 가스(SiH 4)가 발생된다. 따라서, 재처리된 일반 블랙 드로스가 물 분해되어 발생된 가스는, 재활용되기 어렵다.The general dross reprocessing machine (indenter) regenerates the normal black dross by injecting an exothermic flux such as cornerstone (NaNO 3 ) into the normal black dross. When the retreated general black dross is decomposed by water, ammonia gas (NH 3 ) and silane gas (SiH 4 ) toxic to the human body are generated from aluminum nitride and aluminum silicide contained in the general black dross. Therefore, it is difficult to recycle the gas generated by water decomposition of the retreated ordinary black dross.
그런데, 구형 블랙 드로스(B 2)가 블랙 드로스 재활용 장치(3)에 의해 처리되어 발생된 가수분해 가스(G)는, 수소, 메탄, 에탄, 에텐, 프로판, 프로펜 등의 가스를 포함한다. 이러한 가스들은, 에너지원으로서 사용 가능한 가스들로서 전술한 암모니아 가스와 실란 가스와 같은 유독성을 갖지 않으므로, 재활용이 용이하다. 또한, 에너지원으로서 우수한 성질을 갖는 수소와 메탄이 가수분해 가스(G)의 대부분을 차지하므로, 가수분해 가스(G)는 재활용 가치가 매우 우수하다.By the way, the spherical black dross (B 2 ) is a hydrolysis gas (G) generated by treatment by the black dross recycling apparatus 3, hydrogen, methane, ethane, ethane, includes gas such as propane, propene, etc. do. Since these gases are not usable as the ammonia gas and silane gas described above as gases usable as an energy source, recycling is easy. In addition, since hydrogen and methane having excellent properties as an energy source occupy most of the hydrolysis gas (G), the hydrolysis gas (G) has a very good recycling value.
이러한 가수분해 가스(G)는, 본 발명에 따른 알루미늄 용해 및 블랙 드로스 재활용 시스템(1)을 구동하기 위한 에너지원으로서 재활용되는 것이 바람직하다. 다만, 이에 한정되는 것은 아니며, 가수분해 가스(G)는 가스 이송 설비에 의해 외부로 이송되어 난방, 발전 등 다양한 산업 분야의 에너지원으로서 재활용될 수도 있다.The hydrolysis gas (G) is preferably recycled as an energy source for driving the aluminum melting and black dross recycling system 1 according to the present invention. However, the present invention is not limited thereto, and the hydrolysis gas (G) may be transported to the outside by a gas transfer facility, and may be recycled as an energy source in various industrial fields such as heating and power generation.
한편, 블랙 드로스 재활용 장치(3)는 전술한 구형 블랙 드로스(B 2)를 재활용 가능하도록 처리하는 것이 바람직하나, 이에 한정되는 것은 아니다. 즉, 블랙 드로스 재활용 장치(3)는 구형 블랙 드로스(B 2)와는 다른 방식으로 형성된 일반 블랙 드로스를 재활용 가능하도록 처리할 수도 있다.On the other hand, the black dross recycling apparatus 3 is preferably processed to be recyclable for the above-described spherical black dross (B 2 ), but is not limited thereto. That is, the black dross recycling apparatus 3 may process the normal black dross formed in a different manner from the old black dross B 2 to be recyclable.
도 18은 본 발명의 다른 바람직한 실시예에 따른 알루미늄 용해 및 블랙 드로스 재활용 방법을 개략적으로 나타내는 순서도이며, 도 19는 도 18에 기재된 알루미늄 용해 단계와 구형 블랙 드로스를 파쇄 및 분쇄하는 단계의 세부적인 내용을 설명하기 위한 순서도이며, 도 20은 도 18에 기재된 드로스 파우더 물 분해 단계와 물 분해물 재활용 단계의 세부적인 내용을 설명하기 위한 순서도이다.18 is a flowchart schematically showing a method of dissolving aluminum and recycling black dross according to another preferred embodiment of the present invention, and FIG. 19 is a detail of a step of crushing and crushing an aluminum melting step and a spherical black dross described in FIG. 18. 20 is a flowchart for explaining details of the dross powder water decomposition step and the water decomposition product recycling step described in FIG. 18.
도 18을 참조하면, 본 발명의 바람직한 실시예에 따른 알루미늄 용해 및 블랙 드로스 재활용 방법은, 알루미늄을 용해하는 단계(S 100)와, 알루미늄을 용해할 때 발생한 구형 블랙 드로스(B 2)를 파쇄 및 분쇄하는 단계(S 200)와, 구형 블랙 드로스(B 2)가 파쇄 및 분쇄되어 형성된 드로스 미립자 파우더(P 2)를 물 분해하는 단계(S 300)와, 드로스 미립자 파우더(P 2)의 물 분해물들 중 적어도 하나를 재활용 가능하도록 처리하는 단계(S 400)를 포함한다.Referring to Figure 18, aluminum dissolution and black dross recycling method according to a preferred embodiment of the present invention, the step of dissolving aluminum (S 100), and the spherical black dross generated when dissolving aluminum (B 2 ) The step of crushing and crushing (S 200), and the step of decomposing water of the dross particulate powder (P 2 ) formed by crushing and crushing the spherical black dross (B 2 ) (S 300), and the dross particulate powder (P) And treating at least one of the water decomposition products of 2 ) to be recyclable (S400).
먼저, 도 19에 도시된 바와 같이, 알루미늄을 용해하는 단계(S 100)는, 알루미늄 용탕(M)에 와류(V)를 형성하는 단계(S 110)와, 알루미늄 용탕(M)의 표면에 용융 플럭스층이 형성되도록 플럭스(F)를 와류(V)에 투입하는 단계(S 120)와, 용융 플럭스층을 통과하도록 알루미늄 스크랩(A)을 와류(V)에 투입하는 단계(S 130)와, 알루미늄 용탕(M)에서 알루미늄 스크랩(A)이 용해될 때 알루미늄 스크랩(A)이 용융 플럭스층에 의해 플럭스 처리되어 발생한 구형 블랙 드로스(B 2)를 회수하는 단계(S 140)를 포함한다.First, as shown in Figure 19, the step of dissolving aluminum (S 100), the step of forming a vortex (V) in the aluminum melt (M) (S 110), and melted on the surface of the aluminum melt (M) Injecting the flux (F) into the vortex (V) so that the flux layer is formed (S 120), and injecting the aluminum scrap (A) into the vortex (V) to pass through the molten flux layer (S 130), When the aluminum scrap (A) is dissolved in the molten aluminum (M), the aluminum scrap (A) is a step (S 140) of recovering the spherical black dross (B 2 ) generated by the flux treatment by the molten flux layer.
알루미늄 용탕(M)에 와류(V)를 형성하는 단계(S 110)에서는, 회전 구동 가능한 전술한 와류 유닛(21)을 이용해 알루미늄 용탕(M)을 교반하여, 알루미늄 용탕(M)에 선회 하강하는 와류(V)를 형성할 수 있다.In the step (S 110) of forming a vortex (V) in the aluminum molten metal (M), the aluminum molten metal (M) is stirred using the aforementioned vortex unit (21) that can be rotationally driven, and the aluminum molten metal (M) is turned to descend. Vortex V can be formed.
플럭스(F)를 와류(V)에 투입하는 단계(S 120)에서는, S 110 단계에서 형성된 알루미늄 용탕(M)의 와류(V)에 플럭스(F)를 투입할 수 있다. 바람직하게, 플럭스(F)는, 염화나트륨(NaCl)과 염화칼륨(KCl)이 동일한 중량부로 혼합된 혼합물 93-97 중량부 및 빙정석류(Cryolite, Potassium Cryolite) 3-7 중량부를 포함할 수 있다. 더욱 바람직하게, 플럭스(F)는, 염화나트륨(NaCl) 47.5 중량부, 염화칼륨(KCl) 47.5 중량부 및 포타슘 알루미늄 플루오라이드(KAlF 4) 5 중량부를 포함할 수 있다. 이러한 플럭스(F)가 와류(V)에 투입되면, 알루미늄 용탕(M)의 표면에는 플럭스(F)가 용해되어 형성된 용융 플럭스층 즉, 염욕층이 형성된다.In the step S 120 of introducing the flux F into the vortex V, the flux F may be introduced into the vortex V of the aluminum molten metal M formed in step S 110. Preferably, the flux (F) may include 93-97 parts by weight of a mixture of sodium chloride (NaCl) and potassium chloride (KCl) in equal parts by weight, and 3-7 parts by weight of cryolite (Cryolite, Potassium Cryolite). More preferably, the flux (F) may include 4 parts by weight of sodium chloride (NaCl), 47.5 parts by weight of potassium chloride (KCl) and 5 parts by weight of potassium aluminum fluoride (KAlF 4 ). When the flux (F) is introduced into the vortex (V), a molten flux layer formed by dissolving the flux (F), that is, a salt bath layer is formed on the surface of the aluminum molten metal (M).
알루미늄 스크랩(A)을 와류(V)에 투입하는 단계에서는(S 130), 미리 정해진 알루미늄 스크랩(A)을 S 120 단계에서 형성된 용융 플럭스층을 통과하도록 알루미늄 용탕(M)의 와류(V)에 투입할 수 있다. 바람직하게, 알루미늄 스크랩(A)은, 알루미늄, 마그네슘 및 알루미늄 합금을 주로 포함하는 알루미늄 폐캔 스크랩(UBCs, A 3XXX 계열, A 5XXXX 계열)일 수 있다. 와류(V)에 투입된 알루미늄 스크랩(A)은 알루미늄 용탕(M)에 용해된다. 이와 동시에, 알루미늄 용탕(M)에 포함된 개재물이 용융 플럭스층 즉, 플럭스(F)에 포획되어 블랙 드로스(B 1)가 형성되며, 이러한 블랙 드로스(B 1)가 와류(V)에 의해 알루미늄 용탕(M)에서 반복적으로 하강 및 부상됨으로써 블랙 드로스(B 1)가 구형으로 결집된 구형 블랙 드로스(B 2)가 형성된다.In the step of injecting the aluminum scrap (A) into the vortex (V) (S 130), the predetermined aluminum scrap (A) to the vortex (V) of the molten aluminum (M) to pass through the molten flux layer formed in step S 120. Can be injected. Preferably, the aluminum scrap (A) may be aluminum scrap can scrap (UBCs, A 3XXX series, A 5XXXX series) mainly containing aluminum, magnesium, and aluminum alloy. The aluminum scrap (A) injected into the vortex (V) is dissolved in the aluminum molten metal (M). At the same time, the inclusions contained in the aluminum molten metal (M) are captured in the molten flux layer, that is, the flux (F) to form a black dross (B 1 ), the black dross (B 1 ) is in the vortex (V) By repeatedly descending and floating in the aluminum molten metal (M), a spherical black dross (B 2 ) in which black dross (B 1 ) is aggregated into a spherical shape is formed.
알루미늄 용탕(M)과 구형 블랙 드로스(B 2)를 회수하는 단계(S 140)에서는, 알루미늄 스크랩(A)이 용해된 알루미늄 용탕(M)을 전술한 알루미늄 용해로(2)의 출탕구를 통해 배출함과 함께, 알루미늄 용탕(M)의 표면에 부유된 구형 블랙 드로스(B 2)를 전술한 분리 유닛(27)을 이용해 알루미늄 용탕(M)으로부터 퍼낼 수 있다.In the step (S 140) of recovering the aluminum molten metal (M) and the spherical black dross (B 2 ), the aluminum molten metal (M) in which the aluminum scrap (A) is dissolved is passed through the outlet of the aluminum melting furnace (2). Along with the discharge box, the spherical black dross (B 2 ) suspended on the surface of the aluminum molten metal M can be discharged from the aluminum molten metal M using the separation unit 27 described above.
다음으로, 구형 블랙 드로스(B 2)를 분쇄 및 파쇄하는 단계(S 200)는, 알루미늄 용탕(M)으로부터 회수한 구형 블랙 드로스(B 2)를 파쇄하는 단계(S 210)와, 알루미늄 알갱이(N)와 드로스 파우더(P 1)를 분리하는 단계(S 220)와, 드로스 파우더(P 1)를 분쇄하는 단계(S 230)와, 알루미늄 알갱이(N)와 드로스 미립자 파우더(P 2)를 분리하는 단계(S 240)를 포함한다.Next, the spherical black dross (B 2) the step of grinding and crushing (S 200), the method comprising crushing the spherical black dross (B 2) recovered from the aluminum molten metal (M) (S 210), and aluminum The step of separating the granules (N) and the dross powder (P 1 ) (S 220), the step of crushing the dross powder (P 1 ) (S 230), and the aluminum granules (N) and the dross particulate powder ( And separating P 2 ) (S 240 ).
구형 블랙 드로스(B 2)를 파쇄하는 단계(S 210)에서는, S 140 단계에서 회수한 구형 블랙 드로스(B 2)를 전술한 파쇄기(41)를 이용해 파쇄할 수 있다In the step (S 210) for crushing the spherical black dross (B 2), it can be crushed using the aforementioned spherical black dross (B 2) a number of times in step S 140 crusher 41
알루미늄 알갱이(N)와 드로스 파우더(P 1)를 분리하는 단계(S 220)에서는, S 210 단계에서 형성된 구형 블랙 드로스(B 2)의 파쇄물 중 알루미늄 알갱이(N)와 드로스 파우더(P 1)를 전술한 제1 분리 부재(42)를 이용해 분리할 수 있다. 예를 들어, 제1 분리 부재(42)는, 약 10 ㎜의 입도를 갖는 진동 스크린으로 구성될 수 있다.In the step (S 220) of separating the aluminum granules (N) and the dross powder (P 1 ), the aluminum granules (N) and the dross powder (P) among the crushed products of the spherical black dross (B 2 ) formed in the step S 210. 1 ) can be separated using the first separation member 42 described above. For example, the first separating member 42 may be configured as a vibrating screen having a particle size of about 10 mm.
드로스 파우더(P 1)를 분쇄하는 단계(S 230)에서는, S 220 단계에서 알루미늄 알갱이(N)와 분리된 드로스 파우더(P 1)를 분쇄기(43)를 이용해 분쇄할 수 있다.Pulverizing the dross powder (P 1) (S 230) in, the dross powder (P 1) separate from the aluminum grains (N) in step S 220 may be pulverized using a grinder (43).
알루미늄 알갱이(N)와 드로스 미립자 파우더(P 2)를 분리하는 단계(S 240)에서는, S 230 단계에서 형성된 드로스 파우더(P 1)의 분쇄물 중 알루미늄 알갱이(N)와 드로스 미립자 파우더(P 2)를 전술한 제2 분리 부재(44)를 이용해 분리할 수 있다. 예를 들어, 제2 분리 부재(44)는 약 0.5 ㎜의 입도를 갖는 트롬멜 스크린(Trommel Screen)으로 구성될 수 있다.In the step (S 240) of separating the aluminum granules (N) and the dross particulate powder (P 2 ), the aluminum granules (N) and the dross particulate powder among the pulverized powder of the dross powder (P 1 ) formed in step S 230 (P 2 ) can be separated using the second separation member 44 described above. For example, the second separating member 44 may be composed of a Trommel Screen having a particle size of about 0.5 mm.
한편, 구형 블랙 드로스(B 2)를 분쇄 및 파쇄하는 단계(200)는, S 220 단계 및 S 240 단계에서 드로스 파우더(P 1) 및 드로스 미립자 파우더(P 2)와 분리된 알루미늄 알갱이(N)를 재활용하는 단계(S 250)를 더 포함할 수 있다. 예를 들어, 알루미늄 알갱이(N)의 재활용 단계(S 250)에서는, 알루미늄 알갱이(N)를 전술한 알루미늄 용탕(M)의 와류(V)에 투입할 수 있다.On the other hand, the step (200) of crushing and crushing the spherical black dross (B 2 ), aluminum particles separated from the dross powder (P 1 ) and the dross particulate powder (P 2 ) in steps S 220 and S 240 (N) recycling step (S 250) may be further included. For example, in the recycling step S 250 of the aluminum grains N, the aluminum grains N may be introduced into the vortex V of the aluminum molten metal M described above.
다음으로, 드로스 미립자 파우더(P 2)를 물 분해하는 단계(S 300)에서는, S 240 단계에서 알루미늄 알갱이(N)와 재분리된 드로스 미립자 파우더(P 2)를 반응기(52)를 이용해 물 분해하여 수행할 수 있다. 바람직하게, 반응기(52)는, 1 : 2 비율로 혼합된 드로스 미립자 파우더(P 2)와 물을 교반하여, 드로스 미립자 파우더(P 2)를 물 분해할 수 있다. 이와 같이 드로스 미립자 파우더(P 2)를 물 분해하는 경우에, 드로스 미립자 파우더(P 2)는 가수분해 가스(G), 가용성 고형분(S) 및 불용성 고형분(I)을 포함하는 물 분해물들로 분해된다.Next, in the step (S 300) of decomposing the dross particulate powder (P 2 ) by water, the reactor 52 uses the dross particulate powder (P 2 ) re-separated from the aluminum particles (N) in step S 240. It can be performed by decomposing water. Preferably, the reactor 52 may stir the dross particulate powder (P 2 ) and water mixed in a ratio of 1: 2 to decompose the dross particulate powder (P 2 ) into water. In this way dross particles if the degradation of powder (P 2) water, de los particulate powder (P 2) is the water decomposition products including a hydrolysis gas (G), soluble solids content (S) and insoluble solids (I) Decomposes into
다음으로, 도 20에 도시된 바와 같이, 드로스 미립자 파우더(P 2)의 물 분해물들 중 적어도 하나를 재활용 가능하도록 처리하는 단계(S 400)는, 가용성 고형분(S)이 물에 용해되어 생성된 수용액(Q)으로부터 가수분해 가스(G)를 포집하여 분리하는 단계(S 410)와, 불용성 고형분(I)과 수용액(Q)을 서로 분리하는 단계(S 420)와, 가수분해 가스(G)를 재활용 가능하도록 처리하는 단계(S 430)와, 가용성 고형분(S)을 재활용 가능하도록 처리하는 단계(S 440)와, 불용성 고형분(I)을 재활용 가능하도록 처리하는 단계(S 450)를 포함한다.Next, as shown in Figure 20, the step of treating at least one of the water decomposition products of the dross particulate powder (P 2 ) to be recyclable (S 400), the soluble solid (S) is dissolved in water is produced Separating and separating the hydrolysis gas (G) from the aqueous solution (Q) (S 410), separating the insoluble solid (I) and the aqueous solution (Q) from each other (S 420), and the hydrolysis gas (G ) Is processed to be recyclable (S 430), the step of treating soluble solids (S) to be recyclable (S 440), and the step of treating insoluble solids (I) to be recyclable (S 450). do.
수용액(Q)으로부터 가수분해 가스(G)를 포집하여 분리하는 단계(S 410)에서는, 전술한 반응기(52)에 수용된 수용액(Q)으로부터 가수분해 가스(G)를 가스 포집기(54)를 이용해 포집할 수 있다.In the step of collecting and separating the hydrolysis gas (G) from the aqueous solution (Q) (S 410), the hydrolysis gas (G) from the aqueous solution (Q) accommodated in the above-described reactor 52 using a gas collector 54 Can be captured.
도 20에 도시된 바와 같이, 불용성 고형분(I)과 수용액(Q)을 서로 분리하는 단계(S 420)는, 수용액(Q)과 불용성 고형분(I)을 원심 분리하는 단계(S 421)와, 불용성 고형분(I)을 증류수로 세척하는 단계(S 422)와, 불용성 고형분(I)과 증류수를 원심 분리하는 단계(S 423)를 포함한다.As shown in Figure 20, the step of separating the insoluble solid (I) and the aqueous solution (Q) from each other (S 420), the step of centrifuging the aqueous solution (Q) and the insoluble solid (I) (S 421), And washing the insoluble solid (I) with distilled water (S 422) and centrifuging the insoluble solid (I) and distilled water (S 423).
불용성 고형분(I)과 수용액(Q)을 원심 분리하는 단계(S 421)에서는, S 410 단계에서 가수분해 가스(G)와 분리된 불용성 고형분(I)과 수용액(Q)을 전술한 제1 원심 분리기(56)를 이용해 원심 분리할 수 있다.In the step of centrifuging the insoluble solid (I) and the aqueous solution (Q) (S 421), the first centrifugation of the insoluble solid (I) and the aqueous solution (Q) separated from the hydrolysis gas (G) in step S 410 Centrifugation may be performed using a separator 56.
불용성 고형분(I)을 증류수로 세척하는 단계(S 422)에서는, S 421 단계에서 불용성 고형분(I)에 흡착된 염소가 불용성 고형분(I)으로부터 분리되도록 증류수를 이용해 불용성 고형분(I)을 세척할 수 있다. S 421 단계에서 불용성 고형분(I)과 수용액(Q)을 원심 분리하더라도 일부의 수용액(Q)은 불용성 고형분(I)에 흡착된 상태로 남을 수 있는데, 이러한 수용액(Q)에는 염화물염을 포함하는 가용성 고형분(S)이 용해되어 있다. 따라서, 이와 같이 불용성 고형분(I)에 흡착된 염화물염을 제거할 수 있도록 불용성 고형분(I)을 증류수로 세척하는 것이다. 이러한 불용성 고형분(I)을 증류수로 세척하는 단계(S 422)에서는, 후술할 S 445 단계에서 생성된 응축수(D)를 증류수로서 이용하는 것이 바람직하나, 이에 한정되는 것은 아니다.In the step of washing the insoluble solid (I) with distilled water (S 422), in step S 421, the insoluble solid (I) is washed with distilled water so that chlorine adsorbed to the insoluble solid (I) is separated from the insoluble solid (I). Can be. Even if the insoluble solid content (I) and the aqueous solution (Q) are centrifuged in step S 421, some of the aqueous solution (Q) may remain adsorbed to the insoluble solid content (I), and the aqueous solution (Q) contains a chloride salt. Soluble solid content (S) is dissolved. Accordingly, the insoluble solid (I) is washed with distilled water to remove the chloride salt adsorbed on the insoluble solid (I). In the step of washing the insoluble solid (I) with distilled water (S 422), it is preferable to use the condensed water (D) produced in step S 445 to be described later as distilled water, but is not limited thereto.
불용성 고형분(I)과 증류수를 원심 분리하는 단계(S 423)에서는, S 422 단계 이후에, 전술한 제1 원심 분리기(56)를 이용해 불용성 고형분(I)과 증류수를 원심 분리할 수 있다.In the step of centrifuging the insoluble solid content (I) and distilled water (S 423), after step S 422, the insoluble solid content (I) and distilled water may be centrifuged using the above-described first centrifugal separator (56).
추가적으로, S 422 단계와 S 423 단계는 불용성 고형분(I)에 흡착된 염화물염의 농도가 미리 정해진 기준 농도 이하가 될 때까지 반복적으로 수행할 수 있다. 기준 농도는, 약 300 ppm 인 것이 바람직하나, 이에 한정되는 것은 아니다.Additionally, steps S 422 and S 423 may be repeatedly performed until the concentration of the chloride salt adsorbed on the insoluble solid content (I) becomes below a predetermined reference concentration. The reference concentration is preferably about 300 ppm, but is not limited thereto.
도 20에 도시된 바와 같이, 가수분해 가스(G)를 재활용 가능하도록 처리하는 단계(S 430)는, 가수분해 가스(G)에 포함된 수분을 제거하는 단계(S 431)와, 수분이 제거된 가수분해 가스(G)를 분리 정제하는 단계(S 432)와, 분리 정제된 가수분해 가스(G)를 저장하는 단계(S 433)를 포함한다.As shown in Figure 20, the step of treating the hydrolysis gas (G) to be recyclable (S 430), the step of removing the moisture contained in the hydrolysis gas (G) (S 431), the moisture is removed It includes the step of separating and purifying the hydrolyzed gas (G) (S 432), and the step of storing the separated and purified hydrolyzed gas (G) (S 433).
가수분해 가스(G)에 포함된 수분을 제거하는 단계(S 431)에서는, S 410 단계에서 가스 포집기(54)에 의해 포집된 가수분해 가스(G)에 포함된 수분을 전술한 수분 트랩기(54b), 수분 제거기(미도시) 및 탈황기(미도시)를 이용해 제거할 수 있다.In the step (S 431) of removing the moisture contained in the hydrolysis gas (G), the moisture trap included in the moisture contained in the hydrolysis gas (G) collected by the gas collector 54 in step S 410 ( 54b), can be removed using a water remover (not shown) and a desulfurizer (not shown).
가수분해 가스(G)를 분리 정제하는 단계(S 432)에서는, S 431 단계에서 수분이 제거된 가수분해 가스(G) 중 실제로 재활용 가능한 가스의 순도를 높이거나 가스분해 가스(G) 중 재활용 목적에 맞는 특정 가스를 다른 가스들로부터 분리할 수 있도록 가수분해 가스(G)를 전술한 가스 분리 정제기(54a)를 이용해 분리 정제할 수 있다.In the step (S 432) of separating and purifying the hydrolysis gas (G), the purity of the gas that is actually recyclable among the hydrolysis gases (G) from which moisture is removed in step S431 is increased, or the purpose of recycling in the gas separation gas (G) The hydrolysis gas (G) can be separated and purified using the above-described gas separation and purification (54a) so that a specific gas suitable for separation from other gases.
가수분해 가스(G)를 저장하는 단계(S 433)에서는, S 432 단계에서 분리 정제된 가수분해 가스(G)를 전술한 가스 저장 유닛(100)에 저장할 수 있다.In the step (S 433) of storing the hydrolysis gas (G), the hydrolysis gas (G) separated and purified in step S432 may be stored in the gas storage unit 100 described above.
도 20에 도시된 바와 같이, 가용성 고형분(S)을 재활용 가능하도록 처리하는 단계(S 440)는, 복수의 증발 모듈들(620, 630, 640)을 각각 이용해 수용액(Q)에 포함된 물을 증발시켜 수용액(Q)으로부터 가용성 고형분(S)을 석출시키는 단계(S 441)와, 가용성 고형분 석출물(S 1)과 수용액(Q)을 원심 분리하는 단계(S 442)와, 가용성 고형분 석출물(S 1)을 건조하는 단계(S 443)와, 가용성 고형분 건조물(S 2)을 저장하는 단계(S 444) 등을 포함할 수 있다.As shown in Figure 20, the step of treating the soluble solid (S) to be recyclable (S 440), using a plurality of evaporation modules (620, 630, 640), respectively, the water contained in the aqueous solution (Q) Evaporating the soluble solids (S) from the aqueous solution (Q) (S 441), centrifuging the soluble solids precipitate (S 1 ) and the aqueous solution (Q) (S 442), and soluble solids precipitate (S) 1 ) drying (S 443 ), and storing the soluble solid content (S 2 ) (S 444 ).
가용성 고형분(S)을 석출시키는 단계(S 441)에서는, 증발 모듈들(620,630, 640) 각각을 이용해 S 421 단계에서 불용성 고형분(I)과 원심 분리된 수용액(Q)에 포함된 물을 증발시켜 수용액(Q)으로부터 가용성 고형분(S)을 석출시키되, 증발 모듈들(620, 630, 640)마다 서로 상이한 환경 조건 하에서 물의 증발을 유도하여, 증발 모듈들(620, 630, 640)마다 서로 상이한 석출 순서 및 석출 시기에 따라 가용성 고형분(S)에 포함된 염화나트륨과 염화칼륨을 석출시킬 수 있다.In the step (S 441) of precipitating the soluble solid (S), by evaporating the water contained in the insoluble solid (I) and the centrifuged aqueous solution (Q) in step S 421 using each of the evaporation modules (620,630, 640) The soluble solid content (S) is precipitated from the aqueous solution (Q), but evaporation of water is induced under different environmental conditions for each of the evaporation modules (620, 630, 640), and thus different precipitation for each evaporation modules (620, 630, 640) Depending on the order and the timing of precipitation, sodium chloride and potassium chloride contained in the soluble solid (S) may be precipitated.
또한, 가용성 고형분(S)을 석출시키는 단계(S 441)에서, 증발 모듈들(620, 630, 640)에는 불용성 고형분(I)과 분리된 후 원수 공급 펌프(610)에 의해 펌핑된 수용액(Q)이 공급된다. 예를 들어, 불용성 고형분(I)과 분리된 수용액(Q)이 원수 공급 펌프(610)에 의해 제3 증발 모듈(640)의 제3 증발기(642)에 공급될 수 있고, 제3 증발기(642)에 공급된 수용액(Q)의 일부가 제3 순환 펌프(643)에 의해 제2 증발 모듈(630)의 제2 증발기(632)에 공급될 수 있고, 제2 증발기(632)에 공급된 수용액(Q)의 일부가 제2 순환 펌프(633)에 의해 제1 증발 모듈(620)의 제1 증발기(622)에 공급될 수 있다.In addition, in the step (S 441) of precipitating the soluble solids (S), the evaporation modules (620, 630, 640) is separated from the insoluble solids (I) and the aqueous solution pumped by the raw water supply pump (610) (Q ) Is supplied. For example, the insoluble solids (I) and the separated aqueous solution (Q) can be supplied to the third evaporator 642 of the third evaporation module 640 by the raw water supply pump 610, the third evaporator 642 Part of the aqueous solution (Q) supplied to) may be supplied to the second evaporator 632 of the second evaporation module 630 by the third circulation pump 643, and the aqueous solution supplied to the second evaporator 632 A portion of (Q) may be supplied to the first evaporator 622 of the first evaporation module 620 by the second circulation pump 633.
또한, 가용성 고형분(S)을 석출시키는 단계(S 441)에서, 증발 모듈들(620, 630, 640)은 외부의 증기 공급원으로부터 공급된 고온의 원증기(E)를 열원으로서 직접 또는 간접적으로 이용해 수용액(Q)을 가열하여 물을 증발시킴으로써, 가용성 고형분(S)을 석출시킬 수 있다. 여기서, 원증기(E)의 공급은 증발 모듈들(620, 630, 640) 각각의 증발기(622, 632, 642)에 수용액(Q)이 미리 정해진 수위만큼 충전된 상태에서 시작되는 것이 바람직하다.In addition, in the step (S 441) of precipitating the soluble solids (S), the evaporation modules (620, 630, 640) is used directly or indirectly as a heat source using the high temperature source steam (E) supplied from an external steam source Soluble solids (S) can be precipitated by heating the aqueous solution (Q) to evaporate the water. Here, the supply of the original steam (E) is preferably started in a state in which the aqueous solution (Q) is charged to a predetermined water level in the evaporator (622, 632, 642) of each of the evaporation modules (620, 630, 640).
예를 들어, 제1 증발 모듈(620)의 제1 리보일러(621)는 원증기(E)와 수용액을 열교환시켜 수용액을 가열할 수 있다.For example, the first reboiler 621 of the first evaporation module 620 may heat the aqueous solution by exchanging the original steam (E) and the aqueous solution.
예를 들어, 제2 증발 모듈(630)의 제2 리보일러(631)는 제1 증발기(622)에서 물이 증발되어 발생한 발생 증기(E 1)를 수용액(Q)과 열교환시켜 수용액(Q)을 가열할 수 있다.For example, the second reboiler 631 of the second evaporation module 630 heat-exchanges the generated vapor (E 1 ) generated by the evaporation of water in the first evaporator 622 with the aqueous solution (Q), and thus the aqueous solution (Q) Can be heated.
예를 들어, 제3 증발 모듈(640)의 제3 리보일러(641)는 제2 증발기(632)에서 물이 증발되어 발생한 발생 증기(E 2)를 수용액(Q)과 열교환시켜 수용액(Q)을 가열할 수 있다.For example, the third reboiler 641 of the third evaporation module 640 heats the generated vapor (E 2 ) generated by the evaporation of water from the second evaporator 632 with the aqueous solution (Q), and thus the aqueous solution (Q) Can be heated.
이러한 가용성 고형분(S)을 석출시키는 단계(S 441)에서, 증발 모듈들(620, 630, 640) 각각은, 리보일러(621, 631, 641)를 이용해 미리 정해진 기준 온도로 수용액(Q)을 가열한 후, 증발기(622, 632, 642)를 이용해 물의 증발 온도가 기준 온도가 되도록 조절된 증발기(622, 632, 642)의 내부 압력 하에서 물의 증발을 유도하여, 가용성 고형분(S)을 석출시킬 수 있다. 기준 온도는, 증발 모듈들(620, 630, 640) 중 당해 증발 모듈(620, 630, 640)에서 구현하고자 하는 염화나트륨과 염화칼륨의 석출 순서 및 석출 시기에 따라 증발 모듈들(620, 630, 640)마다 개별적으로 정해질 수 있다.In the step (S 441) of precipitating these soluble solids (S), each of the evaporation modules (620, 630, 640), using the reboiler (621, 631, 641) the aqueous solution (Q) at a predetermined reference temperature After heating, the evaporator 622, 632, 642 is used to induce evaporation of water under the internal pressure of the evaporator 622, 632, 642 controlled so that the evaporation temperature of the water becomes a reference temperature to precipitate soluble solids (S). Can be. The reference temperature is the evaporation modules (620, 630, 640) of the evaporation modules (620, 630, 640) according to the deposition order and precipitation time of sodium chloride and potassium chloride to be implemented in the evaporation modules (620, 630, 640) Each can be set individually.
예를 들어, 제1 증발 모듈(620)은, 제1 리보일러(621)를 이용해 수용액(Q)에서의 염화나트륨의 용해도가 염화칼륨의 용해도에 비해 미리 정해진 제1 기준 값 이상만큼 낮아지는 제1 기준 온도로 수용액(Q)을 가열한 후, 제1 증발기(622)를 이용해 물의 증발 온도가 제1 기준 온도가 되도록 조절된 제1 증발기(622)의 내부 압력 하에서 물의 증발을 유도하여, 제1 증발기(622)에서 염화나트륨을 염화칼륨에 비해 상당히 이른 시점부터 우선적으로 석출시킬 수 있다.For example, the first evaporation module 620 uses the first reboiler 621 to reduce the solubility of sodium chloride in the aqueous solution Q by at least a predetermined first reference value compared to the solubility of potassium chloride. After heating the aqueous solution (Q) to a temperature, the first evaporator is induced by evaporating water under the internal pressure of the first evaporator 622, which is adjusted so that the evaporation temperature of water is the first reference temperature using the first evaporator 622, In (622), sodium chloride can be preferentially precipitated from a significantly earlier time point than potassium chloride.
제1 기준 온도와 제1 증발기(622)의 내부 압력은 특별히 해결되지 않는다. 예를 들어, 제1 기준 온도는 수용액(Q)에서의 염화나트륨의 용해도가 약 28 % 이고 염화칼륨의 용해도가 약 35 % 인 약 100 ℃ 내지 110 ℃ 일 수 있고, 제1 증발기(622)의 내부 압력은 약 100 ℃ 내지 110 ℃ 인 물의 증발 압력인 약 20 ㎪ 일 수 있다.The first reference temperature and the internal pressure of the first evaporator 622 are not particularly solved. For example, the first reference temperature may be about 100° C. to 110° C., in which the solubility of sodium chloride in the aqueous solution (Q) is about 28% and the solubility of potassium chloride is about 35%, and the internal pressure of the first evaporator (622). May be about 20 kPa which is an evaporation pressure of water of about 100°C to 110°C.
예를 들어, 제2 증발 모듈(630)은, 제2 리보일러(631)를 이용해 수용액(Q)에서의 염화나트륨의 용해도와 염화칼륨의 용해도가 미리 정해진 제2 기준 값 이하로 낮아지는 제2 기준 온도로 수용액(Q)을 가열한 후, 제2 증발기(632)를 이용해 물의 증발 온도가 제2 기준 온도가 되도록 조절된 제2 증발기(632)의 내부 압력 하에서 물의 증발을 유도하여, 염화나트륨과 염화칼륨을 거의 동일한 시점부터 함께 석출시킬 수 있다.For example, the second evaporation module 630 uses a second reboiler 631, a second reference temperature at which the solubility of sodium chloride in the aqueous solution Q and the solubility of potassium chloride are lowered below a predetermined second reference value. After heating the furnace aqueous solution (Q), the evaporation of water is induced using the second evaporator 632 so that the evaporation temperature of the water is adjusted to the second reference temperature, thereby inducing evaporation of water to reduce sodium chloride and potassium chloride. It can be precipitated together from almost the same time point.
예를 들어, 제2 기준 온도는 수용액(Q)에서의 염화나트륨의 용해도가 약 29 %이고 염화칼륨의 용해도가 약 28% 인 약 70 ℃ 내지 80 ℃ 일 수 있고, 제2 증발기(632)의 내부 압력은 약 70 ℃ 내지 80 ℃ 인 물의 증발 압력인 약 -60 ㎪ 일 수 있다.For example, the second reference temperature may be from about 70° C. to 80° C., where the solubility of sodium chloride in aqueous solution (Q) is about 29% and the solubility of potassium chloride is about 28%, and the internal pressure of the second evaporator (632). May be about -60 kPa which is an evaporation pressure of water of about 70°C to 80°C.
예를 들어, 제3 증발 모듈(640)은, 제3 리보일러(641)를 이용해 수용액(Q)에서의 염화칼륨의 용해도가 염화나트륨의 용해도에 비해 미리 정해진 제3 기준 값 이상만큼 낮아지는 제3 기준 온도로 수용액(Q)을 가열한 후, 제3 증발기(642)를 이용해 물의 증발 온도가 제3 기준 온도가 되도록 조절된 제3 증발기(642)의 내부 압력 하에서 물의 증발을 유도하여, 제3 증발기(642)에서 염화칼륨을 염화나트륨에 비해 상당히 이른 시점부터 우선적으로 석출시킬 수 있다.For example, the third evaporation module 640 uses a third reboiler 641, a third criterion in which the solubility of potassium chloride in the aqueous solution Q is lowered by a predetermined third reference value or more compared to the solubility of sodium chloride. After heating the aqueous solution (Q) to a temperature, the evaporation of water is induced by using the third evaporator 642 to induce evaporation of water under the internal pressure of the third evaporator 642 adjusted so that the evaporation temperature of the water becomes the third reference temperature. At (642), potassium chloride can be preferentially precipitated from a significantly earlier point than sodium chloride.
예를 들어, 제3 기준 온도는 수용액(Q)에서의 염화나트륨의 용해도가 약 30 %이고 염화칼륨의 용해도가 약 22% 인 약 50 ℃ 내지 60 ℃ 일 수 있고, 제2 증발기(642)의 내부 압력은 약 50 ℃ 내지 60 ℃ 인 물의 증발 압력인 약 -80 ㎪ 일 수 있다.For example, the third reference temperature may be about 50° C. to 60° C., in which the solubility of sodium chloride in aqueous solution (Q) is about 30% and the solubility of potassium chloride is about 22%, and the internal pressure of the second evaporator (642). May be about -80 kPa, which is an evaporation pressure of water of about 50°C to 60°C.
위와 같이, 제2 기준 온도가 약 70 ℃ 내지 80 ℃ 이고, 제3 기준 온도가 약 50 ℃ 내지 60 ℃ 인 경우에는, 제2 증발기(632)와 제3 증발기(642)에서 물을 증발시키기 위해서는 제2 증발기(632)의 내부 압력과 제3 증발기(642)의 내부 압력이 대기압에 비해 낮은 진공 상태로 유지되어야 한다. 이를 위하여, 제2 증발 모듈(630)과 제3 증발 모듈(640)은 각각, 제2 기준 온도 또는 제3 기준 온도에 따라 진공 분위기 하에서 물의 감압 증발을 유도할 수 있도록, 압력 조절 부재(670)로부터 선택적으로 인가되는 진공압에 의해 내부 압력이 일정하게 유지될 수 있다.As described above, when the second reference temperature is about 70°C to 80°C, and the third reference temperature is about 50°C to 60°C, in order to evaporate water in the second evaporator 632 and the third evaporator 642, The internal pressure of the second evaporator 632 and the internal pressure of the third evaporator 642 should be maintained in a vacuum state lower than atmospheric pressure. To this end, the second evaporation module 630 and the third evaporation module 640, respectively, the pressure control member 670 to induce reduced pressure evaporation of water under a vacuum atmosphere according to the second reference temperature or the third reference temperature The internal pressure may be kept constant by a vacuum pressure selectively applied from.
또한, 가용성 고형분(S)을 석출시키는 단계(S 441)에서는, 원증기(E) 또는 발생 증기(E 1, E 2)가 수용액(Q)과 열교환되는 과정에서 원증기(E) 또는 발생 증기(E 1, E 2)가 수용액(Q)에 의해 냉각되어 생성된 응축수(D)와, 제2 증발기(632) 또는 제3 증발기(642)에서 배출된 발생 증기(E 2, E 3)가 응축기(650)에서 응축되어 생성된 응축수(D)가 응축수 저장 탱크(660)에 저장될 수 있다. 이처럼 응축수 저장 탱크(660)에 저장된 응축수(D)는, 제1 원심 분리기(56)에 전달될 수 있다(S 445). 그러면, S 422 단계에서는, 제1 원심 분리기(56)에 의해 수용액(Q)과 분리된 불용성 고형분(I)을 응축수 저장 탱크(660)로부터 전달된 응축수(D)를 증류수로서 이용해 세척할 수 있다.In addition, in the step (S 441) of precipitating the soluble solid (S), the original steam (E) or the generated steam (E 1 , E 2 ) in the process of exchanging heat with the aqueous solution (Q), the original steam (E) or generated steam (E 1 , E 2 ) The condensate (D) generated by cooling by the aqueous solution (Q) and the generated vapor (E 2 , E 3 ) discharged from the second evaporator 632 or the third evaporator 642 The condensate D generated by condensation in the condenser 650 may be stored in the condensate storage tank 660. As such, the condensate D stored in the condensate storage tank 660 may be transferred to the first centrifugal separator 56 (S 445). Then, in step S 422, the insoluble solids (I) separated from the aqueous solution (Q) by the first centrifugal separator (56) can be washed using the condensate (D) transferred from the condensate storage tank (660) as distilled water. .
가용성 고형분 석출물(S 1)과 수용액(Q)을 원심 분리하는 단계(S 442)에서는, S 441 단계에서 수용액(Q)으로부터 석출된 가용성 고형분 석출물(S 1) 및 가용성 고형분 석출물(S 1)이 석출되고 남은 수용액(Q)을 전술한 제2 원심 분리기(690)를 이용해 원심 분리할 수 있다. 이처럼 가용성 고형분 석출물(S 1)과 분리된 수용액(Q)은, 석출되지 못한 채 수용액(S)에 여전히 용해된 상태로 잔류된 가용성 고형분(S)을 수용액(Q)으로부터 석출시킬 수 있도록, 증발 모듈들(620, 630, 640)에 재전달 될 수 있다(S 446). 그러면, S 441 단계에서는, 증발 모듈들(620, 630, 640)을 이용해, S 442 단계에서 가용성 고형분 석출물(S 1)과 분리된 수용액(Q)으로부터 가용성 고형분(S)을 재석출시킬 수 있다.In the step (S 442) of centrifuging the soluble solids precipitate (S 1 ) and the aqueous solution (Q), the soluble solids precipitate (S 1 ) and the soluble solids precipitate (S 1 ) precipitated from the aqueous solution (Q) in step S 441 are The remaining aqueous solution Q precipitated may be centrifuged using the second centrifuge 690 described above. The aqueous solution (Q) separated from the soluble solids precipitate (S 1 ) is evaporated so that the soluble solids (S) remaining dissolved in the aqueous solution (S) without precipitation can be precipitated from the aqueous solution (Q). It may be re-delivered to the modules (620, 630, 640) (S 446). Then, in step S 441, the evaporation modules 620, 630, and 640 are used to reprecipitate the soluble solids (S) from the aqueous solution (Q) separated from the soluble solids precipitate (S 1 ) in step S 442. .
가용성 고형분 석출물(S 1)을 건조하는 단계(S 443)에서는, S 442 단계에서 수용액(Q)과 분리된 가용성 고형분 석출물(S 1)을 전술한 가용성 고형분 건조기(72)를 이용해 건조할 수 있다. 이러한 가용성 고형분 석출물(S 1)을 건조하는 단계(S 443)는, 가용성 고형분 석출물(S 1)이 0.3 % 이하의 수분을 포함할 때까지 수행하는 것이 바람직하나, 이에 한정되는 것은 아니다.In the step (S 443) for drying the soluble solid precipitate (S 1), it can be dried using an aqueous solution of the aforementioned soluble solid content of the soluble solid precipitate (S 1) separated from the (Q) dryer 72 at S 442 step . Drying this soluble solid precipitate (S 1) (S 443), the soluble solid precipitate (S 1) one or desirable to perform up to and including a moisture of not more than 0.3%, and the like.
가용성 고형분 건조물(S 2)을 저장하는 단계(S 444)에서는, S 443 단계에서 건조된 가용성 고형분 건조물(S 2)을 전술한 가용성 고형분 저장 챔버(74)에 저장할 수 있다.Storing the soluble solid dry product (S 2) (S 444) In, can be stored in a soluble solid the reservoir chamber 74 above the soluble solid dry product (S 2) and dried at S 443 step.
도 20에 도시된 바와 같이, 불용성 고형분(I)을 재활용 가능하도록 처리하는 단계(S 450)는, 불용성 고형분(I)을 건조하는 단계(S 451)와, 불용성 고형분 건조물(I 1)을 소성하는 단계(S 452)와, 불용성 고형분 소성물(I 2)을 저장하는 단계(S 453)를 포함한다.As shown in FIG. 20, the step of treating the insoluble solid content (I) to be recyclable (S 450) includes: drying the insoluble solid content (I) (S 451) and firing the insoluble solid content (I 1 ). It includes a step (S 452) and a step (S 453) of storing the insoluble solid content fired material (I 2 ).
불용성 고형분(I)을 건조하는 단계(S 451)에서는, S 420 단계에서 불용성 고형분(I)과 분리되지 못한 채 불용성 고형분(I)에 흡착된 수분을 전술한 불용성 고형분 건조기(92)를 이용해 건조할 수 있다. 불용성 고형분(I)을 건조하는 단계(S 451)는, 불용성 고형분(I)을 시멘트 원료로 재활용하는 경우에는 불용성 고형분 건조물(I 1)이 40 % 이하의 수분을 포함할 때까지 수행하는 것이 바람직하다. 또한, 불용성 고형분 건조물(I 1)을 건조하는 단계(S 451)는, 불용성 고형분(I)을 벽돌 내화물 또는 세라믹 재료로 재활용하는 경우에는 불용성 고형분 건조물(I 1)이 0.5 % 이하의 수분을 포함할 때까지 수행하는 것이 바람직하나, 이에 한정되는 것은 아니다.In the step of drying the insoluble solid (I) (S 451), in step S 420, the water adsorbed on the insoluble solid (I) without being separated from the insoluble solid (I) is dried using the above-described insoluble solid content dryer (92). can do. In the step (S 451) of drying the insoluble solid content (I), when recycling the insoluble solid content (I) as a cement raw material, it is preferable to perform it until the insoluble solid content dry matter (I 1 ) contains 40% or less of moisture. Do. In addition, the step of drying the insoluble solid content (I 1 ) (S 451), when recycling the insoluble solid content (I) as a brick refractory material or ceramic material, the insoluble solid content (I 1 ) contains less than 0.5% moisture It is preferable to perform until, but is not limited to.
불용성 고형분 건조물(I 1)을 소성하는 단계(S 452)에서는, S 451 단계에서 건조된 불용성 고형분 건조물(I 1)을 전술한 불용성 고형분 소성로(94)를 이용해 소성할 수 있다. 불용성 고형분(I 1)은 불안정한 성질을 갖는 수산화 알루미늄, 수산화 마그네슘, 알루미늄 합금 수화물 등의 수산화물을 포함할 수 있으므로, 이러한 수산화물들이 상대적으로 안정한 성질을 갖는 산화 알루미늄, 산화 마그네슘, 알루미늄 합금 산화물로 전이되도록 불용성 고형분(I 1)을 소성하는 것이다.In the step (S 452) of calcining the insoluble solid dry product (I 1), it may be fired using an insoluble solid dry product (I 1) of the above water-insoluble solid content of the baking furnace 94, dried at S 451 step. The insoluble solid content (I 1 ) may include hydroxides such as aluminum hydroxide, magnesium hydroxide, and aluminum alloy hydrates having unstable properties, so that these hydroxides are converted to aluminum oxide, magnesium oxide, and aluminum alloy oxides having relatively stable properties. It is to fire insoluble solids (I 1 ).
불용성 고형분 소성물(I 2)을 저장하는 단계(S 453)에서는, S 452 단계에서 소성된 불용성 고형분 소성물(I 2)을 전술한 불용성 고형분 저장 챔버(96)에 저장할 수 있다.Storing a water-insoluble solid matter fired product (I 2) (S 453) In, can be stored in a water insoluble solid content storage chamber 96 above the water-insoluble solids fired product (I 2) in the firing step S 452.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by way of limited examples and drawings, the present invention is not limited by this, and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the equal scope of the claims.

Claims (31)

  1. (a) 알루미늄 용탕에서 알루미늄 스크랩을 용해시킬 때 상기 알루미늄 스크랩이 염화나트륨과 염화칼륨을 포함하는 플럭스에 의해 플럭스 처리되어 발생한 블랙 드로스를 파쇄 및 분쇄하여 알루미늄 알갱이와 드로스 미립자 파우더로 분할하는 단계;(A) when dissolving an aluminum scrap in an aluminum molten metal, the aluminum scrap is crushed and pulverized by a flux treatment by a flux containing sodium chloride and potassium chloride, and crushed and pulverized to divide into aluminum particles and dross particulate powder;
    (b) 상기 드로스 미립자 파우더를 물과 가수분해 반응시켜, 염화나트륨과 염화칼륨을 포함하는 가용성 고형분이 용해된 수용액을 생성하는 단계; 및(b) hydrolyzing the dross particulate powder with water to produce an aqueous solution in which soluble solids containing sodium chloride and potassium chloride are dissolved; And
    (c) 복수의 증발 모듈들을 각각 이용해 상기 수용액에 포함된 상기 물을 증발시켜 상기 수용액으로부터 상기 가용성 고형분을 석출시키되, 상기 증발 모듈들마다 서로 상이한 환경 조건 하에서 상기 물의 증발을 유도하여, 상기 증발 모듈들마다 서로 상이한 석출 순서 및 석출 시기에 따라 상기 염화나트륨과 상기 염화칼륨을 석출시키는 단계를 포함하는 것을 특징으로 하는 블랙 드로스 재활용 방법.(c) evaporating the water contained in the aqueous solution using a plurality of evaporation modules to deposit the soluble solids from the aqueous solution, but inducing the evaporation of the water under different environmental conditions for each of the evaporation modules, so that the evaporation module Black dross recycling method comprising the step of precipitating the sodium chloride and the potassium chloride according to a different precipitation order and precipitation timing for each.
  2. 제1항에 있어서,According to claim 1,
    상기 (c) 단계에서, 상기 증발 모듈들 각각은, 리보일러를 이용해 미리 정해진 기준 온도로 상기 수용액을 가열한 후, 증발기를 이용해 상기 물의 증발 온도가 상기 기준 온도가 되도록 조절된 상기 증발기의 내부 압력 하에서 상기 물의 증발을 유도하여, 상기 가용성 고형분을 석출시키는 것을 특징으로 하는 블랙 드로스 재활용 방법.In step (c), each of the evaporation modules, after heating the aqueous solution to a predetermined reference temperature using a reboiler, the internal pressure of the evaporator adjusted so that the evaporation temperature of the water is the reference temperature using an evaporator Black dross recycling method, characterized in that to induce evaporation of the water under, to precipitate the soluble solids.
  3. 제2항에 있어서,According to claim 2,
    상기 기준 온도는, 상기 증발 모듈들 중 당해 증발 모듈에서 구현하고자 하는 상기 염화나트륨과 상기 염화칼륨의 석출 순서 및 석출 시기에 따라 상기 증발 모듈들마다 개별적으로 정해지는 것을 특징으로 하는 블랙 드로스 재활용 방법.The reference temperature, black dross recycling method, characterized in that determined separately for each of the evaporation modules according to the precipitation order and the precipitation order of the sodium chloride and the potassium chloride to be implemented in the evaporation module among the evaporation modules.
  4. 제3항에 있어서,According to claim 3,
    상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 리보일러를 이용해 상기 수용액에서의 상기 염화나트륨의 용해도가 상기 염화칼륨의 용해도에 비해 미리 정해진 제1 기준 값 이상만큼 낮아지는 제1 기준 온도로 상기 수용액을 가열한 후, 상기 증발기를 이용해 상기 물의 상기 증발 온도가 상기 제1 기준 온도가 되도록 조절된 상기 증발기의 내부 압력 하에서 상기 물의 증발을 유도하여, 상기 염화나트륨을 상기 염화칼륨에 비해 우선적으로 석출시키는 것을 특징으로 하는 블랙 드로스 재활용 방법.In step (c), at least one evaporation module among the evaporation modules, the solubility of the sodium chloride in the aqueous solution is lowered by a predetermined first reference value or more than the solubility of the potassium chloride using the reboiler. After heating the aqueous solution to a first reference temperature, the evaporator is used to induce evaporation of the water under the internal pressure of the evaporator adjusted so that the evaporation temperature of the water becomes the first reference temperature, so that the sodium chloride is added to the potassium chloride. Compared to the black dross recycling method characterized in that the precipitation preferentially.
  5. 제3항에 있어서,According to claim 3,
    상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 리보일러를 이용해 상기 수용액에서의 상기 염화나트륨의 용해도와 상기 염화칼륨의 용해도의 차이가 미리 정해진 제2 기준 값 이하로 낮아지는 제2 기준 온도로 상기 수용액을 가열한 후, 상기 증발기를 이용해 상기 물의 상기 증발 온도가 상기 제2 기준 온도가 되도록 조절된 상기 증발기의 내부 압력 하에서 상기 물의 증발을 유도하여, 상기 염화나트륨과 상기 염화칼륨을 함께 석출시키는 것을 특징으로 하는 블랙 드로스 재활용 방법.In step (c), at least one of the evaporation modules of the evaporation module, the difference between the solubility of the sodium chloride and the solubility of the potassium chloride in the aqueous solution using the reboiler is lower than a predetermined second reference value After heating the aqueous solution to a second reference temperature, the evaporator is used to induce evaporation of the water under the internal pressure of the evaporator adjusted so that the evaporation temperature of the water becomes the second reference temperature, so that the sodium chloride and the potassium chloride are Black dross recycling method characterized in that the precipitation together.
  6. 제3항에 있어서,According to claim 3,
    상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 리보일러를 이용해 상기 수용액에서의 상기 염화칼륨의 용해도가 상기 염화나트륨의 용해도에 비해 미리 정해진 제3 기준 값 이하로 낮아지는 제3 기준 온도로 상기 수용액을 가열한 후, 상기 증발기를 이용해 상기 물의 상기 증발 온도가 상기 제3 기준 온도가 되도록 조절된 상기 증발기의 내부 압력 하에서, 상기 염화칼륨을 상기 염화나트륨에 비해 우선적으로 석출시키는 것을 특징으로 하는 블랙 드로스 재활용 방법.In step (c), at least one of the evaporation modules of the evaporation module, the solubility of the potassium chloride in the aqueous solution using the reboiler is lowered below a predetermined third reference value compared to the solubility of the sodium chloride After heating the aqueous solution to a third reference temperature, the potassium chloride is preferentially precipitated in comparison with the sodium chloride under the internal pressure of the evaporator adjusted so that the evaporation temperature of the water is the third reference temperature using the evaporator. Characterized by the black dross recycling method.
  7. 제2항에 있어서,According to claim 2,
    상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 미리 정해진 기준 온도에 따라 진공 분위기 하에서 상기 물의 감압 증발을 유도할 수 있도록, 압력 조절 부재로부터 선택적으로 인가되는 진공압에 의해 당해 증발기의 내부 압력이 진공 상태로 유지되는 것을 특징으로 하는 블랙 드로스 재활용 방법.In step (c), at least one evaporation module among the evaporation modules may be vacuum pressure selectively applied from a pressure regulating member to induce reduced pressure evaporation of the water under a vacuum atmosphere according to the predetermined reference temperature. Black dross recycling method characterized in that the internal pressure of the evaporator is maintained in a vacuum.
  8. 제1항에 있어서,According to claim 1,
    (d) 상기 수용액으로부터 석출된 가용성 고형분 석출물 및 상기 가용성 고형분 석출물과 혼합된 상기 수용액을 원심 분리하는 단계를 더 포함하고,(d) further comprising the step of centrifuging the soluble solids precipitate precipitated from the aqueous solution and the aqueous solution mixed with the soluble solids precipitate,
    상기 (c) 단계에서는, 상기 증발 모듈들을 재이용하여 상기 (d) 단계에서 상기 가용성 고형분 석출물과 분리된 상기 수용액으로부터 상기 가용성 고형분을 재석출시키는 것을 특징으로 하는 블랙 드로스 재활용 방법.In the step (c), the method for recycling black dross, characterized in that by reusing the evaporation modules, the soluble solid content is re-precipitated from the aqueous solution separated from the soluble solid content precipitate in the step (d).
  9. 제8항에 있어서,The method of claim 8,
    (e) 상기 (d) 단계에서 상기 수용액과 분리된 상기 가용성 고형분 석출물을 건조하여 저장하는 단계를 더 포함하는 것을 특징으로 하는 블랙 드로스 재활용 방법.(E) black dross recycling method further comprising the step of drying and storing the soluble solid precipitate separated from the aqueous solution in the step (d).
  10. 제1항에 있어서,According to claim 1,
    상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 외부의 증기 공급원으로부터 공급된 원증기와 상기 수용액을 열교환시켜 상기 수용액을 가열하고,In step (c), at least one of the evaporation modules, the evaporation module heats the aqueous solution by exchanging the aqueous solution with the original steam supplied from an external steam source,
    상기 (c) 단계에서, 상기 증발 모듈들 중 적어도 다른 하나의 증발 모듈은, 상기 적어도 어느 하나의 증발 모듈에서 상기 물이 증발되어 발생한 발생 증기 또는 상기 증발 모듈들 중 또 다른 어느 하나의 증발 모듈에서 상기 물이 증발되어 발생한 발생 증기와 상기 수용액을 열교환시켜 상기 수용액을 가열하는 것을 특징으로 하는 블랙 드로스 재활용 방법.In step (c), at least one evaporation module among the evaporation modules is generated from the evaporation module generated by the water being evaporated in the at least one evaporation module or another evaporation module among the evaporation modules. Black dross recycling method, characterized in that for heating the aqueous solution by heat-exchanging the aqueous vapor generated by the evaporation of the water.
  11. 제10항에 있어서,The method of claim 10,
    (f) 상기 수용액에 분산 또는 침전된 불용성 고형분 및 상기 수용액을 원심 분리하는 단계를 더 포함하고,(f) further comprising the step of centrifuging the insoluble solids and the aqueous solution dispersed or precipitated in the aqueous solution,
    상기 (c) 단계에서는, 상기 증발 모듈들을 이용해, 상기 불용성 고형분과 분리된 상기 수용액으로부터 상기 가용성 고형분을 석출시키는 것을 특징으로 하는 블랙 드로스 재활용 방법.In the step (c), using the evaporation modules, black dross recycling method characterized in that to precipitate the soluble solids from the aqueous solution separated from the insoluble solids.
  12. 제11항에 있어서,The method of claim 11,
    (g) 상기 원증기 또는 상기 발생 증기가 상기 수용액에 의해 냉각되어 생성된 응축수 또는 상기 원증기 또는 상기 발생 증기가 응축기에 의해 응축되어 생성된 응축수를 이용해 상기 (f) 단계에서 상기 수용액과 분리된 상기 불용성 고형분을 세척하는 단계를 더 포함하는 것을 특징으로 하는 블랙 드로스 재활용 방법.(g) using the condensed water generated by cooling the original steam or the generated steam by the aqueous solution or condensed water generated by condensing the original steam or the generated steam by the condenser, and separated from the aqueous solution in step (f). Black dross recycling method further comprising the step of washing the insoluble solids.
  13. 알루미늄 용탕에서 알루미늄 스크랩을 용해시킬 때 상기 알루미늄 스크랩이 염화나트륨과 염화칼륨을 포함하는 플럭스에 의해 플럭스 처리되어 발생하는 블랙 드로스를 재활용하기 위한 블랙 드로스 재활용 장치에 있어서,When dissolving aluminum scrap in an aluminum molten metal, in the black dross recycling apparatus for recycling the black dross generated by the aluminum scrap is fluxed by a flux containing sodium chloride and potassium chloride,
    상기 블랙 드로스의 파분쇄물인 드로스 미립자 파우더를 물과 가수분해 반응시켜, 상기 염화나트륨과 상기 염화칼륨을 포함하는 가용성 고형분이 용해된 수용액을 생성하는 물 분해 유닛; 및A water decomposition unit that hydrolyzes the dross particulate powder, which is a pulverized product of the black dross, with water to generate an aqueous solution in which a soluble solid containing the sodium chloride and the potassium chloride is dissolved; And
    상기 수용액에 포함된 상기 물을 증발시켜 상기 수용액으로부터 상기 가용성 고형분을 각각 석출시키되, 서로 상이한 환경 조건 하에서 상기 물의 증발을 유도하여, 서로 상이한 석출 순서 및 석출 시기에 따라 상기 염화나트륨과 상기 염화칼륨을 석출시키는 복수의 증발 모듈들을 구비하는 석출 유닛을 포함하는 것을 특징으로 하는 블랙 드로스 재활용 장치.Evaporating the water contained in the aqueous solution to precipitate the soluble solids from the aqueous solution, respectively, and inducing the evaporation of the water under different environmental conditions to precipitate the sodium chloride and the potassium chloride according to different precipitation order and precipitation time. Black dross recycling apparatus comprising a precipitation unit having a plurality of evaporation modules.
  14. 제13항에 있어서,The method of claim 13,
    상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈은, 상기 수용액에서의 상기 염화칼륨의 용해도가 상기 염화나트륨의 용해도에 비해 미리 정해진 기준 값 이상만큼 낮은 온도 조건 하에서 상기 물의 증발을 유도하여, 상기 염화칼륨을 상기 염화나트륨에 비해 우선적으로 석출시키는 것을 특징으로 하는 블랙 드로스 재활용 장치.At least one of the evaporation modules, the evaporation module, induces the evaporation of the water under a temperature condition at which the solubility of the potassium chloride in the aqueous solution is lower than or equal to a predetermined reference value than the solubility of the sodium chloride, so that the potassium chloride is the sodium chloride. Compared to the black dross recycling apparatus characterized in that the precipitation preferentially.
  15. 제14항에 있어서,The method of claim 14,
    상기 적어도 어느 하나의 상기 증발 모듈은, 상기 증발 모듈들 중 적어도 다른 하나의 상기 증발 모듈에서 상기 물이 증발되어 발생한 발생 증기를 당해 증발 모듈에서 상기 수용액을 가열하기 위한 열원으로서 이용하는 것을 특징으로 하는 블랙 드로스 재활용 장치.The at least one evaporation module is characterized in that at least one of the evaporation modules, the evaporation module generated by the evaporation of the water is used as a heat source for heating the aqueous solution in the evaporation module characterized in that the black Dross recycling device.
  16. 제14항에 있어서,The method of claim 14,
    상기 적어도 어느 하나의 증발 모듈은, 상기 온도 조건 하에서 상기 물이 증발될 수 있도록, 진공 분위기 하에서 상기 물의 감압 증발을 유도하는 것을 특징으로 하는 블랙 드로스 재활용 장치.The at least one evaporation module, so that the water can be evaporated under the temperature condition, the black dross recycling apparatus characterized in that to induce reduced pressure evaporation of the water under a vacuum atmosphere.
  17. 제14항에 있어서,The method of claim 14,
    상기 증발 모듈들 중 적어도 다른 하나의 증발 모듈은, 상기 수용액에서의 상기 염화나트륨의 용해도가 상기 염화칼륨의 용해도에 비해 미리 정해진 기준 값 이상만큼 낮은 온도 조건 하에서 상기 물의 증발을 유도하여, 상기 염화나트륨을 상기 염화칼륨에 비해 우선적으로 석출시키는 것을 특징으로 하는 블랙 드로스 재활용 장치.At least one other evaporation module among the evaporation modules induces the evaporation of the water under temperature conditions such that the solubility of the sodium chloride in the aqueous solution is lower than or equal to a predetermined reference value compared to the solubility of the potassium chloride, so that the sodium chloride is the potassium chloride. Compared to the black dross recycling apparatus characterized in that the precipitation preferentially.
  18. 제13항에 있어서,The method of claim 13,
    상기 증발 모듈들은 각각,Each of the evaporation modules,
    상기 수용액을 미리 정해진 기준 온도로 가열하는 리보일러; 및A reboiler for heating the aqueous solution to a predetermined reference temperature; And
    상기 기준 온도로 가열된 상기 수용액을 상기 리보일러로부터 전달받으며, 상기 물의 증발 온도가 상기 미리 정해진 기준 온도가 되도록 조절된 내부 압력 하에서 상기 물의 증발을 유도하여, 상기 가용성 고형분을 석출시키는 증발기를 구비하는 것을 특징으로 하는 블랙 드로스 재활용 장치.The evaporator for receiving the aqueous solution heated to the reference temperature from the reboiler and inducing the evaporation of the water under an internal pressure regulated such that the evaporation temperature of the water becomes the predetermined reference temperature, thereby depositing the soluble solid content. Black dross recycling device, characterized in that.
  19. 제18항에 있어서,The method of claim 18,
    상기 증발 모듈들은 각각,Each of the evaporation modules,
    상기 수용액을 미리 정해진 순서를 따라 상기 리보일러 및 상기 증발기에 순환시키는 순환 펌프를 더 구비하는 것을 특징으로 하는 블랙 드로스 재활용 장치.Black dross recycling apparatus further comprising a circulation pump for circulating the aqueous solution to the reboiler and the evaporator in a predetermined order.
  20. 제18항에 있어서,The method of claim 18,
    상기 석출 유닛은,The precipitation unit,
    상기 가용성 고형분이 석출된 가용성 고형분 석출물 및 상기 수용액을 원심 분리하는 원심 분리기를 더 구비하는 것을 특징으로 하는 블랙 드로스 재활용 장치.A black dross recycling apparatus further comprising a centrifugal separator for centrifuging the soluble solid content precipitates and the aqueous solution in which the soluble solid content is deposited.
  21. 제20항에 있어서,The method of claim 20,
    상기 석출 유닛은,The precipitation unit,
    상기 증발 모듈들 중 적어도 어느 하나의 상기 증발기에서 상기 수용액과 혼합된 슬러리 상태로 배출된 상기 가용성 고형분 석출물이 저장되며, 상기 슬러리 상태의 상기 가용성 고형분 석출물을 상기 원심 분리기에 전달하는 석출물 저장 탱크를 더 구비하는 것을 특징으로 하는 블랙 드로스 재활용 장치.The soluble solid content precipitate discharged from the evaporator of at least one of the evaporation modules in a slurry state mixed with the aqueous solution is stored, and a precipitate storage tank for delivering the soluble solid content precipitate in the slurry state to the centrifugal separator is further provided. Black dross recycling device, characterized in that provided.
  22. 제20항에 있어서,The method of claim 20,
    상기 원심 분리기는, 상기 가용성 고형분 석출물과 분리된 상기 수용액을 상기 증발 모듈들에 재전달하는 것을 특징으로 하는 블랙 드로스 재활용 장치.The centrifuge is a black dross recycling apparatus characterized in that the redistribution of the aqueous solution separated from the soluble solids precipitate to the evaporation modules.
  23. 제22항에 있어서,The method of claim 22,
    상기 윈심 분리기에 의해 상기 수용액과 분리된 상기 가용성 고형분 석출물을 건조하여 저장하는 가용성 고형분 저장 유닛을 더 포함하는 것을 특징으로 하는 블랙 드로스 재활용 장치.And a soluble solids storage unit for drying and storing the soluble solids precipitate separated from the aqueous solution by the winshim separator.
  24. 제18항에 있어서,The method of claim 18,
    상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈의 상기 리보일러는, 외부의 증기 공급원으로부터 공급된 원증기를 열원으로서 이용해 상기 수용액을 가열하고,The reboiler of at least one of the evaporation modules heats the aqueous solution using the original steam supplied from an external steam source as a heat source,
    상기 증발 모듈들 중 적어도 다른 하나의 증발 모듈의 상기 리보일러는, 상기 적어도 어느 하나의 증발 모듈의 상기 증발기에서 상기 물이 증발되어 발생한 발생 증기 또는 상기 증발 모듈들 중 또 다른 어느 하나의 증발 모듈의 상기 증발기에서 상기 물이 증발되어 발생한 발생 증기를 열원으로서 이용해 상기 수용액을 가열하는 것을 특징으로 하는 블랙 드로스 재활용 장치.The reboiler of at least one evaporation module among the evaporation modules may be generated by evaporation of the water in the evaporator of the at least one evaporation module or another evaporation module among the evaporation modules. Black dross recycling apparatus, characterized in that the aqueous solution is heated by using the steam generated by the evaporation of water in the evaporator as a heat source.
  25. 제18항에 있어서,The method of claim 18,
    상기 증발 모듈들 각각에 대한 상기 기준 온도 및 상기 내부 압력은, 상기 염화나트륨과 상기 염화칼륨 중 당해 증발 모듈에서 우선적으로 석출시키고자 하는 염화물염의 종류에 따라 개별적으로 정해지는 것을 특징으로 하는 블랙 드로스 재활용 장치.The reference temperature and the internal pressure for each of the evaporation modules, black dross recycling apparatus characterized in that it is individually determined according to the type of chloride salt to be preferentially precipitated in the evaporation module of the sodium chloride and the potassium chloride. .
  26. 제25항에 있어서,The method of claim 25,
    상기 증발 모듈들 중 상기 염화칼륨을 우선적으로 석출시키고자 하는 증발 모듈에서의 상기 기준 온도는, 상기 수용액에서의 상기 염화칼륨의 용해도가 상기 염화나트륨의 용해도에 비해 미리 정해진 기준 값 이상만큼 낮아지는 온도가 상기 물의 증발 온도가 되도록 정해지고,The reference temperature in the evaporation module to preferentially precipitate the potassium chloride among the evaporation modules, the temperature at which the solubility of the potassium chloride in the aqueous solution is lowered by a predetermined reference value or more compared to the solubility of the sodium chloride is the water Is set to be the evaporation temperature,
    상기 증발 모듈들 중 상기 염화칼륨을 우선적으로 석출시키고자 하는 증발 모듈에서의 상기 내부 압력은, 상기 수용액에 포함된 상기 물이 상기 증발 온도에서 증발되도록 조절되는 것을 특징으로 하는 블랙 드로스 재활용 장치.The internal pressure in the evaporation module to preferentially precipitate the potassium chloride among the evaporation modules, the black dross recycling apparatus characterized in that the water contained in the aqueous solution is adjusted to evaporate at the evaporation temperature.
  27. 제25항에 있어서,The method of claim 25,
    상기 증발 모듈들 중 상기 염화나트륨을 우선적으로 석출시키고자 하는 증발 모듈에서의 상기 기준 온도는, 상기 수용액에서의 상기 염화나트륨의 용해도가 상기 염화칼륨의 용해도에 비해 미리 정해진 기준 값 이상만큼 낮아지는 온도가 상기 물의 증발 온도가 되도록 정해지고,The reference temperature in the evaporation module to preferentially precipitate the sodium chloride among the evaporation modules, the temperature at which the solubility of the sodium chloride in the aqueous solution is lowered by a predetermined reference value or more compared to the solubility of the potassium chloride is the water Is set to be the evaporation temperature,
    상기 증발 모듈들 중 상기 염화나트륨을 우선적으로 석출시키고자 하는 증발 모듈에서의 상기 내부 압력은, 상기 수용액에 포함된 상기 물이 상기 증발 온도에서 증발되도록 조절되는 것을 특징으로 하는 블랙 드로스 재활용 장치.The internal pressure in the evaporation module to preferentially precipitate the sodium chloride among the evaporation modules, the black dross recycling apparatus characterized in that the water contained in the aqueous solution is adjusted to evaporate at the evaporation temperature.
  28. 제25항에 있어서,The method of claim 25,
    상기 석출 유닛은,The precipitation unit,
    상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈의 상기 증발기의 상기 내부 압력을 조절하여, 당해 증발기에서 상기 기준 온도에 따라 진공 분위기 하에서 상기 물의 감압 증발을 유도 가능한 압력 조절 부재를 더 구비하는 것을 특징으로 하는 블랙 드로스 재활용 장치.It characterized in that it further comprises a pressure control member capable of inducing reduced pressure evaporation of the water under a vacuum atmosphere according to the reference temperature in the evaporator by adjusting the internal pressure of the evaporator of at least one of the evaporation modules. Black dross recycling device.
  29. 제28항에 있어서,The method of claim 28,
    상기 압력 조절 부재는,The pressure adjusting member,
    미리 정해진 진공압이 유지되는 진공 탱크; 및A vacuum tank in which a predetermined vacuum pressure is maintained; And
    상기 진공압을 상기 적어도 어느 하나의 증발 모듈의 상기 증발기에 선택적으로 인가하여 상기 내부 압력을 조절하는 적어도 하나의 진공 조절 밸브들을 갖는 것을 특징으로 하는 블랙 드로스 재활용 장치.Black dross recycling apparatus, characterized in that it has at least one vacuum control valve for controlling the internal pressure by selectively applying the vacuum pressure to the evaporator of the at least one evaporation module.
  30. 제18항에 있어서,The method of claim 18,
    상기 석출 유닛은,The precipitation unit,
    상기 물 분해 유닛에서 생성된 상기 수용액을 상기 증발 모듈들 중 적어도 어느 하나의 증발 모듈의 상기 증발기에 공급하는 원수 공급 펌프를 더 구비하는 것을 특징으로 하는 블랙 드로스 재활용 장치.And a raw water supply pump for supplying the aqueous solution generated in the water decomposition unit to the evaporator of at least one of the evaporation modules.
  31. 제30항에 있어서,The method of claim 30,
    상기 적어도 어느 하나의 증발 모듈의 상기 증발기는, 상기 원수 공급 펌프로부터 공급된 상기 수용액을 상기 증발 모듈들 중 적어도 다른 하나의 증발 모듈의 상기 증발기에 전달할 수 있도록, 상기 적어도 다른 하나의 증발 모듈의 상기 증발기와 연결되는 것을 특징으로 하는 블랙 드로스 재활용 장치.The evaporator of the at least one evaporation module may transmit the aqueous solution supplied from the raw water supply pump to the evaporator of at least one evaporation module among the evaporation modules, so that the Black dross recycling device, characterized in that connected to the evaporator.
PCT/KR2019/016655 2018-11-29 2019-11-29 System and method for melting aluminum and recycling black dross WO2020111848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0151179 2018-11-29
KR1020180151179A KR102081310B1 (en) 2018-11-29 2018-11-29 System and method for aluminium melting and black dross recycling

Publications (1)

Publication Number Publication Date
WO2020111848A1 true WO2020111848A1 (en) 2020-06-04

Family

ID=69647649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016655 WO2020111848A1 (en) 2018-11-29 2019-11-29 System and method for melting aluminum and recycling black dross

Country Status (2)

Country Link
KR (1) KR102081310B1 (en)
WO (1) WO2020111848A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401442B1 (en) 2021-09-29 2022-05-24 조용명 Treatment system for recycling aluminum dross and method for treating thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102453A (en) * 1991-06-12 1992-04-07 Dan Yerushalmi Aluminum dross recovery process
US5211922A (en) * 1989-12-15 1993-05-18 Aluminum Company Of America Process for the recovery of values from secondary aluminum dross
KR101393109B1 (en) * 2013-03-06 2014-05-13 한국생산기술연구원 Method for recycling aluminium dross and system thereof
KR101711363B1 (en) * 2015-12-14 2017-03-02 윤수현 Apparatus and method for recycling black dross of aluminium scrap
KR101735425B1 (en) * 2015-12-14 2017-05-16 (주)디에스리퀴드 System and method for aluminium black dross recycling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735493B1 (en) * 2017-03-02 2017-05-15 (주)디에스리퀴드 System and method for aluminium black dross recycling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211922A (en) * 1989-12-15 1993-05-18 Aluminum Company Of America Process for the recovery of values from secondary aluminum dross
US5102453A (en) * 1991-06-12 1992-04-07 Dan Yerushalmi Aluminum dross recovery process
KR101393109B1 (en) * 2013-03-06 2014-05-13 한국생산기술연구원 Method for recycling aluminium dross and system thereof
KR101711363B1 (en) * 2015-12-14 2017-03-02 윤수현 Apparatus and method for recycling black dross of aluminium scrap
KR101735425B1 (en) * 2015-12-14 2017-05-16 (주)디에스리퀴드 System and method for aluminium black dross recycling

Also Published As

Publication number Publication date
KR102081310B1 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
WO2017105083A1 (en) System and method for melting aluminum and recycling black dross
WO2019022555A1 (en) Method for selective recovery of valuable metal from waste denitrification catalyst through alkali fusion
WO2020111848A1 (en) System and method for melting aluminum and recycling black dross
WO2013025019A9 (en) Central-type apparatus for continuously producing asphalt concrete and method for same
JPS6324962A (en) Method and apparatus for treating contaminated soil or analogues
WO2017074081A1 (en) Siox-fullerene complex, preparation method therefor, preparation apparatus therefor, and use thereof
WO2022045559A1 (en) Apparatus for recovering active material and method for reusing active material by using same
WO2017074084A1 (en) Collection apparatus and collection method for siox
WO2013169024A1 (en) Solvent-substitution solvent used in aerogel production, and hydrophobised aerogel production method using same
WO2009125929A2 (en) System for reducing environmental pollutants
WO2024076100A1 (en) Method for recovering nickel hydroxide and nickel sulfate from nickel-containing materials
WO2022035053A1 (en) Apparatus for recovering active material and method for reusing active material by using same
CN113412167B (en) Method for treating waste electronic substrate
WO2018194397A1 (en) Method for smelting ilmenite using red mud
AU2009226806B2 (en) Method and device for producing liquid pig iron or liquid steel precursor products
WO2023043071A1 (en) Method for recycling cathode active material and cathode active material recycled thereby
WO2021045489A1 (en) Gold recovery method using microwaves
WO2023182561A1 (en) Method using solvent extraction for selective recovery of valuable metal from lithium secondary battery waste material
KR20060038401A (en) Mechanical separation of volatile metals at high temperatures
WO2014157949A1 (en) Method for recycling iron-containing by-products discharged from coal-based ironmaking process, system used therefor, and direct-reduced iron agglomeration system
WO2024147554A1 (en) Method for recovering high-efficiency lithium from low-concentration lithium waste liquid and lithium carbonate produced thereby
KR20200064721A (en) System and method for aluminium melting and black dross recycling
CA2272495A1 (en) Process and apparatus for the thermal conversion of residues
WO2023121346A1 (en) Apparatus for producing sodium bicarbonate from industrial by-products containing sodium sulfate
WO2024106897A1 (en) Method for recovering lithium with high efficiency from low-grade lithium minerals through process improvement, and lithium carbonate prepared thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888376

Country of ref document: EP

Kind code of ref document: A1